drivers/net/: all drivers/net/ cleanup with ARRAY_SIZE
[deliverable/linux.git] / drivers / net / e100.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
05479938
JB
5
6 This program is free software; you can redistribute it and/or modify it
0abb6eb1
AK
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
05479938 9
0abb6eb1 10 This program is distributed in the hope it will be useful, but WITHOUT
05479938
JB
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
05479938 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
05479938 18
0abb6eb1
AK
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
05479938 21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
0abb6eb1 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
ac7c6669
OM
135 *
136 * FIXES:
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
1da177e4
LT
139 */
140
1da177e4
LT
141#include <linux/module.h>
142#include <linux/moduleparam.h>
143#include <linux/kernel.h>
144#include <linux/types.h>
145#include <linux/slab.h>
146#include <linux/delay.h>
147#include <linux/init.h>
148#include <linux/pci.h>
1e7f0bd8 149#include <linux/dma-mapping.h>
1da177e4
LT
150#include <linux/netdevice.h>
151#include <linux/etherdevice.h>
152#include <linux/mii.h>
153#include <linux/if_vlan.h>
154#include <linux/skbuff.h>
155#include <linux/ethtool.h>
156#include <linux/string.h>
157#include <asm/unaligned.h>
158
159
160#define DRV_NAME "e100"
4e1dc97d 161#define DRV_EXT "-NAPI"
44e4925e 162#define DRV_VERSION "3.5.23-k4"DRV_EXT
1da177e4 163#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
4e1dc97d 164#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
1da177e4
LT
165#define PFX DRV_NAME ": "
166
167#define E100_WATCHDOG_PERIOD (2 * HZ)
168#define E100_NAPI_WEIGHT 16
169
170MODULE_DESCRIPTION(DRV_DESCRIPTION);
171MODULE_AUTHOR(DRV_COPYRIGHT);
172MODULE_LICENSE("GPL");
173MODULE_VERSION(DRV_VERSION);
174
175static int debug = 3;
8fb6f732 176static int eeprom_bad_csum_allow = 0;
27345bb6 177static int use_io = 0;
1da177e4 178module_param(debug, int, 0);
8fb6f732 179module_param(eeprom_bad_csum_allow, int, 0);
27345bb6 180module_param(use_io, int, 0);
1da177e4 181MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
8fb6f732 182MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
27345bb6 183MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
1da177e4
LT
184#define DPRINTK(nlevel, klevel, fmt, args...) \
185 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
186 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
187 __FUNCTION__ , ## args))
188
189#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
190 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
191 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
192static struct pci_device_id e100_id_table[] = {
193 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
194 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
195 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
196 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
197 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
198 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
199 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
200 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
202 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
203 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
204 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
205 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
206 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
210 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
211 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
212 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
213 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
219 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
220 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
221 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
222 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
042e2fb7
MC
223 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
224 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
225 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
226 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
227 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
1da177e4
LT
228 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
229 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
231 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
232 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
042e2fb7 233 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
1da177e4
LT
234 { 0, }
235};
236MODULE_DEVICE_TABLE(pci, e100_id_table);
237
238enum mac {
239 mac_82557_D100_A = 0,
240 mac_82557_D100_B = 1,
241 mac_82557_D100_C = 2,
242 mac_82558_D101_A4 = 4,
243 mac_82558_D101_B0 = 5,
244 mac_82559_D101M = 8,
245 mac_82559_D101S = 9,
246 mac_82550_D102 = 12,
247 mac_82550_D102_C = 13,
248 mac_82551_E = 14,
249 mac_82551_F = 15,
250 mac_82551_10 = 16,
251 mac_unknown = 0xFF,
252};
253
254enum phy {
255 phy_100a = 0x000003E0,
256 phy_100c = 0x035002A8,
257 phy_82555_tx = 0x015002A8,
258 phy_nsc_tx = 0x5C002000,
259 phy_82562_et = 0x033002A8,
260 phy_82562_em = 0x032002A8,
261 phy_82562_ek = 0x031002A8,
262 phy_82562_eh = 0x017002A8,
263 phy_unknown = 0xFFFFFFFF,
264};
265
266/* CSR (Control/Status Registers) */
267struct csr {
268 struct {
269 u8 status;
270 u8 stat_ack;
271 u8 cmd_lo;
272 u8 cmd_hi;
273 u32 gen_ptr;
274 } scb;
275 u32 port;
276 u16 flash_ctrl;
277 u8 eeprom_ctrl_lo;
278 u8 eeprom_ctrl_hi;
279 u32 mdi_ctrl;
280 u32 rx_dma_count;
281};
282
283enum scb_status {
284 rus_ready = 0x10,
285 rus_mask = 0x3C,
286};
287
ca93ca42
JG
288enum ru_state {
289 RU_SUSPENDED = 0,
290 RU_RUNNING = 1,
291 RU_UNINITIALIZED = -1,
292};
293
1da177e4
LT
294enum scb_stat_ack {
295 stat_ack_not_ours = 0x00,
296 stat_ack_sw_gen = 0x04,
297 stat_ack_rnr = 0x10,
298 stat_ack_cu_idle = 0x20,
299 stat_ack_frame_rx = 0x40,
300 stat_ack_cu_cmd_done = 0x80,
301 stat_ack_not_present = 0xFF,
302 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
303 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
304};
305
306enum scb_cmd_hi {
307 irq_mask_none = 0x00,
308 irq_mask_all = 0x01,
309 irq_sw_gen = 0x02,
310};
311
312enum scb_cmd_lo {
313 cuc_nop = 0x00,
314 ruc_start = 0x01,
315 ruc_load_base = 0x06,
316 cuc_start = 0x10,
317 cuc_resume = 0x20,
318 cuc_dump_addr = 0x40,
319 cuc_dump_stats = 0x50,
320 cuc_load_base = 0x60,
321 cuc_dump_reset = 0x70,
322};
323
324enum cuc_dump {
325 cuc_dump_complete = 0x0000A005,
326 cuc_dump_reset_complete = 0x0000A007,
327};
05479938 328
1da177e4
LT
329enum port {
330 software_reset = 0x0000,
331 selftest = 0x0001,
332 selective_reset = 0x0002,
333};
334
335enum eeprom_ctrl_lo {
336 eesk = 0x01,
337 eecs = 0x02,
338 eedi = 0x04,
339 eedo = 0x08,
340};
341
342enum mdi_ctrl {
343 mdi_write = 0x04000000,
344 mdi_read = 0x08000000,
345 mdi_ready = 0x10000000,
346};
347
348enum eeprom_op {
349 op_write = 0x05,
350 op_read = 0x06,
351 op_ewds = 0x10,
352 op_ewen = 0x13,
353};
354
355enum eeprom_offsets {
356 eeprom_cnfg_mdix = 0x03,
357 eeprom_id = 0x0A,
358 eeprom_config_asf = 0x0D,
359 eeprom_smbus_addr = 0x90,
360};
361
362enum eeprom_cnfg_mdix {
363 eeprom_mdix_enabled = 0x0080,
364};
365
366enum eeprom_id {
367 eeprom_id_wol = 0x0020,
368};
369
370enum eeprom_config_asf {
371 eeprom_asf = 0x8000,
372 eeprom_gcl = 0x4000,
373};
374
375enum cb_status {
376 cb_complete = 0x8000,
377 cb_ok = 0x2000,
378};
379
380enum cb_command {
381 cb_nop = 0x0000,
382 cb_iaaddr = 0x0001,
383 cb_config = 0x0002,
384 cb_multi = 0x0003,
385 cb_tx = 0x0004,
386 cb_ucode = 0x0005,
387 cb_dump = 0x0006,
388 cb_tx_sf = 0x0008,
389 cb_cid = 0x1f00,
390 cb_i = 0x2000,
391 cb_s = 0x4000,
392 cb_el = 0x8000,
393};
394
395struct rfd {
396 u16 status;
397 u16 command;
398 u32 link;
399 u32 rbd;
400 u16 actual_size;
401 u16 size;
402};
403
404struct rx {
405 struct rx *next, *prev;
406 struct sk_buff *skb;
407 dma_addr_t dma_addr;
408};
409
410#if defined(__BIG_ENDIAN_BITFIELD)
411#define X(a,b) b,a
412#else
413#define X(a,b) a,b
414#endif
415struct config {
416/*0*/ u8 X(byte_count:6, pad0:2);
417/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
418/*2*/ u8 adaptive_ifs;
419/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
420 term_write_cache_line:1), pad3:4);
421/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
422/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
423/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
424 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
425 rx_discard_overruns:1), rx_save_bad_frames:1);
426/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
427 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
428 tx_dynamic_tbd:1);
429/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
430/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
431 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
432/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
433 loopback:2);
434/*11*/ u8 X(linear_priority:3, pad11:5);
435/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
436/*13*/ u8 ip_addr_lo;
437/*14*/ u8 ip_addr_hi;
438/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
439 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
440 pad15_2:1), crs_or_cdt:1);
441/*16*/ u8 fc_delay_lo;
442/*17*/ u8 fc_delay_hi;
443/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
444 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
445/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
446 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
447 full_duplex_force:1), full_duplex_pin:1);
448/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
449/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
450/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
451 u8 pad_d102[9];
452};
453
454#define E100_MAX_MULTICAST_ADDRS 64
455struct multi {
456 u16 count;
457 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
458};
459
460/* Important: keep total struct u32-aligned */
461#define UCODE_SIZE 134
462struct cb {
463 u16 status;
464 u16 command;
465 u32 link;
466 union {
467 u8 iaaddr[ETH_ALEN];
468 u32 ucode[UCODE_SIZE];
469 struct config config;
470 struct multi multi;
471 struct {
472 u32 tbd_array;
473 u16 tcb_byte_count;
474 u8 threshold;
475 u8 tbd_count;
476 struct {
477 u32 buf_addr;
478 u16 size;
479 u16 eol;
480 } tbd;
481 } tcb;
482 u32 dump_buffer_addr;
483 } u;
484 struct cb *next, *prev;
485 dma_addr_t dma_addr;
486 struct sk_buff *skb;
487};
488
489enum loopback {
490 lb_none = 0, lb_mac = 1, lb_phy = 3,
491};
492
493struct stats {
494 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
495 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
496 tx_multiple_collisions, tx_total_collisions;
497 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
498 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
499 rx_short_frame_errors;
500 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
501 u16 xmt_tco_frames, rcv_tco_frames;
502 u32 complete;
503};
504
505struct mem {
506 struct {
507 u32 signature;
508 u32 result;
509 } selftest;
510 struct stats stats;
511 u8 dump_buf[596];
512};
513
514struct param_range {
515 u32 min;
516 u32 max;
517 u32 count;
518};
519
520struct params {
521 struct param_range rfds;
522 struct param_range cbs;
523};
524
525struct nic {
526 /* Begin: frequently used values: keep adjacent for cache effect */
527 u32 msg_enable ____cacheline_aligned;
528 struct net_device *netdev;
529 struct pci_dev *pdev;
530
531 struct rx *rxs ____cacheline_aligned;
532 struct rx *rx_to_use;
533 struct rx *rx_to_clean;
534 struct rfd blank_rfd;
ca93ca42 535 enum ru_state ru_running;
1da177e4
LT
536
537 spinlock_t cb_lock ____cacheline_aligned;
538 spinlock_t cmd_lock;
539 struct csr __iomem *csr;
540 enum scb_cmd_lo cuc_cmd;
541 unsigned int cbs_avail;
bea3348e 542 struct napi_struct napi;
1da177e4
LT
543 struct cb *cbs;
544 struct cb *cb_to_use;
545 struct cb *cb_to_send;
546 struct cb *cb_to_clean;
547 u16 tx_command;
548 /* End: frequently used values: keep adjacent for cache effect */
549
550 enum {
551 ich = (1 << 0),
552 promiscuous = (1 << 1),
553 multicast_all = (1 << 2),
554 wol_magic = (1 << 3),
555 ich_10h_workaround = (1 << 4),
556 } flags ____cacheline_aligned;
557
558 enum mac mac;
559 enum phy phy;
560 struct params params;
561 struct net_device_stats net_stats;
562 struct timer_list watchdog;
563 struct timer_list blink_timer;
564 struct mii_if_info mii;
2acdb1e0 565 struct work_struct tx_timeout_task;
1da177e4
LT
566 enum loopback loopback;
567
568 struct mem *mem;
569 dma_addr_t dma_addr;
570
571 dma_addr_t cbs_dma_addr;
572 u8 adaptive_ifs;
573 u8 tx_threshold;
574 u32 tx_frames;
575 u32 tx_collisions;
576 u32 tx_deferred;
577 u32 tx_single_collisions;
578 u32 tx_multiple_collisions;
579 u32 tx_fc_pause;
580 u32 tx_tco_frames;
581
582 u32 rx_fc_pause;
583 u32 rx_fc_unsupported;
584 u32 rx_tco_frames;
585 u32 rx_over_length_errors;
586
1da177e4
LT
587 u16 leds;
588 u16 eeprom_wc;
589 u16 eeprom[256];
ac7c6669 590 spinlock_t mdio_lock;
1da177e4
LT
591};
592
593static inline void e100_write_flush(struct nic *nic)
594{
595 /* Flush previous PCI writes through intermediate bridges
596 * by doing a benign read */
27345bb6 597 (void)ioread8(&nic->csr->scb.status);
1da177e4
LT
598}
599
858119e1 600static void e100_enable_irq(struct nic *nic)
1da177e4
LT
601{
602 unsigned long flags;
603
604 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 605 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
1da177e4 606 e100_write_flush(nic);
ad8c48ad 607 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
608}
609
858119e1 610static void e100_disable_irq(struct nic *nic)
1da177e4
LT
611{
612 unsigned long flags;
613
614 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 615 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
1da177e4 616 e100_write_flush(nic);
ad8c48ad 617 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
618}
619
620static void e100_hw_reset(struct nic *nic)
621{
622 /* Put CU and RU into idle with a selective reset to get
623 * device off of PCI bus */
27345bb6 624 iowrite32(selective_reset, &nic->csr->port);
1da177e4
LT
625 e100_write_flush(nic); udelay(20);
626
627 /* Now fully reset device */
27345bb6 628 iowrite32(software_reset, &nic->csr->port);
1da177e4
LT
629 e100_write_flush(nic); udelay(20);
630
631 /* Mask off our interrupt line - it's unmasked after reset */
632 e100_disable_irq(nic);
633}
634
635static int e100_self_test(struct nic *nic)
636{
637 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
638
639 /* Passing the self-test is a pretty good indication
640 * that the device can DMA to/from host memory */
641
642 nic->mem->selftest.signature = 0;
643 nic->mem->selftest.result = 0xFFFFFFFF;
644
27345bb6 645 iowrite32(selftest | dma_addr, &nic->csr->port);
1da177e4
LT
646 e100_write_flush(nic);
647 /* Wait 10 msec for self-test to complete */
648 msleep(10);
649
650 /* Interrupts are enabled after self-test */
651 e100_disable_irq(nic);
652
653 /* Check results of self-test */
654 if(nic->mem->selftest.result != 0) {
655 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
656 nic->mem->selftest.result);
657 return -ETIMEDOUT;
658 }
659 if(nic->mem->selftest.signature == 0) {
660 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
661 return -ETIMEDOUT;
662 }
663
664 return 0;
665}
666
667static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
668{
669 u32 cmd_addr_data[3];
670 u8 ctrl;
671 int i, j;
672
673 /* Three cmds: write/erase enable, write data, write/erase disable */
674 cmd_addr_data[0] = op_ewen << (addr_len - 2);
675 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
676 cpu_to_le16(data);
677 cmd_addr_data[2] = op_ewds << (addr_len - 2);
678
679 /* Bit-bang cmds to write word to eeprom */
680 for(j = 0; j < 3; j++) {
681
682 /* Chip select */
27345bb6 683 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
684 e100_write_flush(nic); udelay(4);
685
686 for(i = 31; i >= 0; i--) {
687 ctrl = (cmd_addr_data[j] & (1 << i)) ?
688 eecs | eedi : eecs;
27345bb6 689 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
690 e100_write_flush(nic); udelay(4);
691
27345bb6 692 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
693 e100_write_flush(nic); udelay(4);
694 }
695 /* Wait 10 msec for cmd to complete */
696 msleep(10);
697
698 /* Chip deselect */
27345bb6 699 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
700 e100_write_flush(nic); udelay(4);
701 }
702};
703
704/* General technique stolen from the eepro100 driver - very clever */
705static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
706{
707 u32 cmd_addr_data;
708 u16 data = 0;
709 u8 ctrl;
710 int i;
711
712 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
713
714 /* Chip select */
27345bb6 715 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
716 e100_write_flush(nic); udelay(4);
717
718 /* Bit-bang to read word from eeprom */
719 for(i = 31; i >= 0; i--) {
720 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
27345bb6 721 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4 722 e100_write_flush(nic); udelay(4);
05479938 723
27345bb6 724 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4 725 e100_write_flush(nic); udelay(4);
05479938 726
1da177e4
LT
727 /* Eeprom drives a dummy zero to EEDO after receiving
728 * complete address. Use this to adjust addr_len. */
27345bb6 729 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
1da177e4
LT
730 if(!(ctrl & eedo) && i > 16) {
731 *addr_len -= (i - 16);
732 i = 17;
733 }
05479938 734
1da177e4
LT
735 data = (data << 1) | (ctrl & eedo ? 1 : 0);
736 }
737
738 /* Chip deselect */
27345bb6 739 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
740 e100_write_flush(nic); udelay(4);
741
742 return le16_to_cpu(data);
743};
744
745/* Load entire EEPROM image into driver cache and validate checksum */
746static int e100_eeprom_load(struct nic *nic)
747{
748 u16 addr, addr_len = 8, checksum = 0;
749
750 /* Try reading with an 8-bit addr len to discover actual addr len */
751 e100_eeprom_read(nic, &addr_len, 0);
752 nic->eeprom_wc = 1 << addr_len;
753
754 for(addr = 0; addr < nic->eeprom_wc; addr++) {
755 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
756 if(addr < nic->eeprom_wc - 1)
757 checksum += cpu_to_le16(nic->eeprom[addr]);
758 }
759
760 /* The checksum, stored in the last word, is calculated such that
761 * the sum of words should be 0xBABA */
762 checksum = le16_to_cpu(0xBABA - checksum);
763 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
764 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
8fb6f732
DM
765 if (!eeprom_bad_csum_allow)
766 return -EAGAIN;
1da177e4
LT
767 }
768
769 return 0;
770}
771
772/* Save (portion of) driver EEPROM cache to device and update checksum */
773static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
774{
775 u16 addr, addr_len = 8, checksum = 0;
776
777 /* Try reading with an 8-bit addr len to discover actual addr len */
778 e100_eeprom_read(nic, &addr_len, 0);
779 nic->eeprom_wc = 1 << addr_len;
780
781 if(start + count >= nic->eeprom_wc)
782 return -EINVAL;
783
784 for(addr = start; addr < start + count; addr++)
785 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
786
787 /* The checksum, stored in the last word, is calculated such that
788 * the sum of words should be 0xBABA */
789 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
790 checksum += cpu_to_le16(nic->eeprom[addr]);
791 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
792 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
793 nic->eeprom[nic->eeprom_wc - 1]);
794
795 return 0;
796}
797
962082b6 798#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
e6280f26 799#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
858119e1 800static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
1da177e4
LT
801{
802 unsigned long flags;
803 unsigned int i;
804 int err = 0;
805
806 spin_lock_irqsave(&nic->cmd_lock, flags);
807
808 /* Previous command is accepted when SCB clears */
809 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
27345bb6 810 if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
1da177e4
LT
811 break;
812 cpu_relax();
e6280f26 813 if(unlikely(i > E100_WAIT_SCB_FAST))
1da177e4
LT
814 udelay(5);
815 }
816 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
817 err = -EAGAIN;
818 goto err_unlock;
819 }
820
821 if(unlikely(cmd != cuc_resume))
27345bb6
JB
822 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
823 iowrite8(cmd, &nic->csr->scb.cmd_lo);
1da177e4
LT
824
825err_unlock:
826 spin_unlock_irqrestore(&nic->cmd_lock, flags);
827
828 return err;
829}
830
858119e1 831static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
1da177e4
LT
832 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
833{
834 struct cb *cb;
835 unsigned long flags;
836 int err = 0;
837
838 spin_lock_irqsave(&nic->cb_lock, flags);
839
840 if(unlikely(!nic->cbs_avail)) {
841 err = -ENOMEM;
842 goto err_unlock;
843 }
844
845 cb = nic->cb_to_use;
846 nic->cb_to_use = cb->next;
847 nic->cbs_avail--;
848 cb->skb = skb;
849
850 if(unlikely(!nic->cbs_avail))
851 err = -ENOSPC;
852
853 cb_prepare(nic, cb, skb);
854
855 /* Order is important otherwise we'll be in a race with h/w:
856 * set S-bit in current first, then clear S-bit in previous. */
857 cb->command |= cpu_to_le16(cb_s);
858 wmb();
859 cb->prev->command &= cpu_to_le16(~cb_s);
860
861 while(nic->cb_to_send != nic->cb_to_use) {
862 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
863 nic->cb_to_send->dma_addr))) {
864 /* Ok, here's where things get sticky. It's
865 * possible that we can't schedule the command
866 * because the controller is too busy, so
867 * let's just queue the command and try again
868 * when another command is scheduled. */
962082b6
MC
869 if(err == -ENOSPC) {
870 //request a reset
871 schedule_work(&nic->tx_timeout_task);
872 }
1da177e4
LT
873 break;
874 } else {
875 nic->cuc_cmd = cuc_resume;
876 nic->cb_to_send = nic->cb_to_send->next;
877 }
878 }
879
880err_unlock:
881 spin_unlock_irqrestore(&nic->cb_lock, flags);
882
883 return err;
884}
885
886static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
887{
888 u32 data_out = 0;
889 unsigned int i;
ac7c6669 890 unsigned long flags;
1da177e4 891
ac7c6669
OM
892
893 /*
894 * Stratus87247: we shouldn't be writing the MDI control
895 * register until the Ready bit shows True. Also, since
896 * manipulation of the MDI control registers is a multi-step
897 * procedure it should be done under lock.
898 */
899 spin_lock_irqsave(&nic->mdio_lock, flags);
900 for (i = 100; i; --i) {
27345bb6 901 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
ac7c6669
OM
902 break;
903 udelay(20);
904 }
905 if (unlikely(!i)) {
906 printk("e100.mdio_ctrl(%s) won't go Ready\n",
907 nic->netdev->name );
908 spin_unlock_irqrestore(&nic->mdio_lock, flags);
909 return 0; /* No way to indicate timeout error */
910 }
27345bb6 911 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
1da177e4 912
ac7c6669 913 for (i = 0; i < 100; i++) {
1da177e4 914 udelay(20);
27345bb6 915 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
1da177e4
LT
916 break;
917 }
ac7c6669 918 spin_unlock_irqrestore(&nic->mdio_lock, flags);
1da177e4
LT
919 DPRINTK(HW, DEBUG,
920 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
921 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
922 return (u16)data_out;
923}
924
925static int mdio_read(struct net_device *netdev, int addr, int reg)
926{
927 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
928}
929
930static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
931{
932 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
933}
934
935static void e100_get_defaults(struct nic *nic)
936{
2afecc04
JB
937 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
938 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1da177e4 939
1da177e4 940 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
44c10138 941 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1da177e4
LT
942 if(nic->mac == mac_unknown)
943 nic->mac = mac_82557_D100_A;
944
945 nic->params.rfds = rfds;
946 nic->params.cbs = cbs;
947
948 /* Quadwords to DMA into FIFO before starting frame transmit */
949 nic->tx_threshold = 0xE0;
950
962082b6
MC
951 /* no interrupt for every tx completion, delay = 256us if not 557*/
952 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
953 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1da177e4
LT
954
955 /* Template for a freshly allocated RFD */
ca93ca42 956 nic->blank_rfd.command = cpu_to_le16(cb_el);
1da177e4
LT
957 nic->blank_rfd.rbd = 0xFFFFFFFF;
958 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
959
960 /* MII setup */
961 nic->mii.phy_id_mask = 0x1F;
962 nic->mii.reg_num_mask = 0x1F;
963 nic->mii.dev = nic->netdev;
964 nic->mii.mdio_read = mdio_read;
965 nic->mii.mdio_write = mdio_write;
966}
967
968static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
969{
970 struct config *config = &cb->u.config;
971 u8 *c = (u8 *)config;
972
973 cb->command = cpu_to_le16(cb_config);
974
975 memset(config, 0, sizeof(struct config));
976
977 config->byte_count = 0x16; /* bytes in this struct */
978 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
979 config->direct_rx_dma = 0x1; /* reserved */
980 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
981 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
982 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
983 config->tx_underrun_retry = 0x3; /* # of underrun retries */
984 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
985 config->pad10 = 0x6;
986 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
987 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
988 config->ifs = 0x6; /* x16 = inter frame spacing */
989 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
990 config->pad15_1 = 0x1;
991 config->pad15_2 = 0x1;
992 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
993 config->fc_delay_hi = 0x40; /* time delay for fc frame */
994 config->tx_padding = 0x1; /* 1=pad short frames */
995 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
996 config->pad18 = 0x1;
997 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
998 config->pad20_1 = 0x1F;
999 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1000 config->pad21_1 = 0x5;
1001
1002 config->adaptive_ifs = nic->adaptive_ifs;
1003 config->loopback = nic->loopback;
1004
1005 if(nic->mii.force_media && nic->mii.full_duplex)
1006 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1007
1008 if(nic->flags & promiscuous || nic->loopback) {
1009 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1010 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1011 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1012 }
1013
1014 if(nic->flags & multicast_all)
1015 config->multicast_all = 0x1; /* 1=accept, 0=no */
1016
6bdacb1a
MC
1017 /* disable WoL when up */
1018 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1da177e4
LT
1019 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1020
1021 if(nic->mac >= mac_82558_D101_A4) {
1022 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1023 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1024 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1025 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
44e4925e 1026 if (nic->mac >= mac_82559_D101M) {
1da177e4 1027 config->tno_intr = 0x1; /* TCO stats enable */
44e4925e
DG
1028 /* Enable TCO in extended config */
1029 if (nic->mac >= mac_82551_10) {
1030 config->byte_count = 0x20; /* extended bytes */
1031 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1032 }
1033 } else {
1da177e4 1034 config->standard_stat_counter = 0x0;
44e4925e 1035 }
1da177e4
LT
1036 }
1037
1038 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1039 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1040 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1041 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1042 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1043 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1044}
1045
2afecc04
JB
1046/********************************************************/
1047/* Micro code for 8086:1229 Rev 8 */
1048/********************************************************/
1049
1050/* Parameter values for the D101M B-step */
1051#define D101M_CPUSAVER_TIMER_DWORD 78
1052#define D101M_CPUSAVER_BUNDLE_DWORD 65
1053#define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1054
1055#define D101M_B_RCVBUNDLE_UCODE \
1056{\
10570x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
10580x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
10590x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
10600x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
10610x00380438, 0x00000000, 0x00140000, 0x00380555, \
10620x00308000, 0x00100662, 0x00100561, 0x000E0408, \
10630x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10640x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10650x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
10660x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
10670x00000000, 0x00000000, 0x00000000, 0x00000000, \
10680x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
10690x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
10700x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
10710x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
10720x00041000, 0x00010004, 0x00130826, 0x000C0006, \
10730x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
10740x00000000, 0x00000000, 0x00000000, 0x00000000, \
10750x00000000, 0x00000000, 0x00000000, 0x00000000, \
10760x00080600, 0x00101B10, 0x00050004, 0x00100826, \
10770x00101210, 0x00380C34, 0x00000000, 0x00000000, \
10780x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
10790x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
10800x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
10810x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
10820x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
10830x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
10840x00130826, 0x000C0001, 0x00220559, 0x00101313, \
10850x00380559, 0x00000000, 0x00000000, 0x00000000, \
10860x00000000, 0x00000000, 0x00000000, 0x00000000, \
10870x00000000, 0x00130831, 0x0010090B, 0x00124813, \
10880x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
10890x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1090}
1091
1092/********************************************************/
1093/* Micro code for 8086:1229 Rev 9 */
1094/********************************************************/
1095
1096/* Parameter values for the D101S */
1097#define D101S_CPUSAVER_TIMER_DWORD 78
1098#define D101S_CPUSAVER_BUNDLE_DWORD 67
1099#define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1100
1101#define D101S_RCVBUNDLE_UCODE \
1102{\
11030x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
11040x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
11050x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
11060x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
11070x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
11080x00308000, 0x00100610, 0x00100561, 0x000E0408, \
11090x00134861, 0x000C0002, 0x00103093, 0x00308000, \
11100x00100624, 0x00100561, 0x000E0408, 0x00100861, \
11110x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
11120x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
11130x00000000, 0x00000000, 0x00000000, 0x00000000, \
11140x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
11150x003A047E, 0x00044010, 0x00380819, 0x00000000, \
11160x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
11170x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
11180x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
11190x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
11200x00101313, 0x00380700, 0x00000000, 0x00000000, \
11210x00000000, 0x00000000, 0x00000000, 0x00000000, \
11220x00080600, 0x00101B10, 0x00050004, 0x00100826, \
11230x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
11240x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
11250x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
11260x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
11270x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
11280x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
11290x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
11300x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
11310x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
11320x00000000, 0x00000000, 0x00000000, 0x00000000, \
11330x00000000, 0x00000000, 0x00000000, 0x00130831, \
11340x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
11350x00041000, 0x00010004, 0x00380700 \
1136}
1137
1138/********************************************************/
1139/* Micro code for the 8086:1229 Rev F/10 */
1140/********************************************************/
1141
1142/* Parameter values for the D102 E-step */
1143#define D102_E_CPUSAVER_TIMER_DWORD 42
1144#define D102_E_CPUSAVER_BUNDLE_DWORD 54
1145#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1146
1147#define D102_E_RCVBUNDLE_UCODE \
1148{\
11490x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
11500x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
11510x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
11520x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
11530x00000000, 0x00000000, 0x00000000, 0x00000000, \
11540x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
11550x00000000, 0x00000000, 0x00000000, 0x00000000, \
11560x00000000, 0x00000000, 0x00000000, 0x00000000, \
11570x00000000, 0x00000000, 0x00000000, 0x00000000, \
11580x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
11590x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
11600x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
11610x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
11620x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
11630x00000000, 0x00000000, 0x00000000, 0x00000000, \
11640x00000000, 0x00000000, 0x00000000, 0x00000000, \
11650x00000000, 0x00000000, 0x00000000, 0x00000000, \
11660x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
11670x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
11680x00000000, 0x00000000, 0x00000000, 0x00000000, \
11690x00000000, 0x00000000, 0x00000000, 0x00000000, \
11700x00000000, 0x00000000, 0x00000000, 0x00000000, \
11710x00000000, 0x00000000, 0x00000000, 0x00000000, \
11720x00000000, 0x00000000, 0x00000000, 0x00000000, \
11730x00000000, 0x00000000, 0x00000000, 0x00000000, \
11740x00000000, 0x00000000, 0x00000000, 0x00000000, \
11750x00000000, 0x00000000, 0x00000000, 0x00000000, \
11760x00000000, 0x00000000, 0x00000000, 0x00000000, \
11770x00000000, 0x00000000, 0x00000000, 0x00000000, \
11780x00000000, 0x00000000, 0x00000000, 0x00000000, \
11790x00000000, 0x00000000, 0x00000000, 0x00000000, \
11800x00000000, 0x00000000, 0x00000000, 0x00000000, \
11810x00000000, 0x00000000, 0x00000000, 0x00000000, \
1182}
1183
24180333 1184static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1da177e4 1185{
2afecc04
JB
1186/* *INDENT-OFF* */
1187 static struct {
1188 u32 ucode[UCODE_SIZE + 1];
1189 u8 mac;
1190 u8 timer_dword;
1191 u8 bundle_dword;
1192 u8 min_size_dword;
1193 } ucode_opts[] = {
1194 { D101M_B_RCVBUNDLE_UCODE,
1195 mac_82559_D101M,
1196 D101M_CPUSAVER_TIMER_DWORD,
1197 D101M_CPUSAVER_BUNDLE_DWORD,
1198 D101M_CPUSAVER_MIN_SIZE_DWORD },
1199 { D101S_RCVBUNDLE_UCODE,
1200 mac_82559_D101S,
1201 D101S_CPUSAVER_TIMER_DWORD,
1202 D101S_CPUSAVER_BUNDLE_DWORD,
1203 D101S_CPUSAVER_MIN_SIZE_DWORD },
1204 { D102_E_RCVBUNDLE_UCODE,
1205 mac_82551_F,
1206 D102_E_CPUSAVER_TIMER_DWORD,
1207 D102_E_CPUSAVER_BUNDLE_DWORD,
1208 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1209 { D102_E_RCVBUNDLE_UCODE,
1210 mac_82551_10,
1211 D102_E_CPUSAVER_TIMER_DWORD,
1212 D102_E_CPUSAVER_BUNDLE_DWORD,
1213 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1214 { {0}, 0, 0, 0, 0}
1215 }, *opts;
1216/* *INDENT-ON* */
1217
1218/*************************************************************************
1219* CPUSaver parameters
1220*
1221* All CPUSaver parameters are 16-bit literals that are part of a
1222* "move immediate value" instruction. By changing the value of
1223* the literal in the instruction before the code is loaded, the
1224* driver can change the algorithm.
1225*
0779bf2d 1226* INTDELAY - This loads the dead-man timer with its initial value.
05479938 1227* When this timer expires the interrupt is asserted, and the
2afecc04
JB
1228* timer is reset each time a new packet is received. (see
1229* BUNDLEMAX below to set the limit on number of chained packets)
1230* The current default is 0x600 or 1536. Experiments show that
1231* the value should probably stay within the 0x200 - 0x1000.
1232*
05479938 1233* BUNDLEMAX -
2afecc04
JB
1234* This sets the maximum number of frames that will be bundled. In
1235* some situations, such as the TCP windowing algorithm, it may be
1236* better to limit the growth of the bundle size than let it go as
1237* high as it can, because that could cause too much added latency.
1238* The default is six, because this is the number of packets in the
1239* default TCP window size. A value of 1 would make CPUSaver indicate
1240* an interrupt for every frame received. If you do not want to put
1241* a limit on the bundle size, set this value to xFFFF.
1242*
05479938 1243* BUNDLESMALL -
2afecc04
JB
1244* This contains a bit-mask describing the minimum size frame that
1245* will be bundled. The default masks the lower 7 bits, which means
1246* that any frame less than 128 bytes in length will not be bundled,
1247* but will instead immediately generate an interrupt. This does
1248* not affect the current bundle in any way. Any frame that is 128
1249* bytes or large will be bundled normally. This feature is meant
1250* to provide immediate indication of ACK frames in a TCP environment.
1251* Customers were seeing poor performance when a machine with CPUSaver
1252* enabled was sending but not receiving. The delay introduced when
1253* the ACKs were received was enough to reduce total throughput, because
1254* the sender would sit idle until the ACK was finally seen.
1255*
1256* The current default is 0xFF80, which masks out the lower 7 bits.
1257* This means that any frame which is x7F (127) bytes or smaller
05479938 1258* will cause an immediate interrupt. Because this value must be a
2afecc04
JB
1259* bit mask, there are only a few valid values that can be used. To
1260* turn this feature off, the driver can write the value xFFFF to the
1261* lower word of this instruction (in the same way that the other
1262* parameters are used). Likewise, a value of 0xF800 (2047) would
1263* cause an interrupt to be generated for every frame, because all
1264* standard Ethernet frames are <= 2047 bytes in length.
1265*************************************************************************/
1266
05479938 1267/* if you wish to disable the ucode functionality, while maintaining the
2afecc04
JB
1268 * workarounds it provides, set the following defines to:
1269 * BUNDLESMALL 0
1270 * BUNDLEMAX 1
1271 * INTDELAY 1
1272 */
1273#define BUNDLESMALL 1
1274#define BUNDLEMAX (u16)6
1275#define INTDELAY (u16)1536 /* 0x600 */
1276
1277 /* do not load u-code for ICH devices */
1278 if (nic->flags & ich)
1279 goto noloaducode;
1280
44c10138 1281 /* Search for ucode match against h/w revision */
2afecc04
JB
1282 for (opts = ucode_opts; opts->mac; opts++) {
1283 int i;
1284 u32 *ucode = opts->ucode;
1285 if (nic->mac != opts->mac)
1286 continue;
1287
1288 /* Insert user-tunable settings */
1289 ucode[opts->timer_dword] &= 0xFFFF0000;
1290 ucode[opts->timer_dword] |= INTDELAY;
1291 ucode[opts->bundle_dword] &= 0xFFFF0000;
1292 ucode[opts->bundle_dword] |= BUNDLEMAX;
1293 ucode[opts->min_size_dword] &= 0xFFFF0000;
1294 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1295
1296 for (i = 0; i < UCODE_SIZE; i++)
875521dd 1297 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
24180333 1298 cb->command = cpu_to_le16(cb_ucode | cb_el);
2afecc04
JB
1299 return;
1300 }
1301
1302noloaducode:
24180333
JB
1303 cb->command = cpu_to_le16(cb_nop | cb_el);
1304}
1305
1306static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1307 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1308{
1309 int err = 0, counter = 50;
1310 struct cb *cb = nic->cb_to_clean;
1311
1312 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1313 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
05479938 1314
24180333
JB
1315 /* must restart cuc */
1316 nic->cuc_cmd = cuc_start;
1317
1318 /* wait for completion */
1319 e100_write_flush(nic);
1320 udelay(10);
1321
1322 /* wait for possibly (ouch) 500ms */
1323 while (!(cb->status & cpu_to_le16(cb_complete))) {
1324 msleep(10);
1325 if (!--counter) break;
1326 }
05479938 1327
24180333 1328 /* ack any interupts, something could have been set */
27345bb6 1329 iowrite8(~0, &nic->csr->scb.stat_ack);
24180333
JB
1330
1331 /* if the command failed, or is not OK, notify and return */
1332 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1333 DPRINTK(PROBE,ERR, "ucode load failed\n");
1334 err = -EPERM;
1335 }
05479938 1336
24180333 1337 return err;
1da177e4
LT
1338}
1339
1340static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1341 struct sk_buff *skb)
1342{
1343 cb->command = cpu_to_le16(cb_iaaddr);
1344 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1345}
1346
1347static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1348{
1349 cb->command = cpu_to_le16(cb_dump);
1350 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1351 offsetof(struct mem, dump_buf));
1352}
1353
1354#define NCONFIG_AUTO_SWITCH 0x0080
1355#define MII_NSC_CONG MII_RESV1
1356#define NSC_CONG_ENABLE 0x0100
1357#define NSC_CONG_TXREADY 0x0400
1358#define ADVERTISE_FC_SUPPORTED 0x0400
1359static int e100_phy_init(struct nic *nic)
1360{
1361 struct net_device *netdev = nic->netdev;
1362 u32 addr;
1363 u16 bmcr, stat, id_lo, id_hi, cong;
1364
1365 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1366 for(addr = 0; addr < 32; addr++) {
1367 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1368 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1369 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1370 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1371 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1372 break;
1373 }
1374 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1375 if(addr == 32)
1376 return -EAGAIN;
1377
1378 /* Selected the phy and isolate the rest */
1379 for(addr = 0; addr < 32; addr++) {
1380 if(addr != nic->mii.phy_id) {
1381 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1382 } else {
1383 bmcr = mdio_read(netdev, addr, MII_BMCR);
1384 mdio_write(netdev, addr, MII_BMCR,
1385 bmcr & ~BMCR_ISOLATE);
1386 }
1387 }
1388
1389 /* Get phy ID */
1390 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1391 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1392 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1393 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1394
1395 /* Handle National tx phys */
1396#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1397 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1398 /* Disable congestion control */
1399 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1400 cong |= NSC_CONG_TXREADY;
1401 cong &= ~NSC_CONG_ENABLE;
1402 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1403 }
1404
05479938 1405 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
60ffa478
JK
1406 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1407 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1408 /* enable/disable MDI/MDI-X auto-switching. */
1409 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1410 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
64895145 1411 }
1da177e4
LT
1412
1413 return 0;
1414}
1415
1416static int e100_hw_init(struct nic *nic)
1417{
1418 int err;
1419
1420 e100_hw_reset(nic);
1421
1422 DPRINTK(HW, ERR, "e100_hw_init\n");
1423 if(!in_interrupt() && (err = e100_self_test(nic)))
1424 return err;
1425
1426 if((err = e100_phy_init(nic)))
1427 return err;
1428 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1429 return err;
1430 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1431 return err;
24180333 1432 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1da177e4
LT
1433 return err;
1434 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1435 return err;
1436 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1437 return err;
1438 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1439 nic->dma_addr + offsetof(struct mem, stats))))
1440 return err;
1441 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1442 return err;
1443
1444 e100_disable_irq(nic);
1445
1446 return 0;
1447}
1448
1449static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1450{
1451 struct net_device *netdev = nic->netdev;
1452 struct dev_mc_list *list = netdev->mc_list;
1453 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1454
1455 cb->command = cpu_to_le16(cb_multi);
1456 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1457 for(i = 0; list && i < count; i++, list = list->next)
1458 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1459 ETH_ALEN);
1460}
1461
1462static void e100_set_multicast_list(struct net_device *netdev)
1463{
1464 struct nic *nic = netdev_priv(netdev);
1465
1466 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1467 netdev->mc_count, netdev->flags);
1468
1469 if(netdev->flags & IFF_PROMISC)
1470 nic->flags |= promiscuous;
1471 else
1472 nic->flags &= ~promiscuous;
1473
1474 if(netdev->flags & IFF_ALLMULTI ||
1475 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1476 nic->flags |= multicast_all;
1477 else
1478 nic->flags &= ~multicast_all;
1479
1480 e100_exec_cb(nic, NULL, e100_configure);
1481 e100_exec_cb(nic, NULL, e100_multi);
1482}
1483
1484static void e100_update_stats(struct nic *nic)
1485{
1486 struct net_device_stats *ns = &nic->net_stats;
1487 struct stats *s = &nic->mem->stats;
1488 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1489 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1490 &s->complete;
1491
1492 /* Device's stats reporting may take several microseconds to
1493 * complete, so where always waiting for results of the
1494 * previous command. */
1495
1496 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1497 *complete = 0;
1498 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1499 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1500 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1501 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1502 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1503 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1504 ns->collisions += nic->tx_collisions;
1505 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1506 le32_to_cpu(s->tx_lost_crs);
1da177e4
LT
1507 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1508 nic->rx_over_length_errors;
1509 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1510 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1511 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1512 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ecf7130b 1513 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1da177e4
LT
1514 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1515 le32_to_cpu(s->rx_alignment_errors) +
1516 le32_to_cpu(s->rx_short_frame_errors) +
1517 le32_to_cpu(s->rx_cdt_errors);
1518 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1519 nic->tx_single_collisions +=
1520 le32_to_cpu(s->tx_single_collisions);
1521 nic->tx_multiple_collisions +=
1522 le32_to_cpu(s->tx_multiple_collisions);
1523 if(nic->mac >= mac_82558_D101_A4) {
1524 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1525 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1526 nic->rx_fc_unsupported +=
1527 le32_to_cpu(s->fc_rcv_unsupported);
1528 if(nic->mac >= mac_82559_D101M) {
1529 nic->tx_tco_frames +=
1530 le16_to_cpu(s->xmt_tco_frames);
1531 nic->rx_tco_frames +=
1532 le16_to_cpu(s->rcv_tco_frames);
1533 }
1534 }
1535 }
1536
05479938 1537
1f53367d
MC
1538 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1539 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1da177e4
LT
1540}
1541
1542static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1543{
1544 /* Adjust inter-frame-spacing (IFS) between two transmits if
1545 * we're getting collisions on a half-duplex connection. */
1546
1547 if(duplex == DUPLEX_HALF) {
1548 u32 prev = nic->adaptive_ifs;
1549 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1550
1551 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1552 (nic->tx_frames > min_frames)) {
1553 if(nic->adaptive_ifs < 60)
1554 nic->adaptive_ifs += 5;
1555 } else if (nic->tx_frames < min_frames) {
1556 if(nic->adaptive_ifs >= 5)
1557 nic->adaptive_ifs -= 5;
1558 }
1559 if(nic->adaptive_ifs != prev)
1560 e100_exec_cb(nic, NULL, e100_configure);
1561 }
1562}
1563
1564static void e100_watchdog(unsigned long data)
1565{
1566 struct nic *nic = (struct nic *)data;
1567 struct ethtool_cmd cmd;
1568
1569 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1570
1571 /* mii library handles link maintenance tasks */
1572
1573 mii_ethtool_gset(&nic->mii, &cmd);
1574
1575 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1576 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1577 cmd.speed == SPEED_100 ? "100" : "10",
1578 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1579 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1580 DPRINTK(LINK, INFO, "link down\n");
1581 }
1582
1583 mii_check_link(&nic->mii);
1584
1585 /* Software generated interrupt to recover from (rare) Rx
05479938
JB
1586 * allocation failure.
1587 * Unfortunately have to use a spinlock to not re-enable interrupts
1588 * accidentally, due to hardware that shares a register between the
1589 * interrupt mask bit and the SW Interrupt generation bit */
1da177e4 1590 spin_lock_irq(&nic->cmd_lock);
27345bb6 1591 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1da177e4 1592 e100_write_flush(nic);
ad8c48ad 1593 spin_unlock_irq(&nic->cmd_lock);
1da177e4
LT
1594
1595 e100_update_stats(nic);
1596 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1597
1598 if(nic->mac <= mac_82557_D100_C)
1599 /* Issue a multicast command to workaround a 557 lock up */
1600 e100_set_multicast_list(nic->netdev);
1601
1602 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1603 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1604 nic->flags |= ich_10h_workaround;
1605 else
1606 nic->flags &= ~ich_10h_workaround;
1607
34c6417b
SH
1608 mod_timer(&nic->watchdog,
1609 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1da177e4
LT
1610}
1611
858119e1 1612static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1da177e4
LT
1613 struct sk_buff *skb)
1614{
1615 cb->command = nic->tx_command;
962082b6 1616 /* interrupt every 16 packets regardless of delay */
996ec353
MC
1617 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1618 cb->command |= cpu_to_le16(cb_i);
1da177e4
LT
1619 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1620 cb->u.tcb.tcb_byte_count = 0;
1621 cb->u.tcb.threshold = nic->tx_threshold;
1622 cb->u.tcb.tbd_count = 1;
1623 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1624 skb->data, skb->len, PCI_DMA_TODEVICE));
611494dc 1625 /* check for mapping failure? */
1da177e4
LT
1626 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1627}
1628
1629static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1630{
1631 struct nic *nic = netdev_priv(netdev);
1632 int err;
1633
1634 if(nic->flags & ich_10h_workaround) {
1635 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1636 Issue a NOP command followed by a 1us delay before
1637 issuing the Tx command. */
1f53367d
MC
1638 if(e100_exec_cmd(nic, cuc_nop, 0))
1639 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1da177e4
LT
1640 udelay(1);
1641 }
1642
1643 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1644
1645 switch(err) {
1646 case -ENOSPC:
1647 /* We queued the skb, but now we're out of space. */
1648 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1649 netif_stop_queue(netdev);
1650 break;
1651 case -ENOMEM:
1652 /* This is a hard error - log it. */
1653 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1654 netif_stop_queue(netdev);
1655 return 1;
1656 }
1657
1658 netdev->trans_start = jiffies;
1659 return 0;
1660}
1661
858119e1 1662static int e100_tx_clean(struct nic *nic)
1da177e4
LT
1663{
1664 struct cb *cb;
1665 int tx_cleaned = 0;
1666
1667 spin_lock(&nic->cb_lock);
1668
1da177e4
LT
1669 /* Clean CBs marked complete */
1670 for(cb = nic->cb_to_clean;
1671 cb->status & cpu_to_le16(cb_complete);
1672 cb = nic->cb_to_clean = cb->next) {
dc45010e
JB
1673 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1674 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1675 cb->status);
1676
1da177e4
LT
1677 if(likely(cb->skb != NULL)) {
1678 nic->net_stats.tx_packets++;
1679 nic->net_stats.tx_bytes += cb->skb->len;
1680
1681 pci_unmap_single(nic->pdev,
1682 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1683 le16_to_cpu(cb->u.tcb.tbd.size),
1684 PCI_DMA_TODEVICE);
1685 dev_kfree_skb_any(cb->skb);
1686 cb->skb = NULL;
1687 tx_cleaned = 1;
1688 }
1689 cb->status = 0;
1690 nic->cbs_avail++;
1691 }
1692
1693 spin_unlock(&nic->cb_lock);
1694
1695 /* Recover from running out of Tx resources in xmit_frame */
1696 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1697 netif_wake_queue(nic->netdev);
1698
1699 return tx_cleaned;
1700}
1701
1702static void e100_clean_cbs(struct nic *nic)
1703{
1704 if(nic->cbs) {
1705 while(nic->cbs_avail != nic->params.cbs.count) {
1706 struct cb *cb = nic->cb_to_clean;
1707 if(cb->skb) {
1708 pci_unmap_single(nic->pdev,
1709 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1710 le16_to_cpu(cb->u.tcb.tbd.size),
1711 PCI_DMA_TODEVICE);
1712 dev_kfree_skb(cb->skb);
1713 }
1714 nic->cb_to_clean = nic->cb_to_clean->next;
1715 nic->cbs_avail++;
1716 }
1717 pci_free_consistent(nic->pdev,
1718 sizeof(struct cb) * nic->params.cbs.count,
1719 nic->cbs, nic->cbs_dma_addr);
1720 nic->cbs = NULL;
1721 nic->cbs_avail = 0;
1722 }
1723 nic->cuc_cmd = cuc_start;
1724 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1725 nic->cbs;
1726}
1727
1728static int e100_alloc_cbs(struct nic *nic)
1729{
1730 struct cb *cb;
1731 unsigned int i, count = nic->params.cbs.count;
1732
1733 nic->cuc_cmd = cuc_start;
1734 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1735 nic->cbs_avail = 0;
1736
1737 nic->cbs = pci_alloc_consistent(nic->pdev,
1738 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1739 if(!nic->cbs)
1740 return -ENOMEM;
1741
1742 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1743 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1744 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1745
1746 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1747 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1748 ((i+1) % count) * sizeof(struct cb));
1749 cb->skb = NULL;
1750 }
1751
1752 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1753 nic->cbs_avail = count;
1754
1755 return 0;
1756}
1757
ca93ca42 1758static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1da177e4 1759{
ca93ca42
JG
1760 if(!nic->rxs) return;
1761 if(RU_SUSPENDED != nic->ru_running) return;
1762
1763 /* handle init time starts */
1764 if(!rx) rx = nic->rxs;
1765
1766 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1767 if(rx->skb) {
1768 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1769 nic->ru_running = RU_RUNNING;
1770 }
1da177e4
LT
1771}
1772
1773#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
858119e1 1774static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1da177e4 1775{
4187592b 1776 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1da177e4
LT
1777 return -ENOMEM;
1778
1779 /* Align, init, and map the RFD. */
1da177e4 1780 skb_reserve(rx->skb, NET_IP_ALIGN);
27d7ff46 1781 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1da177e4
LT
1782 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1783 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1784
1f53367d
MC
1785 if(pci_dma_mapping_error(rx->dma_addr)) {
1786 dev_kfree_skb_any(rx->skb);
097688ef 1787 rx->skb = NULL;
1f53367d
MC
1788 rx->dma_addr = 0;
1789 return -ENOMEM;
1790 }
1791
1da177e4
LT
1792 /* Link the RFD to end of RFA by linking previous RFD to
1793 * this one, and clearing EL bit of previous. */
1794 if(rx->prev->skb) {
1795 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1796 put_unaligned(cpu_to_le32(rx->dma_addr),
1797 (u32 *)&prev_rfd->link);
1798 wmb();
ca93ca42 1799 prev_rfd->command &= ~cpu_to_le16(cb_el);
1da177e4
LT
1800 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1801 sizeof(struct rfd), PCI_DMA_TODEVICE);
1802 }
1803
1804 return 0;
1805}
1806
858119e1 1807static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1da177e4
LT
1808 unsigned int *work_done, unsigned int work_to_do)
1809{
1810 struct sk_buff *skb = rx->skb;
1811 struct rfd *rfd = (struct rfd *)skb->data;
1812 u16 rfd_status, actual_size;
1813
1814 if(unlikely(work_done && *work_done >= work_to_do))
1815 return -EAGAIN;
1816
1817 /* Need to sync before taking a peek at cb_complete bit */
1818 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1819 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1820 rfd_status = le16_to_cpu(rfd->status);
1821
1822 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1823
1824 /* If data isn't ready, nothing to indicate */
1825 if(unlikely(!(rfd_status & cb_complete)))
1f53367d 1826 return -ENODATA;
1da177e4
LT
1827
1828 /* Get actual data size */
1829 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1830 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1831 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1832
1833 /* Get data */
1834 pci_unmap_single(nic->pdev, rx->dma_addr,
1835 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1836
ca93ca42
JG
1837 /* this allows for a fast restart without re-enabling interrupts */
1838 if(le16_to_cpu(rfd->command) & cb_el)
1839 nic->ru_running = RU_SUSPENDED;
1840
1da177e4
LT
1841 /* Pull off the RFD and put the actual data (minus eth hdr) */
1842 skb_reserve(skb, sizeof(struct rfd));
1843 skb_put(skb, actual_size);
1844 skb->protocol = eth_type_trans(skb, nic->netdev);
1845
1846 if(unlikely(!(rfd_status & cb_ok))) {
1847 /* Don't indicate if hardware indicates errors */
1da177e4 1848 dev_kfree_skb_any(skb);
136df52d 1849 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1da177e4
LT
1850 /* Don't indicate oversized frames */
1851 nic->rx_over_length_errors++;
1da177e4
LT
1852 dev_kfree_skb_any(skb);
1853 } else {
1854 nic->net_stats.rx_packets++;
1855 nic->net_stats.rx_bytes += actual_size;
1856 nic->netdev->last_rx = jiffies;
1857 netif_receive_skb(skb);
1858 if(work_done)
1859 (*work_done)++;
1860 }
1861
1862 rx->skb = NULL;
1863
1864 return 0;
1865}
1866
858119e1 1867static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1da177e4
LT
1868 unsigned int work_to_do)
1869{
1870 struct rx *rx;
ca93ca42
JG
1871 int restart_required = 0;
1872 struct rx *rx_to_start = NULL;
1873
1874 /* are we already rnr? then pay attention!!! this ensures that
1875 * the state machine progression never allows a start with a
1876 * partially cleaned list, avoiding a race between hardware
1877 * and rx_to_clean when in NAPI mode */
1878 if(RU_SUSPENDED == nic->ru_running)
1879 restart_required = 1;
1da177e4
LT
1880
1881 /* Indicate newly arrived packets */
1882 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
ca93ca42
JG
1883 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1884 if(-EAGAIN == err) {
1885 /* hit quota so have more work to do, restart once
1886 * cleanup is complete */
1887 restart_required = 0;
1888 break;
1889 } else if(-ENODATA == err)
1da177e4
LT
1890 break; /* No more to clean */
1891 }
1892
ca93ca42
JG
1893 /* save our starting point as the place we'll restart the receiver */
1894 if(restart_required)
1895 rx_to_start = nic->rx_to_clean;
1896
1da177e4
LT
1897 /* Alloc new skbs to refill list */
1898 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1899 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1900 break; /* Better luck next time (see watchdog) */
1901 }
ca93ca42
JG
1902
1903 if(restart_required) {
1904 // ack the rnr?
1905 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1906 e100_start_receiver(nic, rx_to_start);
1907 if(work_done)
1908 (*work_done)++;
1909 }
1da177e4
LT
1910}
1911
1912static void e100_rx_clean_list(struct nic *nic)
1913{
1914 struct rx *rx;
1915 unsigned int i, count = nic->params.rfds.count;
1916
ca93ca42
JG
1917 nic->ru_running = RU_UNINITIALIZED;
1918
1da177e4
LT
1919 if(nic->rxs) {
1920 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1921 if(rx->skb) {
1922 pci_unmap_single(nic->pdev, rx->dma_addr,
1923 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1924 dev_kfree_skb(rx->skb);
1925 }
1926 }
1927 kfree(nic->rxs);
1928 nic->rxs = NULL;
1929 }
1930
1931 nic->rx_to_use = nic->rx_to_clean = NULL;
1da177e4
LT
1932}
1933
1934static int e100_rx_alloc_list(struct nic *nic)
1935{
1936 struct rx *rx;
1937 unsigned int i, count = nic->params.rfds.count;
1938
1939 nic->rx_to_use = nic->rx_to_clean = NULL;
ca93ca42 1940 nic->ru_running = RU_UNINITIALIZED;
1da177e4 1941
c48e3fca 1942 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1da177e4 1943 return -ENOMEM;
1da177e4
LT
1944
1945 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1946 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1947 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1948 if(e100_rx_alloc_skb(nic, rx)) {
1949 e100_rx_clean_list(nic);
1950 return -ENOMEM;
1951 }
1952 }
1953
1954 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
ca93ca42 1955 nic->ru_running = RU_SUSPENDED;
1da177e4
LT
1956
1957 return 0;
1958}
1959
7d12e780 1960static irqreturn_t e100_intr(int irq, void *dev_id)
1da177e4
LT
1961{
1962 struct net_device *netdev = dev_id;
1963 struct nic *nic = netdev_priv(netdev);
27345bb6 1964 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1da177e4
LT
1965
1966 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1967
1968 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1969 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1970 return IRQ_NONE;
1971
1972 /* Ack interrupt(s) */
27345bb6 1973 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1da177e4 1974
ca93ca42
JG
1975 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1976 if(stat_ack & stat_ack_rnr)
1977 nic->ru_running = RU_SUSPENDED;
1978
bea3348e 1979 if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
0685c31b 1980 e100_disable_irq(nic);
bea3348e 1981 __netif_rx_schedule(netdev, &nic->napi);
0685c31b 1982 }
1da177e4
LT
1983
1984 return IRQ_HANDLED;
1985}
1986
bea3348e 1987static int e100_poll(struct napi_struct *napi, int budget)
1da177e4 1988{
bea3348e
SH
1989 struct nic *nic = container_of(napi, struct nic, napi);
1990 struct net_device *netdev = nic->netdev;
1991 int work_done = 0;
1da177e4
LT
1992 int tx_cleaned;
1993
bea3348e 1994 e100_rx_clean(nic, &work_done, budget);
1da177e4
LT
1995 tx_cleaned = e100_tx_clean(nic);
1996
1997 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1998 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
bea3348e 1999 netif_rx_complete(netdev, napi);
1da177e4 2000 e100_enable_irq(nic);
1da177e4
LT
2001 }
2002
bea3348e 2003 return work_done;
1da177e4
LT
2004}
2005
2006#ifdef CONFIG_NET_POLL_CONTROLLER
2007static void e100_netpoll(struct net_device *netdev)
2008{
2009 struct nic *nic = netdev_priv(netdev);
611494dc 2010
1da177e4 2011 e100_disable_irq(nic);
7d12e780 2012 e100_intr(nic->pdev->irq, netdev);
1da177e4
LT
2013 e100_tx_clean(nic);
2014 e100_enable_irq(nic);
2015}
2016#endif
2017
2018static struct net_device_stats *e100_get_stats(struct net_device *netdev)
2019{
2020 struct nic *nic = netdev_priv(netdev);
2021 return &nic->net_stats;
2022}
2023
2024static int e100_set_mac_address(struct net_device *netdev, void *p)
2025{
2026 struct nic *nic = netdev_priv(netdev);
2027 struct sockaddr *addr = p;
2028
2029 if (!is_valid_ether_addr(addr->sa_data))
2030 return -EADDRNOTAVAIL;
2031
2032 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2033 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2034
2035 return 0;
2036}
2037
2038static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2039{
2040 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2041 return -EINVAL;
2042 netdev->mtu = new_mtu;
2043 return 0;
2044}
2045
2046static int e100_asf(struct nic *nic)
2047{
2048 /* ASF can be enabled from eeprom */
2049 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2050 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2051 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2052 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2053}
2054
2055static int e100_up(struct nic *nic)
2056{
2057 int err;
2058
2059 if((err = e100_rx_alloc_list(nic)))
2060 return err;
2061 if((err = e100_alloc_cbs(nic)))
2062 goto err_rx_clean_list;
2063 if((err = e100_hw_init(nic)))
2064 goto err_clean_cbs;
2065 e100_set_multicast_list(nic->netdev);
ca93ca42 2066 e100_start_receiver(nic, NULL);
1da177e4 2067 mod_timer(&nic->watchdog, jiffies);
1fb9df5d 2068 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
1da177e4
LT
2069 nic->netdev->name, nic->netdev)))
2070 goto err_no_irq;
1da177e4 2071 netif_wake_queue(nic->netdev);
bea3348e 2072 napi_enable(&nic->napi);
0236ebb7
MC
2073 /* enable ints _after_ enabling poll, preventing a race between
2074 * disable ints+schedule */
2075 e100_enable_irq(nic);
1da177e4
LT
2076 return 0;
2077
2078err_no_irq:
2079 del_timer_sync(&nic->watchdog);
2080err_clean_cbs:
2081 e100_clean_cbs(nic);
2082err_rx_clean_list:
2083 e100_rx_clean_list(nic);
2084 return err;
2085}
2086
2087static void e100_down(struct nic *nic)
2088{
0236ebb7 2089 /* wait here for poll to complete */
bea3348e 2090 napi_disable(&nic->napi);
0236ebb7 2091 netif_stop_queue(nic->netdev);
1da177e4
LT
2092 e100_hw_reset(nic);
2093 free_irq(nic->pdev->irq, nic->netdev);
2094 del_timer_sync(&nic->watchdog);
2095 netif_carrier_off(nic->netdev);
1da177e4
LT
2096 e100_clean_cbs(nic);
2097 e100_rx_clean_list(nic);
2098}
2099
2100static void e100_tx_timeout(struct net_device *netdev)
2101{
2102 struct nic *nic = netdev_priv(netdev);
2103
05479938 2104 /* Reset outside of interrupt context, to avoid request_irq
2acdb1e0
MC
2105 * in interrupt context */
2106 schedule_work(&nic->tx_timeout_task);
2107}
2108
c4028958 2109static void e100_tx_timeout_task(struct work_struct *work)
2acdb1e0 2110{
c4028958
DH
2111 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2112 struct net_device *netdev = nic->netdev;
2acdb1e0 2113
1da177e4 2114 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
27345bb6 2115 ioread8(&nic->csr->scb.status));
1da177e4
LT
2116 e100_down(netdev_priv(netdev));
2117 e100_up(netdev_priv(netdev));
2118}
2119
2120static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2121{
2122 int err;
2123 struct sk_buff *skb;
2124
2125 /* Use driver resources to perform internal MAC or PHY
2126 * loopback test. A single packet is prepared and transmitted
2127 * in loopback mode, and the test passes if the received
2128 * packet compares byte-for-byte to the transmitted packet. */
2129
2130 if((err = e100_rx_alloc_list(nic)))
2131 return err;
2132 if((err = e100_alloc_cbs(nic)))
2133 goto err_clean_rx;
2134
2135 /* ICH PHY loopback is broken so do MAC loopback instead */
2136 if(nic->flags & ich && loopback_mode == lb_phy)
2137 loopback_mode = lb_mac;
2138
2139 nic->loopback = loopback_mode;
2140 if((err = e100_hw_init(nic)))
2141 goto err_loopback_none;
2142
2143 if(loopback_mode == lb_phy)
2144 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2145 BMCR_LOOPBACK);
2146
ca93ca42 2147 e100_start_receiver(nic, NULL);
1da177e4 2148
4187592b 2149 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
1da177e4
LT
2150 err = -ENOMEM;
2151 goto err_loopback_none;
2152 }
2153 skb_put(skb, ETH_DATA_LEN);
2154 memset(skb->data, 0xFF, ETH_DATA_LEN);
2155 e100_xmit_frame(skb, nic->netdev);
2156
2157 msleep(10);
2158
aa49cdd9
JB
2159 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2160 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2161
1da177e4
LT
2162 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2163 skb->data, ETH_DATA_LEN))
2164 err = -EAGAIN;
2165
2166err_loopback_none:
2167 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2168 nic->loopback = lb_none;
1da177e4 2169 e100_clean_cbs(nic);
aa49cdd9 2170 e100_hw_reset(nic);
1da177e4
LT
2171err_clean_rx:
2172 e100_rx_clean_list(nic);
2173 return err;
2174}
2175
2176#define MII_LED_CONTROL 0x1B
2177static void e100_blink_led(unsigned long data)
2178{
2179 struct nic *nic = (struct nic *)data;
2180 enum led_state {
2181 led_on = 0x01,
2182 led_off = 0x04,
2183 led_on_559 = 0x05,
2184 led_on_557 = 0x07,
2185 };
2186
2187 nic->leds = (nic->leds & led_on) ? led_off :
2188 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2189 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2190 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2191}
2192
2193static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2194{
2195 struct nic *nic = netdev_priv(netdev);
2196 return mii_ethtool_gset(&nic->mii, cmd);
2197}
2198
2199static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2200{
2201 struct nic *nic = netdev_priv(netdev);
2202 int err;
2203
2204 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2205 err = mii_ethtool_sset(&nic->mii, cmd);
2206 e100_exec_cb(nic, NULL, e100_configure);
2207
2208 return err;
2209}
2210
2211static void e100_get_drvinfo(struct net_device *netdev,
2212 struct ethtool_drvinfo *info)
2213{
2214 struct nic *nic = netdev_priv(netdev);
2215 strcpy(info->driver, DRV_NAME);
2216 strcpy(info->version, DRV_VERSION);
2217 strcpy(info->fw_version, "N/A");
2218 strcpy(info->bus_info, pci_name(nic->pdev));
2219}
2220
2221static int e100_get_regs_len(struct net_device *netdev)
2222{
2223 struct nic *nic = netdev_priv(netdev);
2224#define E100_PHY_REGS 0x1C
2225#define E100_REGS_LEN 1 + E100_PHY_REGS + \
2226 sizeof(nic->mem->dump_buf) / sizeof(u32)
2227 return E100_REGS_LEN * sizeof(u32);
2228}
2229
2230static void e100_get_regs(struct net_device *netdev,
2231 struct ethtool_regs *regs, void *p)
2232{
2233 struct nic *nic = netdev_priv(netdev);
2234 u32 *buff = p;
2235 int i;
2236
44c10138 2237 regs->version = (1 << 24) | nic->pdev->revision;
27345bb6
JB
2238 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2239 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2240 ioread16(&nic->csr->scb.status);
1da177e4
LT
2241 for(i = E100_PHY_REGS; i >= 0; i--)
2242 buff[1 + E100_PHY_REGS - i] =
2243 mdio_read(netdev, nic->mii.phy_id, i);
2244 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2245 e100_exec_cb(nic, NULL, e100_dump);
2246 msleep(10);
2247 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2248 sizeof(nic->mem->dump_buf));
2249}
2250
2251static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2252{
2253 struct nic *nic = netdev_priv(netdev);
2254 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2255 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2256}
2257
2258static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2259{
2260 struct nic *nic = netdev_priv(netdev);
2261
2262 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2263 return -EOPNOTSUPP;
2264
2265 if(wol->wolopts)
2266 nic->flags |= wol_magic;
2267 else
2268 nic->flags &= ~wol_magic;
2269
1da177e4
LT
2270 e100_exec_cb(nic, NULL, e100_configure);
2271
2272 return 0;
2273}
2274
2275static u32 e100_get_msglevel(struct net_device *netdev)
2276{
2277 struct nic *nic = netdev_priv(netdev);
2278 return nic->msg_enable;
2279}
2280
2281static void e100_set_msglevel(struct net_device *netdev, u32 value)
2282{
2283 struct nic *nic = netdev_priv(netdev);
2284 nic->msg_enable = value;
2285}
2286
2287static int e100_nway_reset(struct net_device *netdev)
2288{
2289 struct nic *nic = netdev_priv(netdev);
2290 return mii_nway_restart(&nic->mii);
2291}
2292
2293static u32 e100_get_link(struct net_device *netdev)
2294{
2295 struct nic *nic = netdev_priv(netdev);
2296 return mii_link_ok(&nic->mii);
2297}
2298
2299static int e100_get_eeprom_len(struct net_device *netdev)
2300{
2301 struct nic *nic = netdev_priv(netdev);
2302 return nic->eeprom_wc << 1;
2303}
2304
2305#define E100_EEPROM_MAGIC 0x1234
2306static int e100_get_eeprom(struct net_device *netdev,
2307 struct ethtool_eeprom *eeprom, u8 *bytes)
2308{
2309 struct nic *nic = netdev_priv(netdev);
2310
2311 eeprom->magic = E100_EEPROM_MAGIC;
2312 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2313
2314 return 0;
2315}
2316
2317static int e100_set_eeprom(struct net_device *netdev,
2318 struct ethtool_eeprom *eeprom, u8 *bytes)
2319{
2320 struct nic *nic = netdev_priv(netdev);
2321
2322 if(eeprom->magic != E100_EEPROM_MAGIC)
2323 return -EINVAL;
2324
2325 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2326
2327 return e100_eeprom_save(nic, eeprom->offset >> 1,
2328 (eeprom->len >> 1) + 1);
2329}
2330
2331static void e100_get_ringparam(struct net_device *netdev,
2332 struct ethtool_ringparam *ring)
2333{
2334 struct nic *nic = netdev_priv(netdev);
2335 struct param_range *rfds = &nic->params.rfds;
2336 struct param_range *cbs = &nic->params.cbs;
2337
2338 ring->rx_max_pending = rfds->max;
2339 ring->tx_max_pending = cbs->max;
2340 ring->rx_mini_max_pending = 0;
2341 ring->rx_jumbo_max_pending = 0;
2342 ring->rx_pending = rfds->count;
2343 ring->tx_pending = cbs->count;
2344 ring->rx_mini_pending = 0;
2345 ring->rx_jumbo_pending = 0;
2346}
2347
2348static int e100_set_ringparam(struct net_device *netdev,
2349 struct ethtool_ringparam *ring)
2350{
2351 struct nic *nic = netdev_priv(netdev);
2352 struct param_range *rfds = &nic->params.rfds;
2353 struct param_range *cbs = &nic->params.cbs;
2354
05479938 2355 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
2356 return -EINVAL;
2357
2358 if(netif_running(netdev))
2359 e100_down(nic);
2360 rfds->count = max(ring->rx_pending, rfds->min);
2361 rfds->count = min(rfds->count, rfds->max);
2362 cbs->count = max(ring->tx_pending, cbs->min);
2363 cbs->count = min(cbs->count, cbs->max);
2364 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2365 rfds->count, cbs->count);
2366 if(netif_running(netdev))
2367 e100_up(nic);
2368
2369 return 0;
2370}
2371
2372static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2373 "Link test (on/offline)",
2374 "Eeprom test (on/offline)",
2375 "Self test (offline)",
2376 "Mac loopback (offline)",
2377 "Phy loopback (offline)",
2378};
2379#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2380
2381static int e100_diag_test_count(struct net_device *netdev)
2382{
2383 return E100_TEST_LEN;
2384}
2385
2386static void e100_diag_test(struct net_device *netdev,
2387 struct ethtool_test *test, u64 *data)
2388{
2389 struct ethtool_cmd cmd;
2390 struct nic *nic = netdev_priv(netdev);
2391 int i, err;
2392
2393 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2394 data[0] = !mii_link_ok(&nic->mii);
2395 data[1] = e100_eeprom_load(nic);
2396 if(test->flags & ETH_TEST_FL_OFFLINE) {
2397
2398 /* save speed, duplex & autoneg settings */
2399 err = mii_ethtool_gset(&nic->mii, &cmd);
2400
2401 if(netif_running(netdev))
2402 e100_down(nic);
2403 data[2] = e100_self_test(nic);
2404 data[3] = e100_loopback_test(nic, lb_mac);
2405 data[4] = e100_loopback_test(nic, lb_phy);
2406
2407 /* restore speed, duplex & autoneg settings */
2408 err = mii_ethtool_sset(&nic->mii, &cmd);
2409
2410 if(netif_running(netdev))
2411 e100_up(nic);
2412 }
2413 for(i = 0; i < E100_TEST_LEN; i++)
2414 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
a074fb86
MC
2415
2416 msleep_interruptible(4 * 1000);
1da177e4
LT
2417}
2418
2419static int e100_phys_id(struct net_device *netdev, u32 data)
2420{
2421 struct nic *nic = netdev_priv(netdev);
2422
2423 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2424 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2425 mod_timer(&nic->blink_timer, jiffies);
2426 msleep_interruptible(data * 1000);
2427 del_timer_sync(&nic->blink_timer);
2428 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2429
2430 return 0;
2431}
2432
2433static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2434 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2435 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2436 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2437 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2438 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2439 "tx_heartbeat_errors", "tx_window_errors",
2440 /* device-specific stats */
2441 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2442 "tx_flow_control_pause", "rx_flow_control_pause",
2443 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2444};
2445#define E100_NET_STATS_LEN 21
2446#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2447
2448static int e100_get_stats_count(struct net_device *netdev)
2449{
2450 return E100_STATS_LEN;
2451}
2452
2453static void e100_get_ethtool_stats(struct net_device *netdev,
2454 struct ethtool_stats *stats, u64 *data)
2455{
2456 struct nic *nic = netdev_priv(netdev);
2457 int i;
2458
2459 for(i = 0; i < E100_NET_STATS_LEN; i++)
2460 data[i] = ((unsigned long *)&nic->net_stats)[i];
2461
2462 data[i++] = nic->tx_deferred;
2463 data[i++] = nic->tx_single_collisions;
2464 data[i++] = nic->tx_multiple_collisions;
2465 data[i++] = nic->tx_fc_pause;
2466 data[i++] = nic->rx_fc_pause;
2467 data[i++] = nic->rx_fc_unsupported;
2468 data[i++] = nic->tx_tco_frames;
2469 data[i++] = nic->rx_tco_frames;
2470}
2471
2472static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2473{
2474 switch(stringset) {
2475 case ETH_SS_TEST:
2476 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2477 break;
2478 case ETH_SS_STATS:
2479 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2480 break;
2481 }
2482}
2483
7282d491 2484static const struct ethtool_ops e100_ethtool_ops = {
1da177e4
LT
2485 .get_settings = e100_get_settings,
2486 .set_settings = e100_set_settings,
2487 .get_drvinfo = e100_get_drvinfo,
2488 .get_regs_len = e100_get_regs_len,
2489 .get_regs = e100_get_regs,
2490 .get_wol = e100_get_wol,
2491 .set_wol = e100_set_wol,
2492 .get_msglevel = e100_get_msglevel,
2493 .set_msglevel = e100_set_msglevel,
2494 .nway_reset = e100_nway_reset,
2495 .get_link = e100_get_link,
2496 .get_eeprom_len = e100_get_eeprom_len,
2497 .get_eeprom = e100_get_eeprom,
2498 .set_eeprom = e100_set_eeprom,
2499 .get_ringparam = e100_get_ringparam,
2500 .set_ringparam = e100_set_ringparam,
2501 .self_test_count = e100_diag_test_count,
2502 .self_test = e100_diag_test,
2503 .get_strings = e100_get_strings,
2504 .phys_id = e100_phys_id,
2505 .get_stats_count = e100_get_stats_count,
2506 .get_ethtool_stats = e100_get_ethtool_stats,
2507};
2508
2509static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2510{
2511 struct nic *nic = netdev_priv(netdev);
2512
2513 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2514}
2515
2516static int e100_alloc(struct nic *nic)
2517{
2518 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2519 &nic->dma_addr);
2520 return nic->mem ? 0 : -ENOMEM;
2521}
2522
2523static void e100_free(struct nic *nic)
2524{
2525 if(nic->mem) {
2526 pci_free_consistent(nic->pdev, sizeof(struct mem),
2527 nic->mem, nic->dma_addr);
2528 nic->mem = NULL;
2529 }
2530}
2531
2532static int e100_open(struct net_device *netdev)
2533{
2534 struct nic *nic = netdev_priv(netdev);
2535 int err = 0;
2536
2537 netif_carrier_off(netdev);
2538 if((err = e100_up(nic)))
2539 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2540 return err;
2541}
2542
2543static int e100_close(struct net_device *netdev)
2544{
2545 e100_down(netdev_priv(netdev));
2546 return 0;
2547}
2548
2549static int __devinit e100_probe(struct pci_dev *pdev,
2550 const struct pci_device_id *ent)
2551{
2552 struct net_device *netdev;
2553 struct nic *nic;
2554 int err;
2555
2556 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2557 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2558 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2559 return -ENOMEM;
2560 }
2561
2562 netdev->open = e100_open;
2563 netdev->stop = e100_close;
2564 netdev->hard_start_xmit = e100_xmit_frame;
2565 netdev->get_stats = e100_get_stats;
2566 netdev->set_multicast_list = e100_set_multicast_list;
2567 netdev->set_mac_address = e100_set_mac_address;
2568 netdev->change_mtu = e100_change_mtu;
2569 netdev->do_ioctl = e100_do_ioctl;
2570 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2571 netdev->tx_timeout = e100_tx_timeout;
2572 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
1da177e4
LT
2573#ifdef CONFIG_NET_POLL_CONTROLLER
2574 netdev->poll_controller = e100_netpoll;
2575#endif
0eb5a34c 2576 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4
LT
2577
2578 nic = netdev_priv(netdev);
bea3348e 2579 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
1da177e4
LT
2580 nic->netdev = netdev;
2581 nic->pdev = pdev;
2582 nic->msg_enable = (1 << debug) - 1;
2583 pci_set_drvdata(pdev, netdev);
2584
2585 if((err = pci_enable_device(pdev))) {
2586 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2587 goto err_out_free_dev;
2588 }
2589
2590 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2591 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2592 "base address, aborting.\n");
2593 err = -ENODEV;
2594 goto err_out_disable_pdev;
2595 }
2596
2597 if((err = pci_request_regions(pdev, DRV_NAME))) {
2598 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2599 goto err_out_disable_pdev;
2600 }
2601
1e7f0bd8 2602 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
1da177e4
LT
2603 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2604 goto err_out_free_res;
2605 }
2606
1da177e4
LT
2607 SET_NETDEV_DEV(netdev, &pdev->dev);
2608
27345bb6
JB
2609 if (use_io)
2610 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2611
2612 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
1da177e4
LT
2613 if(!nic->csr) {
2614 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2615 err = -ENOMEM;
2616 goto err_out_free_res;
2617 }
2618
2619 if(ent->driver_data)
2620 nic->flags |= ich;
2621 else
2622 nic->flags &= ~ich;
2623
2624 e100_get_defaults(nic);
2625
1f53367d 2626 /* locks must be initialized before calling hw_reset */
1da177e4
LT
2627 spin_lock_init(&nic->cb_lock);
2628 spin_lock_init(&nic->cmd_lock);
ac7c6669 2629 spin_lock_init(&nic->mdio_lock);
1da177e4
LT
2630
2631 /* Reset the device before pci_set_master() in case device is in some
2632 * funky state and has an interrupt pending - hint: we don't have the
2633 * interrupt handler registered yet. */
2634 e100_hw_reset(nic);
2635
2636 pci_set_master(pdev);
2637
2638 init_timer(&nic->watchdog);
2639 nic->watchdog.function = e100_watchdog;
2640 nic->watchdog.data = (unsigned long)nic;
2641 init_timer(&nic->blink_timer);
2642 nic->blink_timer.function = e100_blink_led;
2643 nic->blink_timer.data = (unsigned long)nic;
2644
c4028958 2645 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2acdb1e0 2646
1da177e4
LT
2647 if((err = e100_alloc(nic))) {
2648 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2649 goto err_out_iounmap;
2650 }
2651
1da177e4
LT
2652 if((err = e100_eeprom_load(nic)))
2653 goto err_out_free;
2654
f92d8728
MC
2655 e100_phy_init(nic);
2656
1da177e4 2657 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
a92dd923 2658 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
948cd43f
JB
2659 if (!is_valid_ether_addr(netdev->perm_addr)) {
2660 if (!eeprom_bad_csum_allow) {
2661 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2662 "EEPROM, aborting.\n");
2663 err = -EAGAIN;
2664 goto err_out_free;
2665 } else {
2666 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2667 "you MUST configure one.\n");
2668 }
1da177e4
LT
2669 }
2670
2671 /* Wol magic packet can be enabled from eeprom */
2672 if((nic->mac >= mac_82558_D101_A4) &&
2673 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2674 nic->flags |= wol_magic;
2675
6bdacb1a 2676 /* ack any pending wake events, disable PME */
3435dbce
JB
2677 err = pci_enable_wake(pdev, 0, 0);
2678 if (err)
2679 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
1da177e4
LT
2680
2681 strcpy(netdev->name, "eth%d");
2682 if((err = register_netdev(netdev))) {
2683 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2684 goto err_out_free;
2685 }
2686
7c7459d1 2687 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
1da177e4 2688 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
27345bb6 2689 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), pdev->irq,
1da177e4
LT
2690 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2691 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2692
2693 return 0;
2694
2695err_out_free:
2696 e100_free(nic);
2697err_out_iounmap:
27345bb6 2698 pci_iounmap(pdev, nic->csr);
1da177e4
LT
2699err_out_free_res:
2700 pci_release_regions(pdev);
2701err_out_disable_pdev:
2702 pci_disable_device(pdev);
2703err_out_free_dev:
2704 pci_set_drvdata(pdev, NULL);
2705 free_netdev(netdev);
2706 return err;
2707}
2708
2709static void __devexit e100_remove(struct pci_dev *pdev)
2710{
2711 struct net_device *netdev = pci_get_drvdata(pdev);
2712
2713 if(netdev) {
2714 struct nic *nic = netdev_priv(netdev);
2715 unregister_netdev(netdev);
2716 e100_free(nic);
2717 iounmap(nic->csr);
2718 free_netdev(netdev);
2719 pci_release_regions(pdev);
2720 pci_disable_device(pdev);
2721 pci_set_drvdata(pdev, NULL);
2722 }
2723}
2724
e8e82b76 2725#ifdef CONFIG_PM
1da177e4
LT
2726static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2727{
2728 struct net_device *netdev = pci_get_drvdata(pdev);
2729 struct nic *nic = netdev_priv(netdev);
2730
824545e7 2731 if (netif_running(netdev))
bea3348e 2732 napi_disable(&nic->napi);
e8e82b76
AK
2733 del_timer_sync(&nic->watchdog);
2734 netif_carrier_off(nic->netdev);
518d8338 2735 netif_device_detach(netdev);
a53a33da 2736
1da177e4 2737 pci_save_state(pdev);
e8e82b76
AK
2738
2739 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2740 pci_enable_wake(pdev, PCI_D3hot, 1);
2741 pci_enable_wake(pdev, PCI_D3cold, 1);
2742 } else {
2743 pci_enable_wake(pdev, PCI_D3hot, 0);
2744 pci_enable_wake(pdev, PCI_D3cold, 0);
2745 }
975b366a 2746
1da177e4 2747 pci_disable_device(pdev);
518d8338 2748 free_irq(pdev->irq, netdev);
e8e82b76 2749 pci_set_power_state(pdev, PCI_D3hot);
1da177e4
LT
2750
2751 return 0;
2752}
2753
2754static int e100_resume(struct pci_dev *pdev)
2755{
2756 struct net_device *netdev = pci_get_drvdata(pdev);
2757 struct nic *nic = netdev_priv(netdev);
2758
975b366a 2759 pci_set_power_state(pdev, PCI_D0);
1da177e4 2760 pci_restore_state(pdev);
6bdacb1a 2761 /* ack any pending wake events, disable PME */
975b366a 2762 pci_enable_wake(pdev, 0, 0);
1da177e4
LT
2763
2764 netif_device_attach(netdev);
975b366a 2765 if (netif_running(netdev))
1da177e4
LT
2766 e100_up(nic);
2767
2768 return 0;
2769}
975b366a 2770#endif /* CONFIG_PM */
1da177e4 2771
d18c3db5 2772static void e100_shutdown(struct pci_dev *pdev)
6bdacb1a 2773{
e8e82b76
AK
2774 struct net_device *netdev = pci_get_drvdata(pdev);
2775 struct nic *nic = netdev_priv(netdev);
2776
824545e7 2777 if (netif_running(netdev))
bea3348e 2778 napi_disable(&nic->napi);
e8e82b76
AK
2779 del_timer_sync(&nic->watchdog);
2780 netif_carrier_off(nic->netdev);
2781
2782 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2783 pci_enable_wake(pdev, PCI_D3hot, 1);
2784 pci_enable_wake(pdev, PCI_D3cold, 1);
2785 } else {
2786 pci_enable_wake(pdev, PCI_D3hot, 0);
2787 pci_enable_wake(pdev, PCI_D3cold, 0);
2788 }
2789
2790 pci_disable_device(pdev);
2791 pci_set_power_state(pdev, PCI_D3hot);
6bdacb1a
MC
2792}
2793
2cc30492
AK
2794/* ------------------ PCI Error Recovery infrastructure -------------- */
2795/**
2796 * e100_io_error_detected - called when PCI error is detected.
2797 * @pdev: Pointer to PCI device
2798 * @state: The current pci conneection state
2799 */
2800static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2801{
2802 struct net_device *netdev = pci_get_drvdata(pdev);
bea3348e 2803 struct nic *nic = netdev_priv(netdev);
2cc30492
AK
2804
2805 /* Similar to calling e100_down(), but avoids adpater I/O. */
2806 netdev->stop(netdev);
2807
2808 /* Detach; put netif into state similar to hotplug unplug. */
bea3348e 2809 napi_enable(&nic->napi);
2cc30492 2810 netif_device_detach(netdev);
b1d26f24 2811 pci_disable_device(pdev);
2cc30492
AK
2812
2813 /* Request a slot reset. */
2814 return PCI_ERS_RESULT_NEED_RESET;
2815}
2816
2817/**
2818 * e100_io_slot_reset - called after the pci bus has been reset.
2819 * @pdev: Pointer to PCI device
2820 *
2821 * Restart the card from scratch.
2822 */
2823static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2824{
2825 struct net_device *netdev = pci_get_drvdata(pdev);
2826 struct nic *nic = netdev_priv(netdev);
2827
2828 if (pci_enable_device(pdev)) {
2829 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2830 return PCI_ERS_RESULT_DISCONNECT;
2831 }
2832 pci_set_master(pdev);
2833
2834 /* Only one device per card can do a reset */
2835 if (0 != PCI_FUNC(pdev->devfn))
2836 return PCI_ERS_RESULT_RECOVERED;
2837 e100_hw_reset(nic);
2838 e100_phy_init(nic);
2839
2840 return PCI_ERS_RESULT_RECOVERED;
2841}
2842
2843/**
2844 * e100_io_resume - resume normal operations
2845 * @pdev: Pointer to PCI device
2846 *
2847 * Resume normal operations after an error recovery
2848 * sequence has been completed.
2849 */
2850static void e100_io_resume(struct pci_dev *pdev)
2851{
2852 struct net_device *netdev = pci_get_drvdata(pdev);
2853 struct nic *nic = netdev_priv(netdev);
2854
2855 /* ack any pending wake events, disable PME */
2856 pci_enable_wake(pdev, 0, 0);
2857
2858 netif_device_attach(netdev);
2859 if (netif_running(netdev)) {
2860 e100_open(netdev);
2861 mod_timer(&nic->watchdog, jiffies);
2862 }
2863}
2864
2865static struct pci_error_handlers e100_err_handler = {
2866 .error_detected = e100_io_error_detected,
2867 .slot_reset = e100_io_slot_reset,
2868 .resume = e100_io_resume,
2869};
6bdacb1a 2870
1da177e4
LT
2871static struct pci_driver e100_driver = {
2872 .name = DRV_NAME,
2873 .id_table = e100_id_table,
2874 .probe = e100_probe,
2875 .remove = __devexit_p(e100_remove),
e8e82b76 2876#ifdef CONFIG_PM
975b366a 2877 /* Power Management hooks */
1da177e4
LT
2878 .suspend = e100_suspend,
2879 .resume = e100_resume,
2880#endif
05479938 2881 .shutdown = e100_shutdown,
2cc30492 2882 .err_handler = &e100_err_handler,
1da177e4
LT
2883};
2884
2885static int __init e100_init_module(void)
2886{
2887 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2888 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2889 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2890 }
29917620 2891 return pci_register_driver(&e100_driver);
1da177e4
LT
2892}
2893
2894static void __exit e100_cleanup_module(void)
2895{
2896 pci_unregister_driver(&e100_driver);
2897}
2898
2899module_init(e100_init_module);
2900module_exit(e100_cleanup_module);
This page took 0.598793 seconds and 5 git commands to generate.