Merge branch 'v2.6.24-rc7-lockdep' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
46
47#include "e1000.h"
48
49#define DRV_VERSION "0.2.0"
50char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION;
52
53static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
60};
61
62#ifdef DEBUG
63/**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68{
589c085f 69 return hw->adapter->netdev->name;
bc7f75fa
AK
70}
71#endif
72
73/**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76static int e1000_desc_unused(struct e1000_ring *ring)
77{
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
80
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82}
83
84/**
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
94 u8 status, u16 vlan)
95{
96 skb->protocol = eth_type_trans(skb, netdev);
97
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
144 */
145 csum = ntohl(csum ^ 0xFFFF);
146 skb->csum = csum;
147 skb->ip_summed = CHECKSUM_COMPLETE;
148 }
149 adapter->hw_csum_good++;
150}
151
152/**
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
155 **/
156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157 int cleaned_count)
158{
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 struct e1000_ring *rx_ring = adapter->rx_ring;
162 struct e1000_rx_desc *rx_desc;
163 struct e1000_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 while (cleaned_count--) {
172 skb = buffer_info->skb;
173 if (skb) {
174 skb_trim(skb, 0);
175 goto map_skb;
176 }
177
178 skb = netdev_alloc_skb(netdev, bufsz);
179 if (!skb) {
180 /* Better luck next round */
181 adapter->alloc_rx_buff_failed++;
182 break;
183 }
184
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
188 */
189 skb_reserve(skb, NET_IP_ALIGN);
190
191 buffer_info->skb = skb;
192map_skb:
193 buffer_info->dma = pci_map_single(pdev, skb->data,
194 adapter->rx_buffer_len,
195 PCI_DMA_FROMDEVICE);
196 if (pci_dma_mapping_error(buffer_info->dma)) {
197 dev_err(&pdev->dev, "RX DMA map failed\n");
198 adapter->rx_dma_failed++;
199 break;
200 }
201
202 rx_desc = E1000_RX_DESC(*rx_ring, i);
203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
209 }
210
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i-- == 0)
214 i = (rx_ring->count - 1);
215
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222 }
223}
224
225/**
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
228 **/
229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230 int cleaned_count)
231{
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_rx_desc_packet_split *rx_desc;
235 struct e1000_ring *rx_ring = adapter->rx_ring;
236 struct e1000_buffer *buffer_info;
237 struct e1000_ps_page *ps_page;
238 struct sk_buff *skb;
239 unsigned int i, j;
240
241 i = rx_ring->next_to_use;
242 buffer_info = &rx_ring->buffer_info[i];
243
244 while (cleaned_count--) {
245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
248 ps_page = &buffer_info->ps_pages[j];
249 if (j >= adapter->rx_ps_pages) {
250 /* all unused desc entries get hw null ptr */
251 rx_desc->read.buffer_addr[j+1] = ~0;
252 continue;
253 }
254 if (!ps_page->page) {
255 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 256 if (!ps_page->page) {
47f44e40
AK
257 adapter->alloc_rx_buff_failed++;
258 goto no_buffers;
259 }
260 ps_page->dma = pci_map_page(pdev,
261 ps_page->page,
262 0, PAGE_SIZE,
263 PCI_DMA_FROMDEVICE);
264 if (pci_dma_mapping_error(ps_page->dma)) {
265 dev_err(&adapter->pdev->dev,
266 "RX DMA page map failed\n");
267 adapter->rx_dma_failed++;
268 goto no_buffers;
bc7f75fa 269 }
bc7f75fa 270 }
47f44e40
AK
271 /*
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
274 * erases this info.
275 */
276 rx_desc->read.buffer_addr[j+1] =
277 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
278 }
279
280 skb = netdev_alloc_skb(netdev,
281 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283 if (!skb) {
284 adapter->alloc_rx_buff_failed++;
285 break;
286 }
287
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
291 */
292 skb_reserve(skb, NET_IP_ALIGN);
293
294 buffer_info->skb = skb;
295 buffer_info->dma = pci_map_single(pdev, skb->data,
296 adapter->rx_ps_bsize0,
297 PCI_DMA_FROMDEVICE);
298 if (pci_dma_mapping_error(buffer_info->dma)) {
299 dev_err(&pdev->dev, "RX DMA map failed\n");
300 adapter->rx_dma_failed++;
301 /* cleanup skb */
302 dev_kfree_skb_any(skb);
303 buffer_info->skb = NULL;
304 break;
305 }
306
307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309 i++;
310 if (i == rx_ring->count)
311 i = 0;
312 buffer_info = &rx_ring->buffer_info[i];
313 }
314
315no_buffers:
316 if (rx_ring->next_to_use != i) {
317 rx_ring->next_to_use = i;
318
319 if (!(i--))
320 i = (rx_ring->count - 1);
321
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
325 * such as IA-64). */
326 wmb();
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
329 * twice as much.
330 */
331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332 }
333}
334
bc7f75fa
AK
335/**
336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
338 *
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
341 **/
342static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343 int *work_done, int work_to_do)
344{
345 struct net_device *netdev = adapter->netdev;
346 struct pci_dev *pdev = adapter->pdev;
347 struct e1000_ring *rx_ring = adapter->rx_ring;
348 struct e1000_rx_desc *rx_desc, *next_rxd;
349 struct e1000_buffer *buffer_info, *next_buffer;
350 u32 length;
351 unsigned int i;
352 int cleaned_count = 0;
353 bool cleaned = 0;
354 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356 i = rx_ring->next_to_clean;
357 rx_desc = E1000_RX_DESC(*rx_ring, i);
358 buffer_info = &rx_ring->buffer_info[i];
359
360 while (rx_desc->status & E1000_RXD_STAT_DD) {
361 struct sk_buff *skb;
362 u8 status;
363
364 if (*work_done >= work_to_do)
365 break;
366 (*work_done)++;
367
368 status = rx_desc->status;
369 skb = buffer_info->skb;
370 buffer_info->skb = NULL;
371
372 prefetch(skb->data - NET_IP_ALIGN);
373
374 i++;
375 if (i == rx_ring->count)
376 i = 0;
377 next_rxd = E1000_RX_DESC(*rx_ring, i);
378 prefetch(next_rxd);
379
380 next_buffer = &rx_ring->buffer_info[i];
381
382 cleaned = 1;
383 cleaned_count++;
384 pci_unmap_single(pdev,
385 buffer_info->dma,
386 adapter->rx_buffer_len,
387 PCI_DMA_FROMDEVICE);
388 buffer_info->dma = 0;
389
390 length = le16_to_cpu(rx_desc->length);
391
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev->name);
398 /* recycle */
399 buffer_info->skb = skb;
400 goto next_desc;
401 }
402
403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404 /* recycle */
405 buffer_info->skb = skb;
406 goto next_desc;
407 }
408
bc7f75fa
AK
409 total_rx_bytes += length;
410 total_rx_packets++;
411
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length < copybreak) {
416 struct sk_buff *new_skb =
417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418 if (new_skb) {
419 skb_reserve(new_skb, NET_IP_ALIGN);
420 memcpy(new_skb->data - NET_IP_ALIGN,
421 skb->data - NET_IP_ALIGN,
422 length + NET_IP_ALIGN);
423 /* save the skb in buffer_info as good */
424 buffer_info->skb = skb;
425 skb = new_skb;
426 }
427 /* else just continue with the old one */
428 }
429 /* end copybreak code */
430 skb_put(skb, length);
431
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter,
434 (u32)(status) |
435 ((u32)(rx_desc->errors) << 24),
436 le16_to_cpu(rx_desc->csum), skb);
437
438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440next_desc:
441 rx_desc->status = 0;
442
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445 adapter->alloc_rx_buf(adapter, cleaned_count);
446 cleaned_count = 0;
447 }
448
449 /* use prefetched values */
450 rx_desc = next_rxd;
451 buffer_info = next_buffer;
452 }
453 rx_ring->next_to_clean = i;
454
455 cleaned_count = e1000_desc_unused(rx_ring);
456 if (cleaned_count)
457 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459 adapter->total_rx_packets += total_rx_packets;
460 adapter->total_rx_bytes += total_rx_bytes;
461 return cleaned;
462}
463
bc7f75fa
AK
464static void e1000_put_txbuf(struct e1000_adapter *adapter,
465 struct e1000_buffer *buffer_info)
466{
467 if (buffer_info->dma) {
468 pci_unmap_page(adapter->pdev, buffer_info->dma,
469 buffer_info->length, PCI_DMA_TODEVICE);
470 buffer_info->dma = 0;
471 }
472 if (buffer_info->skb) {
473 dev_kfree_skb_any(buffer_info->skb);
474 buffer_info->skb = NULL;
475 }
476}
477
478static void e1000_print_tx_hang(struct e1000_adapter *adapter)
479{
480 struct e1000_ring *tx_ring = adapter->tx_ring;
481 unsigned int i = tx_ring->next_to_clean;
482 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
483 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
484 struct net_device *netdev = adapter->netdev;
485
486 /* detected Tx unit hang */
487 ndev_err(netdev,
488 "Detected Tx Unit Hang:\n"
489 " TDH <%x>\n"
490 " TDT <%x>\n"
491 " next_to_use <%x>\n"
492 " next_to_clean <%x>\n"
493 "buffer_info[next_to_clean]:\n"
494 " time_stamp <%lx>\n"
495 " next_to_watch <%x>\n"
496 " jiffies <%lx>\n"
497 " next_to_watch.status <%x>\n",
498 readl(adapter->hw.hw_addr + tx_ring->head),
499 readl(adapter->hw.hw_addr + tx_ring->tail),
500 tx_ring->next_to_use,
501 tx_ring->next_to_clean,
502 tx_ring->buffer_info[eop].time_stamp,
503 eop,
504 jiffies,
505 eop_desc->upper.fields.status);
506}
507
508/**
509 * e1000_clean_tx_irq - Reclaim resources after transmit completes
510 * @adapter: board private structure
511 *
512 * the return value indicates whether actual cleaning was done, there
513 * is no guarantee that everything was cleaned
514 **/
515static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
516{
517 struct net_device *netdev = adapter->netdev;
518 struct e1000_hw *hw = &adapter->hw;
519 struct e1000_ring *tx_ring = adapter->tx_ring;
520 struct e1000_tx_desc *tx_desc, *eop_desc;
521 struct e1000_buffer *buffer_info;
522 unsigned int i, eop;
523 unsigned int count = 0;
524 bool cleaned = 0;
525 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
526
527 i = tx_ring->next_to_clean;
528 eop = tx_ring->buffer_info[i].next_to_watch;
529 eop_desc = E1000_TX_DESC(*tx_ring, eop);
530
531 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
532 for (cleaned = 0; !cleaned; ) {
533 tx_desc = E1000_TX_DESC(*tx_ring, i);
534 buffer_info = &tx_ring->buffer_info[i];
535 cleaned = (i == eop);
536
537 if (cleaned) {
538 struct sk_buff *skb = buffer_info->skb;
539 unsigned int segs, bytecount;
540 segs = skb_shinfo(skb)->gso_segs ?: 1;
541 /* multiply data chunks by size of headers */
542 bytecount = ((segs - 1) * skb_headlen(skb)) +
543 skb->len;
544 total_tx_packets += segs;
545 total_tx_bytes += bytecount;
546 }
547
548 e1000_put_txbuf(adapter, buffer_info);
549 tx_desc->upper.data = 0;
550
551 i++;
552 if (i == tx_ring->count)
553 i = 0;
554 }
555
556 eop = tx_ring->buffer_info[i].next_to_watch;
557 eop_desc = E1000_TX_DESC(*tx_ring, eop);
558#define E1000_TX_WEIGHT 64
559 /* weight of a sort for tx, to avoid endless transmit cleanup */
560 if (count++ == E1000_TX_WEIGHT)
561 break;
562 }
563
564 tx_ring->next_to_clean = i;
565
566#define TX_WAKE_THRESHOLD 32
567 if (cleaned && netif_carrier_ok(netdev) &&
568 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
569 /* Make sure that anybody stopping the queue after this
570 * sees the new next_to_clean.
571 */
572 smp_mb();
573
574 if (netif_queue_stopped(netdev) &&
575 !(test_bit(__E1000_DOWN, &adapter->state))) {
576 netif_wake_queue(netdev);
577 ++adapter->restart_queue;
578 }
579 }
580
581 if (adapter->detect_tx_hung) {
582 /* Detect a transmit hang in hardware, this serializes the
583 * check with the clearing of time_stamp and movement of i */
584 adapter->detect_tx_hung = 0;
585 if (tx_ring->buffer_info[eop].dma &&
586 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
587 + (adapter->tx_timeout_factor * HZ))
588 && !(er32(STATUS) &
589 E1000_STATUS_TXOFF)) {
590 e1000_print_tx_hang(adapter);
591 netif_stop_queue(netdev);
592 }
593 }
594 adapter->total_tx_bytes += total_tx_bytes;
595 adapter->total_tx_packets += total_tx_packets;
596 return cleaned;
597}
598
bc7f75fa
AK
599/**
600 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
601 * @adapter: board private structure
602 *
603 * the return value indicates whether actual cleaning was done, there
604 * is no guarantee that everything was cleaned
605 **/
606static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
607 int *work_done, int work_to_do)
608{
609 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
610 struct net_device *netdev = adapter->netdev;
611 struct pci_dev *pdev = adapter->pdev;
612 struct e1000_ring *rx_ring = adapter->rx_ring;
613 struct e1000_buffer *buffer_info, *next_buffer;
614 struct e1000_ps_page *ps_page;
615 struct sk_buff *skb;
616 unsigned int i, j;
617 u32 length, staterr;
618 int cleaned_count = 0;
619 bool cleaned = 0;
620 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
621
622 i = rx_ring->next_to_clean;
623 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
624 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
625 buffer_info = &rx_ring->buffer_info[i];
626
627 while (staterr & E1000_RXD_STAT_DD) {
628 if (*work_done >= work_to_do)
629 break;
630 (*work_done)++;
631 skb = buffer_info->skb;
632
633 /* in the packet split case this is header only */
634 prefetch(skb->data - NET_IP_ALIGN);
635
636 i++;
637 if (i == rx_ring->count)
638 i = 0;
639 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
640 prefetch(next_rxd);
641
642 next_buffer = &rx_ring->buffer_info[i];
643
644 cleaned = 1;
645 cleaned_count++;
646 pci_unmap_single(pdev, buffer_info->dma,
647 adapter->rx_ps_bsize0,
648 PCI_DMA_FROMDEVICE);
649 buffer_info->dma = 0;
650
651 if (!(staterr & E1000_RXD_STAT_EOP)) {
652 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
653 "up the full packet\n", netdev->name);
654 dev_kfree_skb_irq(skb);
655 goto next_desc;
656 }
657
658 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
659 dev_kfree_skb_irq(skb);
660 goto next_desc;
661 }
662
663 length = le16_to_cpu(rx_desc->wb.middle.length0);
664
665 if (!length) {
666 ndev_dbg(netdev, "%s: Last part of the packet spanning"
667 " multiple descriptors\n", netdev->name);
668 dev_kfree_skb_irq(skb);
669 goto next_desc;
670 }
671
672 /* Good Receive */
673 skb_put(skb, length);
674
675 {
676 /* this looks ugly, but it seems compiler issues make it
677 more efficient than reusing j */
678 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
679
680 /* page alloc/put takes too long and effects small packet
681 * throughput, so unsplit small packets and save the alloc/put*/
682 if (l1 && (l1 <= copybreak) &&
683 ((length + l1) <= adapter->rx_ps_bsize0)) {
684 u8 *vaddr;
685
47f44e40 686 ps_page = &buffer_info->ps_pages[0];
bc7f75fa
AK
687
688 /* there is no documentation about how to call
689 * kmap_atomic, so we can't hold the mapping
690 * very long */
691 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
692 PAGE_SIZE, PCI_DMA_FROMDEVICE);
693 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
694 memcpy(skb_tail_pointer(skb), vaddr, l1);
695 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
696 pci_dma_sync_single_for_device(pdev, ps_page->dma,
697 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 698
bc7f75fa
AK
699 skb_put(skb, l1);
700 goto copydone;
701 } /* if */
702 }
703
704 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
705 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
706 if (!length)
707 break;
708
47f44e40 709 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
710 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
711 PCI_DMA_FROMDEVICE);
712 ps_page->dma = 0;
713 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
714 ps_page->page = NULL;
715 skb->len += length;
716 skb->data_len += length;
717 skb->truesize += length;
718 }
719
bc7f75fa
AK
720copydone:
721 total_rx_bytes += skb->len;
722 total_rx_packets++;
723
724 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
725 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
726
727 if (rx_desc->wb.upper.header_status &
728 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
729 adapter->rx_hdr_split++;
730
731 e1000_receive_skb(adapter, netdev, skb,
732 staterr, rx_desc->wb.middle.vlan);
733
734next_desc:
735 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
736 buffer_info->skb = NULL;
737
738 /* return some buffers to hardware, one at a time is too slow */
739 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
740 adapter->alloc_rx_buf(adapter, cleaned_count);
741 cleaned_count = 0;
742 }
743
744 /* use prefetched values */
745 rx_desc = next_rxd;
746 buffer_info = next_buffer;
747
748 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
749 }
750 rx_ring->next_to_clean = i;
751
752 cleaned_count = e1000_desc_unused(rx_ring);
753 if (cleaned_count)
754 adapter->alloc_rx_buf(adapter, cleaned_count);
755
756 adapter->total_rx_packets += total_rx_packets;
757 adapter->total_rx_bytes += total_rx_bytes;
758 return cleaned;
759}
760
761/**
762 * e1000_clean_rx_ring - Free Rx Buffers per Queue
763 * @adapter: board private structure
764 **/
765static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
766{
767 struct e1000_ring *rx_ring = adapter->rx_ring;
768 struct e1000_buffer *buffer_info;
769 struct e1000_ps_page *ps_page;
770 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
771 unsigned int i, j;
772
773 /* Free all the Rx ring sk_buffs */
774 for (i = 0; i < rx_ring->count; i++) {
775 buffer_info = &rx_ring->buffer_info[i];
776 if (buffer_info->dma) {
777 if (adapter->clean_rx == e1000_clean_rx_irq)
778 pci_unmap_single(pdev, buffer_info->dma,
779 adapter->rx_buffer_len,
780 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
781 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
782 pci_unmap_single(pdev, buffer_info->dma,
783 adapter->rx_ps_bsize0,
784 PCI_DMA_FROMDEVICE);
785 buffer_info->dma = 0;
786 }
787
bc7f75fa
AK
788 if (buffer_info->skb) {
789 dev_kfree_skb(buffer_info->skb);
790 buffer_info->skb = NULL;
791 }
792
793 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 794 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
795 if (!ps_page->page)
796 break;
797 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
798 PCI_DMA_FROMDEVICE);
799 ps_page->dma = 0;
800 put_page(ps_page->page);
801 ps_page->page = NULL;
802 }
803 }
804
805 /* there also may be some cached data from a chained receive */
806 if (rx_ring->rx_skb_top) {
807 dev_kfree_skb(rx_ring->rx_skb_top);
808 rx_ring->rx_skb_top = NULL;
809 }
810
bc7f75fa
AK
811 /* Zero out the descriptor ring */
812 memset(rx_ring->desc, 0, rx_ring->size);
813
814 rx_ring->next_to_clean = 0;
815 rx_ring->next_to_use = 0;
816
817 writel(0, adapter->hw.hw_addr + rx_ring->head);
818 writel(0, adapter->hw.hw_addr + rx_ring->tail);
819}
820
821/**
822 * e1000_intr_msi - Interrupt Handler
823 * @irq: interrupt number
824 * @data: pointer to a network interface device structure
825 **/
826static irqreturn_t e1000_intr_msi(int irq, void *data)
827{
828 struct net_device *netdev = data;
829 struct e1000_adapter *adapter = netdev_priv(netdev);
830 struct e1000_hw *hw = &adapter->hw;
831 u32 icr = er32(ICR);
832
833 /* read ICR disables interrupts using IAM, so keep up with our
834 * enable/disable accounting */
835 atomic_inc(&adapter->irq_sem);
836
837 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
838 hw->mac.get_link_status = 1;
839 /* ICH8 workaround-- Call gig speed drop workaround on cable
840 * disconnect (LSC) before accessing any PHY registers */
841 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
842 (!(er32(STATUS) & E1000_STATUS_LU)))
843 e1000e_gig_downshift_workaround_ich8lan(hw);
844
845 /* 80003ES2LAN workaround-- For packet buffer work-around on
846 * link down event; disable receives here in the ISR and reset
847 * adapter in watchdog */
848 if (netif_carrier_ok(netdev) &&
849 adapter->flags & FLAG_RX_NEEDS_RESTART) {
850 /* disable receives */
851 u32 rctl = er32(RCTL);
852 ew32(RCTL, rctl & ~E1000_RCTL_EN);
853 }
854 /* guard against interrupt when we're going down */
855 if (!test_bit(__E1000_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
857 }
858
859 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
860 adapter->total_tx_bytes = 0;
861 adapter->total_tx_packets = 0;
862 adapter->total_rx_bytes = 0;
863 adapter->total_rx_packets = 0;
864 __netif_rx_schedule(netdev, &adapter->napi);
865 } else {
866 atomic_dec(&adapter->irq_sem);
867 }
868
869 return IRQ_HANDLED;
870}
871
872/**
873 * e1000_intr - Interrupt Handler
874 * @irq: interrupt number
875 * @data: pointer to a network interface device structure
876 **/
877static irqreturn_t e1000_intr(int irq, void *data)
878{
879 struct net_device *netdev = data;
880 struct e1000_adapter *adapter = netdev_priv(netdev);
881 struct e1000_hw *hw = &adapter->hw;
882
883 u32 rctl, icr = er32(ICR);
884 if (!icr)
885 return IRQ_NONE; /* Not our interrupt */
886
887 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
888 * not set, then the adapter didn't send an interrupt */
889 if (!(icr & E1000_ICR_INT_ASSERTED))
890 return IRQ_NONE;
891
892 /* Interrupt Auto-Mask...upon reading ICR,
893 * interrupts are masked. No need for the
894 * IMC write, but it does mean we should
895 * account for it ASAP. */
896 atomic_inc(&adapter->irq_sem);
897
898 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
899 hw->mac.get_link_status = 1;
900 /* ICH8 workaround-- Call gig speed drop workaround on cable
901 * disconnect (LSC) before accessing any PHY registers */
902 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
903 (!(er32(STATUS) & E1000_STATUS_LU)))
904 e1000e_gig_downshift_workaround_ich8lan(hw);
905
906 /* 80003ES2LAN workaround--
907 * For packet buffer work-around on link down event;
908 * disable receives here in the ISR and
909 * reset adapter in watchdog
910 */
911 if (netif_carrier_ok(netdev) &&
912 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
913 /* disable receives */
914 rctl = er32(RCTL);
915 ew32(RCTL, rctl & ~E1000_RCTL_EN);
916 }
917 /* guard against interrupt when we're going down */
918 if (!test_bit(__E1000_DOWN, &adapter->state))
919 mod_timer(&adapter->watchdog_timer, jiffies + 1);
920 }
921
922 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
923 adapter->total_tx_bytes = 0;
924 adapter->total_tx_packets = 0;
925 adapter->total_rx_bytes = 0;
926 adapter->total_rx_packets = 0;
927 __netif_rx_schedule(netdev, &adapter->napi);
928 } else {
929 atomic_dec(&adapter->irq_sem);
930 }
931
932 return IRQ_HANDLED;
933}
934
935static int e1000_request_irq(struct e1000_adapter *adapter)
936{
937 struct net_device *netdev = adapter->netdev;
938 void (*handler) = &e1000_intr;
939 int irq_flags = IRQF_SHARED;
940 int err;
941
942 err = pci_enable_msi(adapter->pdev);
943 if (err) {
944 ndev_warn(netdev,
945 "Unable to allocate MSI interrupt Error: %d\n", err);
946 } else {
947 adapter->flags |= FLAG_MSI_ENABLED;
948 handler = &e1000_intr_msi;
949 irq_flags = 0;
950 }
951
952 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
953 netdev);
954 if (err) {
955 if (adapter->flags & FLAG_MSI_ENABLED)
956 pci_disable_msi(adapter->pdev);
957 ndev_err(netdev,
958 "Unable to allocate interrupt Error: %d\n", err);
959 }
960
961 return err;
962}
963
964static void e1000_free_irq(struct e1000_adapter *adapter)
965{
966 struct net_device *netdev = adapter->netdev;
967
968 free_irq(adapter->pdev->irq, netdev);
969 if (adapter->flags & FLAG_MSI_ENABLED) {
970 pci_disable_msi(adapter->pdev);
971 adapter->flags &= ~FLAG_MSI_ENABLED;
972 }
973}
974
975/**
976 * e1000_irq_disable - Mask off interrupt generation on the NIC
977 **/
978static void e1000_irq_disable(struct e1000_adapter *adapter)
979{
980 struct e1000_hw *hw = &adapter->hw;
981
982 atomic_inc(&adapter->irq_sem);
983 ew32(IMC, ~0);
984 e1e_flush();
985 synchronize_irq(adapter->pdev->irq);
986}
987
988/**
989 * e1000_irq_enable - Enable default interrupt generation settings
990 **/
991static void e1000_irq_enable(struct e1000_adapter *adapter)
992{
993 struct e1000_hw *hw = &adapter->hw;
994
995 if (atomic_dec_and_test(&adapter->irq_sem)) {
996 ew32(IMS, IMS_ENABLE_MASK);
997 e1e_flush();
998 }
999}
1000
1001/**
1002 * e1000_get_hw_control - get control of the h/w from f/w
1003 * @adapter: address of board private structure
1004 *
1005 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1006 * For ASF and Pass Through versions of f/w this means that
1007 * the driver is loaded. For AMT version (only with 82573)
1008 * of the f/w this means that the network i/f is open.
1009 **/
1010static void e1000_get_hw_control(struct e1000_adapter *adapter)
1011{
1012 struct e1000_hw *hw = &adapter->hw;
1013 u32 ctrl_ext;
1014 u32 swsm;
1015
1016 /* Let firmware know the driver has taken over */
1017 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1018 swsm = er32(SWSM);
1019 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1020 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1021 ctrl_ext = er32(CTRL_EXT);
1022 ew32(CTRL_EXT,
1023 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1024 }
1025}
1026
1027/**
1028 * e1000_release_hw_control - release control of the h/w to f/w
1029 * @adapter: address of board private structure
1030 *
1031 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1032 * For ASF and Pass Through versions of f/w this means that the
1033 * driver is no longer loaded. For AMT version (only with 82573) i
1034 * of the f/w this means that the network i/f is closed.
1035 *
1036 **/
1037static void e1000_release_hw_control(struct e1000_adapter *adapter)
1038{
1039 struct e1000_hw *hw = &adapter->hw;
1040 u32 ctrl_ext;
1041 u32 swsm;
1042
1043 /* Let firmware taken over control of h/w */
1044 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1045 swsm = er32(SWSM);
1046 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1047 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1048 ctrl_ext = er32(CTRL_EXT);
1049 ew32(CTRL_EXT,
1050 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1051 }
1052}
1053
1054static void e1000_release_manageability(struct e1000_adapter *adapter)
1055{
1056 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1057 struct e1000_hw *hw = &adapter->hw;
1058
1059 u32 manc = er32(MANC);
1060
1061 /* re-enable hardware interception of ARP */
1062 manc |= E1000_MANC_ARP_EN;
1063 manc &= ~E1000_MANC_EN_MNG2HOST;
1064
1065 /* don't explicitly have to mess with MANC2H since
1066 * MANC has an enable disable that gates MANC2H */
1067 ew32(MANC, manc);
1068 }
1069}
1070
1071/**
1072 * @e1000_alloc_ring - allocate memory for a ring structure
1073 **/
1074static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1075 struct e1000_ring *ring)
1076{
1077 struct pci_dev *pdev = adapter->pdev;
1078
1079 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1080 GFP_KERNEL);
1081 if (!ring->desc)
1082 return -ENOMEM;
1083
1084 return 0;
1085}
1086
1087/**
1088 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1089 * @adapter: board private structure
1090 *
1091 * Return 0 on success, negative on failure
1092 **/
1093int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1094{
1095 struct e1000_ring *tx_ring = adapter->tx_ring;
1096 int err = -ENOMEM, size;
1097
1098 size = sizeof(struct e1000_buffer) * tx_ring->count;
1099 tx_ring->buffer_info = vmalloc(size);
1100 if (!tx_ring->buffer_info)
1101 goto err;
1102 memset(tx_ring->buffer_info, 0, size);
1103
1104 /* round up to nearest 4K */
1105 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1106 tx_ring->size = ALIGN(tx_ring->size, 4096);
1107
1108 err = e1000_alloc_ring_dma(adapter, tx_ring);
1109 if (err)
1110 goto err;
1111
1112 tx_ring->next_to_use = 0;
1113 tx_ring->next_to_clean = 0;
1114 spin_lock_init(&adapter->tx_queue_lock);
1115
1116 return 0;
1117err:
1118 vfree(tx_ring->buffer_info);
1119 ndev_err(adapter->netdev,
1120 "Unable to allocate memory for the transmit descriptor ring\n");
1121 return err;
1122}
1123
1124/**
1125 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1126 * @adapter: board private structure
1127 *
1128 * Returns 0 on success, negative on failure
1129 **/
1130int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1131{
1132 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1133 struct e1000_buffer *buffer_info;
1134 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1135
1136 size = sizeof(struct e1000_buffer) * rx_ring->count;
1137 rx_ring->buffer_info = vmalloc(size);
1138 if (!rx_ring->buffer_info)
1139 goto err;
1140 memset(rx_ring->buffer_info, 0, size);
1141
47f44e40
AK
1142 for (i = 0; i < rx_ring->count; i++) {
1143 buffer_info = &rx_ring->buffer_info[i];
1144 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1145 sizeof(struct e1000_ps_page),
1146 GFP_KERNEL);
1147 if (!buffer_info->ps_pages)
1148 goto err_pages;
1149 }
bc7f75fa
AK
1150
1151 desc_len = sizeof(union e1000_rx_desc_packet_split);
1152
1153 /* Round up to nearest 4K */
1154 rx_ring->size = rx_ring->count * desc_len;
1155 rx_ring->size = ALIGN(rx_ring->size, 4096);
1156
1157 err = e1000_alloc_ring_dma(adapter, rx_ring);
1158 if (err)
47f44e40 1159 goto err_pages;
bc7f75fa
AK
1160
1161 rx_ring->next_to_clean = 0;
1162 rx_ring->next_to_use = 0;
1163 rx_ring->rx_skb_top = NULL;
1164
1165 return 0;
47f44e40
AK
1166
1167err_pages:
1168 for (i = 0; i < rx_ring->count; i++) {
1169 buffer_info = &rx_ring->buffer_info[i];
1170 kfree(buffer_info->ps_pages);
1171 }
bc7f75fa
AK
1172err:
1173 vfree(rx_ring->buffer_info);
bc7f75fa
AK
1174 ndev_err(adapter->netdev,
1175 "Unable to allocate memory for the transmit descriptor ring\n");
1176 return err;
1177}
1178
1179/**
1180 * e1000_clean_tx_ring - Free Tx Buffers
1181 * @adapter: board private structure
1182 **/
1183static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = adapter->tx_ring;
1186 struct e1000_buffer *buffer_info;
1187 unsigned long size;
1188 unsigned int i;
1189
1190 for (i = 0; i < tx_ring->count; i++) {
1191 buffer_info = &tx_ring->buffer_info[i];
1192 e1000_put_txbuf(adapter, buffer_info);
1193 }
1194
1195 size = sizeof(struct e1000_buffer) * tx_ring->count;
1196 memset(tx_ring->buffer_info, 0, size);
1197
1198 memset(tx_ring->desc, 0, tx_ring->size);
1199
1200 tx_ring->next_to_use = 0;
1201 tx_ring->next_to_clean = 0;
1202
1203 writel(0, adapter->hw.hw_addr + tx_ring->head);
1204 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1205}
1206
1207/**
1208 * e1000e_free_tx_resources - Free Tx Resources per Queue
1209 * @adapter: board private structure
1210 *
1211 * Free all transmit software resources
1212 **/
1213void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1214{
1215 struct pci_dev *pdev = adapter->pdev;
1216 struct e1000_ring *tx_ring = adapter->tx_ring;
1217
1218 e1000_clean_tx_ring(adapter);
1219
1220 vfree(tx_ring->buffer_info);
1221 tx_ring->buffer_info = NULL;
1222
1223 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1224 tx_ring->dma);
1225 tx_ring->desc = NULL;
1226}
1227
1228/**
1229 * e1000e_free_rx_resources - Free Rx Resources
1230 * @adapter: board private structure
1231 *
1232 * Free all receive software resources
1233 **/
1234
1235void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1236{
1237 struct pci_dev *pdev = adapter->pdev;
1238 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1239 int i;
bc7f75fa
AK
1240
1241 e1000_clean_rx_ring(adapter);
1242
47f44e40
AK
1243 for (i = 0; i < rx_ring->count; i++) {
1244 kfree(rx_ring->buffer_info[i].ps_pages);
1245 }
1246
bc7f75fa
AK
1247 vfree(rx_ring->buffer_info);
1248 rx_ring->buffer_info = NULL;
1249
bc7f75fa
AK
1250 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1251 rx_ring->dma);
1252 rx_ring->desc = NULL;
1253}
1254
1255/**
1256 * e1000_update_itr - update the dynamic ITR value based on statistics
1257 * Stores a new ITR value based on packets and byte
1258 * counts during the last interrupt. The advantage of per interrupt
1259 * computation is faster updates and more accurate ITR for the current
1260 * traffic pattern. Constants in this function were computed
1261 * based on theoretical maximum wire speed and thresholds were set based
1262 * on testing data as well as attempting to minimize response time
1263 * while increasing bulk throughput.
1264 * this functionality is controlled by the InterruptThrottleRate module
1265 * parameter (see e1000_param.c)
1266 * @adapter: pointer to adapter
1267 * @itr_setting: current adapter->itr
1268 * @packets: the number of packets during this measurement interval
1269 * @bytes: the number of bytes during this measurement interval
1270 **/
1271static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1272 u16 itr_setting, int packets,
1273 int bytes)
1274{
1275 unsigned int retval = itr_setting;
1276
1277 if (packets == 0)
1278 goto update_itr_done;
1279
1280 switch (itr_setting) {
1281 case lowest_latency:
1282 /* handle TSO and jumbo frames */
1283 if (bytes/packets > 8000)
1284 retval = bulk_latency;
1285 else if ((packets < 5) && (bytes > 512)) {
1286 retval = low_latency;
1287 }
1288 break;
1289 case low_latency: /* 50 usec aka 20000 ints/s */
1290 if (bytes > 10000) {
1291 /* this if handles the TSO accounting */
1292 if (bytes/packets > 8000) {
1293 retval = bulk_latency;
1294 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1295 retval = bulk_latency;
1296 } else if ((packets > 35)) {
1297 retval = lowest_latency;
1298 }
1299 } else if (bytes/packets > 2000) {
1300 retval = bulk_latency;
1301 } else if (packets <= 2 && bytes < 512) {
1302 retval = lowest_latency;
1303 }
1304 break;
1305 case bulk_latency: /* 250 usec aka 4000 ints/s */
1306 if (bytes > 25000) {
1307 if (packets > 35) {
1308 retval = low_latency;
1309 }
1310 } else if (bytes < 6000) {
1311 retval = low_latency;
1312 }
1313 break;
1314 }
1315
1316update_itr_done:
1317 return retval;
1318}
1319
1320static void e1000_set_itr(struct e1000_adapter *adapter)
1321{
1322 struct e1000_hw *hw = &adapter->hw;
1323 u16 current_itr;
1324 u32 new_itr = adapter->itr;
1325
1326 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1327 if (adapter->link_speed != SPEED_1000) {
1328 current_itr = 0;
1329 new_itr = 4000;
1330 goto set_itr_now;
1331 }
1332
1333 adapter->tx_itr = e1000_update_itr(adapter,
1334 adapter->tx_itr,
1335 adapter->total_tx_packets,
1336 adapter->total_tx_bytes);
1337 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1338 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1339 adapter->tx_itr = low_latency;
1340
1341 adapter->rx_itr = e1000_update_itr(adapter,
1342 adapter->rx_itr,
1343 adapter->total_rx_packets,
1344 adapter->total_rx_bytes);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1347 adapter->rx_itr = low_latency;
1348
1349 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1350
1351 switch (current_itr) {
1352 /* counts and packets in update_itr are dependent on these numbers */
1353 case lowest_latency:
1354 new_itr = 70000;
1355 break;
1356 case low_latency:
1357 new_itr = 20000; /* aka hwitr = ~200 */
1358 break;
1359 case bulk_latency:
1360 new_itr = 4000;
1361 break;
1362 default:
1363 break;
1364 }
1365
1366set_itr_now:
1367 if (new_itr != adapter->itr) {
1368 /* this attempts to bias the interrupt rate towards Bulk
1369 * by adding intermediate steps when interrupt rate is
1370 * increasing */
1371 new_itr = new_itr > adapter->itr ?
1372 min(adapter->itr + (new_itr >> 2), new_itr) :
1373 new_itr;
1374 adapter->itr = new_itr;
1375 ew32(ITR, 1000000000 / (new_itr * 256));
1376 }
1377}
1378
1379/**
1380 * e1000_clean - NAPI Rx polling callback
1381 * @adapter: board private structure
1382 **/
1383static int e1000_clean(struct napi_struct *napi, int budget)
1384{
1385 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1386 struct net_device *poll_dev = adapter->netdev;
53e52c72 1387 int work_done = 0;
bc7f75fa
AK
1388
1389 /* Must NOT use netdev_priv macro here. */
1390 adapter = poll_dev->priv;
1391
bc7f75fa
AK
1392 /* e1000_clean is called per-cpu. This lock protects
1393 * tx_ring from being cleaned by multiple cpus
1394 * simultaneously. A failure obtaining the lock means
1395 * tx_ring is currently being cleaned anyway. */
1396 if (spin_trylock(&adapter->tx_queue_lock)) {
53e52c72 1397 e1000_clean_tx_irq(adapter);
bc7f75fa
AK
1398 spin_unlock(&adapter->tx_queue_lock);
1399 }
1400
1401 adapter->clean_rx(adapter, &work_done, budget);
1402
53e52c72
DM
1403 /* If budget not fully consumed, exit the polling mode */
1404 if (work_done < budget) {
bc7f75fa
AK
1405 if (adapter->itr_setting & 3)
1406 e1000_set_itr(adapter);
1407 netif_rx_complete(poll_dev, napi);
1408 e1000_irq_enable(adapter);
1409 }
1410
1411 return work_done;
1412}
1413
1414static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1415{
1416 struct e1000_adapter *adapter = netdev_priv(netdev);
1417 struct e1000_hw *hw = &adapter->hw;
1418 u32 vfta, index;
1419
1420 /* don't update vlan cookie if already programmed */
1421 if ((adapter->hw.mng_cookie.status &
1422 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1423 (vid == adapter->mng_vlan_id))
1424 return;
1425 /* add VID to filter table */
1426 index = (vid >> 5) & 0x7F;
1427 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1428 vfta |= (1 << (vid & 0x1F));
1429 e1000e_write_vfta(hw, index, vfta);
1430}
1431
1432static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1433{
1434 struct e1000_adapter *adapter = netdev_priv(netdev);
1435 struct e1000_hw *hw = &adapter->hw;
1436 u32 vfta, index;
1437
1438 e1000_irq_disable(adapter);
1439 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1440 e1000_irq_enable(adapter);
1441
1442 if ((adapter->hw.mng_cookie.status &
1443 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1444 (vid == adapter->mng_vlan_id)) {
1445 /* release control to f/w */
1446 e1000_release_hw_control(adapter);
1447 return;
1448 }
1449
1450 /* remove VID from filter table */
1451 index = (vid >> 5) & 0x7F;
1452 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1453 vfta &= ~(1 << (vid & 0x1F));
1454 e1000e_write_vfta(hw, index, vfta);
1455}
1456
1457static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1458{
1459 struct net_device *netdev = adapter->netdev;
1460 u16 vid = adapter->hw.mng_cookie.vlan_id;
1461 u16 old_vid = adapter->mng_vlan_id;
1462
1463 if (!adapter->vlgrp)
1464 return;
1465
1466 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1467 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1468 if (adapter->hw.mng_cookie.status &
1469 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1470 e1000_vlan_rx_add_vid(netdev, vid);
1471 adapter->mng_vlan_id = vid;
1472 }
1473
1474 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1475 (vid != old_vid) &&
1476 !vlan_group_get_device(adapter->vlgrp, old_vid))
1477 e1000_vlan_rx_kill_vid(netdev, old_vid);
1478 } else {
1479 adapter->mng_vlan_id = vid;
1480 }
1481}
1482
1483
1484static void e1000_vlan_rx_register(struct net_device *netdev,
1485 struct vlan_group *grp)
1486{
1487 struct e1000_adapter *adapter = netdev_priv(netdev);
1488 struct e1000_hw *hw = &adapter->hw;
1489 u32 ctrl, rctl;
1490
1491 e1000_irq_disable(adapter);
1492 adapter->vlgrp = grp;
1493
1494 if (grp) {
1495 /* enable VLAN tag insert/strip */
1496 ctrl = er32(CTRL);
1497 ctrl |= E1000_CTRL_VME;
1498 ew32(CTRL, ctrl);
1499
1500 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1501 /* enable VLAN receive filtering */
1502 rctl = er32(RCTL);
1503 rctl |= E1000_RCTL_VFE;
1504 rctl &= ~E1000_RCTL_CFIEN;
1505 ew32(RCTL, rctl);
1506 e1000_update_mng_vlan(adapter);
1507 }
1508 } else {
1509 /* disable VLAN tag insert/strip */
1510 ctrl = er32(CTRL);
1511 ctrl &= ~E1000_CTRL_VME;
1512 ew32(CTRL, ctrl);
1513
1514 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1515 /* disable VLAN filtering */
1516 rctl = er32(RCTL);
1517 rctl &= ~E1000_RCTL_VFE;
1518 ew32(RCTL, rctl);
1519 if (adapter->mng_vlan_id !=
1520 (u16)E1000_MNG_VLAN_NONE) {
1521 e1000_vlan_rx_kill_vid(netdev,
1522 adapter->mng_vlan_id);
1523 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1524 }
1525 }
1526 }
1527
1528 e1000_irq_enable(adapter);
1529}
1530
1531static void e1000_restore_vlan(struct e1000_adapter *adapter)
1532{
1533 u16 vid;
1534
1535 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1536
1537 if (!adapter->vlgrp)
1538 return;
1539
1540 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1541 if (!vlan_group_get_device(adapter->vlgrp, vid))
1542 continue;
1543 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1544 }
1545}
1546
1547static void e1000_init_manageability(struct e1000_adapter *adapter)
1548{
1549 struct e1000_hw *hw = &adapter->hw;
1550 u32 manc, manc2h;
1551
1552 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1553 return;
1554
1555 manc = er32(MANC);
1556
1557 /* disable hardware interception of ARP */
1558 manc &= ~(E1000_MANC_ARP_EN);
1559
1560 /* enable receiving management packets to the host. this will probably
1561 * generate destination unreachable messages from the host OS, but
1562 * the packets will be handled on SMBUS */
1563 manc |= E1000_MANC_EN_MNG2HOST;
1564 manc2h = er32(MANC2H);
1565#define E1000_MNG2HOST_PORT_623 (1 << 5)
1566#define E1000_MNG2HOST_PORT_664 (1 << 6)
1567 manc2h |= E1000_MNG2HOST_PORT_623;
1568 manc2h |= E1000_MNG2HOST_PORT_664;
1569 ew32(MANC2H, manc2h);
1570 ew32(MANC, manc);
1571}
1572
1573/**
1574 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1575 * @adapter: board private structure
1576 *
1577 * Configure the Tx unit of the MAC after a reset.
1578 **/
1579static void e1000_configure_tx(struct e1000_adapter *adapter)
1580{
1581 struct e1000_hw *hw = &adapter->hw;
1582 struct e1000_ring *tx_ring = adapter->tx_ring;
1583 u64 tdba;
1584 u32 tdlen, tctl, tipg, tarc;
1585 u32 ipgr1, ipgr2;
1586
1587 /* Setup the HW Tx Head and Tail descriptor pointers */
1588 tdba = tx_ring->dma;
1589 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1590 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1591 ew32(TDBAH, (tdba >> 32));
1592 ew32(TDLEN, tdlen);
1593 ew32(TDH, 0);
1594 ew32(TDT, 0);
1595 tx_ring->head = E1000_TDH;
1596 tx_ring->tail = E1000_TDT;
1597
1598 /* Set the default values for the Tx Inter Packet Gap timer */
1599 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1600 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1601 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1602
1603 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1604 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1605
1606 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1607 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1608 ew32(TIPG, tipg);
1609
1610 /* Set the Tx Interrupt Delay register */
1611 ew32(TIDV, adapter->tx_int_delay);
1612 /* tx irq moderation */
1613 ew32(TADV, adapter->tx_abs_int_delay);
1614
1615 /* Program the Transmit Control Register */
1616 tctl = er32(TCTL);
1617 tctl &= ~E1000_TCTL_CT;
1618 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1619 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1620
1621 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1622 tarc = er32(TARC0);
1623 /* set the speed mode bit, we'll clear it if we're not at
1624 * gigabit link later */
1625#define SPEED_MODE_BIT (1 << 21)
1626 tarc |= SPEED_MODE_BIT;
1627 ew32(TARC0, tarc);
1628 }
1629
1630 /* errata: program both queues to unweighted RR */
1631 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1632 tarc = er32(TARC0);
1633 tarc |= 1;
1634 ew32(TARC0, tarc);
1635 tarc = er32(TARC1);
1636 tarc |= 1;
1637 ew32(TARC1, tarc);
1638 }
1639
1640 e1000e_config_collision_dist(hw);
1641
1642 /* Setup Transmit Descriptor Settings for eop descriptor */
1643 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1644
1645 /* only set IDE if we are delaying interrupts using the timers */
1646 if (adapter->tx_int_delay)
1647 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1648
1649 /* enable Report Status bit */
1650 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1651
1652 ew32(TCTL, tctl);
1653
1654 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1655}
1656
1657/**
1658 * e1000_setup_rctl - configure the receive control registers
1659 * @adapter: Board private structure
1660 **/
1661#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1662 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1663static void e1000_setup_rctl(struct e1000_adapter *adapter)
1664{
1665 struct e1000_hw *hw = &adapter->hw;
1666 u32 rctl, rfctl;
1667 u32 psrctl = 0;
1668 u32 pages = 0;
1669
1670 /* Program MC offset vector base */
1671 rctl = er32(RCTL);
1672 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1673 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1674 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1675 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1676
1677 /* Do not Store bad packets */
1678 rctl &= ~E1000_RCTL_SBP;
1679
1680 /* Enable Long Packet receive */
1681 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1682 rctl &= ~E1000_RCTL_LPE;
1683 else
1684 rctl |= E1000_RCTL_LPE;
1685
1686 /* Setup buffer sizes */
1687 rctl &= ~E1000_RCTL_SZ_4096;
1688 rctl |= E1000_RCTL_BSEX;
1689 switch (adapter->rx_buffer_len) {
1690 case 256:
1691 rctl |= E1000_RCTL_SZ_256;
1692 rctl &= ~E1000_RCTL_BSEX;
1693 break;
1694 case 512:
1695 rctl |= E1000_RCTL_SZ_512;
1696 rctl &= ~E1000_RCTL_BSEX;
1697 break;
1698 case 1024:
1699 rctl |= E1000_RCTL_SZ_1024;
1700 rctl &= ~E1000_RCTL_BSEX;
1701 break;
1702 case 2048:
1703 default:
1704 rctl |= E1000_RCTL_SZ_2048;
1705 rctl &= ~E1000_RCTL_BSEX;
1706 break;
1707 case 4096:
1708 rctl |= E1000_RCTL_SZ_4096;
1709 break;
1710 case 8192:
1711 rctl |= E1000_RCTL_SZ_8192;
1712 break;
1713 case 16384:
1714 rctl |= E1000_RCTL_SZ_16384;
1715 break;
1716 }
1717
1718 /*
1719 * 82571 and greater support packet-split where the protocol
1720 * header is placed in skb->data and the packet data is
1721 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1722 * In the case of a non-split, skb->data is linearly filled,
1723 * followed by the page buffers. Therefore, skb->data is
1724 * sized to hold the largest protocol header.
1725 *
1726 * allocations using alloc_page take too long for regular MTU
1727 * so only enable packet split for jumbo frames
1728 *
1729 * Using pages when the page size is greater than 16k wastes
1730 * a lot of memory, since we allocate 3 pages at all times
1731 * per packet.
1732 */
1733 adapter->rx_ps_pages = 0;
1734 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1735 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1736 adapter->rx_ps_pages = pages;
1737
1738 if (adapter->rx_ps_pages) {
1739 /* Configure extra packet-split registers */
1740 rfctl = er32(RFCTL);
1741 rfctl |= E1000_RFCTL_EXTEN;
1742 /* disable packet split support for IPv6 extension headers,
1743 * because some malformed IPv6 headers can hang the RX */
1744 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1745 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1746
1747 ew32(RFCTL, rfctl);
1748
140a7480
AK
1749 /* Enable Packet split descriptors */
1750 rctl |= E1000_RCTL_DTYP_PS;
1751
1752 /* Enable hardware CRC frame stripping */
1753 rctl |= E1000_RCTL_SECRC;
bc7f75fa
AK
1754
1755 psrctl |= adapter->rx_ps_bsize0 >>
1756 E1000_PSRCTL_BSIZE0_SHIFT;
1757
1758 switch (adapter->rx_ps_pages) {
1759 case 3:
1760 psrctl |= PAGE_SIZE <<
1761 E1000_PSRCTL_BSIZE3_SHIFT;
1762 case 2:
1763 psrctl |= PAGE_SIZE <<
1764 E1000_PSRCTL_BSIZE2_SHIFT;
1765 case 1:
1766 psrctl |= PAGE_SIZE >>
1767 E1000_PSRCTL_BSIZE1_SHIFT;
1768 break;
1769 }
1770
1771 ew32(PSRCTL, psrctl);
1772 }
1773
1774 ew32(RCTL, rctl);
1775}
1776
1777/**
1778 * e1000_configure_rx - Configure Receive Unit after Reset
1779 * @adapter: board private structure
1780 *
1781 * Configure the Rx unit of the MAC after a reset.
1782 **/
1783static void e1000_configure_rx(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 struct e1000_ring *rx_ring = adapter->rx_ring;
1787 u64 rdba;
1788 u32 rdlen, rctl, rxcsum, ctrl_ext;
1789
1790 if (adapter->rx_ps_pages) {
1791 /* this is a 32 byte descriptor */
1792 rdlen = rx_ring->count *
1793 sizeof(union e1000_rx_desc_packet_split);
1794 adapter->clean_rx = e1000_clean_rx_irq_ps;
1795 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
bc7f75fa
AK
1796 } else {
1797 rdlen = rx_ring->count *
1798 sizeof(struct e1000_rx_desc);
1799 adapter->clean_rx = e1000_clean_rx_irq;
1800 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1801 }
1802
1803 /* disable receives while setting up the descriptors */
1804 rctl = er32(RCTL);
1805 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1806 e1e_flush();
1807 msleep(10);
1808
1809 /* set the Receive Delay Timer Register */
1810 ew32(RDTR, adapter->rx_int_delay);
1811
1812 /* irq moderation */
1813 ew32(RADV, adapter->rx_abs_int_delay);
1814 if (adapter->itr_setting != 0)
1815 ew32(ITR,
1816 1000000000 / (adapter->itr * 256));
1817
1818 ctrl_ext = er32(CTRL_EXT);
1819 /* Reset delay timers after every interrupt */
1820 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1821 /* Auto-Mask interrupts upon ICR access */
1822 ctrl_ext |= E1000_CTRL_EXT_IAME;
1823 ew32(IAM, 0xffffffff);
1824 ew32(CTRL_EXT, ctrl_ext);
1825 e1e_flush();
1826
1827 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1828 * the Base and Length of the Rx Descriptor Ring */
1829 rdba = rx_ring->dma;
1830 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1831 ew32(RDBAH, (rdba >> 32));
1832 ew32(RDLEN, rdlen);
1833 ew32(RDH, 0);
1834 ew32(RDT, 0);
1835 rx_ring->head = E1000_RDH;
1836 rx_ring->tail = E1000_RDT;
1837
1838 /* Enable Receive Checksum Offload for TCP and UDP */
1839 rxcsum = er32(RXCSUM);
1840 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1841 rxcsum |= E1000_RXCSUM_TUOFL;
1842
1843 /* IPv4 payload checksum for UDP fragments must be
1844 * used in conjunction with packet-split. */
1845 if (adapter->rx_ps_pages)
1846 rxcsum |= E1000_RXCSUM_IPPCSE;
1847 } else {
1848 rxcsum &= ~E1000_RXCSUM_TUOFL;
1849 /* no need to clear IPPCSE as it defaults to 0 */
1850 }
1851 ew32(RXCSUM, rxcsum);
1852
1853 /* Enable early receives on supported devices, only takes effect when
1854 * packet size is equal or larger than the specified value (in 8 byte
1855 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1856 if ((adapter->flags & FLAG_HAS_ERT) &&
1857 (adapter->netdev->mtu > ETH_DATA_LEN))
1858 ew32(ERT, E1000_ERT_2048);
1859
1860 /* Enable Receives */
1861 ew32(RCTL, rctl);
1862}
1863
1864/**
1865 * e1000_mc_addr_list_update - Update Multicast addresses
1866 * @hw: pointer to the HW structure
1867 * @mc_addr_list: array of multicast addresses to program
1868 * @mc_addr_count: number of multicast addresses to program
1869 * @rar_used_count: the first RAR register free to program
1870 * @rar_count: total number of supported Receive Address Registers
1871 *
1872 * Updates the Receive Address Registers and Multicast Table Array.
1873 * The caller must have a packed mc_addr_list of multicast addresses.
1874 * The parameter rar_count will usually be hw->mac.rar_entry_count
1875 * unless there are workarounds that change this. Currently no func pointer
1876 * exists and all implementations are handled in the generic version of this
1877 * function.
1878 **/
1879static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1880 u32 mc_addr_count, u32 rar_used_count,
1881 u32 rar_count)
1882{
1883 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1884 rar_used_count, rar_count);
1885}
1886
1887/**
1888 * e1000_set_multi - Multicast and Promiscuous mode set
1889 * @netdev: network interface device structure
1890 *
1891 * The set_multi entry point is called whenever the multicast address
1892 * list or the network interface flags are updated. This routine is
1893 * responsible for configuring the hardware for proper multicast,
1894 * promiscuous mode, and all-multi behavior.
1895 **/
1896static void e1000_set_multi(struct net_device *netdev)
1897{
1898 struct e1000_adapter *adapter = netdev_priv(netdev);
1899 struct e1000_hw *hw = &adapter->hw;
1900 struct e1000_mac_info *mac = &hw->mac;
1901 struct dev_mc_list *mc_ptr;
1902 u8 *mta_list;
1903 u32 rctl;
1904 int i;
1905
1906 /* Check for Promiscuous and All Multicast modes */
1907
1908 rctl = er32(RCTL);
1909
1910 if (netdev->flags & IFF_PROMISC) {
1911 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1912 } else if (netdev->flags & IFF_ALLMULTI) {
1913 rctl |= E1000_RCTL_MPE;
1914 rctl &= ~E1000_RCTL_UPE;
1915 } else {
1916 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1917 }
1918
1919 ew32(RCTL, rctl);
1920
1921 if (netdev->mc_count) {
1922 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1923 if (!mta_list)
1924 return;
1925
1926 /* prepare a packed array of only addresses. */
1927 mc_ptr = netdev->mc_list;
1928
1929 for (i = 0; i < netdev->mc_count; i++) {
1930 if (!mc_ptr)
1931 break;
1932 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1933 ETH_ALEN);
1934 mc_ptr = mc_ptr->next;
1935 }
1936
1937 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1938 mac->rar_entry_count);
1939 kfree(mta_list);
1940 } else {
1941 /*
1942 * if we're called from probe, we might not have
1943 * anything to do here, so clear out the list
1944 */
1945 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1946 mac->rar_entry_count);
1947 }
1948}
1949
1950/**
1951 * e1000_configure - configure the hardware for RX and TX
1952 * @adapter: private board structure
1953 **/
1954static void e1000_configure(struct e1000_adapter *adapter)
1955{
1956 e1000_set_multi(adapter->netdev);
1957
1958 e1000_restore_vlan(adapter);
1959 e1000_init_manageability(adapter);
1960
1961 e1000_configure_tx(adapter);
1962 e1000_setup_rctl(adapter);
1963 e1000_configure_rx(adapter);
1964 adapter->alloc_rx_buf(adapter,
1965 e1000_desc_unused(adapter->rx_ring));
1966}
1967
1968/**
1969 * e1000e_power_up_phy - restore link in case the phy was powered down
1970 * @adapter: address of board private structure
1971 *
1972 * The phy may be powered down to save power and turn off link when the
1973 * driver is unloaded and wake on lan is not enabled (among others)
1974 * *** this routine MUST be followed by a call to e1000e_reset ***
1975 **/
1976void e1000e_power_up_phy(struct e1000_adapter *adapter)
1977{
1978 u16 mii_reg = 0;
1979
1980 /* Just clear the power down bit to wake the phy back up */
1981 if (adapter->hw.media_type == e1000_media_type_copper) {
1982 /* according to the manual, the phy will retain its
1983 * settings across a power-down/up cycle */
1984 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1985 mii_reg &= ~MII_CR_POWER_DOWN;
1986 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1987 }
1988
1989 adapter->hw.mac.ops.setup_link(&adapter->hw);
1990}
1991
1992/**
1993 * e1000_power_down_phy - Power down the PHY
1994 *
1995 * Power down the PHY so no link is implied when interface is down
1996 * The PHY cannot be powered down is management or WoL is active
1997 */
1998static void e1000_power_down_phy(struct e1000_adapter *adapter)
1999{
2000 struct e1000_hw *hw = &adapter->hw;
2001 u16 mii_reg;
2002
2003 /* WoL is enabled */
2004 if (!adapter->wol)
2005 return;
2006
2007 /* non-copper PHY? */
2008 if (adapter->hw.media_type != e1000_media_type_copper)
2009 return;
2010
2011 /* reset is blocked because of a SoL/IDER session */
2012 if (e1000e_check_mng_mode(hw) ||
2013 e1000_check_reset_block(hw))
2014 return;
2015
2016 /* managebility (AMT) is enabled */
2017 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2018 return;
2019
2020 /* power down the PHY */
2021 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2022 mii_reg |= MII_CR_POWER_DOWN;
2023 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2024 mdelay(1);
2025}
2026
2027/**
2028 * e1000e_reset - bring the hardware into a known good state
2029 *
2030 * This function boots the hardware and enables some settings that
2031 * require a configuration cycle of the hardware - those cannot be
2032 * set/changed during runtime. After reset the device needs to be
2033 * properly configured for rx, tx etc.
2034 */
2035void e1000e_reset(struct e1000_adapter *adapter)
2036{
2037 struct e1000_mac_info *mac = &adapter->hw.mac;
2038 struct e1000_hw *hw = &adapter->hw;
2039 u32 tx_space, min_tx_space, min_rx_space;
df762464 2040 u32 pba;
bc7f75fa
AK
2041 u16 hwm;
2042
df762464
AK
2043 ew32(PBA, adapter->pba);
2044
bc7f75fa
AK
2045 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2046 /* To maintain wire speed transmits, the Tx FIFO should be
2047 * large enough to accommodate two full transmit packets,
2048 * rounded up to the next 1KB and expressed in KB. Likewise,
2049 * the Rx FIFO should be large enough to accommodate at least
2050 * one full receive packet and is similarly rounded up and
2051 * expressed in KB. */
df762464 2052 pba = er32(PBA);
bc7f75fa 2053 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2054 tx_space = pba >> 16;
bc7f75fa 2055 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2056 pba &= 0xffff;
bc7f75fa
AK
2057 /* the tx fifo also stores 16 bytes of information about the tx
2058 * but don't include ethernet FCS because hardware appends it */
2059 min_tx_space = (mac->max_frame_size +
2060 sizeof(struct e1000_tx_desc) -
2061 ETH_FCS_LEN) * 2;
2062 min_tx_space = ALIGN(min_tx_space, 1024);
2063 min_tx_space >>= 10;
2064 /* software strips receive CRC, so leave room for it */
2065 min_rx_space = mac->max_frame_size;
2066 min_rx_space = ALIGN(min_rx_space, 1024);
2067 min_rx_space >>= 10;
2068
2069 /* If current Tx allocation is less than the min Tx FIFO size,
2070 * and the min Tx FIFO size is less than the current Rx FIFO
2071 * allocation, take space away from current Rx allocation */
df762464
AK
2072 if ((tx_space < min_tx_space) &&
2073 ((min_tx_space - tx_space) < pba)) {
2074 pba -= min_tx_space - tx_space;
bc7f75fa
AK
2075
2076 /* if short on rx space, rx wins and must trump tx
2077 * adjustment or use Early Receive if available */
df762464 2078 if ((pba < min_rx_space) &&
bc7f75fa
AK
2079 (!(adapter->flags & FLAG_HAS_ERT)))
2080 /* ERT enabled in e1000_configure_rx */
df762464 2081 pba = min_rx_space;
bc7f75fa 2082 }
df762464
AK
2083
2084 ew32(PBA, pba);
bc7f75fa
AK
2085 }
2086
bc7f75fa
AK
2087
2088 /* flow control settings */
2089 /* The high water mark must be low enough to fit one full frame
2090 * (or the size used for early receive) above it in the Rx FIFO.
2091 * Set it to the lower of:
2092 * - 90% of the Rx FIFO size, and
2093 * - the full Rx FIFO size minus the early receive size (for parts
2094 * with ERT support assuming ERT set to E1000_ERT_2048), or
2095 * - the full Rx FIFO size minus one full frame */
2096 if (adapter->flags & FLAG_HAS_ERT)
2097 hwm = min(((adapter->pba << 10) * 9 / 10),
2098 ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2099 else
2100 hwm = min(((adapter->pba << 10) * 9 / 10),
2101 ((adapter->pba << 10) - mac->max_frame_size));
2102
2103 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2104 mac->fc_low_water = mac->fc_high_water - 8;
2105
2106 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2107 mac->fc_pause_time = 0xFFFF;
2108 else
2109 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2110 mac->fc = mac->original_fc;
2111
2112 /* Allow time for pending master requests to run */
2113 mac->ops.reset_hw(hw);
2114 ew32(WUC, 0);
2115
2116 if (mac->ops.init_hw(hw))
2117 ndev_err(adapter->netdev, "Hardware Error\n");
2118
2119 e1000_update_mng_vlan(adapter);
2120
2121 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2122 ew32(VET, ETH_P_8021Q);
2123
2124 e1000e_reset_adaptive(hw);
2125 e1000_get_phy_info(hw);
2126
2127 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2128 u16 phy_data = 0;
2129 /* speed up time to link by disabling smart power down, ignore
2130 * the return value of this function because there is nothing
2131 * different we would do if it failed */
2132 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2133 phy_data &= ~IGP02E1000_PM_SPD;
2134 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2135 }
2136
2137 e1000_release_manageability(adapter);
2138}
2139
2140int e1000e_up(struct e1000_adapter *adapter)
2141{
2142 struct e1000_hw *hw = &adapter->hw;
2143
2144 /* hardware has been reset, we need to reload some things */
2145 e1000_configure(adapter);
2146
2147 clear_bit(__E1000_DOWN, &adapter->state);
2148
2149 napi_enable(&adapter->napi);
2150 e1000_irq_enable(adapter);
2151
2152 /* fire a link change interrupt to start the watchdog */
2153 ew32(ICS, E1000_ICS_LSC);
2154 return 0;
2155}
2156
2157void e1000e_down(struct e1000_adapter *adapter)
2158{
2159 struct net_device *netdev = adapter->netdev;
2160 struct e1000_hw *hw = &adapter->hw;
2161 u32 tctl, rctl;
2162
2163 /* signal that we're down so the interrupt handler does not
2164 * reschedule our watchdog timer */
2165 set_bit(__E1000_DOWN, &adapter->state);
2166
2167 /* disable receives in the hardware */
2168 rctl = er32(RCTL);
2169 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2170 /* flush and sleep below */
2171
2172 netif_stop_queue(netdev);
2173
2174 /* disable transmits in the hardware */
2175 tctl = er32(TCTL);
2176 tctl &= ~E1000_TCTL_EN;
2177 ew32(TCTL, tctl);
2178 /* flush both disables and wait for them to finish */
2179 e1e_flush();
2180 msleep(10);
2181
2182 napi_disable(&adapter->napi);
2183 e1000_irq_disable(adapter);
2184
2185 del_timer_sync(&adapter->watchdog_timer);
2186 del_timer_sync(&adapter->phy_info_timer);
2187
2188 netdev->tx_queue_len = adapter->tx_queue_len;
2189 netif_carrier_off(netdev);
2190 adapter->link_speed = 0;
2191 adapter->link_duplex = 0;
2192
2193 e1000e_reset(adapter);
2194 e1000_clean_tx_ring(adapter);
2195 e1000_clean_rx_ring(adapter);
2196
2197 /*
2198 * TODO: for power management, we could drop the link and
2199 * pci_disable_device here.
2200 */
2201}
2202
2203void e1000e_reinit_locked(struct e1000_adapter *adapter)
2204{
2205 might_sleep();
2206 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2207 msleep(1);
2208 e1000e_down(adapter);
2209 e1000e_up(adapter);
2210 clear_bit(__E1000_RESETTING, &adapter->state);
2211}
2212
2213/**
2214 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2215 * @adapter: board private structure to initialize
2216 *
2217 * e1000_sw_init initializes the Adapter private data structure.
2218 * Fields are initialized based on PCI device information and
2219 * OS network device settings (MTU size).
2220 **/
2221static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2222{
2223 struct e1000_hw *hw = &adapter->hw;
2224 struct net_device *netdev = adapter->netdev;
2225
2226 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2227 adapter->rx_ps_bsize0 = 128;
2228 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2229 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2230
2231 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2232 if (!adapter->tx_ring)
2233 goto err;
2234
2235 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2236 if (!adapter->rx_ring)
2237 goto err;
2238
2239 spin_lock_init(&adapter->tx_queue_lock);
2240
2241 /* Explicitly disable IRQ since the NIC can be in any state. */
2242 atomic_set(&adapter->irq_sem, 0);
2243 e1000_irq_disable(adapter);
2244
2245 spin_lock_init(&adapter->stats_lock);
2246
2247 set_bit(__E1000_DOWN, &adapter->state);
2248 return 0;
2249
2250err:
2251 ndev_err(netdev, "Unable to allocate memory for queues\n");
2252 kfree(adapter->rx_ring);
2253 kfree(adapter->tx_ring);
2254 return -ENOMEM;
2255}
2256
2257/**
2258 * e1000_open - Called when a network interface is made active
2259 * @netdev: network interface device structure
2260 *
2261 * Returns 0 on success, negative value on failure
2262 *
2263 * The open entry point is called when a network interface is made
2264 * active by the system (IFF_UP). At this point all resources needed
2265 * for transmit and receive operations are allocated, the interrupt
2266 * handler is registered with the OS, the watchdog timer is started,
2267 * and the stack is notified that the interface is ready.
2268 **/
2269static int e1000_open(struct net_device *netdev)
2270{
2271 struct e1000_adapter *adapter = netdev_priv(netdev);
2272 struct e1000_hw *hw = &adapter->hw;
2273 int err;
2274
2275 /* disallow open during test */
2276 if (test_bit(__E1000_TESTING, &adapter->state))
2277 return -EBUSY;
2278
2279 /* allocate transmit descriptors */
2280 err = e1000e_setup_tx_resources(adapter);
2281 if (err)
2282 goto err_setup_tx;
2283
2284 /* allocate receive descriptors */
2285 err = e1000e_setup_rx_resources(adapter);
2286 if (err)
2287 goto err_setup_rx;
2288
2289 e1000e_power_up_phy(adapter);
2290
2291 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2292 if ((adapter->hw.mng_cookie.status &
2293 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2294 e1000_update_mng_vlan(adapter);
2295
2296 /* If AMT is enabled, let the firmware know that the network
2297 * interface is now open */
2298 if ((adapter->flags & FLAG_HAS_AMT) &&
2299 e1000e_check_mng_mode(&adapter->hw))
2300 e1000_get_hw_control(adapter);
2301
2302 /* before we allocate an interrupt, we must be ready to handle it.
2303 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2304 * as soon as we call pci_request_irq, so we have to setup our
2305 * clean_rx handler before we do so. */
2306 e1000_configure(adapter);
2307
2308 err = e1000_request_irq(adapter);
2309 if (err)
2310 goto err_req_irq;
2311
2312 /* From here on the code is the same as e1000e_up() */
2313 clear_bit(__E1000_DOWN, &adapter->state);
2314
2315 napi_enable(&adapter->napi);
2316
2317 e1000_irq_enable(adapter);
2318
2319 /* fire a link status change interrupt to start the watchdog */
2320 ew32(ICS, E1000_ICS_LSC);
2321
2322 return 0;
2323
2324err_req_irq:
2325 e1000_release_hw_control(adapter);
2326 e1000_power_down_phy(adapter);
2327 e1000e_free_rx_resources(adapter);
2328err_setup_rx:
2329 e1000e_free_tx_resources(adapter);
2330err_setup_tx:
2331 e1000e_reset(adapter);
2332
2333 return err;
2334}
2335
2336/**
2337 * e1000_close - Disables a network interface
2338 * @netdev: network interface device structure
2339 *
2340 * Returns 0, this is not allowed to fail
2341 *
2342 * The close entry point is called when an interface is de-activated
2343 * by the OS. The hardware is still under the drivers control, but
2344 * needs to be disabled. A global MAC reset is issued to stop the
2345 * hardware, and all transmit and receive resources are freed.
2346 **/
2347static int e1000_close(struct net_device *netdev)
2348{
2349 struct e1000_adapter *adapter = netdev_priv(netdev);
2350
2351 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2352 e1000e_down(adapter);
2353 e1000_power_down_phy(adapter);
2354 e1000_free_irq(adapter);
2355
2356 e1000e_free_tx_resources(adapter);
2357 e1000e_free_rx_resources(adapter);
2358
2359 /* kill manageability vlan ID if supported, but not if a vlan with
2360 * the same ID is registered on the host OS (let 8021q kill it) */
2361 if ((adapter->hw.mng_cookie.status &
2362 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2363 !(adapter->vlgrp &&
2364 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2365 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2366
2367 /* If AMT is enabled, let the firmware know that the network
2368 * interface is now closed */
2369 if ((adapter->flags & FLAG_HAS_AMT) &&
2370 e1000e_check_mng_mode(&adapter->hw))
2371 e1000_release_hw_control(adapter);
2372
2373 return 0;
2374}
2375/**
2376 * e1000_set_mac - Change the Ethernet Address of the NIC
2377 * @netdev: network interface device structure
2378 * @p: pointer to an address structure
2379 *
2380 * Returns 0 on success, negative on failure
2381 **/
2382static int e1000_set_mac(struct net_device *netdev, void *p)
2383{
2384 struct e1000_adapter *adapter = netdev_priv(netdev);
2385 struct sockaddr *addr = p;
2386
2387 if (!is_valid_ether_addr(addr->sa_data))
2388 return -EADDRNOTAVAIL;
2389
2390 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2391 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2392
2393 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2394
2395 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2396 /* activate the work around */
2397 e1000e_set_laa_state_82571(&adapter->hw, 1);
2398
2399 /* Hold a copy of the LAA in RAR[14] This is done so that
2400 * between the time RAR[0] gets clobbered and the time it
2401 * gets fixed (in e1000_watchdog), the actual LAA is in one
2402 * of the RARs and no incoming packets directed to this port
2403 * are dropped. Eventually the LAA will be in RAR[0] and
2404 * RAR[14] */
2405 e1000e_rar_set(&adapter->hw,
2406 adapter->hw.mac.addr,
2407 adapter->hw.mac.rar_entry_count - 1);
2408 }
2409
2410 return 0;
2411}
2412
2413/* Need to wait a few seconds after link up to get diagnostic information from
2414 * the phy */
2415static void e1000_update_phy_info(unsigned long data)
2416{
2417 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2418 e1000_get_phy_info(&adapter->hw);
2419}
2420
2421/**
2422 * e1000e_update_stats - Update the board statistics counters
2423 * @adapter: board private structure
2424 **/
2425void e1000e_update_stats(struct e1000_adapter *adapter)
2426{
2427 struct e1000_hw *hw = &adapter->hw;
2428 struct pci_dev *pdev = adapter->pdev;
2429 unsigned long irq_flags;
2430 u16 phy_tmp;
2431
2432#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2433
2434 /*
2435 * Prevent stats update while adapter is being reset, or if the pci
2436 * connection is down.
2437 */
2438 if (adapter->link_speed == 0)
2439 return;
2440 if (pci_channel_offline(pdev))
2441 return;
2442
2443 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2444
2445 /* these counters are modified from e1000_adjust_tbi_stats,
2446 * called from the interrupt context, so they must only
2447 * be written while holding adapter->stats_lock
2448 */
2449
2450 adapter->stats.crcerrs += er32(CRCERRS);
2451 adapter->stats.gprc += er32(GPRC);
2452 adapter->stats.gorcl += er32(GORCL);
2453 adapter->stats.gorch += er32(GORCH);
2454 adapter->stats.bprc += er32(BPRC);
2455 adapter->stats.mprc += er32(MPRC);
2456 adapter->stats.roc += er32(ROC);
2457
2458 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2459 adapter->stats.prc64 += er32(PRC64);
2460 adapter->stats.prc127 += er32(PRC127);
2461 adapter->stats.prc255 += er32(PRC255);
2462 adapter->stats.prc511 += er32(PRC511);
2463 adapter->stats.prc1023 += er32(PRC1023);
2464 adapter->stats.prc1522 += er32(PRC1522);
2465 adapter->stats.symerrs += er32(SYMERRS);
2466 adapter->stats.sec += er32(SEC);
2467 }
2468
2469 adapter->stats.mpc += er32(MPC);
2470 adapter->stats.scc += er32(SCC);
2471 adapter->stats.ecol += er32(ECOL);
2472 adapter->stats.mcc += er32(MCC);
2473 adapter->stats.latecol += er32(LATECOL);
2474 adapter->stats.dc += er32(DC);
2475 adapter->stats.rlec += er32(RLEC);
2476 adapter->stats.xonrxc += er32(XONRXC);
2477 adapter->stats.xontxc += er32(XONTXC);
2478 adapter->stats.xoffrxc += er32(XOFFRXC);
2479 adapter->stats.xofftxc += er32(XOFFTXC);
2480 adapter->stats.fcruc += er32(FCRUC);
2481 adapter->stats.gptc += er32(GPTC);
2482 adapter->stats.gotcl += er32(GOTCL);
2483 adapter->stats.gotch += er32(GOTCH);
2484 adapter->stats.rnbc += er32(RNBC);
2485 adapter->stats.ruc += er32(RUC);
2486 adapter->stats.rfc += er32(RFC);
2487 adapter->stats.rjc += er32(RJC);
2488 adapter->stats.torl += er32(TORL);
2489 adapter->stats.torh += er32(TORH);
2490 adapter->stats.totl += er32(TOTL);
2491 adapter->stats.toth += er32(TOTH);
2492 adapter->stats.tpr += er32(TPR);
2493
2494 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2495 adapter->stats.ptc64 += er32(PTC64);
2496 adapter->stats.ptc127 += er32(PTC127);
2497 adapter->stats.ptc255 += er32(PTC255);
2498 adapter->stats.ptc511 += er32(PTC511);
2499 adapter->stats.ptc1023 += er32(PTC1023);
2500 adapter->stats.ptc1522 += er32(PTC1522);
2501 }
2502
2503 adapter->stats.mptc += er32(MPTC);
2504 adapter->stats.bptc += er32(BPTC);
2505
2506 /* used for adaptive IFS */
2507
2508 hw->mac.tx_packet_delta = er32(TPT);
2509 adapter->stats.tpt += hw->mac.tx_packet_delta;
2510 hw->mac.collision_delta = er32(COLC);
2511 adapter->stats.colc += hw->mac.collision_delta;
2512
2513 adapter->stats.algnerrc += er32(ALGNERRC);
2514 adapter->stats.rxerrc += er32(RXERRC);
2515 adapter->stats.tncrs += er32(TNCRS);
2516 adapter->stats.cexterr += er32(CEXTERR);
2517 adapter->stats.tsctc += er32(TSCTC);
2518 adapter->stats.tsctfc += er32(TSCTFC);
2519
2520 adapter->stats.iac += er32(IAC);
2521
2522 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2523 adapter->stats.icrxoc += er32(ICRXOC);
2524 adapter->stats.icrxptc += er32(ICRXPTC);
2525 adapter->stats.icrxatc += er32(ICRXATC);
2526 adapter->stats.ictxptc += er32(ICTXPTC);
2527 adapter->stats.ictxatc += er32(ICTXATC);
2528 adapter->stats.ictxqec += er32(ICTXQEC);
2529 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2530 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2531 }
2532
2533 /* Fill out the OS statistics structure */
2534 adapter->net_stats.rx_packets = adapter->stats.gprc;
2535 adapter->net_stats.tx_packets = adapter->stats.gptc;
2536 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2537 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2538 adapter->net_stats.multicast = adapter->stats.mprc;
2539 adapter->net_stats.collisions = adapter->stats.colc;
2540
2541 /* Rx Errors */
2542
2543 /* RLEC on some newer hardware can be incorrect so build
2544 * our own version based on RUC and ROC */
2545 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2546 adapter->stats.crcerrs + adapter->stats.algnerrc +
2547 adapter->stats.ruc + adapter->stats.roc +
2548 adapter->stats.cexterr;
2549 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2550 adapter->stats.roc;
2551 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2552 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2553 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2554
2555 /* Tx Errors */
2556 adapter->net_stats.tx_errors = adapter->stats.ecol +
2557 adapter->stats.latecol;
2558 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2559 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2560 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2561
2562 /* Tx Dropped needs to be maintained elsewhere */
2563
2564 /* Phy Stats */
2565 if (hw->media_type == e1000_media_type_copper) {
2566 if ((adapter->link_speed == SPEED_1000) &&
2567 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2568 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2569 adapter->phy_stats.idle_errors += phy_tmp;
2570 }
2571 }
2572
2573 /* Management Stats */
2574 adapter->stats.mgptc += er32(MGTPTC);
2575 adapter->stats.mgprc += er32(MGTPRC);
2576 adapter->stats.mgpdc += er32(MGTPDC);
2577
2578 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2579}
2580
2581static void e1000_print_link_info(struct e1000_adapter *adapter)
2582{
2583 struct net_device *netdev = adapter->netdev;
2584 struct e1000_hw *hw = &adapter->hw;
2585 u32 ctrl = er32(CTRL);
2586
2587 ndev_info(netdev,
2588 "Link is Up %d Mbps %s, Flow Control: %s\n",
2589 adapter->link_speed,
2590 (adapter->link_duplex == FULL_DUPLEX) ?
2591 "Full Duplex" : "Half Duplex",
2592 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2593 "RX/TX" :
2594 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2595 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2596}
2597
2598/**
2599 * e1000_watchdog - Timer Call-back
2600 * @data: pointer to adapter cast into an unsigned long
2601 **/
2602static void e1000_watchdog(unsigned long data)
2603{
2604 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2605
2606 /* Do the rest outside of interrupt context */
2607 schedule_work(&adapter->watchdog_task);
2608
2609 /* TODO: make this use queue_delayed_work() */
2610}
2611
2612static void e1000_watchdog_task(struct work_struct *work)
2613{
2614 struct e1000_adapter *adapter = container_of(work,
2615 struct e1000_adapter, watchdog_task);
2616
2617 struct net_device *netdev = adapter->netdev;
2618 struct e1000_mac_info *mac = &adapter->hw.mac;
2619 struct e1000_ring *tx_ring = adapter->tx_ring;
2620 struct e1000_hw *hw = &adapter->hw;
2621 u32 link, tctl;
2622 s32 ret_val;
2623 int tx_pending = 0;
2624
2625 if ((netif_carrier_ok(netdev)) &&
2626 (er32(STATUS) & E1000_STATUS_LU))
2627 goto link_up;
2628
2629 ret_val = mac->ops.check_for_link(hw);
2630 if ((ret_val == E1000_ERR_PHY) &&
2631 (adapter->hw.phy.type == e1000_phy_igp_3) &&
2632 (er32(CTRL) &
2633 E1000_PHY_CTRL_GBE_DISABLE)) {
2634 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2635 ndev_info(netdev,
2636 "Gigabit has been disabled, downgrading speed\n");
2637 }
2638
2639 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2640 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2641 e1000_update_mng_vlan(adapter);
2642
2643 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2644 !(er32(TXCW) & E1000_TXCW_ANE))
2645 link = adapter->hw.mac.serdes_has_link;
2646 else
2647 link = er32(STATUS) & E1000_STATUS_LU;
2648
2649 if (link) {
2650 if (!netif_carrier_ok(netdev)) {
2651 bool txb2b = 1;
2652 mac->ops.get_link_up_info(&adapter->hw,
2653 &adapter->link_speed,
2654 &adapter->link_duplex);
2655 e1000_print_link_info(adapter);
2656 /* tweak tx_queue_len according to speed/duplex
2657 * and adjust the timeout factor */
2658 netdev->tx_queue_len = adapter->tx_queue_len;
2659 adapter->tx_timeout_factor = 1;
2660 switch (adapter->link_speed) {
2661 case SPEED_10:
2662 txb2b = 0;
2663 netdev->tx_queue_len = 10;
2664 adapter->tx_timeout_factor = 14;
2665 break;
2666 case SPEED_100:
2667 txb2b = 0;
2668 netdev->tx_queue_len = 100;
2669 /* maybe add some timeout factor ? */
2670 break;
2671 }
2672
2673 /* workaround: re-program speed mode bit after
2674 * link-up event */
2675 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2676 !txb2b) {
2677 u32 tarc0;
2678 tarc0 = er32(TARC0);
2679 tarc0 &= ~SPEED_MODE_BIT;
2680 ew32(TARC0, tarc0);
2681 }
2682
2683 /* disable TSO for pcie and 10/100 speeds, to avoid
2684 * some hardware issues */
2685 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2686 switch (adapter->link_speed) {
2687 case SPEED_10:
2688 case SPEED_100:
2689 ndev_info(netdev,
2690 "10/100 speed: disabling TSO\n");
2691 netdev->features &= ~NETIF_F_TSO;
2692 netdev->features &= ~NETIF_F_TSO6;
2693 break;
2694 case SPEED_1000:
2695 netdev->features |= NETIF_F_TSO;
2696 netdev->features |= NETIF_F_TSO6;
2697 break;
2698 default:
2699 /* oops */
2700 break;
2701 }
2702 }
2703
2704 /* enable transmits in the hardware, need to do this
2705 * after setting TARC0 */
2706 tctl = er32(TCTL);
2707 tctl |= E1000_TCTL_EN;
2708 ew32(TCTL, tctl);
2709
2710 netif_carrier_on(netdev);
2711 netif_wake_queue(netdev);
2712
2713 if (!test_bit(__E1000_DOWN, &adapter->state))
2714 mod_timer(&adapter->phy_info_timer,
2715 round_jiffies(jiffies + 2 * HZ));
2716 } else {
2717 /* make sure the receive unit is started */
2718 if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2719 u32 rctl = er32(RCTL);
2720 ew32(RCTL, rctl |
2721 E1000_RCTL_EN);
2722 }
2723 }
2724 } else {
2725 if (netif_carrier_ok(netdev)) {
2726 adapter->link_speed = 0;
2727 adapter->link_duplex = 0;
2728 ndev_info(netdev, "Link is Down\n");
2729 netif_carrier_off(netdev);
2730 netif_stop_queue(netdev);
2731 if (!test_bit(__E1000_DOWN, &adapter->state))
2732 mod_timer(&adapter->phy_info_timer,
2733 round_jiffies(jiffies + 2 * HZ));
2734
2735 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2736 schedule_work(&adapter->reset_task);
2737 }
2738 }
2739
2740link_up:
2741 e1000e_update_stats(adapter);
2742
2743 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2744 adapter->tpt_old = adapter->stats.tpt;
2745 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2746 adapter->colc_old = adapter->stats.colc;
2747
2748 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2749 adapter->gorcl_old = adapter->stats.gorcl;
2750 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2751 adapter->gotcl_old = adapter->stats.gotcl;
2752
2753 e1000e_update_adaptive(&adapter->hw);
2754
2755 if (!netif_carrier_ok(netdev)) {
2756 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2757 tx_ring->count);
2758 if (tx_pending) {
2759 /* We've lost link, so the controller stops DMA,
2760 * but we've got queued Tx work that's never going
2761 * to get done, so reset controller to flush Tx.
2762 * (Do the reset outside of interrupt context). */
2763 adapter->tx_timeout_count++;
2764 schedule_work(&adapter->reset_task);
2765 }
2766 }
2767
2768 /* Cause software interrupt to ensure rx ring is cleaned */
2769 ew32(ICS, E1000_ICS_RXDMT0);
2770
2771 /* Force detection of hung controller every watchdog period */
2772 adapter->detect_tx_hung = 1;
2773
2774 /* With 82571 controllers, LAA may be overwritten due to controller
2775 * reset from the other port. Set the appropriate LAA in RAR[0] */
2776 if (e1000e_get_laa_state_82571(hw))
2777 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2778
2779 /* Reset the timer */
2780 if (!test_bit(__E1000_DOWN, &adapter->state))
2781 mod_timer(&adapter->watchdog_timer,
2782 round_jiffies(jiffies + 2 * HZ));
2783}
2784
2785#define E1000_TX_FLAGS_CSUM 0x00000001
2786#define E1000_TX_FLAGS_VLAN 0x00000002
2787#define E1000_TX_FLAGS_TSO 0x00000004
2788#define E1000_TX_FLAGS_IPV4 0x00000008
2789#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2790#define E1000_TX_FLAGS_VLAN_SHIFT 16
2791
2792static int e1000_tso(struct e1000_adapter *adapter,
2793 struct sk_buff *skb)
2794{
2795 struct e1000_ring *tx_ring = adapter->tx_ring;
2796 struct e1000_context_desc *context_desc;
2797 struct e1000_buffer *buffer_info;
2798 unsigned int i;
2799 u32 cmd_length = 0;
2800 u16 ipcse = 0, tucse, mss;
2801 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2802 int err;
2803
2804 if (skb_is_gso(skb)) {
2805 if (skb_header_cloned(skb)) {
2806 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2807 if (err)
2808 return err;
2809 }
2810
2811 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2812 mss = skb_shinfo(skb)->gso_size;
2813 if (skb->protocol == htons(ETH_P_IP)) {
2814 struct iphdr *iph = ip_hdr(skb);
2815 iph->tot_len = 0;
2816 iph->check = 0;
2817 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2818 iph->daddr, 0,
2819 IPPROTO_TCP,
2820 0);
2821 cmd_length = E1000_TXD_CMD_IP;
2822 ipcse = skb_transport_offset(skb) - 1;
2823 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2824 ipv6_hdr(skb)->payload_len = 0;
2825 tcp_hdr(skb)->check =
2826 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2827 &ipv6_hdr(skb)->daddr,
2828 0, IPPROTO_TCP, 0);
2829 ipcse = 0;
2830 }
2831 ipcss = skb_network_offset(skb);
2832 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2833 tucss = skb_transport_offset(skb);
2834 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2835 tucse = 0;
2836
2837 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2838 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2839
2840 i = tx_ring->next_to_use;
2841 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2842 buffer_info = &tx_ring->buffer_info[i];
2843
2844 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2845 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2846 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2847 context_desc->upper_setup.tcp_fields.tucss = tucss;
2848 context_desc->upper_setup.tcp_fields.tucso = tucso;
2849 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2850 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2851 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2852 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2853
2854 buffer_info->time_stamp = jiffies;
2855 buffer_info->next_to_watch = i;
2856
2857 i++;
2858 if (i == tx_ring->count)
2859 i = 0;
2860 tx_ring->next_to_use = i;
2861
2862 return 1;
2863 }
2864
2865 return 0;
2866}
2867
2868static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2869{
2870 struct e1000_ring *tx_ring = adapter->tx_ring;
2871 struct e1000_context_desc *context_desc;
2872 struct e1000_buffer *buffer_info;
2873 unsigned int i;
2874 u8 css;
2875
2876 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2877 css = skb_transport_offset(skb);
2878
2879 i = tx_ring->next_to_use;
2880 buffer_info = &tx_ring->buffer_info[i];
2881 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2882
2883 context_desc->lower_setup.ip_config = 0;
2884 context_desc->upper_setup.tcp_fields.tucss = css;
2885 context_desc->upper_setup.tcp_fields.tucso =
2886 css + skb->csum_offset;
2887 context_desc->upper_setup.tcp_fields.tucse = 0;
2888 context_desc->tcp_seg_setup.data = 0;
2889 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2890
2891 buffer_info->time_stamp = jiffies;
2892 buffer_info->next_to_watch = i;
2893
2894 i++;
2895 if (i == tx_ring->count)
2896 i = 0;
2897 tx_ring->next_to_use = i;
2898
2899 return 1;
2900 }
2901
2902 return 0;
2903}
2904
2905#define E1000_MAX_PER_TXD 8192
2906#define E1000_MAX_TXD_PWR 12
2907
2908static int e1000_tx_map(struct e1000_adapter *adapter,
2909 struct sk_buff *skb, unsigned int first,
2910 unsigned int max_per_txd, unsigned int nr_frags,
2911 unsigned int mss)
2912{
2913 struct e1000_ring *tx_ring = adapter->tx_ring;
2914 struct e1000_buffer *buffer_info;
2915 unsigned int len = skb->len - skb->data_len;
2916 unsigned int offset = 0, size, count = 0, i;
2917 unsigned int f;
2918
2919 i = tx_ring->next_to_use;
2920
2921 while (len) {
2922 buffer_info = &tx_ring->buffer_info[i];
2923 size = min(len, max_per_txd);
2924
2925 /* Workaround for premature desc write-backs
2926 * in TSO mode. Append 4-byte sentinel desc */
2927 if (mss && !nr_frags && size == len && size > 8)
2928 size -= 4;
2929
2930 buffer_info->length = size;
2931 /* set time_stamp *before* dma to help avoid a possible race */
2932 buffer_info->time_stamp = jiffies;
2933 buffer_info->dma =
2934 pci_map_single(adapter->pdev,
2935 skb->data + offset,
2936 size,
2937 PCI_DMA_TODEVICE);
2938 if (pci_dma_mapping_error(buffer_info->dma)) {
2939 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2940 adapter->tx_dma_failed++;
2941 return -1;
2942 }
2943 buffer_info->next_to_watch = i;
2944
2945 len -= size;
2946 offset += size;
2947 count++;
2948 i++;
2949 if (i == tx_ring->count)
2950 i = 0;
2951 }
2952
2953 for (f = 0; f < nr_frags; f++) {
2954 struct skb_frag_struct *frag;
2955
2956 frag = &skb_shinfo(skb)->frags[f];
2957 len = frag->size;
2958 offset = frag->page_offset;
2959
2960 while (len) {
2961 buffer_info = &tx_ring->buffer_info[i];
2962 size = min(len, max_per_txd);
2963 /* Workaround for premature desc write-backs
2964 * in TSO mode. Append 4-byte sentinel desc */
2965 if (mss && f == (nr_frags-1) && size == len && size > 8)
2966 size -= 4;
2967
2968 buffer_info->length = size;
2969 buffer_info->time_stamp = jiffies;
2970 buffer_info->dma =
2971 pci_map_page(adapter->pdev,
2972 frag->page,
2973 offset,
2974 size,
2975 PCI_DMA_TODEVICE);
2976 if (pci_dma_mapping_error(buffer_info->dma)) {
2977 dev_err(&adapter->pdev->dev,
2978 "TX DMA page map failed\n");
2979 adapter->tx_dma_failed++;
2980 return -1;
2981 }
2982
2983 buffer_info->next_to_watch = i;
2984
2985 len -= size;
2986 offset += size;
2987 count++;
2988
2989 i++;
2990 if (i == tx_ring->count)
2991 i = 0;
2992 }
2993 }
2994
2995 if (i == 0)
2996 i = tx_ring->count - 1;
2997 else
2998 i--;
2999
3000 tx_ring->buffer_info[i].skb = skb;
3001 tx_ring->buffer_info[first].next_to_watch = i;
3002
3003 return count;
3004}
3005
3006static void e1000_tx_queue(struct e1000_adapter *adapter,
3007 int tx_flags, int count)
3008{
3009 struct e1000_ring *tx_ring = adapter->tx_ring;
3010 struct e1000_tx_desc *tx_desc = NULL;
3011 struct e1000_buffer *buffer_info;
3012 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3013 unsigned int i;
3014
3015 if (tx_flags & E1000_TX_FLAGS_TSO) {
3016 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3017 E1000_TXD_CMD_TSE;
3018 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3019
3020 if (tx_flags & E1000_TX_FLAGS_IPV4)
3021 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3022 }
3023
3024 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3025 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3026 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3027 }
3028
3029 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3030 txd_lower |= E1000_TXD_CMD_VLE;
3031 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3032 }
3033
3034 i = tx_ring->next_to_use;
3035
3036 while (count--) {
3037 buffer_info = &tx_ring->buffer_info[i];
3038 tx_desc = E1000_TX_DESC(*tx_ring, i);
3039 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3040 tx_desc->lower.data =
3041 cpu_to_le32(txd_lower | buffer_info->length);
3042 tx_desc->upper.data = cpu_to_le32(txd_upper);
3043
3044 i++;
3045 if (i == tx_ring->count)
3046 i = 0;
3047 }
3048
3049 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3050
3051 /* Force memory writes to complete before letting h/w
3052 * know there are new descriptors to fetch. (Only
3053 * applicable for weak-ordered memory model archs,
3054 * such as IA-64). */
3055 wmb();
3056
3057 tx_ring->next_to_use = i;
3058 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3059 /* we need this if more than one processor can write to our tail
3060 * at a time, it synchronizes IO on IA64/Altix systems */
3061 mmiowb();
3062}
3063
3064#define MINIMUM_DHCP_PACKET_SIZE 282
3065static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3066 struct sk_buff *skb)
3067{
3068 struct e1000_hw *hw = &adapter->hw;
3069 u16 length, offset;
3070
3071 if (vlan_tx_tag_present(skb)) {
3072 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3073 && (adapter->hw.mng_cookie.status &
3074 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3075 return 0;
3076 }
3077
3078 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3079 return 0;
3080
3081 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3082 return 0;
3083
3084 {
3085 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3086 struct udphdr *udp;
3087
3088 if (ip->protocol != IPPROTO_UDP)
3089 return 0;
3090
3091 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3092 if (ntohs(udp->dest) != 67)
3093 return 0;
3094
3095 offset = (u8 *)udp + 8 - skb->data;
3096 length = skb->len - offset;
3097 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3098 }
3099
3100 return 0;
3101}
3102
3103static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3104{
3105 struct e1000_adapter *adapter = netdev_priv(netdev);
3106
3107 netif_stop_queue(netdev);
3108 /* Herbert's original patch had:
3109 * smp_mb__after_netif_stop_queue();
3110 * but since that doesn't exist yet, just open code it. */
3111 smp_mb();
3112
3113 /* We need to check again in a case another CPU has just
3114 * made room available. */
3115 if (e1000_desc_unused(adapter->tx_ring) < size)
3116 return -EBUSY;
3117
3118 /* A reprieve! */
3119 netif_start_queue(netdev);
3120 ++adapter->restart_queue;
3121 return 0;
3122}
3123
3124static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3125{
3126 struct e1000_adapter *adapter = netdev_priv(netdev);
3127
3128 if (e1000_desc_unused(adapter->tx_ring) >= size)
3129 return 0;
3130 return __e1000_maybe_stop_tx(netdev, size);
3131}
3132
3133#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3134static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3135{
3136 struct e1000_adapter *adapter = netdev_priv(netdev);
3137 struct e1000_ring *tx_ring = adapter->tx_ring;
3138 unsigned int first;
3139 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3140 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3141 unsigned int tx_flags = 0;
4e6c709c 3142 unsigned int len = skb->len - skb->data_len;
bc7f75fa 3143 unsigned long irq_flags;
4e6c709c
AK
3144 unsigned int nr_frags;
3145 unsigned int mss;
bc7f75fa
AK
3146 int count = 0;
3147 int tso;
3148 unsigned int f;
bc7f75fa
AK
3149
3150 if (test_bit(__E1000_DOWN, &adapter->state)) {
3151 dev_kfree_skb_any(skb);
3152 return NETDEV_TX_OK;
3153 }
3154
3155 if (skb->len <= 0) {
3156 dev_kfree_skb_any(skb);
3157 return NETDEV_TX_OK;
3158 }
3159
3160 mss = skb_shinfo(skb)->gso_size;
3161 /* The controller does a simple calculation to
3162 * make sure there is enough room in the FIFO before
3163 * initiating the DMA for each buffer. The calc is:
3164 * 4 = ceil(buffer len/mss). To make sure we don't
3165 * overrun the FIFO, adjust the max buffer len if mss
3166 * drops. */
3167 if (mss) {
3168 u8 hdr_len;
3169 max_per_txd = min(mss << 2, max_per_txd);
3170 max_txd_pwr = fls(max_per_txd) - 1;
3171
3172 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3173 * points to just header, pull a few bytes of payload from
3174 * frags into skb->data */
3175 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4e6c709c 3176 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
3177 unsigned int pull_size;
3178
3179 pull_size = min((unsigned int)4, skb->data_len);
3180 if (!__pskb_pull_tail(skb, pull_size)) {
3181 ndev_err(netdev,
3182 "__pskb_pull_tail failed.\n");
3183 dev_kfree_skb_any(skb);
3184 return NETDEV_TX_OK;
3185 }
3186 len = skb->len - skb->data_len;
3187 }
3188 }
3189
3190 /* reserve a descriptor for the offload context */
3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 count++;
3193 count++;
3194
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197 nr_frags = skb_shinfo(skb)->nr_frags;
3198 for (f = 0; f < nr_frags; f++)
3199 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3200 max_txd_pwr);
3201
3202 if (adapter->hw.mac.tx_pkt_filtering)
3203 e1000_transfer_dhcp_info(adapter, skb);
3204
3205 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3206 /* Collision - tell upper layer to requeue */
3207 return NETDEV_TX_LOCKED;
3208
3209 /* need: count + 2 desc gap to keep tail from touching
3210 * head, otherwise try next time */
3211 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3212 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3213 return NETDEV_TX_BUSY;
3214 }
3215
3216 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3217 tx_flags |= E1000_TX_FLAGS_VLAN;
3218 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3219 }
3220
3221 first = tx_ring->next_to_use;
3222
3223 tso = e1000_tso(adapter, skb);
3224 if (tso < 0) {
3225 dev_kfree_skb_any(skb);
3226 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3227 return NETDEV_TX_OK;
3228 }
3229
3230 if (tso)
3231 tx_flags |= E1000_TX_FLAGS_TSO;
3232 else if (e1000_tx_csum(adapter, skb))
3233 tx_flags |= E1000_TX_FLAGS_CSUM;
3234
3235 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3236 * 82571 hardware supports TSO capabilities for IPv6 as well...
3237 * no longer assume, we must. */
3238 if (skb->protocol == htons(ETH_P_IP))
3239 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3242 if (count < 0) {
3243 /* handle pci_map_single() error in e1000_tx_map */
3244 dev_kfree_skb_any(skb);
3245 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 3246 return NETDEV_TX_OK;
bc7f75fa
AK
3247 }
3248
3249 e1000_tx_queue(adapter, tx_flags, count);
3250
3251 netdev->trans_start = jiffies;
3252
3253 /* Make sure there is space in the ring for the next send. */
3254 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3255
3256 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3257 return NETDEV_TX_OK;
3258}
3259
3260/**
3261 * e1000_tx_timeout - Respond to a Tx Hang
3262 * @netdev: network interface device structure
3263 **/
3264static void e1000_tx_timeout(struct net_device *netdev)
3265{
3266 struct e1000_adapter *adapter = netdev_priv(netdev);
3267
3268 /* Do the reset outside of interrupt context */
3269 adapter->tx_timeout_count++;
3270 schedule_work(&adapter->reset_task);
3271}
3272
3273static void e1000_reset_task(struct work_struct *work)
3274{
3275 struct e1000_adapter *adapter;
3276 adapter = container_of(work, struct e1000_adapter, reset_task);
3277
3278 e1000e_reinit_locked(adapter);
3279}
3280
3281/**
3282 * e1000_get_stats - Get System Network Statistics
3283 * @netdev: network interface device structure
3284 *
3285 * Returns the address of the device statistics structure.
3286 * The statistics are actually updated from the timer callback.
3287 **/
3288static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3289{
3290 struct e1000_adapter *adapter = netdev_priv(netdev);
3291
3292 /* only return the current stats */
3293 return &adapter->net_stats;
3294}
3295
3296/**
3297 * e1000_change_mtu - Change the Maximum Transfer Unit
3298 * @netdev: network interface device structure
3299 * @new_mtu: new value for maximum frame size
3300 *
3301 * Returns 0 on success, negative on failure
3302 **/
3303static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3304{
3305 struct e1000_adapter *adapter = netdev_priv(netdev);
3306 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3307
3308 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3309 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3310 ndev_err(netdev, "Invalid MTU setting\n");
3311 return -EINVAL;
3312 }
3313
3314 /* Jumbo frame size limits */
3315 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3316 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3317 ndev_err(netdev, "Jumbo Frames not supported.\n");
3318 return -EINVAL;
3319 }
3320 if (adapter->hw.phy.type == e1000_phy_ife) {
3321 ndev_err(netdev, "Jumbo Frames not supported.\n");
3322 return -EINVAL;
3323 }
3324 }
3325
3326#define MAX_STD_JUMBO_FRAME_SIZE 9234
3327 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3328 ndev_err(netdev, "MTU > 9216 not supported.\n");
3329 return -EINVAL;
3330 }
3331
3332 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3333 msleep(1);
3334 /* e1000e_down has a dependency on max_frame_size */
3335 adapter->hw.mac.max_frame_size = max_frame;
3336 if (netif_running(netdev))
3337 e1000e_down(adapter);
3338
3339 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3340 * means we reserve 2 more, this pushes us to allocate from the next
3341 * larger slab size.
f920c186 3342 * i.e. RXBUFFER_2048 --> size-4096 slab */
bc7f75fa
AK
3343
3344 if (max_frame <= 256)
3345 adapter->rx_buffer_len = 256;
3346 else if (max_frame <= 512)
3347 adapter->rx_buffer_len = 512;
3348 else if (max_frame <= 1024)
3349 adapter->rx_buffer_len = 1024;
3350 else if (max_frame <= 2048)
3351 adapter->rx_buffer_len = 2048;
3352 else
3353 adapter->rx_buffer_len = 4096;
3354
3355 /* adjust allocation if LPE protects us, and we aren't using SBP */
3356 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3357 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3358 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3359 + ETH_FCS_LEN ;
3360
3361 ndev_info(netdev, "changing MTU from %d to %d\n",
3362 netdev->mtu, new_mtu);
3363 netdev->mtu = new_mtu;
3364
3365 if (netif_running(netdev))
3366 e1000e_up(adapter);
3367 else
3368 e1000e_reset(adapter);
3369
3370 clear_bit(__E1000_RESETTING, &adapter->state);
3371
3372 return 0;
3373}
3374
3375static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3376 int cmd)
3377{
3378 struct e1000_adapter *adapter = netdev_priv(netdev);
3379 struct mii_ioctl_data *data = if_mii(ifr);
3380 unsigned long irq_flags;
3381
3382 if (adapter->hw.media_type != e1000_media_type_copper)
3383 return -EOPNOTSUPP;
3384
3385 switch (cmd) {
3386 case SIOCGMIIPHY:
3387 data->phy_id = adapter->hw.phy.addr;
3388 break;
3389 case SIOCGMIIREG:
3390 if (!capable(CAP_NET_ADMIN))
3391 return -EPERM;
3392 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3393 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3394 &data->val_out)) {
3395 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3396 return -EIO;
3397 }
3398 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3399 break;
3400 case SIOCSMIIREG:
3401 default:
3402 return -EOPNOTSUPP;
3403 }
3404 return 0;
3405}
3406
3407static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3408{
3409 switch (cmd) {
3410 case SIOCGMIIPHY:
3411 case SIOCGMIIREG:
3412 case SIOCSMIIREG:
3413 return e1000_mii_ioctl(netdev, ifr, cmd);
3414 default:
3415 return -EOPNOTSUPP;
3416 }
3417}
3418
3419static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3420{
3421 struct net_device *netdev = pci_get_drvdata(pdev);
3422 struct e1000_adapter *adapter = netdev_priv(netdev);
3423 struct e1000_hw *hw = &adapter->hw;
3424 u32 ctrl, ctrl_ext, rctl, status;
3425 u32 wufc = adapter->wol;
3426 int retval = 0;
3427
3428 netif_device_detach(netdev);
3429
3430 if (netif_running(netdev)) {
3431 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3432 e1000e_down(adapter);
3433 e1000_free_irq(adapter);
3434 }
3435
3436 retval = pci_save_state(pdev);
3437 if (retval)
3438 return retval;
3439
3440 status = er32(STATUS);
3441 if (status & E1000_STATUS_LU)
3442 wufc &= ~E1000_WUFC_LNKC;
3443
3444 if (wufc) {
3445 e1000_setup_rctl(adapter);
3446 e1000_set_multi(netdev);
3447
3448 /* turn on all-multi mode if wake on multicast is enabled */
3449 if (wufc & E1000_WUFC_MC) {
3450 rctl = er32(RCTL);
3451 rctl |= E1000_RCTL_MPE;
3452 ew32(RCTL, rctl);
3453 }
3454
3455 ctrl = er32(CTRL);
3456 /* advertise wake from D3Cold */
3457 #define E1000_CTRL_ADVD3WUC 0x00100000
3458 /* phy power management enable */
3459 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3460 ctrl |= E1000_CTRL_ADVD3WUC |
3461 E1000_CTRL_EN_PHY_PWR_MGMT;
3462 ew32(CTRL, ctrl);
3463
3464 if (adapter->hw.media_type == e1000_media_type_fiber ||
3465 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3466 /* keep the laser running in D3 */
3467 ctrl_ext = er32(CTRL_EXT);
3468 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3469 ew32(CTRL_EXT, ctrl_ext);
3470 }
3471
3472 /* Allow time for pending master requests to run */
3473 e1000e_disable_pcie_master(&adapter->hw);
3474
3475 ew32(WUC, E1000_WUC_PME_EN);
3476 ew32(WUFC, wufc);
3477 pci_enable_wake(pdev, PCI_D3hot, 1);
3478 pci_enable_wake(pdev, PCI_D3cold, 1);
3479 } else {
3480 ew32(WUC, 0);
3481 ew32(WUFC, 0);
3482 pci_enable_wake(pdev, PCI_D3hot, 0);
3483 pci_enable_wake(pdev, PCI_D3cold, 0);
3484 }
3485
3486 e1000_release_manageability(adapter);
3487
3488 /* make sure adapter isn't asleep if manageability is enabled */
3489 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3490 pci_enable_wake(pdev, PCI_D3hot, 1);
3491 pci_enable_wake(pdev, PCI_D3cold, 1);
3492 }
3493
3494 if (adapter->hw.phy.type == e1000_phy_igp_3)
3495 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3496
3497 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3498 * would have already happened in close and is redundant. */
3499 e1000_release_hw_control(adapter);
3500
3501 pci_disable_device(pdev);
3502
3503 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3504
3505 return 0;
3506}
3507
3508#ifdef CONFIG_PM
3509static int e1000_resume(struct pci_dev *pdev)
3510{
3511 struct net_device *netdev = pci_get_drvdata(pdev);
3512 struct e1000_adapter *adapter = netdev_priv(netdev);
3513 struct e1000_hw *hw = &adapter->hw;
3514 u32 err;
3515
3516 pci_set_power_state(pdev, PCI_D0);
3517 pci_restore_state(pdev);
3518 err = pci_enable_device(pdev);
3519 if (err) {
3520 dev_err(&pdev->dev,
3521 "Cannot enable PCI device from suspend\n");
3522 return err;
3523 }
3524
3525 pci_set_master(pdev);
3526
3527 pci_enable_wake(pdev, PCI_D3hot, 0);
3528 pci_enable_wake(pdev, PCI_D3cold, 0);
3529
3530 if (netif_running(netdev)) {
3531 err = e1000_request_irq(adapter);
3532 if (err)
3533 return err;
3534 }
3535
3536 e1000e_power_up_phy(adapter);
3537 e1000e_reset(adapter);
3538 ew32(WUS, ~0);
3539
3540 e1000_init_manageability(adapter);
3541
3542 if (netif_running(netdev))
3543 e1000e_up(adapter);
3544
3545 netif_device_attach(netdev);
3546
3547 /* If the controller has AMT, do not set DRV_LOAD until the interface
3548 * is up. For all other cases, let the f/w know that the h/w is now
3549 * under the control of the driver. */
3550 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3551 e1000_get_hw_control(adapter);
3552
3553 return 0;
3554}
3555#endif
3556
3557static void e1000_shutdown(struct pci_dev *pdev)
3558{
3559 e1000_suspend(pdev, PMSG_SUSPEND);
3560}
3561
3562#ifdef CONFIG_NET_POLL_CONTROLLER
3563/*
3564 * Polling 'interrupt' - used by things like netconsole to send skbs
3565 * without having to re-enable interrupts. It's not called while
3566 * the interrupt routine is executing.
3567 */
3568static void e1000_netpoll(struct net_device *netdev)
3569{
3570 struct e1000_adapter *adapter = netdev_priv(netdev);
3571
3572 disable_irq(adapter->pdev->irq);
3573 e1000_intr(adapter->pdev->irq, netdev);
3574
3575 e1000_clean_tx_irq(adapter);
3576
3577 enable_irq(adapter->pdev->irq);
3578}
3579#endif
3580
3581/**
3582 * e1000_io_error_detected - called when PCI error is detected
3583 * @pdev: Pointer to PCI device
3584 * @state: The current pci connection state
3585 *
3586 * This function is called after a PCI bus error affecting
3587 * this device has been detected.
3588 */
3589static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3590 pci_channel_state_t state)
3591{
3592 struct net_device *netdev = pci_get_drvdata(pdev);
3593 struct e1000_adapter *adapter = netdev_priv(netdev);
3594
3595 netif_device_detach(netdev);
3596
3597 if (netif_running(netdev))
3598 e1000e_down(adapter);
3599 pci_disable_device(pdev);
3600
3601 /* Request a slot slot reset. */
3602 return PCI_ERS_RESULT_NEED_RESET;
3603}
3604
3605/**
3606 * e1000_io_slot_reset - called after the pci bus has been reset.
3607 * @pdev: Pointer to PCI device
3608 *
3609 * Restart the card from scratch, as if from a cold-boot. Implementation
3610 * resembles the first-half of the e1000_resume routine.
3611 */
3612static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3613{
3614 struct net_device *netdev = pci_get_drvdata(pdev);
3615 struct e1000_adapter *adapter = netdev_priv(netdev);
3616 struct e1000_hw *hw = &adapter->hw;
3617
3618 if (pci_enable_device(pdev)) {
3619 dev_err(&pdev->dev,
3620 "Cannot re-enable PCI device after reset.\n");
3621 return PCI_ERS_RESULT_DISCONNECT;
3622 }
3623 pci_set_master(pdev);
3624
3625 pci_enable_wake(pdev, PCI_D3hot, 0);
3626 pci_enable_wake(pdev, PCI_D3cold, 0);
3627
3628 e1000e_reset(adapter);
3629 ew32(WUS, ~0);
3630
3631 return PCI_ERS_RESULT_RECOVERED;
3632}
3633
3634/**
3635 * e1000_io_resume - called when traffic can start flowing again.
3636 * @pdev: Pointer to PCI device
3637 *
3638 * This callback is called when the error recovery driver tells us that
3639 * its OK to resume normal operation. Implementation resembles the
3640 * second-half of the e1000_resume routine.
3641 */
3642static void e1000_io_resume(struct pci_dev *pdev)
3643{
3644 struct net_device *netdev = pci_get_drvdata(pdev);
3645 struct e1000_adapter *adapter = netdev_priv(netdev);
3646
3647 e1000_init_manageability(adapter);
3648
3649 if (netif_running(netdev)) {
3650 if (e1000e_up(adapter)) {
3651 dev_err(&pdev->dev,
3652 "can't bring device back up after reset\n");
3653 return;
3654 }
3655 }
3656
3657 netif_device_attach(netdev);
3658
3659 /* If the controller has AMT, do not set DRV_LOAD until the interface
3660 * is up. For all other cases, let the f/w know that the h/w is now
3661 * under the control of the driver. */
3662 if (!(adapter->flags & FLAG_HAS_AMT) ||
3663 !e1000e_check_mng_mode(&adapter->hw))
3664 e1000_get_hw_control(adapter);
3665
3666}
3667
3668static void e1000_print_device_info(struct e1000_adapter *adapter)
3669{
3670 struct e1000_hw *hw = &adapter->hw;
3671 struct net_device *netdev = adapter->netdev;
3672 u32 part_num;
3673
3674 /* print bus type/speed/width info */
3675 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3676 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3677 /* bus width */
3678 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3679 "Width x1"),
3680 /* MAC address */
3681 netdev->dev_addr[0], netdev->dev_addr[1],
3682 netdev->dev_addr[2], netdev->dev_addr[3],
3683 netdev->dev_addr[4], netdev->dev_addr[5]);
3684 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3685 (hw->phy.type == e1000_phy_ife)
3686 ? "10/100" : "1000");
3687 e1000e_read_part_num(hw, &part_num);
3688 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3689 hw->mac.type, hw->phy.type,
3690 (part_num >> 8), (part_num & 0xff));
3691}
3692
3693/**
3694 * e1000_probe - Device Initialization Routine
3695 * @pdev: PCI device information struct
3696 * @ent: entry in e1000_pci_tbl
3697 *
3698 * Returns 0 on success, negative on failure
3699 *
3700 * e1000_probe initializes an adapter identified by a pci_dev structure.
3701 * The OS initialization, configuring of the adapter private structure,
3702 * and a hardware reset occur.
3703 **/
3704static int __devinit e1000_probe(struct pci_dev *pdev,
3705 const struct pci_device_id *ent)
3706{
3707 struct net_device *netdev;
3708 struct e1000_adapter *adapter;
3709 struct e1000_hw *hw;
3710 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3711 unsigned long mmio_start, mmio_len;
3712 unsigned long flash_start, flash_len;
3713
3714 static int cards_found;
3715 int i, err, pci_using_dac;
3716 u16 eeprom_data = 0;
3717 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3718
3719 err = pci_enable_device(pdev);
3720 if (err)
3721 return err;
3722
3723 pci_using_dac = 0;
3724 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3725 if (!err) {
3726 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3727 if (!err)
3728 pci_using_dac = 1;
3729 } else {
3730 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3731 if (err) {
3732 err = pci_set_consistent_dma_mask(pdev,
3733 DMA_32BIT_MASK);
3734 if (err) {
3735 dev_err(&pdev->dev, "No usable DMA "
3736 "configuration, aborting\n");
3737 goto err_dma;
3738 }
3739 }
3740 }
3741
3742 err = pci_request_regions(pdev, e1000e_driver_name);
3743 if (err)
3744 goto err_pci_reg;
3745
3746 pci_set_master(pdev);
3747
3748 err = -ENOMEM;
3749 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3750 if (!netdev)
3751 goto err_alloc_etherdev;
3752
bc7f75fa
AK
3753 SET_NETDEV_DEV(netdev, &pdev->dev);
3754
3755 pci_set_drvdata(pdev, netdev);
3756 adapter = netdev_priv(netdev);
3757 hw = &adapter->hw;
3758 adapter->netdev = netdev;
3759 adapter->pdev = pdev;
3760 adapter->ei = ei;
3761 adapter->pba = ei->pba;
3762 adapter->flags = ei->flags;
3763 adapter->hw.adapter = adapter;
3764 adapter->hw.mac.type = ei->mac;
3765 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3766
3767 mmio_start = pci_resource_start(pdev, 0);
3768 mmio_len = pci_resource_len(pdev, 0);
3769
3770 err = -EIO;
3771 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3772 if (!adapter->hw.hw_addr)
3773 goto err_ioremap;
3774
3775 if ((adapter->flags & FLAG_HAS_FLASH) &&
3776 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3777 flash_start = pci_resource_start(pdev, 1);
3778 flash_len = pci_resource_len(pdev, 1);
3779 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3780 if (!adapter->hw.flash_address)
3781 goto err_flashmap;
3782 }
3783
3784 /* construct the net_device struct */
3785 netdev->open = &e1000_open;
3786 netdev->stop = &e1000_close;
3787 netdev->hard_start_xmit = &e1000_xmit_frame;
3788 netdev->get_stats = &e1000_get_stats;
3789 netdev->set_multicast_list = &e1000_set_multi;
3790 netdev->set_mac_address = &e1000_set_mac;
3791 netdev->change_mtu = &e1000_change_mtu;
3792 netdev->do_ioctl = &e1000_ioctl;
3793 e1000e_set_ethtool_ops(netdev);
3794 netdev->tx_timeout = &e1000_tx_timeout;
3795 netdev->watchdog_timeo = 5 * HZ;
3796 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3797 netdev->vlan_rx_register = e1000_vlan_rx_register;
3798 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3799 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3800#ifdef CONFIG_NET_POLL_CONTROLLER
3801 netdev->poll_controller = e1000_netpoll;
3802#endif
3803 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3804
3805 netdev->mem_start = mmio_start;
3806 netdev->mem_end = mmio_start + mmio_len;
3807
3808 adapter->bd_number = cards_found++;
3809
3810 /* setup adapter struct */
3811 err = e1000_sw_init(adapter);
3812 if (err)
3813 goto err_sw_init;
3814
3815 err = -EIO;
3816
3817 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3818 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3819 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3820
3821 err = ei->get_invariants(adapter);
3822 if (err)
3823 goto err_hw_init;
3824
3825 hw->mac.ops.get_bus_info(&adapter->hw);
3826
3827 adapter->hw.phy.wait_for_link = 0;
3828
3829 /* Copper options */
3830 if (adapter->hw.media_type == e1000_media_type_copper) {
3831 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3832 adapter->hw.phy.disable_polarity_correction = 0;
3833 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3834 }
3835
3836 if (e1000_check_reset_block(&adapter->hw))
3837 ndev_info(netdev,
3838 "PHY reset is blocked due to SOL/IDER session.\n");
3839
3840 netdev->features = NETIF_F_SG |
3841 NETIF_F_HW_CSUM |
3842 NETIF_F_HW_VLAN_TX |
3843 NETIF_F_HW_VLAN_RX;
3844
3845 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3846 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3847
3848 netdev->features |= NETIF_F_TSO;
3849 netdev->features |= NETIF_F_TSO6;
3850
3851 if (pci_using_dac)
3852 netdev->features |= NETIF_F_HIGHDMA;
3853
3854 /* We should not be using LLTX anymore, but we are still TX faster with
3855 * it. */
3856 netdev->features |= NETIF_F_LLTX;
3857
3858 if (e1000e_enable_mng_pass_thru(&adapter->hw))
3859 adapter->flags |= FLAG_MNG_PT_ENABLED;
3860
3861 /* before reading the NVM, reset the controller to
3862 * put the device in a known good starting state */
3863 adapter->hw.mac.ops.reset_hw(&adapter->hw);
3864
3865 /*
3866 * systems with ASPM and others may see the checksum fail on the first
3867 * attempt. Let's give it a few tries
3868 */
3869 for (i = 0;; i++) {
3870 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3871 break;
3872 if (i == 2) {
3873 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3874 err = -EIO;
3875 goto err_eeprom;
3876 }
3877 }
3878
3879 /* copy the MAC address out of the NVM */
3880 if (e1000e_read_mac_addr(&adapter->hw))
3881 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3882
3883 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3884 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3885
3886 if (!is_valid_ether_addr(netdev->perm_addr)) {
3887 ndev_err(netdev, "Invalid MAC Address: "
3888 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3889 netdev->perm_addr[0], netdev->perm_addr[1],
3890 netdev->perm_addr[2], netdev->perm_addr[3],
3891 netdev->perm_addr[4], netdev->perm_addr[5]);
3892 err = -EIO;
3893 goto err_eeprom;
3894 }
3895
3896 init_timer(&adapter->watchdog_timer);
3897 adapter->watchdog_timer.function = &e1000_watchdog;
3898 adapter->watchdog_timer.data = (unsigned long) adapter;
3899
3900 init_timer(&adapter->phy_info_timer);
3901 adapter->phy_info_timer.function = &e1000_update_phy_info;
3902 adapter->phy_info_timer.data = (unsigned long) adapter;
3903
3904 INIT_WORK(&adapter->reset_task, e1000_reset_task);
3905 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3906
3907 e1000e_check_options(adapter);
3908
3909 /* Initialize link parameters. User can change them with ethtool */
3910 adapter->hw.mac.autoneg = 1;
309af40b 3911 adapter->fc_autoneg = 1;
bc7f75fa
AK
3912 adapter->hw.mac.original_fc = e1000_fc_default;
3913 adapter->hw.mac.fc = e1000_fc_default;
3914 adapter->hw.phy.autoneg_advertised = 0x2f;
3915
3916 /* ring size defaults */
3917 adapter->rx_ring->count = 256;
3918 adapter->tx_ring->count = 256;
3919
3920 /*
3921 * Initial Wake on LAN setting - If APM wake is enabled in
3922 * the EEPROM, enable the ACPI Magic Packet filter
3923 */
3924 if (adapter->flags & FLAG_APME_IN_WUC) {
3925 /* APME bit in EEPROM is mapped to WUC.APME */
3926 eeprom_data = er32(WUC);
3927 eeprom_apme_mask = E1000_WUC_APME;
3928 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3929 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3930 (adapter->hw.bus.func == 1))
3931 e1000_read_nvm(&adapter->hw,
3932 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3933 else
3934 e1000_read_nvm(&adapter->hw,
3935 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3936 }
3937
3938 /* fetch WoL from EEPROM */
3939 if (eeprom_data & eeprom_apme_mask)
3940 adapter->eeprom_wol |= E1000_WUFC_MAG;
3941
3942 /*
3943 * now that we have the eeprom settings, apply the special cases
3944 * where the eeprom may be wrong or the board simply won't support
3945 * wake on lan on a particular port
3946 */
3947 if (!(adapter->flags & FLAG_HAS_WOL))
3948 adapter->eeprom_wol = 0;
3949
3950 /* initialize the wol settings based on the eeprom settings */
3951 adapter->wol = adapter->eeprom_wol;
3952
3953 /* reset the hardware with the new settings */
3954 e1000e_reset(adapter);
3955
3956 /* If the controller has AMT, do not set DRV_LOAD until the interface
3957 * is up. For all other cases, let the f/w know that the h/w is now
3958 * under the control of the driver. */
3959 if (!(adapter->flags & FLAG_HAS_AMT) ||
3960 !e1000e_check_mng_mode(&adapter->hw))
3961 e1000_get_hw_control(adapter);
3962
3963 /* tell the stack to leave us alone until e1000_open() is called */
3964 netif_carrier_off(netdev);
3965 netif_stop_queue(netdev);
3966
3967 strcpy(netdev->name, "eth%d");
3968 err = register_netdev(netdev);
3969 if (err)
3970 goto err_register;
3971
3972 e1000_print_device_info(adapter);
3973
3974 return 0;
3975
3976err_register:
3977err_hw_init:
3978 e1000_release_hw_control(adapter);
3979err_eeprom:
3980 if (!e1000_check_reset_block(&adapter->hw))
3981 e1000_phy_hw_reset(&adapter->hw);
3982
3983 if (adapter->hw.flash_address)
3984 iounmap(adapter->hw.flash_address);
3985
3986err_flashmap:
3987 kfree(adapter->tx_ring);
3988 kfree(adapter->rx_ring);
3989err_sw_init:
3990 iounmap(adapter->hw.hw_addr);
3991err_ioremap:
3992 free_netdev(netdev);
3993err_alloc_etherdev:
3994 pci_release_regions(pdev);
3995err_pci_reg:
3996err_dma:
3997 pci_disable_device(pdev);
3998 return err;
3999}
4000
4001/**
4002 * e1000_remove - Device Removal Routine
4003 * @pdev: PCI device information struct
4004 *
4005 * e1000_remove is called by the PCI subsystem to alert the driver
4006 * that it should release a PCI device. The could be caused by a
4007 * Hot-Plug event, or because the driver is going to be removed from
4008 * memory.
4009 **/
4010static void __devexit e1000_remove(struct pci_dev *pdev)
4011{
4012 struct net_device *netdev = pci_get_drvdata(pdev);
4013 struct e1000_adapter *adapter = netdev_priv(netdev);
4014
4015 /* flush_scheduled work may reschedule our watchdog task, so
4016 * explicitly disable watchdog tasks from being rescheduled */
4017 set_bit(__E1000_DOWN, &adapter->state);
4018 del_timer_sync(&adapter->watchdog_timer);
4019 del_timer_sync(&adapter->phy_info_timer);
4020
4021 flush_scheduled_work();
4022
4023 e1000_release_manageability(adapter);
4024
4025 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4026 * would have already happened in close and is redundant. */
4027 e1000_release_hw_control(adapter);
4028
4029 unregister_netdev(netdev);
4030
4031 if (!e1000_check_reset_block(&adapter->hw))
4032 e1000_phy_hw_reset(&adapter->hw);
4033
4034 kfree(adapter->tx_ring);
4035 kfree(adapter->rx_ring);
4036
4037 iounmap(adapter->hw.hw_addr);
4038 if (adapter->hw.flash_address)
4039 iounmap(adapter->hw.flash_address);
4040 pci_release_regions(pdev);
4041
4042 free_netdev(netdev);
4043
4044 pci_disable_device(pdev);
4045}
4046
4047/* PCI Error Recovery (ERS) */
4048static struct pci_error_handlers e1000_err_handler = {
4049 .error_detected = e1000_io_error_detected,
4050 .slot_reset = e1000_io_slot_reset,
4051 .resume = e1000_io_resume,
4052};
4053
4054static struct pci_device_id e1000_pci_tbl[] = {
4055 /*
4056 * Support for 82571/2/3, es2lan and ich8 will be phased in
4057 * stepwise.
4058
4059 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4060 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4061 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4062 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4063 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4064 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4065 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4073 board_80003es2lan },
4074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4075 board_80003es2lan },
4076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4077 board_80003es2lan },
4078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4079 board_80003es2lan },
4080 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4087 */
4088
4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4094
4095 { } /* terminate list */
4096};
4097MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4098
4099/* PCI Device API Driver */
4100static struct pci_driver e1000_driver = {
4101 .name = e1000e_driver_name,
4102 .id_table = e1000_pci_tbl,
4103 .probe = e1000_probe,
4104 .remove = __devexit_p(e1000_remove),
4105#ifdef CONFIG_PM
4106 /* Power Managment Hooks */
4107 .suspend = e1000_suspend,
4108 .resume = e1000_resume,
4109#endif
4110 .shutdown = e1000_shutdown,
4111 .err_handler = &e1000_err_handler
4112};
4113
4114/**
4115 * e1000_init_module - Driver Registration Routine
4116 *
4117 * e1000_init_module is the first routine called when the driver is
4118 * loaded. All it does is register with the PCI subsystem.
4119 **/
4120static int __init e1000_init_module(void)
4121{
4122 int ret;
4123 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4124 e1000e_driver_name, e1000e_driver_version);
4125 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4126 e1000e_driver_name);
4127 ret = pci_register_driver(&e1000_driver);
4128
4129 return ret;
4130}
4131module_init(e1000_init_module);
4132
4133/**
4134 * e1000_exit_module - Driver Exit Cleanup Routine
4135 *
4136 * e1000_exit_module is called just before the driver is removed
4137 * from memory.
4138 **/
4139static void __exit e1000_exit_module(void)
4140{
4141 pci_unregister_driver(&e1000_driver);
4142}
4143module_exit(e1000_exit_module);
4144
4145
4146MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4147MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4148MODULE_LICENSE("GPL");
4149MODULE_VERSION(DRV_VERSION);
4150
4151/* e1000_main.c */
This page took 0.318593 seconds and 5 git commands to generate.