e1000e: Simple optimizations in e1000_xmit_frame
[deliverable/linux.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
46
47#include "e1000.h"
48
49#define DRV_VERSION "0.2.0"
50char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION;
52
53static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
60};
61
62#ifdef DEBUG
63/**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68{
589c085f 69 return hw->adapter->netdev->name;
bc7f75fa
AK
70}
71#endif
72
73/**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76static int e1000_desc_unused(struct e1000_ring *ring)
77{
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
80
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82}
83
84/**
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
94 u8 status, u16 vlan)
95{
96 skb->protocol = eth_type_trans(skb, netdev);
97
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
144 */
145 csum = ntohl(csum ^ 0xFFFF);
146 skb->csum = csum;
147 skb->ip_summed = CHECKSUM_COMPLETE;
148 }
149 adapter->hw_csum_good++;
150}
151
152/**
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
155 **/
156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157 int cleaned_count)
158{
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 struct e1000_ring *rx_ring = adapter->rx_ring;
162 struct e1000_rx_desc *rx_desc;
163 struct e1000_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 while (cleaned_count--) {
172 skb = buffer_info->skb;
173 if (skb) {
174 skb_trim(skb, 0);
175 goto map_skb;
176 }
177
178 skb = netdev_alloc_skb(netdev, bufsz);
179 if (!skb) {
180 /* Better luck next round */
181 adapter->alloc_rx_buff_failed++;
182 break;
183 }
184
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
188 */
189 skb_reserve(skb, NET_IP_ALIGN);
190
191 buffer_info->skb = skb;
192map_skb:
193 buffer_info->dma = pci_map_single(pdev, skb->data,
194 adapter->rx_buffer_len,
195 PCI_DMA_FROMDEVICE);
196 if (pci_dma_mapping_error(buffer_info->dma)) {
197 dev_err(&pdev->dev, "RX DMA map failed\n");
198 adapter->rx_dma_failed++;
199 break;
200 }
201
202 rx_desc = E1000_RX_DESC(*rx_ring, i);
203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
209 }
210
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i-- == 0)
214 i = (rx_ring->count - 1);
215
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222 }
223}
224
225/**
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
228 **/
229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230 int cleaned_count)
231{
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_rx_desc_packet_split *rx_desc;
235 struct e1000_ring *rx_ring = adapter->rx_ring;
236 struct e1000_buffer *buffer_info;
237 struct e1000_ps_page *ps_page;
238 struct sk_buff *skb;
239 unsigned int i, j;
240
241 i = rx_ring->next_to_use;
242 buffer_info = &rx_ring->buffer_info[i];
243
244 while (cleaned_count--) {
245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248 ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
249 + j];
250 if (j < adapter->rx_ps_pages) {
251 if (!ps_page->page) {
252 ps_page->page = alloc_page(GFP_ATOMIC);
253 if (!ps_page->page) {
254 adapter->alloc_rx_buff_failed++;
255 goto no_buffers;
256 }
257 ps_page->dma = pci_map_page(pdev,
258 ps_page->page,
259 0, PAGE_SIZE,
260 PCI_DMA_FROMDEVICE);
261 if (pci_dma_mapping_error(
262 ps_page->dma)) {
263 dev_err(&adapter->pdev->dev,
264 "RX DMA page map failed\n");
265 adapter->rx_dma_failed++;
266 goto no_buffers;
267 }
268 }
269 /*
270 * Refresh the desc even if buffer_addrs
271 * didn't change because each write-back
272 * erases this info.
273 */
274 rx_desc->read.buffer_addr[j+1] =
275 cpu_to_le64(ps_page->dma);
276 } else {
277 rx_desc->read.buffer_addr[j+1] = ~0;
278 }
279 }
280
281 skb = netdev_alloc_skb(netdev,
282 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
283
284 if (!skb) {
285 adapter->alloc_rx_buff_failed++;
286 break;
287 }
288
289 /* Make buffer alignment 2 beyond a 16 byte boundary
290 * this will result in a 16 byte aligned IP header after
291 * the 14 byte MAC header is removed
292 */
293 skb_reserve(skb, NET_IP_ALIGN);
294
295 buffer_info->skb = skb;
296 buffer_info->dma = pci_map_single(pdev, skb->data,
297 adapter->rx_ps_bsize0,
298 PCI_DMA_FROMDEVICE);
299 if (pci_dma_mapping_error(buffer_info->dma)) {
300 dev_err(&pdev->dev, "RX DMA map failed\n");
301 adapter->rx_dma_failed++;
302 /* cleanup skb */
303 dev_kfree_skb_any(skb);
304 buffer_info->skb = NULL;
305 break;
306 }
307
308 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
309
310 i++;
311 if (i == rx_ring->count)
312 i = 0;
313 buffer_info = &rx_ring->buffer_info[i];
314 }
315
316no_buffers:
317 if (rx_ring->next_to_use != i) {
318 rx_ring->next_to_use = i;
319
320 if (!(i--))
321 i = (rx_ring->count - 1);
322
323 /* Force memory writes to complete before letting h/w
324 * know there are new descriptors to fetch. (Only
325 * applicable for weak-ordered memory model archs,
326 * such as IA-64). */
327 wmb();
328 /* Hardware increments by 16 bytes, but packet split
329 * descriptors are 32 bytes...so we increment tail
330 * twice as much.
331 */
332 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
333 }
334}
335
336/**
337 * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers
338 *
339 * @adapter: address of board private structure
340 * @cleaned_count: number of buffers to allocate this pass
341 **/
342static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter *adapter,
343 int cleaned_count)
344{
345 struct net_device *netdev = adapter->netdev;
346 struct pci_dev *pdev = adapter->pdev;
347 struct e1000_ring *rx_ring = adapter->rx_ring;
348 struct e1000_rx_desc *rx_desc;
349 struct e1000_buffer *buffer_info;
350 struct sk_buff *skb;
351 unsigned int i;
352 unsigned int bufsz = 256 -
353 16 /*for skb_reserve */ -
354 NET_IP_ALIGN;
355
356 i = rx_ring->next_to_use;
357 buffer_info = &rx_ring->buffer_info[i];
358
359 while (cleaned_count--) {
360 skb = buffer_info->skb;
361 if (skb) {
362 skb_trim(skb, 0);
363 goto check_page;
364 }
365
366 skb = netdev_alloc_skb(netdev, bufsz);
367 if (!skb) {
368 /* Better luck next round */
369 adapter->alloc_rx_buff_failed++;
370 break;
371 }
372
373 /* Make buffer alignment 2 beyond a 16 byte boundary
374 * this will result in a 16 byte aligned IP header after
375 * the 14 byte MAC header is removed
376 */
377 skb_reserve(skb, NET_IP_ALIGN);
378
379 buffer_info->skb = skb;
380check_page:
381 /* allocate a new page if necessary */
382 if (!buffer_info->page) {
383 buffer_info->page = alloc_page(GFP_ATOMIC);
384 if (!buffer_info->page) {
385 adapter->alloc_rx_buff_failed++;
386 break;
387 }
388 }
389
390 if (!buffer_info->dma)
391 buffer_info->dma = pci_map_page(pdev,
392 buffer_info->page, 0,
393 PAGE_SIZE,
394 PCI_DMA_FROMDEVICE);
395 if (pci_dma_mapping_error(buffer_info->dma)) {
396 dev_err(&adapter->pdev->dev, "RX DMA page map failed\n");
397 adapter->rx_dma_failed++;
398 break;
399 }
400
401 rx_desc = E1000_RX_DESC(*rx_ring, i);
402 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
403
404 i++;
405 if (i == rx_ring->count)
406 i = 0;
407 buffer_info = &rx_ring->buffer_info[i];
408 }
409
410 if (rx_ring->next_to_use != i) {
411 rx_ring->next_to_use = i;
412 if (i-- == 0)
413 i = (rx_ring->count - 1);
414
415 /* Force memory writes to complete before letting h/w
416 * know there are new descriptors to fetch. (Only
417 * applicable for weak-ordered memory model archs,
418 * such as IA-64). */
419 wmb();
420 writel(i, adapter->hw.hw_addr + rx_ring->tail);
421 }
422}
423
424/**
425 * e1000_clean_rx_irq - Send received data up the network stack; legacy
426 * @adapter: board private structure
427 *
428 * the return value indicates whether actual cleaning was done, there
429 * is no guarantee that everything was cleaned
430 **/
431static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
432 int *work_done, int work_to_do)
433{
434 struct net_device *netdev = adapter->netdev;
435 struct pci_dev *pdev = adapter->pdev;
436 struct e1000_ring *rx_ring = adapter->rx_ring;
437 struct e1000_rx_desc *rx_desc, *next_rxd;
438 struct e1000_buffer *buffer_info, *next_buffer;
439 u32 length;
440 unsigned int i;
441 int cleaned_count = 0;
442 bool cleaned = 0;
443 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
444
445 i = rx_ring->next_to_clean;
446 rx_desc = E1000_RX_DESC(*rx_ring, i);
447 buffer_info = &rx_ring->buffer_info[i];
448
449 while (rx_desc->status & E1000_RXD_STAT_DD) {
450 struct sk_buff *skb;
451 u8 status;
452
453 if (*work_done >= work_to_do)
454 break;
455 (*work_done)++;
456
457 status = rx_desc->status;
458 skb = buffer_info->skb;
459 buffer_info->skb = NULL;
460
461 prefetch(skb->data - NET_IP_ALIGN);
462
463 i++;
464 if (i == rx_ring->count)
465 i = 0;
466 next_rxd = E1000_RX_DESC(*rx_ring, i);
467 prefetch(next_rxd);
468
469 next_buffer = &rx_ring->buffer_info[i];
470
471 cleaned = 1;
472 cleaned_count++;
473 pci_unmap_single(pdev,
474 buffer_info->dma,
475 adapter->rx_buffer_len,
476 PCI_DMA_FROMDEVICE);
477 buffer_info->dma = 0;
478
479 length = le16_to_cpu(rx_desc->length);
480
481 /* !EOP means multiple descriptors were used to store a single
482 * packet, also make sure the frame isn't just CRC only */
483 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
484 /* All receives must fit into a single buffer */
485 ndev_dbg(netdev, "%s: Receive packet consumed "
486 "multiple buffers\n", netdev->name);
487 /* recycle */
488 buffer_info->skb = skb;
489 goto next_desc;
490 }
491
492 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
493 /* recycle */
494 buffer_info->skb = skb;
495 goto next_desc;
496 }
497
498 /* adjust length to remove Ethernet CRC */
499 length -= 4;
500
501 /* probably a little skewed due to removing CRC */
502 total_rx_bytes += length;
503 total_rx_packets++;
504
505 /* code added for copybreak, this should improve
506 * performance for small packets with large amounts
507 * of reassembly being done in the stack */
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
511 if (new_skb) {
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 memcpy(new_skb->data - NET_IP_ALIGN,
514 skb->data - NET_IP_ALIGN,
515 length + NET_IP_ALIGN);
516 /* save the skb in buffer_info as good */
517 buffer_info->skb = skb;
518 skb = new_skb;
519 }
520 /* else just continue with the old one */
521 }
522 /* end copybreak code */
523 skb_put(skb, length);
524
525 /* Receive Checksum Offload */
526 e1000_rx_checksum(adapter,
527 (u32)(status) |
528 ((u32)(rx_desc->errors) << 24),
529 le16_to_cpu(rx_desc->csum), skb);
530
531 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
532
533next_desc:
534 rx_desc->status = 0;
535
536 /* return some buffers to hardware, one at a time is too slow */
537 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
538 adapter->alloc_rx_buf(adapter, cleaned_count);
539 cleaned_count = 0;
540 }
541
542 /* use prefetched values */
543 rx_desc = next_rxd;
544 buffer_info = next_buffer;
545 }
546 rx_ring->next_to_clean = i;
547
548 cleaned_count = e1000_desc_unused(rx_ring);
549 if (cleaned_count)
550 adapter->alloc_rx_buf(adapter, cleaned_count);
551
552 adapter->total_rx_packets += total_rx_packets;
553 adapter->total_rx_bytes += total_rx_bytes;
554 return cleaned;
555}
556
557static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
558 u16 length)
559{
560 bi->page = NULL;
561 skb->len += length;
562 skb->data_len += length;
563 skb->truesize += length;
564}
565
566static void e1000_put_txbuf(struct e1000_adapter *adapter,
567 struct e1000_buffer *buffer_info)
568{
569 if (buffer_info->dma) {
570 pci_unmap_page(adapter->pdev, buffer_info->dma,
571 buffer_info->length, PCI_DMA_TODEVICE);
572 buffer_info->dma = 0;
573 }
574 if (buffer_info->skb) {
575 dev_kfree_skb_any(buffer_info->skb);
576 buffer_info->skb = NULL;
577 }
578}
579
580static void e1000_print_tx_hang(struct e1000_adapter *adapter)
581{
582 struct e1000_ring *tx_ring = adapter->tx_ring;
583 unsigned int i = tx_ring->next_to_clean;
584 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
585 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
586 struct net_device *netdev = adapter->netdev;
587
588 /* detected Tx unit hang */
589 ndev_err(netdev,
590 "Detected Tx Unit Hang:\n"
591 " TDH <%x>\n"
592 " TDT <%x>\n"
593 " next_to_use <%x>\n"
594 " next_to_clean <%x>\n"
595 "buffer_info[next_to_clean]:\n"
596 " time_stamp <%lx>\n"
597 " next_to_watch <%x>\n"
598 " jiffies <%lx>\n"
599 " next_to_watch.status <%x>\n",
600 readl(adapter->hw.hw_addr + tx_ring->head),
601 readl(adapter->hw.hw_addr + tx_ring->tail),
602 tx_ring->next_to_use,
603 tx_ring->next_to_clean,
604 tx_ring->buffer_info[eop].time_stamp,
605 eop,
606 jiffies,
607 eop_desc->upper.fields.status);
608}
609
610/**
611 * e1000_clean_tx_irq - Reclaim resources after transmit completes
612 * @adapter: board private structure
613 *
614 * the return value indicates whether actual cleaning was done, there
615 * is no guarantee that everything was cleaned
616 **/
617static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
618{
619 struct net_device *netdev = adapter->netdev;
620 struct e1000_hw *hw = &adapter->hw;
621 struct e1000_ring *tx_ring = adapter->tx_ring;
622 struct e1000_tx_desc *tx_desc, *eop_desc;
623 struct e1000_buffer *buffer_info;
624 unsigned int i, eop;
625 unsigned int count = 0;
626 bool cleaned = 0;
627 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
628
629 i = tx_ring->next_to_clean;
630 eop = tx_ring->buffer_info[i].next_to_watch;
631 eop_desc = E1000_TX_DESC(*tx_ring, eop);
632
633 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
634 for (cleaned = 0; !cleaned; ) {
635 tx_desc = E1000_TX_DESC(*tx_ring, i);
636 buffer_info = &tx_ring->buffer_info[i];
637 cleaned = (i == eop);
638
639 if (cleaned) {
640 struct sk_buff *skb = buffer_info->skb;
641 unsigned int segs, bytecount;
642 segs = skb_shinfo(skb)->gso_segs ?: 1;
643 /* multiply data chunks by size of headers */
644 bytecount = ((segs - 1) * skb_headlen(skb)) +
645 skb->len;
646 total_tx_packets += segs;
647 total_tx_bytes += bytecount;
648 }
649
650 e1000_put_txbuf(adapter, buffer_info);
651 tx_desc->upper.data = 0;
652
653 i++;
654 if (i == tx_ring->count)
655 i = 0;
656 }
657
658 eop = tx_ring->buffer_info[i].next_to_watch;
659 eop_desc = E1000_TX_DESC(*tx_ring, eop);
660#define E1000_TX_WEIGHT 64
661 /* weight of a sort for tx, to avoid endless transmit cleanup */
662 if (count++ == E1000_TX_WEIGHT)
663 break;
664 }
665
666 tx_ring->next_to_clean = i;
667
668#define TX_WAKE_THRESHOLD 32
669 if (cleaned && netif_carrier_ok(netdev) &&
670 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
671 /* Make sure that anybody stopping the queue after this
672 * sees the new next_to_clean.
673 */
674 smp_mb();
675
676 if (netif_queue_stopped(netdev) &&
677 !(test_bit(__E1000_DOWN, &adapter->state))) {
678 netif_wake_queue(netdev);
679 ++adapter->restart_queue;
680 }
681 }
682
683 if (adapter->detect_tx_hung) {
684 /* Detect a transmit hang in hardware, this serializes the
685 * check with the clearing of time_stamp and movement of i */
686 adapter->detect_tx_hung = 0;
687 if (tx_ring->buffer_info[eop].dma &&
688 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
689 + (adapter->tx_timeout_factor * HZ))
690 && !(er32(STATUS) &
691 E1000_STATUS_TXOFF)) {
692 e1000_print_tx_hang(adapter);
693 netif_stop_queue(netdev);
694 }
695 }
696 adapter->total_tx_bytes += total_tx_bytes;
697 adapter->total_tx_packets += total_tx_packets;
698 return cleaned;
699}
700
701/**
702 * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy
703 * @adapter: board private structure
704 *
705 * the return value indicates whether actual cleaning was done, there
706 * is no guarantee that everything was cleaned
707 **/
708static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter *adapter,
709 int *work_done, int work_to_do)
710{
711 struct net_device *netdev = adapter->netdev;
712 struct pci_dev *pdev = adapter->pdev;
713 struct e1000_ring *rx_ring = adapter->rx_ring;
714 struct e1000_rx_desc *rx_desc, *next_rxd;
715 struct e1000_buffer *buffer_info, *next_buffer;
716 u32 length;
717 unsigned int i;
718 int cleaned_count = 0;
719 bool cleaned = 0;
720 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721
722 i = rx_ring->next_to_clean;
723 rx_desc = E1000_RX_DESC(*rx_ring, i);
724 buffer_info = &rx_ring->buffer_info[i];
725
726 while (rx_desc->status & E1000_RXD_STAT_DD) {
727 struct sk_buff *skb;
728 u8 status;
729
730 if (*work_done >= work_to_do)
731 break;
732 (*work_done)++;
733
734 status = rx_desc->status;
735 skb = buffer_info->skb;
736 buffer_info->skb = NULL;
737
738 i++;
739 if (i == rx_ring->count)
740 i = 0;
741 next_rxd = E1000_RX_DESC(*rx_ring, i);
742 prefetch(next_rxd);
743
744 next_buffer = &rx_ring->buffer_info[i];
745
746 cleaned = 1;
747 cleaned_count++;
748 pci_unmap_page(pdev,
749 buffer_info->dma,
750 PAGE_SIZE,
751 PCI_DMA_FROMDEVICE);
752 buffer_info->dma = 0;
753
754 length = le16_to_cpu(rx_desc->length);
755
756 /* errors is only valid for DD + EOP descriptors */
757 if ((status & E1000_RXD_STAT_EOP) &&
758 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
759 /* recycle both page and skb */
760 buffer_info->skb = skb;
761 /* an error means any chain goes out the window too */
762 if (rx_ring->rx_skb_top)
763 dev_kfree_skb(rx_ring->rx_skb_top);
764 rx_ring->rx_skb_top = NULL;
765 goto next_desc;
766 }
767
768#define rxtop rx_ring->rx_skb_top
769 if (!(status & E1000_RXD_STAT_EOP)) {
770 /* this descriptor is only the beginning (or middle) */
771 if (!rxtop) {
772 /* this is the beginning of a chain */
773 rxtop = skb;
774 skb_fill_page_desc(rxtop, 0, buffer_info->page,
775 0, length);
776 } else {
777 /* this is the middle of a chain */
778 skb_fill_page_desc(rxtop,
779 skb_shinfo(rxtop)->nr_frags,
780 buffer_info->page, 0,
781 length);
782 /* re-use the skb, only consumed the page */
783 buffer_info->skb = skb;
784 }
785 e1000_consume_page(buffer_info, rxtop, length);
786 goto next_desc;
787 } else {
788 if (rxtop) {
789 /* end of the chain */
790 skb_fill_page_desc(rxtop,
791 skb_shinfo(rxtop)->nr_frags,
792 buffer_info->page, 0, length);
793 /* re-use the current skb, we only consumed the
794 * page */
795 buffer_info->skb = skb;
796 skb = rxtop;
797 rxtop = NULL;
798 e1000_consume_page(buffer_info, skb, length);
799 } else {
800 /* no chain, got EOP, this buf is the packet
801 * copybreak to save the put_page/alloc_page */
802 if (length <= copybreak &&
803 skb_tailroom(skb) >= length) {
804 u8 *vaddr;
805 vaddr = kmap_atomic(buffer_info->page,
806 KM_SKB_DATA_SOFTIRQ);
807 memcpy(skb_tail_pointer(skb),
808 vaddr, length);
809 kunmap_atomic(vaddr,
810 KM_SKB_DATA_SOFTIRQ);
811 /* re-use the page, so don't erase
812 * buffer_info->page */
813 skb_put(skb, length);
814 } else {
815 skb_fill_page_desc(skb, 0,
816 buffer_info->page, 0,
817 length);
818 e1000_consume_page(buffer_info, skb,
819 length);
820 }
821 }
822 }
823
824 /* Receive Checksum Offload XXX recompute due to CRC strip? */
825 e1000_rx_checksum(adapter,
826 (u32)(status) |
827 ((u32)(rx_desc->errors) << 24),
828 le16_to_cpu(rx_desc->csum), skb);
829
830 pskb_trim(skb, skb->len - 4);
831
832 /* probably a little skewed due to removing CRC */
833 total_rx_bytes += skb->len;
834 total_rx_packets++;
835
836 /* eth type trans needs skb->data to point to something */
837 if (!pskb_may_pull(skb, ETH_HLEN)) {
838 ndev_err(netdev, "__pskb_pull_tail failed.\n");
839 dev_kfree_skb(skb);
840 goto next_desc;
841 }
842
843 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
844
845next_desc:
846 rx_desc->status = 0;
847
848 /* return some buffers to hardware, one at a time is too slow */
849 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
850 adapter->alloc_rx_buf(adapter, cleaned_count);
851 cleaned_count = 0;
852 }
853
854 /* use prefetched values */
855 rx_desc = next_rxd;
856 buffer_info = next_buffer;
857 }
858 rx_ring->next_to_clean = i;
859
860 cleaned_count = e1000_desc_unused(rx_ring);
861 if (cleaned_count)
862 adapter->alloc_rx_buf(adapter, cleaned_count);
863
864 adapter->total_rx_packets += total_rx_packets;
865 adapter->total_rx_bytes += total_rx_bytes;
866 return cleaned;
867}
868
869/**
870 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
871 * @adapter: board private structure
872 *
873 * the return value indicates whether actual cleaning was done, there
874 * is no guarantee that everything was cleaned
875 **/
876static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
877 int *work_done, int work_to_do)
878{
879 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
880 struct net_device *netdev = adapter->netdev;
881 struct pci_dev *pdev = adapter->pdev;
882 struct e1000_ring *rx_ring = adapter->rx_ring;
883 struct e1000_buffer *buffer_info, *next_buffer;
884 struct e1000_ps_page *ps_page;
885 struct sk_buff *skb;
886 unsigned int i, j;
887 u32 length, staterr;
888 int cleaned_count = 0;
889 bool cleaned = 0;
890 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
891
892 i = rx_ring->next_to_clean;
893 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
894 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
895 buffer_info = &rx_ring->buffer_info[i];
896
897 while (staterr & E1000_RXD_STAT_DD) {
898 if (*work_done >= work_to_do)
899 break;
900 (*work_done)++;
901 skb = buffer_info->skb;
902
903 /* in the packet split case this is header only */
904 prefetch(skb->data - NET_IP_ALIGN);
905
906 i++;
907 if (i == rx_ring->count)
908 i = 0;
909 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
910 prefetch(next_rxd);
911
912 next_buffer = &rx_ring->buffer_info[i];
913
914 cleaned = 1;
915 cleaned_count++;
916 pci_unmap_single(pdev, buffer_info->dma,
917 adapter->rx_ps_bsize0,
918 PCI_DMA_FROMDEVICE);
919 buffer_info->dma = 0;
920
921 if (!(staterr & E1000_RXD_STAT_EOP)) {
922 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
923 "up the full packet\n", netdev->name);
924 dev_kfree_skb_irq(skb);
925 goto next_desc;
926 }
927
928 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
929 dev_kfree_skb_irq(skb);
930 goto next_desc;
931 }
932
933 length = le16_to_cpu(rx_desc->wb.middle.length0);
934
935 if (!length) {
936 ndev_dbg(netdev, "%s: Last part of the packet spanning"
937 " multiple descriptors\n", netdev->name);
938 dev_kfree_skb_irq(skb);
939 goto next_desc;
940 }
941
942 /* Good Receive */
943 skb_put(skb, length);
944
945 {
946 /* this looks ugly, but it seems compiler issues make it
947 more efficient than reusing j */
948 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
949
950 /* page alloc/put takes too long and effects small packet
951 * throughput, so unsplit small packets and save the alloc/put*/
952 if (l1 && (l1 <= copybreak) &&
953 ((length + l1) <= adapter->rx_ps_bsize0)) {
954 u8 *vaddr;
955
956 ps_page = &rx_ring->ps_pages[i * PS_PAGE_BUFFERS];
957
958 /* there is no documentation about how to call
959 * kmap_atomic, so we can't hold the mapping
960 * very long */
961 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
962 PAGE_SIZE, PCI_DMA_FROMDEVICE);
963 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
964 memcpy(skb_tail_pointer(skb), vaddr, l1);
965 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
966 pci_dma_sync_single_for_device(pdev, ps_page->dma,
967 PAGE_SIZE, PCI_DMA_FROMDEVICE);
968 /* remove the CRC */
969 l1 -= 4;
970 skb_put(skb, l1);
971 goto copydone;
972 } /* if */
973 }
974
975 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
976 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
977 if (!length)
978 break;
979
980 ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) + j];
981 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
982 PCI_DMA_FROMDEVICE);
983 ps_page->dma = 0;
984 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
985 ps_page->page = NULL;
986 skb->len += length;
987 skb->data_len += length;
988 skb->truesize += length;
989 }
990
991 /* strip the ethernet crc, problem is we're using pages now so
992 * this whole operation can get a little cpu intensive */
993 pskb_trim(skb, skb->len - 4);
994
995copydone:
996 total_rx_bytes += skb->len;
997 total_rx_packets++;
998
999 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1000 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1001
1002 if (rx_desc->wb.upper.header_status &
1003 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1004 adapter->rx_hdr_split++;
1005
1006 e1000_receive_skb(adapter, netdev, skb,
1007 staterr, rx_desc->wb.middle.vlan);
1008
1009next_desc:
1010 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1011 buffer_info->skb = NULL;
1012
1013 /* return some buffers to hardware, one at a time is too slow */
1014 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1015 adapter->alloc_rx_buf(adapter, cleaned_count);
1016 cleaned_count = 0;
1017 }
1018
1019 /* use prefetched values */
1020 rx_desc = next_rxd;
1021 buffer_info = next_buffer;
1022
1023 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1024 }
1025 rx_ring->next_to_clean = i;
1026
1027 cleaned_count = e1000_desc_unused(rx_ring);
1028 if (cleaned_count)
1029 adapter->alloc_rx_buf(adapter, cleaned_count);
1030
1031 adapter->total_rx_packets += total_rx_packets;
1032 adapter->total_rx_bytes += total_rx_bytes;
1033 return cleaned;
1034}
1035
1036/**
1037 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1038 * @adapter: board private structure
1039 **/
1040static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1041{
1042 struct e1000_ring *rx_ring = adapter->rx_ring;
1043 struct e1000_buffer *buffer_info;
1044 struct e1000_ps_page *ps_page;
1045 struct pci_dev *pdev = adapter->pdev;
1046 unsigned long size;
1047 unsigned int i, j;
1048
1049 /* Free all the Rx ring sk_buffs */
1050 for (i = 0; i < rx_ring->count; i++) {
1051 buffer_info = &rx_ring->buffer_info[i];
1052 if (buffer_info->dma) {
1053 if (adapter->clean_rx == e1000_clean_rx_irq)
1054 pci_unmap_single(pdev, buffer_info->dma,
1055 adapter->rx_buffer_len,
1056 PCI_DMA_FROMDEVICE);
1057 else if (adapter->clean_rx == e1000_clean_rx_irq_jumbo)
1058 pci_unmap_page(pdev, buffer_info->dma,
1059 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1060 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1061 pci_unmap_single(pdev, buffer_info->dma,
1062 adapter->rx_ps_bsize0,
1063 PCI_DMA_FROMDEVICE);
1064 buffer_info->dma = 0;
1065 }
1066
1067 if (buffer_info->page) {
1068 put_page(buffer_info->page);
1069 buffer_info->page = NULL;
1070 }
1071
1072 if (buffer_info->skb) {
1073 dev_kfree_skb(buffer_info->skb);
1074 buffer_info->skb = NULL;
1075 }
1076
1077 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1078 ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS)
1079 + j];
1080 if (!ps_page->page)
1081 break;
1082 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1083 PCI_DMA_FROMDEVICE);
1084 ps_page->dma = 0;
1085 put_page(ps_page->page);
1086 ps_page->page = NULL;
1087 }
1088 }
1089
1090 /* there also may be some cached data from a chained receive */
1091 if (rx_ring->rx_skb_top) {
1092 dev_kfree_skb(rx_ring->rx_skb_top);
1093 rx_ring->rx_skb_top = NULL;
1094 }
1095
1096 size = sizeof(struct e1000_buffer) * rx_ring->count;
1097 memset(rx_ring->buffer_info, 0, size);
1098 size = sizeof(struct e1000_ps_page)
1099 * (rx_ring->count * PS_PAGE_BUFFERS);
1100 memset(rx_ring->ps_pages, 0, size);
1101
1102 /* Zero out the descriptor ring */
1103 memset(rx_ring->desc, 0, rx_ring->size);
1104
1105 rx_ring->next_to_clean = 0;
1106 rx_ring->next_to_use = 0;
1107
1108 writel(0, adapter->hw.hw_addr + rx_ring->head);
1109 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1110}
1111
1112/**
1113 * e1000_intr_msi - Interrupt Handler
1114 * @irq: interrupt number
1115 * @data: pointer to a network interface device structure
1116 **/
1117static irqreturn_t e1000_intr_msi(int irq, void *data)
1118{
1119 struct net_device *netdev = data;
1120 struct e1000_adapter *adapter = netdev_priv(netdev);
1121 struct e1000_hw *hw = &adapter->hw;
1122 u32 icr = er32(ICR);
1123
1124 /* read ICR disables interrupts using IAM, so keep up with our
1125 * enable/disable accounting */
1126 atomic_inc(&adapter->irq_sem);
1127
1128 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1129 hw->mac.get_link_status = 1;
1130 /* ICH8 workaround-- Call gig speed drop workaround on cable
1131 * disconnect (LSC) before accessing any PHY registers */
1132 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1133 (!(er32(STATUS) & E1000_STATUS_LU)))
1134 e1000e_gig_downshift_workaround_ich8lan(hw);
1135
1136 /* 80003ES2LAN workaround-- For packet buffer work-around on
1137 * link down event; disable receives here in the ISR and reset
1138 * adapter in watchdog */
1139 if (netif_carrier_ok(netdev) &&
1140 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1141 /* disable receives */
1142 u32 rctl = er32(RCTL);
1143 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1144 }
1145 /* guard against interrupt when we're going down */
1146 if (!test_bit(__E1000_DOWN, &adapter->state))
1147 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1148 }
1149
1150 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1151 adapter->total_tx_bytes = 0;
1152 adapter->total_tx_packets = 0;
1153 adapter->total_rx_bytes = 0;
1154 adapter->total_rx_packets = 0;
1155 __netif_rx_schedule(netdev, &adapter->napi);
1156 } else {
1157 atomic_dec(&adapter->irq_sem);
1158 }
1159
1160 return IRQ_HANDLED;
1161}
1162
1163/**
1164 * e1000_intr - Interrupt Handler
1165 * @irq: interrupt number
1166 * @data: pointer to a network interface device structure
1167 **/
1168static irqreturn_t e1000_intr(int irq, void *data)
1169{
1170 struct net_device *netdev = data;
1171 struct e1000_adapter *adapter = netdev_priv(netdev);
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 u32 rctl, icr = er32(ICR);
1175 if (!icr)
1176 return IRQ_NONE; /* Not our interrupt */
1177
1178 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1179 * not set, then the adapter didn't send an interrupt */
1180 if (!(icr & E1000_ICR_INT_ASSERTED))
1181 return IRQ_NONE;
1182
1183 /* Interrupt Auto-Mask...upon reading ICR,
1184 * interrupts are masked. No need for the
1185 * IMC write, but it does mean we should
1186 * account for it ASAP. */
1187 atomic_inc(&adapter->irq_sem);
1188
1189 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1190 hw->mac.get_link_status = 1;
1191 /* ICH8 workaround-- Call gig speed drop workaround on cable
1192 * disconnect (LSC) before accessing any PHY registers */
1193 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1194 (!(er32(STATUS) & E1000_STATUS_LU)))
1195 e1000e_gig_downshift_workaround_ich8lan(hw);
1196
1197 /* 80003ES2LAN workaround--
1198 * For packet buffer work-around on link down event;
1199 * disable receives here in the ISR and
1200 * reset adapter in watchdog
1201 */
1202 if (netif_carrier_ok(netdev) &&
1203 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1204 /* disable receives */
1205 rctl = er32(RCTL);
1206 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1207 }
1208 /* guard against interrupt when we're going down */
1209 if (!test_bit(__E1000_DOWN, &adapter->state))
1210 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1211 }
1212
1213 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1214 adapter->total_tx_bytes = 0;
1215 adapter->total_tx_packets = 0;
1216 adapter->total_rx_bytes = 0;
1217 adapter->total_rx_packets = 0;
1218 __netif_rx_schedule(netdev, &adapter->napi);
1219 } else {
1220 atomic_dec(&adapter->irq_sem);
1221 }
1222
1223 return IRQ_HANDLED;
1224}
1225
1226static int e1000_request_irq(struct e1000_adapter *adapter)
1227{
1228 struct net_device *netdev = adapter->netdev;
1229 void (*handler) = &e1000_intr;
1230 int irq_flags = IRQF_SHARED;
1231 int err;
1232
1233 err = pci_enable_msi(adapter->pdev);
1234 if (err) {
1235 ndev_warn(netdev,
1236 "Unable to allocate MSI interrupt Error: %d\n", err);
1237 } else {
1238 adapter->flags |= FLAG_MSI_ENABLED;
1239 handler = &e1000_intr_msi;
1240 irq_flags = 0;
1241 }
1242
1243 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1244 netdev);
1245 if (err) {
1246 if (adapter->flags & FLAG_MSI_ENABLED)
1247 pci_disable_msi(adapter->pdev);
1248 ndev_err(netdev,
1249 "Unable to allocate interrupt Error: %d\n", err);
1250 }
1251
1252 return err;
1253}
1254
1255static void e1000_free_irq(struct e1000_adapter *adapter)
1256{
1257 struct net_device *netdev = adapter->netdev;
1258
1259 free_irq(adapter->pdev->irq, netdev);
1260 if (adapter->flags & FLAG_MSI_ENABLED) {
1261 pci_disable_msi(adapter->pdev);
1262 adapter->flags &= ~FLAG_MSI_ENABLED;
1263 }
1264}
1265
1266/**
1267 * e1000_irq_disable - Mask off interrupt generation on the NIC
1268 **/
1269static void e1000_irq_disable(struct e1000_adapter *adapter)
1270{
1271 struct e1000_hw *hw = &adapter->hw;
1272
1273 atomic_inc(&adapter->irq_sem);
1274 ew32(IMC, ~0);
1275 e1e_flush();
1276 synchronize_irq(adapter->pdev->irq);
1277}
1278
1279/**
1280 * e1000_irq_enable - Enable default interrupt generation settings
1281 **/
1282static void e1000_irq_enable(struct e1000_adapter *adapter)
1283{
1284 struct e1000_hw *hw = &adapter->hw;
1285
1286 if (atomic_dec_and_test(&adapter->irq_sem)) {
1287 ew32(IMS, IMS_ENABLE_MASK);
1288 e1e_flush();
1289 }
1290}
1291
1292/**
1293 * e1000_get_hw_control - get control of the h/w from f/w
1294 * @adapter: address of board private structure
1295 *
1296 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1297 * For ASF and Pass Through versions of f/w this means that
1298 * the driver is loaded. For AMT version (only with 82573)
1299 * of the f/w this means that the network i/f is open.
1300 **/
1301static void e1000_get_hw_control(struct e1000_adapter *adapter)
1302{
1303 struct e1000_hw *hw = &adapter->hw;
1304 u32 ctrl_ext;
1305 u32 swsm;
1306
1307 /* Let firmware know the driver has taken over */
1308 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1309 swsm = er32(SWSM);
1310 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1311 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1312 ctrl_ext = er32(CTRL_EXT);
1313 ew32(CTRL_EXT,
1314 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1315 }
1316}
1317
1318/**
1319 * e1000_release_hw_control - release control of the h/w to f/w
1320 * @adapter: address of board private structure
1321 *
1322 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1323 * For ASF and Pass Through versions of f/w this means that the
1324 * driver is no longer loaded. For AMT version (only with 82573) i
1325 * of the f/w this means that the network i/f is closed.
1326 *
1327 **/
1328static void e1000_release_hw_control(struct e1000_adapter *adapter)
1329{
1330 struct e1000_hw *hw = &adapter->hw;
1331 u32 ctrl_ext;
1332 u32 swsm;
1333
1334 /* Let firmware taken over control of h/w */
1335 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1336 swsm = er32(SWSM);
1337 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1338 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1339 ctrl_ext = er32(CTRL_EXT);
1340 ew32(CTRL_EXT,
1341 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1342 }
1343}
1344
1345static void e1000_release_manageability(struct e1000_adapter *adapter)
1346{
1347 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1348 struct e1000_hw *hw = &adapter->hw;
1349
1350 u32 manc = er32(MANC);
1351
1352 /* re-enable hardware interception of ARP */
1353 manc |= E1000_MANC_ARP_EN;
1354 manc &= ~E1000_MANC_EN_MNG2HOST;
1355
1356 /* don't explicitly have to mess with MANC2H since
1357 * MANC has an enable disable that gates MANC2H */
1358 ew32(MANC, manc);
1359 }
1360}
1361
1362/**
1363 * @e1000_alloc_ring - allocate memory for a ring structure
1364 **/
1365static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1366 struct e1000_ring *ring)
1367{
1368 struct pci_dev *pdev = adapter->pdev;
1369
1370 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1371 GFP_KERNEL);
1372 if (!ring->desc)
1373 return -ENOMEM;
1374
1375 return 0;
1376}
1377
1378/**
1379 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1380 * @adapter: board private structure
1381 *
1382 * Return 0 on success, negative on failure
1383 **/
1384int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1385{
1386 struct e1000_ring *tx_ring = adapter->tx_ring;
1387 int err = -ENOMEM, size;
1388
1389 size = sizeof(struct e1000_buffer) * tx_ring->count;
1390 tx_ring->buffer_info = vmalloc(size);
1391 if (!tx_ring->buffer_info)
1392 goto err;
1393 memset(tx_ring->buffer_info, 0, size);
1394
1395 /* round up to nearest 4K */
1396 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1397 tx_ring->size = ALIGN(tx_ring->size, 4096);
1398
1399 err = e1000_alloc_ring_dma(adapter, tx_ring);
1400 if (err)
1401 goto err;
1402
1403 tx_ring->next_to_use = 0;
1404 tx_ring->next_to_clean = 0;
1405 spin_lock_init(&adapter->tx_queue_lock);
1406
1407 return 0;
1408err:
1409 vfree(tx_ring->buffer_info);
1410 ndev_err(adapter->netdev,
1411 "Unable to allocate memory for the transmit descriptor ring\n");
1412 return err;
1413}
1414
1415/**
1416 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1417 * @adapter: board private structure
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1422{
1423 struct e1000_ring *rx_ring = adapter->rx_ring;
1424 int size, desc_len, err = -ENOMEM;
1425
1426 size = sizeof(struct e1000_buffer) * rx_ring->count;
1427 rx_ring->buffer_info = vmalloc(size);
1428 if (!rx_ring->buffer_info)
1429 goto err;
1430 memset(rx_ring->buffer_info, 0, size);
1431
1432 rx_ring->ps_pages = kcalloc(rx_ring->count * PS_PAGE_BUFFERS,
1433 sizeof(struct e1000_ps_page),
1434 GFP_KERNEL);
1435 if (!rx_ring->ps_pages)
1436 goto err;
1437
1438 desc_len = sizeof(union e1000_rx_desc_packet_split);
1439
1440 /* Round up to nearest 4K */
1441 rx_ring->size = rx_ring->count * desc_len;
1442 rx_ring->size = ALIGN(rx_ring->size, 4096);
1443
1444 err = e1000_alloc_ring_dma(adapter, rx_ring);
1445 if (err)
1446 goto err;
1447
1448 rx_ring->next_to_clean = 0;
1449 rx_ring->next_to_use = 0;
1450 rx_ring->rx_skb_top = NULL;
1451
1452 return 0;
1453err:
1454 vfree(rx_ring->buffer_info);
1455 kfree(rx_ring->ps_pages);
1456 ndev_err(adapter->netdev,
1457 "Unable to allocate memory for the transmit descriptor ring\n");
1458 return err;
1459}
1460
1461/**
1462 * e1000_clean_tx_ring - Free Tx Buffers
1463 * @adapter: board private structure
1464 **/
1465static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1466{
1467 struct e1000_ring *tx_ring = adapter->tx_ring;
1468 struct e1000_buffer *buffer_info;
1469 unsigned long size;
1470 unsigned int i;
1471
1472 for (i = 0; i < tx_ring->count; i++) {
1473 buffer_info = &tx_ring->buffer_info[i];
1474 e1000_put_txbuf(adapter, buffer_info);
1475 }
1476
1477 size = sizeof(struct e1000_buffer) * tx_ring->count;
1478 memset(tx_ring->buffer_info, 0, size);
1479
1480 memset(tx_ring->desc, 0, tx_ring->size);
1481
1482 tx_ring->next_to_use = 0;
1483 tx_ring->next_to_clean = 0;
1484
1485 writel(0, adapter->hw.hw_addr + tx_ring->head);
1486 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1487}
1488
1489/**
1490 * e1000e_free_tx_resources - Free Tx Resources per Queue
1491 * @adapter: board private structure
1492 *
1493 * Free all transmit software resources
1494 **/
1495void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1496{
1497 struct pci_dev *pdev = adapter->pdev;
1498 struct e1000_ring *tx_ring = adapter->tx_ring;
1499
1500 e1000_clean_tx_ring(adapter);
1501
1502 vfree(tx_ring->buffer_info);
1503 tx_ring->buffer_info = NULL;
1504
1505 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1506 tx_ring->dma);
1507 tx_ring->desc = NULL;
1508}
1509
1510/**
1511 * e1000e_free_rx_resources - Free Rx Resources
1512 * @adapter: board private structure
1513 *
1514 * Free all receive software resources
1515 **/
1516
1517void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1518{
1519 struct pci_dev *pdev = adapter->pdev;
1520 struct e1000_ring *rx_ring = adapter->rx_ring;
1521
1522 e1000_clean_rx_ring(adapter);
1523
1524 vfree(rx_ring->buffer_info);
1525 rx_ring->buffer_info = NULL;
1526
1527 kfree(rx_ring->ps_pages);
1528 rx_ring->ps_pages = NULL;
1529
1530 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1531 rx_ring->dma);
1532 rx_ring->desc = NULL;
1533}
1534
1535/**
1536 * e1000_update_itr - update the dynamic ITR value based on statistics
1537 * Stores a new ITR value based on packets and byte
1538 * counts during the last interrupt. The advantage of per interrupt
1539 * computation is faster updates and more accurate ITR for the current
1540 * traffic pattern. Constants in this function were computed
1541 * based on theoretical maximum wire speed and thresholds were set based
1542 * on testing data as well as attempting to minimize response time
1543 * while increasing bulk throughput.
1544 * this functionality is controlled by the InterruptThrottleRate module
1545 * parameter (see e1000_param.c)
1546 * @adapter: pointer to adapter
1547 * @itr_setting: current adapter->itr
1548 * @packets: the number of packets during this measurement interval
1549 * @bytes: the number of bytes during this measurement interval
1550 **/
1551static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1552 u16 itr_setting, int packets,
1553 int bytes)
1554{
1555 unsigned int retval = itr_setting;
1556
1557 if (packets == 0)
1558 goto update_itr_done;
1559
1560 switch (itr_setting) {
1561 case lowest_latency:
1562 /* handle TSO and jumbo frames */
1563 if (bytes/packets > 8000)
1564 retval = bulk_latency;
1565 else if ((packets < 5) && (bytes > 512)) {
1566 retval = low_latency;
1567 }
1568 break;
1569 case low_latency: /* 50 usec aka 20000 ints/s */
1570 if (bytes > 10000) {
1571 /* this if handles the TSO accounting */
1572 if (bytes/packets > 8000) {
1573 retval = bulk_latency;
1574 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1575 retval = bulk_latency;
1576 } else if ((packets > 35)) {
1577 retval = lowest_latency;
1578 }
1579 } else if (bytes/packets > 2000) {
1580 retval = bulk_latency;
1581 } else if (packets <= 2 && bytes < 512) {
1582 retval = lowest_latency;
1583 }
1584 break;
1585 case bulk_latency: /* 250 usec aka 4000 ints/s */
1586 if (bytes > 25000) {
1587 if (packets > 35) {
1588 retval = low_latency;
1589 }
1590 } else if (bytes < 6000) {
1591 retval = low_latency;
1592 }
1593 break;
1594 }
1595
1596update_itr_done:
1597 return retval;
1598}
1599
1600static void e1000_set_itr(struct e1000_adapter *adapter)
1601{
1602 struct e1000_hw *hw = &adapter->hw;
1603 u16 current_itr;
1604 u32 new_itr = adapter->itr;
1605
1606 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1607 if (adapter->link_speed != SPEED_1000) {
1608 current_itr = 0;
1609 new_itr = 4000;
1610 goto set_itr_now;
1611 }
1612
1613 adapter->tx_itr = e1000_update_itr(adapter,
1614 adapter->tx_itr,
1615 adapter->total_tx_packets,
1616 adapter->total_tx_bytes);
1617 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1618 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1619 adapter->tx_itr = low_latency;
1620
1621 adapter->rx_itr = e1000_update_itr(adapter,
1622 adapter->rx_itr,
1623 adapter->total_rx_packets,
1624 adapter->total_rx_bytes);
1625 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1626 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1627 adapter->rx_itr = low_latency;
1628
1629 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1630
1631 switch (current_itr) {
1632 /* counts and packets in update_itr are dependent on these numbers */
1633 case lowest_latency:
1634 new_itr = 70000;
1635 break;
1636 case low_latency:
1637 new_itr = 20000; /* aka hwitr = ~200 */
1638 break;
1639 case bulk_latency:
1640 new_itr = 4000;
1641 break;
1642 default:
1643 break;
1644 }
1645
1646set_itr_now:
1647 if (new_itr != adapter->itr) {
1648 /* this attempts to bias the interrupt rate towards Bulk
1649 * by adding intermediate steps when interrupt rate is
1650 * increasing */
1651 new_itr = new_itr > adapter->itr ?
1652 min(adapter->itr + (new_itr >> 2), new_itr) :
1653 new_itr;
1654 adapter->itr = new_itr;
1655 ew32(ITR, 1000000000 / (new_itr * 256));
1656 }
1657}
1658
1659/**
1660 * e1000_clean - NAPI Rx polling callback
1661 * @adapter: board private structure
1662 **/
1663static int e1000_clean(struct napi_struct *napi, int budget)
1664{
1665 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1666 struct net_device *poll_dev = adapter->netdev;
1667 int tx_cleaned = 0, work_done = 0;
1668
1669 /* Must NOT use netdev_priv macro here. */
1670 adapter = poll_dev->priv;
1671
1672 /* Keep link state information with original netdev */
1673 if (!netif_carrier_ok(poll_dev))
1674 goto quit_polling;
1675
1676 /* e1000_clean is called per-cpu. This lock protects
1677 * tx_ring from being cleaned by multiple cpus
1678 * simultaneously. A failure obtaining the lock means
1679 * tx_ring is currently being cleaned anyway. */
1680 if (spin_trylock(&adapter->tx_queue_lock)) {
1681 tx_cleaned = e1000_clean_tx_irq(adapter);
1682 spin_unlock(&adapter->tx_queue_lock);
1683 }
1684
1685 adapter->clean_rx(adapter, &work_done, budget);
1686
1687 /* If no Tx and not enough Rx work done, exit the polling mode */
1688 if ((!tx_cleaned && (work_done < budget)) ||
1689 !netif_running(poll_dev)) {
1690quit_polling:
1691 if (adapter->itr_setting & 3)
1692 e1000_set_itr(adapter);
1693 netif_rx_complete(poll_dev, napi);
1694 e1000_irq_enable(adapter);
1695 }
1696
1697 return work_done;
1698}
1699
1700static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1701{
1702 struct e1000_adapter *adapter = netdev_priv(netdev);
1703 struct e1000_hw *hw = &adapter->hw;
1704 u32 vfta, index;
1705
1706 /* don't update vlan cookie if already programmed */
1707 if ((adapter->hw.mng_cookie.status &
1708 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1709 (vid == adapter->mng_vlan_id))
1710 return;
1711 /* add VID to filter table */
1712 index = (vid >> 5) & 0x7F;
1713 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1714 vfta |= (1 << (vid & 0x1F));
1715 e1000e_write_vfta(hw, index, vfta);
1716}
1717
1718static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1719{
1720 struct e1000_adapter *adapter = netdev_priv(netdev);
1721 struct e1000_hw *hw = &adapter->hw;
1722 u32 vfta, index;
1723
1724 e1000_irq_disable(adapter);
1725 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1726 e1000_irq_enable(adapter);
1727
1728 if ((adapter->hw.mng_cookie.status &
1729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1730 (vid == adapter->mng_vlan_id)) {
1731 /* release control to f/w */
1732 e1000_release_hw_control(adapter);
1733 return;
1734 }
1735
1736 /* remove VID from filter table */
1737 index = (vid >> 5) & 0x7F;
1738 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1739 vfta &= ~(1 << (vid & 0x1F));
1740 e1000e_write_vfta(hw, index, vfta);
1741}
1742
1743static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1744{
1745 struct net_device *netdev = adapter->netdev;
1746 u16 vid = adapter->hw.mng_cookie.vlan_id;
1747 u16 old_vid = adapter->mng_vlan_id;
1748
1749 if (!adapter->vlgrp)
1750 return;
1751
1752 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1753 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1754 if (adapter->hw.mng_cookie.status &
1755 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1756 e1000_vlan_rx_add_vid(netdev, vid);
1757 adapter->mng_vlan_id = vid;
1758 }
1759
1760 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1761 (vid != old_vid) &&
1762 !vlan_group_get_device(adapter->vlgrp, old_vid))
1763 e1000_vlan_rx_kill_vid(netdev, old_vid);
1764 } else {
1765 adapter->mng_vlan_id = vid;
1766 }
1767}
1768
1769
1770static void e1000_vlan_rx_register(struct net_device *netdev,
1771 struct vlan_group *grp)
1772{
1773 struct e1000_adapter *adapter = netdev_priv(netdev);
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 ctrl, rctl;
1776
1777 e1000_irq_disable(adapter);
1778 adapter->vlgrp = grp;
1779
1780 if (grp) {
1781 /* enable VLAN tag insert/strip */
1782 ctrl = er32(CTRL);
1783 ctrl |= E1000_CTRL_VME;
1784 ew32(CTRL, ctrl);
1785
1786 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1787 /* enable VLAN receive filtering */
1788 rctl = er32(RCTL);
1789 rctl |= E1000_RCTL_VFE;
1790 rctl &= ~E1000_RCTL_CFIEN;
1791 ew32(RCTL, rctl);
1792 e1000_update_mng_vlan(adapter);
1793 }
1794 } else {
1795 /* disable VLAN tag insert/strip */
1796 ctrl = er32(CTRL);
1797 ctrl &= ~E1000_CTRL_VME;
1798 ew32(CTRL, ctrl);
1799
1800 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1801 /* disable VLAN filtering */
1802 rctl = er32(RCTL);
1803 rctl &= ~E1000_RCTL_VFE;
1804 ew32(RCTL, rctl);
1805 if (adapter->mng_vlan_id !=
1806 (u16)E1000_MNG_VLAN_NONE) {
1807 e1000_vlan_rx_kill_vid(netdev,
1808 adapter->mng_vlan_id);
1809 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1810 }
1811 }
1812 }
1813
1814 e1000_irq_enable(adapter);
1815}
1816
1817static void e1000_restore_vlan(struct e1000_adapter *adapter)
1818{
1819 u16 vid;
1820
1821 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1822
1823 if (!adapter->vlgrp)
1824 return;
1825
1826 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1827 if (!vlan_group_get_device(adapter->vlgrp, vid))
1828 continue;
1829 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1830 }
1831}
1832
1833static void e1000_init_manageability(struct e1000_adapter *adapter)
1834{
1835 struct e1000_hw *hw = &adapter->hw;
1836 u32 manc, manc2h;
1837
1838 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1839 return;
1840
1841 manc = er32(MANC);
1842
1843 /* disable hardware interception of ARP */
1844 manc &= ~(E1000_MANC_ARP_EN);
1845
1846 /* enable receiving management packets to the host. this will probably
1847 * generate destination unreachable messages from the host OS, but
1848 * the packets will be handled on SMBUS */
1849 manc |= E1000_MANC_EN_MNG2HOST;
1850 manc2h = er32(MANC2H);
1851#define E1000_MNG2HOST_PORT_623 (1 << 5)
1852#define E1000_MNG2HOST_PORT_664 (1 << 6)
1853 manc2h |= E1000_MNG2HOST_PORT_623;
1854 manc2h |= E1000_MNG2HOST_PORT_664;
1855 ew32(MANC2H, manc2h);
1856 ew32(MANC, manc);
1857}
1858
1859/**
1860 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1861 * @adapter: board private structure
1862 *
1863 * Configure the Tx unit of the MAC after a reset.
1864 **/
1865static void e1000_configure_tx(struct e1000_adapter *adapter)
1866{
1867 struct e1000_hw *hw = &adapter->hw;
1868 struct e1000_ring *tx_ring = adapter->tx_ring;
1869 u64 tdba;
1870 u32 tdlen, tctl, tipg, tarc;
1871 u32 ipgr1, ipgr2;
1872
1873 /* Setup the HW Tx Head and Tail descriptor pointers */
1874 tdba = tx_ring->dma;
1875 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1876 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1877 ew32(TDBAH, (tdba >> 32));
1878 ew32(TDLEN, tdlen);
1879 ew32(TDH, 0);
1880 ew32(TDT, 0);
1881 tx_ring->head = E1000_TDH;
1882 tx_ring->tail = E1000_TDT;
1883
1884 /* Set the default values for the Tx Inter Packet Gap timer */
1885 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1886 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1887 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1888
1889 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1890 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1891
1892 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1893 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1894 ew32(TIPG, tipg);
1895
1896 /* Set the Tx Interrupt Delay register */
1897 ew32(TIDV, adapter->tx_int_delay);
1898 /* tx irq moderation */
1899 ew32(TADV, adapter->tx_abs_int_delay);
1900
1901 /* Program the Transmit Control Register */
1902 tctl = er32(TCTL);
1903 tctl &= ~E1000_TCTL_CT;
1904 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1905 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1906
1907 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1908 tarc = er32(TARC0);
1909 /* set the speed mode bit, we'll clear it if we're not at
1910 * gigabit link later */
1911#define SPEED_MODE_BIT (1 << 21)
1912 tarc |= SPEED_MODE_BIT;
1913 ew32(TARC0, tarc);
1914 }
1915
1916 /* errata: program both queues to unweighted RR */
1917 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1918 tarc = er32(TARC0);
1919 tarc |= 1;
1920 ew32(TARC0, tarc);
1921 tarc = er32(TARC1);
1922 tarc |= 1;
1923 ew32(TARC1, tarc);
1924 }
1925
1926 e1000e_config_collision_dist(hw);
1927
1928 /* Setup Transmit Descriptor Settings for eop descriptor */
1929 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1930
1931 /* only set IDE if we are delaying interrupts using the timers */
1932 if (adapter->tx_int_delay)
1933 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1934
1935 /* enable Report Status bit */
1936 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1937
1938 ew32(TCTL, tctl);
1939
1940 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1941}
1942
1943/**
1944 * e1000_setup_rctl - configure the receive control registers
1945 * @adapter: Board private structure
1946 **/
1947#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1948 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1949static void e1000_setup_rctl(struct e1000_adapter *adapter)
1950{
1951 struct e1000_hw *hw = &adapter->hw;
1952 u32 rctl, rfctl;
1953 u32 psrctl = 0;
1954 u32 pages = 0;
1955
1956 /* Program MC offset vector base */
1957 rctl = er32(RCTL);
1958 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1959 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1960 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1961 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1962
1963 /* Do not Store bad packets */
1964 rctl &= ~E1000_RCTL_SBP;
1965
1966 /* Enable Long Packet receive */
1967 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1968 rctl &= ~E1000_RCTL_LPE;
1969 else
1970 rctl |= E1000_RCTL_LPE;
1971
1972 /* Setup buffer sizes */
1973 rctl &= ~E1000_RCTL_SZ_4096;
1974 rctl |= E1000_RCTL_BSEX;
1975 switch (adapter->rx_buffer_len) {
1976 case 256:
1977 rctl |= E1000_RCTL_SZ_256;
1978 rctl &= ~E1000_RCTL_BSEX;
1979 break;
1980 case 512:
1981 rctl |= E1000_RCTL_SZ_512;
1982 rctl &= ~E1000_RCTL_BSEX;
1983 break;
1984 case 1024:
1985 rctl |= E1000_RCTL_SZ_1024;
1986 rctl &= ~E1000_RCTL_BSEX;
1987 break;
1988 case 2048:
1989 default:
1990 rctl |= E1000_RCTL_SZ_2048;
1991 rctl &= ~E1000_RCTL_BSEX;
1992 break;
1993 case 4096:
1994 rctl |= E1000_RCTL_SZ_4096;
1995 break;
1996 case 8192:
1997 rctl |= E1000_RCTL_SZ_8192;
1998 break;
1999 case 16384:
2000 rctl |= E1000_RCTL_SZ_16384;
2001 break;
2002 }
2003
2004 /*
2005 * 82571 and greater support packet-split where the protocol
2006 * header is placed in skb->data and the packet data is
2007 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2008 * In the case of a non-split, skb->data is linearly filled,
2009 * followed by the page buffers. Therefore, skb->data is
2010 * sized to hold the largest protocol header.
2011 *
2012 * allocations using alloc_page take too long for regular MTU
2013 * so only enable packet split for jumbo frames
2014 *
2015 * Using pages when the page size is greater than 16k wastes
2016 * a lot of memory, since we allocate 3 pages at all times
2017 * per packet.
2018 */
2019 adapter->rx_ps_pages = 0;
2020 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2021 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2022 adapter->rx_ps_pages = pages;
2023
2024 if (adapter->rx_ps_pages) {
2025 /* Configure extra packet-split registers */
2026 rfctl = er32(RFCTL);
2027 rfctl |= E1000_RFCTL_EXTEN;
2028 /* disable packet split support for IPv6 extension headers,
2029 * because some malformed IPv6 headers can hang the RX */
2030 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2031 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2032
2033 ew32(RFCTL, rfctl);
2034
2035 /* disable the stripping of CRC because it breaks
2036 * BMC firmware connected over SMBUS */
2037 rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */;
2038
2039 psrctl |= adapter->rx_ps_bsize0 >>
2040 E1000_PSRCTL_BSIZE0_SHIFT;
2041
2042 switch (adapter->rx_ps_pages) {
2043 case 3:
2044 psrctl |= PAGE_SIZE <<
2045 E1000_PSRCTL_BSIZE3_SHIFT;
2046 case 2:
2047 psrctl |= PAGE_SIZE <<
2048 E1000_PSRCTL_BSIZE2_SHIFT;
2049 case 1:
2050 psrctl |= PAGE_SIZE >>
2051 E1000_PSRCTL_BSIZE1_SHIFT;
2052 break;
2053 }
2054
2055 ew32(PSRCTL, psrctl);
2056 }
2057
2058 ew32(RCTL, rctl);
2059}
2060
2061/**
2062 * e1000_configure_rx - Configure Receive Unit after Reset
2063 * @adapter: board private structure
2064 *
2065 * Configure the Rx unit of the MAC after a reset.
2066 **/
2067static void e1000_configure_rx(struct e1000_adapter *adapter)
2068{
2069 struct e1000_hw *hw = &adapter->hw;
2070 struct e1000_ring *rx_ring = adapter->rx_ring;
2071 u64 rdba;
2072 u32 rdlen, rctl, rxcsum, ctrl_ext;
2073
2074 if (adapter->rx_ps_pages) {
2075 /* this is a 32 byte descriptor */
2076 rdlen = rx_ring->count *
2077 sizeof(union e1000_rx_desc_packet_split);
2078 adapter->clean_rx = e1000_clean_rx_irq_ps;
2079 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2080 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + VLAN_HLEN + 4) {
2081 rdlen = rx_ring->count *
2082 sizeof(struct e1000_rx_desc);
2083 adapter->clean_rx = e1000_clean_rx_irq_jumbo;
2084 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_jumbo;
2085 } else {
2086 rdlen = rx_ring->count *
2087 sizeof(struct e1000_rx_desc);
2088 adapter->clean_rx = e1000_clean_rx_irq;
2089 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2090 }
2091
2092 /* disable receives while setting up the descriptors */
2093 rctl = er32(RCTL);
2094 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2095 e1e_flush();
2096 msleep(10);
2097
2098 /* set the Receive Delay Timer Register */
2099 ew32(RDTR, adapter->rx_int_delay);
2100
2101 /* irq moderation */
2102 ew32(RADV, adapter->rx_abs_int_delay);
2103 if (adapter->itr_setting != 0)
2104 ew32(ITR,
2105 1000000000 / (adapter->itr * 256));
2106
2107 ctrl_ext = er32(CTRL_EXT);
2108 /* Reset delay timers after every interrupt */
2109 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2110 /* Auto-Mask interrupts upon ICR access */
2111 ctrl_ext |= E1000_CTRL_EXT_IAME;
2112 ew32(IAM, 0xffffffff);
2113 ew32(CTRL_EXT, ctrl_ext);
2114 e1e_flush();
2115
2116 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2117 * the Base and Length of the Rx Descriptor Ring */
2118 rdba = rx_ring->dma;
2119 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2120 ew32(RDBAH, (rdba >> 32));
2121 ew32(RDLEN, rdlen);
2122 ew32(RDH, 0);
2123 ew32(RDT, 0);
2124 rx_ring->head = E1000_RDH;
2125 rx_ring->tail = E1000_RDT;
2126
2127 /* Enable Receive Checksum Offload for TCP and UDP */
2128 rxcsum = er32(RXCSUM);
2129 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2130 rxcsum |= E1000_RXCSUM_TUOFL;
2131
2132 /* IPv4 payload checksum for UDP fragments must be
2133 * used in conjunction with packet-split. */
2134 if (adapter->rx_ps_pages)
2135 rxcsum |= E1000_RXCSUM_IPPCSE;
2136 } else {
2137 rxcsum &= ~E1000_RXCSUM_TUOFL;
2138 /* no need to clear IPPCSE as it defaults to 0 */
2139 }
2140 ew32(RXCSUM, rxcsum);
2141
2142 /* Enable early receives on supported devices, only takes effect when
2143 * packet size is equal or larger than the specified value (in 8 byte
2144 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
2145 if ((adapter->flags & FLAG_HAS_ERT) &&
2146 (adapter->netdev->mtu > ETH_DATA_LEN))
2147 ew32(ERT, E1000_ERT_2048);
2148
2149 /* Enable Receives */
2150 ew32(RCTL, rctl);
2151}
2152
2153/**
2154 * e1000_mc_addr_list_update - Update Multicast addresses
2155 * @hw: pointer to the HW structure
2156 * @mc_addr_list: array of multicast addresses to program
2157 * @mc_addr_count: number of multicast addresses to program
2158 * @rar_used_count: the first RAR register free to program
2159 * @rar_count: total number of supported Receive Address Registers
2160 *
2161 * Updates the Receive Address Registers and Multicast Table Array.
2162 * The caller must have a packed mc_addr_list of multicast addresses.
2163 * The parameter rar_count will usually be hw->mac.rar_entry_count
2164 * unless there are workarounds that change this. Currently no func pointer
2165 * exists and all implementations are handled in the generic version of this
2166 * function.
2167 **/
2168static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
2169 u32 mc_addr_count, u32 rar_used_count,
2170 u32 rar_count)
2171{
2172 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
2173 rar_used_count, rar_count);
2174}
2175
2176/**
2177 * e1000_set_multi - Multicast and Promiscuous mode set
2178 * @netdev: network interface device structure
2179 *
2180 * The set_multi entry point is called whenever the multicast address
2181 * list or the network interface flags are updated. This routine is
2182 * responsible for configuring the hardware for proper multicast,
2183 * promiscuous mode, and all-multi behavior.
2184 **/
2185static void e1000_set_multi(struct net_device *netdev)
2186{
2187 struct e1000_adapter *adapter = netdev_priv(netdev);
2188 struct e1000_hw *hw = &adapter->hw;
2189 struct e1000_mac_info *mac = &hw->mac;
2190 struct dev_mc_list *mc_ptr;
2191 u8 *mta_list;
2192 u32 rctl;
2193 int i;
2194
2195 /* Check for Promiscuous and All Multicast modes */
2196
2197 rctl = er32(RCTL);
2198
2199 if (netdev->flags & IFF_PROMISC) {
2200 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2201 } else if (netdev->flags & IFF_ALLMULTI) {
2202 rctl |= E1000_RCTL_MPE;
2203 rctl &= ~E1000_RCTL_UPE;
2204 } else {
2205 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2206 }
2207
2208 ew32(RCTL, rctl);
2209
2210 if (netdev->mc_count) {
2211 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2212 if (!mta_list)
2213 return;
2214
2215 /* prepare a packed array of only addresses. */
2216 mc_ptr = netdev->mc_list;
2217
2218 for (i = 0; i < netdev->mc_count; i++) {
2219 if (!mc_ptr)
2220 break;
2221 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2222 ETH_ALEN);
2223 mc_ptr = mc_ptr->next;
2224 }
2225
2226 e1000_mc_addr_list_update(hw, mta_list, i, 1,
2227 mac->rar_entry_count);
2228 kfree(mta_list);
2229 } else {
2230 /*
2231 * if we're called from probe, we might not have
2232 * anything to do here, so clear out the list
2233 */
2234 e1000_mc_addr_list_update(hw, NULL, 0, 1,
2235 mac->rar_entry_count);
2236 }
2237}
2238
2239/**
2240 * e1000_configure - configure the hardware for RX and TX
2241 * @adapter: private board structure
2242 **/
2243static void e1000_configure(struct e1000_adapter *adapter)
2244{
2245 e1000_set_multi(adapter->netdev);
2246
2247 e1000_restore_vlan(adapter);
2248 e1000_init_manageability(adapter);
2249
2250 e1000_configure_tx(adapter);
2251 e1000_setup_rctl(adapter);
2252 e1000_configure_rx(adapter);
2253 adapter->alloc_rx_buf(adapter,
2254 e1000_desc_unused(adapter->rx_ring));
2255}
2256
2257/**
2258 * e1000e_power_up_phy - restore link in case the phy was powered down
2259 * @adapter: address of board private structure
2260 *
2261 * The phy may be powered down to save power and turn off link when the
2262 * driver is unloaded and wake on lan is not enabled (among others)
2263 * *** this routine MUST be followed by a call to e1000e_reset ***
2264 **/
2265void e1000e_power_up_phy(struct e1000_adapter *adapter)
2266{
2267 u16 mii_reg = 0;
2268
2269 /* Just clear the power down bit to wake the phy back up */
2270 if (adapter->hw.media_type == e1000_media_type_copper) {
2271 /* according to the manual, the phy will retain its
2272 * settings across a power-down/up cycle */
2273 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2274 mii_reg &= ~MII_CR_POWER_DOWN;
2275 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2276 }
2277
2278 adapter->hw.mac.ops.setup_link(&adapter->hw);
2279}
2280
2281/**
2282 * e1000_power_down_phy - Power down the PHY
2283 *
2284 * Power down the PHY so no link is implied when interface is down
2285 * The PHY cannot be powered down is management or WoL is active
2286 */
2287static void e1000_power_down_phy(struct e1000_adapter *adapter)
2288{
2289 struct e1000_hw *hw = &adapter->hw;
2290 u16 mii_reg;
2291
2292 /* WoL is enabled */
2293 if (!adapter->wol)
2294 return;
2295
2296 /* non-copper PHY? */
2297 if (adapter->hw.media_type != e1000_media_type_copper)
2298 return;
2299
2300 /* reset is blocked because of a SoL/IDER session */
2301 if (e1000e_check_mng_mode(hw) ||
2302 e1000_check_reset_block(hw))
2303 return;
2304
2305 /* managebility (AMT) is enabled */
2306 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2307 return;
2308
2309 /* power down the PHY */
2310 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2311 mii_reg |= MII_CR_POWER_DOWN;
2312 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2313 mdelay(1);
2314}
2315
2316/**
2317 * e1000e_reset - bring the hardware into a known good state
2318 *
2319 * This function boots the hardware and enables some settings that
2320 * require a configuration cycle of the hardware - those cannot be
2321 * set/changed during runtime. After reset the device needs to be
2322 * properly configured for rx, tx etc.
2323 */
2324void e1000e_reset(struct e1000_adapter *adapter)
2325{
2326 struct e1000_mac_info *mac = &adapter->hw.mac;
2327 struct e1000_hw *hw = &adapter->hw;
2328 u32 tx_space, min_tx_space, min_rx_space;
2329 u16 hwm;
2330
2331 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2332 /* To maintain wire speed transmits, the Tx FIFO should be
2333 * large enough to accommodate two full transmit packets,
2334 * rounded up to the next 1KB and expressed in KB. Likewise,
2335 * the Rx FIFO should be large enough to accommodate at least
2336 * one full receive packet and is similarly rounded up and
2337 * expressed in KB. */
2338 adapter->pba = er32(PBA);
2339 /* upper 16 bits has Tx packet buffer allocation size in KB */
2340 tx_space = adapter->pba >> 16;
2341 /* lower 16 bits has Rx packet buffer allocation size in KB */
2342 adapter->pba &= 0xffff;
2343 /* the tx fifo also stores 16 bytes of information about the tx
2344 * but don't include ethernet FCS because hardware appends it */
2345 min_tx_space = (mac->max_frame_size +
2346 sizeof(struct e1000_tx_desc) -
2347 ETH_FCS_LEN) * 2;
2348 min_tx_space = ALIGN(min_tx_space, 1024);
2349 min_tx_space >>= 10;
2350 /* software strips receive CRC, so leave room for it */
2351 min_rx_space = mac->max_frame_size;
2352 min_rx_space = ALIGN(min_rx_space, 1024);
2353 min_rx_space >>= 10;
2354
2355 /* If current Tx allocation is less than the min Tx FIFO size,
2356 * and the min Tx FIFO size is less than the current Rx FIFO
2357 * allocation, take space away from current Rx allocation */
2358 if (tx_space < min_tx_space &&
2359 ((min_tx_space - tx_space) < adapter->pba)) {
2360 adapter->pba -= - (min_tx_space - tx_space);
2361
2362 /* if short on rx space, rx wins and must trump tx
2363 * adjustment or use Early Receive if available */
2364 if ((adapter->pba < min_rx_space) &&
2365 (!(adapter->flags & FLAG_HAS_ERT)))
2366 /* ERT enabled in e1000_configure_rx */
2367 adapter->pba = min_rx_space;
2368 }
2369 }
2370
2371 ew32(PBA, adapter->pba);
2372
2373 /* flow control settings */
2374 /* The high water mark must be low enough to fit one full frame
2375 * (or the size used for early receive) above it in the Rx FIFO.
2376 * Set it to the lower of:
2377 * - 90% of the Rx FIFO size, and
2378 * - the full Rx FIFO size minus the early receive size (for parts
2379 * with ERT support assuming ERT set to E1000_ERT_2048), or
2380 * - the full Rx FIFO size minus one full frame */
2381 if (adapter->flags & FLAG_HAS_ERT)
2382 hwm = min(((adapter->pba << 10) * 9 / 10),
2383 ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2384 else
2385 hwm = min(((adapter->pba << 10) * 9 / 10),
2386 ((adapter->pba << 10) - mac->max_frame_size));
2387
2388 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2389 mac->fc_low_water = mac->fc_high_water - 8;
2390
2391 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2392 mac->fc_pause_time = 0xFFFF;
2393 else
2394 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2395 mac->fc = mac->original_fc;
2396
2397 /* Allow time for pending master requests to run */
2398 mac->ops.reset_hw(hw);
2399 ew32(WUC, 0);
2400
2401 if (mac->ops.init_hw(hw))
2402 ndev_err(adapter->netdev, "Hardware Error\n");
2403
2404 e1000_update_mng_vlan(adapter);
2405
2406 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2407 ew32(VET, ETH_P_8021Q);
2408
2409 e1000e_reset_adaptive(hw);
2410 e1000_get_phy_info(hw);
2411
2412 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2413 u16 phy_data = 0;
2414 /* speed up time to link by disabling smart power down, ignore
2415 * the return value of this function because there is nothing
2416 * different we would do if it failed */
2417 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2418 phy_data &= ~IGP02E1000_PM_SPD;
2419 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2420 }
2421
2422 e1000_release_manageability(adapter);
2423}
2424
2425int e1000e_up(struct e1000_adapter *adapter)
2426{
2427 struct e1000_hw *hw = &adapter->hw;
2428
2429 /* hardware has been reset, we need to reload some things */
2430 e1000_configure(adapter);
2431
2432 clear_bit(__E1000_DOWN, &adapter->state);
2433
2434 napi_enable(&adapter->napi);
2435 e1000_irq_enable(adapter);
2436
2437 /* fire a link change interrupt to start the watchdog */
2438 ew32(ICS, E1000_ICS_LSC);
2439 return 0;
2440}
2441
2442void e1000e_down(struct e1000_adapter *adapter)
2443{
2444 struct net_device *netdev = adapter->netdev;
2445 struct e1000_hw *hw = &adapter->hw;
2446 u32 tctl, rctl;
2447
2448 /* signal that we're down so the interrupt handler does not
2449 * reschedule our watchdog timer */
2450 set_bit(__E1000_DOWN, &adapter->state);
2451
2452 /* disable receives in the hardware */
2453 rctl = er32(RCTL);
2454 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2455 /* flush and sleep below */
2456
2457 netif_stop_queue(netdev);
2458
2459 /* disable transmits in the hardware */
2460 tctl = er32(TCTL);
2461 tctl &= ~E1000_TCTL_EN;
2462 ew32(TCTL, tctl);
2463 /* flush both disables and wait for them to finish */
2464 e1e_flush();
2465 msleep(10);
2466
2467 napi_disable(&adapter->napi);
2468 e1000_irq_disable(adapter);
2469
2470 del_timer_sync(&adapter->watchdog_timer);
2471 del_timer_sync(&adapter->phy_info_timer);
2472
2473 netdev->tx_queue_len = adapter->tx_queue_len;
2474 netif_carrier_off(netdev);
2475 adapter->link_speed = 0;
2476 adapter->link_duplex = 0;
2477
2478 e1000e_reset(adapter);
2479 e1000_clean_tx_ring(adapter);
2480 e1000_clean_rx_ring(adapter);
2481
2482 /*
2483 * TODO: for power management, we could drop the link and
2484 * pci_disable_device here.
2485 */
2486}
2487
2488void e1000e_reinit_locked(struct e1000_adapter *adapter)
2489{
2490 might_sleep();
2491 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2492 msleep(1);
2493 e1000e_down(adapter);
2494 e1000e_up(adapter);
2495 clear_bit(__E1000_RESETTING, &adapter->state);
2496}
2497
2498/**
2499 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2500 * @adapter: board private structure to initialize
2501 *
2502 * e1000_sw_init initializes the Adapter private data structure.
2503 * Fields are initialized based on PCI device information and
2504 * OS network device settings (MTU size).
2505 **/
2506static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2507{
2508 struct e1000_hw *hw = &adapter->hw;
2509 struct net_device *netdev = adapter->netdev;
2510
2511 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2512 adapter->rx_ps_bsize0 = 128;
2513 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2514 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2515
2516 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2517 if (!adapter->tx_ring)
2518 goto err;
2519
2520 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2521 if (!adapter->rx_ring)
2522 goto err;
2523
2524 spin_lock_init(&adapter->tx_queue_lock);
2525
2526 /* Explicitly disable IRQ since the NIC can be in any state. */
2527 atomic_set(&adapter->irq_sem, 0);
2528 e1000_irq_disable(adapter);
2529
2530 spin_lock_init(&adapter->stats_lock);
2531
2532 set_bit(__E1000_DOWN, &adapter->state);
2533 return 0;
2534
2535err:
2536 ndev_err(netdev, "Unable to allocate memory for queues\n");
2537 kfree(adapter->rx_ring);
2538 kfree(adapter->tx_ring);
2539 return -ENOMEM;
2540}
2541
2542/**
2543 * e1000_open - Called when a network interface is made active
2544 * @netdev: network interface device structure
2545 *
2546 * Returns 0 on success, negative value on failure
2547 *
2548 * The open entry point is called when a network interface is made
2549 * active by the system (IFF_UP). At this point all resources needed
2550 * for transmit and receive operations are allocated, the interrupt
2551 * handler is registered with the OS, the watchdog timer is started,
2552 * and the stack is notified that the interface is ready.
2553 **/
2554static int e1000_open(struct net_device *netdev)
2555{
2556 struct e1000_adapter *adapter = netdev_priv(netdev);
2557 struct e1000_hw *hw = &adapter->hw;
2558 int err;
2559
2560 /* disallow open during test */
2561 if (test_bit(__E1000_TESTING, &adapter->state))
2562 return -EBUSY;
2563
2564 /* allocate transmit descriptors */
2565 err = e1000e_setup_tx_resources(adapter);
2566 if (err)
2567 goto err_setup_tx;
2568
2569 /* allocate receive descriptors */
2570 err = e1000e_setup_rx_resources(adapter);
2571 if (err)
2572 goto err_setup_rx;
2573
2574 e1000e_power_up_phy(adapter);
2575
2576 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2577 if ((adapter->hw.mng_cookie.status &
2578 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2579 e1000_update_mng_vlan(adapter);
2580
2581 /* If AMT is enabled, let the firmware know that the network
2582 * interface is now open */
2583 if ((adapter->flags & FLAG_HAS_AMT) &&
2584 e1000e_check_mng_mode(&adapter->hw))
2585 e1000_get_hw_control(adapter);
2586
2587 /* before we allocate an interrupt, we must be ready to handle it.
2588 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2589 * as soon as we call pci_request_irq, so we have to setup our
2590 * clean_rx handler before we do so. */
2591 e1000_configure(adapter);
2592
2593 err = e1000_request_irq(adapter);
2594 if (err)
2595 goto err_req_irq;
2596
2597 /* From here on the code is the same as e1000e_up() */
2598 clear_bit(__E1000_DOWN, &adapter->state);
2599
2600 napi_enable(&adapter->napi);
2601
2602 e1000_irq_enable(adapter);
2603
2604 /* fire a link status change interrupt to start the watchdog */
2605 ew32(ICS, E1000_ICS_LSC);
2606
2607 return 0;
2608
2609err_req_irq:
2610 e1000_release_hw_control(adapter);
2611 e1000_power_down_phy(adapter);
2612 e1000e_free_rx_resources(adapter);
2613err_setup_rx:
2614 e1000e_free_tx_resources(adapter);
2615err_setup_tx:
2616 e1000e_reset(adapter);
2617
2618 return err;
2619}
2620
2621/**
2622 * e1000_close - Disables a network interface
2623 * @netdev: network interface device structure
2624 *
2625 * Returns 0, this is not allowed to fail
2626 *
2627 * The close entry point is called when an interface is de-activated
2628 * by the OS. The hardware is still under the drivers control, but
2629 * needs to be disabled. A global MAC reset is issued to stop the
2630 * hardware, and all transmit and receive resources are freed.
2631 **/
2632static int e1000_close(struct net_device *netdev)
2633{
2634 struct e1000_adapter *adapter = netdev_priv(netdev);
2635
2636 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2637 e1000e_down(adapter);
2638 e1000_power_down_phy(adapter);
2639 e1000_free_irq(adapter);
2640
2641 e1000e_free_tx_resources(adapter);
2642 e1000e_free_rx_resources(adapter);
2643
2644 /* kill manageability vlan ID if supported, but not if a vlan with
2645 * the same ID is registered on the host OS (let 8021q kill it) */
2646 if ((adapter->hw.mng_cookie.status &
2647 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2648 !(adapter->vlgrp &&
2649 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2650 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2651
2652 /* If AMT is enabled, let the firmware know that the network
2653 * interface is now closed */
2654 if ((adapter->flags & FLAG_HAS_AMT) &&
2655 e1000e_check_mng_mode(&adapter->hw))
2656 e1000_release_hw_control(adapter);
2657
2658 return 0;
2659}
2660/**
2661 * e1000_set_mac - Change the Ethernet Address of the NIC
2662 * @netdev: network interface device structure
2663 * @p: pointer to an address structure
2664 *
2665 * Returns 0 on success, negative on failure
2666 **/
2667static int e1000_set_mac(struct net_device *netdev, void *p)
2668{
2669 struct e1000_adapter *adapter = netdev_priv(netdev);
2670 struct sockaddr *addr = p;
2671
2672 if (!is_valid_ether_addr(addr->sa_data))
2673 return -EADDRNOTAVAIL;
2674
2675 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2676 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2677
2678 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2679
2680 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2681 /* activate the work around */
2682 e1000e_set_laa_state_82571(&adapter->hw, 1);
2683
2684 /* Hold a copy of the LAA in RAR[14] This is done so that
2685 * between the time RAR[0] gets clobbered and the time it
2686 * gets fixed (in e1000_watchdog), the actual LAA is in one
2687 * of the RARs and no incoming packets directed to this port
2688 * are dropped. Eventually the LAA will be in RAR[0] and
2689 * RAR[14] */
2690 e1000e_rar_set(&adapter->hw,
2691 adapter->hw.mac.addr,
2692 adapter->hw.mac.rar_entry_count - 1);
2693 }
2694
2695 return 0;
2696}
2697
2698/* Need to wait a few seconds after link up to get diagnostic information from
2699 * the phy */
2700static void e1000_update_phy_info(unsigned long data)
2701{
2702 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2703 e1000_get_phy_info(&adapter->hw);
2704}
2705
2706/**
2707 * e1000e_update_stats - Update the board statistics counters
2708 * @adapter: board private structure
2709 **/
2710void e1000e_update_stats(struct e1000_adapter *adapter)
2711{
2712 struct e1000_hw *hw = &adapter->hw;
2713 struct pci_dev *pdev = adapter->pdev;
2714 unsigned long irq_flags;
2715 u16 phy_tmp;
2716
2717#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2718
2719 /*
2720 * Prevent stats update while adapter is being reset, or if the pci
2721 * connection is down.
2722 */
2723 if (adapter->link_speed == 0)
2724 return;
2725 if (pci_channel_offline(pdev))
2726 return;
2727
2728 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2729
2730 /* these counters are modified from e1000_adjust_tbi_stats,
2731 * called from the interrupt context, so they must only
2732 * be written while holding adapter->stats_lock
2733 */
2734
2735 adapter->stats.crcerrs += er32(CRCERRS);
2736 adapter->stats.gprc += er32(GPRC);
2737 adapter->stats.gorcl += er32(GORCL);
2738 adapter->stats.gorch += er32(GORCH);
2739 adapter->stats.bprc += er32(BPRC);
2740 adapter->stats.mprc += er32(MPRC);
2741 adapter->stats.roc += er32(ROC);
2742
2743 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2744 adapter->stats.prc64 += er32(PRC64);
2745 adapter->stats.prc127 += er32(PRC127);
2746 adapter->stats.prc255 += er32(PRC255);
2747 adapter->stats.prc511 += er32(PRC511);
2748 adapter->stats.prc1023 += er32(PRC1023);
2749 adapter->stats.prc1522 += er32(PRC1522);
2750 adapter->stats.symerrs += er32(SYMERRS);
2751 adapter->stats.sec += er32(SEC);
2752 }
2753
2754 adapter->stats.mpc += er32(MPC);
2755 adapter->stats.scc += er32(SCC);
2756 adapter->stats.ecol += er32(ECOL);
2757 adapter->stats.mcc += er32(MCC);
2758 adapter->stats.latecol += er32(LATECOL);
2759 adapter->stats.dc += er32(DC);
2760 adapter->stats.rlec += er32(RLEC);
2761 adapter->stats.xonrxc += er32(XONRXC);
2762 adapter->stats.xontxc += er32(XONTXC);
2763 adapter->stats.xoffrxc += er32(XOFFRXC);
2764 adapter->stats.xofftxc += er32(XOFFTXC);
2765 adapter->stats.fcruc += er32(FCRUC);
2766 adapter->stats.gptc += er32(GPTC);
2767 adapter->stats.gotcl += er32(GOTCL);
2768 adapter->stats.gotch += er32(GOTCH);
2769 adapter->stats.rnbc += er32(RNBC);
2770 adapter->stats.ruc += er32(RUC);
2771 adapter->stats.rfc += er32(RFC);
2772 adapter->stats.rjc += er32(RJC);
2773 adapter->stats.torl += er32(TORL);
2774 adapter->stats.torh += er32(TORH);
2775 adapter->stats.totl += er32(TOTL);
2776 adapter->stats.toth += er32(TOTH);
2777 adapter->stats.tpr += er32(TPR);
2778
2779 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2780 adapter->stats.ptc64 += er32(PTC64);
2781 adapter->stats.ptc127 += er32(PTC127);
2782 adapter->stats.ptc255 += er32(PTC255);
2783 adapter->stats.ptc511 += er32(PTC511);
2784 adapter->stats.ptc1023 += er32(PTC1023);
2785 adapter->stats.ptc1522 += er32(PTC1522);
2786 }
2787
2788 adapter->stats.mptc += er32(MPTC);
2789 adapter->stats.bptc += er32(BPTC);
2790
2791 /* used for adaptive IFS */
2792
2793 hw->mac.tx_packet_delta = er32(TPT);
2794 adapter->stats.tpt += hw->mac.tx_packet_delta;
2795 hw->mac.collision_delta = er32(COLC);
2796 adapter->stats.colc += hw->mac.collision_delta;
2797
2798 adapter->stats.algnerrc += er32(ALGNERRC);
2799 adapter->stats.rxerrc += er32(RXERRC);
2800 adapter->stats.tncrs += er32(TNCRS);
2801 adapter->stats.cexterr += er32(CEXTERR);
2802 adapter->stats.tsctc += er32(TSCTC);
2803 adapter->stats.tsctfc += er32(TSCTFC);
2804
2805 adapter->stats.iac += er32(IAC);
2806
2807 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2808 adapter->stats.icrxoc += er32(ICRXOC);
2809 adapter->stats.icrxptc += er32(ICRXPTC);
2810 adapter->stats.icrxatc += er32(ICRXATC);
2811 adapter->stats.ictxptc += er32(ICTXPTC);
2812 adapter->stats.ictxatc += er32(ICTXATC);
2813 adapter->stats.ictxqec += er32(ICTXQEC);
2814 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2815 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2816 }
2817
2818 /* Fill out the OS statistics structure */
2819 adapter->net_stats.rx_packets = adapter->stats.gprc;
2820 adapter->net_stats.tx_packets = adapter->stats.gptc;
2821 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2822 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2823 adapter->net_stats.multicast = adapter->stats.mprc;
2824 adapter->net_stats.collisions = adapter->stats.colc;
2825
2826 /* Rx Errors */
2827
2828 /* RLEC on some newer hardware can be incorrect so build
2829 * our own version based on RUC and ROC */
2830 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2831 adapter->stats.crcerrs + adapter->stats.algnerrc +
2832 adapter->stats.ruc + adapter->stats.roc +
2833 adapter->stats.cexterr;
2834 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2835 adapter->stats.roc;
2836 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2837 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2838 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2839
2840 /* Tx Errors */
2841 adapter->net_stats.tx_errors = adapter->stats.ecol +
2842 adapter->stats.latecol;
2843 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2844 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2845 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2846
2847 /* Tx Dropped needs to be maintained elsewhere */
2848
2849 /* Phy Stats */
2850 if (hw->media_type == e1000_media_type_copper) {
2851 if ((adapter->link_speed == SPEED_1000) &&
2852 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2853 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2854 adapter->phy_stats.idle_errors += phy_tmp;
2855 }
2856 }
2857
2858 /* Management Stats */
2859 adapter->stats.mgptc += er32(MGTPTC);
2860 adapter->stats.mgprc += er32(MGTPRC);
2861 adapter->stats.mgpdc += er32(MGTPDC);
2862
2863 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2864}
2865
2866static void e1000_print_link_info(struct e1000_adapter *adapter)
2867{
2868 struct net_device *netdev = adapter->netdev;
2869 struct e1000_hw *hw = &adapter->hw;
2870 u32 ctrl = er32(CTRL);
2871
2872 ndev_info(netdev,
2873 "Link is Up %d Mbps %s, Flow Control: %s\n",
2874 adapter->link_speed,
2875 (adapter->link_duplex == FULL_DUPLEX) ?
2876 "Full Duplex" : "Half Duplex",
2877 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2878 "RX/TX" :
2879 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2880 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2881}
2882
2883/**
2884 * e1000_watchdog - Timer Call-back
2885 * @data: pointer to adapter cast into an unsigned long
2886 **/
2887static void e1000_watchdog(unsigned long data)
2888{
2889 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2890
2891 /* Do the rest outside of interrupt context */
2892 schedule_work(&adapter->watchdog_task);
2893
2894 /* TODO: make this use queue_delayed_work() */
2895}
2896
2897static void e1000_watchdog_task(struct work_struct *work)
2898{
2899 struct e1000_adapter *adapter = container_of(work,
2900 struct e1000_adapter, watchdog_task);
2901
2902 struct net_device *netdev = adapter->netdev;
2903 struct e1000_mac_info *mac = &adapter->hw.mac;
2904 struct e1000_ring *tx_ring = adapter->tx_ring;
2905 struct e1000_hw *hw = &adapter->hw;
2906 u32 link, tctl;
2907 s32 ret_val;
2908 int tx_pending = 0;
2909
2910 if ((netif_carrier_ok(netdev)) &&
2911 (er32(STATUS) & E1000_STATUS_LU))
2912 goto link_up;
2913
2914 ret_val = mac->ops.check_for_link(hw);
2915 if ((ret_val == E1000_ERR_PHY) &&
2916 (adapter->hw.phy.type == e1000_phy_igp_3) &&
2917 (er32(CTRL) &
2918 E1000_PHY_CTRL_GBE_DISABLE)) {
2919 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2920 ndev_info(netdev,
2921 "Gigabit has been disabled, downgrading speed\n");
2922 }
2923
2924 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2925 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2926 e1000_update_mng_vlan(adapter);
2927
2928 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2929 !(er32(TXCW) & E1000_TXCW_ANE))
2930 link = adapter->hw.mac.serdes_has_link;
2931 else
2932 link = er32(STATUS) & E1000_STATUS_LU;
2933
2934 if (link) {
2935 if (!netif_carrier_ok(netdev)) {
2936 bool txb2b = 1;
2937 mac->ops.get_link_up_info(&adapter->hw,
2938 &adapter->link_speed,
2939 &adapter->link_duplex);
2940 e1000_print_link_info(adapter);
2941 /* tweak tx_queue_len according to speed/duplex
2942 * and adjust the timeout factor */
2943 netdev->tx_queue_len = adapter->tx_queue_len;
2944 adapter->tx_timeout_factor = 1;
2945 switch (adapter->link_speed) {
2946 case SPEED_10:
2947 txb2b = 0;
2948 netdev->tx_queue_len = 10;
2949 adapter->tx_timeout_factor = 14;
2950 break;
2951 case SPEED_100:
2952 txb2b = 0;
2953 netdev->tx_queue_len = 100;
2954 /* maybe add some timeout factor ? */
2955 break;
2956 }
2957
2958 /* workaround: re-program speed mode bit after
2959 * link-up event */
2960 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2961 !txb2b) {
2962 u32 tarc0;
2963 tarc0 = er32(TARC0);
2964 tarc0 &= ~SPEED_MODE_BIT;
2965 ew32(TARC0, tarc0);
2966 }
2967
2968 /* disable TSO for pcie and 10/100 speeds, to avoid
2969 * some hardware issues */
2970 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2971 switch (adapter->link_speed) {
2972 case SPEED_10:
2973 case SPEED_100:
2974 ndev_info(netdev,
2975 "10/100 speed: disabling TSO\n");
2976 netdev->features &= ~NETIF_F_TSO;
2977 netdev->features &= ~NETIF_F_TSO6;
2978 break;
2979 case SPEED_1000:
2980 netdev->features |= NETIF_F_TSO;
2981 netdev->features |= NETIF_F_TSO6;
2982 break;
2983 default:
2984 /* oops */
2985 break;
2986 }
2987 }
2988
2989 /* enable transmits in the hardware, need to do this
2990 * after setting TARC0 */
2991 tctl = er32(TCTL);
2992 tctl |= E1000_TCTL_EN;
2993 ew32(TCTL, tctl);
2994
2995 netif_carrier_on(netdev);
2996 netif_wake_queue(netdev);
2997
2998 if (!test_bit(__E1000_DOWN, &adapter->state))
2999 mod_timer(&adapter->phy_info_timer,
3000 round_jiffies(jiffies + 2 * HZ));
3001 } else {
3002 /* make sure the receive unit is started */
3003 if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
3004 u32 rctl = er32(RCTL);
3005 ew32(RCTL, rctl |
3006 E1000_RCTL_EN);
3007 }
3008 }
3009 } else {
3010 if (netif_carrier_ok(netdev)) {
3011 adapter->link_speed = 0;
3012 adapter->link_duplex = 0;
3013 ndev_info(netdev, "Link is Down\n");
3014 netif_carrier_off(netdev);
3015 netif_stop_queue(netdev);
3016 if (!test_bit(__E1000_DOWN, &adapter->state))
3017 mod_timer(&adapter->phy_info_timer,
3018 round_jiffies(jiffies + 2 * HZ));
3019
3020 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3021 schedule_work(&adapter->reset_task);
3022 }
3023 }
3024
3025link_up:
3026 e1000e_update_stats(adapter);
3027
3028 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3029 adapter->tpt_old = adapter->stats.tpt;
3030 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3031 adapter->colc_old = adapter->stats.colc;
3032
3033 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
3034 adapter->gorcl_old = adapter->stats.gorcl;
3035 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
3036 adapter->gotcl_old = adapter->stats.gotcl;
3037
3038 e1000e_update_adaptive(&adapter->hw);
3039
3040 if (!netif_carrier_ok(netdev)) {
3041 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3042 tx_ring->count);
3043 if (tx_pending) {
3044 /* We've lost link, so the controller stops DMA,
3045 * but we've got queued Tx work that's never going
3046 * to get done, so reset controller to flush Tx.
3047 * (Do the reset outside of interrupt context). */
3048 adapter->tx_timeout_count++;
3049 schedule_work(&adapter->reset_task);
3050 }
3051 }
3052
3053 /* Cause software interrupt to ensure rx ring is cleaned */
3054 ew32(ICS, E1000_ICS_RXDMT0);
3055
3056 /* Force detection of hung controller every watchdog period */
3057 adapter->detect_tx_hung = 1;
3058
3059 /* With 82571 controllers, LAA may be overwritten due to controller
3060 * reset from the other port. Set the appropriate LAA in RAR[0] */
3061 if (e1000e_get_laa_state_82571(hw))
3062 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3063
3064 /* Reset the timer */
3065 if (!test_bit(__E1000_DOWN, &adapter->state))
3066 mod_timer(&adapter->watchdog_timer,
3067 round_jiffies(jiffies + 2 * HZ));
3068}
3069
3070#define E1000_TX_FLAGS_CSUM 0x00000001
3071#define E1000_TX_FLAGS_VLAN 0x00000002
3072#define E1000_TX_FLAGS_TSO 0x00000004
3073#define E1000_TX_FLAGS_IPV4 0x00000008
3074#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3075#define E1000_TX_FLAGS_VLAN_SHIFT 16
3076
3077static int e1000_tso(struct e1000_adapter *adapter,
3078 struct sk_buff *skb)
3079{
3080 struct e1000_ring *tx_ring = adapter->tx_ring;
3081 struct e1000_context_desc *context_desc;
3082 struct e1000_buffer *buffer_info;
3083 unsigned int i;
3084 u32 cmd_length = 0;
3085 u16 ipcse = 0, tucse, mss;
3086 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3087 int err;
3088
3089 if (skb_is_gso(skb)) {
3090 if (skb_header_cloned(skb)) {
3091 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3092 if (err)
3093 return err;
3094 }
3095
3096 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3097 mss = skb_shinfo(skb)->gso_size;
3098 if (skb->protocol == htons(ETH_P_IP)) {
3099 struct iphdr *iph = ip_hdr(skb);
3100 iph->tot_len = 0;
3101 iph->check = 0;
3102 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3103 iph->daddr, 0,
3104 IPPROTO_TCP,
3105 0);
3106 cmd_length = E1000_TXD_CMD_IP;
3107 ipcse = skb_transport_offset(skb) - 1;
3108 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3109 ipv6_hdr(skb)->payload_len = 0;
3110 tcp_hdr(skb)->check =
3111 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3112 &ipv6_hdr(skb)->daddr,
3113 0, IPPROTO_TCP, 0);
3114 ipcse = 0;
3115 }
3116 ipcss = skb_network_offset(skb);
3117 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3118 tucss = skb_transport_offset(skb);
3119 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3120 tucse = 0;
3121
3122 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3123 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3124
3125 i = tx_ring->next_to_use;
3126 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3127 buffer_info = &tx_ring->buffer_info[i];
3128
3129 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3130 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3131 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3132 context_desc->upper_setup.tcp_fields.tucss = tucss;
3133 context_desc->upper_setup.tcp_fields.tucso = tucso;
3134 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3135 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3136 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3137 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3138
3139 buffer_info->time_stamp = jiffies;
3140 buffer_info->next_to_watch = i;
3141
3142 i++;
3143 if (i == tx_ring->count)
3144 i = 0;
3145 tx_ring->next_to_use = i;
3146
3147 return 1;
3148 }
3149
3150 return 0;
3151}
3152
3153static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3154{
3155 struct e1000_ring *tx_ring = adapter->tx_ring;
3156 struct e1000_context_desc *context_desc;
3157 struct e1000_buffer *buffer_info;
3158 unsigned int i;
3159 u8 css;
3160
3161 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3162 css = skb_transport_offset(skb);
3163
3164 i = tx_ring->next_to_use;
3165 buffer_info = &tx_ring->buffer_info[i];
3166 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3167
3168 context_desc->lower_setup.ip_config = 0;
3169 context_desc->upper_setup.tcp_fields.tucss = css;
3170 context_desc->upper_setup.tcp_fields.tucso =
3171 css + skb->csum_offset;
3172 context_desc->upper_setup.tcp_fields.tucse = 0;
3173 context_desc->tcp_seg_setup.data = 0;
3174 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3175
3176 buffer_info->time_stamp = jiffies;
3177 buffer_info->next_to_watch = i;
3178
3179 i++;
3180 if (i == tx_ring->count)
3181 i = 0;
3182 tx_ring->next_to_use = i;
3183
3184 return 1;
3185 }
3186
3187 return 0;
3188}
3189
3190#define E1000_MAX_PER_TXD 8192
3191#define E1000_MAX_TXD_PWR 12
3192
3193static int e1000_tx_map(struct e1000_adapter *adapter,
3194 struct sk_buff *skb, unsigned int first,
3195 unsigned int max_per_txd, unsigned int nr_frags,
3196 unsigned int mss)
3197{
3198 struct e1000_ring *tx_ring = adapter->tx_ring;
3199 struct e1000_buffer *buffer_info;
3200 unsigned int len = skb->len - skb->data_len;
3201 unsigned int offset = 0, size, count = 0, i;
3202 unsigned int f;
3203
3204 i = tx_ring->next_to_use;
3205
3206 while (len) {
3207 buffer_info = &tx_ring->buffer_info[i];
3208 size = min(len, max_per_txd);
3209
3210 /* Workaround for premature desc write-backs
3211 * in TSO mode. Append 4-byte sentinel desc */
3212 if (mss && !nr_frags && size == len && size > 8)
3213 size -= 4;
3214
3215 buffer_info->length = size;
3216 /* set time_stamp *before* dma to help avoid a possible race */
3217 buffer_info->time_stamp = jiffies;
3218 buffer_info->dma =
3219 pci_map_single(adapter->pdev,
3220 skb->data + offset,
3221 size,
3222 PCI_DMA_TODEVICE);
3223 if (pci_dma_mapping_error(buffer_info->dma)) {
3224 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3225 adapter->tx_dma_failed++;
3226 return -1;
3227 }
3228 buffer_info->next_to_watch = i;
3229
3230 len -= size;
3231 offset += size;
3232 count++;
3233 i++;
3234 if (i == tx_ring->count)
3235 i = 0;
3236 }
3237
3238 for (f = 0; f < nr_frags; f++) {
3239 struct skb_frag_struct *frag;
3240
3241 frag = &skb_shinfo(skb)->frags[f];
3242 len = frag->size;
3243 offset = frag->page_offset;
3244
3245 while (len) {
3246 buffer_info = &tx_ring->buffer_info[i];
3247 size = min(len, max_per_txd);
3248 /* Workaround for premature desc write-backs
3249 * in TSO mode. Append 4-byte sentinel desc */
3250 if (mss && f == (nr_frags-1) && size == len && size > 8)
3251 size -= 4;
3252
3253 buffer_info->length = size;
3254 buffer_info->time_stamp = jiffies;
3255 buffer_info->dma =
3256 pci_map_page(adapter->pdev,
3257 frag->page,
3258 offset,
3259 size,
3260 PCI_DMA_TODEVICE);
3261 if (pci_dma_mapping_error(buffer_info->dma)) {
3262 dev_err(&adapter->pdev->dev,
3263 "TX DMA page map failed\n");
3264 adapter->tx_dma_failed++;
3265 return -1;
3266 }
3267
3268 buffer_info->next_to_watch = i;
3269
3270 len -= size;
3271 offset += size;
3272 count++;
3273
3274 i++;
3275 if (i == tx_ring->count)
3276 i = 0;
3277 }
3278 }
3279
3280 if (i == 0)
3281 i = tx_ring->count - 1;
3282 else
3283 i--;
3284
3285 tx_ring->buffer_info[i].skb = skb;
3286 tx_ring->buffer_info[first].next_to_watch = i;
3287
3288 return count;
3289}
3290
3291static void e1000_tx_queue(struct e1000_adapter *adapter,
3292 int tx_flags, int count)
3293{
3294 struct e1000_ring *tx_ring = adapter->tx_ring;
3295 struct e1000_tx_desc *tx_desc = NULL;
3296 struct e1000_buffer *buffer_info;
3297 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3298 unsigned int i;
3299
3300 if (tx_flags & E1000_TX_FLAGS_TSO) {
3301 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3302 E1000_TXD_CMD_TSE;
3303 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3304
3305 if (tx_flags & E1000_TX_FLAGS_IPV4)
3306 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3307 }
3308
3309 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3310 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3311 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3312 }
3313
3314 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3315 txd_lower |= E1000_TXD_CMD_VLE;
3316 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3317 }
3318
3319 i = tx_ring->next_to_use;
3320
3321 while (count--) {
3322 buffer_info = &tx_ring->buffer_info[i];
3323 tx_desc = E1000_TX_DESC(*tx_ring, i);
3324 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3325 tx_desc->lower.data =
3326 cpu_to_le32(txd_lower | buffer_info->length);
3327 tx_desc->upper.data = cpu_to_le32(txd_upper);
3328
3329 i++;
3330 if (i == tx_ring->count)
3331 i = 0;
3332 }
3333
3334 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3335
3336 /* Force memory writes to complete before letting h/w
3337 * know there are new descriptors to fetch. (Only
3338 * applicable for weak-ordered memory model archs,
3339 * such as IA-64). */
3340 wmb();
3341
3342 tx_ring->next_to_use = i;
3343 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3344 /* we need this if more than one processor can write to our tail
3345 * at a time, it synchronizes IO on IA64/Altix systems */
3346 mmiowb();
3347}
3348
3349#define MINIMUM_DHCP_PACKET_SIZE 282
3350static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3351 struct sk_buff *skb)
3352{
3353 struct e1000_hw *hw = &adapter->hw;
3354 u16 length, offset;
3355
3356 if (vlan_tx_tag_present(skb)) {
3357 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3358 && (adapter->hw.mng_cookie.status &
3359 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3360 return 0;
3361 }
3362
3363 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3364 return 0;
3365
3366 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3367 return 0;
3368
3369 {
3370 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3371 struct udphdr *udp;
3372
3373 if (ip->protocol != IPPROTO_UDP)
3374 return 0;
3375
3376 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3377 if (ntohs(udp->dest) != 67)
3378 return 0;
3379
3380 offset = (u8 *)udp + 8 - skb->data;
3381 length = skb->len - offset;
3382 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3383 }
3384
3385 return 0;
3386}
3387
3388static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3389{
3390 struct e1000_adapter *adapter = netdev_priv(netdev);
3391
3392 netif_stop_queue(netdev);
3393 /* Herbert's original patch had:
3394 * smp_mb__after_netif_stop_queue();
3395 * but since that doesn't exist yet, just open code it. */
3396 smp_mb();
3397
3398 /* We need to check again in a case another CPU has just
3399 * made room available. */
3400 if (e1000_desc_unused(adapter->tx_ring) < size)
3401 return -EBUSY;
3402
3403 /* A reprieve! */
3404 netif_start_queue(netdev);
3405 ++adapter->restart_queue;
3406 return 0;
3407}
3408
3409static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3410{
3411 struct e1000_adapter *adapter = netdev_priv(netdev);
3412
3413 if (e1000_desc_unused(adapter->tx_ring) >= size)
3414 return 0;
3415 return __e1000_maybe_stop_tx(netdev, size);
3416}
3417
3418#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3419static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3420{
3421 struct e1000_adapter *adapter = netdev_priv(netdev);
3422 struct e1000_ring *tx_ring = adapter->tx_ring;
3423 unsigned int first;
3424 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3425 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3426 unsigned int tx_flags = 0;
4e6c709c 3427 unsigned int len = skb->len - skb->data_len;
bc7f75fa 3428 unsigned long irq_flags;
4e6c709c
AK
3429 unsigned int nr_frags;
3430 unsigned int mss;
bc7f75fa
AK
3431 int count = 0;
3432 int tso;
3433 unsigned int f;
bc7f75fa
AK
3434
3435 if (test_bit(__E1000_DOWN, &adapter->state)) {
3436 dev_kfree_skb_any(skb);
3437 return NETDEV_TX_OK;
3438 }
3439
3440 if (skb->len <= 0) {
3441 dev_kfree_skb_any(skb);
3442 return NETDEV_TX_OK;
3443 }
3444
3445 mss = skb_shinfo(skb)->gso_size;
3446 /* The controller does a simple calculation to
3447 * make sure there is enough room in the FIFO before
3448 * initiating the DMA for each buffer. The calc is:
3449 * 4 = ceil(buffer len/mss). To make sure we don't
3450 * overrun the FIFO, adjust the max buffer len if mss
3451 * drops. */
3452 if (mss) {
3453 u8 hdr_len;
3454 max_per_txd = min(mss << 2, max_per_txd);
3455 max_txd_pwr = fls(max_per_txd) - 1;
3456
3457 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3458 * points to just header, pull a few bytes of payload from
3459 * frags into skb->data */
3460 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4e6c709c 3461 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
3462 unsigned int pull_size;
3463
3464 pull_size = min((unsigned int)4, skb->data_len);
3465 if (!__pskb_pull_tail(skb, pull_size)) {
3466 ndev_err(netdev,
3467 "__pskb_pull_tail failed.\n");
3468 dev_kfree_skb_any(skb);
3469 return NETDEV_TX_OK;
3470 }
3471 len = skb->len - skb->data_len;
3472 }
3473 }
3474
3475 /* reserve a descriptor for the offload context */
3476 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3477 count++;
3478 count++;
3479
3480 count += TXD_USE_COUNT(len, max_txd_pwr);
3481
3482 nr_frags = skb_shinfo(skb)->nr_frags;
3483 for (f = 0; f < nr_frags; f++)
3484 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3485 max_txd_pwr);
3486
3487 if (adapter->hw.mac.tx_pkt_filtering)
3488 e1000_transfer_dhcp_info(adapter, skb);
3489
3490 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3491 /* Collision - tell upper layer to requeue */
3492 return NETDEV_TX_LOCKED;
3493
3494 /* need: count + 2 desc gap to keep tail from touching
3495 * head, otherwise try next time */
3496 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3497 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3498 return NETDEV_TX_BUSY;
3499 }
3500
3501 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3502 tx_flags |= E1000_TX_FLAGS_VLAN;
3503 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3504 }
3505
3506 first = tx_ring->next_to_use;
3507
3508 tso = e1000_tso(adapter, skb);
3509 if (tso < 0) {
3510 dev_kfree_skb_any(skb);
3511 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3512 return NETDEV_TX_OK;
3513 }
3514
3515 if (tso)
3516 tx_flags |= E1000_TX_FLAGS_TSO;
3517 else if (e1000_tx_csum(adapter, skb))
3518 tx_flags |= E1000_TX_FLAGS_CSUM;
3519
3520 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3521 * 82571 hardware supports TSO capabilities for IPv6 as well...
3522 * no longer assume, we must. */
3523 if (skb->protocol == htons(ETH_P_IP))
3524 tx_flags |= E1000_TX_FLAGS_IPV4;
3525
3526 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3527 if (count < 0) {
3528 /* handle pci_map_single() error in e1000_tx_map */
3529 dev_kfree_skb_any(skb);
3530 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 3531 return NETDEV_TX_OK;
bc7f75fa
AK
3532 }
3533
3534 e1000_tx_queue(adapter, tx_flags, count);
3535
3536 netdev->trans_start = jiffies;
3537
3538 /* Make sure there is space in the ring for the next send. */
3539 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3540
3541 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3542 return NETDEV_TX_OK;
3543}
3544
3545/**
3546 * e1000_tx_timeout - Respond to a Tx Hang
3547 * @netdev: network interface device structure
3548 **/
3549static void e1000_tx_timeout(struct net_device *netdev)
3550{
3551 struct e1000_adapter *adapter = netdev_priv(netdev);
3552
3553 /* Do the reset outside of interrupt context */
3554 adapter->tx_timeout_count++;
3555 schedule_work(&adapter->reset_task);
3556}
3557
3558static void e1000_reset_task(struct work_struct *work)
3559{
3560 struct e1000_adapter *adapter;
3561 adapter = container_of(work, struct e1000_adapter, reset_task);
3562
3563 e1000e_reinit_locked(adapter);
3564}
3565
3566/**
3567 * e1000_get_stats - Get System Network Statistics
3568 * @netdev: network interface device structure
3569 *
3570 * Returns the address of the device statistics structure.
3571 * The statistics are actually updated from the timer callback.
3572 **/
3573static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3574{
3575 struct e1000_adapter *adapter = netdev_priv(netdev);
3576
3577 /* only return the current stats */
3578 return &adapter->net_stats;
3579}
3580
3581/**
3582 * e1000_change_mtu - Change the Maximum Transfer Unit
3583 * @netdev: network interface device structure
3584 * @new_mtu: new value for maximum frame size
3585 *
3586 * Returns 0 on success, negative on failure
3587 **/
3588static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3589{
3590 struct e1000_adapter *adapter = netdev_priv(netdev);
3591 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3592
3593 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3594 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3595 ndev_err(netdev, "Invalid MTU setting\n");
3596 return -EINVAL;
3597 }
3598
3599 /* Jumbo frame size limits */
3600 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3601 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3602 ndev_err(netdev, "Jumbo Frames not supported.\n");
3603 return -EINVAL;
3604 }
3605 if (adapter->hw.phy.type == e1000_phy_ife) {
3606 ndev_err(netdev, "Jumbo Frames not supported.\n");
3607 return -EINVAL;
3608 }
3609 }
3610
3611#define MAX_STD_JUMBO_FRAME_SIZE 9234
3612 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3613 ndev_err(netdev, "MTU > 9216 not supported.\n");
3614 return -EINVAL;
3615 }
3616
3617 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3618 msleep(1);
3619 /* e1000e_down has a dependency on max_frame_size */
3620 adapter->hw.mac.max_frame_size = max_frame;
3621 if (netif_running(netdev))
3622 e1000e_down(adapter);
3623
3624 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3625 * means we reserve 2 more, this pushes us to allocate from the next
3626 * larger slab size.
3627 * i.e. RXBUFFER_2048 --> size-4096 slab
3628 * however with the new *_jumbo* routines, jumbo receives will use
3629 * fragmented skbs */
3630
3631 if (max_frame <= 256)
3632 adapter->rx_buffer_len = 256;
3633 else if (max_frame <= 512)
3634 adapter->rx_buffer_len = 512;
3635 else if (max_frame <= 1024)
3636 adapter->rx_buffer_len = 1024;
3637 else if (max_frame <= 2048)
3638 adapter->rx_buffer_len = 2048;
3639 else
3640 adapter->rx_buffer_len = 4096;
3641
3642 /* adjust allocation if LPE protects us, and we aren't using SBP */
3643 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3644 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3645 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3646 + ETH_FCS_LEN ;
3647
3648 ndev_info(netdev, "changing MTU from %d to %d\n",
3649 netdev->mtu, new_mtu);
3650 netdev->mtu = new_mtu;
3651
3652 if (netif_running(netdev))
3653 e1000e_up(adapter);
3654 else
3655 e1000e_reset(adapter);
3656
3657 clear_bit(__E1000_RESETTING, &adapter->state);
3658
3659 return 0;
3660}
3661
3662static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3663 int cmd)
3664{
3665 struct e1000_adapter *adapter = netdev_priv(netdev);
3666 struct mii_ioctl_data *data = if_mii(ifr);
3667 unsigned long irq_flags;
3668
3669 if (adapter->hw.media_type != e1000_media_type_copper)
3670 return -EOPNOTSUPP;
3671
3672 switch (cmd) {
3673 case SIOCGMIIPHY:
3674 data->phy_id = adapter->hw.phy.addr;
3675 break;
3676 case SIOCGMIIREG:
3677 if (!capable(CAP_NET_ADMIN))
3678 return -EPERM;
3679 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3680 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3681 &data->val_out)) {
3682 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3683 return -EIO;
3684 }
3685 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3686 break;
3687 case SIOCSMIIREG:
3688 default:
3689 return -EOPNOTSUPP;
3690 }
3691 return 0;
3692}
3693
3694static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3695{
3696 switch (cmd) {
3697 case SIOCGMIIPHY:
3698 case SIOCGMIIREG:
3699 case SIOCSMIIREG:
3700 return e1000_mii_ioctl(netdev, ifr, cmd);
3701 default:
3702 return -EOPNOTSUPP;
3703 }
3704}
3705
3706static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3707{
3708 struct net_device *netdev = pci_get_drvdata(pdev);
3709 struct e1000_adapter *adapter = netdev_priv(netdev);
3710 struct e1000_hw *hw = &adapter->hw;
3711 u32 ctrl, ctrl_ext, rctl, status;
3712 u32 wufc = adapter->wol;
3713 int retval = 0;
3714
3715 netif_device_detach(netdev);
3716
3717 if (netif_running(netdev)) {
3718 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3719 e1000e_down(adapter);
3720 e1000_free_irq(adapter);
3721 }
3722
3723 retval = pci_save_state(pdev);
3724 if (retval)
3725 return retval;
3726
3727 status = er32(STATUS);
3728 if (status & E1000_STATUS_LU)
3729 wufc &= ~E1000_WUFC_LNKC;
3730
3731 if (wufc) {
3732 e1000_setup_rctl(adapter);
3733 e1000_set_multi(netdev);
3734
3735 /* turn on all-multi mode if wake on multicast is enabled */
3736 if (wufc & E1000_WUFC_MC) {
3737 rctl = er32(RCTL);
3738 rctl |= E1000_RCTL_MPE;
3739 ew32(RCTL, rctl);
3740 }
3741
3742 ctrl = er32(CTRL);
3743 /* advertise wake from D3Cold */
3744 #define E1000_CTRL_ADVD3WUC 0x00100000
3745 /* phy power management enable */
3746 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3747 ctrl |= E1000_CTRL_ADVD3WUC |
3748 E1000_CTRL_EN_PHY_PWR_MGMT;
3749 ew32(CTRL, ctrl);
3750
3751 if (adapter->hw.media_type == e1000_media_type_fiber ||
3752 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3753 /* keep the laser running in D3 */
3754 ctrl_ext = er32(CTRL_EXT);
3755 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3756 ew32(CTRL_EXT, ctrl_ext);
3757 }
3758
3759 /* Allow time for pending master requests to run */
3760 e1000e_disable_pcie_master(&adapter->hw);
3761
3762 ew32(WUC, E1000_WUC_PME_EN);
3763 ew32(WUFC, wufc);
3764 pci_enable_wake(pdev, PCI_D3hot, 1);
3765 pci_enable_wake(pdev, PCI_D3cold, 1);
3766 } else {
3767 ew32(WUC, 0);
3768 ew32(WUFC, 0);
3769 pci_enable_wake(pdev, PCI_D3hot, 0);
3770 pci_enable_wake(pdev, PCI_D3cold, 0);
3771 }
3772
3773 e1000_release_manageability(adapter);
3774
3775 /* make sure adapter isn't asleep if manageability is enabled */
3776 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3777 pci_enable_wake(pdev, PCI_D3hot, 1);
3778 pci_enable_wake(pdev, PCI_D3cold, 1);
3779 }
3780
3781 if (adapter->hw.phy.type == e1000_phy_igp_3)
3782 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3783
3784 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3785 * would have already happened in close and is redundant. */
3786 e1000_release_hw_control(adapter);
3787
3788 pci_disable_device(pdev);
3789
3790 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3791
3792 return 0;
3793}
3794
3795#ifdef CONFIG_PM
3796static int e1000_resume(struct pci_dev *pdev)
3797{
3798 struct net_device *netdev = pci_get_drvdata(pdev);
3799 struct e1000_adapter *adapter = netdev_priv(netdev);
3800 struct e1000_hw *hw = &adapter->hw;
3801 u32 err;
3802
3803 pci_set_power_state(pdev, PCI_D0);
3804 pci_restore_state(pdev);
3805 err = pci_enable_device(pdev);
3806 if (err) {
3807 dev_err(&pdev->dev,
3808 "Cannot enable PCI device from suspend\n");
3809 return err;
3810 }
3811
3812 pci_set_master(pdev);
3813
3814 pci_enable_wake(pdev, PCI_D3hot, 0);
3815 pci_enable_wake(pdev, PCI_D3cold, 0);
3816
3817 if (netif_running(netdev)) {
3818 err = e1000_request_irq(adapter);
3819 if (err)
3820 return err;
3821 }
3822
3823 e1000e_power_up_phy(adapter);
3824 e1000e_reset(adapter);
3825 ew32(WUS, ~0);
3826
3827 e1000_init_manageability(adapter);
3828
3829 if (netif_running(netdev))
3830 e1000e_up(adapter);
3831
3832 netif_device_attach(netdev);
3833
3834 /* If the controller has AMT, do not set DRV_LOAD until the interface
3835 * is up. For all other cases, let the f/w know that the h/w is now
3836 * under the control of the driver. */
3837 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3838 e1000_get_hw_control(adapter);
3839
3840 return 0;
3841}
3842#endif
3843
3844static void e1000_shutdown(struct pci_dev *pdev)
3845{
3846 e1000_suspend(pdev, PMSG_SUSPEND);
3847}
3848
3849#ifdef CONFIG_NET_POLL_CONTROLLER
3850/*
3851 * Polling 'interrupt' - used by things like netconsole to send skbs
3852 * without having to re-enable interrupts. It's not called while
3853 * the interrupt routine is executing.
3854 */
3855static void e1000_netpoll(struct net_device *netdev)
3856{
3857 struct e1000_adapter *adapter = netdev_priv(netdev);
3858
3859 disable_irq(adapter->pdev->irq);
3860 e1000_intr(adapter->pdev->irq, netdev);
3861
3862 e1000_clean_tx_irq(adapter);
3863
3864 enable_irq(adapter->pdev->irq);
3865}
3866#endif
3867
3868/**
3869 * e1000_io_error_detected - called when PCI error is detected
3870 * @pdev: Pointer to PCI device
3871 * @state: The current pci connection state
3872 *
3873 * This function is called after a PCI bus error affecting
3874 * this device has been detected.
3875 */
3876static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3877 pci_channel_state_t state)
3878{
3879 struct net_device *netdev = pci_get_drvdata(pdev);
3880 struct e1000_adapter *adapter = netdev_priv(netdev);
3881
3882 netif_device_detach(netdev);
3883
3884 if (netif_running(netdev))
3885 e1000e_down(adapter);
3886 pci_disable_device(pdev);
3887
3888 /* Request a slot slot reset. */
3889 return PCI_ERS_RESULT_NEED_RESET;
3890}
3891
3892/**
3893 * e1000_io_slot_reset - called after the pci bus has been reset.
3894 * @pdev: Pointer to PCI device
3895 *
3896 * Restart the card from scratch, as if from a cold-boot. Implementation
3897 * resembles the first-half of the e1000_resume routine.
3898 */
3899static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3900{
3901 struct net_device *netdev = pci_get_drvdata(pdev);
3902 struct e1000_adapter *adapter = netdev_priv(netdev);
3903 struct e1000_hw *hw = &adapter->hw;
3904
3905 if (pci_enable_device(pdev)) {
3906 dev_err(&pdev->dev,
3907 "Cannot re-enable PCI device after reset.\n");
3908 return PCI_ERS_RESULT_DISCONNECT;
3909 }
3910 pci_set_master(pdev);
3911
3912 pci_enable_wake(pdev, PCI_D3hot, 0);
3913 pci_enable_wake(pdev, PCI_D3cold, 0);
3914
3915 e1000e_reset(adapter);
3916 ew32(WUS, ~0);
3917
3918 return PCI_ERS_RESULT_RECOVERED;
3919}
3920
3921/**
3922 * e1000_io_resume - called when traffic can start flowing again.
3923 * @pdev: Pointer to PCI device
3924 *
3925 * This callback is called when the error recovery driver tells us that
3926 * its OK to resume normal operation. Implementation resembles the
3927 * second-half of the e1000_resume routine.
3928 */
3929static void e1000_io_resume(struct pci_dev *pdev)
3930{
3931 struct net_device *netdev = pci_get_drvdata(pdev);
3932 struct e1000_adapter *adapter = netdev_priv(netdev);
3933
3934 e1000_init_manageability(adapter);
3935
3936 if (netif_running(netdev)) {
3937 if (e1000e_up(adapter)) {
3938 dev_err(&pdev->dev,
3939 "can't bring device back up after reset\n");
3940 return;
3941 }
3942 }
3943
3944 netif_device_attach(netdev);
3945
3946 /* If the controller has AMT, do not set DRV_LOAD until the interface
3947 * is up. For all other cases, let the f/w know that the h/w is now
3948 * under the control of the driver. */
3949 if (!(adapter->flags & FLAG_HAS_AMT) ||
3950 !e1000e_check_mng_mode(&adapter->hw))
3951 e1000_get_hw_control(adapter);
3952
3953}
3954
3955static void e1000_print_device_info(struct e1000_adapter *adapter)
3956{
3957 struct e1000_hw *hw = &adapter->hw;
3958 struct net_device *netdev = adapter->netdev;
3959 u32 part_num;
3960
3961 /* print bus type/speed/width info */
3962 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3963 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3964 /* bus width */
3965 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3966 "Width x1"),
3967 /* MAC address */
3968 netdev->dev_addr[0], netdev->dev_addr[1],
3969 netdev->dev_addr[2], netdev->dev_addr[3],
3970 netdev->dev_addr[4], netdev->dev_addr[5]);
3971 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3972 (hw->phy.type == e1000_phy_ife)
3973 ? "10/100" : "1000");
3974 e1000e_read_part_num(hw, &part_num);
3975 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3976 hw->mac.type, hw->phy.type,
3977 (part_num >> 8), (part_num & 0xff));
3978}
3979
3980/**
3981 * e1000_probe - Device Initialization Routine
3982 * @pdev: PCI device information struct
3983 * @ent: entry in e1000_pci_tbl
3984 *
3985 * Returns 0 on success, negative on failure
3986 *
3987 * e1000_probe initializes an adapter identified by a pci_dev structure.
3988 * The OS initialization, configuring of the adapter private structure,
3989 * and a hardware reset occur.
3990 **/
3991static int __devinit e1000_probe(struct pci_dev *pdev,
3992 const struct pci_device_id *ent)
3993{
3994 struct net_device *netdev;
3995 struct e1000_adapter *adapter;
3996 struct e1000_hw *hw;
3997 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3998 unsigned long mmio_start, mmio_len;
3999 unsigned long flash_start, flash_len;
4000
4001 static int cards_found;
4002 int i, err, pci_using_dac;
4003 u16 eeprom_data = 0;
4004 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4005
4006 err = pci_enable_device(pdev);
4007 if (err)
4008 return err;
4009
4010 pci_using_dac = 0;
4011 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4012 if (!err) {
4013 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4014 if (!err)
4015 pci_using_dac = 1;
4016 } else {
4017 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4018 if (err) {
4019 err = pci_set_consistent_dma_mask(pdev,
4020 DMA_32BIT_MASK);
4021 if (err) {
4022 dev_err(&pdev->dev, "No usable DMA "
4023 "configuration, aborting\n");
4024 goto err_dma;
4025 }
4026 }
4027 }
4028
4029 err = pci_request_regions(pdev, e1000e_driver_name);
4030 if (err)
4031 goto err_pci_reg;
4032
4033 pci_set_master(pdev);
4034
4035 err = -ENOMEM;
4036 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4037 if (!netdev)
4038 goto err_alloc_etherdev;
4039
bc7f75fa
AK
4040 SET_NETDEV_DEV(netdev, &pdev->dev);
4041
4042 pci_set_drvdata(pdev, netdev);
4043 adapter = netdev_priv(netdev);
4044 hw = &adapter->hw;
4045 adapter->netdev = netdev;
4046 adapter->pdev = pdev;
4047 adapter->ei = ei;
4048 adapter->pba = ei->pba;
4049 adapter->flags = ei->flags;
4050 adapter->hw.adapter = adapter;
4051 adapter->hw.mac.type = ei->mac;
4052 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4053
4054 mmio_start = pci_resource_start(pdev, 0);
4055 mmio_len = pci_resource_len(pdev, 0);
4056
4057 err = -EIO;
4058 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4059 if (!adapter->hw.hw_addr)
4060 goto err_ioremap;
4061
4062 if ((adapter->flags & FLAG_HAS_FLASH) &&
4063 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4064 flash_start = pci_resource_start(pdev, 1);
4065 flash_len = pci_resource_len(pdev, 1);
4066 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4067 if (!adapter->hw.flash_address)
4068 goto err_flashmap;
4069 }
4070
4071 /* construct the net_device struct */
4072 netdev->open = &e1000_open;
4073 netdev->stop = &e1000_close;
4074 netdev->hard_start_xmit = &e1000_xmit_frame;
4075 netdev->get_stats = &e1000_get_stats;
4076 netdev->set_multicast_list = &e1000_set_multi;
4077 netdev->set_mac_address = &e1000_set_mac;
4078 netdev->change_mtu = &e1000_change_mtu;
4079 netdev->do_ioctl = &e1000_ioctl;
4080 e1000e_set_ethtool_ops(netdev);
4081 netdev->tx_timeout = &e1000_tx_timeout;
4082 netdev->watchdog_timeo = 5 * HZ;
4083 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4084 netdev->vlan_rx_register = e1000_vlan_rx_register;
4085 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4086 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4087#ifdef CONFIG_NET_POLL_CONTROLLER
4088 netdev->poll_controller = e1000_netpoll;
4089#endif
4090 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4091
4092 netdev->mem_start = mmio_start;
4093 netdev->mem_end = mmio_start + mmio_len;
4094
4095 adapter->bd_number = cards_found++;
4096
4097 /* setup adapter struct */
4098 err = e1000_sw_init(adapter);
4099 if (err)
4100 goto err_sw_init;
4101
4102 err = -EIO;
4103
4104 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4105 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4106 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4107
4108 err = ei->get_invariants(adapter);
4109 if (err)
4110 goto err_hw_init;
4111
4112 hw->mac.ops.get_bus_info(&adapter->hw);
4113
4114 adapter->hw.phy.wait_for_link = 0;
4115
4116 /* Copper options */
4117 if (adapter->hw.media_type == e1000_media_type_copper) {
4118 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4119 adapter->hw.phy.disable_polarity_correction = 0;
4120 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4121 }
4122
4123 if (e1000_check_reset_block(&adapter->hw))
4124 ndev_info(netdev,
4125 "PHY reset is blocked due to SOL/IDER session.\n");
4126
4127 netdev->features = NETIF_F_SG |
4128 NETIF_F_HW_CSUM |
4129 NETIF_F_HW_VLAN_TX |
4130 NETIF_F_HW_VLAN_RX;
4131
4132 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4133 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4134
4135 netdev->features |= NETIF_F_TSO;
4136 netdev->features |= NETIF_F_TSO6;
4137
4138 if (pci_using_dac)
4139 netdev->features |= NETIF_F_HIGHDMA;
4140
4141 /* We should not be using LLTX anymore, but we are still TX faster with
4142 * it. */
4143 netdev->features |= NETIF_F_LLTX;
4144
4145 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4146 adapter->flags |= FLAG_MNG_PT_ENABLED;
4147
4148 /* before reading the NVM, reset the controller to
4149 * put the device in a known good starting state */
4150 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4151
4152 /*
4153 * systems with ASPM and others may see the checksum fail on the first
4154 * attempt. Let's give it a few tries
4155 */
4156 for (i = 0;; i++) {
4157 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4158 break;
4159 if (i == 2) {
4160 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4161 err = -EIO;
4162 goto err_eeprom;
4163 }
4164 }
4165
4166 /* copy the MAC address out of the NVM */
4167 if (e1000e_read_mac_addr(&adapter->hw))
4168 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4169
4170 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4171 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4172
4173 if (!is_valid_ether_addr(netdev->perm_addr)) {
4174 ndev_err(netdev, "Invalid MAC Address: "
4175 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4176 netdev->perm_addr[0], netdev->perm_addr[1],
4177 netdev->perm_addr[2], netdev->perm_addr[3],
4178 netdev->perm_addr[4], netdev->perm_addr[5]);
4179 err = -EIO;
4180 goto err_eeprom;
4181 }
4182
4183 init_timer(&adapter->watchdog_timer);
4184 adapter->watchdog_timer.function = &e1000_watchdog;
4185 adapter->watchdog_timer.data = (unsigned long) adapter;
4186
4187 init_timer(&adapter->phy_info_timer);
4188 adapter->phy_info_timer.function = &e1000_update_phy_info;
4189 adapter->phy_info_timer.data = (unsigned long) adapter;
4190
4191 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4192 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4193
4194 e1000e_check_options(adapter);
4195
4196 /* Initialize link parameters. User can change them with ethtool */
4197 adapter->hw.mac.autoneg = 1;
4198 adapter->hw.mac.original_fc = e1000_fc_default;
4199 adapter->hw.mac.fc = e1000_fc_default;
4200 adapter->hw.phy.autoneg_advertised = 0x2f;
4201
4202 /* ring size defaults */
4203 adapter->rx_ring->count = 256;
4204 adapter->tx_ring->count = 256;
4205
4206 /*
4207 * Initial Wake on LAN setting - If APM wake is enabled in
4208 * the EEPROM, enable the ACPI Magic Packet filter
4209 */
4210 if (adapter->flags & FLAG_APME_IN_WUC) {
4211 /* APME bit in EEPROM is mapped to WUC.APME */
4212 eeprom_data = er32(WUC);
4213 eeprom_apme_mask = E1000_WUC_APME;
4214 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4215 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4216 (adapter->hw.bus.func == 1))
4217 e1000_read_nvm(&adapter->hw,
4218 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4219 else
4220 e1000_read_nvm(&adapter->hw,
4221 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4222 }
4223
4224 /* fetch WoL from EEPROM */
4225 if (eeprom_data & eeprom_apme_mask)
4226 adapter->eeprom_wol |= E1000_WUFC_MAG;
4227
4228 /*
4229 * now that we have the eeprom settings, apply the special cases
4230 * where the eeprom may be wrong or the board simply won't support
4231 * wake on lan on a particular port
4232 */
4233 if (!(adapter->flags & FLAG_HAS_WOL))
4234 adapter->eeprom_wol = 0;
4235
4236 /* initialize the wol settings based on the eeprom settings */
4237 adapter->wol = adapter->eeprom_wol;
4238
4239 /* reset the hardware with the new settings */
4240 e1000e_reset(adapter);
4241
4242 /* If the controller has AMT, do not set DRV_LOAD until the interface
4243 * is up. For all other cases, let the f/w know that the h/w is now
4244 * under the control of the driver. */
4245 if (!(adapter->flags & FLAG_HAS_AMT) ||
4246 !e1000e_check_mng_mode(&adapter->hw))
4247 e1000_get_hw_control(adapter);
4248
4249 /* tell the stack to leave us alone until e1000_open() is called */
4250 netif_carrier_off(netdev);
4251 netif_stop_queue(netdev);
4252
4253 strcpy(netdev->name, "eth%d");
4254 err = register_netdev(netdev);
4255 if (err)
4256 goto err_register;
4257
4258 e1000_print_device_info(adapter);
4259
4260 return 0;
4261
4262err_register:
4263err_hw_init:
4264 e1000_release_hw_control(adapter);
4265err_eeprom:
4266 if (!e1000_check_reset_block(&adapter->hw))
4267 e1000_phy_hw_reset(&adapter->hw);
4268
4269 if (adapter->hw.flash_address)
4270 iounmap(adapter->hw.flash_address);
4271
4272err_flashmap:
4273 kfree(adapter->tx_ring);
4274 kfree(adapter->rx_ring);
4275err_sw_init:
4276 iounmap(adapter->hw.hw_addr);
4277err_ioremap:
4278 free_netdev(netdev);
4279err_alloc_etherdev:
4280 pci_release_regions(pdev);
4281err_pci_reg:
4282err_dma:
4283 pci_disable_device(pdev);
4284 return err;
4285}
4286
4287/**
4288 * e1000_remove - Device Removal Routine
4289 * @pdev: PCI device information struct
4290 *
4291 * e1000_remove is called by the PCI subsystem to alert the driver
4292 * that it should release a PCI device. The could be caused by a
4293 * Hot-Plug event, or because the driver is going to be removed from
4294 * memory.
4295 **/
4296static void __devexit e1000_remove(struct pci_dev *pdev)
4297{
4298 struct net_device *netdev = pci_get_drvdata(pdev);
4299 struct e1000_adapter *adapter = netdev_priv(netdev);
4300
4301 /* flush_scheduled work may reschedule our watchdog task, so
4302 * explicitly disable watchdog tasks from being rescheduled */
4303 set_bit(__E1000_DOWN, &adapter->state);
4304 del_timer_sync(&adapter->watchdog_timer);
4305 del_timer_sync(&adapter->phy_info_timer);
4306
4307 flush_scheduled_work();
4308
4309 e1000_release_manageability(adapter);
4310
4311 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4312 * would have already happened in close and is redundant. */
4313 e1000_release_hw_control(adapter);
4314
4315 unregister_netdev(netdev);
4316
4317 if (!e1000_check_reset_block(&adapter->hw))
4318 e1000_phy_hw_reset(&adapter->hw);
4319
4320 kfree(adapter->tx_ring);
4321 kfree(adapter->rx_ring);
4322
4323 iounmap(adapter->hw.hw_addr);
4324 if (adapter->hw.flash_address)
4325 iounmap(adapter->hw.flash_address);
4326 pci_release_regions(pdev);
4327
4328 free_netdev(netdev);
4329
4330 pci_disable_device(pdev);
4331}
4332
4333/* PCI Error Recovery (ERS) */
4334static struct pci_error_handlers e1000_err_handler = {
4335 .error_detected = e1000_io_error_detected,
4336 .slot_reset = e1000_io_slot_reset,
4337 .resume = e1000_io_resume,
4338};
4339
4340static struct pci_device_id e1000_pci_tbl[] = {
4341 /*
4342 * Support for 82571/2/3, es2lan and ich8 will be phased in
4343 * stepwise.
4344
4345 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4346 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4350 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4352 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4354 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4356 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4358 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4359 board_80003es2lan },
4360 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4361 board_80003es2lan },
4362 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4363 board_80003es2lan },
4364 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4365 board_80003es2lan },
4366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4367 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4370 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4371 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4372 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4373 */
4374
4375 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4376 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4377 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4378 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4379 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4380
4381 { } /* terminate list */
4382};
4383MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4384
4385/* PCI Device API Driver */
4386static struct pci_driver e1000_driver = {
4387 .name = e1000e_driver_name,
4388 .id_table = e1000_pci_tbl,
4389 .probe = e1000_probe,
4390 .remove = __devexit_p(e1000_remove),
4391#ifdef CONFIG_PM
4392 /* Power Managment Hooks */
4393 .suspend = e1000_suspend,
4394 .resume = e1000_resume,
4395#endif
4396 .shutdown = e1000_shutdown,
4397 .err_handler = &e1000_err_handler
4398};
4399
4400/**
4401 * e1000_init_module - Driver Registration Routine
4402 *
4403 * e1000_init_module is the first routine called when the driver is
4404 * loaded. All it does is register with the PCI subsystem.
4405 **/
4406static int __init e1000_init_module(void)
4407{
4408 int ret;
4409 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4410 e1000e_driver_name, e1000e_driver_version);
4411 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4412 e1000e_driver_name);
4413 ret = pci_register_driver(&e1000_driver);
4414
4415 return ret;
4416}
4417module_init(e1000_init_module);
4418
4419/**
4420 * e1000_exit_module - Driver Exit Cleanup Routine
4421 *
4422 * e1000_exit_module is called just before the driver is removed
4423 * from memory.
4424 **/
4425static void __exit e1000_exit_module(void)
4426{
4427 pci_unregister_driver(&e1000_driver);
4428}
4429module_exit(e1000_exit_module);
4430
4431
4432MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4433MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4434MODULE_LICENSE("GPL");
4435MODULE_VERSION(DRV_VERSION);
4436
4437/* e1000_main.c */
This page took 0.253236 seconds and 5 git commands to generate.