e1000e: power off PHY after reset when interface is down
[deliverable/linux.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
d9c76f99 55#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
ff10e13c
CW
56#define E1000_BASE1000T_STATUS 10
57#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58#define E1000_RECEIVE_ERROR_COUNTER 21
59#define E1000_RECEIVE_ERROR_MAX 0xFFFF
bc7f75fa 60
4662e82b
BA
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
bc7f75fa
AK
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
bc7f75fa
AK
81
82/**
83 * e1000_init_phy_params_82571 - Init PHY func ptrs.
84 * @hw: pointer to the HW structure
bc7f75fa
AK
85 **/
86static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
87{
88 struct e1000_phy_info *phy = &hw->phy;
89 s32 ret_val;
90
318a94d6 91 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
92 phy->type = e1000_phy_none;
93 return 0;
94 }
95
96 phy->addr = 1;
97 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
98 phy->reset_delay_us = 100;
99
17f208de
BA
100 phy->ops.power_up = e1000_power_up_phy_copper;
101 phy->ops.power_down = e1000_power_down_phy_copper_82571;
102
bc7f75fa
AK
103 switch (hw->mac.type) {
104 case e1000_82571:
105 case e1000_82572:
106 phy->type = e1000_phy_igp_2;
107 break;
108 case e1000_82573:
109 phy->type = e1000_phy_m88;
110 break;
4662e82b 111 case e1000_82574:
8c81c9c3 112 case e1000_82583:
4662e82b 113 phy->type = e1000_phy_bm;
1b98c2bb
BA
114 phy->ops.acquire = e1000_get_hw_semaphore_82574;
115 phy->ops.release = e1000_put_hw_semaphore_82574;
4662e82b 116 break;
bc7f75fa
AK
117 default:
118 return -E1000_ERR_PHY;
119 break;
120 }
121
122 /* This can only be done after all function pointers are setup. */
123 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
124 if (ret_val) {
125 e_dbg("Error getting PHY ID\n");
126 return ret_val;
127 }
bc7f75fa
AK
128
129 /* Verify phy id */
130 switch (hw->mac.type) {
131 case e1000_82571:
132 case e1000_82572:
133 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 134 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
135 break;
136 case e1000_82573:
137 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 138 ret_val = -E1000_ERR_PHY;
bc7f75fa 139 break;
4662e82b 140 case e1000_82574:
8c81c9c3 141 case e1000_82583:
4662e82b 142 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 143 ret_val = -E1000_ERR_PHY;
4662e82b 144 break;
bc7f75fa 145 default:
dd93f95e 146 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
147 break;
148 }
149
dd93f95e
BA
150 if (ret_val)
151 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
152
153 return ret_val;
bc7f75fa
AK
154}
155
156/**
157 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
158 * @hw: pointer to the HW structure
bc7f75fa
AK
159 **/
160static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
161{
162 struct e1000_nvm_info *nvm = &hw->nvm;
163 u32 eecd = er32(EECD);
164 u16 size;
165
166 nvm->opcode_bits = 8;
167 nvm->delay_usec = 1;
168 switch (nvm->override) {
169 case e1000_nvm_override_spi_large:
170 nvm->page_size = 32;
171 nvm->address_bits = 16;
172 break;
173 case e1000_nvm_override_spi_small:
174 nvm->page_size = 8;
175 nvm->address_bits = 8;
176 break;
177 default:
178 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
179 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
180 break;
181 }
182
183 switch (hw->mac.type) {
184 case e1000_82573:
4662e82b 185 case e1000_82574:
8c81c9c3 186 case e1000_82583:
bc7f75fa
AK
187 if (((eecd >> 15) & 0x3) == 0x3) {
188 nvm->type = e1000_nvm_flash_hw;
189 nvm->word_size = 2048;
ad68076e
BA
190 /*
191 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
192 * to Flash update issue.
193 */
194 eecd &= ~E1000_EECD_AUPDEN;
195 ew32(EECD, eecd);
196 break;
197 }
198 /* Fall Through */
199 default:
ad68076e 200 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
201 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
202 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
203 /*
204 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
205 * for setting word_size.
206 */
207 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
208
209 /* EEPROM access above 16k is unsupported */
210 if (size > 14)
211 size = 14;
bc7f75fa
AK
212 nvm->word_size = 1 << size;
213 break;
214 }
215
1b98c2bb
BA
216 /* Function Pointers */
217 switch (hw->mac.type) {
218 case e1000_82574:
219 case e1000_82583:
220 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
221 nvm->ops.release = e1000_put_hw_semaphore_82574;
222 break;
223 default:
224 break;
225 }
226
bc7f75fa
AK
227 return 0;
228}
229
230/**
231 * e1000_init_mac_params_82571 - Init MAC func ptrs.
232 * @hw: pointer to the HW structure
bc7f75fa
AK
233 **/
234static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
235{
236 struct e1000_hw *hw = &adapter->hw;
237 struct e1000_mac_info *mac = &hw->mac;
238 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
239 u32 swsm = 0;
240 u32 swsm2 = 0;
241 bool force_clear_smbi = false;
bc7f75fa
AK
242
243 /* Set media type */
244 switch (adapter->pdev->device) {
245 case E1000_DEV_ID_82571EB_FIBER:
246 case E1000_DEV_ID_82572EI_FIBER:
247 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 248 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
249 break;
250 case E1000_DEV_ID_82571EB_SERDES:
251 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
252 case E1000_DEV_ID_82571EB_SERDES_DUAL:
253 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 254 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
255 break;
256 default:
318a94d6 257 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
258 break;
259 }
260
261 /* Set mta register count */
262 mac->mta_reg_count = 128;
263 /* Set rar entry count */
264 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
265 /* Adaptive IFS supported */
266 mac->adaptive_ifs = true;
bc7f75fa
AK
267
268 /* check for link */
318a94d6 269 switch (hw->phy.media_type) {
bc7f75fa
AK
270 case e1000_media_type_copper:
271 func->setup_physical_interface = e1000_setup_copper_link_82571;
272 func->check_for_link = e1000e_check_for_copper_link;
273 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 break;
275 case e1000_media_type_fiber:
ad68076e
BA
276 func->setup_physical_interface =
277 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 278 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
279 func->get_link_up_info =
280 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
281 break;
282 case e1000_media_type_internal_serdes:
ad68076e
BA
283 func->setup_physical_interface =
284 e1000_setup_fiber_serdes_link_82571;
c9523379 285 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
286 func->get_link_up_info =
287 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
288 break;
289 default:
290 return -E1000_ERR_CONFIG;
291 break;
292 }
293
4662e82b 294 switch (hw->mac.type) {
f4d2dd4c
BA
295 case e1000_82573:
296 func->set_lan_id = e1000_set_lan_id_single_port;
297 func->check_mng_mode = e1000e_check_mng_mode_generic;
298 func->led_on = e1000e_led_on_generic;
a65a4a0d
BA
299
300 /* FWSM register */
301 mac->has_fwsm = true;
302 /*
303 * ARC supported; valid only if manageability features are
304 * enabled.
305 */
306 mac->arc_subsystem_valid =
307 (er32(FWSM) & E1000_FWSM_MODE_MASK)
308 ? true : false;
f4d2dd4c 309 break;
4662e82b 310 case e1000_82574:
8c81c9c3 311 case e1000_82583:
f4d2dd4c 312 func->set_lan_id = e1000_set_lan_id_single_port;
4662e82b
BA
313 func->check_mng_mode = e1000_check_mng_mode_82574;
314 func->led_on = e1000_led_on_82574;
315 break;
316 default:
317 func->check_mng_mode = e1000e_check_mng_mode_generic;
318 func->led_on = e1000e_led_on_generic;
a65a4a0d
BA
319
320 /* FWSM register */
321 mac->has_fwsm = true;
4662e82b
BA
322 break;
323 }
324
23a2d1b2
DG
325 /*
326 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
327 * first NVM or PHY acess. This should be done for single-port
328 * devices, and for one port only on dual-port devices so that
329 * for those devices we can still use the SMBI lock to synchronize
330 * inter-port accesses to the PHY & NVM.
331 */
332 switch (hw->mac.type) {
333 case e1000_82571:
334 case e1000_82572:
335 swsm2 = er32(SWSM2);
336
337 if (!(swsm2 & E1000_SWSM2_LOCK)) {
338 /* Only do this for the first interface on this card */
339 ew32(SWSM2,
340 swsm2 | E1000_SWSM2_LOCK);
341 force_clear_smbi = true;
342 } else
343 force_clear_smbi = false;
344 break;
345 default:
346 force_clear_smbi = true;
347 break;
348 }
349
350 if (force_clear_smbi) {
351 /* Make sure SWSM.SMBI is clear */
352 swsm = er32(SWSM);
353 if (swsm & E1000_SWSM_SMBI) {
354 /* This bit should not be set on a first interface, and
355 * indicates that the bootagent or EFI code has
356 * improperly left this bit enabled
357 */
3bb99fe2 358 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
359 }
360 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
361 }
362
363 /*
2c73e1fe 364 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
365 * timeouts.
366 */
367 hw->dev_spec.e82571.smb_counter = 0;
368
bc7f75fa
AK
369 return 0;
370}
371
69e3fd8c 372static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
373{
374 struct e1000_hw *hw = &adapter->hw;
375 static int global_quad_port_a; /* global port a indication */
376 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
377 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
378 s32 rc;
379
380 rc = e1000_init_mac_params_82571(adapter);
381 if (rc)
382 return rc;
383
384 rc = e1000_init_nvm_params_82571(hw);
385 if (rc)
386 return rc;
387
388 rc = e1000_init_phy_params_82571(hw);
389 if (rc)
390 return rc;
391
392 /* tag quad port adapters first, it's used below */
393 switch (pdev->device) {
394 case E1000_DEV_ID_82571EB_QUAD_COPPER:
395 case E1000_DEV_ID_82571EB_QUAD_FIBER:
396 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 397 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
398 adapter->flags |= FLAG_IS_QUAD_PORT;
399 /* mark the first port */
400 if (global_quad_port_a == 0)
401 adapter->flags |= FLAG_IS_QUAD_PORT_A;
402 /* Reset for multiple quad port adapters */
403 global_quad_port_a++;
404 if (global_quad_port_a == 4)
405 global_quad_port_a = 0;
406 break;
407 default:
408 break;
409 }
410
411 switch (adapter->hw.mac.type) {
412 case e1000_82571:
413 /* these dual ports don't have WoL on port B at all */
414 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
415 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
416 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
417 (is_port_b))
418 adapter->flags &= ~FLAG_HAS_WOL;
419 /* quad ports only support WoL on port A */
420 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 421 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 422 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
423 /* Does not support WoL on any port */
424 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
425 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 426 break;
bc7f75fa 427 case e1000_82573:
6f461f6c
BA
428 case e1000_82574:
429 case e1000_82583:
430 /* Disable ASPM L0s due to hardware errata */
431 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
432
bc7f75fa 433 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
434 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
435 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
436 }
437 break;
438 default:
439 break;
440 }
441
442 return 0;
443}
444
445/**
446 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
447 * @hw: pointer to the HW structure
448 *
449 * Reads the PHY registers and stores the PHY ID and possibly the PHY
450 * revision in the hardware structure.
451 **/
452static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
453{
454 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
455 s32 ret_val;
456 u16 phy_id = 0;
bc7f75fa
AK
457
458 switch (hw->mac.type) {
459 case e1000_82571:
460 case e1000_82572:
ad68076e
BA
461 /*
462 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
463 * In this case, we cannot access the PHY until the
464 * configuration is done. So we explicitly set the
ad68076e
BA
465 * PHY ID.
466 */
bc7f75fa
AK
467 phy->id = IGP01E1000_I_PHY_ID;
468 break;
469 case e1000_82573:
470 return e1000e_get_phy_id(hw);
471 break;
4662e82b 472 case e1000_82574:
8c81c9c3 473 case e1000_82583:
4662e82b
BA
474 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
475 if (ret_val)
476 return ret_val;
477
478 phy->id = (u32)(phy_id << 16);
479 udelay(20);
480 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
481 if (ret_val)
482 return ret_val;
483
484 phy->id |= (u32)(phy_id);
485 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
486 break;
bc7f75fa
AK
487 default:
488 return -E1000_ERR_PHY;
489 break;
490 }
491
492 return 0;
493}
494
495/**
496 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
497 * @hw: pointer to the HW structure
498 *
499 * Acquire the HW semaphore to access the PHY or NVM
500 **/
501static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
502{
503 u32 swsm;
23a2d1b2
DG
504 s32 sw_timeout = hw->nvm.word_size + 1;
505 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
506 s32 i = 0;
507
23a2d1b2
DG
508 /*
509 * If we have timedout 3 times on trying to acquire
510 * the inter-port SMBI semaphore, there is old code
511 * operating on the other port, and it is not
512 * releasing SMBI. Modify the number of times that
513 * we try for the semaphore to interwork with this
514 * older code.
515 */
516 if (hw->dev_spec.e82571.smb_counter > 2)
517 sw_timeout = 1;
518
519 /* Get the SW semaphore */
520 while (i < sw_timeout) {
521 swsm = er32(SWSM);
522 if (!(swsm & E1000_SWSM_SMBI))
523 break;
524
525 udelay(50);
526 i++;
527 }
528
529 if (i == sw_timeout) {
3bb99fe2 530 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
531 hw->dev_spec.e82571.smb_counter++;
532 }
bc7f75fa 533 /* Get the FW semaphore. */
23a2d1b2 534 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
535 swsm = er32(SWSM);
536 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
537
538 /* Semaphore acquired if bit latched */
539 if (er32(SWSM) & E1000_SWSM_SWESMBI)
540 break;
541
542 udelay(50);
543 }
544
23a2d1b2 545 if (i == fw_timeout) {
bc7f75fa 546 /* Release semaphores */
23a2d1b2 547 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 548 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
549 return -E1000_ERR_NVM;
550 }
551
552 return 0;
553}
554
555/**
556 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
557 * @hw: pointer to the HW structure
558 *
559 * Release hardware semaphore used to access the PHY or NVM
560 **/
561static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
562{
563 u32 swsm;
564
565 swsm = er32(SWSM);
23a2d1b2 566 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
567 ew32(SWSM, swsm);
568}
1b98c2bb
BA
569/**
570 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
571 * @hw: pointer to the HW structure
572 *
573 * Acquire the HW semaphore during reset.
574 *
575 **/
576static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
577{
578 u32 extcnf_ctrl;
579 s32 ret_val = 0;
580 s32 i = 0;
581
582 extcnf_ctrl = er32(EXTCNF_CTRL);
583 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
584 do {
585 ew32(EXTCNF_CTRL, extcnf_ctrl);
586 extcnf_ctrl = er32(EXTCNF_CTRL);
587
588 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
589 break;
590
591 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
592
593 msleep(2);
594 i++;
595 } while (i < MDIO_OWNERSHIP_TIMEOUT);
596
597 if (i == MDIO_OWNERSHIP_TIMEOUT) {
598 /* Release semaphores */
599 e1000_put_hw_semaphore_82573(hw);
600 e_dbg("Driver can't access the PHY\n");
601 ret_val = -E1000_ERR_PHY;
602 goto out;
603 }
604
605out:
606 return ret_val;
607}
608
609/**
610 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
611 * @hw: pointer to the HW structure
612 *
613 * Release hardware semaphore used during reset.
614 *
615 **/
616static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
617{
618 u32 extcnf_ctrl;
619
620 extcnf_ctrl = er32(EXTCNF_CTRL);
621 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
622 ew32(EXTCNF_CTRL, extcnf_ctrl);
623}
624
625static DEFINE_MUTEX(swflag_mutex);
626
627/**
628 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
629 * @hw: pointer to the HW structure
630 *
631 * Acquire the HW semaphore to access the PHY or NVM.
632 *
633 **/
634static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
635{
636 s32 ret_val;
637
638 mutex_lock(&swflag_mutex);
639 ret_val = e1000_get_hw_semaphore_82573(hw);
640 if (ret_val)
641 mutex_unlock(&swflag_mutex);
642 return ret_val;
643}
644
645/**
646 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
647 * @hw: pointer to the HW structure
648 *
649 * Release hardware semaphore used to access the PHY or NVM
650 *
651 **/
652static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
653{
654 e1000_put_hw_semaphore_82573(hw);
655 mutex_unlock(&swflag_mutex);
656}
bc7f75fa
AK
657
658/**
659 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
660 * @hw: pointer to the HW structure
661 *
662 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
663 * Then for non-82573 hardware, set the EEPROM access request bit and wait
664 * for EEPROM access grant bit. If the access grant bit is not set, release
665 * hardware semaphore.
666 **/
667static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
668{
669 s32 ret_val;
670
671 ret_val = e1000_get_hw_semaphore_82571(hw);
672 if (ret_val)
673 return ret_val;
674
8c81c9c3
AD
675 switch (hw->mac.type) {
676 case e1000_82573:
8c81c9c3
AD
677 break;
678 default:
bc7f75fa 679 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
680 break;
681 }
bc7f75fa
AK
682
683 if (ret_val)
684 e1000_put_hw_semaphore_82571(hw);
685
686 return ret_val;
687}
688
689/**
690 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
691 * @hw: pointer to the HW structure
692 *
693 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
694 **/
695static void e1000_release_nvm_82571(struct e1000_hw *hw)
696{
697 e1000e_release_nvm(hw);
698 e1000_put_hw_semaphore_82571(hw);
699}
700
701/**
702 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
703 * @hw: pointer to the HW structure
704 * @offset: offset within the EEPROM to be written to
705 * @words: number of words to write
706 * @data: 16 bit word(s) to be written to the EEPROM
707 *
708 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
709 *
710 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 711 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
712 **/
713static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
714 u16 *data)
715{
716 s32 ret_val;
717
718 switch (hw->mac.type) {
719 case e1000_82573:
4662e82b 720 case e1000_82574:
8c81c9c3 721 case e1000_82583:
bc7f75fa
AK
722 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
723 break;
724 case e1000_82571:
725 case e1000_82572:
726 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
727 break;
728 default:
729 ret_val = -E1000_ERR_NVM;
730 break;
731 }
732
733 return ret_val;
734}
735
736/**
737 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
738 * @hw: pointer to the HW structure
739 *
740 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
741 * up to the checksum. Then calculates the EEPROM checksum and writes the
742 * value to the EEPROM.
743 **/
744static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
745{
746 u32 eecd;
747 s32 ret_val;
748 u16 i;
749
750 ret_val = e1000e_update_nvm_checksum_generic(hw);
751 if (ret_val)
752 return ret_val;
753
ad68076e
BA
754 /*
755 * If our nvm is an EEPROM, then we're done
756 * otherwise, commit the checksum to the flash NVM.
757 */
bc7f75fa
AK
758 if (hw->nvm.type != e1000_nvm_flash_hw)
759 return ret_val;
760
761 /* Check for pending operations. */
762 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
763 msleep(1);
764 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
765 break;
766 }
767
768 if (i == E1000_FLASH_UPDATES)
769 return -E1000_ERR_NVM;
770
771 /* Reset the firmware if using STM opcode. */
772 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
773 /*
774 * The enabling of and the actual reset must be done
bc7f75fa
AK
775 * in two write cycles.
776 */
777 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
778 e1e_flush();
779 ew32(HICR, E1000_HICR_FW_RESET);
780 }
781
782 /* Commit the write to flash */
783 eecd = er32(EECD) | E1000_EECD_FLUPD;
784 ew32(EECD, eecd);
785
786 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
787 msleep(1);
788 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
789 break;
790 }
791
792 if (i == E1000_FLASH_UPDATES)
793 return -E1000_ERR_NVM;
794
795 return 0;
796}
797
798/**
799 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
800 * @hw: pointer to the HW structure
801 *
802 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
803 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
804 **/
805static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
806{
807 if (hw->nvm.type == e1000_nvm_flash_hw)
808 e1000_fix_nvm_checksum_82571(hw);
809
810 return e1000e_validate_nvm_checksum_generic(hw);
811}
812
813/**
814 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
815 * @hw: pointer to the HW structure
816 * @offset: offset within the EEPROM to be written to
817 * @words: number of words to write
818 * @data: 16 bit word(s) to be written to the EEPROM
819 *
820 * After checking for invalid values, poll the EEPROM to ensure the previous
821 * command has completed before trying to write the next word. After write
822 * poll for completion.
823 *
824 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 825 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
826 **/
827static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
828 u16 words, u16 *data)
829{
830 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 831 u32 i, eewr = 0;
bc7f75fa
AK
832 s32 ret_val = 0;
833
ad68076e
BA
834 /*
835 * A check for invalid values: offset too large, too many words,
836 * and not enough words.
837 */
bc7f75fa
AK
838 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
839 (words == 0)) {
3bb99fe2 840 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
841 return -E1000_ERR_NVM;
842 }
843
844 for (i = 0; i < words; i++) {
845 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
846 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
847 E1000_NVM_RW_REG_START;
848
849 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
850 if (ret_val)
851 break;
852
853 ew32(EEWR, eewr);
854
855 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
856 if (ret_val)
857 break;
858 }
859
860 return ret_val;
861}
862
863/**
864 * e1000_get_cfg_done_82571 - Poll for configuration done
865 * @hw: pointer to the HW structure
866 *
867 * Reads the management control register for the config done bit to be set.
868 **/
869static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
870{
871 s32 timeout = PHY_CFG_TIMEOUT;
872
873 while (timeout) {
874 if (er32(EEMNGCTL) &
875 E1000_NVM_CFG_DONE_PORT_0)
876 break;
877 msleep(1);
878 timeout--;
879 }
880 if (!timeout) {
3bb99fe2 881 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
882 return -E1000_ERR_RESET;
883 }
884
885 return 0;
886}
887
888/**
889 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
890 * @hw: pointer to the HW structure
564ea9bb 891 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
892 *
893 * Sets the LPLU D0 state according to the active flag. When activating LPLU
894 * this function also disables smart speed and vice versa. LPLU will not be
895 * activated unless the device autonegotiation advertisement meets standards
896 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
897 * pointer entry point only called by PHY setup routines.
898 **/
899static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
900{
901 struct e1000_phy_info *phy = &hw->phy;
902 s32 ret_val;
903 u16 data;
904
905 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
906 if (ret_val)
907 return ret_val;
908
909 if (active) {
910 data |= IGP02E1000_PM_D0_LPLU;
911 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
912 if (ret_val)
913 return ret_val;
914
915 /* When LPLU is enabled, we should disable SmartSpeed */
916 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
917 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
918 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
919 if (ret_val)
920 return ret_val;
921 } else {
922 data &= ~IGP02E1000_PM_D0_LPLU;
923 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
924 /*
925 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
926 * during Dx states where the power conservation is most
927 * important. During driver activity we should enable
ad68076e
BA
928 * SmartSpeed, so performance is maintained.
929 */
bc7f75fa
AK
930 if (phy->smart_speed == e1000_smart_speed_on) {
931 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 932 &data);
bc7f75fa
AK
933 if (ret_val)
934 return ret_val;
935
936 data |= IGP01E1000_PSCFR_SMART_SPEED;
937 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 938 data);
bc7f75fa
AK
939 if (ret_val)
940 return ret_val;
941 } else if (phy->smart_speed == e1000_smart_speed_off) {
942 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 943 &data);
bc7f75fa
AK
944 if (ret_val)
945 return ret_val;
946
947 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
948 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 949 data);
bc7f75fa
AK
950 if (ret_val)
951 return ret_val;
952 }
953 }
954
955 return 0;
956}
957
958/**
959 * e1000_reset_hw_82571 - Reset hardware
960 * @hw: pointer to the HW structure
961 *
fe401674 962 * This resets the hardware into a known state.
bc7f75fa
AK
963 **/
964static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
965{
dd93f95e 966 u32 ctrl, ctrl_ext;
bc7f75fa 967 s32 ret_val;
bc7f75fa 968
ad68076e
BA
969 /*
970 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
971 * on the last TLP read/write transaction when MAC is reset.
972 */
973 ret_val = e1000e_disable_pcie_master(hw);
974 if (ret_val)
3bb99fe2 975 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 976
3bb99fe2 977 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
978 ew32(IMC, 0xffffffff);
979
980 ew32(RCTL, 0);
981 ew32(TCTL, E1000_TCTL_PSP);
982 e1e_flush();
983
984 msleep(10);
985
ad68076e
BA
986 /*
987 * Must acquire the MDIO ownership before MAC reset.
988 * Ownership defaults to firmware after a reset.
989 */
8c81c9c3
AD
990 switch (hw->mac.type) {
991 case e1000_82573:
1b98c2bb
BA
992 ret_val = e1000_get_hw_semaphore_82573(hw);
993 break;
8c81c9c3
AD
994 case e1000_82574:
995 case e1000_82583:
1b98c2bb 996 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
997 break;
998 default:
999 break;
bc7f75fa 1000 }
1b98c2bb
BA
1001 if (ret_val)
1002 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
1003
1004 ctrl = er32(CTRL);
1005
3bb99fe2 1006 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1007 ew32(CTRL, ctrl | E1000_CTRL_RST);
1008
1b98c2bb
BA
1009 /* Must release MDIO ownership and mutex after MAC reset. */
1010 switch (hw->mac.type) {
1011 case e1000_82574:
1012 case e1000_82583:
1013 e1000_put_hw_semaphore_82574(hw);
1014 break;
1015 default:
1016 break;
1017 }
1018
bc7f75fa
AK
1019 if (hw->nvm.type == e1000_nvm_flash_hw) {
1020 udelay(10);
1021 ctrl_ext = er32(CTRL_EXT);
1022 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023 ew32(CTRL_EXT, ctrl_ext);
1024 e1e_flush();
1025 }
1026
1027 ret_val = e1000e_get_auto_rd_done(hw);
1028 if (ret_val)
1029 /* We don't want to continue accessing MAC registers. */
1030 return ret_val;
1031
ad68076e
BA
1032 /*
1033 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1034 * Need to wait for Phy configuration completion before accessing
1035 * NVM and Phy.
1036 */
8c81c9c3
AD
1037
1038 switch (hw->mac.type) {
1039 case e1000_82573:
1040 case e1000_82574:
1041 case e1000_82583:
bc7f75fa 1042 msleep(25);
8c81c9c3
AD
1043 break;
1044 default:
1045 break;
1046 }
bc7f75fa
AK
1047
1048 /* Clear any pending interrupt events. */
1049 ew32(IMC, 0xffffffff);
dd93f95e 1050 er32(ICR);
bc7f75fa 1051
1aef70ef
BA
1052 if (hw->mac.type == e1000_82571) {
1053 /* Install any alternate MAC address into RAR0 */
1054 ret_val = e1000_check_alt_mac_addr_generic(hw);
1055 if (ret_val)
1056 return ret_val;
608f8a0d 1057
1aef70ef
BA
1058 e1000e_set_laa_state_82571(hw, true);
1059 }
93ca1610 1060
c9523379 1061 /* Reinitialize the 82571 serdes link state machine */
1062 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1063 hw->mac.serdes_link_state = e1000_serdes_link_down;
1064
bc7f75fa
AK
1065 return 0;
1066}
1067
1068/**
1069 * e1000_init_hw_82571 - Initialize hardware
1070 * @hw: pointer to the HW structure
1071 *
1072 * This inits the hardware readying it for operation.
1073 **/
1074static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1075{
1076 struct e1000_mac_info *mac = &hw->mac;
1077 u32 reg_data;
1078 s32 ret_val;
a708dd88 1079 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1080
1081 e1000_initialize_hw_bits_82571(hw);
1082
1083 /* Initialize identification LED */
1084 ret_val = e1000e_id_led_init(hw);
de39b752 1085 if (ret_val)
3bb99fe2 1086 e_dbg("Error initializing identification LED\n");
de39b752 1087 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1088
1089 /* Disabling VLAN filtering */
3bb99fe2 1090 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1091 mac->ops.clear_vfta(hw);
bc7f75fa
AK
1092
1093 /* Setup the receive address. */
ad68076e
BA
1094 /*
1095 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1096 * 82571, we must reserve a RAR for it to work around an issue where
1097 * resetting one port will reload the MAC on the other port.
1098 */
1099 if (e1000e_get_laa_state_82571(hw))
1100 rar_count--;
1101 e1000e_init_rx_addrs(hw, rar_count);
1102
1103 /* Zero out the Multicast HASH table */
3bb99fe2 1104 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1105 for (i = 0; i < mac->mta_reg_count; i++)
1106 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1107
1108 /* Setup link and flow control */
1109 ret_val = e1000_setup_link_82571(hw);
1110
1111 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1112 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1113 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1114 E1000_TXDCTL_FULL_TX_DESC_WB |
1115 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1116 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1117
1118 /* ...for both queues. */
8c81c9c3
AD
1119 switch (mac->type) {
1120 case e1000_82573:
a65a4a0d
BA
1121 e1000e_enable_tx_pkt_filtering(hw);
1122 /* fall through */
8c81c9c3
AD
1123 case e1000_82574:
1124 case e1000_82583:
8c81c9c3
AD
1125 reg_data = er32(GCR);
1126 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1127 ew32(GCR, reg_data);
1128 break;
1129 default:
e9ec2c0f 1130 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1131 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1132 E1000_TXDCTL_FULL_TX_DESC_WB |
1133 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1134 ew32(TXDCTL(1), reg_data);
8c81c9c3 1135 break;
bc7f75fa
AK
1136 }
1137
ad68076e
BA
1138 /*
1139 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1140 * important that we do this after we have tried to establish link
1141 * because the symbol error count will increment wildly if there
1142 * is no link.
1143 */
1144 e1000_clear_hw_cntrs_82571(hw);
1145
1146 return ret_val;
1147}
1148
1149/**
1150 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1151 * @hw: pointer to the HW structure
1152 *
1153 * Initializes required hardware-dependent bits needed for normal operation.
1154 **/
1155static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1156{
1157 u32 reg;
1158
1159 /* Transmit Descriptor Control 0 */
e9ec2c0f 1160 reg = er32(TXDCTL(0));
bc7f75fa 1161 reg |= (1 << 22);
e9ec2c0f 1162 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1163
1164 /* Transmit Descriptor Control 1 */
e9ec2c0f 1165 reg = er32(TXDCTL(1));
bc7f75fa 1166 reg |= (1 << 22);
e9ec2c0f 1167 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1168
1169 /* Transmit Arbitration Control 0 */
e9ec2c0f 1170 reg = er32(TARC(0));
bc7f75fa
AK
1171 reg &= ~(0xF << 27); /* 30:27 */
1172 switch (hw->mac.type) {
1173 case e1000_82571:
1174 case e1000_82572:
1175 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1176 break;
1177 default:
1178 break;
1179 }
e9ec2c0f 1180 ew32(TARC(0), reg);
bc7f75fa
AK
1181
1182 /* Transmit Arbitration Control 1 */
e9ec2c0f 1183 reg = er32(TARC(1));
bc7f75fa
AK
1184 switch (hw->mac.type) {
1185 case e1000_82571:
1186 case e1000_82572:
1187 reg &= ~((1 << 29) | (1 << 30));
1188 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1189 if (er32(TCTL) & E1000_TCTL_MULR)
1190 reg &= ~(1 << 28);
1191 else
1192 reg |= (1 << 28);
e9ec2c0f 1193 ew32(TARC(1), reg);
bc7f75fa
AK
1194 break;
1195 default:
1196 break;
1197 }
1198
1199 /* Device Control */
8c81c9c3
AD
1200 switch (hw->mac.type) {
1201 case e1000_82573:
1202 case e1000_82574:
1203 case e1000_82583:
bc7f75fa
AK
1204 reg = er32(CTRL);
1205 reg &= ~(1 << 29);
1206 ew32(CTRL, reg);
8c81c9c3
AD
1207 break;
1208 default:
1209 break;
bc7f75fa
AK
1210 }
1211
1212 /* Extended Device Control */
8c81c9c3
AD
1213 switch (hw->mac.type) {
1214 case e1000_82573:
1215 case e1000_82574:
1216 case e1000_82583:
bc7f75fa
AK
1217 reg = er32(CTRL_EXT);
1218 reg &= ~(1 << 23);
1219 reg |= (1 << 22);
1220 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1221 break;
1222 default:
1223 break;
bc7f75fa 1224 }
4662e82b 1225
6ea7ae1d
AD
1226 if (hw->mac.type == e1000_82571) {
1227 reg = er32(PBA_ECC);
1228 reg |= E1000_PBA_ECC_CORR_EN;
1229 ew32(PBA_ECC, reg);
1230 }
5df3f0ea 1231 /*
1232 * Workaround for hardware errata.
1233 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1234 */
1235
1236 if ((hw->mac.type == e1000_82571) ||
1237 (hw->mac.type == e1000_82572)) {
1238 reg = er32(CTRL_EXT);
1239 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1240 ew32(CTRL_EXT, reg);
1241 }
1242
6ea7ae1d 1243
78272bba 1244 /* PCI-Ex Control Registers */
8c81c9c3
AD
1245 switch (hw->mac.type) {
1246 case e1000_82574:
1247 case e1000_82583:
4662e82b
BA
1248 reg = er32(GCR);
1249 reg |= (1 << 22);
1250 ew32(GCR, reg);
78272bba 1251
84efb7b9
BA
1252 /*
1253 * Workaround for hardware errata.
1254 * apply workaround for hardware errata documented in errata
1255 * docs Fixes issue where some error prone or unreliable PCIe
1256 * completions are occurring, particularly with ASPM enabled.
1257 * Without fix, issue can cause tx timeouts.
1258 */
78272bba
JB
1259 reg = er32(GCR2);
1260 reg |= 1;
1261 ew32(GCR2, reg);
8c81c9c3
AD
1262 break;
1263 default:
1264 break;
4662e82b 1265 }
bc7f75fa
AK
1266}
1267
1268/**
caaddaf8 1269 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1270 * @hw: pointer to the HW structure
1271 *
1272 * Clears the register array which contains the VLAN filter table by
1273 * setting all the values to 0.
1274 **/
caaddaf8 1275static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1276{
1277 u32 offset;
1278 u32 vfta_value = 0;
1279 u32 vfta_offset = 0;
1280 u32 vfta_bit_in_reg = 0;
1281
8c81c9c3
AD
1282 switch (hw->mac.type) {
1283 case e1000_82573:
1284 case e1000_82574:
1285 case e1000_82583:
bc7f75fa 1286 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1287 /*
1288 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1289 * a single VLAN ID. The following operations
1290 * determine which 32b entry (i.e. offset) into the
1291 * array we want to set the VLAN ID (i.e. bit) of
1292 * the manageability unit.
1293 */
1294 vfta_offset = (hw->mng_cookie.vlan_id >>
1295 E1000_VFTA_ENTRY_SHIFT) &
1296 E1000_VFTA_ENTRY_MASK;
1297 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1298 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1299 }
8c81c9c3
AD
1300 break;
1301 default:
1302 break;
bc7f75fa
AK
1303 }
1304 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1305 /*
1306 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1307 * manageability VLAN ID, then clear all bits except that of
1308 * the manageability unit.
1309 */
1310 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1311 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1312 e1e_flush();
1313 }
1314}
1315
4662e82b
BA
1316/**
1317 * e1000_check_mng_mode_82574 - Check manageability is enabled
1318 * @hw: pointer to the HW structure
1319 *
1320 * Reads the NVM Initialization Control Word 2 and returns true
1321 * (>0) if any manageability is enabled, else false (0).
1322 **/
1323static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1324{
1325 u16 data;
1326
1327 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1328 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1329}
1330
1331/**
1332 * e1000_led_on_82574 - Turn LED on
1333 * @hw: pointer to the HW structure
1334 *
1335 * Turn LED on.
1336 **/
1337static s32 e1000_led_on_82574(struct e1000_hw *hw)
1338{
1339 u32 ctrl;
1340 u32 i;
1341
1342 ctrl = hw->mac.ledctl_mode2;
1343 if (!(E1000_STATUS_LU & er32(STATUS))) {
1344 /*
1345 * If no link, then turn LED on by setting the invert bit
1346 * for each LED that's "on" (0x0E) in ledctl_mode2.
1347 */
1348 for (i = 0; i < 4; i++)
1349 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1350 E1000_LEDCTL_MODE_LED_ON)
1351 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1352 }
1353 ew32(LEDCTL, ctrl);
1354
1355 return 0;
1356}
1357
ff10e13c
CW
1358/**
1359 * e1000_check_phy_82574 - check 82574 phy hung state
1360 * @hw: pointer to the HW structure
1361 *
1362 * Returns whether phy is hung or not
1363 **/
1364bool e1000_check_phy_82574(struct e1000_hw *hw)
1365{
1366 u16 status_1kbt = 0;
1367 u16 receive_errors = 0;
1368 bool phy_hung = false;
1369 s32 ret_val = 0;
1370
1371 /*
1372 * Read PHY Receive Error counter first, if its is max - all F's then
1373 * read the Base1000T status register If both are max then PHY is hung.
1374 */
1375 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1376
1377 if (ret_val)
1378 goto out;
1379 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1380 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1381 if (ret_val)
1382 goto out;
1383 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1384 E1000_IDLE_ERROR_COUNT_MASK)
1385 phy_hung = true;
1386 }
1387out:
1388 return phy_hung;
1389}
1390
bc7f75fa
AK
1391/**
1392 * e1000_setup_link_82571 - Setup flow control and link settings
1393 * @hw: pointer to the HW structure
1394 *
1395 * Determines which flow control settings to use, then configures flow
1396 * control. Calls the appropriate media-specific link configuration
1397 * function. Assuming the adapter has a valid link partner, a valid link
1398 * should be established. Assumes the hardware has previously been reset
1399 * and the transmitter and receiver are not enabled.
1400 **/
1401static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1402{
ad68076e
BA
1403 /*
1404 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1405 * the default flow control setting, so we explicitly
1406 * set it to full.
1407 */
8c81c9c3
AD
1408 switch (hw->mac.type) {
1409 case e1000_82573:
1410 case e1000_82574:
1411 case e1000_82583:
1412 if (hw->fc.requested_mode == e1000_fc_default)
1413 hw->fc.requested_mode = e1000_fc_full;
1414 break;
1415 default:
1416 break;
1417 }
bc7f75fa
AK
1418
1419 return e1000e_setup_link(hw);
1420}
1421
1422/**
1423 * e1000_setup_copper_link_82571 - Configure copper link settings
1424 * @hw: pointer to the HW structure
1425 *
1426 * Configures the link for auto-neg or forced speed and duplex. Then we check
1427 * for link, once link is established calls to configure collision distance
1428 * and flow control are called.
1429 **/
1430static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1431{
1432 u32 ctrl;
bc7f75fa
AK
1433 s32 ret_val;
1434
1435 ctrl = er32(CTRL);
1436 ctrl |= E1000_CTRL_SLU;
1437 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1438 ew32(CTRL, ctrl);
1439
1440 switch (hw->phy.type) {
1441 case e1000_phy_m88:
4662e82b 1442 case e1000_phy_bm:
bc7f75fa
AK
1443 ret_val = e1000e_copper_link_setup_m88(hw);
1444 break;
1445 case e1000_phy_igp_2:
1446 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1447 break;
1448 default:
1449 return -E1000_ERR_PHY;
1450 break;
1451 }
1452
1453 if (ret_val)
1454 return ret_val;
1455
1456 ret_val = e1000e_setup_copper_link(hw);
1457
1458 return ret_val;
1459}
1460
1461/**
1462 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1463 * @hw: pointer to the HW structure
1464 *
1465 * Configures collision distance and flow control for fiber and serdes links.
1466 * Upon successful setup, poll for link.
1467 **/
1468static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1469{
1470 switch (hw->mac.type) {
1471 case e1000_82571:
1472 case e1000_82572:
ad68076e
BA
1473 /*
1474 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1475 * of reset to take the adapter out of that mode. So we
1476 * have to explicitly take the adapter out of loopback
489815ce 1477 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1478 * if another tool failed to take it out of loopback mode.
1479 */
ad68076e 1480 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1481 break;
1482 default:
1483 break;
1484 }
1485
1486 return e1000e_setup_fiber_serdes_link(hw);
1487}
1488
c9523379 1489/**
1490 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1491 * @hw: pointer to the HW structure
1492 *
1a40d5c1
BA
1493 * Reports the link state as up or down.
1494 *
1495 * If autonegotiation is supported by the link partner, the link state is
1496 * determined by the result of autonegotiation. This is the most likely case.
1497 * If autonegotiation is not supported by the link partner, and the link
1498 * has a valid signal, force the link up.
1499 *
1500 * The link state is represented internally here by 4 states:
1501 *
1502 * 1) down
1503 * 2) autoneg_progress
3ad2f3fb 1504 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1505 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1506 *
c9523379 1507 **/
f6370117 1508static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1509{
1510 struct e1000_mac_info *mac = &hw->mac;
1511 u32 rxcw;
1512 u32 ctrl;
1513 u32 status;
d9c76f99
BA
1514 u32 txcw;
1515 u32 i;
c9523379 1516 s32 ret_val = 0;
1517
1518 ctrl = er32(CTRL);
1519 status = er32(STATUS);
1520 rxcw = er32(RXCW);
1521
1522 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1523
1524 /* Receiver is synchronized with no invalid bits. */
1525 switch (mac->serdes_link_state) {
1526 case e1000_serdes_link_autoneg_complete:
1527 if (!(status & E1000_STATUS_LU)) {
1528 /*
1529 * We have lost link, retry autoneg before
1530 * reporting link failure
1531 */
1532 mac->serdes_link_state =
1533 e1000_serdes_link_autoneg_progress;
1a40d5c1 1534 mac->serdes_has_link = false;
3bb99fe2 1535 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1536 } else {
1537 mac->serdes_has_link = true;
c9523379 1538 }
a82a14f4 1539 break;
c9523379 1540
1541 case e1000_serdes_link_forced_up:
1542 /*
1543 * If we are receiving /C/ ordered sets, re-enable
1544 * auto-negotiation in the TXCW register and disable
1545 * forced link in the Device Control register in an
1546 * attempt to auto-negotiate with our link partner.
d478eb44
BA
1547 * If the partner code word is null, stop forcing
1548 * and restart auto negotiation.
c9523379 1549 */
d478eb44 1550 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
c9523379 1551 /* Enable autoneg, and unforce link up */
1552 ew32(TXCW, mac->txcw);
1a40d5c1 1553 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1554 mac->serdes_link_state =
1555 e1000_serdes_link_autoneg_progress;
1a40d5c1 1556 mac->serdes_has_link = false;
3bb99fe2 1557 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1558 } else {
1559 mac->serdes_has_link = true;
c9523379 1560 }
1561 break;
1562
1563 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1564 if (rxcw & E1000_RXCW_C) {
1565 /*
1566 * We received /C/ ordered sets, meaning the
1567 * link partner has autonegotiated, and we can
1568 * trust the Link Up (LU) status bit.
1569 */
1570 if (status & E1000_STATUS_LU) {
1571 mac->serdes_link_state =
1572 e1000_serdes_link_autoneg_complete;
1573 e_dbg("AN_PROG -> AN_UP\n");
1574 mac->serdes_has_link = true;
1575 } else {
1576 /* Autoneg completed, but failed. */
1577 mac->serdes_link_state =
1578 e1000_serdes_link_down;
1579 e_dbg("AN_PROG -> DOWN\n");
1580 }
c9523379 1581 } else {
1582 /*
1a40d5c1
BA
1583 * The link partner did not autoneg.
1584 * Force link up and full duplex, and change
1585 * state to forced.
c9523379 1586 */
1a40d5c1 1587 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589 ew32(CTRL, ctrl);
1590
1591 /* Configure Flow Control after link up. */
1a40d5c1 1592 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1593 if (ret_val) {
3bb99fe2 1594 e_dbg("Error config flow control\n");
c9523379 1595 break;
1596 }
1597 mac->serdes_link_state =
1598 e1000_serdes_link_forced_up;
1a40d5c1 1599 mac->serdes_has_link = true;
3bb99fe2 1600 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1601 }
c9523379 1602 break;
1603
1604 case e1000_serdes_link_down:
1605 default:
1a40d5c1
BA
1606 /*
1607 * The link was down but the receiver has now gained
c9523379 1608 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1609 * up.
1610 */
c9523379 1611 ew32(TXCW, mac->txcw);
1a40d5c1 1612 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1613 mac->serdes_link_state =
1614 e1000_serdes_link_autoneg_progress;
a82a14f4 1615 mac->serdes_has_link = false;
3bb99fe2 1616 e_dbg("DOWN -> AN_PROG\n");
c9523379 1617 break;
1618 }
1619 } else {
1620 if (!(rxcw & E1000_RXCW_SYNCH)) {
1621 mac->serdes_has_link = false;
1622 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1623 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1624 } else {
1625 /*
d9c76f99
BA
1626 * Check several times, if Sync and Config
1627 * both are consistently 1 then simply ignore
1628 * the Invalid bit and restart Autoneg
c9523379 1629 */
d9c76f99
BA
1630 for (i = 0; i < AN_RETRY_COUNT; i++) {
1631 udelay(10);
1632 rxcw = er32(RXCW);
1633 if ((rxcw & E1000_RXCW_IV) &&
1634 !((rxcw & E1000_RXCW_SYNCH) &&
1635 (rxcw & E1000_RXCW_C))) {
1636 mac->serdes_has_link = false;
1637 mac->serdes_link_state =
1638 e1000_serdes_link_down;
1639 e_dbg("ANYSTATE -> DOWN\n");
1640 break;
1641 }
1642 }
1643
1644 if (i == AN_RETRY_COUNT) {
1645 txcw = er32(TXCW);
1646 txcw |= E1000_TXCW_ANE;
1647 ew32(TXCW, txcw);
1648 mac->serdes_link_state =
1649 e1000_serdes_link_autoneg_progress;
c9523379 1650 mac->serdes_has_link = false;
d9c76f99 1651 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1652 }
1653 }
1654 }
1655
1656 return ret_val;
1657}
1658
bc7f75fa
AK
1659/**
1660 * e1000_valid_led_default_82571 - Verify a valid default LED config
1661 * @hw: pointer to the HW structure
1662 * @data: pointer to the NVM (EEPROM)
1663 *
1664 * Read the EEPROM for the current default LED configuration. If the
1665 * LED configuration is not valid, set to a valid LED configuration.
1666 **/
1667static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668{
1669 s32 ret_val;
1670
1671 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672 if (ret_val) {
3bb99fe2 1673 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1674 return ret_val;
1675 }
1676
8c81c9c3
AD
1677 switch (hw->mac.type) {
1678 case e1000_82573:
1679 case e1000_82574:
1680 case e1000_82583:
1681 if (*data == ID_LED_RESERVED_F746)
1682 *data = ID_LED_DEFAULT_82573;
1683 break;
1684 default:
1685 if (*data == ID_LED_RESERVED_0000 ||
1686 *data == ID_LED_RESERVED_FFFF)
1687 *data = ID_LED_DEFAULT;
1688 break;
1689 }
bc7f75fa
AK
1690
1691 return 0;
1692}
1693
1694/**
1695 * e1000e_get_laa_state_82571 - Get locally administered address state
1696 * @hw: pointer to the HW structure
1697 *
489815ce 1698 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1699 **/
1700bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701{
1702 if (hw->mac.type != e1000_82571)
564ea9bb 1703 return false;
bc7f75fa
AK
1704
1705 return hw->dev_spec.e82571.laa_is_present;
1706}
1707
1708/**
1709 * e1000e_set_laa_state_82571 - Set locally administered address state
1710 * @hw: pointer to the HW structure
1711 * @state: enable/disable locally administered address
1712 *
5ff5b664 1713 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1714 **/
1715void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716{
1717 if (hw->mac.type != e1000_82571)
1718 return;
1719
1720 hw->dev_spec.e82571.laa_is_present = state;
1721
1722 /* If workaround is activated... */
1723 if (state)
ad68076e
BA
1724 /*
1725 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1726 * between the time RAR[0] gets clobbered and the time it
1727 * gets fixed, the actual LAA is in one of the RARs and no
1728 * incoming packets directed to this port are dropped.
1729 * Eventually the LAA will be in RAR[0] and RAR[14].
1730 */
1731 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1732}
1733
1734/**
1735 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736 * @hw: pointer to the HW structure
1737 *
1738 * Verifies that the EEPROM has completed the update. After updating the
1739 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1740 * the checksum fix is not implemented, we need to set the bit and update
1741 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1742 * we need to return bad checksum.
1743 **/
1744static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745{
1746 struct e1000_nvm_info *nvm = &hw->nvm;
1747 s32 ret_val;
1748 u16 data;
1749
1750 if (nvm->type != e1000_nvm_flash_hw)
1751 return 0;
1752
ad68076e
BA
1753 /*
1754 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1755 * 10h-12h. Checksum may need to be fixed.
1756 */
1757 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1758 if (ret_val)
1759 return ret_val;
1760
1761 if (!(data & 0x10)) {
ad68076e
BA
1762 /*
1763 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1764 * when the checksum has already been fixed. If
1765 * the checksum is still wrong and this bit is a
1766 * 1, we need to return bad checksum. Otherwise,
1767 * we need to set this bit to a 1 and update the
1768 * checksum.
1769 */
1770 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1771 if (ret_val)
1772 return ret_val;
1773
1774 if (!(data & 0x8000)) {
1775 data |= 0x8000;
1776 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1777 if (ret_val)
1778 return ret_val;
1779 ret_val = e1000e_update_nvm_checksum(hw);
1780 }
1781 }
1782
1783 return 0;
1784}
1785
608f8a0d
BA
1786/**
1787 * e1000_read_mac_addr_82571 - Read device MAC address
1788 * @hw: pointer to the HW structure
1789 **/
1790static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791{
1792 s32 ret_val = 0;
1793
1aef70ef
BA
1794 if (hw->mac.type == e1000_82571) {
1795 /*
1796 * If there's an alternate MAC address place it in RAR0
1797 * so that it will override the Si installed default perm
1798 * address.
1799 */
1800 ret_val = e1000_check_alt_mac_addr_generic(hw);
1801 if (ret_val)
1802 goto out;
1803 }
608f8a0d
BA
1804
1805 ret_val = e1000_read_mac_addr_generic(hw);
1806
1807out:
1808 return ret_val;
1809}
1810
17f208de
BA
1811/**
1812 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1813 * @hw: pointer to the HW structure
1814 *
1815 * In the case of a PHY power down to save power, or to turn off link during a
1816 * driver unload, or wake on lan is not enabled, remove the link.
1817 **/
1818static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1819{
1820 struct e1000_phy_info *phy = &hw->phy;
1821 struct e1000_mac_info *mac = &hw->mac;
1822
1823 if (!(phy->ops.check_reset_block))
1824 return;
1825
1826 /* If the management interface is not enabled, then power down */
1827 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1828 e1000_power_down_phy_copper(hw);
17f208de
BA
1829}
1830
bc7f75fa
AK
1831/**
1832 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1833 * @hw: pointer to the HW structure
1834 *
1835 * Clears the hardware counters by reading the counter registers.
1836 **/
1837static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1838{
bc7f75fa
AK
1839 e1000e_clear_hw_cntrs_base(hw);
1840
99673d9b
BA
1841 er32(PRC64);
1842 er32(PRC127);
1843 er32(PRC255);
1844 er32(PRC511);
1845 er32(PRC1023);
1846 er32(PRC1522);
1847 er32(PTC64);
1848 er32(PTC127);
1849 er32(PTC255);
1850 er32(PTC511);
1851 er32(PTC1023);
1852 er32(PTC1522);
1853
1854 er32(ALGNERRC);
1855 er32(RXERRC);
1856 er32(TNCRS);
1857 er32(CEXTERR);
1858 er32(TSCTC);
1859 er32(TSCTFC);
1860
1861 er32(MGTPRC);
1862 er32(MGTPDC);
1863 er32(MGTPTC);
1864
1865 er32(IAC);
1866 er32(ICRXOC);
1867
1868 er32(ICRXPTC);
1869 er32(ICRXATC);
1870 er32(ICTXPTC);
1871 er32(ICTXATC);
1872 er32(ICTXQEC);
1873 er32(ICTXQMTC);
1874 er32(ICRXDMTC);
bc7f75fa
AK
1875}
1876
1877static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1878 /* .check_mng_mode: mac type dependent */
bc7f75fa 1879 /* .check_for_link: media type dependent */
a4f58f54 1880 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1881 .cleanup_led = e1000e_cleanup_led_generic,
1882 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1883 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1884 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1885 /* .get_link_up_info: media type dependent */
4662e82b 1886 /* .led_on: mac type dependent */
bc7f75fa 1887 .led_off = e1000e_led_off_generic,
ab8932f3 1888 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1889 .write_vfta = e1000_write_vfta_generic,
1890 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1891 .reset_hw = e1000_reset_hw_82571,
1892 .init_hw = e1000_init_hw_82571,
1893 .setup_link = e1000_setup_link_82571,
1894 /* .setup_physical_interface: media type dependent */
a4f58f54 1895 .setup_led = e1000e_setup_led_generic,
608f8a0d 1896 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1897};
1898
1899static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1900 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1901 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1902 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1903 .commit = NULL,
bc7f75fa
AK
1904 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1905 .get_cfg_done = e1000_get_cfg_done_82571,
1906 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1907 .get_info = e1000e_get_phy_info_igp,
1908 .read_reg = e1000e_read_phy_reg_igp,
1909 .release = e1000_put_hw_semaphore_82571,
1910 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1911 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1912 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1913 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1914 .cfg_on_link_up = NULL,
bc7f75fa
AK
1915};
1916
1917static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1918 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1919 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1920 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1921 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1922 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1923 .get_cfg_done = e1000e_get_cfg_done,
1924 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1925 .get_info = e1000e_get_phy_info_m88,
1926 .read_reg = e1000e_read_phy_reg_m88,
1927 .release = e1000_put_hw_semaphore_82571,
1928 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1929 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1930 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1931 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1932 .cfg_on_link_up = NULL,
bc7f75fa
AK
1933};
1934
4662e82b 1935static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1936 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1937 .check_polarity = e1000_check_polarity_m88,
4662e82b 1938 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1939 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1940 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1941 .get_cfg_done = e1000e_get_cfg_done,
1942 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1943 .get_info = e1000e_get_phy_info_m88,
1944 .read_reg = e1000e_read_phy_reg_bm2,
1945 .release = e1000_put_hw_semaphore_82571,
1946 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1947 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1948 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1949 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1950 .cfg_on_link_up = NULL,
4662e82b
BA
1951};
1952
bc7f75fa 1953static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1954 .acquire = e1000_acquire_nvm_82571,
1955 .read = e1000e_read_nvm_eerd,
1956 .release = e1000_release_nvm_82571,
1957 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1958 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1959 .validate = e1000_validate_nvm_checksum_82571,
1960 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1961};
1962
1963struct e1000_info e1000_82571_info = {
1964 .mac = e1000_82571,
1965 .flags = FLAG_HAS_HW_VLAN_FILTER
1966 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1967 | FLAG_HAS_WOL
1968 | FLAG_APME_IN_CTRL3
1969 | FLAG_RX_CSUM_ENABLED
1970 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1971 | FLAG_HAS_SMART_POWER_DOWN
1972 | FLAG_RESET_OVERWRITES_LAA /* errata */
1973 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1974 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
1975 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976 | FLAG2_DMA_BURST,
bc7f75fa 1977 .pba = 38,
2adc55c9 1978 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1979 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1980 .mac_ops = &e82571_mac_ops,
1981 .phy_ops = &e82_phy_ops_igp,
1982 .nvm_ops = &e82571_nvm_ops,
1983};
1984
1985struct e1000_info e1000_82572_info = {
1986 .mac = e1000_82572,
1987 .flags = FLAG_HAS_HW_VLAN_FILTER
1988 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1989 | FLAG_HAS_WOL
1990 | FLAG_APME_IN_CTRL3
1991 | FLAG_RX_CSUM_ENABLED
1992 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 1993 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
1994 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1995 | FLAG2_DMA_BURST,
bc7f75fa 1996 .pba = 38,
2adc55c9 1997 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1998 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1999 .mac_ops = &e82571_mac_ops,
2000 .phy_ops = &e82_phy_ops_igp,
2001 .nvm_ops = &e82571_nvm_ops,
2002};
2003
2004struct e1000_info e1000_82573_info = {
2005 .mac = e1000_82573,
2006 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2007 | FLAG_HAS_WOL
2008 | FLAG_APME_IN_CTRL3
2009 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
2010 | FLAG_HAS_SMART_POWER_DOWN
2011 | FLAG_HAS_AMT
bc7f75fa 2012 | FLAG_HAS_SWSM_ON_LOAD,
19833b5d 2013 .flags2 = FLAG2_DISABLE_ASPM_L1,
bc7f75fa 2014 .pba = 20,
2adc55c9 2015 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2016 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2017 .mac_ops = &e82571_mac_ops,
2018 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2019 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2020};
2021
4662e82b
BA
2022struct e1000_info e1000_82574_info = {
2023 .mac = e1000_82574,
2024 .flags = FLAG_HAS_HW_VLAN_FILTER
2025 | FLAG_HAS_MSIX
2026 | FLAG_HAS_JUMBO_FRAMES
2027 | FLAG_HAS_WOL
2028 | FLAG_APME_IN_CTRL3
2029 | FLAG_RX_CSUM_ENABLED
2030 | FLAG_HAS_SMART_POWER_DOWN
2031 | FLAG_HAS_AMT
2032 | FLAG_HAS_CTRLEXT_ON_LOAD,
ff10e13c 2033 .flags2 = FLAG2_CHECK_PHY_HANG,
ed5c2b0b 2034 .pba = 32,
a825e00c 2035 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2036 .get_variants = e1000_get_variants_82571,
2037 .mac_ops = &e82571_mac_ops,
2038 .phy_ops = &e82_phy_ops_bm,
2039 .nvm_ops = &e82571_nvm_ops,
2040};
2041
8c81c9c3
AD
2042struct e1000_info e1000_82583_info = {
2043 .mac = e1000_82583,
2044 .flags = FLAG_HAS_HW_VLAN_FILTER
2045 | FLAG_HAS_WOL
2046 | FLAG_APME_IN_CTRL3
2047 | FLAG_RX_CSUM_ENABLED
2048 | FLAG_HAS_SMART_POWER_DOWN
2049 | FLAG_HAS_AMT
2050 | FLAG_HAS_CTRLEXT_ON_LOAD,
ed5c2b0b 2051 .pba = 32,
a825e00c 2052 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
2053 .get_variants = e1000_get_variants_82571,
2054 .mac_ops = &e82571_mac_ops,
2055 .phy_ops = &e82_phy_ops_bm,
2056 .nvm_ops = &e82571_nvm_ops,
2057};
2058
This page took 0.606068 seconds and 5 git commands to generate.