e1000e: limit EEPROM size accesses
[deliverable/linux.git] / drivers / net / e1000e / es2lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32 */
33
34#include <linux/netdevice.h>
35#include <linux/ethtool.h>
36#include <linux/delay.h>
37#include <linux/pci.h>
38
39#include "e1000.h"
40
41#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
42#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
43#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
44
45#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
46#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
47#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
48
49#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
50#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
51
52#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
54
55#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
57
58/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
64
65/* PHY Specific Control Register 2 (Page 0, Register 26) */
66#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
68
69/* MAC Specific Control Register (Page 2, Register 21) */
70/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71#define GG82563_MSCR_TX_CLK_MASK 0x0007
72#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
75
76#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
77
78/* DSP Distance Register (Page 5, Register 26) */
79#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
80 1 = 50-80M
81 2 = 80-110M
82 3 = 110-140M
83 4 = >140M */
84
85/* Kumeran Mode Control Register (Page 193, Register 16) */
86#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
87
88/* Power Management Control Register (Page 193, Register 20) */
89#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
90 /* 1=Enable SERDES Electrical Idle */
91
92/* In-Band Control Register (Page 194, Register 18) */
93#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
94
ad68076e
BA
95/*
96 * A table for the GG82563 cable length where the range is defined
bc7f75fa
AK
97 * with a lower bound at "index" and the upper bound at
98 * "index + 5".
99 */
100static const u16 e1000_gg82563_cable_length_table[] =
101 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110
111/**
112 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
113 * @hw: pointer to the HW structure
114 *
115 * This is a function pointer entry point called by the api module.
116 **/
117static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
118{
119 struct e1000_phy_info *phy = &hw->phy;
120 s32 ret_val;
121
318a94d6 122 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
123 phy->type = e1000_phy_none;
124 return 0;
125 }
126
127 phy->addr = 1;
128 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
129 phy->reset_delay_us = 100;
130 phy->type = e1000_phy_gg82563;
131
132 /* This can only be done after all function pointers are setup. */
133 ret_val = e1000e_get_phy_id(hw);
134
135 /* Verify phy id */
136 if (phy->id != GG82563_E_PHY_ID)
137 return -E1000_ERR_PHY;
138
139 return ret_val;
140}
141
142/**
143 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
144 * @hw: pointer to the HW structure
145 *
146 * This is a function pointer entry point called by the api module.
147 **/
148static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
149{
150 struct e1000_nvm_info *nvm = &hw->nvm;
151 u32 eecd = er32(EECD);
152 u16 size;
153
154 nvm->opcode_bits = 8;
155 nvm->delay_usec = 1;
156 switch (nvm->override) {
157 case e1000_nvm_override_spi_large:
158 nvm->page_size = 32;
159 nvm->address_bits = 16;
160 break;
161 case e1000_nvm_override_spi_small:
162 nvm->page_size = 8;
163 nvm->address_bits = 8;
164 break;
165 default:
166 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
167 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
168 break;
169 }
170
ad68076e 171 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
172
173 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
174 E1000_EECD_SIZE_EX_SHIFT);
175
ad68076e
BA
176 /*
177 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
178 * for setting word_size.
179 */
180 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
181
182 /* EEPROM access above 16k is unsupported */
183 if (size > 14)
184 size = 14;
bc7f75fa
AK
185 nvm->word_size = 1 << size;
186
187 return 0;
188}
189
190/**
191 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
192 * @hw: pointer to the HW structure
193 *
194 * This is a function pointer entry point called by the api module.
195 **/
196static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
197{
198 struct e1000_hw *hw = &adapter->hw;
199 struct e1000_mac_info *mac = &hw->mac;
200 struct e1000_mac_operations *func = &mac->ops;
201
202 /* Set media type */
203 switch (adapter->pdev->device) {
204 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
318a94d6 205 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
206 break;
207 default:
318a94d6 208 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
209 break;
210 }
211
212 /* Set mta register count */
213 mac->mta_reg_count = 128;
214 /* Set rar entry count */
215 mac->rar_entry_count = E1000_RAR_ENTRIES;
216 /* Set if manageability features are enabled. */
ad68076e 217 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
bc7f75fa
AK
218
219 /* check for link */
318a94d6 220 switch (hw->phy.media_type) {
bc7f75fa
AK
221 case e1000_media_type_copper:
222 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
223 func->check_for_link = e1000e_check_for_copper_link;
224 break;
225 case e1000_media_type_fiber:
226 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
227 func->check_for_link = e1000e_check_for_fiber_link;
228 break;
229 case e1000_media_type_internal_serdes:
230 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
231 func->check_for_link = e1000e_check_for_serdes_link;
232 break;
233 default:
234 return -E1000_ERR_CONFIG;
235 break;
236 }
237
238 return 0;
239}
240
241static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
242{
243 struct e1000_hw *hw = &adapter->hw;
244 s32 rc;
245
246 rc = e1000_init_mac_params_80003es2lan(adapter);
247 if (rc)
248 return rc;
249
250 rc = e1000_init_nvm_params_80003es2lan(hw);
251 if (rc)
252 return rc;
253
254 rc = e1000_init_phy_params_80003es2lan(hw);
255 if (rc)
256 return rc;
257
258 return 0;
259}
260
261/**
262 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
263 * @hw: pointer to the HW structure
264 *
265 * A wrapper to acquire access rights to the correct PHY. This is a
266 * function pointer entry point called by the api module.
267 **/
268static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
269{
270 u16 mask;
271
272 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
273
274 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
275}
276
277/**
278 * e1000_release_phy_80003es2lan - Release rights to access PHY
279 * @hw: pointer to the HW structure
280 *
281 * A wrapper to release access rights to the correct PHY. This is a
282 * function pointer entry point called by the api module.
283 **/
284static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
285{
286 u16 mask;
287
288 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
289 e1000_release_swfw_sync_80003es2lan(hw, mask);
290}
291
292/**
293 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
294 * @hw: pointer to the HW structure
295 *
296 * Acquire the semaphore to access the EEPROM. This is a function
297 * pointer entry point called by the api module.
298 **/
299static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
300{
301 s32 ret_val;
302
303 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
304 if (ret_val)
305 return ret_val;
306
307 ret_val = e1000e_acquire_nvm(hw);
308
309 if (ret_val)
310 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
311
312 return ret_val;
313}
314
315/**
316 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
317 * @hw: pointer to the HW structure
318 *
319 * Release the semaphore used to access the EEPROM. This is a
320 * function pointer entry point called by the api module.
321 **/
322static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
323{
324 e1000e_release_nvm(hw);
325 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
326}
327
328/**
329 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
330 * @hw: pointer to the HW structure
331 * @mask: specifies which semaphore to acquire
332 *
333 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
334 * will also specify which port we're acquiring the lock for.
335 **/
336static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
337{
338 u32 swfw_sync;
339 u32 swmask = mask;
340 u32 fwmask = mask << 16;
341 s32 i = 0;
342 s32 timeout = 200;
343
344 while (i < timeout) {
345 if (e1000e_get_hw_semaphore(hw))
346 return -E1000_ERR_SWFW_SYNC;
347
348 swfw_sync = er32(SW_FW_SYNC);
349 if (!(swfw_sync & (fwmask | swmask)))
350 break;
351
ad68076e
BA
352 /*
353 * Firmware currently using resource (fwmask)
354 * or other software thread using resource (swmask)
355 */
bc7f75fa
AK
356 e1000e_put_hw_semaphore(hw);
357 mdelay(5);
358 i++;
359 }
360
361 if (i == timeout) {
362 hw_dbg(hw,
363 "Driver can't access resource, SW_FW_SYNC timeout.\n");
364 return -E1000_ERR_SWFW_SYNC;
365 }
366
367 swfw_sync |= swmask;
368 ew32(SW_FW_SYNC, swfw_sync);
369
370 e1000e_put_hw_semaphore(hw);
371
372 return 0;
373}
374
375/**
376 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
377 * @hw: pointer to the HW structure
378 * @mask: specifies which semaphore to acquire
379 *
380 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
381 * will also specify which port we're releasing the lock for.
382 **/
383static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
384{
385 u32 swfw_sync;
386
387 while (e1000e_get_hw_semaphore(hw) != 0);
388 /* Empty */
389
390 swfw_sync = er32(SW_FW_SYNC);
391 swfw_sync &= ~mask;
392 ew32(SW_FW_SYNC, swfw_sync);
393
394 e1000e_put_hw_semaphore(hw);
395}
396
397/**
398 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
399 * @hw: pointer to the HW structure
400 * @offset: offset of the register to read
401 * @data: pointer to the data returned from the operation
402 *
403 * Read the GG82563 PHY register. This is a function pointer entry
404 * point called by the api module.
405 **/
406static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
407 u32 offset, u16 *data)
408{
409 s32 ret_val;
410 u32 page_select;
411 u16 temp;
412
413 /* Select Configuration Page */
414 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
415 page_select = GG82563_PHY_PAGE_SELECT;
416 else
ad68076e
BA
417 /*
418 * Use Alternative Page Select register to access
bc7f75fa
AK
419 * registers 30 and 31
420 */
421 page_select = GG82563_PHY_PAGE_SELECT_ALT;
422
423 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
424 ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
425 if (ret_val)
426 return ret_val;
427
ad68076e
BA
428 /*
429 * The "ready" bit in the MDIC register may be incorrectly set
bc7f75fa
AK
430 * before the device has completed the "Page Select" MDI
431 * transaction. So we wait 200us after each MDI command...
432 */
433 udelay(200);
434
435 /* ...and verify the command was successful. */
436 ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
437
438 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
439 ret_val = -E1000_ERR_PHY;
440 return ret_val;
441 }
442
443 udelay(200);
444
445 ret_val = e1000e_read_phy_reg_m88(hw,
446 MAX_PHY_REG_ADDRESS & offset,
447 data);
448
449 udelay(200);
450
451 return ret_val;
452}
453
454/**
455 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
456 * @hw: pointer to the HW structure
457 * @offset: offset of the register to read
458 * @data: value to write to the register
459 *
460 * Write to the GG82563 PHY register. This is a function pointer entry
461 * point called by the api module.
462 **/
463static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
464 u32 offset, u16 data)
465{
466 s32 ret_val;
467 u32 page_select;
468 u16 temp;
469
470 /* Select Configuration Page */
471 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
472 page_select = GG82563_PHY_PAGE_SELECT;
473 else
ad68076e
BA
474 /*
475 * Use Alternative Page Select register to access
bc7f75fa
AK
476 * registers 30 and 31
477 */
478 page_select = GG82563_PHY_PAGE_SELECT_ALT;
479
480 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
481 ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
482 if (ret_val)
483 return ret_val;
484
485
ad68076e
BA
486 /*
487 * The "ready" bit in the MDIC register may be incorrectly set
bc7f75fa
AK
488 * before the device has completed the "Page Select" MDI
489 * transaction. So we wait 200us after each MDI command...
490 */
491 udelay(200);
492
493 /* ...and verify the command was successful. */
494 ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
495
496 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
497 return -E1000_ERR_PHY;
498
499 udelay(200);
500
501 ret_val = e1000e_write_phy_reg_m88(hw,
502 MAX_PHY_REG_ADDRESS & offset,
503 data);
504
505 udelay(200);
506
507 return ret_val;
508}
509
510/**
511 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
512 * @hw: pointer to the HW structure
513 * @offset: offset of the register to read
514 * @words: number of words to write
515 * @data: buffer of data to write to the NVM
516 *
517 * Write "words" of data to the ESB2 NVM. This is a function
518 * pointer entry point called by the api module.
519 **/
520static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
521 u16 words, u16 *data)
522{
523 return e1000e_write_nvm_spi(hw, offset, words, data);
524}
525
526/**
527 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
528 * @hw: pointer to the HW structure
529 *
530 * Wait a specific amount of time for manageability processes to complete.
531 * This is a function pointer entry point called by the phy module.
532 **/
533static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
534{
535 s32 timeout = PHY_CFG_TIMEOUT;
536 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
537
538 if (hw->bus.func == 1)
539 mask = E1000_NVM_CFG_DONE_PORT_1;
540
541 while (timeout) {
542 if (er32(EEMNGCTL) & mask)
543 break;
544 msleep(1);
545 timeout--;
546 }
547 if (!timeout) {
548 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
549 return -E1000_ERR_RESET;
550 }
551
552 return 0;
553}
554
555/**
556 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
557 * @hw: pointer to the HW structure
558 *
559 * Force the speed and duplex settings onto the PHY. This is a
560 * function pointer entry point called by the phy module.
561 **/
562static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
563{
564 s32 ret_val;
565 u16 phy_data;
566 bool link;
567
ad68076e
BA
568 /*
569 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
bc7f75fa
AK
570 * forced whenever speed and duplex are forced.
571 */
572 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
573 if (ret_val)
574 return ret_val;
575
576 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
577 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
578 if (ret_val)
579 return ret_val;
580
581 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
582
583 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
584 if (ret_val)
585 return ret_val;
586
587 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
588
589 /* Reset the phy to commit changes. */
590 phy_data |= MII_CR_RESET;
591
592 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
593 if (ret_val)
594 return ret_val;
595
596 udelay(1);
597
318a94d6 598 if (hw->phy.autoneg_wait_to_complete) {
bc7f75fa
AK
599 hw_dbg(hw, "Waiting for forced speed/duplex link "
600 "on GG82563 phy.\n");
601
602 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
603 100000, &link);
604 if (ret_val)
605 return ret_val;
606
607 if (!link) {
ad68076e
BA
608 /*
609 * We didn't get link.
bc7f75fa
AK
610 * Reset the DSP and cross our fingers.
611 */
612 ret_val = e1000e_phy_reset_dsp(hw);
613 if (ret_val)
614 return ret_val;
615 }
616
617 /* Try once more */
618 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
619 100000, &link);
620 if (ret_val)
621 return ret_val;
622 }
623
624 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
625 if (ret_val)
626 return ret_val;
627
ad68076e
BA
628 /*
629 * Resetting the phy means we need to verify the TX_CLK corresponds
bc7f75fa
AK
630 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
631 */
632 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
633 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
634 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
635 else
636 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
637
ad68076e
BA
638 /*
639 * In addition, we must re-enable CRS on Tx for both half and full
bc7f75fa
AK
640 * duplex.
641 */
642 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
643 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
644
645 return ret_val;
646}
647
648/**
649 * e1000_get_cable_length_80003es2lan - Set approximate cable length
650 * @hw: pointer to the HW structure
651 *
652 * Find the approximate cable length as measured by the GG82563 PHY.
653 * This is a function pointer entry point called by the phy module.
654 **/
655static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
656{
657 struct e1000_phy_info *phy = &hw->phy;
658 s32 ret_val;
659 u16 phy_data;
660 u16 index;
661
662 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
663 if (ret_val)
664 return ret_val;
665
666 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
667 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
668 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
669
670 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
671
672 return 0;
673}
674
675/**
676 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
677 * @hw: pointer to the HW structure
678 * @speed: pointer to speed buffer
679 * @duplex: pointer to duplex buffer
680 *
681 * Retrieve the current speed and duplex configuration.
682 * This is a function pointer entry point called by the api module.
683 **/
684static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
685 u16 *duplex)
686{
687 s32 ret_val;
688
318a94d6 689 if (hw->phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
690 ret_val = e1000e_get_speed_and_duplex_copper(hw,
691 speed,
692 duplex);
693 if (ret_val)
694 return ret_val;
695 if (*speed == SPEED_1000)
696 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
697 else
698 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
699 *duplex);
700 } else {
701 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
702 speed,
703 duplex);
704 }
705
706 return ret_val;
707}
708
709/**
710 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
711 * @hw: pointer to the HW structure
712 *
713 * Perform a global reset to the ESB2 controller.
714 * This is a function pointer entry point called by the api module.
715 **/
716static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
717{
718 u32 ctrl;
719 u32 icr;
720 s32 ret_val;
721
ad68076e
BA
722 /*
723 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
724 * on the last TLP read/write transaction when MAC is reset.
725 */
726 ret_val = e1000e_disable_pcie_master(hw);
727 if (ret_val)
728 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
729
730 hw_dbg(hw, "Masking off all interrupts\n");
731 ew32(IMC, 0xffffffff);
732
733 ew32(RCTL, 0);
734 ew32(TCTL, E1000_TCTL_PSP);
735 e1e_flush();
736
737 msleep(10);
738
739 ctrl = er32(CTRL);
740
741 hw_dbg(hw, "Issuing a global reset to MAC\n");
742 ew32(CTRL, ctrl | E1000_CTRL_RST);
743
744 ret_val = e1000e_get_auto_rd_done(hw);
745 if (ret_val)
746 /* We don't want to continue accessing MAC registers. */
747 return ret_val;
748
749 /* Clear any pending interrupt events. */
750 ew32(IMC, 0xffffffff);
751 icr = er32(ICR);
752
753 return 0;
754}
755
756/**
757 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
758 * @hw: pointer to the HW structure
759 *
760 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
761 * This is a function pointer entry point called by the api module.
762 **/
763static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
764{
765 struct e1000_mac_info *mac = &hw->mac;
766 u32 reg_data;
767 s32 ret_val;
768 u16 i;
769
770 e1000_initialize_hw_bits_80003es2lan(hw);
771
772 /* Initialize identification LED */
773 ret_val = e1000e_id_led_init(hw);
774 if (ret_val) {
775 hw_dbg(hw, "Error initializing identification LED\n");
776 return ret_val;
777 }
778
779 /* Disabling VLAN filtering */
780 hw_dbg(hw, "Initializing the IEEE VLAN\n");
781 e1000e_clear_vfta(hw);
782
783 /* Setup the receive address. */
784 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
785
786 /* Zero out the Multicast HASH table */
787 hw_dbg(hw, "Zeroing the MTA\n");
788 for (i = 0; i < mac->mta_reg_count; i++)
789 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
790
791 /* Setup link and flow control */
792 ret_val = e1000e_setup_link(hw);
793
794 /* Set the transmit descriptor write-back policy */
795 reg_data = er32(TXDCTL);
796 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
797 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
798 ew32(TXDCTL, reg_data);
799
800 /* ...for both queues. */
801 reg_data = er32(TXDCTL1);
802 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
803 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
804 ew32(TXDCTL1, reg_data);
805
806 /* Enable retransmit on late collisions */
807 reg_data = er32(TCTL);
808 reg_data |= E1000_TCTL_RTLC;
809 ew32(TCTL, reg_data);
810
811 /* Configure Gigabit Carry Extend Padding */
812 reg_data = er32(TCTL_EXT);
813 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
814 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
815 ew32(TCTL_EXT, reg_data);
816
817 /* Configure Transmit Inter-Packet Gap */
818 reg_data = er32(TIPG);
819 reg_data &= ~E1000_TIPG_IPGT_MASK;
820 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
821 ew32(TIPG, reg_data);
822
823 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
824 reg_data &= ~0x00100000;
825 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
826
ad68076e
BA
827 /*
828 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
829 * important that we do this after we have tried to establish link
830 * because the symbol error count will increment wildly if there
831 * is no link.
832 */
833 e1000_clear_hw_cntrs_80003es2lan(hw);
834
835 return ret_val;
836}
837
838/**
839 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
840 * @hw: pointer to the HW structure
841 *
842 * Initializes required hardware-dependent bits needed for normal operation.
843 **/
844static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
845{
846 u32 reg;
847
848 /* Transmit Descriptor Control 0 */
849 reg = er32(TXDCTL);
850 reg |= (1 << 22);
851 ew32(TXDCTL, reg);
852
853 /* Transmit Descriptor Control 1 */
854 reg = er32(TXDCTL1);
855 reg |= (1 << 22);
856 ew32(TXDCTL1, reg);
857
858 /* Transmit Arbitration Control 0 */
859 reg = er32(TARC0);
860 reg &= ~(0xF << 27); /* 30:27 */
318a94d6 861 if (hw->phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
862 reg &= ~(1 << 20);
863 ew32(TARC0, reg);
864
865 /* Transmit Arbitration Control 1 */
866 reg = er32(TARC1);
867 if (er32(TCTL) & E1000_TCTL_MULR)
868 reg &= ~(1 << 28);
869 else
870 reg |= (1 << 28);
871 ew32(TARC1, reg);
872}
873
874/**
875 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
876 * @hw: pointer to the HW structure
877 *
878 * Setup some GG82563 PHY registers for obtaining link
879 **/
880static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
881{
882 struct e1000_phy_info *phy = &hw->phy;
883 s32 ret_val;
884 u32 ctrl_ext;
885 u16 data;
886
887 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
888 &data);
889 if (ret_val)
890 return ret_val;
891
892 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
893 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
894 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
895
896 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
897 data);
898 if (ret_val)
899 return ret_val;
900
ad68076e
BA
901 /*
902 * Options:
bc7f75fa
AK
903 * MDI/MDI-X = 0 (default)
904 * 0 - Auto for all speeds
905 * 1 - MDI mode
906 * 2 - MDI-X mode
907 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
908 */
909 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
910 if (ret_val)
911 return ret_val;
912
913 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
914
915 switch (phy->mdix) {
916 case 1:
917 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
918 break;
919 case 2:
920 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
921 break;
922 case 0:
923 default:
924 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
925 break;
926 }
927
ad68076e
BA
928 /*
929 * Options:
bc7f75fa
AK
930 * disable_polarity_correction = 0 (default)
931 * Automatic Correction for Reversed Cable Polarity
932 * 0 - Disabled
933 * 1 - Enabled
934 */
935 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
936 if (phy->disable_polarity_correction)
937 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
938
939 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
940 if (ret_val)
941 return ret_val;
942
943 /* SW Reset the PHY so all changes take effect */
944 ret_val = e1000e_commit_phy(hw);
945 if (ret_val) {
946 hw_dbg(hw, "Error Resetting the PHY\n");
947 return ret_val;
948 }
949
ad68076e
BA
950 /* Bypass Rx and Tx FIFO's */
951 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
952 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
bc7f75fa
AK
953 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
954 if (ret_val)
955 return ret_val;
956
957 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
958 if (ret_val)
959 return ret_val;
960
961 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
962 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
963 if (ret_val)
964 return ret_val;
965
966 ctrl_ext = er32(CTRL_EXT);
967 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
968 ew32(CTRL_EXT, ctrl_ext);
969
970 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
971 if (ret_val)
972 return ret_val;
973
ad68076e
BA
974 /*
975 * Do not init these registers when the HW is in IAMT mode, since the
bc7f75fa
AK
976 * firmware will have already initialized them. We only initialize
977 * them if the HW is not in IAMT mode.
978 */
979 if (!e1000e_check_mng_mode(hw)) {
980 /* Enable Electrical Idle on the PHY */
981 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
982 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
983 if (ret_val)
984 return ret_val;
985
986 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
987 if (ret_val)
988 return ret_val;
989
990 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
991 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
992 if (ret_val)
993 return ret_val;
994 }
995
ad68076e
BA
996 /*
997 * Workaround: Disable padding in Kumeran interface in the MAC
bc7f75fa
AK
998 * and in the PHY to avoid CRC errors.
999 */
1000 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1001 if (ret_val)
1002 return ret_val;
1003
1004 data |= GG82563_ICR_DIS_PADDING;
1005 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1006 if (ret_val)
1007 return ret_val;
1008
1009 return 0;
1010}
1011
1012/**
1013 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1014 * @hw: pointer to the HW structure
1015 *
1016 * Essentially a wrapper for setting up all things "copper" related.
1017 * This is a function pointer entry point called by the mac module.
1018 **/
1019static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1020{
1021 u32 ctrl;
1022 s32 ret_val;
1023 u16 reg_data;
1024
1025 ctrl = er32(CTRL);
1026 ctrl |= E1000_CTRL_SLU;
1027 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1028 ew32(CTRL, ctrl);
1029
ad68076e
BA
1030 /*
1031 * Set the mac to wait the maximum time between each
bc7f75fa 1032 * iteration and increase the max iterations when
ad68076e
BA
1033 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1034 */
bc7f75fa
AK
1035 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1036 if (ret_val)
1037 return ret_val;
1038 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1039 if (ret_val)
1040 return ret_val;
1041 reg_data |= 0x3F;
1042 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1043 if (ret_val)
1044 return ret_val;
1045 ret_val = e1000e_read_kmrn_reg(hw,
1046 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1047 &reg_data);
1048 if (ret_val)
1049 return ret_val;
1050 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ad68076e
BA
1051 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1052 reg_data);
bc7f75fa
AK
1053 if (ret_val)
1054 return ret_val;
1055
1056 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1057 if (ret_val)
1058 return ret_val;
1059
1060 ret_val = e1000e_setup_copper_link(hw);
1061
1062 return 0;
1063}
1064
1065/**
1066 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1067 * @hw: pointer to the HW structure
1068 * @duplex: current duplex setting
1069 *
1070 * Configure the KMRN interface by applying last minute quirks for
1071 * 10/100 operation.
1072 **/
1073static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1074{
1075 s32 ret_val;
1076 u32 tipg;
1077 u16 reg_data;
1078
1079 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ad68076e
BA
1080 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1081 reg_data);
bc7f75fa
AK
1082 if (ret_val)
1083 return ret_val;
1084
1085 /* Configure Transmit Inter-Packet Gap */
1086 tipg = er32(TIPG);
1087 tipg &= ~E1000_TIPG_IPGT_MASK;
1088 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1089 ew32(TIPG, tipg);
1090
1091 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1092 if (ret_val)
1093 return ret_val;
1094
1095 if (duplex == HALF_DUPLEX)
1096 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1097 else
1098 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1099
1100 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1101
1102 return 0;
1103}
1104
1105/**
1106 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1107 * @hw: pointer to the HW structure
1108 *
1109 * Configure the KMRN interface by applying last minute quirks for
1110 * gigabit operation.
1111 **/
1112static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1113{
1114 s32 ret_val;
1115 u16 reg_data;
1116 u32 tipg;
1117
1118 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ad68076e
BA
1119 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1120 reg_data);
bc7f75fa
AK
1121 if (ret_val)
1122 return ret_val;
1123
1124 /* Configure Transmit Inter-Packet Gap */
1125 tipg = er32(TIPG);
1126 tipg &= ~E1000_TIPG_IPGT_MASK;
1127 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1128 ew32(TIPG, tipg);
1129
1130 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131 if (ret_val)
1132 return ret_val;
1133
1134 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1135 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1136
1137 return ret_val;
1138}
1139
1140/**
1141 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1142 * @hw: pointer to the HW structure
1143 *
1144 * Clears the hardware counters by reading the counter registers.
1145 **/
1146static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1147{
1148 u32 temp;
1149
1150 e1000e_clear_hw_cntrs_base(hw);
1151
1152 temp = er32(PRC64);
1153 temp = er32(PRC127);
1154 temp = er32(PRC255);
1155 temp = er32(PRC511);
1156 temp = er32(PRC1023);
1157 temp = er32(PRC1522);
1158 temp = er32(PTC64);
1159 temp = er32(PTC127);
1160 temp = er32(PTC255);
1161 temp = er32(PTC511);
1162 temp = er32(PTC1023);
1163 temp = er32(PTC1522);
1164
1165 temp = er32(ALGNERRC);
1166 temp = er32(RXERRC);
1167 temp = er32(TNCRS);
1168 temp = er32(CEXTERR);
1169 temp = er32(TSCTC);
1170 temp = er32(TSCTFC);
1171
1172 temp = er32(MGTPRC);
1173 temp = er32(MGTPDC);
1174 temp = er32(MGTPTC);
1175
1176 temp = er32(IAC);
1177 temp = er32(ICRXOC);
1178
1179 temp = er32(ICRXPTC);
1180 temp = er32(ICRXATC);
1181 temp = er32(ICTXPTC);
1182 temp = er32(ICTXATC);
1183 temp = er32(ICTXQEC);
1184 temp = er32(ICTXQMTC);
1185 temp = er32(ICRXDMTC);
1186}
1187
1188static struct e1000_mac_operations es2_mac_ops = {
1189 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1190 /* check_for_link dependent on media type */
1191 .cleanup_led = e1000e_cleanup_led_generic,
1192 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1193 .get_bus_info = e1000e_get_bus_info_pcie,
1194 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1195 .led_on = e1000e_led_on_generic,
1196 .led_off = e1000e_led_off_generic,
e2de3eb6 1197 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
1198 .reset_hw = e1000_reset_hw_80003es2lan,
1199 .init_hw = e1000_init_hw_80003es2lan,
1200 .setup_link = e1000e_setup_link,
1201 /* setup_physical_interface dependent on media type */
1202};
1203
1204static struct e1000_phy_operations es2_phy_ops = {
1205 .acquire_phy = e1000_acquire_phy_80003es2lan,
1206 .check_reset_block = e1000e_check_reset_block_generic,
1207 .commit_phy = e1000e_phy_sw_reset,
1208 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1209 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1210 .get_cable_length = e1000_get_cable_length_80003es2lan,
1211 .get_phy_info = e1000e_get_phy_info_m88,
1212 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1213 .release_phy = e1000_release_phy_80003es2lan,
1214 .reset_phy = e1000e_phy_hw_reset_generic,
1215 .set_d0_lplu_state = NULL,
1216 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1217 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1218};
1219
1220static struct e1000_nvm_operations es2_nvm_ops = {
1221 .acquire_nvm = e1000_acquire_nvm_80003es2lan,
1222 .read_nvm = e1000e_read_nvm_eerd,
1223 .release_nvm = e1000_release_nvm_80003es2lan,
1224 .update_nvm = e1000e_update_nvm_checksum_generic,
1225 .valid_led_default = e1000e_valid_led_default,
1226 .validate_nvm = e1000e_validate_nvm_checksum_generic,
1227 .write_nvm = e1000_write_nvm_80003es2lan,
1228};
1229
1230struct e1000_info e1000_es2_info = {
1231 .mac = e1000_80003es2lan,
1232 .flags = FLAG_HAS_HW_VLAN_FILTER
1233 | FLAG_HAS_JUMBO_FRAMES
1234 | FLAG_HAS_STATS_PTC_PRC
1235 | FLAG_HAS_WOL
1236 | FLAG_APME_IN_CTRL3
1237 | FLAG_RX_CSUM_ENABLED
1238 | FLAG_HAS_CTRLEXT_ON_LOAD
1239 | FLAG_HAS_STATS_ICR_ICT
1240 | FLAG_RX_NEEDS_RESTART /* errata */
1241 | FLAG_TARC_SET_BIT_ZERO /* errata */
1242 | FLAG_APME_CHECK_PORT_B
1243 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1244 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1245 .pba = 38,
1246 .get_invariants = e1000_get_invariants_80003es2lan,
1247 .mac_ops = &es2_mac_ops,
1248 .phy_ops = &es2_phy_ops,
1249 .nvm_ops = &es2_nvm_ops,
1250};
1251
This page took 0.154931 seconds and 5 git commands to generate.