e1000e: fix acquisition of SW/FW/HW semaphore for ICHx parts
[deliverable/linux.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
bc7f75fa
AK
55 */
56
57#include <linux/netdevice.h>
58#include <linux/ethtool.h>
59#include <linux/delay.h>
60#include <linux/pci.h>
61
62#include "e1000.h"
63
64#define ICH_FLASH_GFPREG 0x0000
65#define ICH_FLASH_HSFSTS 0x0004
66#define ICH_FLASH_HSFCTL 0x0006
67#define ICH_FLASH_FADDR 0x0008
68#define ICH_FLASH_FDATA0 0x0010
4a770358 69#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
70
71#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
76
77#define ICH_CYCLE_READ 0
78#define ICH_CYCLE_WRITE 2
79#define ICH_CYCLE_ERASE 3
80
81#define FLASH_GFPREG_BASE_MASK 0x1FFF
82#define FLASH_SECTOR_ADDR_SHIFT 12
83
84#define ICH_FLASH_SEG_SIZE_256 256
85#define ICH_FLASH_SEG_SIZE_4K 4096
86#define ICH_FLASH_SEG_SIZE_8K 8192
87#define ICH_FLASH_SEG_SIZE_64K 65536
88
89
90#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92#define E1000_ICH_MNG_IAMT_MODE 0x2
93
94#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
98
99#define E1000_ICH_NVM_SIG_WORD 0x13
100#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
101#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
103
104#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105
106#define E1000_FEXTNVM_SW_CONFIG 1
107#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110
111#define E1000_ICH_RAR_ENTRIES 7
112
113#define PHY_PAGE_SHIFT 5
114#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118
119#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122
a4f58f54
BA
123#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124
bc7f75fa
AK
125/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126/* Offset 04h HSFSTS */
127union ich8_hws_flash_status {
128 struct ich8_hsfsts {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
138 } hsf_status;
139 u16 regval;
140};
141
142/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143/* Offset 06h FLCTL */
144union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
151 } hsf_ctrl;
152 u16 regval;
153};
154
155/* ICH Flash Region Access Permissions */
156union ich8_hws_flash_regacc {
157 struct ich8_flracc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
162 } hsf_flregacc;
163 u16 regval;
164};
165
4a770358
BA
166/* ICH Flash Protected Region */
167union ich8_flash_protected_range {
168 struct ich8_pr {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
175 } range;
176 u32 regval;
177};
178
bc7f75fa
AK
179static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
f4187b56
BA
186static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
187 u8 *data);
bc7f75fa
AK
188static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
189 u16 *data);
190static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
191 u8 size, u16 *data);
192static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 194static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
195static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
bc7f75fa
AK
203
204static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
205{
206 return readw(hw->flash_address + reg);
207}
208
209static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
210{
211 return readl(hw->flash_address + reg);
212}
213
214static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
215{
216 writew(val, hw->flash_address + reg);
217}
218
219static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
220{
221 writel(val, hw->flash_address + reg);
222}
223
224#define er16flash(reg) __er16flash(hw, (reg))
225#define er32flash(reg) __er32flash(hw, (reg))
226#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
228
a4f58f54
BA
229/**
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
232 *
233 * Initialize family-specific PHY parameters and function pointers.
234 **/
235static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
236{
237 struct e1000_phy_info *phy = &hw->phy;
238 s32 ret_val = 0;
239
240 phy->addr = 1;
241 phy->reset_delay_us = 100;
242
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
247
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
251
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
259 }
260
261 return ret_val;
262}
263
bc7f75fa
AK
264/**
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
267 *
268 * Initialize family-specific PHY parameters and function pointers.
269 **/
270static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
271{
272 struct e1000_phy_info *phy = &hw->phy;
273 s32 ret_val;
274 u16 i = 0;
275
276 phy->addr = 1;
277 phy->reset_delay_us = 100;
278
97ac8cae
BA
279 /*
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
282 */
283 ret_val = e1000e_determine_phy_address(hw);
284 if (ret_val) {
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
288 if (ret_val)
289 return ret_val;
290 }
291
bc7f75fa
AK
292 phy->id = 0;
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
294 (i++ < 100)) {
295 msleep(1);
296 ret_val = e1000e_get_phy_id(hw);
297 if (ret_val)
298 return ret_val;
299 }
300
301 /* Verify phy id */
302 switch (phy->id) {
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
306 break;
307 case IFE_E_PHY_ID:
308 case IFE_PLUS_E_PHY_ID:
309 case IFE_C_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
312 break;
97ac8cae
BA
313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
319 break;
bc7f75fa
AK
320 default:
321 return -E1000_ERR_PHY;
322 break;
323 }
324
a4f58f54
BA
325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
326
bc7f75fa
AK
327 return 0;
328}
329
330/**
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
333 *
334 * Initialize family-specific NVM parameters and function
335 * pointers.
336 **/
337static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
338{
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
28c9195a 341 union ich8_hws_flash_status hsfsts;
bc7f75fa
AK
342 u32 gfpreg;
343 u32 sector_base_addr;
344 u32 sector_end_addr;
345 u16 i;
346
ad68076e 347 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa
AK
348 if (!hw->flash_address) {
349 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
350 return -E1000_ERR_CONFIG;
351 }
352
353 nvm->type = e1000_nvm_flash_sw;
354
355 gfpreg = er32flash(ICH_FLASH_GFPREG);
356
ad68076e
BA
357 /*
358 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 359 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
360 * the overall size.
361 */
bc7f75fa
AK
362 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
363 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
364
365 /* flash_base_addr is byte-aligned */
366 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
367
ad68076e
BA
368 /*
369 * find total size of the NVM, then cut in half since the total
370 * size represents two separate NVM banks.
371 */
bc7f75fa
AK
372 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
373 << FLASH_SECTOR_ADDR_SHIFT;
374 nvm->flash_bank_size /= 2;
375 /* Adjust to word count */
376 nvm->flash_bank_size /= sizeof(u16);
377
28c9195a
BA
378 /*
379 * Make sure the flash bank size does not overwrite the 4k
380 * sector ranges. We may have 64k allotted to us but we only care
381 * about the first 2 4k sectors. Therefore, if we have anything less
382 * than 64k set in the HSFSTS register, we will reduce the bank size
383 * down to 4k and let the rest remain unused. If berasesz == 3, then
384 * we are working in 64k mode. Otherwise we are not.
385 */
386 if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
387 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
388 if (hsfsts.hsf_status.berasesz != 3)
389 nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
390 }
391
bc7f75fa
AK
392 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
393
394 /* Clear shadow ram */
395 for (i = 0; i < nvm->word_size; i++) {
396 dev_spec->shadow_ram[i].modified = 0;
397 dev_spec->shadow_ram[i].value = 0xFFFF;
398 }
399
400 return 0;
401}
402
403/**
404 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
405 * @hw: pointer to the HW structure
406 *
407 * Initialize family-specific MAC parameters and function
408 * pointers.
409 **/
410static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 struct e1000_mac_info *mac = &hw->mac;
414
415 /* Set media type function pointer */
318a94d6 416 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
417
418 /* Set mta register count */
419 mac->mta_reg_count = 32;
420 /* Set rar entry count */
421 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
422 if (mac->type == e1000_ich8lan)
423 mac->rar_entry_count--;
424 /* Set if manageability features are enabled. */
425 mac->arc_subsystem_valid = 1;
426
a4f58f54
BA
427 /* LED operations */
428 switch (mac->type) {
429 case e1000_ich8lan:
430 case e1000_ich9lan:
431 case e1000_ich10lan:
432 /* ID LED init */
433 mac->ops.id_led_init = e1000e_id_led_init;
434 /* setup LED */
435 mac->ops.setup_led = e1000e_setup_led_generic;
436 /* cleanup LED */
437 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
438 /* turn on/off LED */
439 mac->ops.led_on = e1000_led_on_ich8lan;
440 mac->ops.led_off = e1000_led_off_ich8lan;
441 break;
442 case e1000_pchlan:
443 /* ID LED init */
444 mac->ops.id_led_init = e1000_id_led_init_pchlan;
445 /* setup LED */
446 mac->ops.setup_led = e1000_setup_led_pchlan;
447 /* cleanup LED */
448 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
449 /* turn on/off LED */
450 mac->ops.led_on = e1000_led_on_pchlan;
451 mac->ops.led_off = e1000_led_off_pchlan;
452 break;
453 default:
454 break;
455 }
456
bc7f75fa
AK
457 /* Enable PCS Lock-loss workaround for ICH8 */
458 if (mac->type == e1000_ich8lan)
459 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
460
461 return 0;
462}
463
7d3cabbc
BA
464/**
465 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
466 * @hw: pointer to the HW structure
467 *
468 * Checks to see of the link status of the hardware has changed. If a
469 * change in link status has been detected, then we read the PHY registers
470 * to get the current speed/duplex if link exists.
471 **/
472static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
473{
474 struct e1000_mac_info *mac = &hw->mac;
475 s32 ret_val;
476 bool link;
477
478 /*
479 * We only want to go out to the PHY registers to see if Auto-Neg
480 * has completed and/or if our link status has changed. The
481 * get_link_status flag is set upon receiving a Link Status
482 * Change or Rx Sequence Error interrupt.
483 */
484 if (!mac->get_link_status) {
485 ret_val = 0;
486 goto out;
487 }
488
489 if (hw->mac.type == e1000_pchlan) {
490 ret_val = e1000e_write_kmrn_reg(hw,
491 E1000_KMRNCTRLSTA_K1_CONFIG,
492 E1000_KMRNCTRLSTA_K1_ENABLE);
493 if (ret_val)
494 goto out;
495 }
496
497 /*
498 * First we want to see if the MII Status Register reports
499 * link. If so, then we want to get the current speed/duplex
500 * of the PHY.
501 */
502 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
503 if (ret_val)
504 goto out;
505
506 if (!link)
507 goto out; /* No link detected */
508
509 mac->get_link_status = false;
510
511 if (hw->phy.type == e1000_phy_82578) {
512 ret_val = e1000_link_stall_workaround_hv(hw);
513 if (ret_val)
514 goto out;
515 }
516
517 /*
518 * Check if there was DownShift, must be checked
519 * immediately after link-up
520 */
521 e1000e_check_downshift(hw);
522
523 /*
524 * If we are forcing speed/duplex, then we simply return since
525 * we have already determined whether we have link or not.
526 */
527 if (!mac->autoneg) {
528 ret_val = -E1000_ERR_CONFIG;
529 goto out;
530 }
531
532 /*
533 * Auto-Neg is enabled. Auto Speed Detection takes care
534 * of MAC speed/duplex configuration. So we only need to
535 * configure Collision Distance in the MAC.
536 */
537 e1000e_config_collision_dist(hw);
538
539 /*
540 * Configure Flow Control now that Auto-Neg has completed.
541 * First, we need to restore the desired flow control
542 * settings because we may have had to re-autoneg with a
543 * different link partner.
544 */
545 ret_val = e1000e_config_fc_after_link_up(hw);
546 if (ret_val)
547 hw_dbg(hw, "Error configuring flow control\n");
548
549out:
550 return ret_val;
551}
552
69e3fd8c 553static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
554{
555 struct e1000_hw *hw = &adapter->hw;
556 s32 rc;
557
558 rc = e1000_init_mac_params_ich8lan(adapter);
559 if (rc)
560 return rc;
561
562 rc = e1000_init_nvm_params_ich8lan(hw);
563 if (rc)
564 return rc;
565
a4f58f54
BA
566 if (hw->mac.type == e1000_pchlan)
567 rc = e1000_init_phy_params_pchlan(hw);
568 else
569 rc = e1000_init_phy_params_ich8lan(hw);
bc7f75fa
AK
570 if (rc)
571 return rc;
572
2adc55c9
BA
573 if (adapter->hw.phy.type == e1000_phy_ife) {
574 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
575 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
576 }
577
bc7f75fa
AK
578 if ((adapter->hw.mac.type == e1000_ich8lan) &&
579 (adapter->hw.phy.type == e1000_phy_igp_3))
580 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
581
582 return 0;
583}
584
717d438d 585static DEFINE_MUTEX(nvm_mutex);
717d438d 586
bc7f75fa
AK
587/**
588 * e1000_acquire_swflag_ich8lan - Acquire software control flag
589 * @hw: pointer to the HW structure
590 *
591 * Acquires the software control flag for performing NVM and PHY
592 * operations. This is a function pointer entry point only called by
593 * read/write routines for the PHY and NVM parts.
594 **/
595static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
596{
373a88d7
BA
597 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
598 s32 ret_val = 0;
bc7f75fa 599
95b866d5 600 might_sleep();
717d438d 601
0a834a36 602 mutex_lock(&nvm_mutex);
717d438d 603
bc7f75fa
AK
604 while (timeout) {
605 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
606 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
607 break;
bc7f75fa 608
373a88d7
BA
609 mdelay(1);
610 timeout--;
611 }
612
613 if (!timeout) {
614 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
615 ret_val = -E1000_ERR_CONFIG;
616 goto out;
617 }
618
619 timeout = PHY_CFG_TIMEOUT * 2;
620
621 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
622 ew32(EXTCNF_CTRL, extcnf_ctrl);
623
624 while (timeout) {
625 extcnf_ctrl = er32(EXTCNF_CTRL);
626 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
627 break;
a4f58f54 628
bc7f75fa
AK
629 mdelay(1);
630 timeout--;
631 }
632
633 if (!timeout) {
373a88d7 634 hw_dbg(hw, "Failed to acquire the semaphore.\n");
2e2e8d53
BA
635 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
636 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
637 ret_val = -E1000_ERR_CONFIG;
638 goto out;
bc7f75fa
AK
639 }
640
373a88d7
BA
641out:
642 if (ret_val)
643 mutex_unlock(&nvm_mutex);
644
645 return ret_val;
bc7f75fa
AK
646}
647
648/**
649 * e1000_release_swflag_ich8lan - Release software control flag
650 * @hw: pointer to the HW structure
651 *
652 * Releases the software control flag for performing NVM and PHY operations.
653 * This is a function pointer entry point only called by read/write
654 * routines for the PHY and NVM parts.
655 **/
656static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
657{
658 u32 extcnf_ctrl;
659
660 extcnf_ctrl = er32(EXTCNF_CTRL);
661 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
662 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 663
717d438d 664 mutex_unlock(&nvm_mutex);
bc7f75fa
AK
665}
666
4662e82b
BA
667/**
668 * e1000_check_mng_mode_ich8lan - Checks management mode
669 * @hw: pointer to the HW structure
670 *
671 * This checks if the adapter has manageability enabled.
672 * This is a function pointer entry point only called by read/write
673 * routines for the PHY and NVM parts.
674 **/
675static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
676{
677 u32 fwsm = er32(FWSM);
678
679 return (fwsm & E1000_FWSM_MODE_MASK) ==
680 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
681}
682
bc7f75fa
AK
683/**
684 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
685 * @hw: pointer to the HW structure
686 *
687 * Checks if firmware is blocking the reset of the PHY.
688 * This is a function pointer entry point only called by
689 * reset routines.
690 **/
691static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
692{
693 u32 fwsm;
694
695 fwsm = er32(FWSM);
696
697 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
698}
699
700/**
701 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
702 * @hw: pointer to the HW structure
703 *
704 * Forces the speed and duplex settings of the PHY.
705 * This is a function pointer entry point only called by
706 * PHY setup routines.
707 **/
708static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
709{
710 struct e1000_phy_info *phy = &hw->phy;
711 s32 ret_val;
712 u16 data;
713 bool link;
714
715 if (phy->type != e1000_phy_ife) {
716 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
717 return ret_val;
718 }
719
720 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
721 if (ret_val)
722 return ret_val;
723
724 e1000e_phy_force_speed_duplex_setup(hw, &data);
725
726 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
727 if (ret_val)
728 return ret_val;
729
730 /* Disable MDI-X support for 10/100 */
731 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
732 if (ret_val)
733 return ret_val;
734
735 data &= ~IFE_PMC_AUTO_MDIX;
736 data &= ~IFE_PMC_FORCE_MDIX;
737
738 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
739 if (ret_val)
740 return ret_val;
741
742 hw_dbg(hw, "IFE PMC: %X\n", data);
743
744 udelay(1);
745
318a94d6 746 if (phy->autoneg_wait_to_complete) {
bc7f75fa
AK
747 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
748
749 ret_val = e1000e_phy_has_link_generic(hw,
750 PHY_FORCE_LIMIT,
751 100000,
752 &link);
753 if (ret_val)
754 return ret_val;
755
756 if (!link)
757 hw_dbg(hw, "Link taking longer than expected.\n");
758
759 /* Try once more */
760 ret_val = e1000e_phy_has_link_generic(hw,
761 PHY_FORCE_LIMIT,
762 100000,
763 &link);
764 if (ret_val)
765 return ret_val;
766 }
767
768 return 0;
769}
770
a4f58f54
BA
771/**
772 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
773 * done after every PHY reset.
774 **/
775static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
776{
777 s32 ret_val = 0;
778
779 if (hw->mac.type != e1000_pchlan)
780 return ret_val;
781
782 if (((hw->phy.type == e1000_phy_82577) &&
783 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
784 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
785 /* Disable generation of early preamble */
786 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
787 if (ret_val)
788 return ret_val;
789
790 /* Preamble tuning for SSC */
791 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
792 if (ret_val)
793 return ret_val;
794 }
795
796 if (hw->phy.type == e1000_phy_82578) {
797 /*
798 * Return registers to default by doing a soft reset then
799 * writing 0x3140 to the control register.
800 */
801 if (hw->phy.revision < 2) {
802 e1000e_phy_sw_reset(hw);
803 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
804 }
805 }
806
807 /* Select page 0 */
808 ret_val = hw->phy.ops.acquire_phy(hw);
809 if (ret_val)
810 return ret_val;
811 hw->phy.addr = 1;
812 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
813 hw->phy.ops.release_phy(hw);
814
815 return ret_val;
816}
817
fc0c7760
BA
818/**
819 * e1000_lan_init_done_ich8lan - Check for PHY config completion
820 * @hw: pointer to the HW structure
821 *
822 * Check the appropriate indication the MAC has finished configuring the
823 * PHY after a software reset.
824 **/
825static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
826{
827 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
828
829 /* Wait for basic configuration completes before proceeding */
830 do {
831 data = er32(STATUS);
832 data &= E1000_STATUS_LAN_INIT_DONE;
833 udelay(100);
834 } while ((!data) && --loop);
835
836 /*
837 * If basic configuration is incomplete before the above loop
838 * count reaches 0, loading the configuration from NVM will
839 * leave the PHY in a bad state possibly resulting in no link.
840 */
841 if (loop == 0)
842 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
843
844 /* Clear the Init Done bit for the next init event */
845 data = er32(STATUS);
846 data &= ~E1000_STATUS_LAN_INIT_DONE;
847 ew32(STATUS, data);
848}
849
bc7f75fa
AK
850/**
851 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
852 * @hw: pointer to the HW structure
853 *
854 * Resets the PHY
855 * This is a function pointer entry point called by drivers
856 * or other shared routines.
857 **/
858static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
859{
860 struct e1000_phy_info *phy = &hw->phy;
861 u32 i;
862 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
863 s32 ret_val;
bc7f75fa
AK
864 u16 word_addr, reg_data, reg_addr, phy_page = 0;
865
866 ret_val = e1000e_phy_hw_reset_generic(hw);
867 if (ret_val)
868 return ret_val;
869
fc0c7760
BA
870 /* Allow time for h/w to get to a quiescent state after reset */
871 mdelay(10);
872
a4f58f54
BA
873 if (hw->mac.type == e1000_pchlan) {
874 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
875 if (ret_val)
876 return ret_val;
877 }
878
ad68076e
BA
879 /*
880 * Initialize the PHY from the NVM on ICH platforms. This
bc7f75fa
AK
881 * is needed due to an issue where the NVM configuration is
882 * not properly autoloaded after power transitions.
883 * Therefore, after each PHY reset, we will load the
884 * configuration data out of the NVM manually.
885 */
886 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
887 struct e1000_adapter *adapter = hw->adapter;
888
889 /* Check if SW needs configure the PHY */
890 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
891 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
892 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
893 else
894 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
895
896 data = er32(FEXTNVM);
897 if (!(data & sw_cfg_mask))
898 return 0;
899
fc0c7760
BA
900 /* Wait for basic configuration completes before proceeding */
901 e1000_lan_init_done_ich8lan(hw);
bc7f75fa 902
ad68076e
BA
903 /*
904 * Make sure HW does not configure LCD from PHY
905 * extended configuration before SW configuration
906 */
bc7f75fa
AK
907 data = er32(EXTCNF_CTRL);
908 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
909 return 0;
910
911 cnf_size = er32(EXTCNF_SIZE);
912 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
913 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
914 if (!cnf_size)
915 return 0;
916
917 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
918 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
919
ad68076e 920 /* Configure LCD from extended configuration region. */
bc7f75fa
AK
921
922 /* cnf_base_addr is in DWORD */
923 word_addr = (u16)(cnf_base_addr << 1);
924
925 for (i = 0; i < cnf_size; i++) {
926 ret_val = e1000_read_nvm(hw,
927 (word_addr + i * 2),
928 1,
929 &reg_data);
930 if (ret_val)
931 return ret_val;
932
933 ret_val = e1000_read_nvm(hw,
934 (word_addr + i * 2 + 1),
935 1,
936 &reg_addr);
937 if (ret_val)
938 return ret_val;
939
940 /* Save off the PHY page for future writes. */
941 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
942 phy_page = reg_data;
943 continue;
944 }
945
946 reg_addr |= phy_page;
947
948 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
949 if (ret_val)
950 return ret_val;
951 }
952 }
953
954 return 0;
955}
956
957/**
958 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
959 * @hw: pointer to the HW structure
960 *
961 * Populates "phy" structure with various feature states.
962 * This function is only called by other family-specific
963 * routines.
964 **/
965static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
966{
967 struct e1000_phy_info *phy = &hw->phy;
968 s32 ret_val;
969 u16 data;
970 bool link;
971
972 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
973 if (ret_val)
974 return ret_val;
975
976 if (!link) {
977 hw_dbg(hw, "Phy info is only valid if link is up\n");
978 return -E1000_ERR_CONFIG;
979 }
980
981 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
982 if (ret_val)
983 return ret_val;
984 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
985
986 if (phy->polarity_correction) {
a4f58f54 987 ret_val = phy->ops.check_polarity(hw);
bc7f75fa
AK
988 if (ret_val)
989 return ret_val;
990 } else {
991 /* Polarity is forced */
992 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
993 ? e1000_rev_polarity_reversed
994 : e1000_rev_polarity_normal;
995 }
996
997 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
998 if (ret_val)
999 return ret_val;
1000
1001 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1002
1003 /* The following parameters are undefined for 10/100 operation. */
1004 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1005 phy->local_rx = e1000_1000t_rx_status_undefined;
1006 phy->remote_rx = e1000_1000t_rx_status_undefined;
1007
1008 return 0;
1009}
1010
1011/**
1012 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1013 * @hw: pointer to the HW structure
1014 *
1015 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1016 * This is a function pointer entry point called by drivers
1017 * or other shared routines.
1018 **/
1019static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1020{
1021 switch (hw->phy.type) {
1022 case e1000_phy_ife:
1023 return e1000_get_phy_info_ife_ich8lan(hw);
1024 break;
1025 case e1000_phy_igp_3:
97ac8cae 1026 case e1000_phy_bm:
a4f58f54
BA
1027 case e1000_phy_82578:
1028 case e1000_phy_82577:
bc7f75fa
AK
1029 return e1000e_get_phy_info_igp(hw);
1030 break;
1031 default:
1032 break;
1033 }
1034
1035 return -E1000_ERR_PHY_TYPE;
1036}
1037
1038/**
1039 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1040 * @hw: pointer to the HW structure
1041 *
489815ce 1042 * Polarity is determined on the polarity reversal feature being enabled.
bc7f75fa
AK
1043 * This function is only called by other family-specific
1044 * routines.
1045 **/
1046static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1047{
1048 struct e1000_phy_info *phy = &hw->phy;
1049 s32 ret_val;
1050 u16 phy_data, offset, mask;
1051
ad68076e
BA
1052 /*
1053 * Polarity is determined based on the reversal feature being enabled.
bc7f75fa
AK
1054 */
1055 if (phy->polarity_correction) {
1056 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1057 mask = IFE_PESC_POLARITY_REVERSED;
1058 } else {
1059 offset = IFE_PHY_SPECIAL_CONTROL;
1060 mask = IFE_PSC_FORCE_POLARITY;
1061 }
1062
1063 ret_val = e1e_rphy(hw, offset, &phy_data);
1064
1065 if (!ret_val)
1066 phy->cable_polarity = (phy_data & mask)
1067 ? e1000_rev_polarity_reversed
1068 : e1000_rev_polarity_normal;
1069
1070 return ret_val;
1071}
1072
1073/**
1074 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1075 * @hw: pointer to the HW structure
1076 * @active: TRUE to enable LPLU, FALSE to disable
1077 *
1078 * Sets the LPLU D0 state according to the active flag. When
1079 * activating LPLU this function also disables smart speed
1080 * and vice versa. LPLU will not be activated unless the
1081 * device autonegotiation advertisement meets standards of
1082 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1083 * This is a function pointer entry point only called by
1084 * PHY setup routines.
1085 **/
1086static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1087{
1088 struct e1000_phy_info *phy = &hw->phy;
1089 u32 phy_ctrl;
1090 s32 ret_val = 0;
1091 u16 data;
1092
97ac8cae 1093 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1094 return ret_val;
1095
1096 phy_ctrl = er32(PHY_CTRL);
1097
1098 if (active) {
1099 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1100 ew32(PHY_CTRL, phy_ctrl);
1101
60f1292f
BA
1102 if (phy->type != e1000_phy_igp_3)
1103 return 0;
1104
ad68076e
BA
1105 /*
1106 * Call gig speed drop workaround on LPLU before accessing
1107 * any PHY registers
1108 */
60f1292f 1109 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1110 e1000e_gig_downshift_workaround_ich8lan(hw);
1111
1112 /* When LPLU is enabled, we should disable SmartSpeed */
1113 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1114 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1115 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1116 if (ret_val)
1117 return ret_val;
1118 } else {
1119 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1120 ew32(PHY_CTRL, phy_ctrl);
1121
60f1292f
BA
1122 if (phy->type != e1000_phy_igp_3)
1123 return 0;
1124
ad68076e
BA
1125 /*
1126 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1127 * during Dx states where the power conservation is most
1128 * important. During driver activity we should enable
ad68076e
BA
1129 * SmartSpeed, so performance is maintained.
1130 */
bc7f75fa
AK
1131 if (phy->smart_speed == e1000_smart_speed_on) {
1132 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1133 &data);
bc7f75fa
AK
1134 if (ret_val)
1135 return ret_val;
1136
1137 data |= IGP01E1000_PSCFR_SMART_SPEED;
1138 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1139 data);
bc7f75fa
AK
1140 if (ret_val)
1141 return ret_val;
1142 } else if (phy->smart_speed == e1000_smart_speed_off) {
1143 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1144 &data);
bc7f75fa
AK
1145 if (ret_val)
1146 return ret_val;
1147
1148 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1149 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1150 data);
bc7f75fa
AK
1151 if (ret_val)
1152 return ret_val;
1153 }
1154 }
1155
1156 return 0;
1157}
1158
1159/**
1160 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1161 * @hw: pointer to the HW structure
1162 * @active: TRUE to enable LPLU, FALSE to disable
1163 *
1164 * Sets the LPLU D3 state according to the active flag. When
1165 * activating LPLU this function also disables smart speed
1166 * and vice versa. LPLU will not be activated unless the
1167 * device autonegotiation advertisement meets standards of
1168 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1169 * This is a function pointer entry point only called by
1170 * PHY setup routines.
1171 **/
1172static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1173{
1174 struct e1000_phy_info *phy = &hw->phy;
1175 u32 phy_ctrl;
1176 s32 ret_val;
1177 u16 data;
1178
1179 phy_ctrl = er32(PHY_CTRL);
1180
1181 if (!active) {
1182 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1183 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1184
1185 if (phy->type != e1000_phy_igp_3)
1186 return 0;
1187
ad68076e
BA
1188 /*
1189 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1190 * during Dx states where the power conservation is most
1191 * important. During driver activity we should enable
ad68076e
BA
1192 * SmartSpeed, so performance is maintained.
1193 */
bc7f75fa 1194 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1195 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1196 &data);
bc7f75fa
AK
1197 if (ret_val)
1198 return ret_val;
1199
1200 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1201 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1202 data);
bc7f75fa
AK
1203 if (ret_val)
1204 return ret_val;
1205 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1206 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1207 &data);
bc7f75fa
AK
1208 if (ret_val)
1209 return ret_val;
1210
1211 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1212 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1213 data);
bc7f75fa
AK
1214 if (ret_val)
1215 return ret_val;
1216 }
1217 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1218 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1219 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1220 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1221 ew32(PHY_CTRL, phy_ctrl);
1222
60f1292f
BA
1223 if (phy->type != e1000_phy_igp_3)
1224 return 0;
1225
ad68076e
BA
1226 /*
1227 * Call gig speed drop workaround on LPLU before accessing
1228 * any PHY registers
1229 */
60f1292f 1230 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1231 e1000e_gig_downshift_workaround_ich8lan(hw);
1232
1233 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1234 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1235 if (ret_val)
1236 return ret_val;
1237
1238 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1239 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1240 }
1241
1242 return 0;
1243}
1244
f4187b56
BA
1245/**
1246 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1247 * @hw: pointer to the HW structure
1248 * @bank: pointer to the variable that returns the active bank
1249 *
1250 * Reads signature byte from the NVM using the flash access registers.
e243455d 1251 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1252 **/
1253static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1254{
e243455d 1255 u32 eecd;
f4187b56 1256 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1257 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1258 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1259 u8 sig_byte = 0;
1260 s32 ret_val = 0;
f4187b56 1261
e243455d
BA
1262 switch (hw->mac.type) {
1263 case e1000_ich8lan:
1264 case e1000_ich9lan:
1265 eecd = er32(EECD);
1266 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1267 E1000_EECD_SEC1VAL_VALID_MASK) {
1268 if (eecd & E1000_EECD_SEC1VAL)
1269 *bank = 1;
1270 else
1271 *bank = 0;
1272
1273 return 0;
1274 }
1275 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1276 "reading flash signature\n");
1277 /* fall-thru */
1278 default:
1279 /* set bank to 0 in case flash read fails */
1280 *bank = 0;
1281
1282 /* Check bank 0 */
1283 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1284 &sig_byte);
1285 if (ret_val)
1286 return ret_val;
1287 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1288 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 1289 *bank = 0;
e243455d
BA
1290 return 0;
1291 }
f4187b56 1292
e243455d
BA
1293 /* Check bank 1 */
1294 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1295 bank1_offset,
1296 &sig_byte);
1297 if (ret_val)
1298 return ret_val;
1299 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1300 E1000_ICH_NVM_SIG_VALUE) {
1301 *bank = 1;
1302 return 0;
f4187b56 1303 }
e243455d
BA
1304
1305 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1306 return -E1000_ERR_NVM;
f4187b56
BA
1307 }
1308
1309 return 0;
1310}
1311
bc7f75fa
AK
1312/**
1313 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1314 * @hw: pointer to the HW structure
1315 * @offset: The offset (in bytes) of the word(s) to read.
1316 * @words: Size of data to read in words
1317 * @data: Pointer to the word(s) to read at offset.
1318 *
1319 * Reads a word(s) from the NVM using the flash access registers.
1320 **/
1321static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1322 u16 *data)
1323{
1324 struct e1000_nvm_info *nvm = &hw->nvm;
1325 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1326 u32 act_offset;
1327 s32 ret_val;
f4187b56 1328 u32 bank = 0;
bc7f75fa
AK
1329 u16 i, word;
1330
1331 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1332 (words == 0)) {
1333 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1334 return -E1000_ERR_NVM;
1335 }
1336
1337 ret_val = e1000_acquire_swflag_ich8lan(hw);
1338 if (ret_val)
e243455d 1339 goto out;
bc7f75fa 1340
f4187b56
BA
1341 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1342 if (ret_val)
e243455d 1343 goto release;
f4187b56
BA
1344
1345 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
1346 act_offset += offset;
1347
1348 for (i = 0; i < words; i++) {
1349 if ((dev_spec->shadow_ram) &&
1350 (dev_spec->shadow_ram[offset+i].modified)) {
1351 data[i] = dev_spec->shadow_ram[offset+i].value;
1352 } else {
1353 ret_val = e1000_read_flash_word_ich8lan(hw,
1354 act_offset + i,
1355 &word);
1356 if (ret_val)
1357 break;
1358 data[i] = word;
1359 }
1360 }
1361
e243455d 1362release:
bc7f75fa
AK
1363 e1000_release_swflag_ich8lan(hw);
1364
e243455d
BA
1365out:
1366 if (ret_val)
1367 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1368
bc7f75fa
AK
1369 return ret_val;
1370}
1371
1372/**
1373 * e1000_flash_cycle_init_ich8lan - Initialize flash
1374 * @hw: pointer to the HW structure
1375 *
1376 * This function does initial flash setup so that a new read/write/erase cycle
1377 * can be started.
1378 **/
1379static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1380{
1381 union ich8_hws_flash_status hsfsts;
1382 s32 ret_val = -E1000_ERR_NVM;
1383 s32 i = 0;
1384
1385 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1386
1387 /* Check if the flash descriptor is valid */
1388 if (hsfsts.hsf_status.fldesvalid == 0) {
1389 hw_dbg(hw, "Flash descriptor invalid. "
1390 "SW Sequencing must be used.");
1391 return -E1000_ERR_NVM;
1392 }
1393
1394 /* Clear FCERR and DAEL in hw status by writing 1 */
1395 hsfsts.hsf_status.flcerr = 1;
1396 hsfsts.hsf_status.dael = 1;
1397
1398 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1399
ad68076e
BA
1400 /*
1401 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
1402 * bit to check against, in order to start a new cycle or
1403 * FDONE bit should be changed in the hardware so that it
489815ce 1404 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
1405 * indication whether a cycle is in progress or has been
1406 * completed.
1407 */
1408
1409 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
1410 /*
1411 * There is no cycle running at present,
1412 * so we can start a cycle
1413 * Begin by setting Flash Cycle Done.
1414 */
bc7f75fa
AK
1415 hsfsts.hsf_status.flcdone = 1;
1416 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1417 ret_val = 0;
1418 } else {
ad68076e
BA
1419 /*
1420 * otherwise poll for sometime so the current
1421 * cycle has a chance to end before giving up.
1422 */
bc7f75fa
AK
1423 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1424 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1425 if (hsfsts.hsf_status.flcinprog == 0) {
1426 ret_val = 0;
1427 break;
1428 }
1429 udelay(1);
1430 }
1431 if (ret_val == 0) {
ad68076e
BA
1432 /*
1433 * Successful in waiting for previous cycle to timeout,
1434 * now set the Flash Cycle Done.
1435 */
bc7f75fa
AK
1436 hsfsts.hsf_status.flcdone = 1;
1437 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1438 } else {
1439 hw_dbg(hw, "Flash controller busy, cannot get access");
1440 }
1441 }
1442
1443 return ret_val;
1444}
1445
1446/**
1447 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1448 * @hw: pointer to the HW structure
1449 * @timeout: maximum time to wait for completion
1450 *
1451 * This function starts a flash cycle and waits for its completion.
1452 **/
1453static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1454{
1455 union ich8_hws_flash_ctrl hsflctl;
1456 union ich8_hws_flash_status hsfsts;
1457 s32 ret_val = -E1000_ERR_NVM;
1458 u32 i = 0;
1459
1460 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1461 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1462 hsflctl.hsf_ctrl.flcgo = 1;
1463 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1464
1465 /* wait till FDONE bit is set to 1 */
1466 do {
1467 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1468 if (hsfsts.hsf_status.flcdone == 1)
1469 break;
1470 udelay(1);
1471 } while (i++ < timeout);
1472
1473 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1474 return 0;
1475
1476 return ret_val;
1477}
1478
1479/**
1480 * e1000_read_flash_word_ich8lan - Read word from flash
1481 * @hw: pointer to the HW structure
1482 * @offset: offset to data location
1483 * @data: pointer to the location for storing the data
1484 *
1485 * Reads the flash word at offset into data. Offset is converted
1486 * to bytes before read.
1487 **/
1488static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1489 u16 *data)
1490{
1491 /* Must convert offset into bytes. */
1492 offset <<= 1;
1493
1494 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1495}
1496
f4187b56
BA
1497/**
1498 * e1000_read_flash_byte_ich8lan - Read byte from flash
1499 * @hw: pointer to the HW structure
1500 * @offset: The offset of the byte to read.
1501 * @data: Pointer to a byte to store the value read.
1502 *
1503 * Reads a single byte from the NVM using the flash access registers.
1504 **/
1505static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1506 u8 *data)
1507{
1508 s32 ret_val;
1509 u16 word = 0;
1510
1511 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1512 if (ret_val)
1513 return ret_val;
1514
1515 *data = (u8)word;
1516
1517 return 0;
1518}
1519
bc7f75fa
AK
1520/**
1521 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1522 * @hw: pointer to the HW structure
1523 * @offset: The offset (in bytes) of the byte or word to read.
1524 * @size: Size of data to read, 1=byte 2=word
1525 * @data: Pointer to the word to store the value read.
1526 *
1527 * Reads a byte or word from the NVM using the flash access registers.
1528 **/
1529static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1530 u8 size, u16 *data)
1531{
1532 union ich8_hws_flash_status hsfsts;
1533 union ich8_hws_flash_ctrl hsflctl;
1534 u32 flash_linear_addr;
1535 u32 flash_data = 0;
1536 s32 ret_val = -E1000_ERR_NVM;
1537 u8 count = 0;
1538
1539 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1540 return -E1000_ERR_NVM;
1541
1542 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1543 hw->nvm.flash_base_addr;
1544
1545 do {
1546 udelay(1);
1547 /* Steps */
1548 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1549 if (ret_val != 0)
1550 break;
1551
1552 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1553 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1554 hsflctl.hsf_ctrl.fldbcount = size - 1;
1555 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1556 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1557
1558 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1559
1560 ret_val = e1000_flash_cycle_ich8lan(hw,
1561 ICH_FLASH_READ_COMMAND_TIMEOUT);
1562
ad68076e
BA
1563 /*
1564 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
1565 * and try the whole sequence a few more times, else
1566 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
1567 * least significant byte first msb to lsb
1568 */
bc7f75fa
AK
1569 if (ret_val == 0) {
1570 flash_data = er32flash(ICH_FLASH_FDATA0);
1571 if (size == 1) {
1572 *data = (u8)(flash_data & 0x000000FF);
1573 } else if (size == 2) {
1574 *data = (u16)(flash_data & 0x0000FFFF);
1575 }
1576 break;
1577 } else {
ad68076e
BA
1578 /*
1579 * If we've gotten here, then things are probably
bc7f75fa
AK
1580 * completely hosed, but if the error condition is
1581 * detected, it won't hurt to give it another try...
1582 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1583 */
1584 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1585 if (hsfsts.hsf_status.flcerr == 1) {
1586 /* Repeat for some time before giving up. */
1587 continue;
1588 } else if (hsfsts.hsf_status.flcdone == 0) {
1589 hw_dbg(hw, "Timeout error - flash cycle "
1590 "did not complete.");
1591 break;
1592 }
1593 }
1594 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1595
1596 return ret_val;
1597}
1598
1599/**
1600 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1601 * @hw: pointer to the HW structure
1602 * @offset: The offset (in bytes) of the word(s) to write.
1603 * @words: Size of data to write in words
1604 * @data: Pointer to the word(s) to write at offset.
1605 *
1606 * Writes a byte or word to the NVM using the flash access registers.
1607 **/
1608static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1609 u16 *data)
1610{
1611 struct e1000_nvm_info *nvm = &hw->nvm;
1612 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1613 s32 ret_val;
1614 u16 i;
1615
1616 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1617 (words == 0)) {
1618 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1619 return -E1000_ERR_NVM;
1620 }
1621
1622 ret_val = e1000_acquire_swflag_ich8lan(hw);
1623 if (ret_val)
1624 return ret_val;
1625
1626 for (i = 0; i < words; i++) {
1627 dev_spec->shadow_ram[offset+i].modified = 1;
1628 dev_spec->shadow_ram[offset+i].value = data[i];
1629 }
1630
1631 e1000_release_swflag_ich8lan(hw);
1632
1633 return 0;
1634}
1635
1636/**
1637 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1638 * @hw: pointer to the HW structure
1639 *
1640 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1641 * which writes the checksum to the shadow ram. The changes in the shadow
1642 * ram are then committed to the EEPROM by processing each bank at a time
1643 * checking for the modified bit and writing only the pending changes.
489815ce 1644 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
1645 * future writes.
1646 **/
1647static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1648{
1649 struct e1000_nvm_info *nvm = &hw->nvm;
1650 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 1651 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
1652 s32 ret_val;
1653 u16 data;
1654
1655 ret_val = e1000e_update_nvm_checksum_generic(hw);
1656 if (ret_val)
e243455d 1657 goto out;
bc7f75fa
AK
1658
1659 if (nvm->type != e1000_nvm_flash_sw)
e243455d 1660 goto out;
bc7f75fa
AK
1661
1662 ret_val = e1000_acquire_swflag_ich8lan(hw);
1663 if (ret_val)
e243455d 1664 goto out;
bc7f75fa 1665
ad68076e
BA
1666 /*
1667 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 1668 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
1669 * is going to be written
1670 */
f4187b56 1671 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d
BA
1672 if (ret_val) {
1673 e1000_release_swflag_ich8lan(hw);
1674 goto out;
1675 }
f4187b56
BA
1676
1677 if (bank == 0) {
bc7f75fa
AK
1678 new_bank_offset = nvm->flash_bank_size;
1679 old_bank_offset = 0;
e243455d
BA
1680 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1681 if (ret_val) {
1682 e1000_release_swflag_ich8lan(hw);
1683 goto out;
1684 }
bc7f75fa
AK
1685 } else {
1686 old_bank_offset = nvm->flash_bank_size;
1687 new_bank_offset = 0;
e243455d
BA
1688 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1689 if (ret_val) {
1690 e1000_release_swflag_ich8lan(hw);
1691 goto out;
1692 }
bc7f75fa
AK
1693 }
1694
1695 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
1696 /*
1697 * Determine whether to write the value stored
bc7f75fa 1698 * in the other NVM bank or a modified value stored
ad68076e
BA
1699 * in the shadow RAM
1700 */
bc7f75fa
AK
1701 if (dev_spec->shadow_ram[i].modified) {
1702 data = dev_spec->shadow_ram[i].value;
1703 } else {
e243455d
BA
1704 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1705 old_bank_offset,
1706 &data);
1707 if (ret_val)
1708 break;
bc7f75fa
AK
1709 }
1710
ad68076e
BA
1711 /*
1712 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
1713 * (15:14) are 11b until the commit has completed.
1714 * This will allow us to write 10b which indicates the
1715 * signature is valid. We want to do this after the write
1716 * has completed so that we don't mark the segment valid
ad68076e
BA
1717 * while the write is still in progress
1718 */
bc7f75fa
AK
1719 if (i == E1000_ICH_NVM_SIG_WORD)
1720 data |= E1000_ICH_NVM_SIG_MASK;
1721
1722 /* Convert offset to bytes. */
1723 act_offset = (i + new_bank_offset) << 1;
1724
1725 udelay(100);
1726 /* Write the bytes to the new bank. */
1727 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1728 act_offset,
1729 (u8)data);
1730 if (ret_val)
1731 break;
1732
1733 udelay(100);
1734 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1735 act_offset + 1,
1736 (u8)(data >> 8));
1737 if (ret_val)
1738 break;
1739 }
1740
ad68076e
BA
1741 /*
1742 * Don't bother writing the segment valid bits if sector
1743 * programming failed.
1744 */
bc7f75fa 1745 if (ret_val) {
4a770358 1746 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
bc7f75fa
AK
1747 hw_dbg(hw, "Flash commit failed.\n");
1748 e1000_release_swflag_ich8lan(hw);
e243455d 1749 goto out;
bc7f75fa
AK
1750 }
1751
ad68076e
BA
1752 /*
1753 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
1754 * to 10b in word 0x13 , this can be done without an
1755 * erase as well since these bits are 11 to start with
ad68076e
BA
1756 * and we need to change bit 14 to 0b
1757 */
bc7f75fa 1758 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d
BA
1759 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1760 if (ret_val) {
1761 e1000_release_swflag_ich8lan(hw);
1762 goto out;
1763 }
bc7f75fa
AK
1764 data &= 0xBFFF;
1765 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1766 act_offset * 2 + 1,
1767 (u8)(data >> 8));
1768 if (ret_val) {
1769 e1000_release_swflag_ich8lan(hw);
e243455d 1770 goto out;
bc7f75fa
AK
1771 }
1772
ad68076e
BA
1773 /*
1774 * And invalidate the previously valid segment by setting
bc7f75fa
AK
1775 * its signature word (0x13) high_byte to 0b. This can be
1776 * done without an erase because flash erase sets all bits
ad68076e
BA
1777 * to 1's. We can write 1's to 0's without an erase
1778 */
bc7f75fa
AK
1779 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1780 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1781 if (ret_val) {
1782 e1000_release_swflag_ich8lan(hw);
e243455d 1783 goto out;
bc7f75fa
AK
1784 }
1785
1786 /* Great! Everything worked, we can now clear the cached entries. */
1787 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1788 dev_spec->shadow_ram[i].modified = 0;
1789 dev_spec->shadow_ram[i].value = 0xFFFF;
1790 }
1791
1792 e1000_release_swflag_ich8lan(hw);
1793
ad68076e
BA
1794 /*
1795 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
1796 * until after the next adapter reset.
1797 */
1798 e1000e_reload_nvm(hw);
1799 msleep(10);
1800
e243455d
BA
1801out:
1802 if (ret_val)
1803 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1804
bc7f75fa
AK
1805 return ret_val;
1806}
1807
1808/**
1809 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1810 * @hw: pointer to the HW structure
1811 *
1812 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1813 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1814 * calculated, in which case we need to calculate the checksum and set bit 6.
1815 **/
1816static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1817{
1818 s32 ret_val;
1819 u16 data;
1820
ad68076e
BA
1821 /*
1822 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
1823 * needs to be fixed. This bit is an indication that the NVM
1824 * was prepared by OEM software and did not calculate the
1825 * checksum...a likely scenario.
1826 */
1827 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1828 if (ret_val)
1829 return ret_val;
1830
1831 if ((data & 0x40) == 0) {
1832 data |= 0x40;
1833 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1834 if (ret_val)
1835 return ret_val;
1836 ret_val = e1000e_update_nvm_checksum(hw);
1837 if (ret_val)
1838 return ret_val;
1839 }
1840
1841 return e1000e_validate_nvm_checksum_generic(hw);
1842}
1843
4a770358
BA
1844/**
1845 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1846 * @hw: pointer to the HW structure
1847 *
1848 * To prevent malicious write/erase of the NVM, set it to be read-only
1849 * so that the hardware ignores all write/erase cycles of the NVM via
1850 * the flash control registers. The shadow-ram copy of the NVM will
1851 * still be updated, however any updates to this copy will not stick
1852 * across driver reloads.
1853 **/
1854void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1855{
1856 union ich8_flash_protected_range pr0;
1857 union ich8_hws_flash_status hsfsts;
1858 u32 gfpreg;
1859 s32 ret_val;
1860
1861 ret_val = e1000_acquire_swflag_ich8lan(hw);
1862 if (ret_val)
1863 return;
1864
1865 gfpreg = er32flash(ICH_FLASH_GFPREG);
1866
1867 /* Write-protect GbE Sector of NVM */
1868 pr0.regval = er32flash(ICH_FLASH_PR0);
1869 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1870 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1871 pr0.range.wpe = true;
1872 ew32flash(ICH_FLASH_PR0, pr0.regval);
1873
1874 /*
1875 * Lock down a subset of GbE Flash Control Registers, e.g.
1876 * PR0 to prevent the write-protection from being lifted.
1877 * Once FLOCKDN is set, the registers protected by it cannot
1878 * be written until FLOCKDN is cleared by a hardware reset.
1879 */
1880 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1881 hsfsts.hsf_status.flockdn = true;
1882 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1883
1884 e1000_release_swflag_ich8lan(hw);
1885}
1886
bc7f75fa
AK
1887/**
1888 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1889 * @hw: pointer to the HW structure
1890 * @offset: The offset (in bytes) of the byte/word to read.
1891 * @size: Size of data to read, 1=byte 2=word
1892 * @data: The byte(s) to write to the NVM.
1893 *
1894 * Writes one/two bytes to the NVM using the flash access registers.
1895 **/
1896static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1897 u8 size, u16 data)
1898{
1899 union ich8_hws_flash_status hsfsts;
1900 union ich8_hws_flash_ctrl hsflctl;
1901 u32 flash_linear_addr;
1902 u32 flash_data = 0;
1903 s32 ret_val;
1904 u8 count = 0;
1905
1906 if (size < 1 || size > 2 || data > size * 0xff ||
1907 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1908 return -E1000_ERR_NVM;
1909
1910 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1911 hw->nvm.flash_base_addr;
1912
1913 do {
1914 udelay(1);
1915 /* Steps */
1916 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1917 if (ret_val)
1918 break;
1919
1920 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1921 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1922 hsflctl.hsf_ctrl.fldbcount = size -1;
1923 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1924 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1925
1926 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1927
1928 if (size == 1)
1929 flash_data = (u32)data & 0x00FF;
1930 else
1931 flash_data = (u32)data;
1932
1933 ew32flash(ICH_FLASH_FDATA0, flash_data);
1934
ad68076e
BA
1935 /*
1936 * check if FCERR is set to 1 , if set to 1, clear it
1937 * and try the whole sequence a few more times else done
1938 */
bc7f75fa
AK
1939 ret_val = e1000_flash_cycle_ich8lan(hw,
1940 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1941 if (!ret_val)
1942 break;
1943
ad68076e
BA
1944 /*
1945 * If we're here, then things are most likely
bc7f75fa
AK
1946 * completely hosed, but if the error condition
1947 * is detected, it won't hurt to give it another
1948 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1949 */
1950 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1951 if (hsfsts.hsf_status.flcerr == 1)
1952 /* Repeat for some time before giving up. */
1953 continue;
1954 if (hsfsts.hsf_status.flcdone == 0) {
1955 hw_dbg(hw, "Timeout error - flash cycle "
1956 "did not complete.");
1957 break;
1958 }
1959 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1960
1961 return ret_val;
1962}
1963
1964/**
1965 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1966 * @hw: pointer to the HW structure
1967 * @offset: The index of the byte to read.
1968 * @data: The byte to write to the NVM.
1969 *
1970 * Writes a single byte to the NVM using the flash access registers.
1971 **/
1972static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1973 u8 data)
1974{
1975 u16 word = (u16)data;
1976
1977 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1978}
1979
1980/**
1981 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1982 * @hw: pointer to the HW structure
1983 * @offset: The offset of the byte to write.
1984 * @byte: The byte to write to the NVM.
1985 *
1986 * Writes a single byte to the NVM using the flash access registers.
1987 * Goes through a retry algorithm before giving up.
1988 **/
1989static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1990 u32 offset, u8 byte)
1991{
1992 s32 ret_val;
1993 u16 program_retries;
1994
1995 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1996 if (!ret_val)
1997 return ret_val;
1998
1999 for (program_retries = 0; program_retries < 100; program_retries++) {
2000 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2001 udelay(100);
2002 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2003 if (!ret_val)
2004 break;
2005 }
2006 if (program_retries == 100)
2007 return -E1000_ERR_NVM;
2008
2009 return 0;
2010}
2011
2012/**
2013 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2014 * @hw: pointer to the HW structure
2015 * @bank: 0 for first bank, 1 for second bank, etc.
2016 *
2017 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2018 * bank N is 4096 * N + flash_reg_addr.
2019 **/
2020static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2021{
2022 struct e1000_nvm_info *nvm = &hw->nvm;
2023 union ich8_hws_flash_status hsfsts;
2024 union ich8_hws_flash_ctrl hsflctl;
2025 u32 flash_linear_addr;
2026 /* bank size is in 16bit words - adjust to bytes */
2027 u32 flash_bank_size = nvm->flash_bank_size * 2;
2028 s32 ret_val;
2029 s32 count = 0;
2030 s32 iteration;
2031 s32 sector_size;
2032 s32 j;
2033
2034 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2035
ad68076e
BA
2036 /*
2037 * Determine HW Sector size: Read BERASE bits of hw flash status
2038 * register
2039 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2040 * consecutive sectors. The start index for the nth Hw sector
2041 * can be calculated as = bank * 4096 + n * 256
2042 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2043 * The start index for the nth Hw sector can be calculated
2044 * as = bank * 4096
2045 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2046 * (ich9 only, otherwise error condition)
2047 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2048 */
2049 switch (hsfsts.hsf_status.berasesz) {
2050 case 0:
2051 /* Hw sector size 256 */
2052 sector_size = ICH_FLASH_SEG_SIZE_256;
2053 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2054 break;
2055 case 1:
2056 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2057 iteration = 1;
bc7f75fa
AK
2058 break;
2059 case 2:
2060 if (hw->mac.type == e1000_ich9lan) {
2061 sector_size = ICH_FLASH_SEG_SIZE_8K;
2062 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
2063 } else {
2064 return -E1000_ERR_NVM;
2065 }
2066 break;
2067 case 3:
2068 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2069 iteration = 1;
bc7f75fa
AK
2070 break;
2071 default:
2072 return -E1000_ERR_NVM;
2073 }
2074
2075 /* Start with the base address, then add the sector offset. */
2076 flash_linear_addr = hw->nvm.flash_base_addr;
2077 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
2078
2079 for (j = 0; j < iteration ; j++) {
2080 do {
2081 /* Steps */
2082 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2083 if (ret_val)
2084 return ret_val;
2085
ad68076e
BA
2086 /*
2087 * Write a value 11 (block Erase) in Flash
2088 * Cycle field in hw flash control
2089 */
bc7f75fa
AK
2090 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2091 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2092 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2093
ad68076e
BA
2094 /*
2095 * Write the last 24 bits of an index within the
bc7f75fa
AK
2096 * block into Flash Linear address field in Flash
2097 * Address.
2098 */
2099 flash_linear_addr += (j * sector_size);
2100 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2101
2102 ret_val = e1000_flash_cycle_ich8lan(hw,
2103 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2104 if (ret_val == 0)
2105 break;
2106
ad68076e
BA
2107 /*
2108 * Check if FCERR is set to 1. If 1,
bc7f75fa 2109 * clear it and try the whole sequence
ad68076e
BA
2110 * a few more times else Done
2111 */
bc7f75fa
AK
2112 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2113 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2114 /* repeat for some time before giving up */
bc7f75fa
AK
2115 continue;
2116 else if (hsfsts.hsf_status.flcdone == 0)
2117 return ret_val;
2118 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2119 }
2120
2121 return 0;
2122}
2123
2124/**
2125 * e1000_valid_led_default_ich8lan - Set the default LED settings
2126 * @hw: pointer to the HW structure
2127 * @data: Pointer to the LED settings
2128 *
2129 * Reads the LED default settings from the NVM to data. If the NVM LED
2130 * settings is all 0's or F's, set the LED default to a valid LED default
2131 * setting.
2132 **/
2133static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2134{
2135 s32 ret_val;
2136
2137 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2138 if (ret_val) {
2139 hw_dbg(hw, "NVM Read Error\n");
2140 return ret_val;
2141 }
2142
2143 if (*data == ID_LED_RESERVED_0000 ||
2144 *data == ID_LED_RESERVED_FFFF)
2145 *data = ID_LED_DEFAULT_ICH8LAN;
2146
2147 return 0;
2148}
2149
a4f58f54
BA
2150/**
2151 * e1000_id_led_init_pchlan - store LED configurations
2152 * @hw: pointer to the HW structure
2153 *
2154 * PCH does not control LEDs via the LEDCTL register, rather it uses
2155 * the PHY LED configuration register.
2156 *
2157 * PCH also does not have an "always on" or "always off" mode which
2158 * complicates the ID feature. Instead of using the "on" mode to indicate
2159 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2160 * use "link_up" mode. The LEDs will still ID on request if there is no
2161 * link based on logic in e1000_led_[on|off]_pchlan().
2162 **/
2163static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2164{
2165 struct e1000_mac_info *mac = &hw->mac;
2166 s32 ret_val;
2167 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2168 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2169 u16 data, i, temp, shift;
2170
2171 /* Get default ID LED modes */
2172 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2173 if (ret_val)
2174 goto out;
2175
2176 mac->ledctl_default = er32(LEDCTL);
2177 mac->ledctl_mode1 = mac->ledctl_default;
2178 mac->ledctl_mode2 = mac->ledctl_default;
2179
2180 for (i = 0; i < 4; i++) {
2181 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2182 shift = (i * 5);
2183 switch (temp) {
2184 case ID_LED_ON1_DEF2:
2185 case ID_LED_ON1_ON2:
2186 case ID_LED_ON1_OFF2:
2187 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2188 mac->ledctl_mode1 |= (ledctl_on << shift);
2189 break;
2190 case ID_LED_OFF1_DEF2:
2191 case ID_LED_OFF1_ON2:
2192 case ID_LED_OFF1_OFF2:
2193 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2194 mac->ledctl_mode1 |= (ledctl_off << shift);
2195 break;
2196 default:
2197 /* Do nothing */
2198 break;
2199 }
2200 switch (temp) {
2201 case ID_LED_DEF1_ON2:
2202 case ID_LED_ON1_ON2:
2203 case ID_LED_OFF1_ON2:
2204 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2205 mac->ledctl_mode2 |= (ledctl_on << shift);
2206 break;
2207 case ID_LED_DEF1_OFF2:
2208 case ID_LED_ON1_OFF2:
2209 case ID_LED_OFF1_OFF2:
2210 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2211 mac->ledctl_mode2 |= (ledctl_off << shift);
2212 break;
2213 default:
2214 /* Do nothing */
2215 break;
2216 }
2217 }
2218
2219out:
2220 return ret_val;
2221}
2222
bc7f75fa
AK
2223/**
2224 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2225 * @hw: pointer to the HW structure
2226 *
2227 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2228 * register, so the the bus width is hard coded.
2229 **/
2230static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2231{
2232 struct e1000_bus_info *bus = &hw->bus;
2233 s32 ret_val;
2234
2235 ret_val = e1000e_get_bus_info_pcie(hw);
2236
ad68076e
BA
2237 /*
2238 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2239 * a configuration space, but do not contain
2240 * PCI Express Capability registers, so bus width
2241 * must be hardcoded.
2242 */
2243 if (bus->width == e1000_bus_width_unknown)
2244 bus->width = e1000_bus_width_pcie_x1;
2245
2246 return ret_val;
2247}
2248
2249/**
2250 * e1000_reset_hw_ich8lan - Reset the hardware
2251 * @hw: pointer to the HW structure
2252 *
2253 * Does a full reset of the hardware which includes a reset of the PHY and
2254 * MAC.
2255 **/
2256static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2257{
2258 u32 ctrl, icr, kab;
2259 s32 ret_val;
2260
ad68076e
BA
2261 /*
2262 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2263 * on the last TLP read/write transaction when MAC is reset.
2264 */
2265 ret_val = e1000e_disable_pcie_master(hw);
2266 if (ret_val) {
2267 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2268 }
2269
2270 hw_dbg(hw, "Masking off all interrupts\n");
2271 ew32(IMC, 0xffffffff);
2272
ad68076e
BA
2273 /*
2274 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2275 * any pending transactions to complete before we hit the MAC
2276 * with the global reset.
2277 */
2278 ew32(RCTL, 0);
2279 ew32(TCTL, E1000_TCTL_PSP);
2280 e1e_flush();
2281
2282 msleep(10);
2283
2284 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2285 if (hw->mac.type == e1000_ich8lan) {
2286 /* Set Tx and Rx buffer allocation to 8k apiece. */
2287 ew32(PBA, E1000_PBA_8K);
2288 /* Set Packet Buffer Size to 16k. */
2289 ew32(PBS, E1000_PBS_16K);
2290 }
2291
2292 ctrl = er32(CTRL);
2293
2294 if (!e1000_check_reset_block(hw)) {
fc0c7760
BA
2295 /* Clear PHY Reset Asserted bit */
2296 if (hw->mac.type >= e1000_pchlan) {
2297 u32 status = er32(STATUS);
2298 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2299 }
2300
ad68076e
BA
2301 /*
2302 * PHY HW reset requires MAC CORE reset at the same
bc7f75fa
AK
2303 * time to make sure the interface between MAC and the
2304 * external PHY is reset.
2305 */
2306 ctrl |= E1000_CTRL_PHY_RST;
2307 }
2308 ret_val = e1000_acquire_swflag_ich8lan(hw);
30bb0e0d 2309 /* Whether or not the swflag was acquired, we need to reset the part */
0285c8dc 2310 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
bc7f75fa
AK
2311 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2312 msleep(20);
2313
fc0c7760 2314 if (!ret_val)
30bb0e0d 2315 e1000_release_swflag_ich8lan(hw);
37f40239 2316
fc0c7760
BA
2317 if (ctrl & E1000_CTRL_PHY_RST)
2318 ret_val = hw->phy.ops.get_cfg_done(hw);
2319
2320 if (hw->mac.type >= e1000_ich10lan) {
2321 e1000_lan_init_done_ich8lan(hw);
2322 } else {
2323 ret_val = e1000e_get_auto_rd_done(hw);
2324 if (ret_val) {
2325 /*
2326 * When auto config read does not complete, do not
2327 * return with an error. This can happen in situations
2328 * where there is no eeprom and prevents getting link.
2329 */
2330 hw_dbg(hw, "Auto Read Done did not complete\n");
2331 }
bc7f75fa
AK
2332 }
2333
7d3cabbc
BA
2334 /*
2335 * For PCH, this write will make sure that any noise
2336 * will be detected as a CRC error and be dropped rather than show up
2337 * as a bad packet to the DMA engine.
2338 */
2339 if (hw->mac.type == e1000_pchlan)
2340 ew32(CRC_OFFSET, 0x65656565);
2341
bc7f75fa
AK
2342 ew32(IMC, 0xffffffff);
2343 icr = er32(ICR);
2344
2345 kab = er32(KABGTXD);
2346 kab |= E1000_KABGTXD_BGSQLBIAS;
2347 ew32(KABGTXD, kab);
2348
a4f58f54
BA
2349 if (hw->mac.type == e1000_pchlan)
2350 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2351
bc7f75fa
AK
2352 return ret_val;
2353}
2354
2355/**
2356 * e1000_init_hw_ich8lan - Initialize the hardware
2357 * @hw: pointer to the HW structure
2358 *
2359 * Prepares the hardware for transmit and receive by doing the following:
2360 * - initialize hardware bits
2361 * - initialize LED identification
2362 * - setup receive address registers
2363 * - setup flow control
489815ce 2364 * - setup transmit descriptors
bc7f75fa
AK
2365 * - clear statistics
2366 **/
2367static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2368{
2369 struct e1000_mac_info *mac = &hw->mac;
2370 u32 ctrl_ext, txdctl, snoop;
2371 s32 ret_val;
2372 u16 i;
2373
2374 e1000_initialize_hw_bits_ich8lan(hw);
2375
2376 /* Initialize identification LED */
a4f58f54 2377 ret_val = mac->ops.id_led_init(hw);
bc7f75fa
AK
2378 if (ret_val) {
2379 hw_dbg(hw, "Error initializing identification LED\n");
2380 return ret_val;
2381 }
2382
2383 /* Setup the receive address. */
2384 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2385
2386 /* Zero out the Multicast HASH table */
2387 hw_dbg(hw, "Zeroing the MTA\n");
2388 for (i = 0; i < mac->mta_reg_count; i++)
2389 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2390
fc0c7760
BA
2391 /*
2392 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2393 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2394 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2395 */
2396 if (hw->phy.type == e1000_phy_82578) {
2397 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2398 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2399 if (ret_val)
2400 return ret_val;
2401 }
2402
bc7f75fa
AK
2403 /* Setup link and flow control */
2404 ret_val = e1000_setup_link_ich8lan(hw);
2405
2406 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 2407 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
2408 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2409 E1000_TXDCTL_FULL_TX_DESC_WB;
2410 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2411 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
2412 ew32(TXDCTL(0), txdctl);
2413 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
2414 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2415 E1000_TXDCTL_FULL_TX_DESC_WB;
2416 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2417 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 2418 ew32(TXDCTL(1), txdctl);
bc7f75fa 2419
ad68076e
BA
2420 /*
2421 * ICH8 has opposite polarity of no_snoop bits.
2422 * By default, we should use snoop behavior.
2423 */
bc7f75fa
AK
2424 if (mac->type == e1000_ich8lan)
2425 snoop = PCIE_ICH8_SNOOP_ALL;
2426 else
2427 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2428 e1000e_set_pcie_no_snoop(hw, snoop);
2429
2430 ctrl_ext = er32(CTRL_EXT);
2431 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2432 ew32(CTRL_EXT, ctrl_ext);
2433
ad68076e
BA
2434 /*
2435 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
2436 * important that we do this after we have tried to establish link
2437 * because the symbol error count will increment wildly if there
2438 * is no link.
2439 */
2440 e1000_clear_hw_cntrs_ich8lan(hw);
2441
2442 return 0;
2443}
2444/**
2445 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2446 * @hw: pointer to the HW structure
2447 *
2448 * Sets/Clears required hardware bits necessary for correctly setting up the
2449 * hardware for transmit and receive.
2450 **/
2451static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2452{
2453 u32 reg;
2454
2455 /* Extended Device Control */
2456 reg = er32(CTRL_EXT);
2457 reg |= (1 << 22);
a4f58f54
BA
2458 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2459 if (hw->mac.type >= e1000_pchlan)
2460 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
2461 ew32(CTRL_EXT, reg);
2462
2463 /* Transmit Descriptor Control 0 */
e9ec2c0f 2464 reg = er32(TXDCTL(0));
bc7f75fa 2465 reg |= (1 << 22);
e9ec2c0f 2466 ew32(TXDCTL(0), reg);
bc7f75fa
AK
2467
2468 /* Transmit Descriptor Control 1 */
e9ec2c0f 2469 reg = er32(TXDCTL(1));
bc7f75fa 2470 reg |= (1 << 22);
e9ec2c0f 2471 ew32(TXDCTL(1), reg);
bc7f75fa
AK
2472
2473 /* Transmit Arbitration Control 0 */
e9ec2c0f 2474 reg = er32(TARC(0));
bc7f75fa
AK
2475 if (hw->mac.type == e1000_ich8lan)
2476 reg |= (1 << 28) | (1 << 29);
2477 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 2478 ew32(TARC(0), reg);
bc7f75fa
AK
2479
2480 /* Transmit Arbitration Control 1 */
e9ec2c0f 2481 reg = er32(TARC(1));
bc7f75fa
AK
2482 if (er32(TCTL) & E1000_TCTL_MULR)
2483 reg &= ~(1 << 28);
2484 else
2485 reg |= (1 << 28);
2486 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 2487 ew32(TARC(1), reg);
bc7f75fa
AK
2488
2489 /* Device Status */
2490 if (hw->mac.type == e1000_ich8lan) {
2491 reg = er32(STATUS);
2492 reg &= ~(1 << 31);
2493 ew32(STATUS, reg);
2494 }
2495}
2496
2497/**
2498 * e1000_setup_link_ich8lan - Setup flow control and link settings
2499 * @hw: pointer to the HW structure
2500 *
2501 * Determines which flow control settings to use, then configures flow
2502 * control. Calls the appropriate media-specific link configuration
2503 * function. Assuming the adapter has a valid link partner, a valid link
2504 * should be established. Assumes the hardware has previously been reset
2505 * and the transmitter and receiver are not enabled.
2506 **/
2507static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2508{
bc7f75fa
AK
2509 s32 ret_val;
2510
2511 if (e1000_check_reset_block(hw))
2512 return 0;
2513
ad68076e
BA
2514 /*
2515 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
2516 * the default flow control setting, so we explicitly
2517 * set it to full.
2518 */
37289d9c
BA
2519 if (hw->fc.requested_mode == e1000_fc_default) {
2520 /* Workaround h/w hang when Tx flow control enabled */
2521 if (hw->mac.type == e1000_pchlan)
2522 hw->fc.requested_mode = e1000_fc_rx_pause;
2523 else
2524 hw->fc.requested_mode = e1000_fc_full;
2525 }
bc7f75fa 2526
5c48ef3e
BA
2527 /*
2528 * Save off the requested flow control mode for use later. Depending
2529 * on the link partner's capabilities, we may or may not use this mode.
2530 */
2531 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 2532
5c48ef3e
BA
2533 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2534 hw->fc.current_mode);
bc7f75fa
AK
2535
2536 /* Continue to configure the copper link. */
2537 ret_val = e1000_setup_copper_link_ich8lan(hw);
2538 if (ret_val)
2539 return ret_val;
2540
318a94d6 2541 ew32(FCTTV, hw->fc.pause_time);
a4f58f54
BA
2542 if ((hw->phy.type == e1000_phy_82578) ||
2543 (hw->phy.type == e1000_phy_82577)) {
2544 ret_val = hw->phy.ops.write_phy_reg(hw,
2545 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2546 hw->fc.pause_time);
2547 if (ret_val)
2548 return ret_val;
2549 }
bc7f75fa
AK
2550
2551 return e1000e_set_fc_watermarks(hw);
2552}
2553
2554/**
2555 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2556 * @hw: pointer to the HW structure
2557 *
2558 * Configures the kumeran interface to the PHY to wait the appropriate time
2559 * when polling the PHY, then call the generic setup_copper_link to finish
2560 * configuring the copper link.
2561 **/
2562static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2563{
2564 u32 ctrl;
2565 s32 ret_val;
2566 u16 reg_data;
2567
2568 ctrl = er32(CTRL);
2569 ctrl |= E1000_CTRL_SLU;
2570 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2571 ew32(CTRL, ctrl);
2572
ad68076e
BA
2573 /*
2574 * Set the mac to wait the maximum time between each iteration
bc7f75fa 2575 * and increase the max iterations when polling the phy;
ad68076e
BA
2576 * this fixes erroneous timeouts at 10Mbps.
2577 */
bc7f75fa
AK
2578 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2579 if (ret_val)
2580 return ret_val;
2581 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2582 if (ret_val)
2583 return ret_val;
2584 reg_data |= 0x3F;
2585 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2586 if (ret_val)
2587 return ret_val;
2588
a4f58f54
BA
2589 switch (hw->phy.type) {
2590 case e1000_phy_igp_3:
bc7f75fa
AK
2591 ret_val = e1000e_copper_link_setup_igp(hw);
2592 if (ret_val)
2593 return ret_val;
a4f58f54
BA
2594 break;
2595 case e1000_phy_bm:
2596 case e1000_phy_82578:
97ac8cae
BA
2597 ret_val = e1000e_copper_link_setup_m88(hw);
2598 if (ret_val)
2599 return ret_val;
a4f58f54
BA
2600 break;
2601 case e1000_phy_82577:
2602 ret_val = e1000_copper_link_setup_82577(hw);
2603 if (ret_val)
2604 return ret_val;
2605 break;
2606 case e1000_phy_ife:
2607 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2608 &reg_data);
97ac8cae
BA
2609 if (ret_val)
2610 return ret_val;
2611
2612 reg_data &= ~IFE_PMC_AUTO_MDIX;
2613
2614 switch (hw->phy.mdix) {
2615 case 1:
2616 reg_data &= ~IFE_PMC_FORCE_MDIX;
2617 break;
2618 case 2:
2619 reg_data |= IFE_PMC_FORCE_MDIX;
2620 break;
2621 case 0:
2622 default:
2623 reg_data |= IFE_PMC_AUTO_MDIX;
2624 break;
2625 }
a4f58f54
BA
2626 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2627 reg_data);
97ac8cae
BA
2628 if (ret_val)
2629 return ret_val;
a4f58f54
BA
2630 break;
2631 default:
2632 break;
97ac8cae 2633 }
bc7f75fa
AK
2634 return e1000e_setup_copper_link(hw);
2635}
2636
2637/**
2638 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2639 * @hw: pointer to the HW structure
2640 * @speed: pointer to store current link speed
2641 * @duplex: pointer to store the current link duplex
2642 *
ad68076e 2643 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
2644 * information and then calls the Kumeran lock loss workaround for links at
2645 * gigabit speeds.
2646 **/
2647static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2648 u16 *duplex)
2649{
2650 s32 ret_val;
2651
2652 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2653 if (ret_val)
2654 return ret_val;
2655
7d3cabbc
BA
2656 if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2657 ret_val = e1000e_write_kmrn_reg(hw,
2658 E1000_KMRNCTRLSTA_K1_CONFIG,
2659 E1000_KMRNCTRLSTA_K1_DISABLE);
2660 if (ret_val)
2661 return ret_val;
2662 }
2663
bc7f75fa
AK
2664 if ((hw->mac.type == e1000_ich8lan) &&
2665 (hw->phy.type == e1000_phy_igp_3) &&
2666 (*speed == SPEED_1000)) {
2667 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2668 }
2669
2670 return ret_val;
2671}
2672
2673/**
2674 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2675 * @hw: pointer to the HW structure
2676 *
2677 * Work-around for 82566 Kumeran PCS lock loss:
2678 * On link status change (i.e. PCI reset, speed change) and link is up and
2679 * speed is gigabit-
2680 * 0) if workaround is optionally disabled do nothing
2681 * 1) wait 1ms for Kumeran link to come up
2682 * 2) check Kumeran Diagnostic register PCS lock loss bit
2683 * 3) if not set the link is locked (all is good), otherwise...
2684 * 4) reset the PHY
2685 * 5) repeat up to 10 times
2686 * Note: this is only called for IGP3 copper when speed is 1gb.
2687 **/
2688static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2689{
2690 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2691 u32 phy_ctrl;
2692 s32 ret_val;
2693 u16 i, data;
2694 bool link;
2695
2696 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2697 return 0;
2698
ad68076e
BA
2699 /*
2700 * Make sure link is up before proceeding. If not just return.
bc7f75fa 2701 * Attempting this while link is negotiating fouled up link
ad68076e
BA
2702 * stability
2703 */
bc7f75fa
AK
2704 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2705 if (!link)
2706 return 0;
2707
2708 for (i = 0; i < 10; i++) {
2709 /* read once to clear */
2710 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2711 if (ret_val)
2712 return ret_val;
2713 /* and again to get new status */
2714 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2715 if (ret_val)
2716 return ret_val;
2717
2718 /* check for PCS lock */
2719 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2720 return 0;
2721
2722 /* Issue PHY reset */
2723 e1000_phy_hw_reset(hw);
2724 mdelay(5);
2725 }
2726 /* Disable GigE link negotiation */
2727 phy_ctrl = er32(PHY_CTRL);
2728 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2729 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2730 ew32(PHY_CTRL, phy_ctrl);
2731
ad68076e
BA
2732 /*
2733 * Call gig speed drop workaround on Gig disable before accessing
2734 * any PHY registers
2735 */
bc7f75fa
AK
2736 e1000e_gig_downshift_workaround_ich8lan(hw);
2737
2738 /* unable to acquire PCS lock */
2739 return -E1000_ERR_PHY;
2740}
2741
2742/**
ad68076e 2743 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 2744 * @hw: pointer to the HW structure
489815ce 2745 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa
AK
2746 *
2747 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2748 * /disabled - FALSE).
2749 **/
2750void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2751 bool state)
2752{
2753 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2754
2755 if (hw->mac.type != e1000_ich8lan) {
2756 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2757 return;
2758 }
2759
2760 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2761}
2762
2763/**
2764 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2765 * @hw: pointer to the HW structure
2766 *
2767 * Workaround for 82566 power-down on D3 entry:
2768 * 1) disable gigabit link
2769 * 2) write VR power-down enable
2770 * 3) read it back
2771 * Continue if successful, else issue LCD reset and repeat
2772 **/
2773void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2774{
2775 u32 reg;
2776 u16 data;
2777 u8 retry = 0;
2778
2779 if (hw->phy.type != e1000_phy_igp_3)
2780 return;
2781
2782 /* Try the workaround twice (if needed) */
2783 do {
2784 /* Disable link */
2785 reg = er32(PHY_CTRL);
2786 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2787 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2788 ew32(PHY_CTRL, reg);
2789
ad68076e
BA
2790 /*
2791 * Call gig speed drop workaround on Gig disable before
2792 * accessing any PHY registers
2793 */
bc7f75fa
AK
2794 if (hw->mac.type == e1000_ich8lan)
2795 e1000e_gig_downshift_workaround_ich8lan(hw);
2796
2797 /* Write VR power-down enable */
2798 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2799 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2800 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2801
2802 /* Read it back and test */
2803 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2804 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2805 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2806 break;
2807
2808 /* Issue PHY reset and repeat at most one more time */
2809 reg = er32(CTRL);
2810 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2811 retry++;
2812 } while (retry);
2813}
2814
2815/**
2816 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2817 * @hw: pointer to the HW structure
2818 *
2819 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 2820 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
2821 * 1) Set Kumeran Near-end loopback
2822 * 2) Clear Kumeran Near-end loopback
2823 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2824 **/
2825void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2826{
2827 s32 ret_val;
2828 u16 reg_data;
2829
2830 if ((hw->mac.type != e1000_ich8lan) ||
2831 (hw->phy.type != e1000_phy_igp_3))
2832 return;
2833
2834 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2835 &reg_data);
2836 if (ret_val)
2837 return;
2838 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2839 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2840 reg_data);
2841 if (ret_val)
2842 return;
2843 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2844 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2845 reg_data);
2846}
2847
97ac8cae
BA
2848/**
2849 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2850 * @hw: pointer to the HW structure
2851 *
2852 * During S0 to Sx transition, it is possible the link remains at gig
2853 * instead of negotiating to a lower speed. Before going to Sx, set
2854 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2855 * to a lower speed.
2856 *
a4f58f54 2857 * Should only be called for applicable parts.
97ac8cae
BA
2858 **/
2859void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2860{
2861 u32 phy_ctrl;
2862
a4f58f54
BA
2863 switch (hw->mac.type) {
2864 case e1000_ich9lan:
2865 case e1000_ich10lan:
2866 case e1000_pchlan:
97ac8cae
BA
2867 phy_ctrl = er32(PHY_CTRL);
2868 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2869 E1000_PHY_CTRL_GBE_DISABLE;
2870 ew32(PHY_CTRL, phy_ctrl);
a4f58f54
BA
2871
2872 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2873 if (hw->mac.type == e1000_pchlan)
2874 udelay(500);
2875 default:
2876 break;
97ac8cae
BA
2877 }
2878
2879 return;
2880}
2881
bc7f75fa
AK
2882/**
2883 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2884 * @hw: pointer to the HW structure
2885 *
2886 * Return the LED back to the default configuration.
2887 **/
2888static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2889{
2890 if (hw->phy.type == e1000_phy_ife)
2891 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2892
2893 ew32(LEDCTL, hw->mac.ledctl_default);
2894 return 0;
2895}
2896
2897/**
489815ce 2898 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
2899 * @hw: pointer to the HW structure
2900 *
489815ce 2901 * Turn on the LEDs.
bc7f75fa
AK
2902 **/
2903static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2904{
2905 if (hw->phy.type == e1000_phy_ife)
2906 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2907 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2908
2909 ew32(LEDCTL, hw->mac.ledctl_mode2);
2910 return 0;
2911}
2912
2913/**
489815ce 2914 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
2915 * @hw: pointer to the HW structure
2916 *
489815ce 2917 * Turn off the LEDs.
bc7f75fa
AK
2918 **/
2919static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2920{
2921 if (hw->phy.type == e1000_phy_ife)
2922 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2923 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2924
2925 ew32(LEDCTL, hw->mac.ledctl_mode1);
2926 return 0;
2927}
2928
a4f58f54
BA
2929/**
2930 * e1000_setup_led_pchlan - Configures SW controllable LED
2931 * @hw: pointer to the HW structure
2932 *
2933 * This prepares the SW controllable LED for use.
2934 **/
2935static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2936{
2937 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2938 (u16)hw->mac.ledctl_mode1);
2939}
2940
2941/**
2942 * e1000_cleanup_led_pchlan - Restore the default LED operation
2943 * @hw: pointer to the HW structure
2944 *
2945 * Return the LED back to the default configuration.
2946 **/
2947static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2948{
2949 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2950 (u16)hw->mac.ledctl_default);
2951}
2952
2953/**
2954 * e1000_led_on_pchlan - Turn LEDs on
2955 * @hw: pointer to the HW structure
2956 *
2957 * Turn on the LEDs.
2958 **/
2959static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2960{
2961 u16 data = (u16)hw->mac.ledctl_mode2;
2962 u32 i, led;
2963
2964 /*
2965 * If no link, then turn LED on by setting the invert bit
2966 * for each LED that's mode is "link_up" in ledctl_mode2.
2967 */
2968 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2969 for (i = 0; i < 3; i++) {
2970 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2971 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2972 E1000_LEDCTL_MODE_LINK_UP)
2973 continue;
2974 if (led & E1000_PHY_LED0_IVRT)
2975 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2976 else
2977 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2978 }
2979 }
2980
2981 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2982}
2983
2984/**
2985 * e1000_led_off_pchlan - Turn LEDs off
2986 * @hw: pointer to the HW structure
2987 *
2988 * Turn off the LEDs.
2989 **/
2990static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2991{
2992 u16 data = (u16)hw->mac.ledctl_mode1;
2993 u32 i, led;
2994
2995 /*
2996 * If no link, then turn LED off by clearing the invert bit
2997 * for each LED that's mode is "link_up" in ledctl_mode1.
2998 */
2999 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3000 for (i = 0; i < 3; i++) {
3001 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3002 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3003 E1000_LEDCTL_MODE_LINK_UP)
3004 continue;
3005 if (led & E1000_PHY_LED0_IVRT)
3006 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3007 else
3008 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3009 }
3010 }
3011
3012 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3013}
3014
f4187b56
BA
3015/**
3016 * e1000_get_cfg_done_ich8lan - Read config done bit
3017 * @hw: pointer to the HW structure
3018 *
3019 * Read the management control register for the config done bit for
3020 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3021 * to read the config done bit, so an error is *ONLY* logged and returns
a4f58f54 3022 * 0. If we were to return with error, EEPROM-less silicon
f4187b56
BA
3023 * would not be able to be reset or change link.
3024 **/
3025static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3026{
3027 u32 bank = 0;
3028
fc0c7760
BA
3029 if (hw->mac.type >= e1000_pchlan) {
3030 u32 status = er32(STATUS);
3031
3032 if (status & E1000_STATUS_PHYRA)
3033 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3034 else
3035 hw_dbg(hw,
3036 "PHY Reset Asserted not set - needs delay\n");
3037 }
3038
f4187b56
BA
3039 e1000e_get_cfg_done(hw);
3040
3041 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
a4f58f54
BA
3042 if ((hw->mac.type != e1000_ich10lan) &&
3043 (hw->mac.type != e1000_pchlan)) {
f4187b56
BA
3044 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3045 (hw->phy.type == e1000_phy_igp_3)) {
3046 e1000e_phy_init_script_igp3(hw);
3047 }
3048 } else {
3049 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3050 /* Maybe we should do a basic PHY config */
3051 hw_dbg(hw, "EEPROM not present\n");
3052 return -E1000_ERR_CONFIG;
3053 }
3054 }
3055
3056 return 0;
3057}
3058
bc7f75fa
AK
3059/**
3060 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3061 * @hw: pointer to the HW structure
3062 *
3063 * Clears hardware counters specific to the silicon family and calls
3064 * clear_hw_cntrs_generic to clear all general purpose counters.
3065 **/
3066static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3067{
3068 u32 temp;
a4f58f54 3069 u16 phy_data;
bc7f75fa
AK
3070
3071 e1000e_clear_hw_cntrs_base(hw);
3072
3073 temp = er32(ALGNERRC);
3074 temp = er32(RXERRC);
3075 temp = er32(TNCRS);
3076 temp = er32(CEXTERR);
3077 temp = er32(TSCTC);
3078 temp = er32(TSCTFC);
3079
3080 temp = er32(MGTPRC);
3081 temp = er32(MGTPDC);
3082 temp = er32(MGTPTC);
3083
3084 temp = er32(IAC);
3085 temp = er32(ICRXOC);
3086
a4f58f54
BA
3087 /* Clear PHY statistics registers */
3088 if ((hw->phy.type == e1000_phy_82578) ||
3089 (hw->phy.type == e1000_phy_82577)) {
3090 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3091 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3092 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3093 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3094 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3095 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3096 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3097 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3098 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3099 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3100 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3101 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3102 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3103 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3104 }
bc7f75fa
AK
3105}
3106
3107static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3108 .id_led_init = e1000e_id_led_init,
4662e82b 3109 .check_mng_mode = e1000_check_mng_mode_ich8lan,
7d3cabbc 3110 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3111 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3112 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3113 .get_bus_info = e1000_get_bus_info_ich8lan,
3114 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3115 /* led_on dependent on mac type */
3116 /* led_off dependent on mac type */
e2de3eb6 3117 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3118 .reset_hw = e1000_reset_hw_ich8lan,
3119 .init_hw = e1000_init_hw_ich8lan,
3120 .setup_link = e1000_setup_link_ich8lan,
3121 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3122 /* id_led_init dependent on mac type */
bc7f75fa
AK
3123};
3124
3125static struct e1000_phy_operations ich8_phy_ops = {
3126 .acquire_phy = e1000_acquire_swflag_ich8lan,
3127 .check_reset_block = e1000_check_reset_block_ich8lan,
3128 .commit_phy = NULL,
3129 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
f4187b56 3130 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa
AK
3131 .get_cable_length = e1000e_get_cable_length_igp_2,
3132 .get_phy_info = e1000_get_phy_info_ich8lan,
3133 .read_phy_reg = e1000e_read_phy_reg_igp,
3134 .release_phy = e1000_release_swflag_ich8lan,
3135 .reset_phy = e1000_phy_hw_reset_ich8lan,
3136 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3137 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3138 .write_phy_reg = e1000e_write_phy_reg_igp,
3139};
3140
3141static struct e1000_nvm_operations ich8_nvm_ops = {
3142 .acquire_nvm = e1000_acquire_swflag_ich8lan,
3143 .read_nvm = e1000_read_nvm_ich8lan,
3144 .release_nvm = e1000_release_swflag_ich8lan,
3145 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3146 .valid_led_default = e1000_valid_led_default_ich8lan,
3147 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3148 .write_nvm = e1000_write_nvm_ich8lan,
3149};
3150
3151struct e1000_info e1000_ich8_info = {
3152 .mac = e1000_ich8lan,
3153 .flags = FLAG_HAS_WOL
97ac8cae 3154 | FLAG_IS_ICH
bc7f75fa
AK
3155 | FLAG_RX_CSUM_ENABLED
3156 | FLAG_HAS_CTRLEXT_ON_LOAD
3157 | FLAG_HAS_AMT
3158 | FLAG_HAS_FLASH
3159 | FLAG_APME_IN_WUC,
3160 .pba = 8,
2adc55c9 3161 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3162 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3163 .mac_ops = &ich8_mac_ops,
3164 .phy_ops = &ich8_phy_ops,
3165 .nvm_ops = &ich8_nvm_ops,
3166};
3167
3168struct e1000_info e1000_ich9_info = {
3169 .mac = e1000_ich9lan,
3170 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3171 | FLAG_IS_ICH
bc7f75fa
AK
3172 | FLAG_HAS_WOL
3173 | FLAG_RX_CSUM_ENABLED
3174 | FLAG_HAS_CTRLEXT_ON_LOAD
3175 | FLAG_HAS_AMT
3176 | FLAG_HAS_ERT
3177 | FLAG_HAS_FLASH
3178 | FLAG_APME_IN_WUC,
3179 .pba = 10,
2adc55c9 3180 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3181 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3182 .mac_ops = &ich8_mac_ops,
3183 .phy_ops = &ich8_phy_ops,
3184 .nvm_ops = &ich8_nvm_ops,
3185};
3186
f4187b56
BA
3187struct e1000_info e1000_ich10_info = {
3188 .mac = e1000_ich10lan,
3189 .flags = FLAG_HAS_JUMBO_FRAMES
3190 | FLAG_IS_ICH
3191 | FLAG_HAS_WOL
3192 | FLAG_RX_CSUM_ENABLED
3193 | FLAG_HAS_CTRLEXT_ON_LOAD
3194 | FLAG_HAS_AMT
3195 | FLAG_HAS_ERT
3196 | FLAG_HAS_FLASH
3197 | FLAG_APME_IN_WUC,
3198 .pba = 10,
2adc55c9 3199 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3200 .get_variants = e1000_get_variants_ich8lan,
3201 .mac_ops = &ich8_mac_ops,
3202 .phy_ops = &ich8_phy_ops,
3203 .nvm_ops = &ich8_nvm_ops,
3204};
a4f58f54
BA
3205
3206struct e1000_info e1000_pch_info = {
3207 .mac = e1000_pchlan,
3208 .flags = FLAG_IS_ICH
3209 | FLAG_HAS_WOL
3210 | FLAG_RX_CSUM_ENABLED
3211 | FLAG_HAS_CTRLEXT_ON_LOAD
3212 | FLAG_HAS_AMT
3213 | FLAG_HAS_FLASH
3214 | FLAG_HAS_JUMBO_FRAMES
3215 | FLAG_APME_IN_WUC,
3216 .pba = 26,
3217 .max_hw_frame_size = 4096,
3218 .get_variants = e1000_get_variants_ich8lan,
3219 .mac_ops = &ich8_mac_ops,
3220 .phy_ops = &ich8_phy_ops,
3221 .nvm_ops = &ich8_nvm_ops,
3222};
This page took 0.437473 seconds and 5 git commands to generate.