e1000e: cleanup functions that clear hardware statistics
[deliverable/linux.git] / drivers / net / e1000e / lib.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
bc7f75fa
AK
29#include "e1000.h"
30
31enum e1000_mng_mode {
32 e1000_mng_mode_none = 0,
33 e1000_mng_mode_asf,
34 e1000_mng_mode_pt,
35 e1000_mng_mode_ipmi,
36 e1000_mng_mode_host_if_only
37};
38
39#define E1000_FACTPS_MNGCG 0x20000000
40
ad68076e
BA
41/* Intel(R) Active Management Technology signature */
42#define E1000_IAMT_SIGNATURE 0x544D4149
bc7f75fa
AK
43
44/**
45 * e1000e_get_bus_info_pcie - Get PCIe bus information
46 * @hw: pointer to the HW structure
47 *
48 * Determines and stores the system bus information for a particular
49 * network interface. The following bus information is determined and stored:
50 * bus speed, bus width, type (PCIe), and PCIe function.
51 **/
52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
53{
54 struct e1000_bus_info *bus = &hw->bus;
55 struct e1000_adapter *adapter = hw->adapter;
56 u32 status;
57 u16 pcie_link_status, pci_header_type, cap_offset;
58
59 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
60 if (!cap_offset) {
61 bus->width = e1000_bus_width_unknown;
62 } else {
63 pci_read_config_word(adapter->pdev,
64 cap_offset + PCIE_LINK_STATUS,
65 &pcie_link_status);
66 bus->width = (enum e1000_bus_width)((pcie_link_status &
67 PCIE_LINK_WIDTH_MASK) >>
68 PCIE_LINK_WIDTH_SHIFT);
69 }
70
71 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
72 &pci_header_type);
73 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
74 status = er32(STATUS);
75 bus->func = (status & E1000_STATUS_FUNC_MASK)
76 >> E1000_STATUS_FUNC_SHIFT;
77 } else {
78 bus->func = 0;
79 }
80
81 return 0;
82}
83
84/**
85 * e1000e_write_vfta - Write value to VLAN filter table
86 * @hw: pointer to the HW structure
87 * @offset: register offset in VLAN filter table
88 * @value: register value written to VLAN filter table
89 *
90 * Writes value at the given offset in the register array which stores
91 * the VLAN filter table.
92 **/
93void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
94{
95 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
96 e1e_flush();
97}
98
99/**
100 * e1000e_init_rx_addrs - Initialize receive address's
101 * @hw: pointer to the HW structure
102 * @rar_count: receive address registers
103 *
104 * Setups the receive address registers by setting the base receive address
105 * register to the devices MAC address and clearing all the other receive
106 * address registers to 0.
107 **/
108void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
109{
110 u32 i;
111
112 /* Setup the receive address */
3bb99fe2 113 e_dbg("Programming MAC Address into RAR[0]\n");
bc7f75fa
AK
114
115 e1000e_rar_set(hw, hw->mac.addr, 0);
116
117 /* Zero out the other (rar_entry_count - 1) receive addresses */
3bb99fe2 118 e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
bc7f75fa
AK
119 for (i = 1; i < rar_count; i++) {
120 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
121 e1e_flush();
122 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
123 e1e_flush();
124 }
125}
126
127/**
128 * e1000e_rar_set - Set receive address register
129 * @hw: pointer to the HW structure
130 * @addr: pointer to the receive address
131 * @index: receive address array register
132 *
133 * Sets the receive address array register at index to the address passed
134 * in by addr.
135 **/
136void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
137{
138 u32 rar_low, rar_high;
139
ad68076e
BA
140 /*
141 * HW expects these in little endian so we reverse the byte order
bc7f75fa
AK
142 * from network order (big endian) to little endian
143 */
144 rar_low = ((u32) addr[0] |
145 ((u32) addr[1] << 8) |
146 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
147
148 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
149
150 rar_high |= E1000_RAH_AV;
151
152 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
153 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
154}
155
bc7f75fa
AK
156/**
157 * e1000_hash_mc_addr - Generate a multicast hash value
158 * @hw: pointer to the HW structure
159 * @mc_addr: pointer to a multicast address
160 *
161 * Generates a multicast address hash value which is used to determine
162 * the multicast filter table array address and new table value. See
163 * e1000_mta_set_generic()
164 **/
165static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
166{
167 u32 hash_value, hash_mask;
168 u8 bit_shift = 0;
169
170 /* Register count multiplied by bits per register */
171 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
172
ad68076e
BA
173 /*
174 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
175 * where 0xFF would still fall within the hash mask.
176 */
bc7f75fa
AK
177 while (hash_mask >> bit_shift != 0xFF)
178 bit_shift++;
179
ad68076e
BA
180 /*
181 * The portion of the address that is used for the hash table
bc7f75fa
AK
182 * is determined by the mc_filter_type setting.
183 * The algorithm is such that there is a total of 8 bits of shifting.
184 * The bit_shift for a mc_filter_type of 0 represents the number of
185 * left-shifts where the MSB of mc_addr[5] would still fall within
186 * the hash_mask. Case 0 does this exactly. Since there are a total
187 * of 8 bits of shifting, then mc_addr[4] will shift right the
188 * remaining number of bits. Thus 8 - bit_shift. The rest of the
189 * cases are a variation of this algorithm...essentially raising the
190 * number of bits to shift mc_addr[5] left, while still keeping the
191 * 8-bit shifting total.
ad68076e
BA
192 *
193 * For example, given the following Destination MAC Address and an
bc7f75fa
AK
194 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
195 * we can see that the bit_shift for case 0 is 4. These are the hash
196 * values resulting from each mc_filter_type...
197 * [0] [1] [2] [3] [4] [5]
198 * 01 AA 00 12 34 56
199 * LSB MSB
200 *
201 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
202 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
203 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
204 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
205 */
206 switch (hw->mac.mc_filter_type) {
207 default:
208 case 0:
209 break;
210 case 1:
211 bit_shift += 1;
212 break;
213 case 2:
214 bit_shift += 2;
215 break;
216 case 3:
217 bit_shift += 4;
218 break;
219 }
220
221 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
222 (((u16) mc_addr[5]) << bit_shift)));
223
224 return hash_value;
225}
226
227/**
e2de3eb6 228 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
bc7f75fa
AK
229 * @hw: pointer to the HW structure
230 * @mc_addr_list: array of multicast addresses to program
231 * @mc_addr_count: number of multicast addresses to program
232 * @rar_used_count: the first RAR register free to program
233 * @rar_count: total number of supported Receive Address Registers
234 *
235 * Updates the Receive Address Registers and Multicast Table Array.
236 * The caller must have a packed mc_addr_list of multicast addresses.
237 * The parameter rar_count will usually be hw->mac.rar_entry_count
238 * unless there are workarounds that change this.
239 **/
e2de3eb6
JK
240void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
241 u8 *mc_addr_list, u32 mc_addr_count,
242 u32 rar_used_count, u32 rar_count)
bc7f75fa 243{
bc7f75fa 244 u32 i;
a72d2b2c
JB
245 u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
246
247 if (!mcarray) {
248 printk(KERN_ERR "multicast array memory allocation failed\n");
249 return;
250 }
bc7f75fa 251
ad68076e
BA
252 /*
253 * Load the first set of multicast addresses into the exact
bc7f75fa
AK
254 * filters (RAR). If there are not enough to fill the RAR
255 * array, clear the filters.
256 */
257 for (i = rar_used_count; i < rar_count; i++) {
258 if (mc_addr_count) {
259 e1000e_rar_set(hw, mc_addr_list, i);
260 mc_addr_count--;
261 mc_addr_list += ETH_ALEN;
262 } else {
263 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
264 e1e_flush();
265 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
266 e1e_flush();
267 }
268 }
269
bc7f75fa
AK
270 /* Load any remaining multicast addresses into the hash table. */
271 for (; mc_addr_count > 0; mc_addr_count--) {
a72d2b2c 272 u32 hash_value, hash_reg, hash_bit, mta;
bc7f75fa 273 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
3bb99fe2 274 e_dbg("Hash value = 0x%03X\n", hash_value);
a72d2b2c
JB
275 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
276 hash_bit = hash_value & 0x1F;
277 mta = (1 << hash_bit);
278 mcarray[hash_reg] |= mta;
bc7f75fa
AK
279 mc_addr_list += ETH_ALEN;
280 }
a72d2b2c
JB
281
282 /* write the hash table completely */
283 for (i = 0; i < hw->mac.mta_reg_count; i++)
284 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
285
286 e1e_flush();
287 kfree(mcarray);
bc7f75fa
AK
288}
289
290/**
291 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
292 * @hw: pointer to the HW structure
293 *
294 * Clears the base hardware counters by reading the counter registers.
295 **/
296void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
297{
99673d9b
BA
298 er32(CRCERRS);
299 er32(SYMERRS);
300 er32(MPC);
301 er32(SCC);
302 er32(ECOL);
303 er32(MCC);
304 er32(LATECOL);
305 er32(COLC);
306 er32(DC);
307 er32(SEC);
308 er32(RLEC);
309 er32(XONRXC);
310 er32(XONTXC);
311 er32(XOFFRXC);
312 er32(XOFFTXC);
313 er32(FCRUC);
314 er32(GPRC);
315 er32(BPRC);
316 er32(MPRC);
317 er32(GPTC);
318 er32(GORCL);
319 er32(GORCH);
320 er32(GOTCL);
321 er32(GOTCH);
322 er32(RNBC);
323 er32(RUC);
324 er32(RFC);
325 er32(ROC);
326 er32(RJC);
327 er32(TORL);
328 er32(TORH);
329 er32(TOTL);
330 er32(TOTH);
331 er32(TPR);
332 er32(TPT);
333 er32(MPTC);
334 er32(BPTC);
bc7f75fa
AK
335}
336
337/**
338 * e1000e_check_for_copper_link - Check for link (Copper)
339 * @hw: pointer to the HW structure
340 *
341 * Checks to see of the link status of the hardware has changed. If a
342 * change in link status has been detected, then we read the PHY registers
343 * to get the current speed/duplex if link exists.
344 **/
345s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
346{
347 struct e1000_mac_info *mac = &hw->mac;
348 s32 ret_val;
349 bool link;
350
ad68076e
BA
351 /*
352 * We only want to go out to the PHY registers to see if Auto-Neg
bc7f75fa
AK
353 * has completed and/or if our link status has changed. The
354 * get_link_status flag is set upon receiving a Link Status
355 * Change or Rx Sequence Error interrupt.
356 */
357 if (!mac->get_link_status)
358 return 0;
359
ad68076e
BA
360 /*
361 * First we want to see if the MII Status Register reports
bc7f75fa
AK
362 * link. If so, then we want to get the current speed/duplex
363 * of the PHY.
364 */
365 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
366 if (ret_val)
367 return ret_val;
368
369 if (!link)
370 return ret_val; /* No link detected */
371
564ea9bb 372 mac->get_link_status = false;
bc7f75fa 373
ad68076e
BA
374 /*
375 * Check if there was DownShift, must be checked
376 * immediately after link-up
377 */
bc7f75fa
AK
378 e1000e_check_downshift(hw);
379
ad68076e
BA
380 /*
381 * If we are forcing speed/duplex, then we simply return since
bc7f75fa
AK
382 * we have already determined whether we have link or not.
383 */
384 if (!mac->autoneg) {
385 ret_val = -E1000_ERR_CONFIG;
386 return ret_val;
387 }
388
ad68076e
BA
389 /*
390 * Auto-Neg is enabled. Auto Speed Detection takes care
bc7f75fa
AK
391 * of MAC speed/duplex configuration. So we only need to
392 * configure Collision Distance in the MAC.
393 */
394 e1000e_config_collision_dist(hw);
395
ad68076e
BA
396 /*
397 * Configure Flow Control now that Auto-Neg has completed.
bc7f75fa
AK
398 * First, we need to restore the desired flow control
399 * settings because we may have had to re-autoneg with a
400 * different link partner.
401 */
402 ret_val = e1000e_config_fc_after_link_up(hw);
403 if (ret_val) {
3bb99fe2 404 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
405 }
406
407 return ret_val;
408}
409
410/**
411 * e1000e_check_for_fiber_link - Check for link (Fiber)
412 * @hw: pointer to the HW structure
413 *
414 * Checks for link up on the hardware. If link is not up and we have
415 * a signal, then we need to force link up.
416 **/
417s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
418{
419 struct e1000_mac_info *mac = &hw->mac;
420 u32 rxcw;
421 u32 ctrl;
422 u32 status;
423 s32 ret_val;
424
425 ctrl = er32(CTRL);
426 status = er32(STATUS);
427 rxcw = er32(RXCW);
428
ad68076e
BA
429 /*
430 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
431 * cannot auto-negotiate), the cable is plugged in (we have signal),
432 * and our link partner is not trying to auto-negotiate with us (we
433 * are receiving idles or data), we need to force link up. We also
434 * need to give auto-negotiation time to complete, in case the cable
435 * was just plugged in. The autoneg_failed flag does this.
436 */
437 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
438 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
439 (!(rxcw & E1000_RXCW_C))) {
440 if (mac->autoneg_failed == 0) {
441 mac->autoneg_failed = 1;
442 return 0;
443 }
3bb99fe2 444 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
bc7f75fa
AK
445
446 /* Disable auto-negotiation in the TXCW register */
447 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
448
449 /* Force link-up and also force full-duplex. */
450 ctrl = er32(CTRL);
451 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
452 ew32(CTRL, ctrl);
453
454 /* Configure Flow Control after forcing link up. */
455 ret_val = e1000e_config_fc_after_link_up(hw);
456 if (ret_val) {
3bb99fe2 457 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
458 return ret_val;
459 }
460 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
461 /*
462 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
463 * sets, re-enable auto-negotiation in the TXCW register
464 * and disable forced link in the Device Control register
465 * in an attempt to auto-negotiate with our link partner.
466 */
3bb99fe2 467 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
bc7f75fa
AK
468 ew32(TXCW, mac->txcw);
469 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
470
612e244c 471 mac->serdes_has_link = true;
bc7f75fa
AK
472 }
473
474 return 0;
475}
476
477/**
478 * e1000e_check_for_serdes_link - Check for link (Serdes)
479 * @hw: pointer to the HW structure
480 *
481 * Checks for link up on the hardware. If link is not up and we have
482 * a signal, then we need to force link up.
483 **/
484s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
485{
486 struct e1000_mac_info *mac = &hw->mac;
487 u32 rxcw;
488 u32 ctrl;
489 u32 status;
490 s32 ret_val;
491
492 ctrl = er32(CTRL);
493 status = er32(STATUS);
494 rxcw = er32(RXCW);
495
ad68076e
BA
496 /*
497 * If we don't have link (auto-negotiation failed or link partner
bc7f75fa
AK
498 * cannot auto-negotiate), and our link partner is not trying to
499 * auto-negotiate with us (we are receiving idles or data),
500 * we need to force link up. We also need to give auto-negotiation
501 * time to complete.
502 */
503 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
504 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
505 if (mac->autoneg_failed == 0) {
506 mac->autoneg_failed = 1;
507 return 0;
508 }
3bb99fe2 509 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
bc7f75fa
AK
510
511 /* Disable auto-negotiation in the TXCW register */
512 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
513
514 /* Force link-up and also force full-duplex. */
515 ctrl = er32(CTRL);
516 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
517 ew32(CTRL, ctrl);
518
519 /* Configure Flow Control after forcing link up. */
520 ret_val = e1000e_config_fc_after_link_up(hw);
521 if (ret_val) {
3bb99fe2 522 e_dbg("Error configuring flow control\n");
bc7f75fa
AK
523 return ret_val;
524 }
525 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
ad68076e
BA
526 /*
527 * If we are forcing link and we are receiving /C/ ordered
bc7f75fa
AK
528 * sets, re-enable auto-negotiation in the TXCW register
529 * and disable forced link in the Device Control register
530 * in an attempt to auto-negotiate with our link partner.
531 */
3bb99fe2 532 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
bc7f75fa
AK
533 ew32(TXCW, mac->txcw);
534 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
535
612e244c 536 mac->serdes_has_link = true;
bc7f75fa 537 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
ad68076e
BA
538 /*
539 * If we force link for non-auto-negotiation switch, check
bc7f75fa
AK
540 * link status based on MAC synchronization for internal
541 * serdes media type.
542 */
543 /* SYNCH bit and IV bit are sticky. */
544 udelay(10);
63dcf3d3
BA
545 rxcw = er32(RXCW);
546 if (rxcw & E1000_RXCW_SYNCH) {
bc7f75fa 547 if (!(rxcw & E1000_RXCW_IV)) {
63dcf3d3 548 mac->serdes_has_link = true;
3bb99fe2 549 e_dbg("SERDES: Link up - forced.\n");
bc7f75fa
AK
550 }
551 } else {
63dcf3d3 552 mac->serdes_has_link = false;
3bb99fe2 553 e_dbg("SERDES: Link down - force failed.\n");
bc7f75fa
AK
554 }
555 }
556
557 if (E1000_TXCW_ANE & er32(TXCW)) {
558 status = er32(STATUS);
63dcf3d3
BA
559 if (status & E1000_STATUS_LU) {
560 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
561 udelay(10);
562 rxcw = er32(RXCW);
563 if (rxcw & E1000_RXCW_SYNCH) {
564 if (!(rxcw & E1000_RXCW_IV)) {
565 mac->serdes_has_link = true;
3bb99fe2 566 e_dbg("SERDES: Link up - autoneg "
63dcf3d3
BA
567 "completed sucessfully.\n");
568 } else {
569 mac->serdes_has_link = false;
3bb99fe2 570 e_dbg("SERDES: Link down - invalid"
63dcf3d3
BA
571 "codewords detected in autoneg.\n");
572 }
573 } else {
574 mac->serdes_has_link = false;
3bb99fe2 575 e_dbg("SERDES: Link down - no sync.\n");
63dcf3d3
BA
576 }
577 } else {
578 mac->serdes_has_link = false;
3bb99fe2 579 e_dbg("SERDES: Link down - autoneg failed\n");
63dcf3d3 580 }
bc7f75fa
AK
581 }
582
583 return 0;
584}
585
586/**
587 * e1000_set_default_fc_generic - Set flow control default values
588 * @hw: pointer to the HW structure
589 *
590 * Read the EEPROM for the default values for flow control and store the
591 * values.
592 **/
593static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
594{
bc7f75fa
AK
595 s32 ret_val;
596 u16 nvm_data;
597
ad68076e
BA
598 /*
599 * Read and store word 0x0F of the EEPROM. This word contains bits
bc7f75fa
AK
600 * that determine the hardware's default PAUSE (flow control) mode,
601 * a bit that determines whether the HW defaults to enabling or
602 * disabling auto-negotiation, and the direction of the
603 * SW defined pins. If there is no SW over-ride of the flow
604 * control setting, then the variable hw->fc will
605 * be initialized based on a value in the EEPROM.
606 */
607 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
608
609 if (ret_val) {
3bb99fe2 610 e_dbg("NVM Read Error\n");
bc7f75fa
AK
611 return ret_val;
612 }
613
614 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
5c48ef3e 615 hw->fc.requested_mode = e1000_fc_none;
bc7f75fa
AK
616 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
617 NVM_WORD0F_ASM_DIR)
5c48ef3e 618 hw->fc.requested_mode = e1000_fc_tx_pause;
bc7f75fa 619 else
5c48ef3e 620 hw->fc.requested_mode = e1000_fc_full;
bc7f75fa
AK
621
622 return 0;
623}
624
625/**
626 * e1000e_setup_link - Setup flow control and link settings
627 * @hw: pointer to the HW structure
628 *
629 * Determines which flow control settings to use, then configures flow
630 * control. Calls the appropriate media-specific link configuration
631 * function. Assuming the adapter has a valid link partner, a valid link
632 * should be established. Assumes the hardware has previously been reset
633 * and the transmitter and receiver are not enabled.
634 **/
635s32 e1000e_setup_link(struct e1000_hw *hw)
636{
637 struct e1000_mac_info *mac = &hw->mac;
638 s32 ret_val;
639
ad68076e
BA
640 /*
641 * In the case of the phy reset being blocked, we already have a link.
bc7f75fa
AK
642 * We do not need to set it up again.
643 */
644 if (e1000_check_reset_block(hw))
645 return 0;
646
309af40b 647 /*
5c48ef3e
BA
648 * If requested flow control is set to default, set flow control
649 * based on the EEPROM flow control settings.
309af40b 650 */
5c48ef3e 651 if (hw->fc.requested_mode == e1000_fc_default) {
309af40b
AK
652 ret_val = e1000_set_default_fc_generic(hw);
653 if (ret_val)
654 return ret_val;
655 }
bc7f75fa 656
ad68076e 657 /*
5c48ef3e
BA
658 * Save off the requested flow control mode for use later. Depending
659 * on the link partner's capabilities, we may or may not use this mode.
bc7f75fa 660 */
5c48ef3e 661 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 662
3bb99fe2 663 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 664 hw->fc.current_mode);
bc7f75fa
AK
665
666 /* Call the necessary media_type subroutine to configure the link. */
667 ret_val = mac->ops.setup_physical_interface(hw);
668 if (ret_val)
669 return ret_val;
670
ad68076e
BA
671 /*
672 * Initialize the flow control address, type, and PAUSE timer
bc7f75fa
AK
673 * registers to their default values. This is done even if flow
674 * control is disabled, because it does not hurt anything to
675 * initialize these registers.
676 */
3bb99fe2 677 e_dbg("Initializing the Flow Control address, type and timer regs\n");
bc7f75fa
AK
678 ew32(FCT, FLOW_CONTROL_TYPE);
679 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
680 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
681
318a94d6 682 ew32(FCTTV, hw->fc.pause_time);
bc7f75fa
AK
683
684 return e1000e_set_fc_watermarks(hw);
685}
686
687/**
688 * e1000_commit_fc_settings_generic - Configure flow control
689 * @hw: pointer to the HW structure
690 *
691 * Write the flow control settings to the Transmit Config Word Register (TXCW)
692 * base on the flow control settings in e1000_mac_info.
693 **/
694static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
695{
696 struct e1000_mac_info *mac = &hw->mac;
697 u32 txcw;
698
ad68076e
BA
699 /*
700 * Check for a software override of the flow control settings, and
bc7f75fa
AK
701 * setup the device accordingly. If auto-negotiation is enabled, then
702 * software will have to set the "PAUSE" bits to the correct value in
703 * the Transmit Config Word Register (TXCW) and re-start auto-
704 * negotiation. However, if auto-negotiation is disabled, then
705 * software will have to manually configure the two flow control enable
706 * bits in the CTRL register.
707 *
708 * The possible values of the "fc" parameter are:
709 * 0: Flow control is completely disabled
710 * 1: Rx flow control is enabled (we can receive pause frames,
711 * but not send pause frames).
712 * 2: Tx flow control is enabled (we can send pause frames but we
713 * do not support receiving pause frames).
ad68076e 714 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa 715 */
5c48ef3e 716 switch (hw->fc.current_mode) {
bc7f75fa
AK
717 case e1000_fc_none:
718 /* Flow control completely disabled by a software over-ride. */
719 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
720 break;
721 case e1000_fc_rx_pause:
ad68076e
BA
722 /*
723 * Rx Flow control is enabled and Tx Flow control is disabled
bc7f75fa 724 * by a software over-ride. Since there really isn't a way to
ad68076e
BA
725 * advertise that we are capable of Rx Pause ONLY, we will
726 * advertise that we support both symmetric and asymmetric Rx
bc7f75fa
AK
727 * PAUSE. Later, we will disable the adapter's ability to send
728 * PAUSE frames.
729 */
730 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
731 break;
732 case e1000_fc_tx_pause:
ad68076e
BA
733 /*
734 * Tx Flow control is enabled, and Rx Flow control is disabled,
bc7f75fa
AK
735 * by a software over-ride.
736 */
737 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
738 break;
739 case e1000_fc_full:
ad68076e
BA
740 /*
741 * Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
742 * over-ride.
743 */
744 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
745 break;
746 default:
3bb99fe2 747 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
748 return -E1000_ERR_CONFIG;
749 break;
750 }
751
752 ew32(TXCW, txcw);
753 mac->txcw = txcw;
754
755 return 0;
756}
757
758/**
759 * e1000_poll_fiber_serdes_link_generic - Poll for link up
760 * @hw: pointer to the HW structure
761 *
762 * Polls for link up by reading the status register, if link fails to come
763 * up with auto-negotiation, then the link is forced if a signal is detected.
764 **/
765static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
766{
767 struct e1000_mac_info *mac = &hw->mac;
768 u32 i, status;
769 s32 ret_val;
770
ad68076e
BA
771 /*
772 * If we have a signal (the cable is plugged in, or assumed true for
bc7f75fa
AK
773 * serdes media) then poll for a "Link-Up" indication in the Device
774 * Status Register. Time-out if a link isn't seen in 500 milliseconds
775 * seconds (Auto-negotiation should complete in less than 500
776 * milliseconds even if the other end is doing it in SW).
777 */
778 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
779 msleep(10);
780 status = er32(STATUS);
781 if (status & E1000_STATUS_LU)
782 break;
783 }
784 if (i == FIBER_LINK_UP_LIMIT) {
3bb99fe2 785 e_dbg("Never got a valid link from auto-neg!!!\n");
bc7f75fa 786 mac->autoneg_failed = 1;
ad68076e
BA
787 /*
788 * AutoNeg failed to achieve a link, so we'll call
bc7f75fa
AK
789 * mac->check_for_link. This routine will force the
790 * link up if we detect a signal. This will allow us to
791 * communicate with non-autonegotiating link partners.
792 */
793 ret_val = mac->ops.check_for_link(hw);
794 if (ret_val) {
3bb99fe2 795 e_dbg("Error while checking for link\n");
bc7f75fa
AK
796 return ret_val;
797 }
798 mac->autoneg_failed = 0;
799 } else {
800 mac->autoneg_failed = 0;
3bb99fe2 801 e_dbg("Valid Link Found\n");
bc7f75fa
AK
802 }
803
804 return 0;
805}
806
807/**
808 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
809 * @hw: pointer to the HW structure
810 *
811 * Configures collision distance and flow control for fiber and serdes
812 * links. Upon successful setup, poll for link.
813 **/
814s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
815{
816 u32 ctrl;
817 s32 ret_val;
818
819 ctrl = er32(CTRL);
820
821 /* Take the link out of reset */
822 ctrl &= ~E1000_CTRL_LRST;
823
824 e1000e_config_collision_dist(hw);
825
826 ret_val = e1000_commit_fc_settings_generic(hw);
827 if (ret_val)
828 return ret_val;
829
ad68076e
BA
830 /*
831 * Since auto-negotiation is enabled, take the link out of reset (the
bc7f75fa
AK
832 * link will be in reset, because we previously reset the chip). This
833 * will restart auto-negotiation. If auto-negotiation is successful
834 * then the link-up status bit will be set and the flow control enable
835 * bits (RFCE and TFCE) will be set according to their negotiated value.
836 */
3bb99fe2 837 e_dbg("Auto-negotiation enabled\n");
bc7f75fa
AK
838
839 ew32(CTRL, ctrl);
840 e1e_flush();
841 msleep(1);
842
ad68076e
BA
843 /*
844 * For these adapters, the SW definable pin 1 is set when the optics
bc7f75fa
AK
845 * detect a signal. If we have a signal, then poll for a "Link-Up"
846 * indication.
847 */
318a94d6 848 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
bc7f75fa
AK
849 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
850 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
851 } else {
3bb99fe2 852 e_dbg("No signal detected\n");
bc7f75fa
AK
853 }
854
855 return 0;
856}
857
858/**
859 * e1000e_config_collision_dist - Configure collision distance
860 * @hw: pointer to the HW structure
861 *
862 * Configures the collision distance to the default value and is used
863 * during link setup. Currently no func pointer exists and all
864 * implementations are handled in the generic version of this function.
865 **/
866void e1000e_config_collision_dist(struct e1000_hw *hw)
867{
868 u32 tctl;
869
870 tctl = er32(TCTL);
871
872 tctl &= ~E1000_TCTL_COLD;
873 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
874
875 ew32(TCTL, tctl);
876 e1e_flush();
877}
878
879/**
880 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
881 * @hw: pointer to the HW structure
882 *
883 * Sets the flow control high/low threshold (watermark) registers. If
884 * flow control XON frame transmission is enabled, then set XON frame
ad68076e 885 * transmission as well.
bc7f75fa
AK
886 **/
887s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
888{
bc7f75fa
AK
889 u32 fcrtl = 0, fcrth = 0;
890
ad68076e
BA
891 /*
892 * Set the flow control receive threshold registers. Normally,
bc7f75fa
AK
893 * these registers will be set to a default threshold that may be
894 * adjusted later by the driver's runtime code. However, if the
895 * ability to transmit pause frames is not enabled, then these
896 * registers will be set to 0.
897 */
5c48ef3e 898 if (hw->fc.current_mode & e1000_fc_tx_pause) {
ad68076e
BA
899 /*
900 * We need to set up the Receive Threshold high and low water
bc7f75fa
AK
901 * marks as well as (optionally) enabling the transmission of
902 * XON frames.
903 */
318a94d6 904 fcrtl = hw->fc.low_water;
bc7f75fa 905 fcrtl |= E1000_FCRTL_XONE;
318a94d6 906 fcrth = hw->fc.high_water;
bc7f75fa
AK
907 }
908 ew32(FCRTL, fcrtl);
909 ew32(FCRTH, fcrth);
910
911 return 0;
912}
913
914/**
915 * e1000e_force_mac_fc - Force the MAC's flow control settings
916 * @hw: pointer to the HW structure
917 *
918 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
919 * device control register to reflect the adapter settings. TFCE and RFCE
920 * need to be explicitly set by software when a copper PHY is used because
921 * autonegotiation is managed by the PHY rather than the MAC. Software must
922 * also configure these bits when link is forced on a fiber connection.
923 **/
924s32 e1000e_force_mac_fc(struct e1000_hw *hw)
925{
bc7f75fa
AK
926 u32 ctrl;
927
928 ctrl = er32(CTRL);
929
ad68076e
BA
930 /*
931 * Because we didn't get link via the internal auto-negotiation
bc7f75fa
AK
932 * mechanism (we either forced link or we got link via PHY
933 * auto-neg), we have to manually enable/disable transmit an
934 * receive flow control.
935 *
936 * The "Case" statement below enables/disable flow control
5c48ef3e 937 * according to the "hw->fc.current_mode" parameter.
bc7f75fa
AK
938 *
939 * The possible values of the "fc" parameter are:
940 * 0: Flow control is completely disabled
941 * 1: Rx flow control is enabled (we can receive pause
942 * frames but not send pause frames).
943 * 2: Tx flow control is enabled (we can send pause frames
944 * frames but we do not receive pause frames).
ad68076e 945 * 3: Both Rx and Tx flow control (symmetric) is enabled.
bc7f75fa
AK
946 * other: No other values should be possible at this point.
947 */
3bb99fe2 948 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
bc7f75fa 949
5c48ef3e 950 switch (hw->fc.current_mode) {
bc7f75fa
AK
951 case e1000_fc_none:
952 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
953 break;
954 case e1000_fc_rx_pause:
955 ctrl &= (~E1000_CTRL_TFCE);
956 ctrl |= E1000_CTRL_RFCE;
957 break;
958 case e1000_fc_tx_pause:
959 ctrl &= (~E1000_CTRL_RFCE);
960 ctrl |= E1000_CTRL_TFCE;
961 break;
962 case e1000_fc_full:
963 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
964 break;
965 default:
3bb99fe2 966 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
967 return -E1000_ERR_CONFIG;
968 }
969
970 ew32(CTRL, ctrl);
971
972 return 0;
973}
974
975/**
976 * e1000e_config_fc_after_link_up - Configures flow control after link
977 * @hw: pointer to the HW structure
978 *
979 * Checks the status of auto-negotiation after link up to ensure that the
980 * speed and duplex were not forced. If the link needed to be forced, then
981 * flow control needs to be forced also. If auto-negotiation is enabled
982 * and did not fail, then we configure flow control based on our link
983 * partner.
984 **/
985s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
986{
987 struct e1000_mac_info *mac = &hw->mac;
988 s32 ret_val = 0;
989 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
990 u16 speed, duplex;
991
ad68076e
BA
992 /*
993 * Check for the case where we have fiber media and auto-neg failed
bc7f75fa
AK
994 * so we had to force link. In this case, we need to force the
995 * configuration of the MAC to match the "fc" parameter.
996 */
997 if (mac->autoneg_failed) {
318a94d6
JK
998 if (hw->phy.media_type == e1000_media_type_fiber ||
999 hw->phy.media_type == e1000_media_type_internal_serdes)
bc7f75fa
AK
1000 ret_val = e1000e_force_mac_fc(hw);
1001 } else {
318a94d6 1002 if (hw->phy.media_type == e1000_media_type_copper)
bc7f75fa
AK
1003 ret_val = e1000e_force_mac_fc(hw);
1004 }
1005
1006 if (ret_val) {
3bb99fe2 1007 e_dbg("Error forcing flow control settings\n");
bc7f75fa
AK
1008 return ret_val;
1009 }
1010
ad68076e
BA
1011 /*
1012 * Check for the case where we have copper media and auto-neg is
bc7f75fa
AK
1013 * enabled. In this case, we need to check and see if Auto-Neg
1014 * has completed, and if so, how the PHY and link partner has
1015 * flow control configured.
1016 */
318a94d6 1017 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
ad68076e
BA
1018 /*
1019 * Read the MII Status Register and check to see if AutoNeg
bc7f75fa
AK
1020 * has completed. We read this twice because this reg has
1021 * some "sticky" (latched) bits.
1022 */
1023 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1024 if (ret_val)
1025 return ret_val;
1026 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1027 if (ret_val)
1028 return ret_val;
1029
1030 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
3bb99fe2 1031 e_dbg("Copper PHY and Auto Neg "
bc7f75fa
AK
1032 "has not completed.\n");
1033 return ret_val;
1034 }
1035
ad68076e
BA
1036 /*
1037 * The AutoNeg process has completed, so we now need to
bc7f75fa
AK
1038 * read both the Auto Negotiation Advertisement
1039 * Register (Address 4) and the Auto_Negotiation Base
1040 * Page Ability Register (Address 5) to determine how
1041 * flow control was negotiated.
1042 */
1043 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1044 if (ret_val)
1045 return ret_val;
1046 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1047 if (ret_val)
1048 return ret_val;
1049
ad68076e
BA
1050 /*
1051 * Two bits in the Auto Negotiation Advertisement Register
bc7f75fa
AK
1052 * (Address 4) and two bits in the Auto Negotiation Base
1053 * Page Ability Register (Address 5) determine flow control
1054 * for both the PHY and the link partner. The following
1055 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1056 * 1999, describes these PAUSE resolution bits and how flow
1057 * control is determined based upon these settings.
1058 * NOTE: DC = Don't Care
1059 *
1060 * LOCAL DEVICE | LINK PARTNER
1061 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1062 *-------|---------|-------|---------|--------------------
1063 * 0 | 0 | DC | DC | e1000_fc_none
1064 * 0 | 1 | 0 | DC | e1000_fc_none
1065 * 0 | 1 | 1 | 0 | e1000_fc_none
1066 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1067 * 1 | 0 | 0 | DC | e1000_fc_none
1068 * 1 | DC | 1 | DC | e1000_fc_full
1069 * 1 | 1 | 0 | 0 | e1000_fc_none
1070 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1071 *
ad68076e
BA
1072 *
1073 * Are both PAUSE bits set to 1? If so, this implies
bc7f75fa
AK
1074 * Symmetric Flow Control is enabled at both ends. The
1075 * ASM_DIR bits are irrelevant per the spec.
1076 *
1077 * For Symmetric Flow Control:
1078 *
1079 * LOCAL DEVICE | LINK PARTNER
1080 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1081 *-------|---------|-------|---------|--------------------
1082 * 1 | DC | 1 | DC | E1000_fc_full
1083 *
1084 */
1085 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1086 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
ad68076e
BA
1087 /*
1088 * Now we need to check if the user selected Rx ONLY
bc7f75fa 1089 * of pause frames. In this case, we had to advertise
ad68076e 1090 * FULL flow control because we could not advertise Rx
bc7f75fa
AK
1091 * ONLY. Hence, we must now check to see if we need to
1092 * turn OFF the TRANSMISSION of PAUSE frames.
1093 */
5c48ef3e
BA
1094 if (hw->fc.requested_mode == e1000_fc_full) {
1095 hw->fc.current_mode = e1000_fc_full;
3bb99fe2 1096 e_dbg("Flow Control = FULL.\r\n");
bc7f75fa 1097 } else {
5c48ef3e 1098 hw->fc.current_mode = e1000_fc_rx_pause;
3bb99fe2 1099 e_dbg("Flow Control = "
bc7f75fa
AK
1100 "RX PAUSE frames only.\r\n");
1101 }
1102 }
ad68076e
BA
1103 /*
1104 * For receiving PAUSE frames ONLY.
bc7f75fa
AK
1105 *
1106 * LOCAL DEVICE | LINK PARTNER
1107 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1108 *-------|---------|-------|---------|--------------------
1109 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1110 *
1111 */
1112 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1113 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1114 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1115 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
5c48ef3e 1116 hw->fc.current_mode = e1000_fc_tx_pause;
3bb99fe2 1117 e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
bc7f75fa 1118 }
ad68076e
BA
1119 /*
1120 * For transmitting PAUSE frames ONLY.
bc7f75fa
AK
1121 *
1122 * LOCAL DEVICE | LINK PARTNER
1123 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1124 *-------|---------|-------|---------|--------------------
1125 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1126 *
1127 */
1128 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1129 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1130 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1131 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
5c48ef3e 1132 hw->fc.current_mode = e1000_fc_rx_pause;
3bb99fe2 1133 e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
de92d84e
JB
1134 } else {
1135 /*
1136 * Per the IEEE spec, at this point flow control
1137 * should be disabled.
1138 */
5c48ef3e 1139 hw->fc.current_mode = e1000_fc_none;
3bb99fe2 1140 e_dbg("Flow Control = NONE.\r\n");
bc7f75fa
AK
1141 }
1142
ad68076e
BA
1143 /*
1144 * Now we need to do one last check... If we auto-
bc7f75fa
AK
1145 * negotiated to HALF DUPLEX, flow control should not be
1146 * enabled per IEEE 802.3 spec.
1147 */
1148 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1149 if (ret_val) {
3bb99fe2 1150 e_dbg("Error getting link speed and duplex\n");
bc7f75fa
AK
1151 return ret_val;
1152 }
1153
1154 if (duplex == HALF_DUPLEX)
5c48ef3e 1155 hw->fc.current_mode = e1000_fc_none;
bc7f75fa 1156
ad68076e
BA
1157 /*
1158 * Now we call a subroutine to actually force the MAC
bc7f75fa
AK
1159 * controller to use the correct flow control settings.
1160 */
1161 ret_val = e1000e_force_mac_fc(hw);
1162 if (ret_val) {
3bb99fe2 1163 e_dbg("Error forcing flow control settings\n");
bc7f75fa
AK
1164 return ret_val;
1165 }
1166 }
1167
1168 return 0;
1169}
1170
1171/**
489815ce 1172 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
bc7f75fa
AK
1173 * @hw: pointer to the HW structure
1174 * @speed: stores the current speed
1175 * @duplex: stores the current duplex
1176 *
1177 * Read the status register for the current speed/duplex and store the current
1178 * speed and duplex for copper connections.
1179 **/
1180s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1181{
1182 u32 status;
1183
1184 status = er32(STATUS);
1185 if (status & E1000_STATUS_SPEED_1000) {
1186 *speed = SPEED_1000;
3bb99fe2 1187 e_dbg("1000 Mbs, ");
bc7f75fa
AK
1188 } else if (status & E1000_STATUS_SPEED_100) {
1189 *speed = SPEED_100;
3bb99fe2 1190 e_dbg("100 Mbs, ");
bc7f75fa
AK
1191 } else {
1192 *speed = SPEED_10;
3bb99fe2 1193 e_dbg("10 Mbs, ");
bc7f75fa
AK
1194 }
1195
1196 if (status & E1000_STATUS_FD) {
1197 *duplex = FULL_DUPLEX;
3bb99fe2 1198 e_dbg("Full Duplex\n");
bc7f75fa
AK
1199 } else {
1200 *duplex = HALF_DUPLEX;
3bb99fe2 1201 e_dbg("Half Duplex\n");
bc7f75fa
AK
1202 }
1203
1204 return 0;
1205}
1206
1207/**
489815ce 1208 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
bc7f75fa
AK
1209 * @hw: pointer to the HW structure
1210 * @speed: stores the current speed
1211 * @duplex: stores the current duplex
1212 *
1213 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1214 * for fiber/serdes links.
1215 **/
1216s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1217{
1218 *speed = SPEED_1000;
1219 *duplex = FULL_DUPLEX;
1220
1221 return 0;
1222}
1223
1224/**
1225 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1226 * @hw: pointer to the HW structure
1227 *
1228 * Acquire the HW semaphore to access the PHY or NVM
1229 **/
1230s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1231{
1232 u32 swsm;
1233 s32 timeout = hw->nvm.word_size + 1;
1234 s32 i = 0;
1235
1236 /* Get the SW semaphore */
1237 while (i < timeout) {
1238 swsm = er32(SWSM);
1239 if (!(swsm & E1000_SWSM_SMBI))
1240 break;
1241
1242 udelay(50);
1243 i++;
1244 }
1245
1246 if (i == timeout) {
3bb99fe2 1247 e_dbg("Driver can't access device - SMBI bit is set.\n");
bc7f75fa
AK
1248 return -E1000_ERR_NVM;
1249 }
1250
1251 /* Get the FW semaphore. */
1252 for (i = 0; i < timeout; i++) {
1253 swsm = er32(SWSM);
1254 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1255
1256 /* Semaphore acquired if bit latched */
1257 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1258 break;
1259
1260 udelay(50);
1261 }
1262
1263 if (i == timeout) {
1264 /* Release semaphores */
1265 e1000e_put_hw_semaphore(hw);
3bb99fe2 1266 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
1267 return -E1000_ERR_NVM;
1268 }
1269
1270 return 0;
1271}
1272
1273/**
1274 * e1000e_put_hw_semaphore - Release hardware semaphore
1275 * @hw: pointer to the HW structure
1276 *
1277 * Release hardware semaphore used to access the PHY or NVM
1278 **/
1279void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1280{
1281 u32 swsm;
1282
1283 swsm = er32(SWSM);
1284 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1285 ew32(SWSM, swsm);
1286}
1287
1288/**
1289 * e1000e_get_auto_rd_done - Check for auto read completion
1290 * @hw: pointer to the HW structure
1291 *
1292 * Check EEPROM for Auto Read done bit.
1293 **/
1294s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1295{
1296 s32 i = 0;
1297
1298 while (i < AUTO_READ_DONE_TIMEOUT) {
1299 if (er32(EECD) & E1000_EECD_AUTO_RD)
1300 break;
1301 msleep(1);
1302 i++;
1303 }
1304
1305 if (i == AUTO_READ_DONE_TIMEOUT) {
3bb99fe2 1306 e_dbg("Auto read by HW from NVM has not completed.\n");
bc7f75fa
AK
1307 return -E1000_ERR_RESET;
1308 }
1309
1310 return 0;
1311}
1312
1313/**
1314 * e1000e_valid_led_default - Verify a valid default LED config
1315 * @hw: pointer to the HW structure
1316 * @data: pointer to the NVM (EEPROM)
1317 *
1318 * Read the EEPROM for the current default LED configuration. If the
1319 * LED configuration is not valid, set to a valid LED configuration.
1320 **/
1321s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1322{
1323 s32 ret_val;
1324
1325 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1326 if (ret_val) {
3bb99fe2 1327 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1328 return ret_val;
1329 }
1330
1331 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1332 *data = ID_LED_DEFAULT;
1333
1334 return 0;
1335}
1336
1337/**
1338 * e1000e_id_led_init -
1339 * @hw: pointer to the HW structure
1340 *
1341 **/
1342s32 e1000e_id_led_init(struct e1000_hw *hw)
1343{
1344 struct e1000_mac_info *mac = &hw->mac;
1345 s32 ret_val;
1346 const u32 ledctl_mask = 0x000000FF;
1347 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1348 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1349 u16 data, i, temp;
1350 const u16 led_mask = 0x0F;
1351
1352 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1353 if (ret_val)
1354 return ret_val;
1355
1356 mac->ledctl_default = er32(LEDCTL);
1357 mac->ledctl_mode1 = mac->ledctl_default;
1358 mac->ledctl_mode2 = mac->ledctl_default;
1359
1360 for (i = 0; i < 4; i++) {
1361 temp = (data >> (i << 2)) & led_mask;
1362 switch (temp) {
1363 case ID_LED_ON1_DEF2:
1364 case ID_LED_ON1_ON2:
1365 case ID_LED_ON1_OFF2:
1366 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1367 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1368 break;
1369 case ID_LED_OFF1_DEF2:
1370 case ID_LED_OFF1_ON2:
1371 case ID_LED_OFF1_OFF2:
1372 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1373 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1374 break;
1375 default:
1376 /* Do nothing */
1377 break;
1378 }
1379 switch (temp) {
1380 case ID_LED_DEF1_ON2:
1381 case ID_LED_ON1_ON2:
1382 case ID_LED_OFF1_ON2:
1383 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1384 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1385 break;
1386 case ID_LED_DEF1_OFF2:
1387 case ID_LED_ON1_OFF2:
1388 case ID_LED_OFF1_OFF2:
1389 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1390 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1391 break;
1392 default:
1393 /* Do nothing */
1394 break;
1395 }
1396 }
1397
1398 return 0;
1399}
1400
a4f58f54
BA
1401/**
1402 * e1000e_setup_led_generic - Configures SW controllable LED
1403 * @hw: pointer to the HW structure
1404 *
1405 * This prepares the SW controllable LED for use and saves the current state
1406 * of the LED so it can be later restored.
1407 **/
1408s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1409{
1410 u32 ledctl;
1411
1412 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
1413 return -E1000_ERR_CONFIG;
1414 }
1415
1416 if (hw->phy.media_type == e1000_media_type_fiber) {
1417 ledctl = er32(LEDCTL);
1418 hw->mac.ledctl_default = ledctl;
1419 /* Turn off LED0 */
1420 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1421 E1000_LEDCTL_LED0_BLINK |
1422 E1000_LEDCTL_LED0_MODE_MASK);
1423 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1424 E1000_LEDCTL_LED0_MODE_SHIFT);
1425 ew32(LEDCTL, ledctl);
1426 } else if (hw->phy.media_type == e1000_media_type_copper) {
1427 ew32(LEDCTL, hw->mac.ledctl_mode1);
1428 }
1429
1430 return 0;
1431}
1432
bc7f75fa
AK
1433/**
1434 * e1000e_cleanup_led_generic - Set LED config to default operation
1435 * @hw: pointer to the HW structure
1436 *
1437 * Remove the current LED configuration and set the LED configuration
1438 * to the default value, saved from the EEPROM.
1439 **/
1440s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1441{
1442 ew32(LEDCTL, hw->mac.ledctl_default);
1443 return 0;
1444}
1445
1446/**
1447 * e1000e_blink_led - Blink LED
1448 * @hw: pointer to the HW structure
1449 *
489815ce 1450 * Blink the LEDs which are set to be on.
bc7f75fa
AK
1451 **/
1452s32 e1000e_blink_led(struct e1000_hw *hw)
1453{
1454 u32 ledctl_blink = 0;
1455 u32 i;
1456
318a94d6 1457 if (hw->phy.media_type == e1000_media_type_fiber) {
bc7f75fa
AK
1458 /* always blink LED0 for PCI-E fiber */
1459 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1460 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1461 } else {
ad68076e
BA
1462 /*
1463 * set the blink bit for each LED that's "on" (0x0E)
1464 * in ledctl_mode2
1465 */
bc7f75fa
AK
1466 ledctl_blink = hw->mac.ledctl_mode2;
1467 for (i = 0; i < 4; i++)
1468 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1469 E1000_LEDCTL_MODE_LED_ON)
1470 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1471 (i * 8));
1472 }
1473
1474 ew32(LEDCTL, ledctl_blink);
1475
1476 return 0;
1477}
1478
1479/**
1480 * e1000e_led_on_generic - Turn LED on
1481 * @hw: pointer to the HW structure
1482 *
1483 * Turn LED on.
1484 **/
1485s32 e1000e_led_on_generic(struct e1000_hw *hw)
1486{
1487 u32 ctrl;
1488
318a94d6 1489 switch (hw->phy.media_type) {
bc7f75fa
AK
1490 case e1000_media_type_fiber:
1491 ctrl = er32(CTRL);
1492 ctrl &= ~E1000_CTRL_SWDPIN0;
1493 ctrl |= E1000_CTRL_SWDPIO0;
1494 ew32(CTRL, ctrl);
1495 break;
1496 case e1000_media_type_copper:
1497 ew32(LEDCTL, hw->mac.ledctl_mode2);
1498 break;
1499 default:
1500 break;
1501 }
1502
1503 return 0;
1504}
1505
1506/**
1507 * e1000e_led_off_generic - Turn LED off
1508 * @hw: pointer to the HW structure
1509 *
1510 * Turn LED off.
1511 **/
1512s32 e1000e_led_off_generic(struct e1000_hw *hw)
1513{
1514 u32 ctrl;
1515
318a94d6 1516 switch (hw->phy.media_type) {
bc7f75fa
AK
1517 case e1000_media_type_fiber:
1518 ctrl = er32(CTRL);
1519 ctrl |= E1000_CTRL_SWDPIN0;
1520 ctrl |= E1000_CTRL_SWDPIO0;
1521 ew32(CTRL, ctrl);
1522 break;
1523 case e1000_media_type_copper:
1524 ew32(LEDCTL, hw->mac.ledctl_mode1);
1525 break;
1526 default:
1527 break;
1528 }
1529
1530 return 0;
1531}
1532
1533/**
1534 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1535 * @hw: pointer to the HW structure
1536 * @no_snoop: bitmap of snoop events
1537 *
1538 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1539 **/
1540void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1541{
1542 u32 gcr;
1543
1544 if (no_snoop) {
1545 gcr = er32(GCR);
1546 gcr &= ~(PCIE_NO_SNOOP_ALL);
1547 gcr |= no_snoop;
1548 ew32(GCR, gcr);
1549 }
1550}
1551
1552/**
1553 * e1000e_disable_pcie_master - Disables PCI-express master access
1554 * @hw: pointer to the HW structure
1555 *
1556 * Returns 0 if successful, else returns -10
489815ce 1557 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
bc7f75fa
AK
1558 * the master requests to be disabled.
1559 *
1560 * Disables PCI-Express master access and verifies there are no pending
1561 * requests.
1562 **/
1563s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1564{
1565 u32 ctrl;
1566 s32 timeout = MASTER_DISABLE_TIMEOUT;
1567
1568 ctrl = er32(CTRL);
1569 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1570 ew32(CTRL, ctrl);
1571
1572 while (timeout) {
1573 if (!(er32(STATUS) &
1574 E1000_STATUS_GIO_MASTER_ENABLE))
1575 break;
1576 udelay(100);
1577 timeout--;
1578 }
1579
1580 if (!timeout) {
3bb99fe2 1581 e_dbg("Master requests are pending.\n");
bc7f75fa
AK
1582 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1583 }
1584
1585 return 0;
1586}
1587
1588/**
1589 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1590 * @hw: pointer to the HW structure
1591 *
1592 * Reset the Adaptive Interframe Spacing throttle to default values.
1593 **/
1594void e1000e_reset_adaptive(struct e1000_hw *hw)
1595{
1596 struct e1000_mac_info *mac = &hw->mac;
1597
1598 mac->current_ifs_val = 0;
1599 mac->ifs_min_val = IFS_MIN;
1600 mac->ifs_max_val = IFS_MAX;
1601 mac->ifs_step_size = IFS_STEP;
1602 mac->ifs_ratio = IFS_RATIO;
1603
564ea9bb 1604 mac->in_ifs_mode = false;
bc7f75fa
AK
1605 ew32(AIT, 0);
1606}
1607
1608/**
1609 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1610 * @hw: pointer to the HW structure
1611 *
1612 * Update the Adaptive Interframe Spacing Throttle value based on the
1613 * time between transmitted packets and time between collisions.
1614 **/
1615void e1000e_update_adaptive(struct e1000_hw *hw)
1616{
1617 struct e1000_mac_info *mac = &hw->mac;
1618
1619 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1620 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
564ea9bb 1621 mac->in_ifs_mode = true;
bc7f75fa
AK
1622 if (mac->current_ifs_val < mac->ifs_max_val) {
1623 if (!mac->current_ifs_val)
1624 mac->current_ifs_val = mac->ifs_min_val;
1625 else
1626 mac->current_ifs_val +=
1627 mac->ifs_step_size;
ad68076e 1628 ew32(AIT, mac->current_ifs_val);
bc7f75fa
AK
1629 }
1630 }
1631 } else {
1632 if (mac->in_ifs_mode &&
1633 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1634 mac->current_ifs_val = 0;
564ea9bb 1635 mac->in_ifs_mode = false;
bc7f75fa
AK
1636 ew32(AIT, 0);
1637 }
1638 }
1639}
1640
1641/**
1642 * e1000_raise_eec_clk - Raise EEPROM clock
1643 * @hw: pointer to the HW structure
1644 * @eecd: pointer to the EEPROM
1645 *
1646 * Enable/Raise the EEPROM clock bit.
1647 **/
1648static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1649{
1650 *eecd = *eecd | E1000_EECD_SK;
1651 ew32(EECD, *eecd);
1652 e1e_flush();
1653 udelay(hw->nvm.delay_usec);
1654}
1655
1656/**
1657 * e1000_lower_eec_clk - Lower EEPROM clock
1658 * @hw: pointer to the HW structure
1659 * @eecd: pointer to the EEPROM
1660 *
1661 * Clear/Lower the EEPROM clock bit.
1662 **/
1663static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1664{
1665 *eecd = *eecd & ~E1000_EECD_SK;
1666 ew32(EECD, *eecd);
1667 e1e_flush();
1668 udelay(hw->nvm.delay_usec);
1669}
1670
1671/**
1672 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1673 * @hw: pointer to the HW structure
1674 * @data: data to send to the EEPROM
1675 * @count: number of bits to shift out
1676 *
1677 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1678 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1679 * In order to do this, "data" must be broken down into bits.
1680 **/
1681static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1682{
1683 struct e1000_nvm_info *nvm = &hw->nvm;
1684 u32 eecd = er32(EECD);
1685 u32 mask;
1686
1687 mask = 0x01 << (count - 1);
1688 if (nvm->type == e1000_nvm_eeprom_spi)
1689 eecd |= E1000_EECD_DO;
1690
1691 do {
1692 eecd &= ~E1000_EECD_DI;
1693
1694 if (data & mask)
1695 eecd |= E1000_EECD_DI;
1696
1697 ew32(EECD, eecd);
1698 e1e_flush();
1699
1700 udelay(nvm->delay_usec);
1701
1702 e1000_raise_eec_clk(hw, &eecd);
1703 e1000_lower_eec_clk(hw, &eecd);
1704
1705 mask >>= 1;
1706 } while (mask);
1707
1708 eecd &= ~E1000_EECD_DI;
1709 ew32(EECD, eecd);
1710}
1711
1712/**
1713 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1714 * @hw: pointer to the HW structure
1715 * @count: number of bits to shift in
1716 *
1717 * In order to read a register from the EEPROM, we need to shift 'count' bits
1718 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1719 * the EEPROM (setting the SK bit), and then reading the value of the data out
1720 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1721 * always be clear.
1722 **/
1723static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1724{
1725 u32 eecd;
1726 u32 i;
1727 u16 data;
1728
1729 eecd = er32(EECD);
1730
1731 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1732 data = 0;
1733
1734 for (i = 0; i < count; i++) {
1735 data <<= 1;
1736 e1000_raise_eec_clk(hw, &eecd);
1737
1738 eecd = er32(EECD);
1739
1740 eecd &= ~E1000_EECD_DI;
1741 if (eecd & E1000_EECD_DO)
1742 data |= 1;
1743
1744 e1000_lower_eec_clk(hw, &eecd);
1745 }
1746
1747 return data;
1748}
1749
1750/**
1751 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1752 * @hw: pointer to the HW structure
1753 * @ee_reg: EEPROM flag for polling
1754 *
1755 * Polls the EEPROM status bit for either read or write completion based
1756 * upon the value of 'ee_reg'.
1757 **/
1758s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1759{
1760 u32 attempts = 100000;
1761 u32 i, reg = 0;
1762
1763 for (i = 0; i < attempts; i++) {
1764 if (ee_reg == E1000_NVM_POLL_READ)
1765 reg = er32(EERD);
1766 else
1767 reg = er32(EEWR);
1768
1769 if (reg & E1000_NVM_RW_REG_DONE)
1770 return 0;
1771
1772 udelay(5);
1773 }
1774
1775 return -E1000_ERR_NVM;
1776}
1777
1778/**
1779 * e1000e_acquire_nvm - Generic request for access to EEPROM
1780 * @hw: pointer to the HW structure
1781 *
1782 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1783 * Return successful if access grant bit set, else clear the request for
1784 * EEPROM access and return -E1000_ERR_NVM (-1).
1785 **/
1786s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1787{
1788 u32 eecd = er32(EECD);
1789 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1790
1791 ew32(EECD, eecd | E1000_EECD_REQ);
1792 eecd = er32(EECD);
1793
1794 while (timeout) {
1795 if (eecd & E1000_EECD_GNT)
1796 break;
1797 udelay(5);
1798 eecd = er32(EECD);
1799 timeout--;
1800 }
1801
1802 if (!timeout) {
1803 eecd &= ~E1000_EECD_REQ;
1804 ew32(EECD, eecd);
3bb99fe2 1805 e_dbg("Could not acquire NVM grant\n");
bc7f75fa
AK
1806 return -E1000_ERR_NVM;
1807 }
1808
1809 return 0;
1810}
1811
1812/**
1813 * e1000_standby_nvm - Return EEPROM to standby state
1814 * @hw: pointer to the HW structure
1815 *
1816 * Return the EEPROM to a standby state.
1817 **/
1818static void e1000_standby_nvm(struct e1000_hw *hw)
1819{
1820 struct e1000_nvm_info *nvm = &hw->nvm;
1821 u32 eecd = er32(EECD);
1822
1823 if (nvm->type == e1000_nvm_eeprom_spi) {
1824 /* Toggle CS to flush commands */
1825 eecd |= E1000_EECD_CS;
1826 ew32(EECD, eecd);
1827 e1e_flush();
1828 udelay(nvm->delay_usec);
1829 eecd &= ~E1000_EECD_CS;
1830 ew32(EECD, eecd);
1831 e1e_flush();
1832 udelay(nvm->delay_usec);
1833 }
1834}
1835
1836/**
1837 * e1000_stop_nvm - Terminate EEPROM command
1838 * @hw: pointer to the HW structure
1839 *
1840 * Terminates the current command by inverting the EEPROM's chip select pin.
1841 **/
1842static void e1000_stop_nvm(struct e1000_hw *hw)
1843{
1844 u32 eecd;
1845
1846 eecd = er32(EECD);
1847 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1848 /* Pull CS high */
1849 eecd |= E1000_EECD_CS;
1850 e1000_lower_eec_clk(hw, &eecd);
1851 }
1852}
1853
1854/**
1855 * e1000e_release_nvm - Release exclusive access to EEPROM
1856 * @hw: pointer to the HW structure
1857 *
1858 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1859 **/
1860void e1000e_release_nvm(struct e1000_hw *hw)
1861{
1862 u32 eecd;
1863
1864 e1000_stop_nvm(hw);
1865
1866 eecd = er32(EECD);
1867 eecd &= ~E1000_EECD_REQ;
1868 ew32(EECD, eecd);
1869}
1870
1871/**
1872 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1873 * @hw: pointer to the HW structure
1874 *
1875 * Setups the EEPROM for reading and writing.
1876 **/
1877static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1878{
1879 struct e1000_nvm_info *nvm = &hw->nvm;
1880 u32 eecd = er32(EECD);
1881 u16 timeout = 0;
1882 u8 spi_stat_reg;
1883
1884 if (nvm->type == e1000_nvm_eeprom_spi) {
1885 /* Clear SK and CS */
1886 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1887 ew32(EECD, eecd);
1888 udelay(1);
1889 timeout = NVM_MAX_RETRY_SPI;
1890
ad68076e
BA
1891 /*
1892 * Read "Status Register" repeatedly until the LSB is cleared.
bc7f75fa
AK
1893 * The EEPROM will signal that the command has been completed
1894 * by clearing bit 0 of the internal status register. If it's
ad68076e
BA
1895 * not cleared within 'timeout', then error out.
1896 */
bc7f75fa
AK
1897 while (timeout) {
1898 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1899 hw->nvm.opcode_bits);
1900 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1901 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1902 break;
1903
1904 udelay(5);
1905 e1000_standby_nvm(hw);
1906 timeout--;
1907 }
1908
1909 if (!timeout) {
3bb99fe2 1910 e_dbg("SPI NVM Status error\n");
bc7f75fa
AK
1911 return -E1000_ERR_NVM;
1912 }
1913 }
1914
1915 return 0;
1916}
1917
bc7f75fa
AK
1918/**
1919 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1920 * @hw: pointer to the HW structure
1921 * @offset: offset of word in the EEPROM to read
1922 * @words: number of words to read
1923 * @data: word read from the EEPROM
1924 *
1925 * Reads a 16 bit word from the EEPROM using the EERD register.
1926 **/
1927s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1928{
1929 struct e1000_nvm_info *nvm = &hw->nvm;
1930 u32 i, eerd = 0;
1931 s32 ret_val = 0;
1932
ad68076e
BA
1933 /*
1934 * A check for invalid values: offset too large, too many words,
1935 * too many words for the offset, and not enough words.
1936 */
bc7f75fa
AK
1937 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1938 (words == 0)) {
3bb99fe2 1939 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
1940 return -E1000_ERR_NVM;
1941 }
1942
1943 for (i = 0; i < words; i++) {
1944 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
1945 E1000_NVM_RW_REG_START;
1946
1947 ew32(EERD, eerd);
1948 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
1949 if (ret_val)
1950 break;
1951
ad68076e 1952 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
bc7f75fa
AK
1953 }
1954
1955 return ret_val;
1956}
1957
1958/**
1959 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1960 * @hw: pointer to the HW structure
1961 * @offset: offset within the EEPROM to be written to
1962 * @words: number of words to write
1963 * @data: 16 bit word(s) to be written to the EEPROM
1964 *
1965 * Writes data to EEPROM at offset using SPI interface.
1966 *
1967 * If e1000e_update_nvm_checksum is not called after this function , the
489815ce 1968 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
1969 **/
1970s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1971{
1972 struct e1000_nvm_info *nvm = &hw->nvm;
1973 s32 ret_val;
1974 u16 widx = 0;
1975
ad68076e
BA
1976 /*
1977 * A check for invalid values: offset too large, too many words,
1978 * and not enough words.
1979 */
bc7f75fa
AK
1980 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1981 (words == 0)) {
3bb99fe2 1982 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
1983 return -E1000_ERR_NVM;
1984 }
1985
94d8186a 1986 ret_val = nvm->ops.acquire(hw);
bc7f75fa
AK
1987 if (ret_val)
1988 return ret_val;
1989
1990 msleep(10);
1991
1992 while (widx < words) {
1993 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
1994
1995 ret_val = e1000_ready_nvm_eeprom(hw);
1996 if (ret_val) {
94d8186a 1997 nvm->ops.release(hw);
bc7f75fa
AK
1998 return ret_val;
1999 }
2000
2001 e1000_standby_nvm(hw);
2002
2003 /* Send the WRITE ENABLE command (8 bit opcode) */
2004 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2005 nvm->opcode_bits);
2006
2007 e1000_standby_nvm(hw);
2008
ad68076e
BA
2009 /*
2010 * Some SPI eeproms use the 8th address bit embedded in the
2011 * opcode
2012 */
bc7f75fa
AK
2013 if ((nvm->address_bits == 8) && (offset >= 128))
2014 write_opcode |= NVM_A8_OPCODE_SPI;
2015
2016 /* Send the Write command (8-bit opcode + addr) */
2017 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2018 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2019 nvm->address_bits);
2020
2021 /* Loop to allow for up to whole page write of eeprom */
2022 while (widx < words) {
2023 u16 word_out = data[widx];
2024 word_out = (word_out >> 8) | (word_out << 8);
2025 e1000_shift_out_eec_bits(hw, word_out, 16);
2026 widx++;
2027
2028 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2029 e1000_standby_nvm(hw);
2030 break;
2031 }
2032 }
2033 }
2034
2035 msleep(10);
94d8186a 2036 nvm->ops.release(hw);
bc7f75fa
AK
2037 return 0;
2038}
2039
2040/**
2041 * e1000e_read_mac_addr - Read device MAC address
2042 * @hw: pointer to the HW structure
2043 *
2044 * Reads the device MAC address from the EEPROM and stores the value.
2045 * Since devices with two ports use the same EEPROM, we increment the
2046 * last bit in the MAC address for the second port.
2047 **/
2048s32 e1000e_read_mac_addr(struct e1000_hw *hw)
2049{
2050 s32 ret_val;
2051 u16 offset, nvm_data, i;
93ca1610
BH
2052 u16 mac_addr_offset = 0;
2053
2054 if (hw->mac.type == e1000_82571) {
2055 /* Check for an alternate MAC address. An alternate MAC
2056 * address can be setup by pre-boot software and must be
2057 * treated like a permanent address and must override the
ad68076e 2058 * actual permanent MAC address.*/
93ca1610 2059 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
ad68076e 2060 &mac_addr_offset);
93ca1610 2061 if (ret_val) {
3bb99fe2 2062 e_dbg("NVM Read Error\n");
93ca1610
BH
2063 return ret_val;
2064 }
2065 if (mac_addr_offset == 0xFFFF)
2066 mac_addr_offset = 0;
2067
2068 if (mac_addr_offset) {
2069 if (hw->bus.func == E1000_FUNC_1)
2070 mac_addr_offset += ETH_ALEN/sizeof(u16);
2071
2072 /* make sure we have a valid mac address here
ad68076e 2073 * before using it */
93ca1610
BH
2074 ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
2075 &nvm_data);
2076 if (ret_val) {
3bb99fe2 2077 e_dbg("NVM Read Error\n");
93ca1610
BH
2078 return ret_val;
2079 }
2080 if (nvm_data & 0x0001)
2081 mac_addr_offset = 0;
2082 }
2083
2084 if (mac_addr_offset)
ad68076e 2085 hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
93ca1610 2086 }
bc7f75fa
AK
2087
2088 for (i = 0; i < ETH_ALEN; i += 2) {
93ca1610 2089 offset = mac_addr_offset + (i >> 1);
bc7f75fa
AK
2090 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
2091 if (ret_val) {
3bb99fe2 2092 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2093 return ret_val;
2094 }
2095 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
2096 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
2097 }
2098
2099 /* Flip last bit of mac address if we're on second port */
93ca1610 2100 if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
bc7f75fa
AK
2101 hw->mac.perm_addr[5] ^= 1;
2102
2103 for (i = 0; i < ETH_ALEN; i++)
2104 hw->mac.addr[i] = hw->mac.perm_addr[i];
2105
2106 return 0;
2107}
2108
2109/**
2110 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2111 * @hw: pointer to the HW structure
2112 *
2113 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2114 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2115 **/
2116s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2117{
2118 s32 ret_val;
2119 u16 checksum = 0;
2120 u16 i, nvm_data;
2121
2122 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2123 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2124 if (ret_val) {
3bb99fe2 2125 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2126 return ret_val;
2127 }
2128 checksum += nvm_data;
2129 }
2130
2131 if (checksum != (u16) NVM_SUM) {
3bb99fe2 2132 e_dbg("NVM Checksum Invalid\n");
bc7f75fa
AK
2133 return -E1000_ERR_NVM;
2134 }
2135
2136 return 0;
2137}
2138
2139/**
2140 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2141 * @hw: pointer to the HW structure
2142 *
2143 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2144 * up to the checksum. Then calculates the EEPROM checksum and writes the
2145 * value to the EEPROM.
2146 **/
2147s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2148{
2149 s32 ret_val;
2150 u16 checksum = 0;
2151 u16 i, nvm_data;
2152
2153 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2154 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2155 if (ret_val) {
3bb99fe2 2156 e_dbg("NVM Read Error while updating checksum.\n");
bc7f75fa
AK
2157 return ret_val;
2158 }
2159 checksum += nvm_data;
2160 }
2161 checksum = (u16) NVM_SUM - checksum;
2162 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2163 if (ret_val)
3bb99fe2 2164 e_dbg("NVM Write Error while updating checksum.\n");
bc7f75fa
AK
2165
2166 return ret_val;
2167}
2168
2169/**
2170 * e1000e_reload_nvm - Reloads EEPROM
2171 * @hw: pointer to the HW structure
2172 *
2173 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2174 * extended control register.
2175 **/
2176void e1000e_reload_nvm(struct e1000_hw *hw)
2177{
2178 u32 ctrl_ext;
2179
2180 udelay(10);
2181 ctrl_ext = er32(CTRL_EXT);
2182 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2183 ew32(CTRL_EXT, ctrl_ext);
2184 e1e_flush();
2185}
2186
2187/**
2188 * e1000_calculate_checksum - Calculate checksum for buffer
2189 * @buffer: pointer to EEPROM
2190 * @length: size of EEPROM to calculate a checksum for
2191 *
2192 * Calculates the checksum for some buffer on a specified length. The
2193 * checksum calculated is returned.
2194 **/
2195static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2196{
2197 u32 i;
2198 u8 sum = 0;
2199
2200 if (!buffer)
2201 return 0;
2202
2203 for (i = 0; i < length; i++)
2204 sum += buffer[i];
2205
2206 return (u8) (0 - sum);
2207}
2208
2209/**
2210 * e1000_mng_enable_host_if - Checks host interface is enabled
2211 * @hw: pointer to the HW structure
2212 *
2213 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2214 *
489815ce 2215 * This function checks whether the HOST IF is enabled for command operation
bc7f75fa
AK
2216 * and also checks whether the previous command is completed. It busy waits
2217 * in case of previous command is not completed.
2218 **/
2219static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2220{
2221 u32 hicr;
2222 u8 i;
2223
2224 /* Check that the host interface is enabled. */
2225 hicr = er32(HICR);
2226 if ((hicr & E1000_HICR_EN) == 0) {
3bb99fe2 2227 e_dbg("E1000_HOST_EN bit disabled.\n");
bc7f75fa
AK
2228 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2229 }
2230 /* check the previous command is completed */
2231 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2232 hicr = er32(HICR);
2233 if (!(hicr & E1000_HICR_C))
2234 break;
2235 mdelay(1);
2236 }
2237
2238 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
3bb99fe2 2239 e_dbg("Previous command timeout failed .\n");
bc7f75fa
AK
2240 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2241 }
2242
2243 return 0;
2244}
2245
2246/**
4662e82b 2247 * e1000e_check_mng_mode_generic - check management mode
bc7f75fa
AK
2248 * @hw: pointer to the HW structure
2249 *
2250 * Reads the firmware semaphore register and returns true (>0) if
2251 * manageability is enabled, else false (0).
2252 **/
4662e82b 2253bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
bc7f75fa
AK
2254{
2255 u32 fwsm = er32(FWSM);
2256
4662e82b
BA
2257 return (fwsm & E1000_FWSM_MODE_MASK) ==
2258 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
bc7f75fa
AK
2259}
2260
2261/**
ad68076e 2262 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
bc7f75fa
AK
2263 * @hw: pointer to the HW structure
2264 *
2265 * Enables packet filtering on transmit packets if manageability is enabled
2266 * and host interface is enabled.
2267 **/
2268bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2269{
2270 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2271 u32 *buffer = (u32 *)&hw->mng_cookie;
2272 u32 offset;
2273 s32 ret_val, hdr_csum, csum;
2274 u8 i, len;
2275
2276 /* No manageability, no filtering */
2277 if (!e1000e_check_mng_mode(hw)) {
564ea9bb 2278 hw->mac.tx_pkt_filtering = false;
bc7f75fa
AK
2279 return 0;
2280 }
2281
ad68076e
BA
2282 /*
2283 * If we can't read from the host interface for whatever
bc7f75fa
AK
2284 * reason, disable filtering.
2285 */
2286 ret_val = e1000_mng_enable_host_if(hw);
2287 if (ret_val != 0) {
564ea9bb 2288 hw->mac.tx_pkt_filtering = false;
bc7f75fa
AK
2289 return ret_val;
2290 }
2291
2292 /* Read in the header. Length and offset are in dwords. */
2293 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2294 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2295 for (i = 0; i < len; i++)
2296 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2297 hdr_csum = hdr->checksum;
2298 hdr->checksum = 0;
2299 csum = e1000_calculate_checksum((u8 *)hdr,
2300 E1000_MNG_DHCP_COOKIE_LENGTH);
ad68076e
BA
2301 /*
2302 * If either the checksums or signature don't match, then
bc7f75fa
AK
2303 * the cookie area isn't considered valid, in which case we
2304 * take the safe route of assuming Tx filtering is enabled.
2305 */
2306 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
564ea9bb 2307 hw->mac.tx_pkt_filtering = true;
bc7f75fa
AK
2308 return 1;
2309 }
2310
2311 /* Cookie area is valid, make the final check for filtering. */
2312 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
564ea9bb 2313 hw->mac.tx_pkt_filtering = false;
bc7f75fa
AK
2314 return 0;
2315 }
2316
564ea9bb 2317 hw->mac.tx_pkt_filtering = true;
bc7f75fa
AK
2318 return 1;
2319}
2320
2321/**
2322 * e1000_mng_write_cmd_header - Writes manageability command header
2323 * @hw: pointer to the HW structure
2324 * @hdr: pointer to the host interface command header
2325 *
2326 * Writes the command header after does the checksum calculation.
2327 **/
2328static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2329 struct e1000_host_mng_command_header *hdr)
2330{
2331 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2332
2333 /* Write the whole command header structure with new checksum. */
2334
2335 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2336
2337 length >>= 2;
2338 /* Write the relevant command block into the ram area. */
2339 for (i = 0; i < length; i++) {
2340 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2341 *((u32 *) hdr + i));
2342 e1e_flush();
2343 }
2344
2345 return 0;
2346}
2347
2348/**
2349 * e1000_mng_host_if_write - Writes to the manageability host interface
2350 * @hw: pointer to the HW structure
2351 * @buffer: pointer to the host interface buffer
2352 * @length: size of the buffer
2353 * @offset: location in the buffer to write to
2354 * @sum: sum of the data (not checksum)
2355 *
2356 * This function writes the buffer content at the offset given on the host if.
2357 * It also does alignment considerations to do the writes in most efficient
2358 * way. Also fills up the sum of the buffer in *buffer parameter.
2359 **/
2360static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2361 u16 length, u16 offset, u8 *sum)
2362{
2363 u8 *tmp;
2364 u8 *bufptr = buffer;
2365 u32 data = 0;
2366 u16 remaining, i, j, prev_bytes;
2367
2368 /* sum = only sum of the data and it is not checksum */
2369
2370 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2371 return -E1000_ERR_PARAM;
2372
2373 tmp = (u8 *)&data;
2374 prev_bytes = offset & 0x3;
2375 offset >>= 2;
2376
2377 if (prev_bytes) {
2378 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2379 for (j = prev_bytes; j < sizeof(u32); j++) {
2380 *(tmp + j) = *bufptr++;
2381 *sum += *(tmp + j);
2382 }
2383 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2384 length -= j - prev_bytes;
2385 offset++;
2386 }
2387
2388 remaining = length & 0x3;
2389 length -= remaining;
2390
2391 /* Calculate length in DWORDs */
2392 length >>= 2;
2393
ad68076e
BA
2394 /*
2395 * The device driver writes the relevant command block into the
2396 * ram area.
2397 */
bc7f75fa
AK
2398 for (i = 0; i < length; i++) {
2399 for (j = 0; j < sizeof(u32); j++) {
2400 *(tmp + j) = *bufptr++;
2401 *sum += *(tmp + j);
2402 }
2403
2404 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2405 }
2406 if (remaining) {
2407 for (j = 0; j < sizeof(u32); j++) {
2408 if (j < remaining)
2409 *(tmp + j) = *bufptr++;
2410 else
2411 *(tmp + j) = 0;
2412
2413 *sum += *(tmp + j);
2414 }
2415 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2416 }
2417
2418 return 0;
2419}
2420
2421/**
2422 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2423 * @hw: pointer to the HW structure
2424 * @buffer: pointer to the host interface
2425 * @length: size of the buffer
2426 *
2427 * Writes the DHCP information to the host interface.
2428 **/
2429s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2430{
2431 struct e1000_host_mng_command_header hdr;
2432 s32 ret_val;
2433 u32 hicr;
2434
2435 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2436 hdr.command_length = length;
2437 hdr.reserved1 = 0;
2438 hdr.reserved2 = 0;
2439 hdr.checksum = 0;
2440
2441 /* Enable the host interface */
2442 ret_val = e1000_mng_enable_host_if(hw);
2443 if (ret_val)
2444 return ret_val;
2445
2446 /* Populate the host interface with the contents of "buffer". */
2447 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2448 sizeof(hdr), &(hdr.checksum));
2449 if (ret_val)
2450 return ret_val;
2451
2452 /* Write the manageability command header */
2453 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2454 if (ret_val)
2455 return ret_val;
2456
2457 /* Tell the ARC a new command is pending. */
2458 hicr = er32(HICR);
2459 ew32(HICR, hicr | E1000_HICR_C);
2460
2461 return 0;
2462}
2463
2464/**
2465 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2466 * @hw: pointer to the HW structure
2467 *
2468 * Verifies the hardware needs to allow ARPs to be processed by the host.
2469 **/
2470bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2471{
2472 u32 manc;
2473 u32 fwsm, factps;
564ea9bb 2474 bool ret_val = false;
bc7f75fa
AK
2475
2476 manc = er32(MANC);
2477
2478 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2479 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2480 return ret_val;
2481
2482 if (hw->mac.arc_subsystem_valid) {
2483 fwsm = er32(FWSM);
2484 factps = er32(FACTPS);
2485
2486 if (!(factps & E1000_FACTPS_MNGCG) &&
2487 ((fwsm & E1000_FWSM_MODE_MASK) ==
2488 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
564ea9bb 2489 ret_val = true;
bc7f75fa
AK
2490 return ret_val;
2491 }
2492 } else {
2493 if ((manc & E1000_MANC_SMBUS_EN) &&
2494 !(manc & E1000_MANC_ASF_EN)) {
564ea9bb 2495 ret_val = true;
bc7f75fa
AK
2496 return ret_val;
2497 }
2498 }
2499
2500 return ret_val;
2501}
2502
69e3fd8c 2503s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
bc7f75fa
AK
2504{
2505 s32 ret_val;
2506 u16 nvm_data;
2507
2508 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2509 if (ret_val) {
3bb99fe2 2510 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2511 return ret_val;
2512 }
69e3fd8c 2513 *pba_num = (u32)(nvm_data << 16);
bc7f75fa
AK
2514
2515 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2516 if (ret_val) {
3bb99fe2 2517 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2518 return ret_val;
2519 }
69e3fd8c 2520 *pba_num |= nvm_data;
bc7f75fa
AK
2521
2522 return 0;
2523}
This page took 0.47306 seconds and 5 git commands to generate.