e1000e: consolidate two dbug macros into one simpler one
[deliverable/linux.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
bc7f75fa
AK
55 */
56
bc7f75fa
AK
57#include "e1000.h"
58
59#define ICH_FLASH_GFPREG 0x0000
60#define ICH_FLASH_HSFSTS 0x0004
61#define ICH_FLASH_HSFCTL 0x0006
62#define ICH_FLASH_FADDR 0x0008
63#define ICH_FLASH_FDATA0 0x0010
4a770358 64#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
65
66#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
71
72#define ICH_CYCLE_READ 0
73#define ICH_CYCLE_WRITE 2
74#define ICH_CYCLE_ERASE 3
75
76#define FLASH_GFPREG_BASE_MASK 0x1FFF
77#define FLASH_SECTOR_ADDR_SHIFT 12
78
79#define ICH_FLASH_SEG_SIZE_256 256
80#define ICH_FLASH_SEG_SIZE_4K 4096
81#define ICH_FLASH_SEG_SIZE_8K 8192
82#define ICH_FLASH_SEG_SIZE_64K 65536
83
84
85#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86
87#define E1000_ICH_MNG_IAMT_MODE 0x2
88
89#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
90 (ID_LED_DEF1_OFF2 << 8) | \
91 (ID_LED_DEF1_ON2 << 4) | \
92 (ID_LED_DEF1_DEF2))
93
94#define E1000_ICH_NVM_SIG_WORD 0x13
95#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
96#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
97#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
98
99#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
100
101#define E1000_FEXTNVM_SW_CONFIG 1
102#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103
104#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
105
106#define E1000_ICH_RAR_ENTRIES 7
107
108#define PHY_PAGE_SHIFT 5
109#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110 ((reg) & MAX_PHY_REG_ADDRESS))
111#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
112#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
113
114#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
115#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
117
a4f58f54
BA
118#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
119
53ac5a88
BA
120#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
121
f523d211
BA
122/* SMBus Address Phy Register */
123#define HV_SMB_ADDR PHY_REG(768, 26)
124#define HV_SMB_ADDR_PEC_EN 0x0200
125#define HV_SMB_ADDR_VALID 0x0080
126
127/* Strapping Option Register - RO */
128#define E1000_STRAP 0x0000C
129#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
130#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
131
fa2ce13c
BA
132/* OEM Bits Phy Register */
133#define HV_OEM_BITS PHY_REG(768, 25)
134#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 135#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
136#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
137
1d5846b9
BA
138#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
140
bc7f75fa
AK
141/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142/* Offset 04h HSFSTS */
143union ich8_hws_flash_status {
144 struct ich8_hsfsts {
145 u16 flcdone :1; /* bit 0 Flash Cycle Done */
146 u16 flcerr :1; /* bit 1 Flash Cycle Error */
147 u16 dael :1; /* bit 2 Direct Access error Log */
148 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
149 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
150 u16 reserved1 :2; /* bit 13:6 Reserved */
151 u16 reserved2 :6; /* bit 13:6 Reserved */
152 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
153 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
154 } hsf_status;
155 u16 regval;
156};
157
158/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159/* Offset 06h FLCTL */
160union ich8_hws_flash_ctrl {
161 struct ich8_hsflctl {
162 u16 flcgo :1; /* 0 Flash Cycle Go */
163 u16 flcycle :2; /* 2:1 Flash Cycle */
164 u16 reserved :5; /* 7:3 Reserved */
165 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
166 u16 flockdn :6; /* 15:10 Reserved */
167 } hsf_ctrl;
168 u16 regval;
169};
170
171/* ICH Flash Region Access Permissions */
172union ich8_hws_flash_regacc {
173 struct ich8_flracc {
174 u32 grra :8; /* 0:7 GbE region Read Access */
175 u32 grwa :8; /* 8:15 GbE region Write Access */
176 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
177 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
178 } hsf_flregacc;
179 u16 regval;
180};
181
4a770358
BA
182/* ICH Flash Protected Region */
183union ich8_flash_protected_range {
184 struct ich8_pr {
185 u32 base:13; /* 0:12 Protected Range Base */
186 u32 reserved1:2; /* 13:14 Reserved */
187 u32 rpe:1; /* 15 Read Protection Enable */
188 u32 limit:13; /* 16:28 Protected Range Limit */
189 u32 reserved2:2; /* 29:30 Reserved */
190 u32 wpe:1; /* 31 Write Protection Enable */
191 } range;
192 u32 regval;
193};
194
bc7f75fa
AK
195static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
196static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
197static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
198static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
199static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
200static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
201 u32 offset, u8 byte);
f4187b56
BA
202static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
203 u8 *data);
bc7f75fa
AK
204static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
205 u16 *data);
206static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
207 u8 size, u16 *data);
208static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
209static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 210static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
211static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
212static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
213static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
214static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
215static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
216static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
217static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
218static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 219static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
f523d211 220static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 221static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
bc7f75fa
AK
222
223static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
224{
225 return readw(hw->flash_address + reg);
226}
227
228static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
229{
230 return readl(hw->flash_address + reg);
231}
232
233static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
234{
235 writew(val, hw->flash_address + reg);
236}
237
238static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
239{
240 writel(val, hw->flash_address + reg);
241}
242
243#define er16flash(reg) __er16flash(hw, (reg))
244#define er32flash(reg) __er32flash(hw, (reg))
245#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
246#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
247
a4f58f54
BA
248/**
249 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
250 * @hw: pointer to the HW structure
251 *
252 * Initialize family-specific PHY parameters and function pointers.
253 **/
254static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
255{
256 struct e1000_phy_info *phy = &hw->phy;
257 s32 ret_val = 0;
258
259 phy->addr = 1;
260 phy->reset_delay_us = 100;
261
262 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
263 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
5ccdcecb 264 phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
fa2ce13c
BA
265 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
266 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
a4f58f54 267 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
5ccdcecb 268 phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
a4f58f54
BA
269 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
270
271 phy->id = e1000_phy_unknown;
272 e1000e_get_phy_id(hw);
273 phy->type = e1000e_get_phy_type_from_id(phy->id);
274
275 if (phy->type == e1000_phy_82577) {
276 phy->ops.check_polarity = e1000_check_polarity_82577;
277 phy->ops.force_speed_duplex =
278 e1000_phy_force_speed_duplex_82577;
279 phy->ops.get_cable_length = e1000_get_cable_length_82577;
280 phy->ops.get_phy_info = e1000_get_phy_info_82577;
281 phy->ops.commit_phy = e1000e_phy_sw_reset;
282 }
283
284 return ret_val;
285}
286
bc7f75fa
AK
287/**
288 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
289 * @hw: pointer to the HW structure
290 *
291 * Initialize family-specific PHY parameters and function pointers.
292 **/
293static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
294{
295 struct e1000_phy_info *phy = &hw->phy;
296 s32 ret_val;
297 u16 i = 0;
298
299 phy->addr = 1;
300 phy->reset_delay_us = 100;
301
97ac8cae
BA
302 /*
303 * We may need to do this twice - once for IGP and if that fails,
304 * we'll set BM func pointers and try again
305 */
306 ret_val = e1000e_determine_phy_address(hw);
307 if (ret_val) {
308 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
309 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
310 ret_val = e1000e_determine_phy_address(hw);
311 if (ret_val)
312 return ret_val;
313 }
314
bc7f75fa
AK
315 phy->id = 0;
316 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
317 (i++ < 100)) {
318 msleep(1);
319 ret_val = e1000e_get_phy_id(hw);
320 if (ret_val)
321 return ret_val;
322 }
323
324 /* Verify phy id */
325 switch (phy->id) {
326 case IGP03E1000_E_PHY_ID:
327 phy->type = e1000_phy_igp_3;
328 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
5ccdcecb
BA
329 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
330 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
bc7f75fa
AK
331 break;
332 case IFE_E_PHY_ID:
333 case IFE_PLUS_E_PHY_ID:
334 case IFE_C_E_PHY_ID:
335 phy->type = e1000_phy_ife;
336 phy->autoneg_mask = E1000_ALL_NOT_GIG;
337 break;
97ac8cae
BA
338 case BME1000_E_PHY_ID:
339 phy->type = e1000_phy_bm;
340 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
341 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
342 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
343 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
344 break;
bc7f75fa
AK
345 default:
346 return -E1000_ERR_PHY;
347 break;
348 }
349
a4f58f54
BA
350 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
351
bc7f75fa
AK
352 return 0;
353}
354
355/**
356 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
357 * @hw: pointer to the HW structure
358 *
359 * Initialize family-specific NVM parameters and function
360 * pointers.
361 **/
362static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
363{
364 struct e1000_nvm_info *nvm = &hw->nvm;
365 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 366 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
367 u16 i;
368
ad68076e 369 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 370 if (!hw->flash_address) {
3bb99fe2 371 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
372 return -E1000_ERR_CONFIG;
373 }
374
375 nvm->type = e1000_nvm_flash_sw;
376
377 gfpreg = er32flash(ICH_FLASH_GFPREG);
378
ad68076e
BA
379 /*
380 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 381 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
382 * the overall size.
383 */
bc7f75fa
AK
384 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
385 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
386
387 /* flash_base_addr is byte-aligned */
388 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
389
ad68076e
BA
390 /*
391 * find total size of the NVM, then cut in half since the total
392 * size represents two separate NVM banks.
393 */
bc7f75fa
AK
394 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
395 << FLASH_SECTOR_ADDR_SHIFT;
396 nvm->flash_bank_size /= 2;
397 /* Adjust to word count */
398 nvm->flash_bank_size /= sizeof(u16);
399
400 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
401
402 /* Clear shadow ram */
403 for (i = 0; i < nvm->word_size; i++) {
404 dev_spec->shadow_ram[i].modified = 0;
405 dev_spec->shadow_ram[i].value = 0xFFFF;
406 }
407
408 return 0;
409}
410
411/**
412 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
413 * @hw: pointer to the HW structure
414 *
415 * Initialize family-specific MAC parameters and function
416 * pointers.
417 **/
418static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
419{
420 struct e1000_hw *hw = &adapter->hw;
421 struct e1000_mac_info *mac = &hw->mac;
422
423 /* Set media type function pointer */
318a94d6 424 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
425
426 /* Set mta register count */
427 mac->mta_reg_count = 32;
428 /* Set rar entry count */
429 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
430 if (mac->type == e1000_ich8lan)
431 mac->rar_entry_count--;
432 /* Set if manageability features are enabled. */
433 mac->arc_subsystem_valid = 1;
434
a4f58f54
BA
435 /* LED operations */
436 switch (mac->type) {
437 case e1000_ich8lan:
438 case e1000_ich9lan:
439 case e1000_ich10lan:
440 /* ID LED init */
441 mac->ops.id_led_init = e1000e_id_led_init;
442 /* setup LED */
443 mac->ops.setup_led = e1000e_setup_led_generic;
444 /* cleanup LED */
445 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
446 /* turn on/off LED */
447 mac->ops.led_on = e1000_led_on_ich8lan;
448 mac->ops.led_off = e1000_led_off_ich8lan;
449 break;
450 case e1000_pchlan:
451 /* ID LED init */
452 mac->ops.id_led_init = e1000_id_led_init_pchlan;
453 /* setup LED */
454 mac->ops.setup_led = e1000_setup_led_pchlan;
455 /* cleanup LED */
456 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
457 /* turn on/off LED */
458 mac->ops.led_on = e1000_led_on_pchlan;
459 mac->ops.led_off = e1000_led_off_pchlan;
460 break;
461 default:
462 break;
463 }
464
bc7f75fa
AK
465 /* Enable PCS Lock-loss workaround for ICH8 */
466 if (mac->type == e1000_ich8lan)
467 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
468
469 return 0;
470}
471
7d3cabbc
BA
472/**
473 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
474 * @hw: pointer to the HW structure
475 *
476 * Checks to see of the link status of the hardware has changed. If a
477 * change in link status has been detected, then we read the PHY registers
478 * to get the current speed/duplex if link exists.
479 **/
480static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
481{
482 struct e1000_mac_info *mac = &hw->mac;
483 s32 ret_val;
484 bool link;
485
486 /*
487 * We only want to go out to the PHY registers to see if Auto-Neg
488 * has completed and/or if our link status has changed. The
489 * get_link_status flag is set upon receiving a Link Status
490 * Change or Rx Sequence Error interrupt.
491 */
492 if (!mac->get_link_status) {
493 ret_val = 0;
494 goto out;
495 }
496
7d3cabbc
BA
497 /*
498 * First we want to see if the MII Status Register reports
499 * link. If so, then we want to get the current speed/duplex
500 * of the PHY.
501 */
502 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
503 if (ret_val)
504 goto out;
505
1d5846b9
BA
506 if (hw->mac.type == e1000_pchlan) {
507 ret_val = e1000_k1_gig_workaround_hv(hw, link);
508 if (ret_val)
509 goto out;
510 }
511
7d3cabbc
BA
512 if (!link)
513 goto out; /* No link detected */
514
515 mac->get_link_status = false;
516
517 if (hw->phy.type == e1000_phy_82578) {
518 ret_val = e1000_link_stall_workaround_hv(hw);
519 if (ret_val)
520 goto out;
521 }
522
523 /*
524 * Check if there was DownShift, must be checked
525 * immediately after link-up
526 */
527 e1000e_check_downshift(hw);
528
529 /*
530 * If we are forcing speed/duplex, then we simply return since
531 * we have already determined whether we have link or not.
532 */
533 if (!mac->autoneg) {
534 ret_val = -E1000_ERR_CONFIG;
535 goto out;
536 }
537
538 /*
539 * Auto-Neg is enabled. Auto Speed Detection takes care
540 * of MAC speed/duplex configuration. So we only need to
541 * configure Collision Distance in the MAC.
542 */
543 e1000e_config_collision_dist(hw);
544
545 /*
546 * Configure Flow Control now that Auto-Neg has completed.
547 * First, we need to restore the desired flow control
548 * settings because we may have had to re-autoneg with a
549 * different link partner.
550 */
551 ret_val = e1000e_config_fc_after_link_up(hw);
552 if (ret_val)
3bb99fe2 553 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
554
555out:
556 return ret_val;
557}
558
69e3fd8c 559static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
560{
561 struct e1000_hw *hw = &adapter->hw;
562 s32 rc;
563
564 rc = e1000_init_mac_params_ich8lan(adapter);
565 if (rc)
566 return rc;
567
568 rc = e1000_init_nvm_params_ich8lan(hw);
569 if (rc)
570 return rc;
571
a4f58f54
BA
572 if (hw->mac.type == e1000_pchlan)
573 rc = e1000_init_phy_params_pchlan(hw);
574 else
575 rc = e1000_init_phy_params_ich8lan(hw);
bc7f75fa
AK
576 if (rc)
577 return rc;
578
2adc55c9
BA
579 if (adapter->hw.phy.type == e1000_phy_ife) {
580 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
581 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
582 }
583
bc7f75fa
AK
584 if ((adapter->hw.mac.type == e1000_ich8lan) &&
585 (adapter->hw.phy.type == e1000_phy_igp_3))
586 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
587
588 return 0;
589}
590
717d438d 591static DEFINE_MUTEX(nvm_mutex);
717d438d 592
ca15df58
BA
593/**
594 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
595 * @hw: pointer to the HW structure
596 *
597 * Acquires the mutex for performing NVM operations.
598 **/
599static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
600{
601 mutex_lock(&nvm_mutex);
602
603 return 0;
604}
605
606/**
607 * e1000_release_nvm_ich8lan - Release NVM mutex
608 * @hw: pointer to the HW structure
609 *
610 * Releases the mutex used while performing NVM operations.
611 **/
612static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
613{
614 mutex_unlock(&nvm_mutex);
615
616 return;
617}
618
619static DEFINE_MUTEX(swflag_mutex);
620
bc7f75fa
AK
621/**
622 * e1000_acquire_swflag_ich8lan - Acquire software control flag
623 * @hw: pointer to the HW structure
624 *
ca15df58
BA
625 * Acquires the software control flag for performing PHY and select
626 * MAC CSR accesses.
bc7f75fa
AK
627 **/
628static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
629{
373a88d7
BA
630 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
631 s32 ret_val = 0;
bc7f75fa 632
95b866d5 633 might_sleep();
717d438d 634
ca15df58 635 mutex_lock(&swflag_mutex);
717d438d 636
bc7f75fa
AK
637 while (timeout) {
638 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
639 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
640 break;
bc7f75fa 641
373a88d7
BA
642 mdelay(1);
643 timeout--;
644 }
645
646 if (!timeout) {
3bb99fe2 647 e_dbg("SW/FW/HW has locked the resource for too long.\n");
373a88d7
BA
648 ret_val = -E1000_ERR_CONFIG;
649 goto out;
650 }
651
53ac5a88 652 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
653
654 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
655 ew32(EXTCNF_CTRL, extcnf_ctrl);
656
657 while (timeout) {
658 extcnf_ctrl = er32(EXTCNF_CTRL);
659 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
660 break;
a4f58f54 661
bc7f75fa
AK
662 mdelay(1);
663 timeout--;
664 }
665
666 if (!timeout) {
3bb99fe2 667 e_dbg("Failed to acquire the semaphore.\n");
2e2e8d53
BA
668 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
669 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
670 ret_val = -E1000_ERR_CONFIG;
671 goto out;
bc7f75fa
AK
672 }
673
373a88d7
BA
674out:
675 if (ret_val)
ca15df58 676 mutex_unlock(&swflag_mutex);
373a88d7
BA
677
678 return ret_val;
bc7f75fa
AK
679}
680
681/**
682 * e1000_release_swflag_ich8lan - Release software control flag
683 * @hw: pointer to the HW structure
684 *
ca15df58
BA
685 * Releases the software control flag for performing PHY and select
686 * MAC CSR accesses.
bc7f75fa
AK
687 **/
688static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
689{
690 u32 extcnf_ctrl;
691
692 extcnf_ctrl = er32(EXTCNF_CTRL);
693 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
694 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 695
ca15df58
BA
696 mutex_unlock(&swflag_mutex);
697
698 return;
bc7f75fa
AK
699}
700
4662e82b
BA
701/**
702 * e1000_check_mng_mode_ich8lan - Checks management mode
703 * @hw: pointer to the HW structure
704 *
705 * This checks if the adapter has manageability enabled.
706 * This is a function pointer entry point only called by read/write
707 * routines for the PHY and NVM parts.
708 **/
709static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
710{
711 u32 fwsm = er32(FWSM);
712
713 return (fwsm & E1000_FWSM_MODE_MASK) ==
714 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
715}
716
bc7f75fa
AK
717/**
718 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
719 * @hw: pointer to the HW structure
720 *
721 * Checks if firmware is blocking the reset of the PHY.
722 * This is a function pointer entry point only called by
723 * reset routines.
724 **/
725static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
726{
727 u32 fwsm;
728
729 fwsm = er32(FWSM);
730
731 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
732}
733
734/**
735 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
736 * @hw: pointer to the HW structure
737 *
738 * Forces the speed and duplex settings of the PHY.
739 * This is a function pointer entry point only called by
740 * PHY setup routines.
741 **/
742static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
743{
744 struct e1000_phy_info *phy = &hw->phy;
745 s32 ret_val;
746 u16 data;
747 bool link;
748
749 if (phy->type != e1000_phy_ife) {
750 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
751 return ret_val;
752 }
753
754 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
755 if (ret_val)
756 return ret_val;
757
758 e1000e_phy_force_speed_duplex_setup(hw, &data);
759
760 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
761 if (ret_val)
762 return ret_val;
763
764 /* Disable MDI-X support for 10/100 */
765 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
766 if (ret_val)
767 return ret_val;
768
769 data &= ~IFE_PMC_AUTO_MDIX;
770 data &= ~IFE_PMC_FORCE_MDIX;
771
772 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
773 if (ret_val)
774 return ret_val;
775
3bb99fe2 776 e_dbg("IFE PMC: %X\n", data);
bc7f75fa
AK
777
778 udelay(1);
779
318a94d6 780 if (phy->autoneg_wait_to_complete) {
3bb99fe2 781 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
bc7f75fa
AK
782
783 ret_val = e1000e_phy_has_link_generic(hw,
784 PHY_FORCE_LIMIT,
785 100000,
786 &link);
787 if (ret_val)
788 return ret_val;
789
790 if (!link)
3bb99fe2 791 e_dbg("Link taking longer than expected.\n");
bc7f75fa
AK
792
793 /* Try once more */
794 ret_val = e1000e_phy_has_link_generic(hw,
795 PHY_FORCE_LIMIT,
796 100000,
797 &link);
798 if (ret_val)
799 return ret_val;
800 }
801
802 return 0;
803}
804
f523d211
BA
805/**
806 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
807 * @hw: pointer to the HW structure
808 *
809 * SW should configure the LCD from the NVM extended configuration region
810 * as a workaround for certain parts.
811 **/
812static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
813{
814 struct e1000_phy_info *phy = &hw->phy;
815 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
816 s32 ret_val;
817 u16 word_addr, reg_data, reg_addr, phy_page = 0;
818
819 ret_val = hw->phy.ops.acquire_phy(hw);
820 if (ret_val)
821 return ret_val;
822
823 /*
824 * Initialize the PHY from the NVM on ICH platforms. This
825 * is needed due to an issue where the NVM configuration is
826 * not properly autoloaded after power transitions.
827 * Therefore, after each PHY reset, we will load the
828 * configuration data out of the NVM manually.
829 */
830 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
831 (hw->mac.type == e1000_pchlan)) {
832 struct e1000_adapter *adapter = hw->adapter;
833
834 /* Check if SW needs to configure the PHY */
835 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
836 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
837 (hw->mac.type == e1000_pchlan))
838 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
839 else
840 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
841
842 data = er32(FEXTNVM);
843 if (!(data & sw_cfg_mask))
844 goto out;
845
846 /* Wait for basic configuration completes before proceeding */
847 e1000_lan_init_done_ich8lan(hw);
848
849 /*
850 * Make sure HW does not configure LCD from PHY
851 * extended configuration before SW configuration
852 */
853 data = er32(EXTCNF_CTRL);
854 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
855 goto out;
856
857 cnf_size = er32(EXTCNF_SIZE);
858 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
859 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
860 if (!cnf_size)
861 goto out;
862
863 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
864 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
865
866 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
867 (hw->mac.type == e1000_pchlan)) {
868 /*
869 * HW configures the SMBus address and LEDs when the
870 * OEM and LCD Write Enable bits are set in the NVM.
871 * When both NVM bits are cleared, SW will configure
872 * them instead.
873 */
874 data = er32(STRAP);
875 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
876 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
877 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
878 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
879 reg_data);
880 if (ret_val)
881 goto out;
882
883 data = er32(LEDCTL);
884 ret_val = e1000_write_phy_reg_hv_locked(hw,
885 HV_LED_CONFIG,
886 (u16)data);
887 if (ret_val)
888 goto out;
889 }
890 /* Configure LCD from extended configuration region. */
891
892 /* cnf_base_addr is in DWORD */
893 word_addr = (u16)(cnf_base_addr << 1);
894
895 for (i = 0; i < cnf_size; i++) {
896 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
897 &reg_data);
898 if (ret_val)
899 goto out;
900
901 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
902 1, &reg_addr);
903 if (ret_val)
904 goto out;
905
906 /* Save off the PHY page for future writes. */
907 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
908 phy_page = reg_data;
909 continue;
910 }
911
912 reg_addr &= PHY_REG_MASK;
913 reg_addr |= phy_page;
914
915 ret_val = phy->ops.write_phy_reg_locked(hw,
916 (u32)reg_addr,
917 reg_data);
918 if (ret_val)
919 goto out;
920 }
921 }
922
923out:
924 hw->phy.ops.release_phy(hw);
925 return ret_val;
926}
927
1d5846b9
BA
928/**
929 * e1000_k1_gig_workaround_hv - K1 Si workaround
930 * @hw: pointer to the HW structure
931 * @link: link up bool flag
932 *
933 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
934 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
935 * If link is down, the function will restore the default K1 setting located
936 * in the NVM.
937 **/
938static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
939{
940 s32 ret_val = 0;
941 u16 status_reg = 0;
942 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
943
944 if (hw->mac.type != e1000_pchlan)
945 goto out;
946
947 /* Wrap the whole flow with the sw flag */
948 ret_val = hw->phy.ops.acquire_phy(hw);
949 if (ret_val)
950 goto out;
951
952 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
953 if (link) {
954 if (hw->phy.type == e1000_phy_82578) {
955 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
956 BM_CS_STATUS,
957 &status_reg);
958 if (ret_val)
959 goto release;
960
961 status_reg &= BM_CS_STATUS_LINK_UP |
962 BM_CS_STATUS_RESOLVED |
963 BM_CS_STATUS_SPEED_MASK;
964
965 if (status_reg == (BM_CS_STATUS_LINK_UP |
966 BM_CS_STATUS_RESOLVED |
967 BM_CS_STATUS_SPEED_1000))
968 k1_enable = false;
969 }
970
971 if (hw->phy.type == e1000_phy_82577) {
972 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
973 HV_M_STATUS,
974 &status_reg);
975 if (ret_val)
976 goto release;
977
978 status_reg &= HV_M_STATUS_LINK_UP |
979 HV_M_STATUS_AUTONEG_COMPLETE |
980 HV_M_STATUS_SPEED_MASK;
981
982 if (status_reg == (HV_M_STATUS_LINK_UP |
983 HV_M_STATUS_AUTONEG_COMPLETE |
984 HV_M_STATUS_SPEED_1000))
985 k1_enable = false;
986 }
987
988 /* Link stall fix for link up */
989 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
990 0x0100);
991 if (ret_val)
992 goto release;
993
994 } else {
995 /* Link stall fix for link down */
996 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
997 0x4100);
998 if (ret_val)
999 goto release;
1000 }
1001
1002 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1003
1004release:
1005 hw->phy.ops.release_phy(hw);
1006out:
1007 return ret_val;
1008}
1009
1010/**
1011 * e1000_configure_k1_ich8lan - Configure K1 power state
1012 * @hw: pointer to the HW structure
1013 * @enable: K1 state to configure
1014 *
1015 * Configure the K1 power state based on the provided parameter.
1016 * Assumes semaphore already acquired.
1017 *
1018 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1019 **/
bb436b20 1020s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1021{
1022 s32 ret_val = 0;
1023 u32 ctrl_reg = 0;
1024 u32 ctrl_ext = 0;
1025 u32 reg = 0;
1026 u16 kmrn_reg = 0;
1027
1028 ret_val = e1000e_read_kmrn_reg_locked(hw,
1029 E1000_KMRNCTRLSTA_K1_CONFIG,
1030 &kmrn_reg);
1031 if (ret_val)
1032 goto out;
1033
1034 if (k1_enable)
1035 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1036 else
1037 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1038
1039 ret_val = e1000e_write_kmrn_reg_locked(hw,
1040 E1000_KMRNCTRLSTA_K1_CONFIG,
1041 kmrn_reg);
1042 if (ret_val)
1043 goto out;
1044
1045 udelay(20);
1046 ctrl_ext = er32(CTRL_EXT);
1047 ctrl_reg = er32(CTRL);
1048
1049 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1050 reg |= E1000_CTRL_FRCSPD;
1051 ew32(CTRL, reg);
1052
1053 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1054 udelay(20);
1055 ew32(CTRL, ctrl_reg);
1056 ew32(CTRL_EXT, ctrl_ext);
1057 udelay(20);
1058
1059out:
1060 return ret_val;
1061}
1062
f523d211
BA
1063/**
1064 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1065 * @hw: pointer to the HW structure
1066 * @d0_state: boolean if entering d0 or d3 device state
1067 *
1068 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1069 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1070 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1071 **/
1072static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1073{
1074 s32 ret_val = 0;
1075 u32 mac_reg;
1076 u16 oem_reg;
1077
1078 if (hw->mac.type != e1000_pchlan)
1079 return ret_val;
1080
1081 ret_val = hw->phy.ops.acquire_phy(hw);
1082 if (ret_val)
1083 return ret_val;
1084
1085 mac_reg = er32(EXTCNF_CTRL);
1086 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1087 goto out;
1088
1089 mac_reg = er32(FEXTNVM);
1090 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1091 goto out;
1092
1093 mac_reg = er32(PHY_CTRL);
1094
1095 ret_val = hw->phy.ops.read_phy_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1096 if (ret_val)
1097 goto out;
1098
1099 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1100
1101 if (d0_state) {
1102 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1103 oem_reg |= HV_OEM_BITS_GBE_DIS;
1104
1105 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1106 oem_reg |= HV_OEM_BITS_LPLU;
1107 } else {
1108 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1109 oem_reg |= HV_OEM_BITS_GBE_DIS;
1110
1111 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1112 oem_reg |= HV_OEM_BITS_LPLU;
1113 }
1114 /* Restart auto-neg to activate the bits */
1115 oem_reg |= HV_OEM_BITS_RESTART_AN;
1116 ret_val = hw->phy.ops.write_phy_reg_locked(hw, HV_OEM_BITS, oem_reg);
1117
1118out:
1119 hw->phy.ops.release_phy(hw);
1120
1121 return ret_val;
1122}
1123
1124
a4f58f54
BA
1125/**
1126 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1127 * done after every PHY reset.
1128 **/
1129static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1130{
1131 s32 ret_val = 0;
1132
1133 if (hw->mac.type != e1000_pchlan)
1134 return ret_val;
1135
1136 if (((hw->phy.type == e1000_phy_82577) &&
1137 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1138 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1139 /* Disable generation of early preamble */
1140 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1141 if (ret_val)
1142 return ret_val;
1143
1144 /* Preamble tuning for SSC */
1145 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1146 if (ret_val)
1147 return ret_val;
1148 }
1149
1150 if (hw->phy.type == e1000_phy_82578) {
1151 /*
1152 * Return registers to default by doing a soft reset then
1153 * writing 0x3140 to the control register.
1154 */
1155 if (hw->phy.revision < 2) {
1156 e1000e_phy_sw_reset(hw);
1157 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1158 }
1159 }
1160
1161 /* Select page 0 */
1162 ret_val = hw->phy.ops.acquire_phy(hw);
1163 if (ret_val)
1164 return ret_val;
1d5846b9 1165
a4f58f54 1166 hw->phy.addr = 1;
1d5846b9
BA
1167 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1168 if (ret_val)
1169 goto out;
a4f58f54
BA
1170 hw->phy.ops.release_phy(hw);
1171
1d5846b9
BA
1172 /*
1173 * Configure the K1 Si workaround during phy reset assuming there is
1174 * link so that it disables K1 if link is in 1Gbps.
1175 */
1176 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1177
1178out:
a4f58f54
BA
1179 return ret_val;
1180}
1181
fc0c7760
BA
1182/**
1183 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1184 * @hw: pointer to the HW structure
1185 *
1186 * Check the appropriate indication the MAC has finished configuring the
1187 * PHY after a software reset.
1188 **/
1189static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1190{
1191 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1192
1193 /* Wait for basic configuration completes before proceeding */
1194 do {
1195 data = er32(STATUS);
1196 data &= E1000_STATUS_LAN_INIT_DONE;
1197 udelay(100);
1198 } while ((!data) && --loop);
1199
1200 /*
1201 * If basic configuration is incomplete before the above loop
1202 * count reaches 0, loading the configuration from NVM will
1203 * leave the PHY in a bad state possibly resulting in no link.
1204 */
1205 if (loop == 0)
3bb99fe2 1206 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1207
1208 /* Clear the Init Done bit for the next init event */
1209 data = er32(STATUS);
1210 data &= ~E1000_STATUS_LAN_INIT_DONE;
1211 ew32(STATUS, data);
1212}
1213
bc7f75fa
AK
1214/**
1215 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1216 * @hw: pointer to the HW structure
1217 *
1218 * Resets the PHY
1219 * This is a function pointer entry point called by drivers
1220 * or other shared routines.
1221 **/
1222static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1223{
f523d211
BA
1224 s32 ret_val = 0;
1225 u16 reg;
bc7f75fa
AK
1226
1227 ret_val = e1000e_phy_hw_reset_generic(hw);
1228 if (ret_val)
1229 return ret_val;
1230
fc0c7760
BA
1231 /* Allow time for h/w to get to a quiescent state after reset */
1232 mdelay(10);
1233
a4f58f54
BA
1234 if (hw->mac.type == e1000_pchlan) {
1235 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1236 if (ret_val)
1237 return ret_val;
1238 }
1239
db2932ec
BA
1240 /* Dummy read to clear the phy wakeup bit after lcd reset */
1241 if (hw->mac.type == e1000_pchlan)
1242 e1e_rphy(hw, BM_WUC, &reg);
1243
f523d211
BA
1244 /* Configure the LCD with the extended configuration region in NVM */
1245 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1246 if (ret_val)
1247 goto out;
bc7f75fa 1248
f523d211
BA
1249 /* Configure the LCD with the OEM bits in NVM */
1250 if (hw->mac.type == e1000_pchlan)
1251 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1252
f523d211 1253out:
bc7f75fa
AK
1254 return 0;
1255}
1256
1257/**
1258 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1259 * @hw: pointer to the HW structure
1260 *
1261 * Populates "phy" structure with various feature states.
1262 * This function is only called by other family-specific
1263 * routines.
1264 **/
1265static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1266{
1267 struct e1000_phy_info *phy = &hw->phy;
1268 s32 ret_val;
1269 u16 data;
1270 bool link;
1271
1272 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1273 if (ret_val)
1274 return ret_val;
1275
1276 if (!link) {
3bb99fe2 1277 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1278 return -E1000_ERR_CONFIG;
1279 }
1280
1281 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1282 if (ret_val)
1283 return ret_val;
1284 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1285
1286 if (phy->polarity_correction) {
a4f58f54 1287 ret_val = phy->ops.check_polarity(hw);
bc7f75fa
AK
1288 if (ret_val)
1289 return ret_val;
1290 } else {
1291 /* Polarity is forced */
1292 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1293 ? e1000_rev_polarity_reversed
1294 : e1000_rev_polarity_normal;
1295 }
1296
1297 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1298 if (ret_val)
1299 return ret_val;
1300
1301 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1302
1303 /* The following parameters are undefined for 10/100 operation. */
1304 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1305 phy->local_rx = e1000_1000t_rx_status_undefined;
1306 phy->remote_rx = e1000_1000t_rx_status_undefined;
1307
1308 return 0;
1309}
1310
1311/**
1312 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1313 * @hw: pointer to the HW structure
1314 *
1315 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1316 * This is a function pointer entry point called by drivers
1317 * or other shared routines.
1318 **/
1319static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1320{
1321 switch (hw->phy.type) {
1322 case e1000_phy_ife:
1323 return e1000_get_phy_info_ife_ich8lan(hw);
1324 break;
1325 case e1000_phy_igp_3:
97ac8cae 1326 case e1000_phy_bm:
a4f58f54
BA
1327 case e1000_phy_82578:
1328 case e1000_phy_82577:
bc7f75fa
AK
1329 return e1000e_get_phy_info_igp(hw);
1330 break;
1331 default:
1332 break;
1333 }
1334
1335 return -E1000_ERR_PHY_TYPE;
1336}
1337
1338/**
1339 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1340 * @hw: pointer to the HW structure
1341 *
489815ce 1342 * Polarity is determined on the polarity reversal feature being enabled.
bc7f75fa
AK
1343 * This function is only called by other family-specific
1344 * routines.
1345 **/
1346static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1347{
1348 struct e1000_phy_info *phy = &hw->phy;
1349 s32 ret_val;
1350 u16 phy_data, offset, mask;
1351
ad68076e
BA
1352 /*
1353 * Polarity is determined based on the reversal feature being enabled.
bc7f75fa
AK
1354 */
1355 if (phy->polarity_correction) {
1356 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1357 mask = IFE_PESC_POLARITY_REVERSED;
1358 } else {
1359 offset = IFE_PHY_SPECIAL_CONTROL;
1360 mask = IFE_PSC_FORCE_POLARITY;
1361 }
1362
1363 ret_val = e1e_rphy(hw, offset, &phy_data);
1364
1365 if (!ret_val)
1366 phy->cable_polarity = (phy_data & mask)
1367 ? e1000_rev_polarity_reversed
1368 : e1000_rev_polarity_normal;
1369
1370 return ret_val;
1371}
1372
fa2ce13c
BA
1373/**
1374 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1375 * @hw: pointer to the HW structure
1376 * @active: true to enable LPLU, false to disable
1377 *
1378 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1379 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1380 * the phy speed. This function will manually set the LPLU bit and restart
1381 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1382 * since it configures the same bit.
1383 **/
1384static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1385{
1386 s32 ret_val = 0;
1387 u16 oem_reg;
1388
1389 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1390 if (ret_val)
1391 goto out;
1392
1393 if (active)
1394 oem_reg |= HV_OEM_BITS_LPLU;
1395 else
1396 oem_reg &= ~HV_OEM_BITS_LPLU;
1397
1398 oem_reg |= HV_OEM_BITS_RESTART_AN;
1399 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1400
1401out:
1402 return ret_val;
1403}
1404
bc7f75fa
AK
1405/**
1406 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1407 * @hw: pointer to the HW structure
1408 * @active: TRUE to enable LPLU, FALSE to disable
1409 *
1410 * Sets the LPLU D0 state according to the active flag. When
1411 * activating LPLU this function also disables smart speed
1412 * and vice versa. LPLU will not be activated unless the
1413 * device autonegotiation advertisement meets standards of
1414 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1415 * This is a function pointer entry point only called by
1416 * PHY setup routines.
1417 **/
1418static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1419{
1420 struct e1000_phy_info *phy = &hw->phy;
1421 u32 phy_ctrl;
1422 s32 ret_val = 0;
1423 u16 data;
1424
97ac8cae 1425 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1426 return ret_val;
1427
1428 phy_ctrl = er32(PHY_CTRL);
1429
1430 if (active) {
1431 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1432 ew32(PHY_CTRL, phy_ctrl);
1433
60f1292f
BA
1434 if (phy->type != e1000_phy_igp_3)
1435 return 0;
1436
ad68076e
BA
1437 /*
1438 * Call gig speed drop workaround on LPLU before accessing
1439 * any PHY registers
1440 */
60f1292f 1441 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1442 e1000e_gig_downshift_workaround_ich8lan(hw);
1443
1444 /* When LPLU is enabled, we should disable SmartSpeed */
1445 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1446 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1447 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1448 if (ret_val)
1449 return ret_val;
1450 } else {
1451 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1452 ew32(PHY_CTRL, phy_ctrl);
1453
60f1292f
BA
1454 if (phy->type != e1000_phy_igp_3)
1455 return 0;
1456
ad68076e
BA
1457 /*
1458 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1459 * during Dx states where the power conservation is most
1460 * important. During driver activity we should enable
ad68076e
BA
1461 * SmartSpeed, so performance is maintained.
1462 */
bc7f75fa
AK
1463 if (phy->smart_speed == e1000_smart_speed_on) {
1464 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1465 &data);
bc7f75fa
AK
1466 if (ret_val)
1467 return ret_val;
1468
1469 data |= IGP01E1000_PSCFR_SMART_SPEED;
1470 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1471 data);
bc7f75fa
AK
1472 if (ret_val)
1473 return ret_val;
1474 } else if (phy->smart_speed == e1000_smart_speed_off) {
1475 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1476 &data);
bc7f75fa
AK
1477 if (ret_val)
1478 return ret_val;
1479
1480 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1481 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1482 data);
bc7f75fa
AK
1483 if (ret_val)
1484 return ret_val;
1485 }
1486 }
1487
1488 return 0;
1489}
1490
1491/**
1492 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1493 * @hw: pointer to the HW structure
1494 * @active: TRUE to enable LPLU, FALSE to disable
1495 *
1496 * Sets the LPLU D3 state according to the active flag. When
1497 * activating LPLU this function also disables smart speed
1498 * and vice versa. LPLU will not be activated unless the
1499 * device autonegotiation advertisement meets standards of
1500 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1501 * This is a function pointer entry point only called by
1502 * PHY setup routines.
1503 **/
1504static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1505{
1506 struct e1000_phy_info *phy = &hw->phy;
1507 u32 phy_ctrl;
1508 s32 ret_val;
1509 u16 data;
1510
1511 phy_ctrl = er32(PHY_CTRL);
1512
1513 if (!active) {
1514 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1515 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1516
1517 if (phy->type != e1000_phy_igp_3)
1518 return 0;
1519
ad68076e
BA
1520 /*
1521 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1522 * during Dx states where the power conservation is most
1523 * important. During driver activity we should enable
ad68076e
BA
1524 * SmartSpeed, so performance is maintained.
1525 */
bc7f75fa 1526 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1527 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528 &data);
bc7f75fa
AK
1529 if (ret_val)
1530 return ret_val;
1531
1532 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1533 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1534 data);
bc7f75fa
AK
1535 if (ret_val)
1536 return ret_val;
1537 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1538 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539 &data);
bc7f75fa
AK
1540 if (ret_val)
1541 return ret_val;
1542
1543 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1544 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1545 data);
bc7f75fa
AK
1546 if (ret_val)
1547 return ret_val;
1548 }
1549 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1550 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1551 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1552 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1553 ew32(PHY_CTRL, phy_ctrl);
1554
60f1292f
BA
1555 if (phy->type != e1000_phy_igp_3)
1556 return 0;
1557
ad68076e
BA
1558 /*
1559 * Call gig speed drop workaround on LPLU before accessing
1560 * any PHY registers
1561 */
60f1292f 1562 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1563 e1000e_gig_downshift_workaround_ich8lan(hw);
1564
1565 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1566 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1567 if (ret_val)
1568 return ret_val;
1569
1570 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1571 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1572 }
1573
1574 return 0;
1575}
1576
f4187b56
BA
1577/**
1578 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1579 * @hw: pointer to the HW structure
1580 * @bank: pointer to the variable that returns the active bank
1581 *
1582 * Reads signature byte from the NVM using the flash access registers.
e243455d 1583 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1584 **/
1585static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1586{
e243455d 1587 u32 eecd;
f4187b56 1588 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1589 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1590 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1591 u8 sig_byte = 0;
1592 s32 ret_val = 0;
f4187b56 1593
e243455d
BA
1594 switch (hw->mac.type) {
1595 case e1000_ich8lan:
1596 case e1000_ich9lan:
1597 eecd = er32(EECD);
1598 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1599 E1000_EECD_SEC1VAL_VALID_MASK) {
1600 if (eecd & E1000_EECD_SEC1VAL)
1601 *bank = 1;
1602 else
1603 *bank = 0;
1604
1605 return 0;
1606 }
3bb99fe2 1607 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
1608 "reading flash signature\n");
1609 /* fall-thru */
1610 default:
1611 /* set bank to 0 in case flash read fails */
1612 *bank = 0;
1613
1614 /* Check bank 0 */
1615 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1616 &sig_byte);
1617 if (ret_val)
1618 return ret_val;
1619 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1620 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 1621 *bank = 0;
e243455d
BA
1622 return 0;
1623 }
f4187b56 1624
e243455d
BA
1625 /* Check bank 1 */
1626 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1627 bank1_offset,
1628 &sig_byte);
1629 if (ret_val)
1630 return ret_val;
1631 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1632 E1000_ICH_NVM_SIG_VALUE) {
1633 *bank = 1;
1634 return 0;
f4187b56 1635 }
e243455d 1636
3bb99fe2 1637 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 1638 return -E1000_ERR_NVM;
f4187b56
BA
1639 }
1640
1641 return 0;
1642}
1643
bc7f75fa
AK
1644/**
1645 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1646 * @hw: pointer to the HW structure
1647 * @offset: The offset (in bytes) of the word(s) to read.
1648 * @words: Size of data to read in words
1649 * @data: Pointer to the word(s) to read at offset.
1650 *
1651 * Reads a word(s) from the NVM using the flash access registers.
1652 **/
1653static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1654 u16 *data)
1655{
1656 struct e1000_nvm_info *nvm = &hw->nvm;
1657 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1658 u32 act_offset;
148675a7 1659 s32 ret_val = 0;
f4187b56 1660 u32 bank = 0;
bc7f75fa
AK
1661 u16 i, word;
1662
1663 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1664 (words == 0)) {
3bb99fe2 1665 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
1666 ret_val = -E1000_ERR_NVM;
1667 goto out;
bc7f75fa
AK
1668 }
1669
ca15df58 1670 nvm->ops.acquire_nvm(hw);
bc7f75fa 1671
f4187b56 1672 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 1673 if (ret_val) {
3bb99fe2 1674 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
1675 bank = 0;
1676 }
f4187b56
BA
1677
1678 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
1679 act_offset += offset;
1680
148675a7 1681 ret_val = 0;
bc7f75fa
AK
1682 for (i = 0; i < words; i++) {
1683 if ((dev_spec->shadow_ram) &&
1684 (dev_spec->shadow_ram[offset+i].modified)) {
1685 data[i] = dev_spec->shadow_ram[offset+i].value;
1686 } else {
1687 ret_val = e1000_read_flash_word_ich8lan(hw,
1688 act_offset + i,
1689 &word);
1690 if (ret_val)
1691 break;
1692 data[i] = word;
1693 }
1694 }
1695
ca15df58 1696 nvm->ops.release_nvm(hw);
bc7f75fa 1697
e243455d
BA
1698out:
1699 if (ret_val)
3bb99fe2 1700 e_dbg("NVM read error: %d\n", ret_val);
e243455d 1701
bc7f75fa
AK
1702 return ret_val;
1703}
1704
1705/**
1706 * e1000_flash_cycle_init_ich8lan - Initialize flash
1707 * @hw: pointer to the HW structure
1708 *
1709 * This function does initial flash setup so that a new read/write/erase cycle
1710 * can be started.
1711 **/
1712static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1713{
1714 union ich8_hws_flash_status hsfsts;
1715 s32 ret_val = -E1000_ERR_NVM;
1716 s32 i = 0;
1717
1718 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1719
1720 /* Check if the flash descriptor is valid */
1721 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 1722 e_dbg("Flash descriptor invalid. "
bc7f75fa
AK
1723 "SW Sequencing must be used.");
1724 return -E1000_ERR_NVM;
1725 }
1726
1727 /* Clear FCERR and DAEL in hw status by writing 1 */
1728 hsfsts.hsf_status.flcerr = 1;
1729 hsfsts.hsf_status.dael = 1;
1730
1731 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1732
ad68076e
BA
1733 /*
1734 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
1735 * bit to check against, in order to start a new cycle or
1736 * FDONE bit should be changed in the hardware so that it
489815ce 1737 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
1738 * indication whether a cycle is in progress or has been
1739 * completed.
1740 */
1741
1742 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
1743 /*
1744 * There is no cycle running at present,
1745 * so we can start a cycle
1746 * Begin by setting Flash Cycle Done.
1747 */
bc7f75fa
AK
1748 hsfsts.hsf_status.flcdone = 1;
1749 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1750 ret_val = 0;
1751 } else {
ad68076e
BA
1752 /*
1753 * otherwise poll for sometime so the current
1754 * cycle has a chance to end before giving up.
1755 */
bc7f75fa
AK
1756 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1757 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1758 if (hsfsts.hsf_status.flcinprog == 0) {
1759 ret_val = 0;
1760 break;
1761 }
1762 udelay(1);
1763 }
1764 if (ret_val == 0) {
ad68076e
BA
1765 /*
1766 * Successful in waiting for previous cycle to timeout,
1767 * now set the Flash Cycle Done.
1768 */
bc7f75fa
AK
1769 hsfsts.hsf_status.flcdone = 1;
1770 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1771 } else {
3bb99fe2 1772 e_dbg("Flash controller busy, cannot get access");
bc7f75fa
AK
1773 }
1774 }
1775
1776 return ret_val;
1777}
1778
1779/**
1780 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1781 * @hw: pointer to the HW structure
1782 * @timeout: maximum time to wait for completion
1783 *
1784 * This function starts a flash cycle and waits for its completion.
1785 **/
1786static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1787{
1788 union ich8_hws_flash_ctrl hsflctl;
1789 union ich8_hws_flash_status hsfsts;
1790 s32 ret_val = -E1000_ERR_NVM;
1791 u32 i = 0;
1792
1793 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1794 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1795 hsflctl.hsf_ctrl.flcgo = 1;
1796 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1797
1798 /* wait till FDONE bit is set to 1 */
1799 do {
1800 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1801 if (hsfsts.hsf_status.flcdone == 1)
1802 break;
1803 udelay(1);
1804 } while (i++ < timeout);
1805
1806 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1807 return 0;
1808
1809 return ret_val;
1810}
1811
1812/**
1813 * e1000_read_flash_word_ich8lan - Read word from flash
1814 * @hw: pointer to the HW structure
1815 * @offset: offset to data location
1816 * @data: pointer to the location for storing the data
1817 *
1818 * Reads the flash word at offset into data. Offset is converted
1819 * to bytes before read.
1820 **/
1821static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1822 u16 *data)
1823{
1824 /* Must convert offset into bytes. */
1825 offset <<= 1;
1826
1827 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1828}
1829
f4187b56
BA
1830/**
1831 * e1000_read_flash_byte_ich8lan - Read byte from flash
1832 * @hw: pointer to the HW structure
1833 * @offset: The offset of the byte to read.
1834 * @data: Pointer to a byte to store the value read.
1835 *
1836 * Reads a single byte from the NVM using the flash access registers.
1837 **/
1838static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1839 u8 *data)
1840{
1841 s32 ret_val;
1842 u16 word = 0;
1843
1844 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1845 if (ret_val)
1846 return ret_val;
1847
1848 *data = (u8)word;
1849
1850 return 0;
1851}
1852
bc7f75fa
AK
1853/**
1854 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1855 * @hw: pointer to the HW structure
1856 * @offset: The offset (in bytes) of the byte or word to read.
1857 * @size: Size of data to read, 1=byte 2=word
1858 * @data: Pointer to the word to store the value read.
1859 *
1860 * Reads a byte or word from the NVM using the flash access registers.
1861 **/
1862static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1863 u8 size, u16 *data)
1864{
1865 union ich8_hws_flash_status hsfsts;
1866 union ich8_hws_flash_ctrl hsflctl;
1867 u32 flash_linear_addr;
1868 u32 flash_data = 0;
1869 s32 ret_val = -E1000_ERR_NVM;
1870 u8 count = 0;
1871
1872 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1873 return -E1000_ERR_NVM;
1874
1875 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1876 hw->nvm.flash_base_addr;
1877
1878 do {
1879 udelay(1);
1880 /* Steps */
1881 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1882 if (ret_val != 0)
1883 break;
1884
1885 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1886 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1887 hsflctl.hsf_ctrl.fldbcount = size - 1;
1888 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1889 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1890
1891 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1892
1893 ret_val = e1000_flash_cycle_ich8lan(hw,
1894 ICH_FLASH_READ_COMMAND_TIMEOUT);
1895
ad68076e
BA
1896 /*
1897 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
1898 * and try the whole sequence a few more times, else
1899 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
1900 * least significant byte first msb to lsb
1901 */
bc7f75fa
AK
1902 if (ret_val == 0) {
1903 flash_data = er32flash(ICH_FLASH_FDATA0);
1904 if (size == 1) {
1905 *data = (u8)(flash_data & 0x000000FF);
1906 } else if (size == 2) {
1907 *data = (u16)(flash_data & 0x0000FFFF);
1908 }
1909 break;
1910 } else {
ad68076e
BA
1911 /*
1912 * If we've gotten here, then things are probably
bc7f75fa
AK
1913 * completely hosed, but if the error condition is
1914 * detected, it won't hurt to give it another try...
1915 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1916 */
1917 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1918 if (hsfsts.hsf_status.flcerr == 1) {
1919 /* Repeat for some time before giving up. */
1920 continue;
1921 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 1922 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
1923 "did not complete.");
1924 break;
1925 }
1926 }
1927 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1928
1929 return ret_val;
1930}
1931
1932/**
1933 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1934 * @hw: pointer to the HW structure
1935 * @offset: The offset (in bytes) of the word(s) to write.
1936 * @words: Size of data to write in words
1937 * @data: Pointer to the word(s) to write at offset.
1938 *
1939 * Writes a byte or word to the NVM using the flash access registers.
1940 **/
1941static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1942 u16 *data)
1943{
1944 struct e1000_nvm_info *nvm = &hw->nvm;
1945 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
1946 u16 i;
1947
1948 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1949 (words == 0)) {
3bb99fe2 1950 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
1951 return -E1000_ERR_NVM;
1952 }
1953
ca15df58
BA
1954 nvm->ops.acquire_nvm(hw);
1955
bc7f75fa
AK
1956 for (i = 0; i < words; i++) {
1957 dev_spec->shadow_ram[offset+i].modified = 1;
1958 dev_spec->shadow_ram[offset+i].value = data[i];
1959 }
1960
ca15df58
BA
1961 nvm->ops.release_nvm(hw);
1962
bc7f75fa
AK
1963 return 0;
1964}
1965
1966/**
1967 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1968 * @hw: pointer to the HW structure
1969 *
1970 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1971 * which writes the checksum to the shadow ram. The changes in the shadow
1972 * ram are then committed to the EEPROM by processing each bank at a time
1973 * checking for the modified bit and writing only the pending changes.
489815ce 1974 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
1975 * future writes.
1976 **/
1977static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1978{
1979 struct e1000_nvm_info *nvm = &hw->nvm;
1980 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 1981 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
1982 s32 ret_val;
1983 u16 data;
1984
1985 ret_val = e1000e_update_nvm_checksum_generic(hw);
1986 if (ret_val)
e243455d 1987 goto out;
bc7f75fa
AK
1988
1989 if (nvm->type != e1000_nvm_flash_sw)
e243455d 1990 goto out;
bc7f75fa 1991
ca15df58 1992 nvm->ops.acquire_nvm(hw);
bc7f75fa 1993
ad68076e
BA
1994 /*
1995 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 1996 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
1997 * is going to be written
1998 */
f4187b56 1999 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2000 if (ret_val) {
3bb99fe2 2001 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2002 bank = 0;
e243455d 2003 }
f4187b56
BA
2004
2005 if (bank == 0) {
bc7f75fa
AK
2006 new_bank_offset = nvm->flash_bank_size;
2007 old_bank_offset = 0;
e243455d
BA
2008 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2009 if (ret_val) {
ca15df58 2010 nvm->ops.release_nvm(hw);
e243455d
BA
2011 goto out;
2012 }
bc7f75fa
AK
2013 } else {
2014 old_bank_offset = nvm->flash_bank_size;
2015 new_bank_offset = 0;
e243455d
BA
2016 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2017 if (ret_val) {
ca15df58 2018 nvm->ops.release_nvm(hw);
e243455d
BA
2019 goto out;
2020 }
bc7f75fa
AK
2021 }
2022
2023 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2024 /*
2025 * Determine whether to write the value stored
bc7f75fa 2026 * in the other NVM bank or a modified value stored
ad68076e
BA
2027 * in the shadow RAM
2028 */
bc7f75fa
AK
2029 if (dev_spec->shadow_ram[i].modified) {
2030 data = dev_spec->shadow_ram[i].value;
2031 } else {
e243455d
BA
2032 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2033 old_bank_offset,
2034 &data);
2035 if (ret_val)
2036 break;
bc7f75fa
AK
2037 }
2038
ad68076e
BA
2039 /*
2040 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2041 * (15:14) are 11b until the commit has completed.
2042 * This will allow us to write 10b which indicates the
2043 * signature is valid. We want to do this after the write
2044 * has completed so that we don't mark the segment valid
ad68076e
BA
2045 * while the write is still in progress
2046 */
bc7f75fa
AK
2047 if (i == E1000_ICH_NVM_SIG_WORD)
2048 data |= E1000_ICH_NVM_SIG_MASK;
2049
2050 /* Convert offset to bytes. */
2051 act_offset = (i + new_bank_offset) << 1;
2052
2053 udelay(100);
2054 /* Write the bytes to the new bank. */
2055 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2056 act_offset,
2057 (u8)data);
2058 if (ret_val)
2059 break;
2060
2061 udelay(100);
2062 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2063 act_offset + 1,
2064 (u8)(data >> 8));
2065 if (ret_val)
2066 break;
2067 }
2068
ad68076e
BA
2069 /*
2070 * Don't bother writing the segment valid bits if sector
2071 * programming failed.
2072 */
bc7f75fa 2073 if (ret_val) {
4a770358 2074 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2075 e_dbg("Flash commit failed.\n");
ca15df58 2076 nvm->ops.release_nvm(hw);
e243455d 2077 goto out;
bc7f75fa
AK
2078 }
2079
ad68076e
BA
2080 /*
2081 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2082 * to 10b in word 0x13 , this can be done without an
2083 * erase as well since these bits are 11 to start with
ad68076e
BA
2084 * and we need to change bit 14 to 0b
2085 */
bc7f75fa 2086 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d
BA
2087 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2088 if (ret_val) {
ca15df58 2089 nvm->ops.release_nvm(hw);
e243455d
BA
2090 goto out;
2091 }
bc7f75fa
AK
2092 data &= 0xBFFF;
2093 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2094 act_offset * 2 + 1,
2095 (u8)(data >> 8));
2096 if (ret_val) {
ca15df58 2097 nvm->ops.release_nvm(hw);
e243455d 2098 goto out;
bc7f75fa
AK
2099 }
2100
ad68076e
BA
2101 /*
2102 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2103 * its signature word (0x13) high_byte to 0b. This can be
2104 * done without an erase because flash erase sets all bits
ad68076e
BA
2105 * to 1's. We can write 1's to 0's without an erase
2106 */
bc7f75fa
AK
2107 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2108 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2109 if (ret_val) {
ca15df58 2110 nvm->ops.release_nvm(hw);
e243455d 2111 goto out;
bc7f75fa
AK
2112 }
2113
2114 /* Great! Everything worked, we can now clear the cached entries. */
2115 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2116 dev_spec->shadow_ram[i].modified = 0;
2117 dev_spec->shadow_ram[i].value = 0xFFFF;
2118 }
2119
ca15df58 2120 nvm->ops.release_nvm(hw);
bc7f75fa 2121
ad68076e
BA
2122 /*
2123 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2124 * until after the next adapter reset.
2125 */
2126 e1000e_reload_nvm(hw);
2127 msleep(10);
2128
e243455d
BA
2129out:
2130 if (ret_val)
3bb99fe2 2131 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2132
bc7f75fa
AK
2133 return ret_val;
2134}
2135
2136/**
2137 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2138 * @hw: pointer to the HW structure
2139 *
2140 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2141 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2142 * calculated, in which case we need to calculate the checksum and set bit 6.
2143 **/
2144static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2145{
2146 s32 ret_val;
2147 u16 data;
2148
ad68076e
BA
2149 /*
2150 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2151 * needs to be fixed. This bit is an indication that the NVM
2152 * was prepared by OEM software and did not calculate the
2153 * checksum...a likely scenario.
2154 */
2155 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2156 if (ret_val)
2157 return ret_val;
2158
2159 if ((data & 0x40) == 0) {
2160 data |= 0x40;
2161 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2162 if (ret_val)
2163 return ret_val;
2164 ret_val = e1000e_update_nvm_checksum(hw);
2165 if (ret_val)
2166 return ret_val;
2167 }
2168
2169 return e1000e_validate_nvm_checksum_generic(hw);
2170}
2171
4a770358
BA
2172/**
2173 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2174 * @hw: pointer to the HW structure
2175 *
2176 * To prevent malicious write/erase of the NVM, set it to be read-only
2177 * so that the hardware ignores all write/erase cycles of the NVM via
2178 * the flash control registers. The shadow-ram copy of the NVM will
2179 * still be updated, however any updates to this copy will not stick
2180 * across driver reloads.
2181 **/
2182void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2183{
ca15df58 2184 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2185 union ich8_flash_protected_range pr0;
2186 union ich8_hws_flash_status hsfsts;
2187 u32 gfpreg;
4a770358 2188
ca15df58 2189 nvm->ops.acquire_nvm(hw);
4a770358
BA
2190
2191 gfpreg = er32flash(ICH_FLASH_GFPREG);
2192
2193 /* Write-protect GbE Sector of NVM */
2194 pr0.regval = er32flash(ICH_FLASH_PR0);
2195 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2196 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2197 pr0.range.wpe = true;
2198 ew32flash(ICH_FLASH_PR0, pr0.regval);
2199
2200 /*
2201 * Lock down a subset of GbE Flash Control Registers, e.g.
2202 * PR0 to prevent the write-protection from being lifted.
2203 * Once FLOCKDN is set, the registers protected by it cannot
2204 * be written until FLOCKDN is cleared by a hardware reset.
2205 */
2206 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2207 hsfsts.hsf_status.flockdn = true;
2208 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2209
ca15df58 2210 nvm->ops.release_nvm(hw);
4a770358
BA
2211}
2212
bc7f75fa
AK
2213/**
2214 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2215 * @hw: pointer to the HW structure
2216 * @offset: The offset (in bytes) of the byte/word to read.
2217 * @size: Size of data to read, 1=byte 2=word
2218 * @data: The byte(s) to write to the NVM.
2219 *
2220 * Writes one/two bytes to the NVM using the flash access registers.
2221 **/
2222static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2223 u8 size, u16 data)
2224{
2225 union ich8_hws_flash_status hsfsts;
2226 union ich8_hws_flash_ctrl hsflctl;
2227 u32 flash_linear_addr;
2228 u32 flash_data = 0;
2229 s32 ret_val;
2230 u8 count = 0;
2231
2232 if (size < 1 || size > 2 || data > size * 0xff ||
2233 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2234 return -E1000_ERR_NVM;
2235
2236 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2237 hw->nvm.flash_base_addr;
2238
2239 do {
2240 udelay(1);
2241 /* Steps */
2242 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2243 if (ret_val)
2244 break;
2245
2246 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2247 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2248 hsflctl.hsf_ctrl.fldbcount = size -1;
2249 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2250 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2251
2252 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2253
2254 if (size == 1)
2255 flash_data = (u32)data & 0x00FF;
2256 else
2257 flash_data = (u32)data;
2258
2259 ew32flash(ICH_FLASH_FDATA0, flash_data);
2260
ad68076e
BA
2261 /*
2262 * check if FCERR is set to 1 , if set to 1, clear it
2263 * and try the whole sequence a few more times else done
2264 */
bc7f75fa
AK
2265 ret_val = e1000_flash_cycle_ich8lan(hw,
2266 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2267 if (!ret_val)
2268 break;
2269
ad68076e
BA
2270 /*
2271 * If we're here, then things are most likely
bc7f75fa
AK
2272 * completely hosed, but if the error condition
2273 * is detected, it won't hurt to give it another
2274 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2275 */
2276 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2277 if (hsfsts.hsf_status.flcerr == 1)
2278 /* Repeat for some time before giving up. */
2279 continue;
2280 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2281 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2282 "did not complete.");
2283 break;
2284 }
2285 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2286
2287 return ret_val;
2288}
2289
2290/**
2291 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2292 * @hw: pointer to the HW structure
2293 * @offset: The index of the byte to read.
2294 * @data: The byte to write to the NVM.
2295 *
2296 * Writes a single byte to the NVM using the flash access registers.
2297 **/
2298static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2299 u8 data)
2300{
2301 u16 word = (u16)data;
2302
2303 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2304}
2305
2306/**
2307 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2308 * @hw: pointer to the HW structure
2309 * @offset: The offset of the byte to write.
2310 * @byte: The byte to write to the NVM.
2311 *
2312 * Writes a single byte to the NVM using the flash access registers.
2313 * Goes through a retry algorithm before giving up.
2314 **/
2315static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2316 u32 offset, u8 byte)
2317{
2318 s32 ret_val;
2319 u16 program_retries;
2320
2321 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2322 if (!ret_val)
2323 return ret_val;
2324
2325 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2326 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2327 udelay(100);
2328 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2329 if (!ret_val)
2330 break;
2331 }
2332 if (program_retries == 100)
2333 return -E1000_ERR_NVM;
2334
2335 return 0;
2336}
2337
2338/**
2339 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2340 * @hw: pointer to the HW structure
2341 * @bank: 0 for first bank, 1 for second bank, etc.
2342 *
2343 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2344 * bank N is 4096 * N + flash_reg_addr.
2345 **/
2346static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2347{
2348 struct e1000_nvm_info *nvm = &hw->nvm;
2349 union ich8_hws_flash_status hsfsts;
2350 union ich8_hws_flash_ctrl hsflctl;
2351 u32 flash_linear_addr;
2352 /* bank size is in 16bit words - adjust to bytes */
2353 u32 flash_bank_size = nvm->flash_bank_size * 2;
2354 s32 ret_val;
2355 s32 count = 0;
2356 s32 iteration;
2357 s32 sector_size;
2358 s32 j;
2359
2360 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2361
ad68076e
BA
2362 /*
2363 * Determine HW Sector size: Read BERASE bits of hw flash status
2364 * register
2365 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2366 * consecutive sectors. The start index for the nth Hw sector
2367 * can be calculated as = bank * 4096 + n * 256
2368 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2369 * The start index for the nth Hw sector can be calculated
2370 * as = bank * 4096
2371 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2372 * (ich9 only, otherwise error condition)
2373 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2374 */
2375 switch (hsfsts.hsf_status.berasesz) {
2376 case 0:
2377 /* Hw sector size 256 */
2378 sector_size = ICH_FLASH_SEG_SIZE_256;
2379 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2380 break;
2381 case 1:
2382 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2383 iteration = 1;
bc7f75fa
AK
2384 break;
2385 case 2:
148675a7
BA
2386 sector_size = ICH_FLASH_SEG_SIZE_8K;
2387 iteration = 1;
bc7f75fa
AK
2388 break;
2389 case 3:
2390 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2391 iteration = 1;
bc7f75fa
AK
2392 break;
2393 default:
2394 return -E1000_ERR_NVM;
2395 }
2396
2397 /* Start with the base address, then add the sector offset. */
2398 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2399 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2400
2401 for (j = 0; j < iteration ; j++) {
2402 do {
2403 /* Steps */
2404 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2405 if (ret_val)
2406 return ret_val;
2407
ad68076e
BA
2408 /*
2409 * Write a value 11 (block Erase) in Flash
2410 * Cycle field in hw flash control
2411 */
bc7f75fa
AK
2412 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2413 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2414 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2415
ad68076e
BA
2416 /*
2417 * Write the last 24 bits of an index within the
bc7f75fa
AK
2418 * block into Flash Linear address field in Flash
2419 * Address.
2420 */
2421 flash_linear_addr += (j * sector_size);
2422 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2423
2424 ret_val = e1000_flash_cycle_ich8lan(hw,
2425 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2426 if (ret_val == 0)
2427 break;
2428
ad68076e
BA
2429 /*
2430 * Check if FCERR is set to 1. If 1,
bc7f75fa 2431 * clear it and try the whole sequence
ad68076e
BA
2432 * a few more times else Done
2433 */
bc7f75fa
AK
2434 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2435 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2436 /* repeat for some time before giving up */
bc7f75fa
AK
2437 continue;
2438 else if (hsfsts.hsf_status.flcdone == 0)
2439 return ret_val;
2440 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2441 }
2442
2443 return 0;
2444}
2445
2446/**
2447 * e1000_valid_led_default_ich8lan - Set the default LED settings
2448 * @hw: pointer to the HW structure
2449 * @data: Pointer to the LED settings
2450 *
2451 * Reads the LED default settings from the NVM to data. If the NVM LED
2452 * settings is all 0's or F's, set the LED default to a valid LED default
2453 * setting.
2454 **/
2455static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2456{
2457 s32 ret_val;
2458
2459 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2460 if (ret_val) {
3bb99fe2 2461 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2462 return ret_val;
2463 }
2464
2465 if (*data == ID_LED_RESERVED_0000 ||
2466 *data == ID_LED_RESERVED_FFFF)
2467 *data = ID_LED_DEFAULT_ICH8LAN;
2468
2469 return 0;
2470}
2471
a4f58f54
BA
2472/**
2473 * e1000_id_led_init_pchlan - store LED configurations
2474 * @hw: pointer to the HW structure
2475 *
2476 * PCH does not control LEDs via the LEDCTL register, rather it uses
2477 * the PHY LED configuration register.
2478 *
2479 * PCH also does not have an "always on" or "always off" mode which
2480 * complicates the ID feature. Instead of using the "on" mode to indicate
2481 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2482 * use "link_up" mode. The LEDs will still ID on request if there is no
2483 * link based on logic in e1000_led_[on|off]_pchlan().
2484 **/
2485static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2486{
2487 struct e1000_mac_info *mac = &hw->mac;
2488 s32 ret_val;
2489 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2490 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2491 u16 data, i, temp, shift;
2492
2493 /* Get default ID LED modes */
2494 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2495 if (ret_val)
2496 goto out;
2497
2498 mac->ledctl_default = er32(LEDCTL);
2499 mac->ledctl_mode1 = mac->ledctl_default;
2500 mac->ledctl_mode2 = mac->ledctl_default;
2501
2502 for (i = 0; i < 4; i++) {
2503 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2504 shift = (i * 5);
2505 switch (temp) {
2506 case ID_LED_ON1_DEF2:
2507 case ID_LED_ON1_ON2:
2508 case ID_LED_ON1_OFF2:
2509 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2510 mac->ledctl_mode1 |= (ledctl_on << shift);
2511 break;
2512 case ID_LED_OFF1_DEF2:
2513 case ID_LED_OFF1_ON2:
2514 case ID_LED_OFF1_OFF2:
2515 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2516 mac->ledctl_mode1 |= (ledctl_off << shift);
2517 break;
2518 default:
2519 /* Do nothing */
2520 break;
2521 }
2522 switch (temp) {
2523 case ID_LED_DEF1_ON2:
2524 case ID_LED_ON1_ON2:
2525 case ID_LED_OFF1_ON2:
2526 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2527 mac->ledctl_mode2 |= (ledctl_on << shift);
2528 break;
2529 case ID_LED_DEF1_OFF2:
2530 case ID_LED_ON1_OFF2:
2531 case ID_LED_OFF1_OFF2:
2532 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2533 mac->ledctl_mode2 |= (ledctl_off << shift);
2534 break;
2535 default:
2536 /* Do nothing */
2537 break;
2538 }
2539 }
2540
2541out:
2542 return ret_val;
2543}
2544
bc7f75fa
AK
2545/**
2546 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2547 * @hw: pointer to the HW structure
2548 *
2549 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2550 * register, so the the bus width is hard coded.
2551 **/
2552static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2553{
2554 struct e1000_bus_info *bus = &hw->bus;
2555 s32 ret_val;
2556
2557 ret_val = e1000e_get_bus_info_pcie(hw);
2558
ad68076e
BA
2559 /*
2560 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2561 * a configuration space, but do not contain
2562 * PCI Express Capability registers, so bus width
2563 * must be hardcoded.
2564 */
2565 if (bus->width == e1000_bus_width_unknown)
2566 bus->width = e1000_bus_width_pcie_x1;
2567
2568 return ret_val;
2569}
2570
2571/**
2572 * e1000_reset_hw_ich8lan - Reset the hardware
2573 * @hw: pointer to the HW structure
2574 *
2575 * Does a full reset of the hardware which includes a reset of the PHY and
2576 * MAC.
2577 **/
2578static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2579{
1d5846b9 2580 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 2581 u16 reg;
bc7f75fa
AK
2582 u32 ctrl, icr, kab;
2583 s32 ret_val;
2584
ad68076e
BA
2585 /*
2586 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2587 * on the last TLP read/write transaction when MAC is reset.
2588 */
2589 ret_val = e1000e_disable_pcie_master(hw);
2590 if (ret_val) {
3bb99fe2 2591 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa
AK
2592 }
2593
3bb99fe2 2594 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
2595 ew32(IMC, 0xffffffff);
2596
ad68076e
BA
2597 /*
2598 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2599 * any pending transactions to complete before we hit the MAC
2600 * with the global reset.
2601 */
2602 ew32(RCTL, 0);
2603 ew32(TCTL, E1000_TCTL_PSP);
2604 e1e_flush();
2605
2606 msleep(10);
2607
2608 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2609 if (hw->mac.type == e1000_ich8lan) {
2610 /* Set Tx and Rx buffer allocation to 8k apiece. */
2611 ew32(PBA, E1000_PBA_8K);
2612 /* Set Packet Buffer Size to 16k. */
2613 ew32(PBS, E1000_PBS_16K);
2614 }
2615
1d5846b9
BA
2616 if (hw->mac.type == e1000_pchlan) {
2617 /* Save the NVM K1 bit setting*/
2618 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2619 if (ret_val)
2620 return ret_val;
2621
2622 if (reg & E1000_NVM_K1_ENABLE)
2623 dev_spec->nvm_k1_enabled = true;
2624 else
2625 dev_spec->nvm_k1_enabled = false;
2626 }
2627
bc7f75fa
AK
2628 ctrl = er32(CTRL);
2629
2630 if (!e1000_check_reset_block(hw)) {
fc0c7760
BA
2631 /* Clear PHY Reset Asserted bit */
2632 if (hw->mac.type >= e1000_pchlan) {
2633 u32 status = er32(STATUS);
2634 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2635 }
2636
ad68076e
BA
2637 /*
2638 * PHY HW reset requires MAC CORE reset at the same
bc7f75fa
AK
2639 * time to make sure the interface between MAC and the
2640 * external PHY is reset.
2641 */
2642 ctrl |= E1000_CTRL_PHY_RST;
2643 }
2644 ret_val = e1000_acquire_swflag_ich8lan(hw);
30bb0e0d 2645 /* Whether or not the swflag was acquired, we need to reset the part */
3bb99fe2 2646 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa
AK
2647 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2648 msleep(20);
2649
fc0c7760 2650 if (!ret_val)
30bb0e0d 2651 e1000_release_swflag_ich8lan(hw);
37f40239 2652
fc0c7760
BA
2653 if (ctrl & E1000_CTRL_PHY_RST)
2654 ret_val = hw->phy.ops.get_cfg_done(hw);
2655
2656 if (hw->mac.type >= e1000_ich10lan) {
2657 e1000_lan_init_done_ich8lan(hw);
2658 } else {
2659 ret_val = e1000e_get_auto_rd_done(hw);
2660 if (ret_val) {
2661 /*
2662 * When auto config read does not complete, do not
2663 * return with an error. This can happen in situations
2664 * where there is no eeprom and prevents getting link.
2665 */
3bb99fe2 2666 e_dbg("Auto Read Done did not complete\n");
fc0c7760 2667 }
bc7f75fa 2668 }
db2932ec
BA
2669 /* Dummy read to clear the phy wakeup bit after lcd reset */
2670 if (hw->mac.type == e1000_pchlan)
2671 e1e_rphy(hw, BM_WUC, &reg);
bc7f75fa 2672
f523d211
BA
2673 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2674 if (ret_val)
2675 goto out;
2676
2677 if (hw->mac.type == e1000_pchlan) {
2678 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2679 if (ret_val)
2680 goto out;
2681 }
7d3cabbc
BA
2682 /*
2683 * For PCH, this write will make sure that any noise
2684 * will be detected as a CRC error and be dropped rather than show up
2685 * as a bad packet to the DMA engine.
2686 */
2687 if (hw->mac.type == e1000_pchlan)
2688 ew32(CRC_OFFSET, 0x65656565);
2689
bc7f75fa
AK
2690 ew32(IMC, 0xffffffff);
2691 icr = er32(ICR);
2692
2693 kab = er32(KABGTXD);
2694 kab |= E1000_KABGTXD_BGSQLBIAS;
2695 ew32(KABGTXD, kab);
2696
a4f58f54
BA
2697 if (hw->mac.type == e1000_pchlan)
2698 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2699
f523d211 2700out:
bc7f75fa
AK
2701 return ret_val;
2702}
2703
2704/**
2705 * e1000_init_hw_ich8lan - Initialize the hardware
2706 * @hw: pointer to the HW structure
2707 *
2708 * Prepares the hardware for transmit and receive by doing the following:
2709 * - initialize hardware bits
2710 * - initialize LED identification
2711 * - setup receive address registers
2712 * - setup flow control
489815ce 2713 * - setup transmit descriptors
bc7f75fa
AK
2714 * - clear statistics
2715 **/
2716static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2717{
2718 struct e1000_mac_info *mac = &hw->mac;
2719 u32 ctrl_ext, txdctl, snoop;
2720 s32 ret_val;
2721 u16 i;
2722
2723 e1000_initialize_hw_bits_ich8lan(hw);
2724
2725 /* Initialize identification LED */
a4f58f54 2726 ret_val = mac->ops.id_led_init(hw);
bc7f75fa 2727 if (ret_val) {
3bb99fe2 2728 e_dbg("Error initializing identification LED\n");
bc7f75fa
AK
2729 return ret_val;
2730 }
2731
2732 /* Setup the receive address. */
2733 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2734
2735 /* Zero out the Multicast HASH table */
3bb99fe2 2736 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
2737 for (i = 0; i < mac->mta_reg_count; i++)
2738 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2739
fc0c7760
BA
2740 /*
2741 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2742 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2743 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2744 */
2745 if (hw->phy.type == e1000_phy_82578) {
2746 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2747 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2748 if (ret_val)
2749 return ret_val;
2750 }
2751
bc7f75fa
AK
2752 /* Setup link and flow control */
2753 ret_val = e1000_setup_link_ich8lan(hw);
2754
2755 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 2756 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
2757 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2758 E1000_TXDCTL_FULL_TX_DESC_WB;
2759 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2760 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
2761 ew32(TXDCTL(0), txdctl);
2762 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
2763 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2764 E1000_TXDCTL_FULL_TX_DESC_WB;
2765 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2766 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 2767 ew32(TXDCTL(1), txdctl);
bc7f75fa 2768
ad68076e
BA
2769 /*
2770 * ICH8 has opposite polarity of no_snoop bits.
2771 * By default, we should use snoop behavior.
2772 */
bc7f75fa
AK
2773 if (mac->type == e1000_ich8lan)
2774 snoop = PCIE_ICH8_SNOOP_ALL;
2775 else
2776 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2777 e1000e_set_pcie_no_snoop(hw, snoop);
2778
2779 ctrl_ext = er32(CTRL_EXT);
2780 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2781 ew32(CTRL_EXT, ctrl_ext);
2782
ad68076e
BA
2783 /*
2784 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
2785 * important that we do this after we have tried to establish link
2786 * because the symbol error count will increment wildly if there
2787 * is no link.
2788 */
2789 e1000_clear_hw_cntrs_ich8lan(hw);
2790
2791 return 0;
2792}
2793/**
2794 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2795 * @hw: pointer to the HW structure
2796 *
2797 * Sets/Clears required hardware bits necessary for correctly setting up the
2798 * hardware for transmit and receive.
2799 **/
2800static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2801{
2802 u32 reg;
2803
2804 /* Extended Device Control */
2805 reg = er32(CTRL_EXT);
2806 reg |= (1 << 22);
a4f58f54
BA
2807 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2808 if (hw->mac.type >= e1000_pchlan)
2809 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
2810 ew32(CTRL_EXT, reg);
2811
2812 /* Transmit Descriptor Control 0 */
e9ec2c0f 2813 reg = er32(TXDCTL(0));
bc7f75fa 2814 reg |= (1 << 22);
e9ec2c0f 2815 ew32(TXDCTL(0), reg);
bc7f75fa
AK
2816
2817 /* Transmit Descriptor Control 1 */
e9ec2c0f 2818 reg = er32(TXDCTL(1));
bc7f75fa 2819 reg |= (1 << 22);
e9ec2c0f 2820 ew32(TXDCTL(1), reg);
bc7f75fa
AK
2821
2822 /* Transmit Arbitration Control 0 */
e9ec2c0f 2823 reg = er32(TARC(0));
bc7f75fa
AK
2824 if (hw->mac.type == e1000_ich8lan)
2825 reg |= (1 << 28) | (1 << 29);
2826 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 2827 ew32(TARC(0), reg);
bc7f75fa
AK
2828
2829 /* Transmit Arbitration Control 1 */
e9ec2c0f 2830 reg = er32(TARC(1));
bc7f75fa
AK
2831 if (er32(TCTL) & E1000_TCTL_MULR)
2832 reg &= ~(1 << 28);
2833 else
2834 reg |= (1 << 28);
2835 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 2836 ew32(TARC(1), reg);
bc7f75fa
AK
2837
2838 /* Device Status */
2839 if (hw->mac.type == e1000_ich8lan) {
2840 reg = er32(STATUS);
2841 reg &= ~(1 << 31);
2842 ew32(STATUS, reg);
2843 }
2844}
2845
2846/**
2847 * e1000_setup_link_ich8lan - Setup flow control and link settings
2848 * @hw: pointer to the HW structure
2849 *
2850 * Determines which flow control settings to use, then configures flow
2851 * control. Calls the appropriate media-specific link configuration
2852 * function. Assuming the adapter has a valid link partner, a valid link
2853 * should be established. Assumes the hardware has previously been reset
2854 * and the transmitter and receiver are not enabled.
2855 **/
2856static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2857{
bc7f75fa
AK
2858 s32 ret_val;
2859
2860 if (e1000_check_reset_block(hw))
2861 return 0;
2862
ad68076e
BA
2863 /*
2864 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
2865 * the default flow control setting, so we explicitly
2866 * set it to full.
2867 */
37289d9c
BA
2868 if (hw->fc.requested_mode == e1000_fc_default) {
2869 /* Workaround h/w hang when Tx flow control enabled */
2870 if (hw->mac.type == e1000_pchlan)
2871 hw->fc.requested_mode = e1000_fc_rx_pause;
2872 else
2873 hw->fc.requested_mode = e1000_fc_full;
2874 }
bc7f75fa 2875
5c48ef3e
BA
2876 /*
2877 * Save off the requested flow control mode for use later. Depending
2878 * on the link partner's capabilities, we may or may not use this mode.
2879 */
2880 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 2881
3bb99fe2 2882 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 2883 hw->fc.current_mode);
bc7f75fa
AK
2884
2885 /* Continue to configure the copper link. */
2886 ret_val = e1000_setup_copper_link_ich8lan(hw);
2887 if (ret_val)
2888 return ret_val;
2889
318a94d6 2890 ew32(FCTTV, hw->fc.pause_time);
a4f58f54
BA
2891 if ((hw->phy.type == e1000_phy_82578) ||
2892 (hw->phy.type == e1000_phy_82577)) {
2893 ret_val = hw->phy.ops.write_phy_reg(hw,
2894 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2895 hw->fc.pause_time);
2896 if (ret_val)
2897 return ret_val;
2898 }
bc7f75fa
AK
2899
2900 return e1000e_set_fc_watermarks(hw);
2901}
2902
2903/**
2904 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2905 * @hw: pointer to the HW structure
2906 *
2907 * Configures the kumeran interface to the PHY to wait the appropriate time
2908 * when polling the PHY, then call the generic setup_copper_link to finish
2909 * configuring the copper link.
2910 **/
2911static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2912{
2913 u32 ctrl;
2914 s32 ret_val;
2915 u16 reg_data;
2916
2917 ctrl = er32(CTRL);
2918 ctrl |= E1000_CTRL_SLU;
2919 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2920 ew32(CTRL, ctrl);
2921
ad68076e
BA
2922 /*
2923 * Set the mac to wait the maximum time between each iteration
bc7f75fa 2924 * and increase the max iterations when polling the phy;
ad68076e
BA
2925 * this fixes erroneous timeouts at 10Mbps.
2926 */
bc7f75fa
AK
2927 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2928 if (ret_val)
2929 return ret_val;
2930 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2931 if (ret_val)
2932 return ret_val;
2933 reg_data |= 0x3F;
2934 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2935 if (ret_val)
2936 return ret_val;
2937
a4f58f54
BA
2938 switch (hw->phy.type) {
2939 case e1000_phy_igp_3:
bc7f75fa
AK
2940 ret_val = e1000e_copper_link_setup_igp(hw);
2941 if (ret_val)
2942 return ret_val;
a4f58f54
BA
2943 break;
2944 case e1000_phy_bm:
2945 case e1000_phy_82578:
97ac8cae
BA
2946 ret_val = e1000e_copper_link_setup_m88(hw);
2947 if (ret_val)
2948 return ret_val;
a4f58f54
BA
2949 break;
2950 case e1000_phy_82577:
2951 ret_val = e1000_copper_link_setup_82577(hw);
2952 if (ret_val)
2953 return ret_val;
2954 break;
2955 case e1000_phy_ife:
2956 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2957 &reg_data);
97ac8cae
BA
2958 if (ret_val)
2959 return ret_val;
2960
2961 reg_data &= ~IFE_PMC_AUTO_MDIX;
2962
2963 switch (hw->phy.mdix) {
2964 case 1:
2965 reg_data &= ~IFE_PMC_FORCE_MDIX;
2966 break;
2967 case 2:
2968 reg_data |= IFE_PMC_FORCE_MDIX;
2969 break;
2970 case 0:
2971 default:
2972 reg_data |= IFE_PMC_AUTO_MDIX;
2973 break;
2974 }
a4f58f54
BA
2975 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2976 reg_data);
97ac8cae
BA
2977 if (ret_val)
2978 return ret_val;
a4f58f54
BA
2979 break;
2980 default:
2981 break;
97ac8cae 2982 }
bc7f75fa
AK
2983 return e1000e_setup_copper_link(hw);
2984}
2985
2986/**
2987 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2988 * @hw: pointer to the HW structure
2989 * @speed: pointer to store current link speed
2990 * @duplex: pointer to store the current link duplex
2991 *
ad68076e 2992 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
2993 * information and then calls the Kumeran lock loss workaround for links at
2994 * gigabit speeds.
2995 **/
2996static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2997 u16 *duplex)
2998{
2999 s32 ret_val;
3000
3001 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3002 if (ret_val)
3003 return ret_val;
3004
3005 if ((hw->mac.type == e1000_ich8lan) &&
3006 (hw->phy.type == e1000_phy_igp_3) &&
3007 (*speed == SPEED_1000)) {
3008 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3009 }
3010
3011 return ret_val;
3012}
3013
3014/**
3015 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3016 * @hw: pointer to the HW structure
3017 *
3018 * Work-around for 82566 Kumeran PCS lock loss:
3019 * On link status change (i.e. PCI reset, speed change) and link is up and
3020 * speed is gigabit-
3021 * 0) if workaround is optionally disabled do nothing
3022 * 1) wait 1ms for Kumeran link to come up
3023 * 2) check Kumeran Diagnostic register PCS lock loss bit
3024 * 3) if not set the link is locked (all is good), otherwise...
3025 * 4) reset the PHY
3026 * 5) repeat up to 10 times
3027 * Note: this is only called for IGP3 copper when speed is 1gb.
3028 **/
3029static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3030{
3031 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3032 u32 phy_ctrl;
3033 s32 ret_val;
3034 u16 i, data;
3035 bool link;
3036
3037 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3038 return 0;
3039
ad68076e
BA
3040 /*
3041 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3042 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3043 * stability
3044 */
bc7f75fa
AK
3045 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3046 if (!link)
3047 return 0;
3048
3049 for (i = 0; i < 10; i++) {
3050 /* read once to clear */
3051 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3052 if (ret_val)
3053 return ret_val;
3054 /* and again to get new status */
3055 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3056 if (ret_val)
3057 return ret_val;
3058
3059 /* check for PCS lock */
3060 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3061 return 0;
3062
3063 /* Issue PHY reset */
3064 e1000_phy_hw_reset(hw);
3065 mdelay(5);
3066 }
3067 /* Disable GigE link negotiation */
3068 phy_ctrl = er32(PHY_CTRL);
3069 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3070 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3071 ew32(PHY_CTRL, phy_ctrl);
3072
ad68076e
BA
3073 /*
3074 * Call gig speed drop workaround on Gig disable before accessing
3075 * any PHY registers
3076 */
bc7f75fa
AK
3077 e1000e_gig_downshift_workaround_ich8lan(hw);
3078
3079 /* unable to acquire PCS lock */
3080 return -E1000_ERR_PHY;
3081}
3082
3083/**
ad68076e 3084 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3085 * @hw: pointer to the HW structure
489815ce 3086 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa
AK
3087 *
3088 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
3089 * /disabled - FALSE).
3090 **/
3091void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3092 bool state)
3093{
3094 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3095
3096 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3097 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3098 return;
3099 }
3100
3101 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3102}
3103
3104/**
3105 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3106 * @hw: pointer to the HW structure
3107 *
3108 * Workaround for 82566 power-down on D3 entry:
3109 * 1) disable gigabit link
3110 * 2) write VR power-down enable
3111 * 3) read it back
3112 * Continue if successful, else issue LCD reset and repeat
3113 **/
3114void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3115{
3116 u32 reg;
3117 u16 data;
3118 u8 retry = 0;
3119
3120 if (hw->phy.type != e1000_phy_igp_3)
3121 return;
3122
3123 /* Try the workaround twice (if needed) */
3124 do {
3125 /* Disable link */
3126 reg = er32(PHY_CTRL);
3127 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3128 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3129 ew32(PHY_CTRL, reg);
3130
ad68076e
BA
3131 /*
3132 * Call gig speed drop workaround on Gig disable before
3133 * accessing any PHY registers
3134 */
bc7f75fa
AK
3135 if (hw->mac.type == e1000_ich8lan)
3136 e1000e_gig_downshift_workaround_ich8lan(hw);
3137
3138 /* Write VR power-down enable */
3139 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3140 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3141 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3142
3143 /* Read it back and test */
3144 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3145 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3146 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3147 break;
3148
3149 /* Issue PHY reset and repeat at most one more time */
3150 reg = er32(CTRL);
3151 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3152 retry++;
3153 } while (retry);
3154}
3155
3156/**
3157 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3158 * @hw: pointer to the HW structure
3159 *
3160 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3161 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3162 * 1) Set Kumeran Near-end loopback
3163 * 2) Clear Kumeran Near-end loopback
3164 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3165 **/
3166void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3167{
3168 s32 ret_val;
3169 u16 reg_data;
3170
3171 if ((hw->mac.type != e1000_ich8lan) ||
3172 (hw->phy.type != e1000_phy_igp_3))
3173 return;
3174
3175 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3176 &reg_data);
3177 if (ret_val)
3178 return;
3179 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3180 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3181 reg_data);
3182 if (ret_val)
3183 return;
3184 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3185 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3186 reg_data);
3187}
3188
97ac8cae
BA
3189/**
3190 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3191 * @hw: pointer to the HW structure
3192 *
3193 * During S0 to Sx transition, it is possible the link remains at gig
3194 * instead of negotiating to a lower speed. Before going to Sx, set
3195 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3196 * to a lower speed.
3197 *
a4f58f54 3198 * Should only be called for applicable parts.
97ac8cae
BA
3199 **/
3200void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3201{
3202 u32 phy_ctrl;
3203
a4f58f54
BA
3204 switch (hw->mac.type) {
3205 case e1000_ich9lan:
3206 case e1000_ich10lan:
3207 case e1000_pchlan:
97ac8cae
BA
3208 phy_ctrl = er32(PHY_CTRL);
3209 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3210 E1000_PHY_CTRL_GBE_DISABLE;
3211 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3212
a4f58f54 3213 if (hw->mac.type == e1000_pchlan)
74eee2e8 3214 e1000_phy_hw_reset_ich8lan(hw);
a4f58f54
BA
3215 default:
3216 break;
97ac8cae
BA
3217 }
3218
3219 return;
3220}
3221
bc7f75fa
AK
3222/**
3223 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3224 * @hw: pointer to the HW structure
3225 *
3226 * Return the LED back to the default configuration.
3227 **/
3228static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3229{
3230 if (hw->phy.type == e1000_phy_ife)
3231 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3232
3233 ew32(LEDCTL, hw->mac.ledctl_default);
3234 return 0;
3235}
3236
3237/**
489815ce 3238 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3239 * @hw: pointer to the HW structure
3240 *
489815ce 3241 * Turn on the LEDs.
bc7f75fa
AK
3242 **/
3243static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3244{
3245 if (hw->phy.type == e1000_phy_ife)
3246 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3247 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3248
3249 ew32(LEDCTL, hw->mac.ledctl_mode2);
3250 return 0;
3251}
3252
3253/**
489815ce 3254 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3255 * @hw: pointer to the HW structure
3256 *
489815ce 3257 * Turn off the LEDs.
bc7f75fa
AK
3258 **/
3259static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3260{
3261 if (hw->phy.type == e1000_phy_ife)
3262 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3263 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3264
3265 ew32(LEDCTL, hw->mac.ledctl_mode1);
3266 return 0;
3267}
3268
a4f58f54
BA
3269/**
3270 * e1000_setup_led_pchlan - Configures SW controllable LED
3271 * @hw: pointer to the HW structure
3272 *
3273 * This prepares the SW controllable LED for use.
3274 **/
3275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3276{
3277 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3278 (u16)hw->mac.ledctl_mode1);
3279}
3280
3281/**
3282 * e1000_cleanup_led_pchlan - Restore the default LED operation
3283 * @hw: pointer to the HW structure
3284 *
3285 * Return the LED back to the default configuration.
3286 **/
3287static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3288{
3289 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3290 (u16)hw->mac.ledctl_default);
3291}
3292
3293/**
3294 * e1000_led_on_pchlan - Turn LEDs on
3295 * @hw: pointer to the HW structure
3296 *
3297 * Turn on the LEDs.
3298 **/
3299static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3300{
3301 u16 data = (u16)hw->mac.ledctl_mode2;
3302 u32 i, led;
3303
3304 /*
3305 * If no link, then turn LED on by setting the invert bit
3306 * for each LED that's mode is "link_up" in ledctl_mode2.
3307 */
3308 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3309 for (i = 0; i < 3; i++) {
3310 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3311 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3312 E1000_LEDCTL_MODE_LINK_UP)
3313 continue;
3314 if (led & E1000_PHY_LED0_IVRT)
3315 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3316 else
3317 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3318 }
3319 }
3320
3321 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3322}
3323
3324/**
3325 * e1000_led_off_pchlan - Turn LEDs off
3326 * @hw: pointer to the HW structure
3327 *
3328 * Turn off the LEDs.
3329 **/
3330static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3331{
3332 u16 data = (u16)hw->mac.ledctl_mode1;
3333 u32 i, led;
3334
3335 /*
3336 * If no link, then turn LED off by clearing the invert bit
3337 * for each LED that's mode is "link_up" in ledctl_mode1.
3338 */
3339 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3340 for (i = 0; i < 3; i++) {
3341 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3342 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3343 E1000_LEDCTL_MODE_LINK_UP)
3344 continue;
3345 if (led & E1000_PHY_LED0_IVRT)
3346 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3347 else
3348 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3349 }
3350 }
3351
3352 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3353}
3354
f4187b56
BA
3355/**
3356 * e1000_get_cfg_done_ich8lan - Read config done bit
3357 * @hw: pointer to the HW structure
3358 *
3359 * Read the management control register for the config done bit for
3360 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3361 * to read the config done bit, so an error is *ONLY* logged and returns
a4f58f54 3362 * 0. If we were to return with error, EEPROM-less silicon
f4187b56
BA
3363 * would not be able to be reset or change link.
3364 **/
3365static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3366{
3367 u32 bank = 0;
3368
fc0c7760
BA
3369 if (hw->mac.type >= e1000_pchlan) {
3370 u32 status = er32(STATUS);
3371
3372 if (status & E1000_STATUS_PHYRA)
3373 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3374 else
3bb99fe2 3375 e_dbg("PHY Reset Asserted not set - needs delay\n");
fc0c7760
BA
3376 }
3377
f4187b56
BA
3378 e1000e_get_cfg_done(hw);
3379
3380 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
a4f58f54
BA
3381 if ((hw->mac.type != e1000_ich10lan) &&
3382 (hw->mac.type != e1000_pchlan)) {
f4187b56
BA
3383 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3384 (hw->phy.type == e1000_phy_igp_3)) {
3385 e1000e_phy_init_script_igp3(hw);
3386 }
3387 } else {
3388 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3389 /* Maybe we should do a basic PHY config */
3bb99fe2 3390 e_dbg("EEPROM not present\n");
f4187b56
BA
3391 return -E1000_ERR_CONFIG;
3392 }
3393 }
3394
3395 return 0;
3396}
3397
bc7f75fa
AK
3398/**
3399 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3400 * @hw: pointer to the HW structure
3401 *
3402 * Clears hardware counters specific to the silicon family and calls
3403 * clear_hw_cntrs_generic to clear all general purpose counters.
3404 **/
3405static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3406{
3407 u32 temp;
a4f58f54 3408 u16 phy_data;
bc7f75fa
AK
3409
3410 e1000e_clear_hw_cntrs_base(hw);
3411
3412 temp = er32(ALGNERRC);
3413 temp = er32(RXERRC);
3414 temp = er32(TNCRS);
3415 temp = er32(CEXTERR);
3416 temp = er32(TSCTC);
3417 temp = er32(TSCTFC);
3418
3419 temp = er32(MGTPRC);
3420 temp = er32(MGTPDC);
3421 temp = er32(MGTPTC);
3422
3423 temp = er32(IAC);
3424 temp = er32(ICRXOC);
3425
a4f58f54
BA
3426 /* Clear PHY statistics registers */
3427 if ((hw->phy.type == e1000_phy_82578) ||
3428 (hw->phy.type == e1000_phy_82577)) {
3429 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3430 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3431 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3432 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3433 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3434 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3435 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3436 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3437 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3438 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3439 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3440 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3441 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3442 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3443 }
bc7f75fa
AK
3444}
3445
3446static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3447 .id_led_init = e1000e_id_led_init,
4662e82b 3448 .check_mng_mode = e1000_check_mng_mode_ich8lan,
7d3cabbc 3449 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3450 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3451 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3452 .get_bus_info = e1000_get_bus_info_ich8lan,
3453 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3454 /* led_on dependent on mac type */
3455 /* led_off dependent on mac type */
e2de3eb6 3456 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3457 .reset_hw = e1000_reset_hw_ich8lan,
3458 .init_hw = e1000_init_hw_ich8lan,
3459 .setup_link = e1000_setup_link_ich8lan,
3460 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3461 /* id_led_init dependent on mac type */
bc7f75fa
AK
3462};
3463
3464static struct e1000_phy_operations ich8_phy_ops = {
3465 .acquire_phy = e1000_acquire_swflag_ich8lan,
3466 .check_reset_block = e1000_check_reset_block_ich8lan,
3467 .commit_phy = NULL,
3468 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
f4187b56 3469 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa
AK
3470 .get_cable_length = e1000e_get_cable_length_igp_2,
3471 .get_phy_info = e1000_get_phy_info_ich8lan,
3472 .read_phy_reg = e1000e_read_phy_reg_igp,
3473 .release_phy = e1000_release_swflag_ich8lan,
3474 .reset_phy = e1000_phy_hw_reset_ich8lan,
3475 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3476 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3477 .write_phy_reg = e1000e_write_phy_reg_igp,
3478};
3479
3480static struct e1000_nvm_operations ich8_nvm_ops = {
ca15df58 3481 .acquire_nvm = e1000_acquire_nvm_ich8lan,
bc7f75fa 3482 .read_nvm = e1000_read_nvm_ich8lan,
ca15df58 3483 .release_nvm = e1000_release_nvm_ich8lan,
bc7f75fa
AK
3484 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3485 .valid_led_default = e1000_valid_led_default_ich8lan,
3486 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3487 .write_nvm = e1000_write_nvm_ich8lan,
3488};
3489
3490struct e1000_info e1000_ich8_info = {
3491 .mac = e1000_ich8lan,
3492 .flags = FLAG_HAS_WOL
97ac8cae 3493 | FLAG_IS_ICH
bc7f75fa
AK
3494 | FLAG_RX_CSUM_ENABLED
3495 | FLAG_HAS_CTRLEXT_ON_LOAD
3496 | FLAG_HAS_AMT
3497 | FLAG_HAS_FLASH
3498 | FLAG_APME_IN_WUC,
3499 .pba = 8,
2adc55c9 3500 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3501 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3502 .mac_ops = &ich8_mac_ops,
3503 .phy_ops = &ich8_phy_ops,
3504 .nvm_ops = &ich8_nvm_ops,
3505};
3506
3507struct e1000_info e1000_ich9_info = {
3508 .mac = e1000_ich9lan,
3509 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3510 | FLAG_IS_ICH
bc7f75fa
AK
3511 | FLAG_HAS_WOL
3512 | FLAG_RX_CSUM_ENABLED
3513 | FLAG_HAS_CTRLEXT_ON_LOAD
3514 | FLAG_HAS_AMT
3515 | FLAG_HAS_ERT
3516 | FLAG_HAS_FLASH
3517 | FLAG_APME_IN_WUC,
3518 .pba = 10,
2adc55c9 3519 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3520 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3521 .mac_ops = &ich8_mac_ops,
3522 .phy_ops = &ich8_phy_ops,
3523 .nvm_ops = &ich8_nvm_ops,
3524};
3525
f4187b56
BA
3526struct e1000_info e1000_ich10_info = {
3527 .mac = e1000_ich10lan,
3528 .flags = FLAG_HAS_JUMBO_FRAMES
3529 | FLAG_IS_ICH
3530 | FLAG_HAS_WOL
3531 | FLAG_RX_CSUM_ENABLED
3532 | FLAG_HAS_CTRLEXT_ON_LOAD
3533 | FLAG_HAS_AMT
3534 | FLAG_HAS_ERT
3535 | FLAG_HAS_FLASH
3536 | FLAG_APME_IN_WUC,
3537 .pba = 10,
2adc55c9 3538 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3539 .get_variants = e1000_get_variants_ich8lan,
3540 .mac_ops = &ich8_mac_ops,
3541 .phy_ops = &ich8_phy_ops,
3542 .nvm_ops = &ich8_nvm_ops,
3543};
a4f58f54
BA
3544
3545struct e1000_info e1000_pch_info = {
3546 .mac = e1000_pchlan,
3547 .flags = FLAG_IS_ICH
3548 | FLAG_HAS_WOL
3549 | FLAG_RX_CSUM_ENABLED
3550 | FLAG_HAS_CTRLEXT_ON_LOAD
3551 | FLAG_HAS_AMT
3552 | FLAG_HAS_FLASH
3553 | FLAG_HAS_JUMBO_FRAMES
3554 | FLAG_APME_IN_WUC,
3555 .pba = 26,
3556 .max_hw_frame_size = 4096,
3557 .get_variants = e1000_get_variants_ich8lan,
3558 .mac_ops = &ich8_mac_ops,
3559 .phy_ops = &ich8_phy_ops,
3560 .nvm_ops = &ich8_nvm_ops,
3561};
This page took 0.46942 seconds and 5 git commands to generate.