e1000e: enable new 82567V-3 device
[deliverable/linux.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
4662e82b
BA
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
bc7f75fa
AK
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 68static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
69static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 71static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 72static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
bc7f75fa
AK
73
74/**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
bc7f75fa
AK
77 **/
78static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79{
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val;
82
318a94d6 83 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
84 phy->type = e1000_phy_none;
85 return 0;
86 }
87
88 phy->addr = 1;
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90 phy->reset_delay_us = 100;
91
17f208de
BA
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper_82571;
94
bc7f75fa
AK
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
4662e82b 103 case e1000_82574:
8c81c9c3 104 case e1000_82583:
4662e82b
BA
105 phy->type = e1000_phy_bm;
106 break;
bc7f75fa
AK
107 default:
108 return -E1000_ERR_PHY;
109 break;
110 }
111
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
4662e82b 126 case e1000_82574:
8c81c9c3 127 case e1000_82583:
4662e82b
BA
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
bc7f75fa
AK
131 default:
132 return -E1000_ERR_PHY;
133 break;
134 }
135
136 return 0;
137}
138
139/**
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
bc7f75fa
AK
142 **/
143static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144{
145 struct e1000_nvm_info *nvm = &hw->nvm;
146 u32 eecd = er32(EECD);
147 u16 size;
148
149 nvm->opcode_bits = 8;
150 nvm->delay_usec = 1;
151 switch (nvm->override) {
152 case e1000_nvm_override_spi_large:
153 nvm->page_size = 32;
154 nvm->address_bits = 16;
155 break;
156 case e1000_nvm_override_spi_small:
157 nvm->page_size = 8;
158 nvm->address_bits = 8;
159 break;
160 default:
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163 break;
164 }
165
166 switch (hw->mac.type) {
167 case e1000_82573:
4662e82b 168 case e1000_82574:
8c81c9c3 169 case e1000_82583:
bc7f75fa
AK
170 if (((eecd >> 15) & 0x3) == 0x3) {
171 nvm->type = e1000_nvm_flash_hw;
172 nvm->word_size = 2048;
ad68076e
BA
173 /*
174 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
175 * to Flash update issue.
176 */
177 eecd &= ~E1000_EECD_AUPDEN;
178 ew32(EECD, eecd);
179 break;
180 }
181 /* Fall Through */
182 default:
ad68076e 183 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
186 /*
187 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
bc7f75fa
AK
195 nvm->word_size = 1 << size;
196 break;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
bc7f75fa
AK
205 **/
206static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207{
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
211 u32 swsm = 0;
212 u32 swsm2 = 0;
213 bool force_clear_smbi = false;
bc7f75fa
AK
214
215 /* Set media type */
216 switch (adapter->pdev->device) {
217 case E1000_DEV_ID_82571EB_FIBER:
218 case E1000_DEV_ID_82572EI_FIBER:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 220 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
221 break;
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
224 case E1000_DEV_ID_82571EB_SERDES_DUAL:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 226 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
227 break;
228 default:
318a94d6 229 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
230 break;
231 }
232
233 /* Set mta register count */
234 mac->mta_reg_count = 128;
235 /* Set rar entry count */
236 mac->rar_entry_count = E1000_RAR_ENTRIES;
237 /* Set if manageability features are enabled. */
564ea9bb
BA
238 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239 ? true : false;
bc7f75fa
AK
240
241 /* check for link */
318a94d6 242 switch (hw->phy.media_type) {
bc7f75fa
AK
243 case e1000_media_type_copper:
244 func->setup_physical_interface = e1000_setup_copper_link_82571;
245 func->check_for_link = e1000e_check_for_copper_link;
246 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
247 break;
248 case e1000_media_type_fiber:
ad68076e
BA
249 func->setup_physical_interface =
250 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 251 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
252 func->get_link_up_info =
253 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
254 break;
255 case e1000_media_type_internal_serdes:
ad68076e
BA
256 func->setup_physical_interface =
257 e1000_setup_fiber_serdes_link_82571;
c9523379 258 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
259 func->get_link_up_info =
260 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
261 break;
262 default:
263 return -E1000_ERR_CONFIG;
264 break;
265 }
266
4662e82b
BA
267 switch (hw->mac.type) {
268 case e1000_82574:
8c81c9c3 269 case e1000_82583:
4662e82b
BA
270 func->check_mng_mode = e1000_check_mng_mode_82574;
271 func->led_on = e1000_led_on_82574;
272 break;
273 default:
274 func->check_mng_mode = e1000e_check_mng_mode_generic;
275 func->led_on = e1000e_led_on_generic;
276 break;
277 }
278
23a2d1b2
DG
279 /*
280 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
281 * first NVM or PHY acess. This should be done for single-port
282 * devices, and for one port only on dual-port devices so that
283 * for those devices we can still use the SMBI lock to synchronize
284 * inter-port accesses to the PHY & NVM.
285 */
286 switch (hw->mac.type) {
287 case e1000_82571:
288 case e1000_82572:
289 swsm2 = er32(SWSM2);
290
291 if (!(swsm2 & E1000_SWSM2_LOCK)) {
292 /* Only do this for the first interface on this card */
293 ew32(SWSM2,
294 swsm2 | E1000_SWSM2_LOCK);
295 force_clear_smbi = true;
296 } else
297 force_clear_smbi = false;
298 break;
299 default:
300 force_clear_smbi = true;
301 break;
302 }
303
304 if (force_clear_smbi) {
305 /* Make sure SWSM.SMBI is clear */
306 swsm = er32(SWSM);
307 if (swsm & E1000_SWSM_SMBI) {
308 /* This bit should not be set on a first interface, and
309 * indicates that the bootagent or EFI code has
310 * improperly left this bit enabled
311 */
3bb99fe2 312 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
313 }
314 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
315 }
316
317 /*
318 * Initialze device specific counter of SMBI acquisition
319 * timeouts.
320 */
321 hw->dev_spec.e82571.smb_counter = 0;
322
bc7f75fa
AK
323 return 0;
324}
325
69e3fd8c 326static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
327{
328 struct e1000_hw *hw = &adapter->hw;
329 static int global_quad_port_a; /* global port a indication */
330 struct pci_dev *pdev = adapter->pdev;
331 u16 eeprom_data = 0;
332 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
333 s32 rc;
334
335 rc = e1000_init_mac_params_82571(adapter);
336 if (rc)
337 return rc;
338
339 rc = e1000_init_nvm_params_82571(hw);
340 if (rc)
341 return rc;
342
343 rc = e1000_init_phy_params_82571(hw);
344 if (rc)
345 return rc;
346
347 /* tag quad port adapters first, it's used below */
348 switch (pdev->device) {
349 case E1000_DEV_ID_82571EB_QUAD_COPPER:
350 case E1000_DEV_ID_82571EB_QUAD_FIBER:
351 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 352 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
353 adapter->flags |= FLAG_IS_QUAD_PORT;
354 /* mark the first port */
355 if (global_quad_port_a == 0)
356 adapter->flags |= FLAG_IS_QUAD_PORT_A;
357 /* Reset for multiple quad port adapters */
358 global_quad_port_a++;
359 if (global_quad_port_a == 4)
360 global_quad_port_a = 0;
361 break;
362 default:
363 break;
364 }
365
366 switch (adapter->hw.mac.type) {
367 case e1000_82571:
368 /* these dual ports don't have WoL on port B at all */
369 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
370 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
371 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
372 (is_port_b))
373 adapter->flags &= ~FLAG_HAS_WOL;
374 /* quad ports only support WoL on port A */
375 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 376 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 377 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
378 /* Does not support WoL on any port */
379 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
380 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
381 break;
382
383 case e1000_82573:
384 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
385 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
386 &eeprom_data) < 0)
387 break;
2adc55c9
BA
388 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
389 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390 adapter->max_hw_frame_size = DEFAULT_JUMBO;
391 }
bc7f75fa
AK
392 }
393 break;
394 default:
395 break;
396 }
397
398 return 0;
399}
400
401/**
402 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
403 * @hw: pointer to the HW structure
404 *
405 * Reads the PHY registers and stores the PHY ID and possibly the PHY
406 * revision in the hardware structure.
407 **/
408static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
409{
410 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
411 s32 ret_val;
412 u16 phy_id = 0;
bc7f75fa
AK
413
414 switch (hw->mac.type) {
415 case e1000_82571:
416 case e1000_82572:
ad68076e
BA
417 /*
418 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
419 * In this case, we cannot access the PHY until the
420 * configuration is done. So we explicitly set the
ad68076e
BA
421 * PHY ID.
422 */
bc7f75fa
AK
423 phy->id = IGP01E1000_I_PHY_ID;
424 break;
425 case e1000_82573:
426 return e1000e_get_phy_id(hw);
427 break;
4662e82b 428 case e1000_82574:
8c81c9c3 429 case e1000_82583:
4662e82b
BA
430 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
431 if (ret_val)
432 return ret_val;
433
434 phy->id = (u32)(phy_id << 16);
435 udelay(20);
436 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
437 if (ret_val)
438 return ret_val;
439
440 phy->id |= (u32)(phy_id);
441 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
442 break;
bc7f75fa
AK
443 default:
444 return -E1000_ERR_PHY;
445 break;
446 }
447
448 return 0;
449}
450
451/**
452 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
453 * @hw: pointer to the HW structure
454 *
455 * Acquire the HW semaphore to access the PHY or NVM
456 **/
457static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
458{
459 u32 swsm;
23a2d1b2
DG
460 s32 sw_timeout = hw->nvm.word_size + 1;
461 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
462 s32 i = 0;
463
23a2d1b2
DG
464 /*
465 * If we have timedout 3 times on trying to acquire
466 * the inter-port SMBI semaphore, there is old code
467 * operating on the other port, and it is not
468 * releasing SMBI. Modify the number of times that
469 * we try for the semaphore to interwork with this
470 * older code.
471 */
472 if (hw->dev_spec.e82571.smb_counter > 2)
473 sw_timeout = 1;
474
475 /* Get the SW semaphore */
476 while (i < sw_timeout) {
477 swsm = er32(SWSM);
478 if (!(swsm & E1000_SWSM_SMBI))
479 break;
480
481 udelay(50);
482 i++;
483 }
484
485 if (i == sw_timeout) {
3bb99fe2 486 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
487 hw->dev_spec.e82571.smb_counter++;
488 }
bc7f75fa 489 /* Get the FW semaphore. */
23a2d1b2 490 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
491 swsm = er32(SWSM);
492 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
493
494 /* Semaphore acquired if bit latched */
495 if (er32(SWSM) & E1000_SWSM_SWESMBI)
496 break;
497
498 udelay(50);
499 }
500
23a2d1b2 501 if (i == fw_timeout) {
bc7f75fa 502 /* Release semaphores */
23a2d1b2 503 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 504 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
505 return -E1000_ERR_NVM;
506 }
507
508 return 0;
509}
510
511/**
512 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
513 * @hw: pointer to the HW structure
514 *
515 * Release hardware semaphore used to access the PHY or NVM
516 **/
517static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
518{
519 u32 swsm;
520
521 swsm = er32(SWSM);
23a2d1b2 522 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
523 ew32(SWSM, swsm);
524}
525
526/**
527 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
528 * @hw: pointer to the HW structure
529 *
530 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
531 * Then for non-82573 hardware, set the EEPROM access request bit and wait
532 * for EEPROM access grant bit. If the access grant bit is not set, release
533 * hardware semaphore.
534 **/
535static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
536{
537 s32 ret_val;
538
539 ret_val = e1000_get_hw_semaphore_82571(hw);
540 if (ret_val)
541 return ret_val;
542
8c81c9c3
AD
543 switch (hw->mac.type) {
544 case e1000_82573:
545 case e1000_82574:
546 case e1000_82583:
547 break;
548 default:
bc7f75fa 549 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
550 break;
551 }
bc7f75fa
AK
552
553 if (ret_val)
554 e1000_put_hw_semaphore_82571(hw);
555
556 return ret_val;
557}
558
559/**
560 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
561 * @hw: pointer to the HW structure
562 *
563 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
564 **/
565static void e1000_release_nvm_82571(struct e1000_hw *hw)
566{
567 e1000e_release_nvm(hw);
568 e1000_put_hw_semaphore_82571(hw);
569}
570
571/**
572 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
573 * @hw: pointer to the HW structure
574 * @offset: offset within the EEPROM to be written to
575 * @words: number of words to write
576 * @data: 16 bit word(s) to be written to the EEPROM
577 *
578 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
579 *
580 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 581 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
582 **/
583static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
584 u16 *data)
585{
586 s32 ret_val;
587
588 switch (hw->mac.type) {
589 case e1000_82573:
4662e82b 590 case e1000_82574:
8c81c9c3 591 case e1000_82583:
bc7f75fa
AK
592 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
593 break;
594 case e1000_82571:
595 case e1000_82572:
596 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
597 break;
598 default:
599 ret_val = -E1000_ERR_NVM;
600 break;
601 }
602
603 return ret_val;
604}
605
606/**
607 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
608 * @hw: pointer to the HW structure
609 *
610 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
611 * up to the checksum. Then calculates the EEPROM checksum and writes the
612 * value to the EEPROM.
613 **/
614static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
615{
616 u32 eecd;
617 s32 ret_val;
618 u16 i;
619
620 ret_val = e1000e_update_nvm_checksum_generic(hw);
621 if (ret_val)
622 return ret_val;
623
ad68076e
BA
624 /*
625 * If our nvm is an EEPROM, then we're done
626 * otherwise, commit the checksum to the flash NVM.
627 */
bc7f75fa
AK
628 if (hw->nvm.type != e1000_nvm_flash_hw)
629 return ret_val;
630
631 /* Check for pending operations. */
632 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
633 msleep(1);
634 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
635 break;
636 }
637
638 if (i == E1000_FLASH_UPDATES)
639 return -E1000_ERR_NVM;
640
641 /* Reset the firmware if using STM opcode. */
642 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
643 /*
644 * The enabling of and the actual reset must be done
bc7f75fa
AK
645 * in two write cycles.
646 */
647 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
648 e1e_flush();
649 ew32(HICR, E1000_HICR_FW_RESET);
650 }
651
652 /* Commit the write to flash */
653 eecd = er32(EECD) | E1000_EECD_FLUPD;
654 ew32(EECD, eecd);
655
656 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
657 msleep(1);
658 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
659 break;
660 }
661
662 if (i == E1000_FLASH_UPDATES)
663 return -E1000_ERR_NVM;
664
665 return 0;
666}
667
668/**
669 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
670 * @hw: pointer to the HW structure
671 *
672 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
673 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
674 **/
675static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
676{
677 if (hw->nvm.type == e1000_nvm_flash_hw)
678 e1000_fix_nvm_checksum_82571(hw);
679
680 return e1000e_validate_nvm_checksum_generic(hw);
681}
682
683/**
684 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
685 * @hw: pointer to the HW structure
686 * @offset: offset within the EEPROM to be written to
687 * @words: number of words to write
688 * @data: 16 bit word(s) to be written to the EEPROM
689 *
690 * After checking for invalid values, poll the EEPROM to ensure the previous
691 * command has completed before trying to write the next word. After write
692 * poll for completion.
693 *
694 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 695 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
696 **/
697static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
698 u16 words, u16 *data)
699{
700 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 701 u32 i, eewr = 0;
bc7f75fa
AK
702 s32 ret_val = 0;
703
ad68076e
BA
704 /*
705 * A check for invalid values: offset too large, too many words,
706 * and not enough words.
707 */
bc7f75fa
AK
708 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
709 (words == 0)) {
3bb99fe2 710 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
711 return -E1000_ERR_NVM;
712 }
713
714 for (i = 0; i < words; i++) {
715 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
716 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
717 E1000_NVM_RW_REG_START;
718
719 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
720 if (ret_val)
721 break;
722
723 ew32(EEWR, eewr);
724
725 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
726 if (ret_val)
727 break;
728 }
729
730 return ret_val;
731}
732
733/**
734 * e1000_get_cfg_done_82571 - Poll for configuration done
735 * @hw: pointer to the HW structure
736 *
737 * Reads the management control register for the config done bit to be set.
738 **/
739static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
740{
741 s32 timeout = PHY_CFG_TIMEOUT;
742
743 while (timeout) {
744 if (er32(EEMNGCTL) &
745 E1000_NVM_CFG_DONE_PORT_0)
746 break;
747 msleep(1);
748 timeout--;
749 }
750 if (!timeout) {
3bb99fe2 751 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
752 return -E1000_ERR_RESET;
753 }
754
755 return 0;
756}
757
758/**
759 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
760 * @hw: pointer to the HW structure
564ea9bb 761 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
762 *
763 * Sets the LPLU D0 state according to the active flag. When activating LPLU
764 * this function also disables smart speed and vice versa. LPLU will not be
765 * activated unless the device autonegotiation advertisement meets standards
766 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
767 * pointer entry point only called by PHY setup routines.
768 **/
769static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
770{
771 struct e1000_phy_info *phy = &hw->phy;
772 s32 ret_val;
773 u16 data;
774
775 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
776 if (ret_val)
777 return ret_val;
778
779 if (active) {
780 data |= IGP02E1000_PM_D0_LPLU;
781 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
782 if (ret_val)
783 return ret_val;
784
785 /* When LPLU is enabled, we should disable SmartSpeed */
786 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
787 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
788 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
789 if (ret_val)
790 return ret_val;
791 } else {
792 data &= ~IGP02E1000_PM_D0_LPLU;
793 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
794 /*
795 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
796 * during Dx states where the power conservation is most
797 * important. During driver activity we should enable
ad68076e
BA
798 * SmartSpeed, so performance is maintained.
799 */
bc7f75fa
AK
800 if (phy->smart_speed == e1000_smart_speed_on) {
801 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 802 &data);
bc7f75fa
AK
803 if (ret_val)
804 return ret_val;
805
806 data |= IGP01E1000_PSCFR_SMART_SPEED;
807 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 808 data);
bc7f75fa
AK
809 if (ret_val)
810 return ret_val;
811 } else if (phy->smart_speed == e1000_smart_speed_off) {
812 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 813 &data);
bc7f75fa
AK
814 if (ret_val)
815 return ret_val;
816
817 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
818 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 819 data);
bc7f75fa
AK
820 if (ret_val)
821 return ret_val;
822 }
823 }
824
825 return 0;
826}
827
828/**
829 * e1000_reset_hw_82571 - Reset hardware
830 * @hw: pointer to the HW structure
831 *
fe401674 832 * This resets the hardware into a known state.
bc7f75fa
AK
833 **/
834static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
835{
a708dd88 836 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
bc7f75fa
AK
837 s32 ret_val;
838 u16 i = 0;
839
ad68076e
BA
840 /*
841 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
842 * on the last TLP read/write transaction when MAC is reset.
843 */
844 ret_val = e1000e_disable_pcie_master(hw);
845 if (ret_val)
3bb99fe2 846 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 847
3bb99fe2 848 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
849 ew32(IMC, 0xffffffff);
850
851 ew32(RCTL, 0);
852 ew32(TCTL, E1000_TCTL_PSP);
853 e1e_flush();
854
855 msleep(10);
856
ad68076e
BA
857 /*
858 * Must acquire the MDIO ownership before MAC reset.
859 * Ownership defaults to firmware after a reset.
860 */
8c81c9c3
AD
861 switch (hw->mac.type) {
862 case e1000_82573:
863 case e1000_82574:
864 case e1000_82583:
bc7f75fa
AK
865 extcnf_ctrl = er32(EXTCNF_CTRL);
866 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
867
868 do {
869 ew32(EXTCNF_CTRL, extcnf_ctrl);
870 extcnf_ctrl = er32(EXTCNF_CTRL);
871
872 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
873 break;
874
875 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
876
877 msleep(2);
878 i++;
879 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
880 break;
881 default:
882 break;
bc7f75fa
AK
883 }
884
885 ctrl = er32(CTRL);
886
3bb99fe2 887 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
888 ew32(CTRL, ctrl | E1000_CTRL_RST);
889
890 if (hw->nvm.type == e1000_nvm_flash_hw) {
891 udelay(10);
892 ctrl_ext = er32(CTRL_EXT);
893 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
894 ew32(CTRL_EXT, ctrl_ext);
895 e1e_flush();
896 }
897
898 ret_val = e1000e_get_auto_rd_done(hw);
899 if (ret_val)
900 /* We don't want to continue accessing MAC registers. */
901 return ret_val;
902
ad68076e
BA
903 /*
904 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
905 * Need to wait for Phy configuration completion before accessing
906 * NVM and Phy.
907 */
8c81c9c3
AD
908
909 switch (hw->mac.type) {
910 case e1000_82573:
911 case e1000_82574:
912 case e1000_82583:
bc7f75fa 913 msleep(25);
8c81c9c3
AD
914 break;
915 default:
916 break;
917 }
bc7f75fa
AK
918
919 /* Clear any pending interrupt events. */
920 ew32(IMC, 0xffffffff);
921 icr = er32(ICR);
922
93ca1610
BH
923 if (hw->mac.type == e1000_82571 &&
924 hw->dev_spec.e82571.alt_mac_addr_is_present)
925 e1000e_set_laa_state_82571(hw, true);
926
c9523379 927 /* Reinitialize the 82571 serdes link state machine */
928 if (hw->phy.media_type == e1000_media_type_internal_serdes)
929 hw->mac.serdes_link_state = e1000_serdes_link_down;
930
bc7f75fa
AK
931 return 0;
932}
933
934/**
935 * e1000_init_hw_82571 - Initialize hardware
936 * @hw: pointer to the HW structure
937 *
938 * This inits the hardware readying it for operation.
939 **/
940static s32 e1000_init_hw_82571(struct e1000_hw *hw)
941{
942 struct e1000_mac_info *mac = &hw->mac;
943 u32 reg_data;
944 s32 ret_val;
a708dd88 945 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
946
947 e1000_initialize_hw_bits_82571(hw);
948
949 /* Initialize identification LED */
950 ret_val = e1000e_id_led_init(hw);
de39b752 951 if (ret_val)
3bb99fe2 952 e_dbg("Error initializing identification LED\n");
de39b752 953 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
954
955 /* Disabling VLAN filtering */
3bb99fe2 956 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 957 mac->ops.clear_vfta(hw);
bc7f75fa
AK
958
959 /* Setup the receive address. */
ad68076e
BA
960 /*
961 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
962 * 82571, we must reserve a RAR for it to work around an issue where
963 * resetting one port will reload the MAC on the other port.
964 */
965 if (e1000e_get_laa_state_82571(hw))
966 rar_count--;
967 e1000e_init_rx_addrs(hw, rar_count);
968
969 /* Zero out the Multicast HASH table */
3bb99fe2 970 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
971 for (i = 0; i < mac->mta_reg_count; i++)
972 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973
974 /* Setup link and flow control */
975 ret_val = e1000_setup_link_82571(hw);
976
977 /* Set the transmit descriptor write-back policy */
e9ec2c0f 978 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
979 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
980 E1000_TXDCTL_FULL_TX_DESC_WB |
981 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 982 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
983
984 /* ...for both queues. */
8c81c9c3
AD
985 switch (mac->type) {
986 case e1000_82573:
987 case e1000_82574:
988 case e1000_82583:
989 e1000e_enable_tx_pkt_filtering(hw);
990 reg_data = er32(GCR);
991 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
992 ew32(GCR, reg_data);
993 break;
994 default:
e9ec2c0f 995 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
996 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
997 E1000_TXDCTL_FULL_TX_DESC_WB |
998 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 999 ew32(TXDCTL(1), reg_data);
8c81c9c3 1000 break;
bc7f75fa
AK
1001 }
1002
ad68076e
BA
1003 /*
1004 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1005 * important that we do this after we have tried to establish link
1006 * because the symbol error count will increment wildly if there
1007 * is no link.
1008 */
1009 e1000_clear_hw_cntrs_82571(hw);
1010
1011 return ret_val;
1012}
1013
1014/**
1015 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1016 * @hw: pointer to the HW structure
1017 *
1018 * Initializes required hardware-dependent bits needed for normal operation.
1019 **/
1020static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1021{
1022 u32 reg;
1023
1024 /* Transmit Descriptor Control 0 */
e9ec2c0f 1025 reg = er32(TXDCTL(0));
bc7f75fa 1026 reg |= (1 << 22);
e9ec2c0f 1027 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1028
1029 /* Transmit Descriptor Control 1 */
e9ec2c0f 1030 reg = er32(TXDCTL(1));
bc7f75fa 1031 reg |= (1 << 22);
e9ec2c0f 1032 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1033
1034 /* Transmit Arbitration Control 0 */
e9ec2c0f 1035 reg = er32(TARC(0));
bc7f75fa
AK
1036 reg &= ~(0xF << 27); /* 30:27 */
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1041 break;
1042 default:
1043 break;
1044 }
e9ec2c0f 1045 ew32(TARC(0), reg);
bc7f75fa
AK
1046
1047 /* Transmit Arbitration Control 1 */
e9ec2c0f 1048 reg = er32(TARC(1));
bc7f75fa
AK
1049 switch (hw->mac.type) {
1050 case e1000_82571:
1051 case e1000_82572:
1052 reg &= ~((1 << 29) | (1 << 30));
1053 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1054 if (er32(TCTL) & E1000_TCTL_MULR)
1055 reg &= ~(1 << 28);
1056 else
1057 reg |= (1 << 28);
e9ec2c0f 1058 ew32(TARC(1), reg);
bc7f75fa
AK
1059 break;
1060 default:
1061 break;
1062 }
1063
1064 /* Device Control */
8c81c9c3
AD
1065 switch (hw->mac.type) {
1066 case e1000_82573:
1067 case e1000_82574:
1068 case e1000_82583:
bc7f75fa
AK
1069 reg = er32(CTRL);
1070 reg &= ~(1 << 29);
1071 ew32(CTRL, reg);
8c81c9c3
AD
1072 break;
1073 default:
1074 break;
bc7f75fa
AK
1075 }
1076
1077 /* Extended Device Control */
8c81c9c3
AD
1078 switch (hw->mac.type) {
1079 case e1000_82573:
1080 case e1000_82574:
1081 case e1000_82583:
bc7f75fa
AK
1082 reg = er32(CTRL_EXT);
1083 reg &= ~(1 << 23);
1084 reg |= (1 << 22);
1085 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1086 break;
1087 default:
1088 break;
bc7f75fa 1089 }
4662e82b 1090
6ea7ae1d
AD
1091 if (hw->mac.type == e1000_82571) {
1092 reg = er32(PBA_ECC);
1093 reg |= E1000_PBA_ECC_CORR_EN;
1094 ew32(PBA_ECC, reg);
1095 }
5df3f0ea 1096 /*
1097 * Workaround for hardware errata.
1098 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1099 */
1100
1101 if ((hw->mac.type == e1000_82571) ||
1102 (hw->mac.type == e1000_82572)) {
1103 reg = er32(CTRL_EXT);
1104 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1105 ew32(CTRL_EXT, reg);
1106 }
1107
6ea7ae1d 1108
78272bba 1109 /* PCI-Ex Control Registers */
8c81c9c3
AD
1110 switch (hw->mac.type) {
1111 case e1000_82574:
1112 case e1000_82583:
4662e82b
BA
1113 reg = er32(GCR);
1114 reg |= (1 << 22);
1115 ew32(GCR, reg);
78272bba 1116
84efb7b9
BA
1117 /*
1118 * Workaround for hardware errata.
1119 * apply workaround for hardware errata documented in errata
1120 * docs Fixes issue where some error prone or unreliable PCIe
1121 * completions are occurring, particularly with ASPM enabled.
1122 * Without fix, issue can cause tx timeouts.
1123 */
78272bba
JB
1124 reg = er32(GCR2);
1125 reg |= 1;
1126 ew32(GCR2, reg);
8c81c9c3
AD
1127 break;
1128 default:
1129 break;
4662e82b
BA
1130 }
1131
1132 return;
bc7f75fa
AK
1133}
1134
1135/**
caaddaf8 1136 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1137 * @hw: pointer to the HW structure
1138 *
1139 * Clears the register array which contains the VLAN filter table by
1140 * setting all the values to 0.
1141 **/
caaddaf8 1142static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1143{
1144 u32 offset;
1145 u32 vfta_value = 0;
1146 u32 vfta_offset = 0;
1147 u32 vfta_bit_in_reg = 0;
1148
8c81c9c3
AD
1149 switch (hw->mac.type) {
1150 case e1000_82573:
1151 case e1000_82574:
1152 case e1000_82583:
bc7f75fa 1153 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1154 /*
1155 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1156 * a single VLAN ID. The following operations
1157 * determine which 32b entry (i.e. offset) into the
1158 * array we want to set the VLAN ID (i.e. bit) of
1159 * the manageability unit.
1160 */
1161 vfta_offset = (hw->mng_cookie.vlan_id >>
1162 E1000_VFTA_ENTRY_SHIFT) &
1163 E1000_VFTA_ENTRY_MASK;
1164 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1165 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1166 }
8c81c9c3
AD
1167 break;
1168 default:
1169 break;
bc7f75fa
AK
1170 }
1171 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1172 /*
1173 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1174 * manageability VLAN ID, then clear all bits except that of
1175 * the manageability unit.
1176 */
1177 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1178 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1179 e1e_flush();
1180 }
1181}
1182
4662e82b
BA
1183/**
1184 * e1000_check_mng_mode_82574 - Check manageability is enabled
1185 * @hw: pointer to the HW structure
1186 *
1187 * Reads the NVM Initialization Control Word 2 and returns true
1188 * (>0) if any manageability is enabled, else false (0).
1189 **/
1190static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1191{
1192 u16 data;
1193
1194 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1195 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1196}
1197
1198/**
1199 * e1000_led_on_82574 - Turn LED on
1200 * @hw: pointer to the HW structure
1201 *
1202 * Turn LED on.
1203 **/
1204static s32 e1000_led_on_82574(struct e1000_hw *hw)
1205{
1206 u32 ctrl;
1207 u32 i;
1208
1209 ctrl = hw->mac.ledctl_mode2;
1210 if (!(E1000_STATUS_LU & er32(STATUS))) {
1211 /*
1212 * If no link, then turn LED on by setting the invert bit
1213 * for each LED that's "on" (0x0E) in ledctl_mode2.
1214 */
1215 for (i = 0; i < 4; i++)
1216 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1217 E1000_LEDCTL_MODE_LED_ON)
1218 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1219 }
1220 ew32(LEDCTL, ctrl);
1221
1222 return 0;
1223}
1224
bc7f75fa 1225/**
e2de3eb6 1226 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
bc7f75fa
AK
1227 * @hw: pointer to the HW structure
1228 * @mc_addr_list: array of multicast addresses to program
1229 * @mc_addr_count: number of multicast addresses to program
1230 * @rar_used_count: the first RAR register free to program
1231 * @rar_count: total number of supported Receive Address Registers
1232 *
1233 * Updates the Receive Address Registers and Multicast Table Array.
1234 * The caller must have a packed mc_addr_list of multicast addresses.
1235 * The parameter rar_count will usually be hw->mac.rar_entry_count
1236 * unless there are workarounds that change this.
1237 **/
e2de3eb6 1238static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
bc7f75fa
AK
1239 u8 *mc_addr_list,
1240 u32 mc_addr_count,
1241 u32 rar_used_count,
1242 u32 rar_count)
1243{
1244 if (e1000e_get_laa_state_82571(hw))
1245 rar_count--;
1246
e2de3eb6
JK
1247 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1248 rar_used_count, rar_count);
bc7f75fa
AK
1249}
1250
1251/**
1252 * e1000_setup_link_82571 - Setup flow control and link settings
1253 * @hw: pointer to the HW structure
1254 *
1255 * Determines which flow control settings to use, then configures flow
1256 * control. Calls the appropriate media-specific link configuration
1257 * function. Assuming the adapter has a valid link partner, a valid link
1258 * should be established. Assumes the hardware has previously been reset
1259 * and the transmitter and receiver are not enabled.
1260 **/
1261static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1262{
ad68076e
BA
1263 /*
1264 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1265 * the default flow control setting, so we explicitly
1266 * set it to full.
1267 */
8c81c9c3
AD
1268 switch (hw->mac.type) {
1269 case e1000_82573:
1270 case e1000_82574:
1271 case e1000_82583:
1272 if (hw->fc.requested_mode == e1000_fc_default)
1273 hw->fc.requested_mode = e1000_fc_full;
1274 break;
1275 default:
1276 break;
1277 }
bc7f75fa
AK
1278
1279 return e1000e_setup_link(hw);
1280}
1281
1282/**
1283 * e1000_setup_copper_link_82571 - Configure copper link settings
1284 * @hw: pointer to the HW structure
1285 *
1286 * Configures the link for auto-neg or forced speed and duplex. Then we check
1287 * for link, once link is established calls to configure collision distance
1288 * and flow control are called.
1289 **/
1290static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1291{
1292 u32 ctrl;
1293 u32 led_ctrl;
1294 s32 ret_val;
1295
1296 ctrl = er32(CTRL);
1297 ctrl |= E1000_CTRL_SLU;
1298 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1299 ew32(CTRL, ctrl);
1300
1301 switch (hw->phy.type) {
1302 case e1000_phy_m88:
4662e82b 1303 case e1000_phy_bm:
bc7f75fa
AK
1304 ret_val = e1000e_copper_link_setup_m88(hw);
1305 break;
1306 case e1000_phy_igp_2:
1307 ret_val = e1000e_copper_link_setup_igp(hw);
1308 /* Setup activity LED */
1309 led_ctrl = er32(LEDCTL);
1310 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1311 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1312 ew32(LEDCTL, led_ctrl);
1313 break;
1314 default:
1315 return -E1000_ERR_PHY;
1316 break;
1317 }
1318
1319 if (ret_val)
1320 return ret_val;
1321
1322 ret_val = e1000e_setup_copper_link(hw);
1323
1324 return ret_val;
1325}
1326
1327/**
1328 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1329 * @hw: pointer to the HW structure
1330 *
1331 * Configures collision distance and flow control for fiber and serdes links.
1332 * Upon successful setup, poll for link.
1333 **/
1334static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1335{
1336 switch (hw->mac.type) {
1337 case e1000_82571:
1338 case e1000_82572:
ad68076e
BA
1339 /*
1340 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1341 * of reset to take the adapter out of that mode. So we
1342 * have to explicitly take the adapter out of loopback
489815ce 1343 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1344 * if another tool failed to take it out of loopback mode.
1345 */
ad68076e 1346 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1347 break;
1348 default:
1349 break;
1350 }
1351
1352 return e1000e_setup_fiber_serdes_link(hw);
1353}
1354
c9523379 1355/**
1356 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1357 * @hw: pointer to the HW structure
1358 *
1a40d5c1
BA
1359 * Reports the link state as up or down.
1360 *
1361 * If autonegotiation is supported by the link partner, the link state is
1362 * determined by the result of autonegotiation. This is the most likely case.
1363 * If autonegotiation is not supported by the link partner, and the link
1364 * has a valid signal, force the link up.
1365 *
1366 * The link state is represented internally here by 4 states:
1367 *
1368 * 1) down
1369 * 2) autoneg_progress
1370 * 3) autoneg_complete (the link sucessfully autonegotiated)
1371 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1372 *
c9523379 1373 **/
f6370117 1374static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1375{
1376 struct e1000_mac_info *mac = &hw->mac;
1377 u32 rxcw;
1378 u32 ctrl;
1379 u32 status;
1380 s32 ret_val = 0;
1381
1382 ctrl = er32(CTRL);
1383 status = er32(STATUS);
1384 rxcw = er32(RXCW);
1385
1386 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1387
1388 /* Receiver is synchronized with no invalid bits. */
1389 switch (mac->serdes_link_state) {
1390 case e1000_serdes_link_autoneg_complete:
1391 if (!(status & E1000_STATUS_LU)) {
1392 /*
1393 * We have lost link, retry autoneg before
1394 * reporting link failure
1395 */
1396 mac->serdes_link_state =
1397 e1000_serdes_link_autoneg_progress;
1a40d5c1 1398 mac->serdes_has_link = false;
3bb99fe2 1399 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1400 }
1401 break;
1402
1403 case e1000_serdes_link_forced_up:
1404 /*
1405 * If we are receiving /C/ ordered sets, re-enable
1406 * auto-negotiation in the TXCW register and disable
1407 * forced link in the Device Control register in an
1408 * attempt to auto-negotiate with our link partner.
1409 */
1410 if (rxcw & E1000_RXCW_C) {
1411 /* Enable autoneg, and unforce link up */
1412 ew32(TXCW, mac->txcw);
1a40d5c1 1413 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1414 mac->serdes_link_state =
1415 e1000_serdes_link_autoneg_progress;
1a40d5c1 1416 mac->serdes_has_link = false;
3bb99fe2 1417 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1418 }
1419 break;
1420
1421 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1422 if (rxcw & E1000_RXCW_C) {
1423 /*
1424 * We received /C/ ordered sets, meaning the
1425 * link partner has autonegotiated, and we can
1426 * trust the Link Up (LU) status bit.
1427 */
1428 if (status & E1000_STATUS_LU) {
1429 mac->serdes_link_state =
1430 e1000_serdes_link_autoneg_complete;
1431 e_dbg("AN_PROG -> AN_UP\n");
1432 mac->serdes_has_link = true;
1433 } else {
1434 /* Autoneg completed, but failed. */
1435 mac->serdes_link_state =
1436 e1000_serdes_link_down;
1437 e_dbg("AN_PROG -> DOWN\n");
1438 }
c9523379 1439 } else {
1440 /*
1a40d5c1
BA
1441 * The link partner did not autoneg.
1442 * Force link up and full duplex, and change
1443 * state to forced.
c9523379 1444 */
1a40d5c1 1445 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1446 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1447 ew32(CTRL, ctrl);
1448
1449 /* Configure Flow Control after link up. */
1a40d5c1 1450 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1451 if (ret_val) {
3bb99fe2 1452 e_dbg("Error config flow control\n");
c9523379 1453 break;
1454 }
1455 mac->serdes_link_state =
1456 e1000_serdes_link_forced_up;
1a40d5c1 1457 mac->serdes_has_link = true;
3bb99fe2 1458 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1459 }
c9523379 1460 break;
1461
1462 case e1000_serdes_link_down:
1463 default:
1a40d5c1
BA
1464 /*
1465 * The link was down but the receiver has now gained
c9523379 1466 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1467 * up.
1468 */
c9523379 1469 ew32(TXCW, mac->txcw);
1a40d5c1 1470 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1471 mac->serdes_link_state =
1472 e1000_serdes_link_autoneg_progress;
3bb99fe2 1473 e_dbg("DOWN -> AN_PROG\n");
c9523379 1474 break;
1475 }
1476 } else {
1477 if (!(rxcw & E1000_RXCW_SYNCH)) {
1478 mac->serdes_has_link = false;
1479 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1480 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1481 } else {
1482 /*
1a40d5c1
BA
1483 * We have sync, and can tolerate one invalid (IV)
1484 * codeword before declaring link down, so reread
1485 * to look again.
c9523379 1486 */
1487 udelay(10);
1488 rxcw = er32(RXCW);
1489 if (rxcw & E1000_RXCW_IV) {
1490 mac->serdes_link_state = e1000_serdes_link_down;
1491 mac->serdes_has_link = false;
3bb99fe2 1492 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1493 }
1494 }
1495 }
1496
1497 return ret_val;
1498}
1499
bc7f75fa
AK
1500/**
1501 * e1000_valid_led_default_82571 - Verify a valid default LED config
1502 * @hw: pointer to the HW structure
1503 * @data: pointer to the NVM (EEPROM)
1504 *
1505 * Read the EEPROM for the current default LED configuration. If the
1506 * LED configuration is not valid, set to a valid LED configuration.
1507 **/
1508static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1509{
1510 s32 ret_val;
1511
1512 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1513 if (ret_val) {
3bb99fe2 1514 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1515 return ret_val;
1516 }
1517
8c81c9c3
AD
1518 switch (hw->mac.type) {
1519 case e1000_82573:
1520 case e1000_82574:
1521 case e1000_82583:
1522 if (*data == ID_LED_RESERVED_F746)
1523 *data = ID_LED_DEFAULT_82573;
1524 break;
1525 default:
1526 if (*data == ID_LED_RESERVED_0000 ||
1527 *data == ID_LED_RESERVED_FFFF)
1528 *data = ID_LED_DEFAULT;
1529 break;
1530 }
bc7f75fa
AK
1531
1532 return 0;
1533}
1534
1535/**
1536 * e1000e_get_laa_state_82571 - Get locally administered address state
1537 * @hw: pointer to the HW structure
1538 *
489815ce 1539 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1540 **/
1541bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1542{
1543 if (hw->mac.type != e1000_82571)
564ea9bb 1544 return false;
bc7f75fa
AK
1545
1546 return hw->dev_spec.e82571.laa_is_present;
1547}
1548
1549/**
1550 * e1000e_set_laa_state_82571 - Set locally administered address state
1551 * @hw: pointer to the HW structure
1552 * @state: enable/disable locally administered address
1553 *
489815ce 1554 * Enable/Disable the current locally administers address state.
bc7f75fa
AK
1555 **/
1556void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1557{
1558 if (hw->mac.type != e1000_82571)
1559 return;
1560
1561 hw->dev_spec.e82571.laa_is_present = state;
1562
1563 /* If workaround is activated... */
1564 if (state)
ad68076e
BA
1565 /*
1566 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1567 * between the time RAR[0] gets clobbered and the time it
1568 * gets fixed, the actual LAA is in one of the RARs and no
1569 * incoming packets directed to this port are dropped.
1570 * Eventually the LAA will be in RAR[0] and RAR[14].
1571 */
1572 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1573}
1574
1575/**
1576 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1577 * @hw: pointer to the HW structure
1578 *
1579 * Verifies that the EEPROM has completed the update. After updating the
1580 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1581 * the checksum fix is not implemented, we need to set the bit and update
1582 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1583 * we need to return bad checksum.
1584 **/
1585static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1586{
1587 struct e1000_nvm_info *nvm = &hw->nvm;
1588 s32 ret_val;
1589 u16 data;
1590
1591 if (nvm->type != e1000_nvm_flash_hw)
1592 return 0;
1593
ad68076e
BA
1594 /*
1595 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1596 * 10h-12h. Checksum may need to be fixed.
1597 */
1598 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1599 if (ret_val)
1600 return ret_val;
1601
1602 if (!(data & 0x10)) {
ad68076e
BA
1603 /*
1604 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1605 * when the checksum has already been fixed. If
1606 * the checksum is still wrong and this bit is a
1607 * 1, we need to return bad checksum. Otherwise,
1608 * we need to set this bit to a 1 and update the
1609 * checksum.
1610 */
1611 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1612 if (ret_val)
1613 return ret_val;
1614
1615 if (!(data & 0x8000)) {
1616 data |= 0x8000;
1617 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1618 if (ret_val)
1619 return ret_val;
1620 ret_val = e1000e_update_nvm_checksum(hw);
1621 }
1622 }
1623
1624 return 0;
1625}
1626
17f208de
BA
1627/**
1628 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1629 * @hw: pointer to the HW structure
1630 *
1631 * In the case of a PHY power down to save power, or to turn off link during a
1632 * driver unload, or wake on lan is not enabled, remove the link.
1633 **/
1634static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1635{
1636 struct e1000_phy_info *phy = &hw->phy;
1637 struct e1000_mac_info *mac = &hw->mac;
1638
1639 if (!(phy->ops.check_reset_block))
1640 return;
1641
1642 /* If the management interface is not enabled, then power down */
1643 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1644 e1000_power_down_phy_copper(hw);
1645
1646 return;
1647}
1648
bc7f75fa
AK
1649/**
1650 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1651 * @hw: pointer to the HW structure
1652 *
1653 * Clears the hardware counters by reading the counter registers.
1654 **/
1655static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1656{
bc7f75fa
AK
1657 e1000e_clear_hw_cntrs_base(hw);
1658
99673d9b
BA
1659 er32(PRC64);
1660 er32(PRC127);
1661 er32(PRC255);
1662 er32(PRC511);
1663 er32(PRC1023);
1664 er32(PRC1522);
1665 er32(PTC64);
1666 er32(PTC127);
1667 er32(PTC255);
1668 er32(PTC511);
1669 er32(PTC1023);
1670 er32(PTC1522);
1671
1672 er32(ALGNERRC);
1673 er32(RXERRC);
1674 er32(TNCRS);
1675 er32(CEXTERR);
1676 er32(TSCTC);
1677 er32(TSCTFC);
1678
1679 er32(MGTPRC);
1680 er32(MGTPDC);
1681 er32(MGTPTC);
1682
1683 er32(IAC);
1684 er32(ICRXOC);
1685
1686 er32(ICRXPTC);
1687 er32(ICRXATC);
1688 er32(ICTXPTC);
1689 er32(ICTXATC);
1690 er32(ICTXQEC);
1691 er32(ICTXQMTC);
1692 er32(ICRXDMTC);
bc7f75fa
AK
1693}
1694
1695static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1696 /* .check_mng_mode: mac type dependent */
bc7f75fa 1697 /* .check_for_link: media type dependent */
a4f58f54 1698 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1699 .cleanup_led = e1000e_cleanup_led_generic,
1700 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1701 .get_bus_info = e1000e_get_bus_info_pcie,
1702 /* .get_link_up_info: media type dependent */
4662e82b 1703 /* .led_on: mac type dependent */
bc7f75fa 1704 .led_off = e1000e_led_off_generic,
e2de3eb6 1705 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
caaddaf8
BA
1706 .write_vfta = e1000_write_vfta_generic,
1707 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1708 .reset_hw = e1000_reset_hw_82571,
1709 .init_hw = e1000_init_hw_82571,
1710 .setup_link = e1000_setup_link_82571,
1711 /* .setup_physical_interface: media type dependent */
a4f58f54 1712 .setup_led = e1000e_setup_led_generic,
bc7f75fa
AK
1713};
1714
1715static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1716 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1717 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1718 .commit = NULL,
bc7f75fa
AK
1719 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1720 .get_cfg_done = e1000_get_cfg_done_82571,
1721 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1722 .get_info = e1000e_get_phy_info_igp,
1723 .read_reg = e1000e_read_phy_reg_igp,
1724 .release = e1000_put_hw_semaphore_82571,
1725 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1726 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1727 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1728 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1729 .cfg_on_link_up = NULL,
bc7f75fa
AK
1730};
1731
1732static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1733 .acquire = e1000_get_hw_semaphore_82571,
bc7f75fa 1734 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1735 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1736 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1737 .get_cfg_done = e1000e_get_cfg_done,
1738 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1739 .get_info = e1000e_get_phy_info_m88,
1740 .read_reg = e1000e_read_phy_reg_m88,
1741 .release = e1000_put_hw_semaphore_82571,
1742 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1743 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1744 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1745 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1746 .cfg_on_link_up = NULL,
bc7f75fa
AK
1747};
1748
4662e82b 1749static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1750 .acquire = e1000_get_hw_semaphore_82571,
4662e82b 1751 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1752 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1753 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1754 .get_cfg_done = e1000e_get_cfg_done,
1755 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1756 .get_info = e1000e_get_phy_info_m88,
1757 .read_reg = e1000e_read_phy_reg_bm2,
1758 .release = e1000_put_hw_semaphore_82571,
1759 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1760 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1761 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1762 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1763 .cfg_on_link_up = NULL,
4662e82b
BA
1764};
1765
bc7f75fa 1766static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1767 .acquire = e1000_acquire_nvm_82571,
1768 .read = e1000e_read_nvm_eerd,
1769 .release = e1000_release_nvm_82571,
1770 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1771 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1772 .validate = e1000_validate_nvm_checksum_82571,
1773 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1774};
1775
1776struct e1000_info e1000_82571_info = {
1777 .mac = e1000_82571,
1778 .flags = FLAG_HAS_HW_VLAN_FILTER
1779 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1780 | FLAG_HAS_WOL
1781 | FLAG_APME_IN_CTRL3
1782 | FLAG_RX_CSUM_ENABLED
1783 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1784 | FLAG_HAS_SMART_POWER_DOWN
1785 | FLAG_RESET_OVERWRITES_LAA /* errata */
1786 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1787 | FLAG_APME_CHECK_PORT_B,
1788 .pba = 38,
2adc55c9 1789 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1790 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1791 .mac_ops = &e82571_mac_ops,
1792 .phy_ops = &e82_phy_ops_igp,
1793 .nvm_ops = &e82571_nvm_ops,
1794};
1795
1796struct e1000_info e1000_82572_info = {
1797 .mac = e1000_82572,
1798 .flags = FLAG_HAS_HW_VLAN_FILTER
1799 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1800 | FLAG_HAS_WOL
1801 | FLAG_APME_IN_CTRL3
1802 | FLAG_RX_CSUM_ENABLED
1803 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1804 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1805 .pba = 38,
2adc55c9 1806 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1807 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1808 .mac_ops = &e82571_mac_ops,
1809 .phy_ops = &e82_phy_ops_igp,
1810 .nvm_ops = &e82571_nvm_ops,
1811};
1812
1813struct e1000_info e1000_82573_info = {
1814 .mac = e1000_82573,
1815 .flags = FLAG_HAS_HW_VLAN_FILTER
1816 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1817 | FLAG_HAS_WOL
1818 | FLAG_APME_IN_CTRL3
1819 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1820 | FLAG_HAS_SMART_POWER_DOWN
1821 | FLAG_HAS_AMT
bc7f75fa
AK
1822 | FLAG_HAS_ERT
1823 | FLAG_HAS_SWSM_ON_LOAD,
1824 .pba = 20,
2adc55c9 1825 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1826 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1827 .mac_ops = &e82571_mac_ops,
1828 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1829 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1830};
1831
4662e82b
BA
1832struct e1000_info e1000_82574_info = {
1833 .mac = e1000_82574,
1834 .flags = FLAG_HAS_HW_VLAN_FILTER
1835 | FLAG_HAS_MSIX
1836 | FLAG_HAS_JUMBO_FRAMES
1837 | FLAG_HAS_WOL
1838 | FLAG_APME_IN_CTRL3
1839 | FLAG_RX_CSUM_ENABLED
1840 | FLAG_HAS_SMART_POWER_DOWN
1841 | FLAG_HAS_AMT
1842 | FLAG_HAS_CTRLEXT_ON_LOAD,
1843 .pba = 20,
a825e00c 1844 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
1845 .get_variants = e1000_get_variants_82571,
1846 .mac_ops = &e82571_mac_ops,
1847 .phy_ops = &e82_phy_ops_bm,
1848 .nvm_ops = &e82571_nvm_ops,
1849};
1850
8c81c9c3
AD
1851struct e1000_info e1000_82583_info = {
1852 .mac = e1000_82583,
1853 .flags = FLAG_HAS_HW_VLAN_FILTER
1854 | FLAG_HAS_WOL
1855 | FLAG_APME_IN_CTRL3
1856 | FLAG_RX_CSUM_ENABLED
1857 | FLAG_HAS_SMART_POWER_DOWN
1858 | FLAG_HAS_AMT
1859 | FLAG_HAS_CTRLEXT_ON_LOAD,
1860 .pba = 20,
a825e00c 1861 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
1862 .get_variants = e1000_get_variants_82571,
1863 .mac_ops = &e82571_mac_ops,
1864 .phy_ops = &e82_phy_ops_bm,
1865 .nvm_ops = &e82571_nvm_ops,
1866};
1867
This page took 0.498197 seconds and 5 git commands to generate.