smsc9420: fix big endian rx checksum offload
[deliverable/linux.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
bc7f75fa
AK
43 */
44
45#include <linux/netdevice.h>
46#include <linux/delay.h>
47#include <linux/pci.h>
48
49#include "e1000.h"
50
51#define ID_LED_RESERVED_F746 0xF746
52#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
53 (ID_LED_OFF1_ON2 << 8) | \
54 (ID_LED_DEF1_DEF2 << 4) | \
55 (ID_LED_DEF1_DEF2))
56
57#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
58
4662e82b
BA
59#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
60
bc7f75fa
AK
61static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
62static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
63static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 64static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
65static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
66 u16 words, u16 *data);
67static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
68static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
69static s32 e1000_setup_link_82571(struct e1000_hw *hw);
70static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
71static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
72static s32 e1000_led_on_82574(struct e1000_hw *hw);
bc7f75fa
AK
73
74/**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
77 *
78 * This is a function pointer entry point called by the api module.
79 **/
80static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
81{
82 struct e1000_phy_info *phy = &hw->phy;
83 s32 ret_val;
84
318a94d6 85 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
86 phy->type = e1000_phy_none;
87 return 0;
88 }
89
90 phy->addr = 1;
91 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
92 phy->reset_delay_us = 100;
93
94 switch (hw->mac.type) {
95 case e1000_82571:
96 case e1000_82572:
97 phy->type = e1000_phy_igp_2;
98 break;
99 case e1000_82573:
100 phy->type = e1000_phy_m88;
101 break;
4662e82b
BA
102 case e1000_82574:
103 phy->type = e1000_phy_bm;
104 break;
bc7f75fa
AK
105 default:
106 return -E1000_ERR_PHY;
107 break;
108 }
109
110 /* This can only be done after all function pointers are setup. */
111 ret_val = e1000_get_phy_id_82571(hw);
112
113 /* Verify phy id */
114 switch (hw->mac.type) {
115 case e1000_82571:
116 case e1000_82572:
117 if (phy->id != IGP01E1000_I_PHY_ID)
118 return -E1000_ERR_PHY;
119 break;
120 case e1000_82573:
121 if (phy->id != M88E1111_I_PHY_ID)
122 return -E1000_ERR_PHY;
123 break;
4662e82b
BA
124 case e1000_82574:
125 if (phy->id != BME1000_E_PHY_ID_R2)
126 return -E1000_ERR_PHY;
127 break;
bc7f75fa
AK
128 default:
129 return -E1000_ERR_PHY;
130 break;
131 }
132
133 return 0;
134}
135
136/**
137 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
138 * @hw: pointer to the HW structure
139 *
140 * This is a function pointer entry point called by the api module.
141 **/
142static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
143{
144 struct e1000_nvm_info *nvm = &hw->nvm;
145 u32 eecd = er32(EECD);
146 u16 size;
147
148 nvm->opcode_bits = 8;
149 nvm->delay_usec = 1;
150 switch (nvm->override) {
151 case e1000_nvm_override_spi_large:
152 nvm->page_size = 32;
153 nvm->address_bits = 16;
154 break;
155 case e1000_nvm_override_spi_small:
156 nvm->page_size = 8;
157 nvm->address_bits = 8;
158 break;
159 default:
160 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
161 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
162 break;
163 }
164
165 switch (hw->mac.type) {
166 case e1000_82573:
4662e82b 167 case e1000_82574:
bc7f75fa
AK
168 if (((eecd >> 15) & 0x3) == 0x3) {
169 nvm->type = e1000_nvm_flash_hw;
170 nvm->word_size = 2048;
ad68076e
BA
171 /*
172 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
173 * to Flash update issue.
174 */
175 eecd &= ~E1000_EECD_AUPDEN;
176 ew32(EECD, eecd);
177 break;
178 }
179 /* Fall Through */
180 default:
ad68076e 181 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
182 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
183 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
184 /*
185 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
186 * for setting word_size.
187 */
188 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
189
190 /* EEPROM access above 16k is unsupported */
191 if (size > 14)
192 size = 14;
bc7f75fa
AK
193 nvm->word_size = 1 << size;
194 break;
195 }
196
197 return 0;
198}
199
200/**
201 * e1000_init_mac_params_82571 - Init MAC func ptrs.
202 * @hw: pointer to the HW structure
203 *
204 * This is a function pointer entry point called by the api module.
205 **/
206static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207{
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
211
212 /* Set media type */
213 switch (adapter->pdev->device) {
214 case E1000_DEV_ID_82571EB_FIBER:
215 case E1000_DEV_ID_82572EI_FIBER:
216 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 217 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
218 break;
219 case E1000_DEV_ID_82571EB_SERDES:
220 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 223 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
224 break;
225 default:
318a94d6 226 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
227 break;
228 }
229
230 /* Set mta register count */
231 mac->mta_reg_count = 128;
232 /* Set rar entry count */
233 mac->rar_entry_count = E1000_RAR_ENTRIES;
234 /* Set if manageability features are enabled. */
ad68076e 235 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
bc7f75fa
AK
236
237 /* check for link */
318a94d6 238 switch (hw->phy.media_type) {
bc7f75fa
AK
239 case e1000_media_type_copper:
240 func->setup_physical_interface = e1000_setup_copper_link_82571;
241 func->check_for_link = e1000e_check_for_copper_link;
242 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
243 break;
244 case e1000_media_type_fiber:
ad68076e
BA
245 func->setup_physical_interface =
246 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 247 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
248 func->get_link_up_info =
249 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
250 break;
251 case e1000_media_type_internal_serdes:
ad68076e
BA
252 func->setup_physical_interface =
253 e1000_setup_fiber_serdes_link_82571;
c9523379 254 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
255 func->get_link_up_info =
256 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
257 break;
258 default:
259 return -E1000_ERR_CONFIG;
260 break;
261 }
262
4662e82b
BA
263 switch (hw->mac.type) {
264 case e1000_82574:
265 func->check_mng_mode = e1000_check_mng_mode_82574;
266 func->led_on = e1000_led_on_82574;
267 break;
268 default:
269 func->check_mng_mode = e1000e_check_mng_mode_generic;
270 func->led_on = e1000e_led_on_generic;
271 break;
272 }
273
bc7f75fa
AK
274 return 0;
275}
276
69e3fd8c 277static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
278{
279 struct e1000_hw *hw = &adapter->hw;
280 static int global_quad_port_a; /* global port a indication */
281 struct pci_dev *pdev = adapter->pdev;
282 u16 eeprom_data = 0;
283 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
284 s32 rc;
285
286 rc = e1000_init_mac_params_82571(adapter);
287 if (rc)
288 return rc;
289
290 rc = e1000_init_nvm_params_82571(hw);
291 if (rc)
292 return rc;
293
294 rc = e1000_init_phy_params_82571(hw);
295 if (rc)
296 return rc;
297
298 /* tag quad port adapters first, it's used below */
299 switch (pdev->device) {
300 case E1000_DEV_ID_82571EB_QUAD_COPPER:
301 case E1000_DEV_ID_82571EB_QUAD_FIBER:
302 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 303 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
304 adapter->flags |= FLAG_IS_QUAD_PORT;
305 /* mark the first port */
306 if (global_quad_port_a == 0)
307 adapter->flags |= FLAG_IS_QUAD_PORT_A;
308 /* Reset for multiple quad port adapters */
309 global_quad_port_a++;
310 if (global_quad_port_a == 4)
311 global_quad_port_a = 0;
312 break;
313 default:
314 break;
315 }
316
317 switch (adapter->hw.mac.type) {
318 case e1000_82571:
319 /* these dual ports don't have WoL on port B at all */
320 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
321 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
322 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
323 (is_port_b))
324 adapter->flags &= ~FLAG_HAS_WOL;
325 /* quad ports only support WoL on port A */
326 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 327 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 328 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
329 /* Does not support WoL on any port */
330 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
331 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa
AK
332 break;
333
334 case e1000_82573:
335 if (pdev->device == E1000_DEV_ID_82573L) {
e243455d
BA
336 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
337 &eeprom_data) < 0)
338 break;
bc7f75fa
AK
339 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
340 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
341 }
342 break;
343 default:
344 break;
345 }
346
347 return 0;
348}
349
350/**
351 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
352 * @hw: pointer to the HW structure
353 *
354 * Reads the PHY registers and stores the PHY ID and possibly the PHY
355 * revision in the hardware structure.
356 **/
357static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
358{
359 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
360 s32 ret_val;
361 u16 phy_id = 0;
bc7f75fa
AK
362
363 switch (hw->mac.type) {
364 case e1000_82571:
365 case e1000_82572:
ad68076e
BA
366 /*
367 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
368 * In this case, we cannot access the PHY until the
369 * configuration is done. So we explicitly set the
ad68076e
BA
370 * PHY ID.
371 */
bc7f75fa
AK
372 phy->id = IGP01E1000_I_PHY_ID;
373 break;
374 case e1000_82573:
375 return e1000e_get_phy_id(hw);
376 break;
4662e82b
BA
377 case e1000_82574:
378 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
379 if (ret_val)
380 return ret_val;
381
382 phy->id = (u32)(phy_id << 16);
383 udelay(20);
384 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
385 if (ret_val)
386 return ret_val;
387
388 phy->id |= (u32)(phy_id);
389 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
390 break;
bc7f75fa
AK
391 default:
392 return -E1000_ERR_PHY;
393 break;
394 }
395
396 return 0;
397}
398
399/**
400 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
401 * @hw: pointer to the HW structure
402 *
403 * Acquire the HW semaphore to access the PHY or NVM
404 **/
405static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
406{
407 u32 swsm;
408 s32 timeout = hw->nvm.word_size + 1;
409 s32 i = 0;
410
411 /* Get the FW semaphore. */
412 for (i = 0; i < timeout; i++) {
413 swsm = er32(SWSM);
414 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
415
416 /* Semaphore acquired if bit latched */
417 if (er32(SWSM) & E1000_SWSM_SWESMBI)
418 break;
419
420 udelay(50);
421 }
422
423 if (i == timeout) {
424 /* Release semaphores */
425 e1000e_put_hw_semaphore(hw);
426 hw_dbg(hw, "Driver can't access the NVM\n");
427 return -E1000_ERR_NVM;
428 }
429
430 return 0;
431}
432
433/**
434 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
435 * @hw: pointer to the HW structure
436 *
437 * Release hardware semaphore used to access the PHY or NVM
438 **/
439static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
440{
441 u32 swsm;
442
443 swsm = er32(SWSM);
444
445 swsm &= ~E1000_SWSM_SWESMBI;
446
447 ew32(SWSM, swsm);
448}
449
450/**
451 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
452 * @hw: pointer to the HW structure
453 *
454 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
455 * Then for non-82573 hardware, set the EEPROM access request bit and wait
456 * for EEPROM access grant bit. If the access grant bit is not set, release
457 * hardware semaphore.
458 **/
459static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
460{
461 s32 ret_val;
462
463 ret_val = e1000_get_hw_semaphore_82571(hw);
464 if (ret_val)
465 return ret_val;
466
4662e82b 467 if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574)
bc7f75fa
AK
468 ret_val = e1000e_acquire_nvm(hw);
469
470 if (ret_val)
471 e1000_put_hw_semaphore_82571(hw);
472
473 return ret_val;
474}
475
476/**
477 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
478 * @hw: pointer to the HW structure
479 *
480 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
481 **/
482static void e1000_release_nvm_82571(struct e1000_hw *hw)
483{
484 e1000e_release_nvm(hw);
485 e1000_put_hw_semaphore_82571(hw);
486}
487
488/**
489 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
490 * @hw: pointer to the HW structure
491 * @offset: offset within the EEPROM to be written to
492 * @words: number of words to write
493 * @data: 16 bit word(s) to be written to the EEPROM
494 *
495 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
496 *
497 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 498 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
499 **/
500static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
501 u16 *data)
502{
503 s32 ret_val;
504
505 switch (hw->mac.type) {
506 case e1000_82573:
4662e82b 507 case e1000_82574:
bc7f75fa
AK
508 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
509 break;
510 case e1000_82571:
511 case e1000_82572:
512 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
513 break;
514 default:
515 ret_val = -E1000_ERR_NVM;
516 break;
517 }
518
519 return ret_val;
520}
521
522/**
523 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
524 * @hw: pointer to the HW structure
525 *
526 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
527 * up to the checksum. Then calculates the EEPROM checksum and writes the
528 * value to the EEPROM.
529 **/
530static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
531{
532 u32 eecd;
533 s32 ret_val;
534 u16 i;
535
536 ret_val = e1000e_update_nvm_checksum_generic(hw);
537 if (ret_val)
538 return ret_val;
539
ad68076e
BA
540 /*
541 * If our nvm is an EEPROM, then we're done
542 * otherwise, commit the checksum to the flash NVM.
543 */
bc7f75fa
AK
544 if (hw->nvm.type != e1000_nvm_flash_hw)
545 return ret_val;
546
547 /* Check for pending operations. */
548 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
549 msleep(1);
550 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
551 break;
552 }
553
554 if (i == E1000_FLASH_UPDATES)
555 return -E1000_ERR_NVM;
556
557 /* Reset the firmware if using STM opcode. */
558 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
559 /*
560 * The enabling of and the actual reset must be done
bc7f75fa
AK
561 * in two write cycles.
562 */
563 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
564 e1e_flush();
565 ew32(HICR, E1000_HICR_FW_RESET);
566 }
567
568 /* Commit the write to flash */
569 eecd = er32(EECD) | E1000_EECD_FLUPD;
570 ew32(EECD, eecd);
571
572 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
573 msleep(1);
574 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
575 break;
576 }
577
578 if (i == E1000_FLASH_UPDATES)
579 return -E1000_ERR_NVM;
580
581 return 0;
582}
583
584/**
585 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
586 * @hw: pointer to the HW structure
587 *
588 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
589 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
590 **/
591static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
592{
593 if (hw->nvm.type == e1000_nvm_flash_hw)
594 e1000_fix_nvm_checksum_82571(hw);
595
596 return e1000e_validate_nvm_checksum_generic(hw);
597}
598
599/**
600 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
601 * @hw: pointer to the HW structure
602 * @offset: offset within the EEPROM to be written to
603 * @words: number of words to write
604 * @data: 16 bit word(s) to be written to the EEPROM
605 *
606 * After checking for invalid values, poll the EEPROM to ensure the previous
607 * command has completed before trying to write the next word. After write
608 * poll for completion.
609 *
610 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 611 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
612 **/
613static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
614 u16 words, u16 *data)
615{
616 struct e1000_nvm_info *nvm = &hw->nvm;
617 u32 i;
618 u32 eewr = 0;
619 s32 ret_val = 0;
620
ad68076e
BA
621 /*
622 * A check for invalid values: offset too large, too many words,
623 * and not enough words.
624 */
bc7f75fa
AK
625 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
626 (words == 0)) {
627 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
628 return -E1000_ERR_NVM;
629 }
630
631 for (i = 0; i < words; i++) {
632 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
633 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
634 E1000_NVM_RW_REG_START;
635
636 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
637 if (ret_val)
638 break;
639
640 ew32(EEWR, eewr);
641
642 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
643 if (ret_val)
644 break;
645 }
646
647 return ret_val;
648}
649
650/**
651 * e1000_get_cfg_done_82571 - Poll for configuration done
652 * @hw: pointer to the HW structure
653 *
654 * Reads the management control register for the config done bit to be set.
655 **/
656static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
657{
658 s32 timeout = PHY_CFG_TIMEOUT;
659
660 while (timeout) {
661 if (er32(EEMNGCTL) &
662 E1000_NVM_CFG_DONE_PORT_0)
663 break;
664 msleep(1);
665 timeout--;
666 }
667 if (!timeout) {
668 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
669 return -E1000_ERR_RESET;
670 }
671
672 return 0;
673}
674
675/**
676 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
677 * @hw: pointer to the HW structure
678 * @active: TRUE to enable LPLU, FALSE to disable
679 *
680 * Sets the LPLU D0 state according to the active flag. When activating LPLU
681 * this function also disables smart speed and vice versa. LPLU will not be
682 * activated unless the device autonegotiation advertisement meets standards
683 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
684 * pointer entry point only called by PHY setup routines.
685 **/
686static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
687{
688 struct e1000_phy_info *phy = &hw->phy;
689 s32 ret_val;
690 u16 data;
691
692 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
693 if (ret_val)
694 return ret_val;
695
696 if (active) {
697 data |= IGP02E1000_PM_D0_LPLU;
698 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
699 if (ret_val)
700 return ret_val;
701
702 /* When LPLU is enabled, we should disable SmartSpeed */
703 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
704 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
705 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
706 if (ret_val)
707 return ret_val;
708 } else {
709 data &= ~IGP02E1000_PM_D0_LPLU;
710 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
711 /*
712 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
713 * during Dx states where the power conservation is most
714 * important. During driver activity we should enable
ad68076e
BA
715 * SmartSpeed, so performance is maintained.
716 */
bc7f75fa
AK
717 if (phy->smart_speed == e1000_smart_speed_on) {
718 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 719 &data);
bc7f75fa
AK
720 if (ret_val)
721 return ret_val;
722
723 data |= IGP01E1000_PSCFR_SMART_SPEED;
724 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 725 data);
bc7f75fa
AK
726 if (ret_val)
727 return ret_val;
728 } else if (phy->smart_speed == e1000_smart_speed_off) {
729 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 730 &data);
bc7f75fa
AK
731 if (ret_val)
732 return ret_val;
733
734 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
735 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 736 data);
bc7f75fa
AK
737 if (ret_val)
738 return ret_val;
739 }
740 }
741
742 return 0;
743}
744
745/**
746 * e1000_reset_hw_82571 - Reset hardware
747 * @hw: pointer to the HW structure
748 *
749 * This resets the hardware into a known state. This is a
750 * function pointer entry point called by the api module.
751 **/
752static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
753{
754 u32 ctrl;
755 u32 extcnf_ctrl;
756 u32 ctrl_ext;
757 u32 icr;
758 s32 ret_val;
759 u16 i = 0;
760
ad68076e
BA
761 /*
762 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
763 * on the last TLP read/write transaction when MAC is reset.
764 */
765 ret_val = e1000e_disable_pcie_master(hw);
766 if (ret_val)
767 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
768
769 hw_dbg(hw, "Masking off all interrupts\n");
770 ew32(IMC, 0xffffffff);
771
772 ew32(RCTL, 0);
773 ew32(TCTL, E1000_TCTL_PSP);
774 e1e_flush();
775
776 msleep(10);
777
ad68076e
BA
778 /*
779 * Must acquire the MDIO ownership before MAC reset.
780 * Ownership defaults to firmware after a reset.
781 */
4662e82b 782 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
bc7f75fa
AK
783 extcnf_ctrl = er32(EXTCNF_CTRL);
784 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
785
786 do {
787 ew32(EXTCNF_CTRL, extcnf_ctrl);
788 extcnf_ctrl = er32(EXTCNF_CTRL);
789
790 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
791 break;
792
793 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
794
795 msleep(2);
796 i++;
797 } while (i < MDIO_OWNERSHIP_TIMEOUT);
798 }
799
800 ctrl = er32(CTRL);
801
802 hw_dbg(hw, "Issuing a global reset to MAC\n");
803 ew32(CTRL, ctrl | E1000_CTRL_RST);
804
805 if (hw->nvm.type == e1000_nvm_flash_hw) {
806 udelay(10);
807 ctrl_ext = er32(CTRL_EXT);
808 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
809 ew32(CTRL_EXT, ctrl_ext);
810 e1e_flush();
811 }
812
813 ret_val = e1000e_get_auto_rd_done(hw);
814 if (ret_val)
815 /* We don't want to continue accessing MAC registers. */
816 return ret_val;
817
ad68076e
BA
818 /*
819 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
820 * Need to wait for Phy configuration completion before accessing
821 * NVM and Phy.
822 */
4662e82b 823 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574)
bc7f75fa
AK
824 msleep(25);
825
826 /* Clear any pending interrupt events. */
827 ew32(IMC, 0xffffffff);
828 icr = er32(ICR);
829
93ca1610
BH
830 if (hw->mac.type == e1000_82571 &&
831 hw->dev_spec.e82571.alt_mac_addr_is_present)
832 e1000e_set_laa_state_82571(hw, true);
833
c9523379 834 /* Reinitialize the 82571 serdes link state machine */
835 if (hw->phy.media_type == e1000_media_type_internal_serdes)
836 hw->mac.serdes_link_state = e1000_serdes_link_down;
837
bc7f75fa
AK
838 return 0;
839}
840
841/**
842 * e1000_init_hw_82571 - Initialize hardware
843 * @hw: pointer to the HW structure
844 *
845 * This inits the hardware readying it for operation.
846 **/
847static s32 e1000_init_hw_82571(struct e1000_hw *hw)
848{
849 struct e1000_mac_info *mac = &hw->mac;
850 u32 reg_data;
851 s32 ret_val;
852 u16 i;
853 u16 rar_count = mac->rar_entry_count;
854
855 e1000_initialize_hw_bits_82571(hw);
856
857 /* Initialize identification LED */
858 ret_val = e1000e_id_led_init(hw);
859 if (ret_val) {
860 hw_dbg(hw, "Error initializing identification LED\n");
861 return ret_val;
862 }
863
864 /* Disabling VLAN filtering */
865 hw_dbg(hw, "Initializing the IEEE VLAN\n");
866 e1000e_clear_vfta(hw);
867
868 /* Setup the receive address. */
ad68076e
BA
869 /*
870 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
871 * 82571, we must reserve a RAR for it to work around an issue where
872 * resetting one port will reload the MAC on the other port.
873 */
874 if (e1000e_get_laa_state_82571(hw))
875 rar_count--;
876 e1000e_init_rx_addrs(hw, rar_count);
877
878 /* Zero out the Multicast HASH table */
879 hw_dbg(hw, "Zeroing the MTA\n");
880 for (i = 0; i < mac->mta_reg_count; i++)
881 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
882
883 /* Setup link and flow control */
884 ret_val = e1000_setup_link_82571(hw);
885
886 /* Set the transmit descriptor write-back policy */
e9ec2c0f 887 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
888 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
889 E1000_TXDCTL_FULL_TX_DESC_WB |
890 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 891 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
892
893 /* ...for both queues. */
4662e82b 894 if (mac->type != e1000_82573 && mac->type != e1000_82574) {
e9ec2c0f 895 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
896 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
897 E1000_TXDCTL_FULL_TX_DESC_WB |
898 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 899 ew32(TXDCTL(1), reg_data);
bc7f75fa
AK
900 } else {
901 e1000e_enable_tx_pkt_filtering(hw);
902 reg_data = er32(GCR);
903 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
904 ew32(GCR, reg_data);
905 }
906
ad68076e
BA
907 /*
908 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
909 * important that we do this after we have tried to establish link
910 * because the symbol error count will increment wildly if there
911 * is no link.
912 */
913 e1000_clear_hw_cntrs_82571(hw);
914
915 return ret_val;
916}
917
918/**
919 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
920 * @hw: pointer to the HW structure
921 *
922 * Initializes required hardware-dependent bits needed for normal operation.
923 **/
924static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
925{
926 u32 reg;
927
928 /* Transmit Descriptor Control 0 */
e9ec2c0f 929 reg = er32(TXDCTL(0));
bc7f75fa 930 reg |= (1 << 22);
e9ec2c0f 931 ew32(TXDCTL(0), reg);
bc7f75fa
AK
932
933 /* Transmit Descriptor Control 1 */
e9ec2c0f 934 reg = er32(TXDCTL(1));
bc7f75fa 935 reg |= (1 << 22);
e9ec2c0f 936 ew32(TXDCTL(1), reg);
bc7f75fa
AK
937
938 /* Transmit Arbitration Control 0 */
e9ec2c0f 939 reg = er32(TARC(0));
bc7f75fa
AK
940 reg &= ~(0xF << 27); /* 30:27 */
941 switch (hw->mac.type) {
942 case e1000_82571:
943 case e1000_82572:
944 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
945 break;
946 default:
947 break;
948 }
e9ec2c0f 949 ew32(TARC(0), reg);
bc7f75fa
AK
950
951 /* Transmit Arbitration Control 1 */
e9ec2c0f 952 reg = er32(TARC(1));
bc7f75fa
AK
953 switch (hw->mac.type) {
954 case e1000_82571:
955 case e1000_82572:
956 reg &= ~((1 << 29) | (1 << 30));
957 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
958 if (er32(TCTL) & E1000_TCTL_MULR)
959 reg &= ~(1 << 28);
960 else
961 reg |= (1 << 28);
e9ec2c0f 962 ew32(TARC(1), reg);
bc7f75fa
AK
963 break;
964 default:
965 break;
966 }
967
968 /* Device Control */
4662e82b 969 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
bc7f75fa
AK
970 reg = er32(CTRL);
971 reg &= ~(1 << 29);
972 ew32(CTRL, reg);
973 }
974
975 /* Extended Device Control */
4662e82b 976 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
bc7f75fa
AK
977 reg = er32(CTRL_EXT);
978 reg &= ~(1 << 23);
979 reg |= (1 << 22);
980 ew32(CTRL_EXT, reg);
981 }
4662e82b 982
6ea7ae1d
AD
983 if (hw->mac.type == e1000_82571) {
984 reg = er32(PBA_ECC);
985 reg |= E1000_PBA_ECC_CORR_EN;
986 ew32(PBA_ECC, reg);
987 }
5df3f0ea 988 /*
989 * Workaround for hardware errata.
990 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
991 */
992
993 if ((hw->mac.type == e1000_82571) ||
994 (hw->mac.type == e1000_82572)) {
995 reg = er32(CTRL_EXT);
996 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
997 ew32(CTRL_EXT, reg);
998 }
999
6ea7ae1d 1000
78272bba 1001 /* PCI-Ex Control Registers */
4662e82b
BA
1002 if (hw->mac.type == e1000_82574) {
1003 reg = er32(GCR);
1004 reg |= (1 << 22);
1005 ew32(GCR, reg);
78272bba
JB
1006
1007 reg = er32(GCR2);
1008 reg |= 1;
1009 ew32(GCR2, reg);
4662e82b
BA
1010 }
1011
1012 return;
bc7f75fa
AK
1013}
1014
1015/**
1016 * e1000e_clear_vfta - Clear VLAN filter table
1017 * @hw: pointer to the HW structure
1018 *
1019 * Clears the register array which contains the VLAN filter table by
1020 * setting all the values to 0.
1021 **/
1022void e1000e_clear_vfta(struct e1000_hw *hw)
1023{
1024 u32 offset;
1025 u32 vfta_value = 0;
1026 u32 vfta_offset = 0;
1027 u32 vfta_bit_in_reg = 0;
1028
4662e82b 1029 if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
bc7f75fa 1030 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1031 /*
1032 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1033 * a single VLAN ID. The following operations
1034 * determine which 32b entry (i.e. offset) into the
1035 * array we want to set the VLAN ID (i.e. bit) of
1036 * the manageability unit.
1037 */
1038 vfta_offset = (hw->mng_cookie.vlan_id >>
1039 E1000_VFTA_ENTRY_SHIFT) &
1040 E1000_VFTA_ENTRY_MASK;
1041 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1042 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1043 }
1044 }
1045 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1046 /*
1047 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1048 * manageability VLAN ID, then clear all bits except that of
1049 * the manageability unit.
1050 */
1051 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1052 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1053 e1e_flush();
1054 }
1055}
1056
4662e82b
BA
1057/**
1058 * e1000_check_mng_mode_82574 - Check manageability is enabled
1059 * @hw: pointer to the HW structure
1060 *
1061 * Reads the NVM Initialization Control Word 2 and returns true
1062 * (>0) if any manageability is enabled, else false (0).
1063 **/
1064static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1065{
1066 u16 data;
1067
1068 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1069 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1070}
1071
1072/**
1073 * e1000_led_on_82574 - Turn LED on
1074 * @hw: pointer to the HW structure
1075 *
1076 * Turn LED on.
1077 **/
1078static s32 e1000_led_on_82574(struct e1000_hw *hw)
1079{
1080 u32 ctrl;
1081 u32 i;
1082
1083 ctrl = hw->mac.ledctl_mode2;
1084 if (!(E1000_STATUS_LU & er32(STATUS))) {
1085 /*
1086 * If no link, then turn LED on by setting the invert bit
1087 * for each LED that's "on" (0x0E) in ledctl_mode2.
1088 */
1089 for (i = 0; i < 4; i++)
1090 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1091 E1000_LEDCTL_MODE_LED_ON)
1092 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1093 }
1094 ew32(LEDCTL, ctrl);
1095
1096 return 0;
1097}
1098
bc7f75fa 1099/**
e2de3eb6 1100 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
bc7f75fa
AK
1101 * @hw: pointer to the HW structure
1102 * @mc_addr_list: array of multicast addresses to program
1103 * @mc_addr_count: number of multicast addresses to program
1104 * @rar_used_count: the first RAR register free to program
1105 * @rar_count: total number of supported Receive Address Registers
1106 *
1107 * Updates the Receive Address Registers and Multicast Table Array.
1108 * The caller must have a packed mc_addr_list of multicast addresses.
1109 * The parameter rar_count will usually be hw->mac.rar_entry_count
1110 * unless there are workarounds that change this.
1111 **/
e2de3eb6 1112static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
bc7f75fa
AK
1113 u8 *mc_addr_list,
1114 u32 mc_addr_count,
1115 u32 rar_used_count,
1116 u32 rar_count)
1117{
1118 if (e1000e_get_laa_state_82571(hw))
1119 rar_count--;
1120
e2de3eb6
JK
1121 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1122 rar_used_count, rar_count);
bc7f75fa
AK
1123}
1124
1125/**
1126 * e1000_setup_link_82571 - Setup flow control and link settings
1127 * @hw: pointer to the HW structure
1128 *
1129 * Determines which flow control settings to use, then configures flow
1130 * control. Calls the appropriate media-specific link configuration
1131 * function. Assuming the adapter has a valid link partner, a valid link
1132 * should be established. Assumes the hardware has previously been reset
1133 * and the transmitter and receiver are not enabled.
1134 **/
1135static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1136{
ad68076e
BA
1137 /*
1138 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1139 * the default flow control setting, so we explicitly
1140 * set it to full.
1141 */
4662e82b 1142 if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
5c48ef3e
BA
1143 hw->fc.requested_mode == e1000_fc_default)
1144 hw->fc.requested_mode = e1000_fc_full;
bc7f75fa
AK
1145
1146 return e1000e_setup_link(hw);
1147}
1148
1149/**
1150 * e1000_setup_copper_link_82571 - Configure copper link settings
1151 * @hw: pointer to the HW structure
1152 *
1153 * Configures the link for auto-neg or forced speed and duplex. Then we check
1154 * for link, once link is established calls to configure collision distance
1155 * and flow control are called.
1156 **/
1157static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1158{
1159 u32 ctrl;
1160 u32 led_ctrl;
1161 s32 ret_val;
1162
1163 ctrl = er32(CTRL);
1164 ctrl |= E1000_CTRL_SLU;
1165 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1166 ew32(CTRL, ctrl);
1167
1168 switch (hw->phy.type) {
1169 case e1000_phy_m88:
4662e82b 1170 case e1000_phy_bm:
bc7f75fa
AK
1171 ret_val = e1000e_copper_link_setup_m88(hw);
1172 break;
1173 case e1000_phy_igp_2:
1174 ret_val = e1000e_copper_link_setup_igp(hw);
1175 /* Setup activity LED */
1176 led_ctrl = er32(LEDCTL);
1177 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1178 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1179 ew32(LEDCTL, led_ctrl);
1180 break;
1181 default:
1182 return -E1000_ERR_PHY;
1183 break;
1184 }
1185
1186 if (ret_val)
1187 return ret_val;
1188
1189 ret_val = e1000e_setup_copper_link(hw);
1190
1191 return ret_val;
1192}
1193
1194/**
1195 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1196 * @hw: pointer to the HW structure
1197 *
1198 * Configures collision distance and flow control for fiber and serdes links.
1199 * Upon successful setup, poll for link.
1200 **/
1201static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1202{
1203 switch (hw->mac.type) {
1204 case e1000_82571:
1205 case e1000_82572:
ad68076e
BA
1206 /*
1207 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1208 * of reset to take the adapter out of that mode. So we
1209 * have to explicitly take the adapter out of loopback
489815ce 1210 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1211 * if another tool failed to take it out of loopback mode.
1212 */
ad68076e 1213 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1214 break;
1215 default:
1216 break;
1217 }
1218
1219 return e1000e_setup_fiber_serdes_link(hw);
1220}
1221
c9523379 1222/**
1223 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1224 * @hw: pointer to the HW structure
1225 *
1226 * Checks for link up on the hardware. If link is not up and we have
1227 * a signal, then we need to force link up.
1228 **/
f6370117 1229static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1230{
1231 struct e1000_mac_info *mac = &hw->mac;
1232 u32 rxcw;
1233 u32 ctrl;
1234 u32 status;
1235 s32 ret_val = 0;
1236
1237 ctrl = er32(CTRL);
1238 status = er32(STATUS);
1239 rxcw = er32(RXCW);
1240
1241 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1242
1243 /* Receiver is synchronized with no invalid bits. */
1244 switch (mac->serdes_link_state) {
1245 case e1000_serdes_link_autoneg_complete:
1246 if (!(status & E1000_STATUS_LU)) {
1247 /*
1248 * We have lost link, retry autoneg before
1249 * reporting link failure
1250 */
1251 mac->serdes_link_state =
1252 e1000_serdes_link_autoneg_progress;
1253 hw_dbg(hw, "AN_UP -> AN_PROG\n");
1254 }
1255 break;
1256
1257 case e1000_serdes_link_forced_up:
1258 /*
1259 * If we are receiving /C/ ordered sets, re-enable
1260 * auto-negotiation in the TXCW register and disable
1261 * forced link in the Device Control register in an
1262 * attempt to auto-negotiate with our link partner.
1263 */
1264 if (rxcw & E1000_RXCW_C) {
1265 /* Enable autoneg, and unforce link up */
1266 ew32(TXCW, mac->txcw);
1267 ew32(CTRL,
1268 (ctrl & ~E1000_CTRL_SLU));
1269 mac->serdes_link_state =
1270 e1000_serdes_link_autoneg_progress;
1271 hw_dbg(hw, "FORCED_UP -> AN_PROG\n");
1272 }
1273 break;
1274
1275 case e1000_serdes_link_autoneg_progress:
1276 /*
1277 * If the LU bit is set in the STATUS register,
1278 * autoneg has completed sucessfully. If not,
1279 * try foring the link because the far end may be
1280 * available but not capable of autonegotiation.
1281 */
1282 if (status & E1000_STATUS_LU) {
1283 mac->serdes_link_state =
1284 e1000_serdes_link_autoneg_complete;
1285 hw_dbg(hw, "AN_PROG -> AN_UP\n");
1286 } else {
1287 /*
1288 * Disable autoneg, force link up and
1289 * full duplex, and change state to forced
1290 */
1291 ew32(TXCW,
1292 (mac->txcw & ~E1000_TXCW_ANE));
1293 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1294 ew32(CTRL, ctrl);
1295
1296 /* Configure Flow Control after link up. */
1297 ret_val =
1298 e1000e_config_fc_after_link_up(hw);
1299 if (ret_val) {
1300 hw_dbg(hw, "Error config flow control\n");
1301 break;
1302 }
1303 mac->serdes_link_state =
1304 e1000_serdes_link_forced_up;
1305 hw_dbg(hw, "AN_PROG -> FORCED_UP\n");
1306 }
1307 mac->serdes_has_link = true;
1308 break;
1309
1310 case e1000_serdes_link_down:
1311 default:
1312 /* The link was down but the receiver has now gained
1313 * valid sync, so lets see if we can bring the link
1314 * up. */
1315 ew32(TXCW, mac->txcw);
1316 ew32(CTRL,
1317 (ctrl & ~E1000_CTRL_SLU));
1318 mac->serdes_link_state =
1319 e1000_serdes_link_autoneg_progress;
1320 hw_dbg(hw, "DOWN -> AN_PROG\n");
1321 break;
1322 }
1323 } else {
1324 if (!(rxcw & E1000_RXCW_SYNCH)) {
1325 mac->serdes_has_link = false;
1326 mac->serdes_link_state = e1000_serdes_link_down;
1327 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1328 } else {
1329 /*
1330 * We have sync, and can tolerate one
1331 * invalid (IV) codeword before declaring
1332 * link down, so reread to look again
1333 */
1334 udelay(10);
1335 rxcw = er32(RXCW);
1336 if (rxcw & E1000_RXCW_IV) {
1337 mac->serdes_link_state = e1000_serdes_link_down;
1338 mac->serdes_has_link = false;
1339 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1340 }
1341 }
1342 }
1343
1344 return ret_val;
1345}
1346
bc7f75fa
AK
1347/**
1348 * e1000_valid_led_default_82571 - Verify a valid default LED config
1349 * @hw: pointer to the HW structure
1350 * @data: pointer to the NVM (EEPROM)
1351 *
1352 * Read the EEPROM for the current default LED configuration. If the
1353 * LED configuration is not valid, set to a valid LED configuration.
1354 **/
1355static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1356{
1357 s32 ret_val;
1358
1359 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1360 if (ret_val) {
1361 hw_dbg(hw, "NVM Read Error\n");
1362 return ret_val;
1363 }
1364
4662e82b 1365 if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
bc7f75fa
AK
1366 *data == ID_LED_RESERVED_F746)
1367 *data = ID_LED_DEFAULT_82573;
4662e82b 1368 else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
bc7f75fa
AK
1369 *data = ID_LED_DEFAULT;
1370
1371 return 0;
1372}
1373
1374/**
1375 * e1000e_get_laa_state_82571 - Get locally administered address state
1376 * @hw: pointer to the HW structure
1377 *
489815ce 1378 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1379 **/
1380bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1381{
1382 if (hw->mac.type != e1000_82571)
1383 return 0;
1384
1385 return hw->dev_spec.e82571.laa_is_present;
1386}
1387
1388/**
1389 * e1000e_set_laa_state_82571 - Set locally administered address state
1390 * @hw: pointer to the HW structure
1391 * @state: enable/disable locally administered address
1392 *
489815ce 1393 * Enable/Disable the current locally administers address state.
bc7f75fa
AK
1394 **/
1395void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1396{
1397 if (hw->mac.type != e1000_82571)
1398 return;
1399
1400 hw->dev_spec.e82571.laa_is_present = state;
1401
1402 /* If workaround is activated... */
1403 if (state)
ad68076e
BA
1404 /*
1405 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1406 * between the time RAR[0] gets clobbered and the time it
1407 * gets fixed, the actual LAA is in one of the RARs and no
1408 * incoming packets directed to this port are dropped.
1409 * Eventually the LAA will be in RAR[0] and RAR[14].
1410 */
1411 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1412}
1413
1414/**
1415 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1416 * @hw: pointer to the HW structure
1417 *
1418 * Verifies that the EEPROM has completed the update. After updating the
1419 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1420 * the checksum fix is not implemented, we need to set the bit and update
1421 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1422 * we need to return bad checksum.
1423 **/
1424static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1425{
1426 struct e1000_nvm_info *nvm = &hw->nvm;
1427 s32 ret_val;
1428 u16 data;
1429
1430 if (nvm->type != e1000_nvm_flash_hw)
1431 return 0;
1432
ad68076e
BA
1433 /*
1434 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1435 * 10h-12h. Checksum may need to be fixed.
1436 */
1437 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1438 if (ret_val)
1439 return ret_val;
1440
1441 if (!(data & 0x10)) {
ad68076e
BA
1442 /*
1443 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1444 * when the checksum has already been fixed. If
1445 * the checksum is still wrong and this bit is a
1446 * 1, we need to return bad checksum. Otherwise,
1447 * we need to set this bit to a 1 and update the
1448 * checksum.
1449 */
1450 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1451 if (ret_val)
1452 return ret_val;
1453
1454 if (!(data & 0x8000)) {
1455 data |= 0x8000;
1456 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1457 if (ret_val)
1458 return ret_val;
1459 ret_val = e1000e_update_nvm_checksum(hw);
1460 }
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1468 * @hw: pointer to the HW structure
1469 *
1470 * Clears the hardware counters by reading the counter registers.
1471 **/
1472static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1473{
1474 u32 temp;
1475
1476 e1000e_clear_hw_cntrs_base(hw);
1477
1478 temp = er32(PRC64);
1479 temp = er32(PRC127);
1480 temp = er32(PRC255);
1481 temp = er32(PRC511);
1482 temp = er32(PRC1023);
1483 temp = er32(PRC1522);
1484 temp = er32(PTC64);
1485 temp = er32(PTC127);
1486 temp = er32(PTC255);
1487 temp = er32(PTC511);
1488 temp = er32(PTC1023);
1489 temp = er32(PTC1522);
1490
1491 temp = er32(ALGNERRC);
1492 temp = er32(RXERRC);
1493 temp = er32(TNCRS);
1494 temp = er32(CEXTERR);
1495 temp = er32(TSCTC);
1496 temp = er32(TSCTFC);
1497
1498 temp = er32(MGTPRC);
1499 temp = er32(MGTPDC);
1500 temp = er32(MGTPTC);
1501
1502 temp = er32(IAC);
1503 temp = er32(ICRXOC);
1504
1505 temp = er32(ICRXPTC);
1506 temp = er32(ICRXATC);
1507 temp = er32(ICTXPTC);
1508 temp = er32(ICTXATC);
1509 temp = er32(ICTXQEC);
1510 temp = er32(ICTXQMTC);
1511 temp = er32(ICRXDMTC);
1512}
1513
1514static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1515 /* .check_mng_mode: mac type dependent */
bc7f75fa
AK
1516 /* .check_for_link: media type dependent */
1517 .cleanup_led = e1000e_cleanup_led_generic,
1518 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1519 .get_bus_info = e1000e_get_bus_info_pcie,
1520 /* .get_link_up_info: media type dependent */
4662e82b 1521 /* .led_on: mac type dependent */
bc7f75fa 1522 .led_off = e1000e_led_off_generic,
e2de3eb6 1523 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
bc7f75fa
AK
1524 .reset_hw = e1000_reset_hw_82571,
1525 .init_hw = e1000_init_hw_82571,
1526 .setup_link = e1000_setup_link_82571,
1527 /* .setup_physical_interface: media type dependent */
1528};
1529
1530static struct e1000_phy_operations e82_phy_ops_igp = {
1531 .acquire_phy = e1000_get_hw_semaphore_82571,
1532 .check_reset_block = e1000e_check_reset_block_generic,
1533 .commit_phy = NULL,
1534 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1535 .get_cfg_done = e1000_get_cfg_done_82571,
1536 .get_cable_length = e1000e_get_cable_length_igp_2,
1537 .get_phy_info = e1000e_get_phy_info_igp,
1538 .read_phy_reg = e1000e_read_phy_reg_igp,
1539 .release_phy = e1000_put_hw_semaphore_82571,
1540 .reset_phy = e1000e_phy_hw_reset_generic,
1541 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1542 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1543 .write_phy_reg = e1000e_write_phy_reg_igp,
75eb0fad 1544 .cfg_on_link_up = NULL,
bc7f75fa
AK
1545};
1546
1547static struct e1000_phy_operations e82_phy_ops_m88 = {
1548 .acquire_phy = e1000_get_hw_semaphore_82571,
1549 .check_reset_block = e1000e_check_reset_block_generic,
1550 .commit_phy = e1000e_phy_sw_reset,
1551 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1552 .get_cfg_done = e1000e_get_cfg_done,
1553 .get_cable_length = e1000e_get_cable_length_m88,
1554 .get_phy_info = e1000e_get_phy_info_m88,
1555 .read_phy_reg = e1000e_read_phy_reg_m88,
1556 .release_phy = e1000_put_hw_semaphore_82571,
1557 .reset_phy = e1000e_phy_hw_reset_generic,
1558 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1559 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1560 .write_phy_reg = e1000e_write_phy_reg_m88,
75eb0fad 1561 .cfg_on_link_up = NULL,
bc7f75fa
AK
1562};
1563
4662e82b
BA
1564static struct e1000_phy_operations e82_phy_ops_bm = {
1565 .acquire_phy = e1000_get_hw_semaphore_82571,
1566 .check_reset_block = e1000e_check_reset_block_generic,
1567 .commit_phy = e1000e_phy_sw_reset,
1568 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1569 .get_cfg_done = e1000e_get_cfg_done,
1570 .get_cable_length = e1000e_get_cable_length_m88,
1571 .get_phy_info = e1000e_get_phy_info_m88,
1572 .read_phy_reg = e1000e_read_phy_reg_bm2,
1573 .release_phy = e1000_put_hw_semaphore_82571,
1574 .reset_phy = e1000e_phy_hw_reset_generic,
1575 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1576 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1577 .write_phy_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1578 .cfg_on_link_up = NULL,
4662e82b
BA
1579};
1580
bc7f75fa 1581static struct e1000_nvm_operations e82571_nvm_ops = {
bc7f75fa
AK
1582 .acquire_nvm = e1000_acquire_nvm_82571,
1583 .read_nvm = e1000e_read_nvm_eerd,
1584 .release_nvm = e1000_release_nvm_82571,
1585 .update_nvm = e1000_update_nvm_checksum_82571,
1586 .valid_led_default = e1000_valid_led_default_82571,
1587 .validate_nvm = e1000_validate_nvm_checksum_82571,
1588 .write_nvm = e1000_write_nvm_82571,
1589};
1590
1591struct e1000_info e1000_82571_info = {
1592 .mac = e1000_82571,
1593 .flags = FLAG_HAS_HW_VLAN_FILTER
1594 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1595 | FLAG_HAS_WOL
1596 | FLAG_APME_IN_CTRL3
1597 | FLAG_RX_CSUM_ENABLED
1598 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1599 | FLAG_HAS_SMART_POWER_DOWN
1600 | FLAG_RESET_OVERWRITES_LAA /* errata */
1601 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1602 | FLAG_APME_CHECK_PORT_B,
1603 .pba = 38,
69e3fd8c 1604 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1605 .mac_ops = &e82571_mac_ops,
1606 .phy_ops = &e82_phy_ops_igp,
1607 .nvm_ops = &e82571_nvm_ops,
1608};
1609
1610struct e1000_info e1000_82572_info = {
1611 .mac = e1000_82572,
1612 .flags = FLAG_HAS_HW_VLAN_FILTER
1613 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1614 | FLAG_HAS_WOL
1615 | FLAG_APME_IN_CTRL3
1616 | FLAG_RX_CSUM_ENABLED
1617 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1618 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1619 .pba = 38,
69e3fd8c 1620 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1621 .mac_ops = &e82571_mac_ops,
1622 .phy_ops = &e82_phy_ops_igp,
1623 .nvm_ops = &e82571_nvm_ops,
1624};
1625
1626struct e1000_info e1000_82573_info = {
1627 .mac = e1000_82573,
1628 .flags = FLAG_HAS_HW_VLAN_FILTER
1629 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1630 | FLAG_HAS_WOL
1631 | FLAG_APME_IN_CTRL3
1632 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1633 | FLAG_HAS_SMART_POWER_DOWN
1634 | FLAG_HAS_AMT
bc7f75fa
AK
1635 | FLAG_HAS_ERT
1636 | FLAG_HAS_SWSM_ON_LOAD,
1637 .pba = 20,
69e3fd8c 1638 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1639 .mac_ops = &e82571_mac_ops,
1640 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1641 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1642};
1643
4662e82b
BA
1644struct e1000_info e1000_82574_info = {
1645 .mac = e1000_82574,
1646 .flags = FLAG_HAS_HW_VLAN_FILTER
1647 | FLAG_HAS_MSIX
1648 | FLAG_HAS_JUMBO_FRAMES
1649 | FLAG_HAS_WOL
1650 | FLAG_APME_IN_CTRL3
1651 | FLAG_RX_CSUM_ENABLED
1652 | FLAG_HAS_SMART_POWER_DOWN
1653 | FLAG_HAS_AMT
1654 | FLAG_HAS_CTRLEXT_ON_LOAD,
1655 .pba = 20,
1656 .get_variants = e1000_get_variants_82571,
1657 .mac_ops = &e82571_mac_ops,
1658 .phy_ops = &e82_phy_ops_bm,
1659 .nvm_ops = &e82571_nvm_ops,
1660};
1661
This page took 0.518387 seconds and 5 git commands to generate.