uli526x: fix endianness issues in the setup frame
[deliverable/linux.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
46
47#include "e1000.h"
48
f014e97e 49#define DRV_VERSION "0.2.1"
bc7f75fa
AK
50char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION;
52
53static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
60};
61
62#ifdef DEBUG
63/**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68{
589c085f 69 return hw->adapter->netdev->name;
bc7f75fa
AK
70}
71#endif
72
73/**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76static int e1000_desc_unused(struct e1000_ring *ring)
77{
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
80
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82}
83
84/**
ad68076e 85 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
a39fe742 94 u8 status, __le16 vlan)
bc7f75fa
AK
95{
96 skb->protocol = eth_type_trans(skb, netdev);
97
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
ad68076e
BA
141 /*
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
144 * and then put the value in host order for further stack use.
145 */
a39fe742
AV
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
148 skb->ip_summed = CHECKSUM_COMPLETE;
149 }
150 adapter->hw_csum_good++;
151}
152
153/**
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
156 **/
157static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
159{
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
171
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
177 }
178
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
184 }
185
ad68076e
BA
186 /*
187 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
190 */
191 skb_reserve(skb, NET_IP_ALIGN);
192
193 buffer_info->skb = skb;
194map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
202 }
203
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
206
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
211 }
212
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
217
ad68076e
BA
218 /*
219 * Force memory writes to complete before letting h/w
bc7f75fa
AK
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
ad68076e
BA
222 * such as IA-64).
223 */
bc7f75fa
AK
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 }
227}
228
229/**
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
232 **/
233static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
235{
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
244
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
247
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
250
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
a39fe742 255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
256 continue;
257 }
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 260 if (!ps_page->page) {
47f44e40
AK
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
263 }
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
bc7f75fa 273 }
bc7f75fa 274 }
47f44e40
AK
275 /*
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
279 */
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
282 }
283
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
286
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
290 }
291
ad68076e
BA
292 /*
293 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
296 */
297 skb_reserve(skb, NET_IP_ALIGN);
298
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
310 }
311
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
313
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
318 }
319
320no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
323
324 if (!(i--))
325 i = (rx_ring->count - 1);
326
ad68076e
BA
327 /*
328 * Force memory writes to complete before letting h/w
bc7f75fa
AK
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
ad68076e
BA
331 * such as IA-64).
332 */
bc7f75fa 333 wmb();
ad68076e
BA
334 /*
335 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
338 */
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
340 }
341}
342
bc7f75fa
AK
343/**
344 * e1000_clean_rx_irq - Send received data up the network stack; legacy
345 * @adapter: board private structure
346 *
347 * the return value indicates whether actual cleaning was done, there
348 * is no guarantee that everything was cleaned
349 **/
350static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
351 int *work_done, int work_to_do)
352{
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_ring *rx_ring = adapter->rx_ring;
356 struct e1000_rx_desc *rx_desc, *next_rxd;
357 struct e1000_buffer *buffer_info, *next_buffer;
358 u32 length;
359 unsigned int i;
360 int cleaned_count = 0;
361 bool cleaned = 0;
362 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
363
364 i = rx_ring->next_to_clean;
365 rx_desc = E1000_RX_DESC(*rx_ring, i);
366 buffer_info = &rx_ring->buffer_info[i];
367
368 while (rx_desc->status & E1000_RXD_STAT_DD) {
369 struct sk_buff *skb;
370 u8 status;
371
372 if (*work_done >= work_to_do)
373 break;
374 (*work_done)++;
375
376 status = rx_desc->status;
377 skb = buffer_info->skb;
378 buffer_info->skb = NULL;
379
380 prefetch(skb->data - NET_IP_ALIGN);
381
382 i++;
383 if (i == rx_ring->count)
384 i = 0;
385 next_rxd = E1000_RX_DESC(*rx_ring, i);
386 prefetch(next_rxd);
387
388 next_buffer = &rx_ring->buffer_info[i];
389
390 cleaned = 1;
391 cleaned_count++;
392 pci_unmap_single(pdev,
393 buffer_info->dma,
394 adapter->rx_buffer_len,
395 PCI_DMA_FROMDEVICE);
396 buffer_info->dma = 0;
397
398 length = le16_to_cpu(rx_desc->length);
399
400 /* !EOP means multiple descriptors were used to store a single
401 * packet, also make sure the frame isn't just CRC only */
402 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
403 /* All receives must fit into a single buffer */
404 ndev_dbg(netdev, "%s: Receive packet consumed "
405 "multiple buffers\n", netdev->name);
406 /* recycle */
407 buffer_info->skb = skb;
408 goto next_desc;
409 }
410
411 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
412 /* recycle */
413 buffer_info->skb = skb;
414 goto next_desc;
415 }
416
bc7f75fa
AK
417 total_rx_bytes += length;
418 total_rx_packets++;
419
ad68076e
BA
420 /*
421 * code added for copybreak, this should improve
bc7f75fa 422 * performance for small packets with large amounts
ad68076e
BA
423 * of reassembly being done in the stack
424 */
bc7f75fa
AK
425 if (length < copybreak) {
426 struct sk_buff *new_skb =
427 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
428 if (new_skb) {
429 skb_reserve(new_skb, NET_IP_ALIGN);
430 memcpy(new_skb->data - NET_IP_ALIGN,
431 skb->data - NET_IP_ALIGN,
432 length + NET_IP_ALIGN);
433 /* save the skb in buffer_info as good */
434 buffer_info->skb = skb;
435 skb = new_skb;
436 }
437 /* else just continue with the old one */
438 }
439 /* end copybreak code */
440 skb_put(skb, length);
441
442 /* Receive Checksum Offload */
443 e1000_rx_checksum(adapter,
444 (u32)(status) |
445 ((u32)(rx_desc->errors) << 24),
446 le16_to_cpu(rx_desc->csum), skb);
447
448 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
449
450next_desc:
451 rx_desc->status = 0;
452
453 /* return some buffers to hardware, one at a time is too slow */
454 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
455 adapter->alloc_rx_buf(adapter, cleaned_count);
456 cleaned_count = 0;
457 }
458
459 /* use prefetched values */
460 rx_desc = next_rxd;
461 buffer_info = next_buffer;
462 }
463 rx_ring->next_to_clean = i;
464
465 cleaned_count = e1000_desc_unused(rx_ring);
466 if (cleaned_count)
467 adapter->alloc_rx_buf(adapter, cleaned_count);
468
bc7f75fa 469 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 470 adapter->total_rx_packets += total_rx_packets;
41988692 471 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 472 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
473 return cleaned;
474}
475
bc7f75fa
AK
476static void e1000_put_txbuf(struct e1000_adapter *adapter,
477 struct e1000_buffer *buffer_info)
478{
479 if (buffer_info->dma) {
480 pci_unmap_page(adapter->pdev, buffer_info->dma,
481 buffer_info->length, PCI_DMA_TODEVICE);
482 buffer_info->dma = 0;
483 }
484 if (buffer_info->skb) {
485 dev_kfree_skb_any(buffer_info->skb);
486 buffer_info->skb = NULL;
487 }
488}
489
490static void e1000_print_tx_hang(struct e1000_adapter *adapter)
491{
492 struct e1000_ring *tx_ring = adapter->tx_ring;
493 unsigned int i = tx_ring->next_to_clean;
494 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
495 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
496 struct net_device *netdev = adapter->netdev;
497
498 /* detected Tx unit hang */
499 ndev_err(netdev,
500 "Detected Tx Unit Hang:\n"
501 " TDH <%x>\n"
502 " TDT <%x>\n"
503 " next_to_use <%x>\n"
504 " next_to_clean <%x>\n"
505 "buffer_info[next_to_clean]:\n"
506 " time_stamp <%lx>\n"
507 " next_to_watch <%x>\n"
508 " jiffies <%lx>\n"
509 " next_to_watch.status <%x>\n",
510 readl(adapter->hw.hw_addr + tx_ring->head),
511 readl(adapter->hw.hw_addr + tx_ring->tail),
512 tx_ring->next_to_use,
513 tx_ring->next_to_clean,
514 tx_ring->buffer_info[eop].time_stamp,
515 eop,
516 jiffies,
517 eop_desc->upper.fields.status);
518}
519
520/**
521 * e1000_clean_tx_irq - Reclaim resources after transmit completes
522 * @adapter: board private structure
523 *
524 * the return value indicates whether actual cleaning was done, there
525 * is no guarantee that everything was cleaned
526 **/
527static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
528{
529 struct net_device *netdev = adapter->netdev;
530 struct e1000_hw *hw = &adapter->hw;
531 struct e1000_ring *tx_ring = adapter->tx_ring;
532 struct e1000_tx_desc *tx_desc, *eop_desc;
533 struct e1000_buffer *buffer_info;
534 unsigned int i, eop;
535 unsigned int count = 0;
536 bool cleaned = 0;
537 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
538
539 i = tx_ring->next_to_clean;
540 eop = tx_ring->buffer_info[i].next_to_watch;
541 eop_desc = E1000_TX_DESC(*tx_ring, eop);
542
543 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
544 for (cleaned = 0; !cleaned; ) {
545 tx_desc = E1000_TX_DESC(*tx_ring, i);
546 buffer_info = &tx_ring->buffer_info[i];
547 cleaned = (i == eop);
548
549 if (cleaned) {
550 struct sk_buff *skb = buffer_info->skb;
551 unsigned int segs, bytecount;
552 segs = skb_shinfo(skb)->gso_segs ?: 1;
553 /* multiply data chunks by size of headers */
554 bytecount = ((segs - 1) * skb_headlen(skb)) +
555 skb->len;
556 total_tx_packets += segs;
557 total_tx_bytes += bytecount;
558 }
559
560 e1000_put_txbuf(adapter, buffer_info);
561 tx_desc->upper.data = 0;
562
563 i++;
564 if (i == tx_ring->count)
565 i = 0;
566 }
567
568 eop = tx_ring->buffer_info[i].next_to_watch;
569 eop_desc = E1000_TX_DESC(*tx_ring, eop);
570#define E1000_TX_WEIGHT 64
571 /* weight of a sort for tx, to avoid endless transmit cleanup */
572 if (count++ == E1000_TX_WEIGHT)
573 break;
574 }
575
576 tx_ring->next_to_clean = i;
577
578#define TX_WAKE_THRESHOLD 32
579 if (cleaned && netif_carrier_ok(netdev) &&
580 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
581 /* Make sure that anybody stopping the queue after this
582 * sees the new next_to_clean.
583 */
584 smp_mb();
585
586 if (netif_queue_stopped(netdev) &&
587 !(test_bit(__E1000_DOWN, &adapter->state))) {
588 netif_wake_queue(netdev);
589 ++adapter->restart_queue;
590 }
591 }
592
593 if (adapter->detect_tx_hung) {
ad68076e
BA
594 /*
595 * Detect a transmit hang in hardware, this serializes the
596 * check with the clearing of time_stamp and movement of i
597 */
bc7f75fa
AK
598 adapter->detect_tx_hung = 0;
599 if (tx_ring->buffer_info[eop].dma &&
600 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
601 + (adapter->tx_timeout_factor * HZ))
ad68076e 602 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
603 e1000_print_tx_hang(adapter);
604 netif_stop_queue(netdev);
605 }
606 }
607 adapter->total_tx_bytes += total_tx_bytes;
608 adapter->total_tx_packets += total_tx_packets;
41988692 609 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 610 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
611 return cleaned;
612}
613
bc7f75fa
AK
614/**
615 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
616 * @adapter: board private structure
617 *
618 * the return value indicates whether actual cleaning was done, there
619 * is no guarantee that everything was cleaned
620 **/
621static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
622 int *work_done, int work_to_do)
623{
624 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
625 struct net_device *netdev = adapter->netdev;
626 struct pci_dev *pdev = adapter->pdev;
627 struct e1000_ring *rx_ring = adapter->rx_ring;
628 struct e1000_buffer *buffer_info, *next_buffer;
629 struct e1000_ps_page *ps_page;
630 struct sk_buff *skb;
631 unsigned int i, j;
632 u32 length, staterr;
633 int cleaned_count = 0;
634 bool cleaned = 0;
635 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
636
637 i = rx_ring->next_to_clean;
638 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
639 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
640 buffer_info = &rx_ring->buffer_info[i];
641
642 while (staterr & E1000_RXD_STAT_DD) {
643 if (*work_done >= work_to_do)
644 break;
645 (*work_done)++;
646 skb = buffer_info->skb;
647
648 /* in the packet split case this is header only */
649 prefetch(skb->data - NET_IP_ALIGN);
650
651 i++;
652 if (i == rx_ring->count)
653 i = 0;
654 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
655 prefetch(next_rxd);
656
657 next_buffer = &rx_ring->buffer_info[i];
658
659 cleaned = 1;
660 cleaned_count++;
661 pci_unmap_single(pdev, buffer_info->dma,
662 adapter->rx_ps_bsize0,
663 PCI_DMA_FROMDEVICE);
664 buffer_info->dma = 0;
665
666 if (!(staterr & E1000_RXD_STAT_EOP)) {
667 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
668 "up the full packet\n", netdev->name);
669 dev_kfree_skb_irq(skb);
670 goto next_desc;
671 }
672
673 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
674 dev_kfree_skb_irq(skb);
675 goto next_desc;
676 }
677
678 length = le16_to_cpu(rx_desc->wb.middle.length0);
679
680 if (!length) {
681 ndev_dbg(netdev, "%s: Last part of the packet spanning"
682 " multiple descriptors\n", netdev->name);
683 dev_kfree_skb_irq(skb);
684 goto next_desc;
685 }
686
687 /* Good Receive */
688 skb_put(skb, length);
689
690 {
ad68076e
BA
691 /*
692 * this looks ugly, but it seems compiler issues make it
693 * more efficient than reusing j
694 */
bc7f75fa
AK
695 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
696
ad68076e
BA
697 /*
698 * page alloc/put takes too long and effects small packet
699 * throughput, so unsplit small packets and save the alloc/put
700 * only valid in softirq (napi) context to call kmap_*
701 */
bc7f75fa
AK
702 if (l1 && (l1 <= copybreak) &&
703 ((length + l1) <= adapter->rx_ps_bsize0)) {
704 u8 *vaddr;
705
47f44e40 706 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 707
ad68076e
BA
708 /*
709 * there is no documentation about how to call
bc7f75fa 710 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
711 * very long
712 */
bc7f75fa
AK
713 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
714 PAGE_SIZE, PCI_DMA_FROMDEVICE);
715 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
716 memcpy(skb_tail_pointer(skb), vaddr, l1);
717 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
718 pci_dma_sync_single_for_device(pdev, ps_page->dma,
719 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 720
bc7f75fa
AK
721 skb_put(skb, l1);
722 goto copydone;
723 } /* if */
724 }
725
726 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
727 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
728 if (!length)
729 break;
730
47f44e40 731 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
732 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
733 PCI_DMA_FROMDEVICE);
734 ps_page->dma = 0;
735 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
736 ps_page->page = NULL;
737 skb->len += length;
738 skb->data_len += length;
739 skb->truesize += length;
740 }
741
bc7f75fa
AK
742copydone:
743 total_rx_bytes += skb->len;
744 total_rx_packets++;
745
746 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
747 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
748
749 if (rx_desc->wb.upper.header_status &
750 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
751 adapter->rx_hdr_split++;
752
753 e1000_receive_skb(adapter, netdev, skb,
754 staterr, rx_desc->wb.middle.vlan);
755
756next_desc:
757 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
758 buffer_info->skb = NULL;
759
760 /* return some buffers to hardware, one at a time is too slow */
761 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
762 adapter->alloc_rx_buf(adapter, cleaned_count);
763 cleaned_count = 0;
764 }
765
766 /* use prefetched values */
767 rx_desc = next_rxd;
768 buffer_info = next_buffer;
769
770 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
771 }
772 rx_ring->next_to_clean = i;
773
774 cleaned_count = e1000_desc_unused(rx_ring);
775 if (cleaned_count)
776 adapter->alloc_rx_buf(adapter, cleaned_count);
777
bc7f75fa 778 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 779 adapter->total_rx_packets += total_rx_packets;
41988692 780 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 781 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
782 return cleaned;
783}
784
785/**
786 * e1000_clean_rx_ring - Free Rx Buffers per Queue
787 * @adapter: board private structure
788 **/
789static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
790{
791 struct e1000_ring *rx_ring = adapter->rx_ring;
792 struct e1000_buffer *buffer_info;
793 struct e1000_ps_page *ps_page;
794 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
795 unsigned int i, j;
796
797 /* Free all the Rx ring sk_buffs */
798 for (i = 0; i < rx_ring->count; i++) {
799 buffer_info = &rx_ring->buffer_info[i];
800 if (buffer_info->dma) {
801 if (adapter->clean_rx == e1000_clean_rx_irq)
802 pci_unmap_single(pdev, buffer_info->dma,
803 adapter->rx_buffer_len,
804 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
805 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
806 pci_unmap_single(pdev, buffer_info->dma,
807 adapter->rx_ps_bsize0,
808 PCI_DMA_FROMDEVICE);
809 buffer_info->dma = 0;
810 }
811
bc7f75fa
AK
812 if (buffer_info->skb) {
813 dev_kfree_skb(buffer_info->skb);
814 buffer_info->skb = NULL;
815 }
816
817 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 818 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
819 if (!ps_page->page)
820 break;
821 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
822 PCI_DMA_FROMDEVICE);
823 ps_page->dma = 0;
824 put_page(ps_page->page);
825 ps_page->page = NULL;
826 }
827 }
828
829 /* there also may be some cached data from a chained receive */
830 if (rx_ring->rx_skb_top) {
831 dev_kfree_skb(rx_ring->rx_skb_top);
832 rx_ring->rx_skb_top = NULL;
833 }
834
bc7f75fa
AK
835 /* Zero out the descriptor ring */
836 memset(rx_ring->desc, 0, rx_ring->size);
837
838 rx_ring->next_to_clean = 0;
839 rx_ring->next_to_use = 0;
840
841 writel(0, adapter->hw.hw_addr + rx_ring->head);
842 writel(0, adapter->hw.hw_addr + rx_ring->tail);
843}
844
845/**
846 * e1000_intr_msi - Interrupt Handler
847 * @irq: interrupt number
848 * @data: pointer to a network interface device structure
849 **/
850static irqreturn_t e1000_intr_msi(int irq, void *data)
851{
852 struct net_device *netdev = data;
853 struct e1000_adapter *adapter = netdev_priv(netdev);
854 struct e1000_hw *hw = &adapter->hw;
855 u32 icr = er32(ICR);
856
ad68076e
BA
857 /*
858 * read ICR disables interrupts using IAM
859 */
bc7f75fa
AK
860
861 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
862 hw->mac.get_link_status = 1;
ad68076e
BA
863 /*
864 * ICH8 workaround-- Call gig speed drop workaround on cable
865 * disconnect (LSC) before accessing any PHY registers
866 */
bc7f75fa
AK
867 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
868 (!(er32(STATUS) & E1000_STATUS_LU)))
869 e1000e_gig_downshift_workaround_ich8lan(hw);
870
ad68076e
BA
871 /*
872 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 873 * link down event; disable receives here in the ISR and reset
ad68076e
BA
874 * adapter in watchdog
875 */
bc7f75fa
AK
876 if (netif_carrier_ok(netdev) &&
877 adapter->flags & FLAG_RX_NEEDS_RESTART) {
878 /* disable receives */
879 u32 rctl = er32(RCTL);
880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 881 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
882 }
883 /* guard against interrupt when we're going down */
884 if (!test_bit(__E1000_DOWN, &adapter->state))
885 mod_timer(&adapter->watchdog_timer, jiffies + 1);
886 }
887
888 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
889 adapter->total_tx_bytes = 0;
890 adapter->total_tx_packets = 0;
891 adapter->total_rx_bytes = 0;
892 adapter->total_rx_packets = 0;
893 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
894 }
895
896 return IRQ_HANDLED;
897}
898
899/**
900 * e1000_intr - Interrupt Handler
901 * @irq: interrupt number
902 * @data: pointer to a network interface device structure
903 **/
904static irqreturn_t e1000_intr(int irq, void *data)
905{
906 struct net_device *netdev = data;
907 struct e1000_adapter *adapter = netdev_priv(netdev);
908 struct e1000_hw *hw = &adapter->hw;
909
910 u32 rctl, icr = er32(ICR);
911 if (!icr)
912 return IRQ_NONE; /* Not our interrupt */
913
ad68076e
BA
914 /*
915 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
916 * not set, then the adapter didn't send an interrupt
917 */
bc7f75fa
AK
918 if (!(icr & E1000_ICR_INT_ASSERTED))
919 return IRQ_NONE;
920
ad68076e
BA
921 /*
922 * Interrupt Auto-Mask...upon reading ICR,
923 * interrupts are masked. No need for the
924 * IMC write
925 */
bc7f75fa
AK
926
927 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
928 hw->mac.get_link_status = 1;
ad68076e
BA
929 /*
930 * ICH8 workaround-- Call gig speed drop workaround on cable
931 * disconnect (LSC) before accessing any PHY registers
932 */
bc7f75fa
AK
933 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
934 (!(er32(STATUS) & E1000_STATUS_LU)))
935 e1000e_gig_downshift_workaround_ich8lan(hw);
936
ad68076e
BA
937 /*
938 * 80003ES2LAN workaround--
bc7f75fa
AK
939 * For packet buffer work-around on link down event;
940 * disable receives here in the ISR and
941 * reset adapter in watchdog
942 */
943 if (netif_carrier_ok(netdev) &&
944 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
945 /* disable receives */
946 rctl = er32(RCTL);
947 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 948 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
949 }
950 /* guard against interrupt when we're going down */
951 if (!test_bit(__E1000_DOWN, &adapter->state))
952 mod_timer(&adapter->watchdog_timer, jiffies + 1);
953 }
954
955 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
956 adapter->total_tx_bytes = 0;
957 adapter->total_tx_packets = 0;
958 adapter->total_rx_bytes = 0;
959 adapter->total_rx_packets = 0;
960 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
961 }
962
963 return IRQ_HANDLED;
964}
965
966static int e1000_request_irq(struct e1000_adapter *adapter)
967{
968 struct net_device *netdev = adapter->netdev;
a39fe742 969 irq_handler_t handler = e1000_intr;
bc7f75fa
AK
970 int irq_flags = IRQF_SHARED;
971 int err;
972
9b71c5e0 973 if (!pci_enable_msi(adapter->pdev)) {
bc7f75fa 974 adapter->flags |= FLAG_MSI_ENABLED;
a39fe742 975 handler = e1000_intr_msi;
bc7f75fa
AK
976 irq_flags = 0;
977 }
978
979 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
980 netdev);
981 if (err) {
9b71c5e0
AG
982 ndev_err(netdev,
983 "Unable to allocate %s interrupt (return: %d)\n",
984 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
985 err);
bc7f75fa
AK
986 if (adapter->flags & FLAG_MSI_ENABLED)
987 pci_disable_msi(adapter->pdev);
bc7f75fa
AK
988 }
989
990 return err;
991}
992
993static void e1000_free_irq(struct e1000_adapter *adapter)
994{
995 struct net_device *netdev = adapter->netdev;
996
997 free_irq(adapter->pdev->irq, netdev);
998 if (adapter->flags & FLAG_MSI_ENABLED) {
999 pci_disable_msi(adapter->pdev);
1000 adapter->flags &= ~FLAG_MSI_ENABLED;
1001 }
1002}
1003
1004/**
1005 * e1000_irq_disable - Mask off interrupt generation on the NIC
1006 **/
1007static void e1000_irq_disable(struct e1000_adapter *adapter)
1008{
1009 struct e1000_hw *hw = &adapter->hw;
1010
bc7f75fa
AK
1011 ew32(IMC, ~0);
1012 e1e_flush();
1013 synchronize_irq(adapter->pdev->irq);
1014}
1015
1016/**
1017 * e1000_irq_enable - Enable default interrupt generation settings
1018 **/
1019static void e1000_irq_enable(struct e1000_adapter *adapter)
1020{
1021 struct e1000_hw *hw = &adapter->hw;
1022
74ef9c39
JB
1023 ew32(IMS, IMS_ENABLE_MASK);
1024 e1e_flush();
bc7f75fa
AK
1025}
1026
1027/**
1028 * e1000_get_hw_control - get control of the h/w from f/w
1029 * @adapter: address of board private structure
1030 *
489815ce 1031 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1032 * For ASF and Pass Through versions of f/w this means that
1033 * the driver is loaded. For AMT version (only with 82573)
1034 * of the f/w this means that the network i/f is open.
1035 **/
1036static void e1000_get_hw_control(struct e1000_adapter *adapter)
1037{
1038 struct e1000_hw *hw = &adapter->hw;
1039 u32 ctrl_ext;
1040 u32 swsm;
1041
1042 /* Let firmware know the driver has taken over */
1043 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1044 swsm = er32(SWSM);
1045 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1046 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1047 ctrl_ext = er32(CTRL_EXT);
ad68076e 1048 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1049 }
1050}
1051
1052/**
1053 * e1000_release_hw_control - release control of the h/w to f/w
1054 * @adapter: address of board private structure
1055 *
489815ce 1056 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1057 * For ASF and Pass Through versions of f/w this means that the
1058 * driver is no longer loaded. For AMT version (only with 82573) i
1059 * of the f/w this means that the network i/f is closed.
1060 *
1061 **/
1062static void e1000_release_hw_control(struct e1000_adapter *adapter)
1063{
1064 struct e1000_hw *hw = &adapter->hw;
1065 u32 ctrl_ext;
1066 u32 swsm;
1067
1068 /* Let firmware taken over control of h/w */
1069 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1070 swsm = er32(SWSM);
1071 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1072 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1073 ctrl_ext = er32(CTRL_EXT);
ad68076e 1074 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1075 }
1076}
1077
bc7f75fa
AK
1078/**
1079 * @e1000_alloc_ring - allocate memory for a ring structure
1080 **/
1081static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1082 struct e1000_ring *ring)
1083{
1084 struct pci_dev *pdev = adapter->pdev;
1085
1086 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1087 GFP_KERNEL);
1088 if (!ring->desc)
1089 return -ENOMEM;
1090
1091 return 0;
1092}
1093
1094/**
1095 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1096 * @adapter: board private structure
1097 *
1098 * Return 0 on success, negative on failure
1099 **/
1100int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1101{
1102 struct e1000_ring *tx_ring = adapter->tx_ring;
1103 int err = -ENOMEM, size;
1104
1105 size = sizeof(struct e1000_buffer) * tx_ring->count;
1106 tx_ring->buffer_info = vmalloc(size);
1107 if (!tx_ring->buffer_info)
1108 goto err;
1109 memset(tx_ring->buffer_info, 0, size);
1110
1111 /* round up to nearest 4K */
1112 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1113 tx_ring->size = ALIGN(tx_ring->size, 4096);
1114
1115 err = e1000_alloc_ring_dma(adapter, tx_ring);
1116 if (err)
1117 goto err;
1118
1119 tx_ring->next_to_use = 0;
1120 tx_ring->next_to_clean = 0;
1121 spin_lock_init(&adapter->tx_queue_lock);
1122
1123 return 0;
1124err:
1125 vfree(tx_ring->buffer_info);
1126 ndev_err(adapter->netdev,
1127 "Unable to allocate memory for the transmit descriptor ring\n");
1128 return err;
1129}
1130
1131/**
1132 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1133 * @adapter: board private structure
1134 *
1135 * Returns 0 on success, negative on failure
1136 **/
1137int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1138{
1139 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1140 struct e1000_buffer *buffer_info;
1141 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1142
1143 size = sizeof(struct e1000_buffer) * rx_ring->count;
1144 rx_ring->buffer_info = vmalloc(size);
1145 if (!rx_ring->buffer_info)
1146 goto err;
1147 memset(rx_ring->buffer_info, 0, size);
1148
47f44e40
AK
1149 for (i = 0; i < rx_ring->count; i++) {
1150 buffer_info = &rx_ring->buffer_info[i];
1151 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1152 sizeof(struct e1000_ps_page),
1153 GFP_KERNEL);
1154 if (!buffer_info->ps_pages)
1155 goto err_pages;
1156 }
bc7f75fa
AK
1157
1158 desc_len = sizeof(union e1000_rx_desc_packet_split);
1159
1160 /* Round up to nearest 4K */
1161 rx_ring->size = rx_ring->count * desc_len;
1162 rx_ring->size = ALIGN(rx_ring->size, 4096);
1163
1164 err = e1000_alloc_ring_dma(adapter, rx_ring);
1165 if (err)
47f44e40 1166 goto err_pages;
bc7f75fa
AK
1167
1168 rx_ring->next_to_clean = 0;
1169 rx_ring->next_to_use = 0;
1170 rx_ring->rx_skb_top = NULL;
1171
1172 return 0;
47f44e40
AK
1173
1174err_pages:
1175 for (i = 0; i < rx_ring->count; i++) {
1176 buffer_info = &rx_ring->buffer_info[i];
1177 kfree(buffer_info->ps_pages);
1178 }
bc7f75fa
AK
1179err:
1180 vfree(rx_ring->buffer_info);
bc7f75fa
AK
1181 ndev_err(adapter->netdev,
1182 "Unable to allocate memory for the transmit descriptor ring\n");
1183 return err;
1184}
1185
1186/**
1187 * e1000_clean_tx_ring - Free Tx Buffers
1188 * @adapter: board private structure
1189 **/
1190static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1191{
1192 struct e1000_ring *tx_ring = adapter->tx_ring;
1193 struct e1000_buffer *buffer_info;
1194 unsigned long size;
1195 unsigned int i;
1196
1197 for (i = 0; i < tx_ring->count; i++) {
1198 buffer_info = &tx_ring->buffer_info[i];
1199 e1000_put_txbuf(adapter, buffer_info);
1200 }
1201
1202 size = sizeof(struct e1000_buffer) * tx_ring->count;
1203 memset(tx_ring->buffer_info, 0, size);
1204
1205 memset(tx_ring->desc, 0, tx_ring->size);
1206
1207 tx_ring->next_to_use = 0;
1208 tx_ring->next_to_clean = 0;
1209
1210 writel(0, adapter->hw.hw_addr + tx_ring->head);
1211 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1212}
1213
1214/**
1215 * e1000e_free_tx_resources - Free Tx Resources per Queue
1216 * @adapter: board private structure
1217 *
1218 * Free all transmit software resources
1219 **/
1220void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1221{
1222 struct pci_dev *pdev = adapter->pdev;
1223 struct e1000_ring *tx_ring = adapter->tx_ring;
1224
1225 e1000_clean_tx_ring(adapter);
1226
1227 vfree(tx_ring->buffer_info);
1228 tx_ring->buffer_info = NULL;
1229
1230 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1231 tx_ring->dma);
1232 tx_ring->desc = NULL;
1233}
1234
1235/**
1236 * e1000e_free_rx_resources - Free Rx Resources
1237 * @adapter: board private structure
1238 *
1239 * Free all receive software resources
1240 **/
1241
1242void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1243{
1244 struct pci_dev *pdev = adapter->pdev;
1245 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1246 int i;
bc7f75fa
AK
1247
1248 e1000_clean_rx_ring(adapter);
1249
47f44e40
AK
1250 for (i = 0; i < rx_ring->count; i++) {
1251 kfree(rx_ring->buffer_info[i].ps_pages);
1252 }
1253
bc7f75fa
AK
1254 vfree(rx_ring->buffer_info);
1255 rx_ring->buffer_info = NULL;
1256
bc7f75fa
AK
1257 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1258 rx_ring->dma);
1259 rx_ring->desc = NULL;
1260}
1261
1262/**
1263 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1264 * @adapter: pointer to adapter
1265 * @itr_setting: current adapter->itr
1266 * @packets: the number of packets during this measurement interval
1267 * @bytes: the number of bytes during this measurement interval
1268 *
bc7f75fa
AK
1269 * Stores a new ITR value based on packets and byte
1270 * counts during the last interrupt. The advantage of per interrupt
1271 * computation is faster updates and more accurate ITR for the current
1272 * traffic pattern. Constants in this function were computed
1273 * based on theoretical maximum wire speed and thresholds were set based
1274 * on testing data as well as attempting to minimize response time
1275 * while increasing bulk throughput.
1276 * this functionality is controlled by the InterruptThrottleRate module
1277 * parameter (see e1000_param.c)
bc7f75fa
AK
1278 **/
1279static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1280 u16 itr_setting, int packets,
1281 int bytes)
1282{
1283 unsigned int retval = itr_setting;
1284
1285 if (packets == 0)
1286 goto update_itr_done;
1287
1288 switch (itr_setting) {
1289 case lowest_latency:
1290 /* handle TSO and jumbo frames */
1291 if (bytes/packets > 8000)
1292 retval = bulk_latency;
1293 else if ((packets < 5) && (bytes > 512)) {
1294 retval = low_latency;
1295 }
1296 break;
1297 case low_latency: /* 50 usec aka 20000 ints/s */
1298 if (bytes > 10000) {
1299 /* this if handles the TSO accounting */
1300 if (bytes/packets > 8000) {
1301 retval = bulk_latency;
1302 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1303 retval = bulk_latency;
1304 } else if ((packets > 35)) {
1305 retval = lowest_latency;
1306 }
1307 } else if (bytes/packets > 2000) {
1308 retval = bulk_latency;
1309 } else if (packets <= 2 && bytes < 512) {
1310 retval = lowest_latency;
1311 }
1312 break;
1313 case bulk_latency: /* 250 usec aka 4000 ints/s */
1314 if (bytes > 25000) {
1315 if (packets > 35) {
1316 retval = low_latency;
1317 }
1318 } else if (bytes < 6000) {
1319 retval = low_latency;
1320 }
1321 break;
1322 }
1323
1324update_itr_done:
1325 return retval;
1326}
1327
1328static void e1000_set_itr(struct e1000_adapter *adapter)
1329{
1330 struct e1000_hw *hw = &adapter->hw;
1331 u16 current_itr;
1332 u32 new_itr = adapter->itr;
1333
1334 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1335 if (adapter->link_speed != SPEED_1000) {
1336 current_itr = 0;
1337 new_itr = 4000;
1338 goto set_itr_now;
1339 }
1340
1341 adapter->tx_itr = e1000_update_itr(adapter,
1342 adapter->tx_itr,
1343 adapter->total_tx_packets,
1344 adapter->total_tx_bytes);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1347 adapter->tx_itr = low_latency;
1348
1349 adapter->rx_itr = e1000_update_itr(adapter,
1350 adapter->rx_itr,
1351 adapter->total_rx_packets,
1352 adapter->total_rx_bytes);
1353 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1354 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1355 adapter->rx_itr = low_latency;
1356
1357 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1358
1359 switch (current_itr) {
1360 /* counts and packets in update_itr are dependent on these numbers */
1361 case lowest_latency:
1362 new_itr = 70000;
1363 break;
1364 case low_latency:
1365 new_itr = 20000; /* aka hwitr = ~200 */
1366 break;
1367 case bulk_latency:
1368 new_itr = 4000;
1369 break;
1370 default:
1371 break;
1372 }
1373
1374set_itr_now:
1375 if (new_itr != adapter->itr) {
ad68076e
BA
1376 /*
1377 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1378 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1379 * increasing
1380 */
bc7f75fa
AK
1381 new_itr = new_itr > adapter->itr ?
1382 min(adapter->itr + (new_itr >> 2), new_itr) :
1383 new_itr;
1384 adapter->itr = new_itr;
1385 ew32(ITR, 1000000000 / (new_itr * 256));
1386 }
1387}
1388
1389/**
1390 * e1000_clean - NAPI Rx polling callback
ad68076e 1391 * @napi: struct associated with this polling callback
489815ce 1392 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1393 **/
1394static int e1000_clean(struct napi_struct *napi, int budget)
1395{
1396 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1397 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 1398 int tx_cleaned = 0, work_done = 0;
bc7f75fa
AK
1399
1400 /* Must NOT use netdev_priv macro here. */
1401 adapter = poll_dev->priv;
1402
ad68076e
BA
1403 /*
1404 * e1000_clean is called per-cpu. This lock protects
bc7f75fa
AK
1405 * tx_ring from being cleaned by multiple cpus
1406 * simultaneously. A failure obtaining the lock means
ad68076e
BA
1407 * tx_ring is currently being cleaned anyway.
1408 */
bc7f75fa 1409 if (spin_trylock(&adapter->tx_queue_lock)) {
d2c7ddd6 1410 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa
AK
1411 spin_unlock(&adapter->tx_queue_lock);
1412 }
1413
1414 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
1415
1416 if (tx_cleaned)
1417 work_done = budget;
bc7f75fa 1418
53e52c72
DM
1419 /* If budget not fully consumed, exit the polling mode */
1420 if (work_done < budget) {
bc7f75fa
AK
1421 if (adapter->itr_setting & 3)
1422 e1000_set_itr(adapter);
1423 netif_rx_complete(poll_dev, napi);
1424 e1000_irq_enable(adapter);
1425 }
1426
1427 return work_done;
1428}
1429
1430static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1431{
1432 struct e1000_adapter *adapter = netdev_priv(netdev);
1433 struct e1000_hw *hw = &adapter->hw;
1434 u32 vfta, index;
1435
1436 /* don't update vlan cookie if already programmed */
1437 if ((adapter->hw.mng_cookie.status &
1438 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1439 (vid == adapter->mng_vlan_id))
1440 return;
1441 /* add VID to filter table */
1442 index = (vid >> 5) & 0x7F;
1443 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1444 vfta |= (1 << (vid & 0x1F));
1445 e1000e_write_vfta(hw, index, vfta);
1446}
1447
1448static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1449{
1450 struct e1000_adapter *adapter = netdev_priv(netdev);
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 vfta, index;
1453
74ef9c39
JB
1454 if (!test_bit(__E1000_DOWN, &adapter->state))
1455 e1000_irq_disable(adapter);
bc7f75fa 1456 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
1457
1458 if (!test_bit(__E1000_DOWN, &adapter->state))
1459 e1000_irq_enable(adapter);
bc7f75fa
AK
1460
1461 if ((adapter->hw.mng_cookie.status &
1462 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1463 (vid == adapter->mng_vlan_id)) {
1464 /* release control to f/w */
1465 e1000_release_hw_control(adapter);
1466 return;
1467 }
1468
1469 /* remove VID from filter table */
1470 index = (vid >> 5) & 0x7F;
1471 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1472 vfta &= ~(1 << (vid & 0x1F));
1473 e1000e_write_vfta(hw, index, vfta);
1474}
1475
1476static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1477{
1478 struct net_device *netdev = adapter->netdev;
1479 u16 vid = adapter->hw.mng_cookie.vlan_id;
1480 u16 old_vid = adapter->mng_vlan_id;
1481
1482 if (!adapter->vlgrp)
1483 return;
1484
1485 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1486 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1487 if (adapter->hw.mng_cookie.status &
1488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 e1000_vlan_rx_add_vid(netdev, vid);
1490 adapter->mng_vlan_id = vid;
1491 }
1492
1493 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1494 (vid != old_vid) &&
1495 !vlan_group_get_device(adapter->vlgrp, old_vid))
1496 e1000_vlan_rx_kill_vid(netdev, old_vid);
1497 } else {
1498 adapter->mng_vlan_id = vid;
1499 }
1500}
1501
1502
1503static void e1000_vlan_rx_register(struct net_device *netdev,
1504 struct vlan_group *grp)
1505{
1506 struct e1000_adapter *adapter = netdev_priv(netdev);
1507 struct e1000_hw *hw = &adapter->hw;
1508 u32 ctrl, rctl;
1509
74ef9c39
JB
1510 if (!test_bit(__E1000_DOWN, &adapter->state))
1511 e1000_irq_disable(adapter);
bc7f75fa
AK
1512 adapter->vlgrp = grp;
1513
1514 if (grp) {
1515 /* enable VLAN tag insert/strip */
1516 ctrl = er32(CTRL);
1517 ctrl |= E1000_CTRL_VME;
1518 ew32(CTRL, ctrl);
1519
1520 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1521 /* enable VLAN receive filtering */
1522 rctl = er32(RCTL);
1523 rctl |= E1000_RCTL_VFE;
1524 rctl &= ~E1000_RCTL_CFIEN;
1525 ew32(RCTL, rctl);
1526 e1000_update_mng_vlan(adapter);
1527 }
1528 } else {
1529 /* disable VLAN tag insert/strip */
1530 ctrl = er32(CTRL);
1531 ctrl &= ~E1000_CTRL_VME;
1532 ew32(CTRL, ctrl);
1533
1534 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1535 /* disable VLAN filtering */
1536 rctl = er32(RCTL);
1537 rctl &= ~E1000_RCTL_VFE;
1538 ew32(RCTL, rctl);
1539 if (adapter->mng_vlan_id !=
1540 (u16)E1000_MNG_VLAN_NONE) {
1541 e1000_vlan_rx_kill_vid(netdev,
1542 adapter->mng_vlan_id);
1543 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1544 }
1545 }
1546 }
1547
74ef9c39
JB
1548 if (!test_bit(__E1000_DOWN, &adapter->state))
1549 e1000_irq_enable(adapter);
bc7f75fa
AK
1550}
1551
1552static void e1000_restore_vlan(struct e1000_adapter *adapter)
1553{
1554 u16 vid;
1555
1556 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1557
1558 if (!adapter->vlgrp)
1559 return;
1560
1561 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1562 if (!vlan_group_get_device(adapter->vlgrp, vid))
1563 continue;
1564 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1565 }
1566}
1567
1568static void e1000_init_manageability(struct e1000_adapter *adapter)
1569{
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 manc, manc2h;
1572
1573 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1574 return;
1575
1576 manc = er32(MANC);
1577
ad68076e
BA
1578 /*
1579 * enable receiving management packets to the host. this will probably
bc7f75fa 1580 * generate destination unreachable messages from the host OS, but
ad68076e
BA
1581 * the packets will be handled on SMBUS
1582 */
bc7f75fa
AK
1583 manc |= E1000_MANC_EN_MNG2HOST;
1584 manc2h = er32(MANC2H);
1585#define E1000_MNG2HOST_PORT_623 (1 << 5)
1586#define E1000_MNG2HOST_PORT_664 (1 << 6)
1587 manc2h |= E1000_MNG2HOST_PORT_623;
1588 manc2h |= E1000_MNG2HOST_PORT_664;
1589 ew32(MANC2H, manc2h);
1590 ew32(MANC, manc);
1591}
1592
1593/**
1594 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595 * @adapter: board private structure
1596 *
1597 * Configure the Tx unit of the MAC after a reset.
1598 **/
1599static void e1000_configure_tx(struct e1000_adapter *adapter)
1600{
1601 struct e1000_hw *hw = &adapter->hw;
1602 struct e1000_ring *tx_ring = adapter->tx_ring;
1603 u64 tdba;
1604 u32 tdlen, tctl, tipg, tarc;
1605 u32 ipgr1, ipgr2;
1606
1607 /* Setup the HW Tx Head and Tail descriptor pointers */
1608 tdba = tx_ring->dma;
1609 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1610 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDLEN, tdlen);
1613 ew32(TDH, 0);
1614 ew32(TDT, 0);
1615 tx_ring->head = E1000_TDH;
1616 tx_ring->tail = E1000_TDT;
1617
1618 /* Set the default values for the Tx Inter Packet Gap timer */
1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1620 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1621 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1622
1623 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1624 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1625
1626 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1627 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1628 ew32(TIPG, tipg);
1629
1630 /* Set the Tx Interrupt Delay register */
1631 ew32(TIDV, adapter->tx_int_delay);
ad68076e 1632 /* Tx irq moderation */
bc7f75fa
AK
1633 ew32(TADV, adapter->tx_abs_int_delay);
1634
1635 /* Program the Transmit Control Register */
1636 tctl = er32(TCTL);
1637 tctl &= ~E1000_TCTL_CT;
1638 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1639 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1640
1641 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 1642 tarc = er32(TARC(0));
ad68076e
BA
1643 /*
1644 * set the speed mode bit, we'll clear it if we're not at
1645 * gigabit link later
1646 */
bc7f75fa
AK
1647#define SPEED_MODE_BIT (1 << 21)
1648 tarc |= SPEED_MODE_BIT;
e9ec2c0f 1649 ew32(TARC(0), tarc);
bc7f75fa
AK
1650 }
1651
1652 /* errata: program both queues to unweighted RR */
1653 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 1654 tarc = er32(TARC(0));
bc7f75fa 1655 tarc |= 1;
e9ec2c0f
JK
1656 ew32(TARC(0), tarc);
1657 tarc = er32(TARC(1));
bc7f75fa 1658 tarc |= 1;
e9ec2c0f 1659 ew32(TARC(1), tarc);
bc7f75fa
AK
1660 }
1661
1662 e1000e_config_collision_dist(hw);
1663
1664 /* Setup Transmit Descriptor Settings for eop descriptor */
1665 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1666
1667 /* only set IDE if we are delaying interrupts using the timers */
1668 if (adapter->tx_int_delay)
1669 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1670
1671 /* enable Report Status bit */
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 ew32(TCTL, tctl);
1675
1676 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1677}
1678
1679/**
1680 * e1000_setup_rctl - configure the receive control registers
1681 * @adapter: Board private structure
1682 **/
1683#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1684 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1685static void e1000_setup_rctl(struct e1000_adapter *adapter)
1686{
1687 struct e1000_hw *hw = &adapter->hw;
1688 u32 rctl, rfctl;
1689 u32 psrctl = 0;
1690 u32 pages = 0;
1691
1692 /* Program MC offset vector base */
1693 rctl = er32(RCTL);
1694 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1695 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1696 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1697 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1698
1699 /* Do not Store bad packets */
1700 rctl &= ~E1000_RCTL_SBP;
1701
1702 /* Enable Long Packet receive */
1703 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1704 rctl &= ~E1000_RCTL_LPE;
1705 else
1706 rctl |= E1000_RCTL_LPE;
1707
5918bd88
AK
1708 /* Enable hardware CRC frame stripping */
1709 rctl |= E1000_RCTL_SECRC;
1710
bc7f75fa
AK
1711 /* Setup buffer sizes */
1712 rctl &= ~E1000_RCTL_SZ_4096;
1713 rctl |= E1000_RCTL_BSEX;
1714 switch (adapter->rx_buffer_len) {
1715 case 256:
1716 rctl |= E1000_RCTL_SZ_256;
1717 rctl &= ~E1000_RCTL_BSEX;
1718 break;
1719 case 512:
1720 rctl |= E1000_RCTL_SZ_512;
1721 rctl &= ~E1000_RCTL_BSEX;
1722 break;
1723 case 1024:
1724 rctl |= E1000_RCTL_SZ_1024;
1725 rctl &= ~E1000_RCTL_BSEX;
1726 break;
1727 case 2048:
1728 default:
1729 rctl |= E1000_RCTL_SZ_2048;
1730 rctl &= ~E1000_RCTL_BSEX;
1731 break;
1732 case 4096:
1733 rctl |= E1000_RCTL_SZ_4096;
1734 break;
1735 case 8192:
1736 rctl |= E1000_RCTL_SZ_8192;
1737 break;
1738 case 16384:
1739 rctl |= E1000_RCTL_SZ_16384;
1740 break;
1741 }
1742
1743 /*
1744 * 82571 and greater support packet-split where the protocol
1745 * header is placed in skb->data and the packet data is
1746 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1747 * In the case of a non-split, skb->data is linearly filled,
1748 * followed by the page buffers. Therefore, skb->data is
1749 * sized to hold the largest protocol header.
1750 *
1751 * allocations using alloc_page take too long for regular MTU
1752 * so only enable packet split for jumbo frames
1753 *
1754 * Using pages when the page size is greater than 16k wastes
1755 * a lot of memory, since we allocate 3 pages at all times
1756 * per packet.
1757 */
1758 adapter->rx_ps_pages = 0;
1759 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1760 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1761 adapter->rx_ps_pages = pages;
1762
1763 if (adapter->rx_ps_pages) {
1764 /* Configure extra packet-split registers */
1765 rfctl = er32(RFCTL);
1766 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
1767 /*
1768 * disable packet split support for IPv6 extension headers,
1769 * because some malformed IPv6 headers can hang the Rx
1770 */
bc7f75fa
AK
1771 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1772 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1773
1774 ew32(RFCTL, rfctl);
1775
140a7480
AK
1776 /* Enable Packet split descriptors */
1777 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
1778
1779 psrctl |= adapter->rx_ps_bsize0 >>
1780 E1000_PSRCTL_BSIZE0_SHIFT;
1781
1782 switch (adapter->rx_ps_pages) {
1783 case 3:
1784 psrctl |= PAGE_SIZE <<
1785 E1000_PSRCTL_BSIZE3_SHIFT;
1786 case 2:
1787 psrctl |= PAGE_SIZE <<
1788 E1000_PSRCTL_BSIZE2_SHIFT;
1789 case 1:
1790 psrctl |= PAGE_SIZE >>
1791 E1000_PSRCTL_BSIZE1_SHIFT;
1792 break;
1793 }
1794
1795 ew32(PSRCTL, psrctl);
1796 }
1797
1798 ew32(RCTL, rctl);
318a94d6
JK
1799 /* just started the receive unit, no need to restart */
1800 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1801}
1802
1803/**
1804 * e1000_configure_rx - Configure Receive Unit after Reset
1805 * @adapter: board private structure
1806 *
1807 * Configure the Rx unit of the MAC after a reset.
1808 **/
1809static void e1000_configure_rx(struct e1000_adapter *adapter)
1810{
1811 struct e1000_hw *hw = &adapter->hw;
1812 struct e1000_ring *rx_ring = adapter->rx_ring;
1813 u64 rdba;
1814 u32 rdlen, rctl, rxcsum, ctrl_ext;
1815
1816 if (adapter->rx_ps_pages) {
1817 /* this is a 32 byte descriptor */
1818 rdlen = rx_ring->count *
1819 sizeof(union e1000_rx_desc_packet_split);
1820 adapter->clean_rx = e1000_clean_rx_irq_ps;
1821 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
bc7f75fa
AK
1822 } else {
1823 rdlen = rx_ring->count *
1824 sizeof(struct e1000_rx_desc);
1825 adapter->clean_rx = e1000_clean_rx_irq;
1826 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1827 }
1828
1829 /* disable receives while setting up the descriptors */
1830 rctl = er32(RCTL);
1831 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1832 e1e_flush();
1833 msleep(10);
1834
1835 /* set the Receive Delay Timer Register */
1836 ew32(RDTR, adapter->rx_int_delay);
1837
1838 /* irq moderation */
1839 ew32(RADV, adapter->rx_abs_int_delay);
1840 if (adapter->itr_setting != 0)
ad68076e 1841 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
1842
1843 ctrl_ext = er32(CTRL_EXT);
1844 /* Reset delay timers after every interrupt */
1845 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1846 /* Auto-Mask interrupts upon ICR access */
1847 ctrl_ext |= E1000_CTRL_EXT_IAME;
1848 ew32(IAM, 0xffffffff);
1849 ew32(CTRL_EXT, ctrl_ext);
1850 e1e_flush();
1851
ad68076e
BA
1852 /*
1853 * Setup the HW Rx Head and Tail Descriptor Pointers and
1854 * the Base and Length of the Rx Descriptor Ring
1855 */
bc7f75fa
AK
1856 rdba = rx_ring->dma;
1857 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1858 ew32(RDBAH, (rdba >> 32));
1859 ew32(RDLEN, rdlen);
1860 ew32(RDH, 0);
1861 ew32(RDT, 0);
1862 rx_ring->head = E1000_RDH;
1863 rx_ring->tail = E1000_RDT;
1864
1865 /* Enable Receive Checksum Offload for TCP and UDP */
1866 rxcsum = er32(RXCSUM);
1867 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1868 rxcsum |= E1000_RXCSUM_TUOFL;
1869
ad68076e
BA
1870 /*
1871 * IPv4 payload checksum for UDP fragments must be
1872 * used in conjunction with packet-split.
1873 */
bc7f75fa
AK
1874 if (adapter->rx_ps_pages)
1875 rxcsum |= E1000_RXCSUM_IPPCSE;
1876 } else {
1877 rxcsum &= ~E1000_RXCSUM_TUOFL;
1878 /* no need to clear IPPCSE as it defaults to 0 */
1879 }
1880 ew32(RXCSUM, rxcsum);
1881
ad68076e
BA
1882 /*
1883 * Enable early receives on supported devices, only takes effect when
bc7f75fa 1884 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
1885 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
1886 */
bc7f75fa
AK
1887 if ((adapter->flags & FLAG_HAS_ERT) &&
1888 (adapter->netdev->mtu > ETH_DATA_LEN))
1889 ew32(ERT, E1000_ERT_2048);
1890
1891 /* Enable Receives */
1892 ew32(RCTL, rctl);
1893}
1894
1895/**
e2de3eb6 1896 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
1897 * @hw: pointer to the HW structure
1898 * @mc_addr_list: array of multicast addresses to program
1899 * @mc_addr_count: number of multicast addresses to program
1900 * @rar_used_count: the first RAR register free to program
1901 * @rar_count: total number of supported Receive Address Registers
1902 *
1903 * Updates the Receive Address Registers and Multicast Table Array.
1904 * The caller must have a packed mc_addr_list of multicast addresses.
1905 * The parameter rar_count will usually be hw->mac.rar_entry_count
1906 * unless there are workarounds that change this. Currently no func pointer
1907 * exists and all implementations are handled in the generic version of this
1908 * function.
1909 **/
e2de3eb6
JK
1910static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
1911 u32 mc_addr_count, u32 rar_used_count,
1912 u32 rar_count)
bc7f75fa 1913{
e2de3eb6 1914 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
1915 rar_used_count, rar_count);
1916}
1917
1918/**
1919 * e1000_set_multi - Multicast and Promiscuous mode set
1920 * @netdev: network interface device structure
1921 *
1922 * The set_multi entry point is called whenever the multicast address
1923 * list or the network interface flags are updated. This routine is
1924 * responsible for configuring the hardware for proper multicast,
1925 * promiscuous mode, and all-multi behavior.
1926 **/
1927static void e1000_set_multi(struct net_device *netdev)
1928{
1929 struct e1000_adapter *adapter = netdev_priv(netdev);
1930 struct e1000_hw *hw = &adapter->hw;
1931 struct e1000_mac_info *mac = &hw->mac;
1932 struct dev_mc_list *mc_ptr;
1933 u8 *mta_list;
1934 u32 rctl;
1935 int i;
1936
1937 /* Check for Promiscuous and All Multicast modes */
1938
1939 rctl = er32(RCTL);
1940
1941 if (netdev->flags & IFF_PROMISC) {
1942 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1943 } else if (netdev->flags & IFF_ALLMULTI) {
1944 rctl |= E1000_RCTL_MPE;
1945 rctl &= ~E1000_RCTL_UPE;
1946 } else {
1947 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1948 }
1949
1950 ew32(RCTL, rctl);
1951
1952 if (netdev->mc_count) {
1953 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1954 if (!mta_list)
1955 return;
1956
1957 /* prepare a packed array of only addresses. */
1958 mc_ptr = netdev->mc_list;
1959
1960 for (i = 0; i < netdev->mc_count; i++) {
1961 if (!mc_ptr)
1962 break;
1963 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1964 ETH_ALEN);
1965 mc_ptr = mc_ptr->next;
1966 }
1967
e2de3eb6 1968 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
1969 mac->rar_entry_count);
1970 kfree(mta_list);
1971 } else {
1972 /*
1973 * if we're called from probe, we might not have
1974 * anything to do here, so clear out the list
1975 */
e2de3eb6 1976 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
1977 }
1978}
1979
1980/**
ad68076e 1981 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
1982 * @adapter: private board structure
1983 **/
1984static void e1000_configure(struct e1000_adapter *adapter)
1985{
1986 e1000_set_multi(adapter->netdev);
1987
1988 e1000_restore_vlan(adapter);
1989 e1000_init_manageability(adapter);
1990
1991 e1000_configure_tx(adapter);
1992 e1000_setup_rctl(adapter);
1993 e1000_configure_rx(adapter);
ad68076e 1994 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
1995}
1996
1997/**
1998 * e1000e_power_up_phy - restore link in case the phy was powered down
1999 * @adapter: address of board private structure
2000 *
2001 * The phy may be powered down to save power and turn off link when the
2002 * driver is unloaded and wake on lan is not enabled (among others)
2003 * *** this routine MUST be followed by a call to e1000e_reset ***
2004 **/
2005void e1000e_power_up_phy(struct e1000_adapter *adapter)
2006{
2007 u16 mii_reg = 0;
2008
2009 /* Just clear the power down bit to wake the phy back up */
318a94d6 2010 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2011 /*
2012 * According to the manual, the phy will retain its
2013 * settings across a power-down/up cycle
2014 */
bc7f75fa
AK
2015 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2016 mii_reg &= ~MII_CR_POWER_DOWN;
2017 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2018 }
2019
2020 adapter->hw.mac.ops.setup_link(&adapter->hw);
2021}
2022
2023/**
2024 * e1000_power_down_phy - Power down the PHY
2025 *
2026 * Power down the PHY so no link is implied when interface is down
2027 * The PHY cannot be powered down is management or WoL is active
2028 */
2029static void e1000_power_down_phy(struct e1000_adapter *adapter)
2030{
2031 struct e1000_hw *hw = &adapter->hw;
2032 u16 mii_reg;
2033
2034 /* WoL is enabled */
23b66e2b 2035 if (adapter->wol)
bc7f75fa
AK
2036 return;
2037
2038 /* non-copper PHY? */
318a94d6 2039 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2040 return;
2041
2042 /* reset is blocked because of a SoL/IDER session */
ad68076e 2043 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2044 return;
2045
489815ce 2046 /* manageability (AMT) is enabled */
bc7f75fa
AK
2047 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2048 return;
2049
2050 /* power down the PHY */
2051 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2052 mii_reg |= MII_CR_POWER_DOWN;
2053 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2054 mdelay(1);
2055}
2056
2057/**
2058 * e1000e_reset - bring the hardware into a known good state
2059 *
2060 * This function boots the hardware and enables some settings that
2061 * require a configuration cycle of the hardware - those cannot be
2062 * set/changed during runtime. After reset the device needs to be
ad68076e 2063 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2064 */
2065void e1000e_reset(struct e1000_adapter *adapter)
2066{
2067 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2068 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2069 struct e1000_hw *hw = &adapter->hw;
2070 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2071 u32 pba = adapter->pba;
bc7f75fa
AK
2072 u16 hwm;
2073
ad68076e 2074 /* reset Packet Buffer Allocation to default */
318a94d6 2075 ew32(PBA, pba);
df762464 2076
318a94d6 2077 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2078 /*
2079 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2080 * large enough to accommodate two full transmit packets,
2081 * rounded up to the next 1KB and expressed in KB. Likewise,
2082 * the Rx FIFO should be large enough to accommodate at least
2083 * one full receive packet and is similarly rounded up and
ad68076e
BA
2084 * expressed in KB.
2085 */
df762464 2086 pba = er32(PBA);
bc7f75fa 2087 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2088 tx_space = pba >> 16;
bc7f75fa 2089 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2090 pba &= 0xffff;
ad68076e
BA
2091 /*
2092 * the Tx fifo also stores 16 bytes of information about the tx
2093 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2094 */
2095 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2096 sizeof(struct e1000_tx_desc) -
2097 ETH_FCS_LEN) * 2;
2098 min_tx_space = ALIGN(min_tx_space, 1024);
2099 min_tx_space >>= 10;
2100 /* software strips receive CRC, so leave room for it */
318a94d6 2101 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2102 min_rx_space = ALIGN(min_rx_space, 1024);
2103 min_rx_space >>= 10;
2104
ad68076e
BA
2105 /*
2106 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2107 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2108 * allocation, take space away from current Rx allocation
2109 */
df762464
AK
2110 if ((tx_space < min_tx_space) &&
2111 ((min_tx_space - tx_space) < pba)) {
2112 pba -= min_tx_space - tx_space;
bc7f75fa 2113
ad68076e
BA
2114 /*
2115 * if short on Rx space, Rx wins and must trump tx
2116 * adjustment or use Early Receive if available
2117 */
df762464 2118 if ((pba < min_rx_space) &&
bc7f75fa
AK
2119 (!(adapter->flags & FLAG_HAS_ERT)))
2120 /* ERT enabled in e1000_configure_rx */
df762464 2121 pba = min_rx_space;
bc7f75fa 2122 }
df762464
AK
2123
2124 ew32(PBA, pba);
bc7f75fa
AK
2125 }
2126
bc7f75fa 2127
ad68076e
BA
2128 /*
2129 * flow control settings
2130 *
2131 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2132 * (or the size used for early receive) above it in the Rx FIFO.
2133 * Set it to the lower of:
2134 * - 90% of the Rx FIFO size, and
2135 * - the full Rx FIFO size minus the early receive size (for parts
2136 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2137 * - the full Rx FIFO size minus one full frame
2138 */
bc7f75fa 2139 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2140 hwm = min(((pba << 10) * 9 / 10),
2141 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2142 else
318a94d6
JK
2143 hwm = min(((pba << 10) * 9 / 10),
2144 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2145
318a94d6
JK
2146 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2147 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2148
2149 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2150 fc->pause_time = 0xFFFF;
bc7f75fa 2151 else
318a94d6
JK
2152 fc->pause_time = E1000_FC_PAUSE_TIME;
2153 fc->send_xon = 1;
2154 fc->type = fc->original_type;
bc7f75fa
AK
2155
2156 /* Allow time for pending master requests to run */
2157 mac->ops.reset_hw(hw);
2158 ew32(WUC, 0);
2159
2160 if (mac->ops.init_hw(hw))
2161 ndev_err(adapter->netdev, "Hardware Error\n");
2162
2163 e1000_update_mng_vlan(adapter);
2164
2165 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2166 ew32(VET, ETH_P_8021Q);
2167
2168 e1000e_reset_adaptive(hw);
2169 e1000_get_phy_info(hw);
2170
2171 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2172 u16 phy_data = 0;
ad68076e
BA
2173 /*
2174 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2175 * the return value of this function because there is nothing
ad68076e
BA
2176 * different we would do if it failed
2177 */
bc7f75fa
AK
2178 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2179 phy_data &= ~IGP02E1000_PM_SPD;
2180 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2181 }
bc7f75fa
AK
2182}
2183
2184int e1000e_up(struct e1000_adapter *adapter)
2185{
2186 struct e1000_hw *hw = &adapter->hw;
2187
2188 /* hardware has been reset, we need to reload some things */
2189 e1000_configure(adapter);
2190
2191 clear_bit(__E1000_DOWN, &adapter->state);
2192
2193 napi_enable(&adapter->napi);
2194 e1000_irq_enable(adapter);
2195
2196 /* fire a link change interrupt to start the watchdog */
2197 ew32(ICS, E1000_ICS_LSC);
2198 return 0;
2199}
2200
2201void e1000e_down(struct e1000_adapter *adapter)
2202{
2203 struct net_device *netdev = adapter->netdev;
2204 struct e1000_hw *hw = &adapter->hw;
2205 u32 tctl, rctl;
2206
ad68076e
BA
2207 /*
2208 * signal that we're down so the interrupt handler does not
2209 * reschedule our watchdog timer
2210 */
bc7f75fa
AK
2211 set_bit(__E1000_DOWN, &adapter->state);
2212
2213 /* disable receives in the hardware */
2214 rctl = er32(RCTL);
2215 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2216 /* flush and sleep below */
2217
2218 netif_stop_queue(netdev);
2219
2220 /* disable transmits in the hardware */
2221 tctl = er32(TCTL);
2222 tctl &= ~E1000_TCTL_EN;
2223 ew32(TCTL, tctl);
2224 /* flush both disables and wait for them to finish */
2225 e1e_flush();
2226 msleep(10);
2227
2228 napi_disable(&adapter->napi);
2229 e1000_irq_disable(adapter);
2230
2231 del_timer_sync(&adapter->watchdog_timer);
2232 del_timer_sync(&adapter->phy_info_timer);
2233
2234 netdev->tx_queue_len = adapter->tx_queue_len;
2235 netif_carrier_off(netdev);
2236 adapter->link_speed = 0;
2237 adapter->link_duplex = 0;
2238
2239 e1000e_reset(adapter);
2240 e1000_clean_tx_ring(adapter);
2241 e1000_clean_rx_ring(adapter);
2242
2243 /*
2244 * TODO: for power management, we could drop the link and
2245 * pci_disable_device here.
2246 */
2247}
2248
2249void e1000e_reinit_locked(struct e1000_adapter *adapter)
2250{
2251 might_sleep();
2252 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2253 msleep(1);
2254 e1000e_down(adapter);
2255 e1000e_up(adapter);
2256 clear_bit(__E1000_RESETTING, &adapter->state);
2257}
2258
2259/**
2260 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2261 * @adapter: board private structure to initialize
2262 *
2263 * e1000_sw_init initializes the Adapter private data structure.
2264 * Fields are initialized based on PCI device information and
2265 * OS network device settings (MTU size).
2266 **/
2267static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2268{
bc7f75fa
AK
2269 struct net_device *netdev = adapter->netdev;
2270
2271 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2272 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2273 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2274 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa
AK
2275
2276 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2277 if (!adapter->tx_ring)
2278 goto err;
2279
2280 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2281 if (!adapter->rx_ring)
2282 goto err;
2283
2284 spin_lock_init(&adapter->tx_queue_lock);
2285
2286 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2287 e1000_irq_disable(adapter);
2288
2289 spin_lock_init(&adapter->stats_lock);
2290
2291 set_bit(__E1000_DOWN, &adapter->state);
2292 return 0;
2293
2294err:
2295 ndev_err(netdev, "Unable to allocate memory for queues\n");
2296 kfree(adapter->rx_ring);
2297 kfree(adapter->tx_ring);
2298 return -ENOMEM;
2299}
2300
2301/**
2302 * e1000_open - Called when a network interface is made active
2303 * @netdev: network interface device structure
2304 *
2305 * Returns 0 on success, negative value on failure
2306 *
2307 * The open entry point is called when a network interface is made
2308 * active by the system (IFF_UP). At this point all resources needed
2309 * for transmit and receive operations are allocated, the interrupt
2310 * handler is registered with the OS, the watchdog timer is started,
2311 * and the stack is notified that the interface is ready.
2312 **/
2313static int e1000_open(struct net_device *netdev)
2314{
2315 struct e1000_adapter *adapter = netdev_priv(netdev);
2316 struct e1000_hw *hw = &adapter->hw;
2317 int err;
2318
2319 /* disallow open during test */
2320 if (test_bit(__E1000_TESTING, &adapter->state))
2321 return -EBUSY;
2322
2323 /* allocate transmit descriptors */
2324 err = e1000e_setup_tx_resources(adapter);
2325 if (err)
2326 goto err_setup_tx;
2327
2328 /* allocate receive descriptors */
2329 err = e1000e_setup_rx_resources(adapter);
2330 if (err)
2331 goto err_setup_rx;
2332
2333 e1000e_power_up_phy(adapter);
2334
2335 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2336 if ((adapter->hw.mng_cookie.status &
2337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2338 e1000_update_mng_vlan(adapter);
2339
ad68076e
BA
2340 /*
2341 * If AMT is enabled, let the firmware know that the network
2342 * interface is now open
2343 */
bc7f75fa
AK
2344 if ((adapter->flags & FLAG_HAS_AMT) &&
2345 e1000e_check_mng_mode(&adapter->hw))
2346 e1000_get_hw_control(adapter);
2347
ad68076e
BA
2348 /*
2349 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
2350 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2351 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
2352 * clean_rx handler before we do so.
2353 */
bc7f75fa
AK
2354 e1000_configure(adapter);
2355
2356 err = e1000_request_irq(adapter);
2357 if (err)
2358 goto err_req_irq;
2359
2360 /* From here on the code is the same as e1000e_up() */
2361 clear_bit(__E1000_DOWN, &adapter->state);
2362
2363 napi_enable(&adapter->napi);
2364
2365 e1000_irq_enable(adapter);
2366
2367 /* fire a link status change interrupt to start the watchdog */
2368 ew32(ICS, E1000_ICS_LSC);
2369
2370 return 0;
2371
2372err_req_irq:
2373 e1000_release_hw_control(adapter);
2374 e1000_power_down_phy(adapter);
2375 e1000e_free_rx_resources(adapter);
2376err_setup_rx:
2377 e1000e_free_tx_resources(adapter);
2378err_setup_tx:
2379 e1000e_reset(adapter);
2380
2381 return err;
2382}
2383
2384/**
2385 * e1000_close - Disables a network interface
2386 * @netdev: network interface device structure
2387 *
2388 * Returns 0, this is not allowed to fail
2389 *
2390 * The close entry point is called when an interface is de-activated
2391 * by the OS. The hardware is still under the drivers control, but
2392 * needs to be disabled. A global MAC reset is issued to stop the
2393 * hardware, and all transmit and receive resources are freed.
2394 **/
2395static int e1000_close(struct net_device *netdev)
2396{
2397 struct e1000_adapter *adapter = netdev_priv(netdev);
2398
2399 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2400 e1000e_down(adapter);
2401 e1000_power_down_phy(adapter);
2402 e1000_free_irq(adapter);
2403
2404 e1000e_free_tx_resources(adapter);
2405 e1000e_free_rx_resources(adapter);
2406
ad68076e
BA
2407 /*
2408 * kill manageability vlan ID if supported, but not if a vlan with
2409 * the same ID is registered on the host OS (let 8021q kill it)
2410 */
bc7f75fa
AK
2411 if ((adapter->hw.mng_cookie.status &
2412 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2413 !(adapter->vlgrp &&
2414 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2415 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2416
ad68076e
BA
2417 /*
2418 * If AMT is enabled, let the firmware know that the network
2419 * interface is now closed
2420 */
bc7f75fa
AK
2421 if ((adapter->flags & FLAG_HAS_AMT) &&
2422 e1000e_check_mng_mode(&adapter->hw))
2423 e1000_release_hw_control(adapter);
2424
2425 return 0;
2426}
2427/**
2428 * e1000_set_mac - Change the Ethernet Address of the NIC
2429 * @netdev: network interface device structure
2430 * @p: pointer to an address structure
2431 *
2432 * Returns 0 on success, negative on failure
2433 **/
2434static int e1000_set_mac(struct net_device *netdev, void *p)
2435{
2436 struct e1000_adapter *adapter = netdev_priv(netdev);
2437 struct sockaddr *addr = p;
2438
2439 if (!is_valid_ether_addr(addr->sa_data))
2440 return -EADDRNOTAVAIL;
2441
2442 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2443 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2444
2445 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2446
2447 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2448 /* activate the work around */
2449 e1000e_set_laa_state_82571(&adapter->hw, 1);
2450
ad68076e
BA
2451 /*
2452 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
2453 * between the time RAR[0] gets clobbered and the time it
2454 * gets fixed (in e1000_watchdog), the actual LAA is in one
2455 * of the RARs and no incoming packets directed to this port
2456 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
2457 * RAR[14]
2458 */
bc7f75fa
AK
2459 e1000e_rar_set(&adapter->hw,
2460 adapter->hw.mac.addr,
2461 adapter->hw.mac.rar_entry_count - 1);
2462 }
2463
2464 return 0;
2465}
2466
ad68076e
BA
2467/*
2468 * Need to wait a few seconds after link up to get diagnostic information from
2469 * the phy
2470 */
bc7f75fa
AK
2471static void e1000_update_phy_info(unsigned long data)
2472{
2473 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2474 e1000_get_phy_info(&adapter->hw);
2475}
2476
2477/**
2478 * e1000e_update_stats - Update the board statistics counters
2479 * @adapter: board private structure
2480 **/
2481void e1000e_update_stats(struct e1000_adapter *adapter)
2482{
2483 struct e1000_hw *hw = &adapter->hw;
2484 struct pci_dev *pdev = adapter->pdev;
2485 unsigned long irq_flags;
2486 u16 phy_tmp;
2487
2488#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2489
2490 /*
2491 * Prevent stats update while adapter is being reset, or if the pci
2492 * connection is down.
2493 */
2494 if (adapter->link_speed == 0)
2495 return;
2496 if (pci_channel_offline(pdev))
2497 return;
2498
2499 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2500
ad68076e
BA
2501 /*
2502 * these counters are modified from e1000_adjust_tbi_stats,
bc7f75fa
AK
2503 * called from the interrupt context, so they must only
2504 * be written while holding adapter->stats_lock
2505 */
2506
2507 adapter->stats.crcerrs += er32(CRCERRS);
2508 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
2509 adapter->stats.gorc += er32(GORCL);
2510 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
2511 adapter->stats.bprc += er32(BPRC);
2512 adapter->stats.mprc += er32(MPRC);
2513 adapter->stats.roc += er32(ROC);
2514
bc7f75fa
AK
2515 adapter->stats.mpc += er32(MPC);
2516 adapter->stats.scc += er32(SCC);
2517 adapter->stats.ecol += er32(ECOL);
2518 adapter->stats.mcc += er32(MCC);
2519 adapter->stats.latecol += er32(LATECOL);
2520 adapter->stats.dc += er32(DC);
bc7f75fa
AK
2521 adapter->stats.xonrxc += er32(XONRXC);
2522 adapter->stats.xontxc += er32(XONTXC);
2523 adapter->stats.xoffrxc += er32(XOFFRXC);
2524 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 2525 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
2526 adapter->stats.gotc += er32(GOTCL);
2527 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
2528 adapter->stats.rnbc += er32(RNBC);
2529 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
2530
2531 adapter->stats.mptc += er32(MPTC);
2532 adapter->stats.bptc += er32(BPTC);
2533
2534 /* used for adaptive IFS */
2535
2536 hw->mac.tx_packet_delta = er32(TPT);
2537 adapter->stats.tpt += hw->mac.tx_packet_delta;
2538 hw->mac.collision_delta = er32(COLC);
2539 adapter->stats.colc += hw->mac.collision_delta;
2540
2541 adapter->stats.algnerrc += er32(ALGNERRC);
2542 adapter->stats.rxerrc += er32(RXERRC);
2543 adapter->stats.tncrs += er32(TNCRS);
2544 adapter->stats.cexterr += er32(CEXTERR);
2545 adapter->stats.tsctc += er32(TSCTC);
2546 adapter->stats.tsctfc += er32(TSCTFC);
2547
bc7f75fa 2548 /* Fill out the OS statistics structure */
bc7f75fa
AK
2549 adapter->net_stats.multicast = adapter->stats.mprc;
2550 adapter->net_stats.collisions = adapter->stats.colc;
2551
2552 /* Rx Errors */
2553
ad68076e
BA
2554 /*
2555 * RLEC on some newer hardware can be incorrect so build
2556 * our own version based on RUC and ROC
2557 */
bc7f75fa
AK
2558 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2559 adapter->stats.crcerrs + adapter->stats.algnerrc +
2560 adapter->stats.ruc + adapter->stats.roc +
2561 adapter->stats.cexterr;
2562 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2563 adapter->stats.roc;
2564 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2565 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2566 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2567
2568 /* Tx Errors */
2569 adapter->net_stats.tx_errors = adapter->stats.ecol +
2570 adapter->stats.latecol;
2571 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2572 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2573 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2574
2575 /* Tx Dropped needs to be maintained elsewhere */
2576
2577 /* Phy Stats */
318a94d6 2578 if (hw->phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
2579 if ((adapter->link_speed == SPEED_1000) &&
2580 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2581 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2582 adapter->phy_stats.idle_errors += phy_tmp;
2583 }
2584 }
2585
2586 /* Management Stats */
2587 adapter->stats.mgptc += er32(MGTPTC);
2588 adapter->stats.mgprc += er32(MGTPRC);
2589 adapter->stats.mgpdc += er32(MGTPDC);
2590
2591 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2592}
2593
7c25769f
BA
2594/**
2595 * e1000_phy_read_status - Update the PHY register status snapshot
2596 * @adapter: board private structure
2597 **/
2598static void e1000_phy_read_status(struct e1000_adapter *adapter)
2599{
2600 struct e1000_hw *hw = &adapter->hw;
2601 struct e1000_phy_regs *phy = &adapter->phy_regs;
2602 int ret_val;
2603 unsigned long irq_flags;
2604
2605
2606 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2607
2608 if ((er32(STATUS) & E1000_STATUS_LU) &&
2609 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2610 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2611 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2612 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2613 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2614 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2615 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2616 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2617 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2618 if (ret_val)
2619 ndev_warn(adapter->netdev,
2620 "Error reading PHY register\n");
2621 } else {
2622 /*
2623 * Do not read PHY registers if link is not up
2624 * Set values to typical power-on defaults
2625 */
2626 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2627 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2628 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2629 BMSR_ERCAP);
2630 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2631 ADVERTISE_ALL | ADVERTISE_CSMA);
2632 phy->lpa = 0;
2633 phy->expansion = EXPANSION_ENABLENPAGE;
2634 phy->ctrl1000 = ADVERTISE_1000FULL;
2635 phy->stat1000 = 0;
2636 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2637 }
2638
2639 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2640}
2641
bc7f75fa
AK
2642static void e1000_print_link_info(struct e1000_adapter *adapter)
2643{
bc7f75fa 2644 struct e1000_hw *hw = &adapter->hw;
318a94d6 2645 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
2646 u32 ctrl = er32(CTRL);
2647
2648 ndev_info(netdev,
2649 "Link is Up %d Mbps %s, Flow Control: %s\n",
2650 adapter->link_speed,
2651 (adapter->link_duplex == FULL_DUPLEX) ?
2652 "Full Duplex" : "Half Duplex",
2653 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2654 "RX/TX" :
2655 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2656 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2657}
2658
318a94d6
JK
2659static bool e1000_has_link(struct e1000_adapter *adapter)
2660{
2661 struct e1000_hw *hw = &adapter->hw;
2662 bool link_active = 0;
2663 s32 ret_val = 0;
2664
2665 /*
2666 * get_link_status is set on LSC (link status) interrupt or
2667 * Rx sequence error interrupt. get_link_status will stay
2668 * false until the check_for_link establishes link
2669 * for copper adapters ONLY
2670 */
2671 switch (hw->phy.media_type) {
2672 case e1000_media_type_copper:
2673 if (hw->mac.get_link_status) {
2674 ret_val = hw->mac.ops.check_for_link(hw);
2675 link_active = !hw->mac.get_link_status;
2676 } else {
2677 link_active = 1;
2678 }
2679 break;
2680 case e1000_media_type_fiber:
2681 ret_val = hw->mac.ops.check_for_link(hw);
2682 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2683 break;
2684 case e1000_media_type_internal_serdes:
2685 ret_val = hw->mac.ops.check_for_link(hw);
2686 link_active = adapter->hw.mac.serdes_has_link;
2687 break;
2688 default:
2689 case e1000_media_type_unknown:
2690 break;
2691 }
2692
2693 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2694 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2695 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2696 ndev_info(adapter->netdev,
2697 "Gigabit has been disabled, downgrading speed\n");
2698 }
2699
2700 return link_active;
2701}
2702
2703static void e1000e_enable_receives(struct e1000_adapter *adapter)
2704{
2705 /* make sure the receive unit is started */
2706 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
2707 (adapter->flags & FLAG_RX_RESTART_NOW)) {
2708 struct e1000_hw *hw = &adapter->hw;
2709 u32 rctl = er32(RCTL);
2710 ew32(RCTL, rctl | E1000_RCTL_EN);
2711 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2712 }
2713}
2714
bc7f75fa
AK
2715/**
2716 * e1000_watchdog - Timer Call-back
2717 * @data: pointer to adapter cast into an unsigned long
2718 **/
2719static void e1000_watchdog(unsigned long data)
2720{
2721 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2722
2723 /* Do the rest outside of interrupt context */
2724 schedule_work(&adapter->watchdog_task);
2725
2726 /* TODO: make this use queue_delayed_work() */
2727}
2728
2729static void e1000_watchdog_task(struct work_struct *work)
2730{
2731 struct e1000_adapter *adapter = container_of(work,
2732 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
2733 struct net_device *netdev = adapter->netdev;
2734 struct e1000_mac_info *mac = &adapter->hw.mac;
2735 struct e1000_ring *tx_ring = adapter->tx_ring;
2736 struct e1000_hw *hw = &adapter->hw;
2737 u32 link, tctl;
bc7f75fa
AK
2738 int tx_pending = 0;
2739
318a94d6
JK
2740 link = e1000_has_link(adapter);
2741 if ((netif_carrier_ok(netdev)) && link) {
2742 e1000e_enable_receives(adapter);
bc7f75fa 2743 goto link_up;
bc7f75fa
AK
2744 }
2745
2746 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2747 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2748 e1000_update_mng_vlan(adapter);
2749
bc7f75fa
AK
2750 if (link) {
2751 if (!netif_carrier_ok(netdev)) {
2752 bool txb2b = 1;
318a94d6 2753 /* update snapshot of PHY registers on LSC */
7c25769f 2754 e1000_phy_read_status(adapter);
bc7f75fa
AK
2755 mac->ops.get_link_up_info(&adapter->hw,
2756 &adapter->link_speed,
2757 &adapter->link_duplex);
2758 e1000_print_link_info(adapter);
ad68076e
BA
2759 /*
2760 * tweak tx_queue_len according to speed/duplex
2761 * and adjust the timeout factor
2762 */
bc7f75fa
AK
2763 netdev->tx_queue_len = adapter->tx_queue_len;
2764 adapter->tx_timeout_factor = 1;
2765 switch (adapter->link_speed) {
2766 case SPEED_10:
2767 txb2b = 0;
2768 netdev->tx_queue_len = 10;
2769 adapter->tx_timeout_factor = 14;
2770 break;
2771 case SPEED_100:
2772 txb2b = 0;
2773 netdev->tx_queue_len = 100;
2774 /* maybe add some timeout factor ? */
2775 break;
2776 }
2777
ad68076e
BA
2778 /*
2779 * workaround: re-program speed mode bit after
2780 * link-up event
2781 */
bc7f75fa
AK
2782 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2783 !txb2b) {
2784 u32 tarc0;
e9ec2c0f 2785 tarc0 = er32(TARC(0));
bc7f75fa 2786 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 2787 ew32(TARC(0), tarc0);
bc7f75fa
AK
2788 }
2789
ad68076e
BA
2790 /*
2791 * disable TSO for pcie and 10/100 speeds, to avoid
2792 * some hardware issues
2793 */
bc7f75fa
AK
2794 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2795 switch (adapter->link_speed) {
2796 case SPEED_10:
2797 case SPEED_100:
2798 ndev_info(netdev,
2799 "10/100 speed: disabling TSO\n");
2800 netdev->features &= ~NETIF_F_TSO;
2801 netdev->features &= ~NETIF_F_TSO6;
2802 break;
2803 case SPEED_1000:
2804 netdev->features |= NETIF_F_TSO;
2805 netdev->features |= NETIF_F_TSO6;
2806 break;
2807 default:
2808 /* oops */
2809 break;
2810 }
2811 }
2812
ad68076e
BA
2813 /*
2814 * enable transmits in the hardware, need to do this
2815 * after setting TARC(0)
2816 */
bc7f75fa
AK
2817 tctl = er32(TCTL);
2818 tctl |= E1000_TCTL_EN;
2819 ew32(TCTL, tctl);
2820
2821 netif_carrier_on(netdev);
2822 netif_wake_queue(netdev);
2823
2824 if (!test_bit(__E1000_DOWN, &adapter->state))
2825 mod_timer(&adapter->phy_info_timer,
2826 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
2827 }
2828 } else {
2829 if (netif_carrier_ok(netdev)) {
2830 adapter->link_speed = 0;
2831 adapter->link_duplex = 0;
2832 ndev_info(netdev, "Link is Down\n");
2833 netif_carrier_off(netdev);
2834 netif_stop_queue(netdev);
2835 if (!test_bit(__E1000_DOWN, &adapter->state))
2836 mod_timer(&adapter->phy_info_timer,
2837 round_jiffies(jiffies + 2 * HZ));
2838
2839 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2840 schedule_work(&adapter->reset_task);
2841 }
2842 }
2843
2844link_up:
2845 e1000e_update_stats(adapter);
2846
2847 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2848 adapter->tpt_old = adapter->stats.tpt;
2849 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2850 adapter->colc_old = adapter->stats.colc;
2851
7c25769f
BA
2852 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2853 adapter->gorc_old = adapter->stats.gorc;
2854 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2855 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
2856
2857 e1000e_update_adaptive(&adapter->hw);
2858
2859 if (!netif_carrier_ok(netdev)) {
2860 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2861 tx_ring->count);
2862 if (tx_pending) {
ad68076e
BA
2863 /*
2864 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
2865 * but we've got queued Tx work that's never going
2866 * to get done, so reset controller to flush Tx.
ad68076e
BA
2867 * (Do the reset outside of interrupt context).
2868 */
bc7f75fa
AK
2869 adapter->tx_timeout_count++;
2870 schedule_work(&adapter->reset_task);
2871 }
2872 }
2873
ad68076e 2874 /* Cause software interrupt to ensure Rx ring is cleaned */
bc7f75fa
AK
2875 ew32(ICS, E1000_ICS_RXDMT0);
2876
2877 /* Force detection of hung controller every watchdog period */
2878 adapter->detect_tx_hung = 1;
2879
ad68076e
BA
2880 /*
2881 * With 82571 controllers, LAA may be overwritten due to controller
2882 * reset from the other port. Set the appropriate LAA in RAR[0]
2883 */
bc7f75fa
AK
2884 if (e1000e_get_laa_state_82571(hw))
2885 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2886
2887 /* Reset the timer */
2888 if (!test_bit(__E1000_DOWN, &adapter->state))
2889 mod_timer(&adapter->watchdog_timer,
2890 round_jiffies(jiffies + 2 * HZ));
2891}
2892
2893#define E1000_TX_FLAGS_CSUM 0x00000001
2894#define E1000_TX_FLAGS_VLAN 0x00000002
2895#define E1000_TX_FLAGS_TSO 0x00000004
2896#define E1000_TX_FLAGS_IPV4 0x00000008
2897#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2898#define E1000_TX_FLAGS_VLAN_SHIFT 16
2899
2900static int e1000_tso(struct e1000_adapter *adapter,
2901 struct sk_buff *skb)
2902{
2903 struct e1000_ring *tx_ring = adapter->tx_ring;
2904 struct e1000_context_desc *context_desc;
2905 struct e1000_buffer *buffer_info;
2906 unsigned int i;
2907 u32 cmd_length = 0;
2908 u16 ipcse = 0, tucse, mss;
2909 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2910 int err;
2911
2912 if (skb_is_gso(skb)) {
2913 if (skb_header_cloned(skb)) {
2914 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2915 if (err)
2916 return err;
2917 }
2918
2919 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2920 mss = skb_shinfo(skb)->gso_size;
2921 if (skb->protocol == htons(ETH_P_IP)) {
2922 struct iphdr *iph = ip_hdr(skb);
2923 iph->tot_len = 0;
2924 iph->check = 0;
2925 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2926 iph->daddr, 0,
2927 IPPROTO_TCP,
2928 0);
2929 cmd_length = E1000_TXD_CMD_IP;
2930 ipcse = skb_transport_offset(skb) - 1;
2931 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2932 ipv6_hdr(skb)->payload_len = 0;
2933 tcp_hdr(skb)->check =
2934 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2935 &ipv6_hdr(skb)->daddr,
2936 0, IPPROTO_TCP, 0);
2937 ipcse = 0;
2938 }
2939 ipcss = skb_network_offset(skb);
2940 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2941 tucss = skb_transport_offset(skb);
2942 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2943 tucse = 0;
2944
2945 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2946 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2947
2948 i = tx_ring->next_to_use;
2949 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2950 buffer_info = &tx_ring->buffer_info[i];
2951
2952 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2953 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2954 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2955 context_desc->upper_setup.tcp_fields.tucss = tucss;
2956 context_desc->upper_setup.tcp_fields.tucso = tucso;
2957 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2958 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2959 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2960 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2961
2962 buffer_info->time_stamp = jiffies;
2963 buffer_info->next_to_watch = i;
2964
2965 i++;
2966 if (i == tx_ring->count)
2967 i = 0;
2968 tx_ring->next_to_use = i;
2969
2970 return 1;
2971 }
2972
2973 return 0;
2974}
2975
2976static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2977{
2978 struct e1000_ring *tx_ring = adapter->tx_ring;
2979 struct e1000_context_desc *context_desc;
2980 struct e1000_buffer *buffer_info;
2981 unsigned int i;
2982 u8 css;
2983
2984 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2985 css = skb_transport_offset(skb);
2986
2987 i = tx_ring->next_to_use;
2988 buffer_info = &tx_ring->buffer_info[i];
2989 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2990
2991 context_desc->lower_setup.ip_config = 0;
2992 context_desc->upper_setup.tcp_fields.tucss = css;
2993 context_desc->upper_setup.tcp_fields.tucso =
2994 css + skb->csum_offset;
2995 context_desc->upper_setup.tcp_fields.tucse = 0;
2996 context_desc->tcp_seg_setup.data = 0;
2997 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2998
2999 buffer_info->time_stamp = jiffies;
3000 buffer_info->next_to_watch = i;
3001
3002 i++;
3003 if (i == tx_ring->count)
3004 i = 0;
3005 tx_ring->next_to_use = i;
3006
3007 return 1;
3008 }
3009
3010 return 0;
3011}
3012
3013#define E1000_MAX_PER_TXD 8192
3014#define E1000_MAX_TXD_PWR 12
3015
3016static int e1000_tx_map(struct e1000_adapter *adapter,
3017 struct sk_buff *skb, unsigned int first,
3018 unsigned int max_per_txd, unsigned int nr_frags,
3019 unsigned int mss)
3020{
3021 struct e1000_ring *tx_ring = adapter->tx_ring;
3022 struct e1000_buffer *buffer_info;
3023 unsigned int len = skb->len - skb->data_len;
3024 unsigned int offset = 0, size, count = 0, i;
3025 unsigned int f;
3026
3027 i = tx_ring->next_to_use;
3028
3029 while (len) {
3030 buffer_info = &tx_ring->buffer_info[i];
3031 size = min(len, max_per_txd);
3032
3033 /* Workaround for premature desc write-backs
3034 * in TSO mode. Append 4-byte sentinel desc */
3035 if (mss && !nr_frags && size == len && size > 8)
3036 size -= 4;
3037
3038 buffer_info->length = size;
3039 /* set time_stamp *before* dma to help avoid a possible race */
3040 buffer_info->time_stamp = jiffies;
3041 buffer_info->dma =
3042 pci_map_single(adapter->pdev,
3043 skb->data + offset,
3044 size,
3045 PCI_DMA_TODEVICE);
3046 if (pci_dma_mapping_error(buffer_info->dma)) {
3047 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3048 adapter->tx_dma_failed++;
3049 return -1;
3050 }
3051 buffer_info->next_to_watch = i;
3052
3053 len -= size;
3054 offset += size;
3055 count++;
3056 i++;
3057 if (i == tx_ring->count)
3058 i = 0;
3059 }
3060
3061 for (f = 0; f < nr_frags; f++) {
3062 struct skb_frag_struct *frag;
3063
3064 frag = &skb_shinfo(skb)->frags[f];
3065 len = frag->size;
3066 offset = frag->page_offset;
3067
3068 while (len) {
3069 buffer_info = &tx_ring->buffer_info[i];
3070 size = min(len, max_per_txd);
3071 /* Workaround for premature desc write-backs
3072 * in TSO mode. Append 4-byte sentinel desc */
3073 if (mss && f == (nr_frags-1) && size == len && size > 8)
3074 size -= 4;
3075
3076 buffer_info->length = size;
3077 buffer_info->time_stamp = jiffies;
3078 buffer_info->dma =
3079 pci_map_page(adapter->pdev,
3080 frag->page,
3081 offset,
3082 size,
3083 PCI_DMA_TODEVICE);
3084 if (pci_dma_mapping_error(buffer_info->dma)) {
3085 dev_err(&adapter->pdev->dev,
3086 "TX DMA page map failed\n");
3087 adapter->tx_dma_failed++;
3088 return -1;
3089 }
3090
3091 buffer_info->next_to_watch = i;
3092
3093 len -= size;
3094 offset += size;
3095 count++;
3096
3097 i++;
3098 if (i == tx_ring->count)
3099 i = 0;
3100 }
3101 }
3102
3103 if (i == 0)
3104 i = tx_ring->count - 1;
3105 else
3106 i--;
3107
3108 tx_ring->buffer_info[i].skb = skb;
3109 tx_ring->buffer_info[first].next_to_watch = i;
3110
3111 return count;
3112}
3113
3114static void e1000_tx_queue(struct e1000_adapter *adapter,
3115 int tx_flags, int count)
3116{
3117 struct e1000_ring *tx_ring = adapter->tx_ring;
3118 struct e1000_tx_desc *tx_desc = NULL;
3119 struct e1000_buffer *buffer_info;
3120 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3121 unsigned int i;
3122
3123 if (tx_flags & E1000_TX_FLAGS_TSO) {
3124 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3125 E1000_TXD_CMD_TSE;
3126 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3127
3128 if (tx_flags & E1000_TX_FLAGS_IPV4)
3129 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3130 }
3131
3132 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3133 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3134 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3135 }
3136
3137 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3138 txd_lower |= E1000_TXD_CMD_VLE;
3139 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3140 }
3141
3142 i = tx_ring->next_to_use;
3143
3144 while (count--) {
3145 buffer_info = &tx_ring->buffer_info[i];
3146 tx_desc = E1000_TX_DESC(*tx_ring, i);
3147 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3148 tx_desc->lower.data =
3149 cpu_to_le32(txd_lower | buffer_info->length);
3150 tx_desc->upper.data = cpu_to_le32(txd_upper);
3151
3152 i++;
3153 if (i == tx_ring->count)
3154 i = 0;
3155 }
3156
3157 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3158
ad68076e
BA
3159 /*
3160 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3161 * know there are new descriptors to fetch. (Only
3162 * applicable for weak-ordered memory model archs,
ad68076e
BA
3163 * such as IA-64).
3164 */
bc7f75fa
AK
3165 wmb();
3166
3167 tx_ring->next_to_use = i;
3168 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3169 /*
3170 * we need this if more than one processor can write to our tail
3171 * at a time, it synchronizes IO on IA64/Altix systems
3172 */
bc7f75fa
AK
3173 mmiowb();
3174}
3175
3176#define MINIMUM_DHCP_PACKET_SIZE 282
3177static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3178 struct sk_buff *skb)
3179{
3180 struct e1000_hw *hw = &adapter->hw;
3181 u16 length, offset;
3182
3183 if (vlan_tx_tag_present(skb)) {
3184 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3185 && (adapter->hw.mng_cookie.status &
3186 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3187 return 0;
3188 }
3189
3190 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3191 return 0;
3192
3193 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3194 return 0;
3195
3196 {
3197 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3198 struct udphdr *udp;
3199
3200 if (ip->protocol != IPPROTO_UDP)
3201 return 0;
3202
3203 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3204 if (ntohs(udp->dest) != 67)
3205 return 0;
3206
3207 offset = (u8 *)udp + 8 - skb->data;
3208 length = skb->len - offset;
3209 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3210 }
3211
3212 return 0;
3213}
3214
3215static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3216{
3217 struct e1000_adapter *adapter = netdev_priv(netdev);
3218
3219 netif_stop_queue(netdev);
ad68076e
BA
3220 /*
3221 * Herbert's original patch had:
bc7f75fa 3222 * smp_mb__after_netif_stop_queue();
ad68076e
BA
3223 * but since that doesn't exist yet, just open code it.
3224 */
bc7f75fa
AK
3225 smp_mb();
3226
ad68076e
BA
3227 /*
3228 * We need to check again in a case another CPU has just
3229 * made room available.
3230 */
bc7f75fa
AK
3231 if (e1000_desc_unused(adapter->tx_ring) < size)
3232 return -EBUSY;
3233
3234 /* A reprieve! */
3235 netif_start_queue(netdev);
3236 ++adapter->restart_queue;
3237 return 0;
3238}
3239
3240static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3241{
3242 struct e1000_adapter *adapter = netdev_priv(netdev);
3243
3244 if (e1000_desc_unused(adapter->tx_ring) >= size)
3245 return 0;
3246 return __e1000_maybe_stop_tx(netdev, size);
3247}
3248
3249#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3250static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3251{
3252 struct e1000_adapter *adapter = netdev_priv(netdev);
3253 struct e1000_ring *tx_ring = adapter->tx_ring;
3254 unsigned int first;
3255 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3256 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3257 unsigned int tx_flags = 0;
4e6c709c 3258 unsigned int len = skb->len - skb->data_len;
bc7f75fa 3259 unsigned long irq_flags;
4e6c709c
AK
3260 unsigned int nr_frags;
3261 unsigned int mss;
bc7f75fa
AK
3262 int count = 0;
3263 int tso;
3264 unsigned int f;
bc7f75fa
AK
3265
3266 if (test_bit(__E1000_DOWN, &adapter->state)) {
3267 dev_kfree_skb_any(skb);
3268 return NETDEV_TX_OK;
3269 }
3270
3271 if (skb->len <= 0) {
3272 dev_kfree_skb_any(skb);
3273 return NETDEV_TX_OK;
3274 }
3275
3276 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
3277 /*
3278 * The controller does a simple calculation to
bc7f75fa
AK
3279 * make sure there is enough room in the FIFO before
3280 * initiating the DMA for each buffer. The calc is:
3281 * 4 = ceil(buffer len/mss). To make sure we don't
3282 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
3283 * drops.
3284 */
bc7f75fa
AK
3285 if (mss) {
3286 u8 hdr_len;
3287 max_per_txd = min(mss << 2, max_per_txd);
3288 max_txd_pwr = fls(max_per_txd) - 1;
3289
ad68076e
BA
3290 /*
3291 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3292 * points to just header, pull a few bytes of payload from
3293 * frags into skb->data
3294 */
bc7f75fa 3295 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
3296 /*
3297 * we do this workaround for ES2LAN, but it is un-necessary,
3298 * avoiding it could save a lot of cycles
3299 */
4e6c709c 3300 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
3301 unsigned int pull_size;
3302
3303 pull_size = min((unsigned int)4, skb->data_len);
3304 if (!__pskb_pull_tail(skb, pull_size)) {
3305 ndev_err(netdev,
3306 "__pskb_pull_tail failed.\n");
3307 dev_kfree_skb_any(skb);
3308 return NETDEV_TX_OK;
3309 }
3310 len = skb->len - skb->data_len;
3311 }
3312 }
3313
3314 /* reserve a descriptor for the offload context */
3315 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3316 count++;
3317 count++;
3318
3319 count += TXD_USE_COUNT(len, max_txd_pwr);
3320
3321 nr_frags = skb_shinfo(skb)->nr_frags;
3322 for (f = 0; f < nr_frags; f++)
3323 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3324 max_txd_pwr);
3325
3326 if (adapter->hw.mac.tx_pkt_filtering)
3327 e1000_transfer_dhcp_info(adapter, skb);
3328
3329 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3330 /* Collision - tell upper layer to requeue */
3331 return NETDEV_TX_LOCKED;
3332
ad68076e
BA
3333 /*
3334 * need: count + 2 desc gap to keep tail from touching
3335 * head, otherwise try next time
3336 */
bc7f75fa
AK
3337 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3338 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3339 return NETDEV_TX_BUSY;
3340 }
3341
3342 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3343 tx_flags |= E1000_TX_FLAGS_VLAN;
3344 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3345 }
3346
3347 first = tx_ring->next_to_use;
3348
3349 tso = e1000_tso(adapter, skb);
3350 if (tso < 0) {
3351 dev_kfree_skb_any(skb);
3352 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3353 return NETDEV_TX_OK;
3354 }
3355
3356 if (tso)
3357 tx_flags |= E1000_TX_FLAGS_TSO;
3358 else if (e1000_tx_csum(adapter, skb))
3359 tx_flags |= E1000_TX_FLAGS_CSUM;
3360
ad68076e
BA
3361 /*
3362 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 3363 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
3364 * no longer assume, we must.
3365 */
bc7f75fa
AK
3366 if (skb->protocol == htons(ETH_P_IP))
3367 tx_flags |= E1000_TX_FLAGS_IPV4;
3368
3369 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3370 if (count < 0) {
3371 /* handle pci_map_single() error in e1000_tx_map */
3372 dev_kfree_skb_any(skb);
3373 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 3374 return NETDEV_TX_OK;
bc7f75fa
AK
3375 }
3376
3377 e1000_tx_queue(adapter, tx_flags, count);
3378
3379 netdev->trans_start = jiffies;
3380
3381 /* Make sure there is space in the ring for the next send. */
3382 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3383
3384 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3385 return NETDEV_TX_OK;
3386}
3387
3388/**
3389 * e1000_tx_timeout - Respond to a Tx Hang
3390 * @netdev: network interface device structure
3391 **/
3392static void e1000_tx_timeout(struct net_device *netdev)
3393{
3394 struct e1000_adapter *adapter = netdev_priv(netdev);
3395
3396 /* Do the reset outside of interrupt context */
3397 adapter->tx_timeout_count++;
3398 schedule_work(&adapter->reset_task);
3399}
3400
3401static void e1000_reset_task(struct work_struct *work)
3402{
3403 struct e1000_adapter *adapter;
3404 adapter = container_of(work, struct e1000_adapter, reset_task);
3405
3406 e1000e_reinit_locked(adapter);
3407}
3408
3409/**
3410 * e1000_get_stats - Get System Network Statistics
3411 * @netdev: network interface device structure
3412 *
3413 * Returns the address of the device statistics structure.
3414 * The statistics are actually updated from the timer callback.
3415 **/
3416static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3417{
3418 struct e1000_adapter *adapter = netdev_priv(netdev);
3419
3420 /* only return the current stats */
3421 return &adapter->net_stats;
3422}
3423
3424/**
3425 * e1000_change_mtu - Change the Maximum Transfer Unit
3426 * @netdev: network interface device structure
3427 * @new_mtu: new value for maximum frame size
3428 *
3429 * Returns 0 on success, negative on failure
3430 **/
3431static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3432{
3433 struct e1000_adapter *adapter = netdev_priv(netdev);
3434 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3435
3436 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3437 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3438 ndev_err(netdev, "Invalid MTU setting\n");
3439 return -EINVAL;
3440 }
3441
3442 /* Jumbo frame size limits */
3443 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3444 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3445 ndev_err(netdev, "Jumbo Frames not supported.\n");
3446 return -EINVAL;
3447 }
3448 if (adapter->hw.phy.type == e1000_phy_ife) {
3449 ndev_err(netdev, "Jumbo Frames not supported.\n");
3450 return -EINVAL;
3451 }
3452 }
3453
3454#define MAX_STD_JUMBO_FRAME_SIZE 9234
3455 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3456 ndev_err(netdev, "MTU > 9216 not supported.\n");
3457 return -EINVAL;
3458 }
3459
3460 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3461 msleep(1);
3462 /* e1000e_down has a dependency on max_frame_size */
318a94d6 3463 adapter->max_frame_size = max_frame;
bc7f75fa
AK
3464 if (netif_running(netdev))
3465 e1000e_down(adapter);
3466
ad68076e
BA
3467 /*
3468 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
3469 * means we reserve 2 more, this pushes us to allocate from the next
3470 * larger slab size.
ad68076e
BA
3471 * i.e. RXBUFFER_2048 --> size-4096 slab
3472 */
bc7f75fa
AK
3473
3474 if (max_frame <= 256)
3475 adapter->rx_buffer_len = 256;
3476 else if (max_frame <= 512)
3477 adapter->rx_buffer_len = 512;
3478 else if (max_frame <= 1024)
3479 adapter->rx_buffer_len = 1024;
3480 else if (max_frame <= 2048)
3481 adapter->rx_buffer_len = 2048;
3482 else
3483 adapter->rx_buffer_len = 4096;
3484
3485 /* adjust allocation if LPE protects us, and we aren't using SBP */
3486 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3487 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3488 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 3489 + ETH_FCS_LEN;
bc7f75fa
AK
3490
3491 ndev_info(netdev, "changing MTU from %d to %d\n",
3492 netdev->mtu, new_mtu);
3493 netdev->mtu = new_mtu;
3494
3495 if (netif_running(netdev))
3496 e1000e_up(adapter);
3497 else
3498 e1000e_reset(adapter);
3499
3500 clear_bit(__E1000_RESETTING, &adapter->state);
3501
3502 return 0;
3503}
3504
3505static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3506 int cmd)
3507{
3508 struct e1000_adapter *adapter = netdev_priv(netdev);
3509 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 3510
318a94d6 3511 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
3512 return -EOPNOTSUPP;
3513
3514 switch (cmd) {
3515 case SIOCGMIIPHY:
3516 data->phy_id = adapter->hw.phy.addr;
3517 break;
3518 case SIOCGMIIREG:
3519 if (!capable(CAP_NET_ADMIN))
3520 return -EPERM;
7c25769f
BA
3521 switch (data->reg_num & 0x1F) {
3522 case MII_BMCR:
3523 data->val_out = adapter->phy_regs.bmcr;
3524 break;
3525 case MII_BMSR:
3526 data->val_out = adapter->phy_regs.bmsr;
3527 break;
3528 case MII_PHYSID1:
3529 data->val_out = (adapter->hw.phy.id >> 16);
3530 break;
3531 case MII_PHYSID2:
3532 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3533 break;
3534 case MII_ADVERTISE:
3535 data->val_out = adapter->phy_regs.advertise;
3536 break;
3537 case MII_LPA:
3538 data->val_out = adapter->phy_regs.lpa;
3539 break;
3540 case MII_EXPANSION:
3541 data->val_out = adapter->phy_regs.expansion;
3542 break;
3543 case MII_CTRL1000:
3544 data->val_out = adapter->phy_regs.ctrl1000;
3545 break;
3546 case MII_STAT1000:
3547 data->val_out = adapter->phy_regs.stat1000;
3548 break;
3549 case MII_ESTATUS:
3550 data->val_out = adapter->phy_regs.estatus;
3551 break;
3552 default:
bc7f75fa
AK
3553 return -EIO;
3554 }
bc7f75fa
AK
3555 break;
3556 case SIOCSMIIREG:
3557 default:
3558 return -EOPNOTSUPP;
3559 }
3560 return 0;
3561}
3562
3563static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3564{
3565 switch (cmd) {
3566 case SIOCGMIIPHY:
3567 case SIOCGMIIREG:
3568 case SIOCSMIIREG:
3569 return e1000_mii_ioctl(netdev, ifr, cmd);
3570 default:
3571 return -EOPNOTSUPP;
3572 }
3573}
3574
3575static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3576{
3577 struct net_device *netdev = pci_get_drvdata(pdev);
3578 struct e1000_adapter *adapter = netdev_priv(netdev);
3579 struct e1000_hw *hw = &adapter->hw;
3580 u32 ctrl, ctrl_ext, rctl, status;
3581 u32 wufc = adapter->wol;
3582 int retval = 0;
3583
3584 netif_device_detach(netdev);
3585
3586 if (netif_running(netdev)) {
3587 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3588 e1000e_down(adapter);
3589 e1000_free_irq(adapter);
3590 }
3591
3592 retval = pci_save_state(pdev);
3593 if (retval)
3594 return retval;
3595
3596 status = er32(STATUS);
3597 if (status & E1000_STATUS_LU)
3598 wufc &= ~E1000_WUFC_LNKC;
3599
3600 if (wufc) {
3601 e1000_setup_rctl(adapter);
3602 e1000_set_multi(netdev);
3603
3604 /* turn on all-multi mode if wake on multicast is enabled */
3605 if (wufc & E1000_WUFC_MC) {
3606 rctl = er32(RCTL);
3607 rctl |= E1000_RCTL_MPE;
3608 ew32(RCTL, rctl);
3609 }
3610
3611 ctrl = er32(CTRL);
3612 /* advertise wake from D3Cold */
3613 #define E1000_CTRL_ADVD3WUC 0x00100000
3614 /* phy power management enable */
3615 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3616 ctrl |= E1000_CTRL_ADVD3WUC |
3617 E1000_CTRL_EN_PHY_PWR_MGMT;
3618 ew32(CTRL, ctrl);
3619
318a94d6
JK
3620 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3621 adapter->hw.phy.media_type ==
3622 e1000_media_type_internal_serdes) {
bc7f75fa
AK
3623 /* keep the laser running in D3 */
3624 ctrl_ext = er32(CTRL_EXT);
3625 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3626 ew32(CTRL_EXT, ctrl_ext);
3627 }
3628
3629 /* Allow time for pending master requests to run */
3630 e1000e_disable_pcie_master(&adapter->hw);
3631
3632 ew32(WUC, E1000_WUC_PME_EN);
3633 ew32(WUFC, wufc);
3634 pci_enable_wake(pdev, PCI_D3hot, 1);
3635 pci_enable_wake(pdev, PCI_D3cold, 1);
3636 } else {
3637 ew32(WUC, 0);
3638 ew32(WUFC, 0);
3639 pci_enable_wake(pdev, PCI_D3hot, 0);
3640 pci_enable_wake(pdev, PCI_D3cold, 0);
3641 }
3642
bc7f75fa
AK
3643 /* make sure adapter isn't asleep if manageability is enabled */
3644 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3645 pci_enable_wake(pdev, PCI_D3hot, 1);
3646 pci_enable_wake(pdev, PCI_D3cold, 1);
3647 }
3648
3649 if (adapter->hw.phy.type == e1000_phy_igp_3)
3650 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3651
ad68076e
BA
3652 /*
3653 * Release control of h/w to f/w. If f/w is AMT enabled, this
3654 * would have already happened in close and is redundant.
3655 */
bc7f75fa
AK
3656 e1000_release_hw_control(adapter);
3657
3658 pci_disable_device(pdev);
3659
3660 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3661
3662 return 0;
3663}
3664
1eae4eb2
AK
3665static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3666{
3667 int pos;
1eae4eb2
AK
3668 u16 val;
3669
3670 /*
3671 * 82573 workaround - disable L1 ASPM on mobile chipsets
3672 *
3673 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3674 * resulting in lost data or garbage information on the pci-e link
3675 * level. This could result in (false) bad EEPROM checksum errors,
3676 * long ping times (up to 2s) or even a system freeze/hang.
3677 *
3678 * Unfortunately this feature saves about 1W power consumption when
3679 * active.
3680 */
3681 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
3682 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3683 if (val & 0x2) {
3684 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3685 val &= ~0x2;
3686 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3687 }
3688}
3689
bc7f75fa
AK
3690#ifdef CONFIG_PM
3691static int e1000_resume(struct pci_dev *pdev)
3692{
3693 struct net_device *netdev = pci_get_drvdata(pdev);
3694 struct e1000_adapter *adapter = netdev_priv(netdev);
3695 struct e1000_hw *hw = &adapter->hw;
3696 u32 err;
3697
3698 pci_set_power_state(pdev, PCI_D0);
3699 pci_restore_state(pdev);
1eae4eb2 3700 e1000e_disable_l1aspm(pdev);
bc7f75fa
AK
3701 err = pci_enable_device(pdev);
3702 if (err) {
3703 dev_err(&pdev->dev,
3704 "Cannot enable PCI device from suspend\n");
3705 return err;
3706 }
3707
3708 pci_set_master(pdev);
3709
3710 pci_enable_wake(pdev, PCI_D3hot, 0);
3711 pci_enable_wake(pdev, PCI_D3cold, 0);
3712
3713 if (netif_running(netdev)) {
3714 err = e1000_request_irq(adapter);
3715 if (err)
3716 return err;
3717 }
3718
3719 e1000e_power_up_phy(adapter);
3720 e1000e_reset(adapter);
3721 ew32(WUS, ~0);
3722
3723 e1000_init_manageability(adapter);
3724
3725 if (netif_running(netdev))
3726 e1000e_up(adapter);
3727
3728 netif_device_attach(netdev);
3729
ad68076e
BA
3730 /*
3731 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 3732 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
3733 * under the control of the driver.
3734 */
bc7f75fa
AK
3735 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3736 e1000_get_hw_control(adapter);
3737
3738 return 0;
3739}
3740#endif
3741
3742static void e1000_shutdown(struct pci_dev *pdev)
3743{
3744 e1000_suspend(pdev, PMSG_SUSPEND);
3745}
3746
3747#ifdef CONFIG_NET_POLL_CONTROLLER
3748/*
3749 * Polling 'interrupt' - used by things like netconsole to send skbs
3750 * without having to re-enable interrupts. It's not called while
3751 * the interrupt routine is executing.
3752 */
3753static void e1000_netpoll(struct net_device *netdev)
3754{
3755 struct e1000_adapter *adapter = netdev_priv(netdev);
3756
3757 disable_irq(adapter->pdev->irq);
3758 e1000_intr(adapter->pdev->irq, netdev);
3759
3760 e1000_clean_tx_irq(adapter);
3761
3762 enable_irq(adapter->pdev->irq);
3763}
3764#endif
3765
3766/**
3767 * e1000_io_error_detected - called when PCI error is detected
3768 * @pdev: Pointer to PCI device
3769 * @state: The current pci connection state
3770 *
3771 * This function is called after a PCI bus error affecting
3772 * this device has been detected.
3773 */
3774static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3775 pci_channel_state_t state)
3776{
3777 struct net_device *netdev = pci_get_drvdata(pdev);
3778 struct e1000_adapter *adapter = netdev_priv(netdev);
3779
3780 netif_device_detach(netdev);
3781
3782 if (netif_running(netdev))
3783 e1000e_down(adapter);
3784 pci_disable_device(pdev);
3785
3786 /* Request a slot slot reset. */
3787 return PCI_ERS_RESULT_NEED_RESET;
3788}
3789
3790/**
3791 * e1000_io_slot_reset - called after the pci bus has been reset.
3792 * @pdev: Pointer to PCI device
3793 *
3794 * Restart the card from scratch, as if from a cold-boot. Implementation
3795 * resembles the first-half of the e1000_resume routine.
3796 */
3797static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3798{
3799 struct net_device *netdev = pci_get_drvdata(pdev);
3800 struct e1000_adapter *adapter = netdev_priv(netdev);
3801 struct e1000_hw *hw = &adapter->hw;
3802
1eae4eb2 3803 e1000e_disable_l1aspm(pdev);
bc7f75fa
AK
3804 if (pci_enable_device(pdev)) {
3805 dev_err(&pdev->dev,
3806 "Cannot re-enable PCI device after reset.\n");
3807 return PCI_ERS_RESULT_DISCONNECT;
3808 }
3809 pci_set_master(pdev);
aad32739 3810 pci_restore_state(pdev);
bc7f75fa
AK
3811
3812 pci_enable_wake(pdev, PCI_D3hot, 0);
3813 pci_enable_wake(pdev, PCI_D3cold, 0);
3814
3815 e1000e_reset(adapter);
3816 ew32(WUS, ~0);
3817
3818 return PCI_ERS_RESULT_RECOVERED;
3819}
3820
3821/**
3822 * e1000_io_resume - called when traffic can start flowing again.
3823 * @pdev: Pointer to PCI device
3824 *
3825 * This callback is called when the error recovery driver tells us that
3826 * its OK to resume normal operation. Implementation resembles the
3827 * second-half of the e1000_resume routine.
3828 */
3829static void e1000_io_resume(struct pci_dev *pdev)
3830{
3831 struct net_device *netdev = pci_get_drvdata(pdev);
3832 struct e1000_adapter *adapter = netdev_priv(netdev);
3833
3834 e1000_init_manageability(adapter);
3835
3836 if (netif_running(netdev)) {
3837 if (e1000e_up(adapter)) {
3838 dev_err(&pdev->dev,
3839 "can't bring device back up after reset\n");
3840 return;
3841 }
3842 }
3843
3844 netif_device_attach(netdev);
3845
ad68076e
BA
3846 /*
3847 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 3848 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
3849 * under the control of the driver.
3850 */
bc7f75fa
AK
3851 if (!(adapter->flags & FLAG_HAS_AMT) ||
3852 !e1000e_check_mng_mode(&adapter->hw))
3853 e1000_get_hw_control(adapter);
3854
3855}
3856
3857static void e1000_print_device_info(struct e1000_adapter *adapter)
3858{
3859 struct e1000_hw *hw = &adapter->hw;
3860 struct net_device *netdev = adapter->netdev;
69e3fd8c 3861 u32 pba_num;
bc7f75fa
AK
3862
3863 /* print bus type/speed/width info */
3864 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3865 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3866 /* bus width */
3867 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3868 "Width x1"),
3869 /* MAC address */
3870 netdev->dev_addr[0], netdev->dev_addr[1],
3871 netdev->dev_addr[2], netdev->dev_addr[3],
3872 netdev->dev_addr[4], netdev->dev_addr[5]);
3873 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3874 (hw->phy.type == e1000_phy_ife)
3875 ? "10/100" : "1000");
69e3fd8c 3876 e1000e_read_pba_num(hw, &pba_num);
bc7f75fa
AK
3877 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3878 hw->mac.type, hw->phy.type,
69e3fd8c 3879 (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
3880}
3881
3882/**
3883 * e1000_probe - Device Initialization Routine
3884 * @pdev: PCI device information struct
3885 * @ent: entry in e1000_pci_tbl
3886 *
3887 * Returns 0 on success, negative on failure
3888 *
3889 * e1000_probe initializes an adapter identified by a pci_dev structure.
3890 * The OS initialization, configuring of the adapter private structure,
3891 * and a hardware reset occur.
3892 **/
3893static int __devinit e1000_probe(struct pci_dev *pdev,
3894 const struct pci_device_id *ent)
3895{
3896 struct net_device *netdev;
3897 struct e1000_adapter *adapter;
3898 struct e1000_hw *hw;
3899 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3900 unsigned long mmio_start, mmio_len;
3901 unsigned long flash_start, flash_len;
3902
3903 static int cards_found;
3904 int i, err, pci_using_dac;
3905 u16 eeprom_data = 0;
3906 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3907
1eae4eb2 3908 e1000e_disable_l1aspm(pdev);
bc7f75fa
AK
3909 err = pci_enable_device(pdev);
3910 if (err)
3911 return err;
3912
3913 pci_using_dac = 0;
3914 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3915 if (!err) {
3916 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3917 if (!err)
3918 pci_using_dac = 1;
3919 } else {
3920 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3921 if (err) {
3922 err = pci_set_consistent_dma_mask(pdev,
3923 DMA_32BIT_MASK);
3924 if (err) {
3925 dev_err(&pdev->dev, "No usable DMA "
3926 "configuration, aborting\n");
3927 goto err_dma;
3928 }
3929 }
3930 }
3931
3932 err = pci_request_regions(pdev, e1000e_driver_name);
3933 if (err)
3934 goto err_pci_reg;
3935
3936 pci_set_master(pdev);
aad32739 3937 pci_save_state(pdev);
bc7f75fa
AK
3938
3939 err = -ENOMEM;
3940 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3941 if (!netdev)
3942 goto err_alloc_etherdev;
3943
bc7f75fa
AK
3944 SET_NETDEV_DEV(netdev, &pdev->dev);
3945
3946 pci_set_drvdata(pdev, netdev);
3947 adapter = netdev_priv(netdev);
3948 hw = &adapter->hw;
3949 adapter->netdev = netdev;
3950 adapter->pdev = pdev;
3951 adapter->ei = ei;
3952 adapter->pba = ei->pba;
3953 adapter->flags = ei->flags;
3954 adapter->hw.adapter = adapter;
3955 adapter->hw.mac.type = ei->mac;
3956 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3957
3958 mmio_start = pci_resource_start(pdev, 0);
3959 mmio_len = pci_resource_len(pdev, 0);
3960
3961 err = -EIO;
3962 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3963 if (!adapter->hw.hw_addr)
3964 goto err_ioremap;
3965
3966 if ((adapter->flags & FLAG_HAS_FLASH) &&
3967 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3968 flash_start = pci_resource_start(pdev, 1);
3969 flash_len = pci_resource_len(pdev, 1);
3970 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3971 if (!adapter->hw.flash_address)
3972 goto err_flashmap;
3973 }
3974
3975 /* construct the net_device struct */
3976 netdev->open = &e1000_open;
3977 netdev->stop = &e1000_close;
3978 netdev->hard_start_xmit = &e1000_xmit_frame;
3979 netdev->get_stats = &e1000_get_stats;
3980 netdev->set_multicast_list = &e1000_set_multi;
3981 netdev->set_mac_address = &e1000_set_mac;
3982 netdev->change_mtu = &e1000_change_mtu;
3983 netdev->do_ioctl = &e1000_ioctl;
3984 e1000e_set_ethtool_ops(netdev);
3985 netdev->tx_timeout = &e1000_tx_timeout;
3986 netdev->watchdog_timeo = 5 * HZ;
3987 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3988 netdev->vlan_rx_register = e1000_vlan_rx_register;
3989 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3990 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3991#ifdef CONFIG_NET_POLL_CONTROLLER
3992 netdev->poll_controller = e1000_netpoll;
3993#endif
3994 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3995
3996 netdev->mem_start = mmio_start;
3997 netdev->mem_end = mmio_start + mmio_len;
3998
3999 adapter->bd_number = cards_found++;
4000
4001 /* setup adapter struct */
4002 err = e1000_sw_init(adapter);
4003 if (err)
4004 goto err_sw_init;
4005
4006 err = -EIO;
4007
4008 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4009 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4010 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4011
69e3fd8c 4012 err = ei->get_variants(adapter);
bc7f75fa
AK
4013 if (err)
4014 goto err_hw_init;
4015
4016 hw->mac.ops.get_bus_info(&adapter->hw);
4017
318a94d6 4018 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4019
4020 /* Copper options */
318a94d6 4021 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4022 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4023 adapter->hw.phy.disable_polarity_correction = 0;
4024 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4025 }
4026
4027 if (e1000_check_reset_block(&adapter->hw))
4028 ndev_info(netdev,
4029 "PHY reset is blocked due to SOL/IDER session.\n");
4030
4031 netdev->features = NETIF_F_SG |
4032 NETIF_F_HW_CSUM |
4033 NETIF_F_HW_VLAN_TX |
4034 NETIF_F_HW_VLAN_RX;
4035
4036 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4037 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4038
4039 netdev->features |= NETIF_F_TSO;
4040 netdev->features |= NETIF_F_TSO6;
4041
4042 if (pci_using_dac)
4043 netdev->features |= NETIF_F_HIGHDMA;
4044
ad68076e
BA
4045 /*
4046 * We should not be using LLTX anymore, but we are still Tx faster with
4047 * it.
4048 */
bc7f75fa
AK
4049 netdev->features |= NETIF_F_LLTX;
4050
4051 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4052 adapter->flags |= FLAG_MNG_PT_ENABLED;
4053
ad68076e
BA
4054 /*
4055 * before reading the NVM, reset the controller to
4056 * put the device in a known good starting state
4057 */
bc7f75fa
AK
4058 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4059
4060 /*
4061 * systems with ASPM and others may see the checksum fail on the first
4062 * attempt. Let's give it a few tries
4063 */
4064 for (i = 0;; i++) {
4065 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4066 break;
4067 if (i == 2) {
4068 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4069 err = -EIO;
4070 goto err_eeprom;
4071 }
4072 }
4073
4074 /* copy the MAC address out of the NVM */
4075 if (e1000e_read_mac_addr(&adapter->hw))
4076 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4077
4078 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4079 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4080
4081 if (!is_valid_ether_addr(netdev->perm_addr)) {
4082 ndev_err(netdev, "Invalid MAC Address: "
4083 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4084 netdev->perm_addr[0], netdev->perm_addr[1],
4085 netdev->perm_addr[2], netdev->perm_addr[3],
4086 netdev->perm_addr[4], netdev->perm_addr[5]);
4087 err = -EIO;
4088 goto err_eeprom;
4089 }
4090
4091 init_timer(&adapter->watchdog_timer);
4092 adapter->watchdog_timer.function = &e1000_watchdog;
4093 adapter->watchdog_timer.data = (unsigned long) adapter;
4094
4095 init_timer(&adapter->phy_info_timer);
4096 adapter->phy_info_timer.function = &e1000_update_phy_info;
4097 adapter->phy_info_timer.data = (unsigned long) adapter;
4098
4099 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4100 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4101
4102 e1000e_check_options(adapter);
4103
4104 /* Initialize link parameters. User can change them with ethtool */
4105 adapter->hw.mac.autoneg = 1;
309af40b 4106 adapter->fc_autoneg = 1;
318a94d6
JK
4107 adapter->hw.fc.original_type = e1000_fc_default;
4108 adapter->hw.fc.type = e1000_fc_default;
bc7f75fa
AK
4109 adapter->hw.phy.autoneg_advertised = 0x2f;
4110
4111 /* ring size defaults */
4112 adapter->rx_ring->count = 256;
4113 adapter->tx_ring->count = 256;
4114
4115 /*
4116 * Initial Wake on LAN setting - If APM wake is enabled in
4117 * the EEPROM, enable the ACPI Magic Packet filter
4118 */
4119 if (adapter->flags & FLAG_APME_IN_WUC) {
4120 /* APME bit in EEPROM is mapped to WUC.APME */
4121 eeprom_data = er32(WUC);
4122 eeprom_apme_mask = E1000_WUC_APME;
4123 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4124 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4125 (adapter->hw.bus.func == 1))
4126 e1000_read_nvm(&adapter->hw,
4127 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4128 else
4129 e1000_read_nvm(&adapter->hw,
4130 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4131 }
4132
4133 /* fetch WoL from EEPROM */
4134 if (eeprom_data & eeprom_apme_mask)
4135 adapter->eeprom_wol |= E1000_WUFC_MAG;
4136
4137 /*
4138 * now that we have the eeprom settings, apply the special cases
4139 * where the eeprom may be wrong or the board simply won't support
4140 * wake on lan on a particular port
4141 */
4142 if (!(adapter->flags & FLAG_HAS_WOL))
4143 adapter->eeprom_wol = 0;
4144
4145 /* initialize the wol settings based on the eeprom settings */
4146 adapter->wol = adapter->eeprom_wol;
4147
4148 /* reset the hardware with the new settings */
4149 e1000e_reset(adapter);
4150
ad68076e
BA
4151 /*
4152 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4153 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4154 * under the control of the driver.
4155 */
bc7f75fa
AK
4156 if (!(adapter->flags & FLAG_HAS_AMT) ||
4157 !e1000e_check_mng_mode(&adapter->hw))
4158 e1000_get_hw_control(adapter);
4159
4160 /* tell the stack to leave us alone until e1000_open() is called */
4161 netif_carrier_off(netdev);
4162 netif_stop_queue(netdev);
4163
4164 strcpy(netdev->name, "eth%d");
4165 err = register_netdev(netdev);
4166 if (err)
4167 goto err_register;
4168
4169 e1000_print_device_info(adapter);
4170
4171 return 0;
4172
4173err_register:
4174err_hw_init:
4175 e1000_release_hw_control(adapter);
4176err_eeprom:
4177 if (!e1000_check_reset_block(&adapter->hw))
4178 e1000_phy_hw_reset(&adapter->hw);
4179
4180 if (adapter->hw.flash_address)
4181 iounmap(adapter->hw.flash_address);
4182
4183err_flashmap:
4184 kfree(adapter->tx_ring);
4185 kfree(adapter->rx_ring);
4186err_sw_init:
4187 iounmap(adapter->hw.hw_addr);
4188err_ioremap:
4189 free_netdev(netdev);
4190err_alloc_etherdev:
4191 pci_release_regions(pdev);
4192err_pci_reg:
4193err_dma:
4194 pci_disable_device(pdev);
4195 return err;
4196}
4197
4198/**
4199 * e1000_remove - Device Removal Routine
4200 * @pdev: PCI device information struct
4201 *
4202 * e1000_remove is called by the PCI subsystem to alert the driver
4203 * that it should release a PCI device. The could be caused by a
4204 * Hot-Plug event, or because the driver is going to be removed from
4205 * memory.
4206 **/
4207static void __devexit e1000_remove(struct pci_dev *pdev)
4208{
4209 struct net_device *netdev = pci_get_drvdata(pdev);
4210 struct e1000_adapter *adapter = netdev_priv(netdev);
4211
ad68076e
BA
4212 /*
4213 * flush_scheduled work may reschedule our watchdog task, so
4214 * explicitly disable watchdog tasks from being rescheduled
4215 */
bc7f75fa
AK
4216 set_bit(__E1000_DOWN, &adapter->state);
4217 del_timer_sync(&adapter->watchdog_timer);
4218 del_timer_sync(&adapter->phy_info_timer);
4219
4220 flush_scheduled_work();
4221
ad68076e
BA
4222 /*
4223 * Release control of h/w to f/w. If f/w is AMT enabled, this
4224 * would have already happened in close and is redundant.
4225 */
bc7f75fa
AK
4226 e1000_release_hw_control(adapter);
4227
4228 unregister_netdev(netdev);
4229
4230 if (!e1000_check_reset_block(&adapter->hw))
4231 e1000_phy_hw_reset(&adapter->hw);
4232
4233 kfree(adapter->tx_ring);
4234 kfree(adapter->rx_ring);
4235
4236 iounmap(adapter->hw.hw_addr);
4237 if (adapter->hw.flash_address)
4238 iounmap(adapter->hw.flash_address);
4239 pci_release_regions(pdev);
4240
4241 free_netdev(netdev);
4242
4243 pci_disable_device(pdev);
4244}
4245
4246/* PCI Error Recovery (ERS) */
4247static struct pci_error_handlers e1000_err_handler = {
4248 .error_detected = e1000_io_error_detected,
4249 .slot_reset = e1000_io_slot_reset,
4250 .resume = e1000_io_resume,
4251};
4252
4253static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
4254 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4255 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4256 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4257 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4258 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4259 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
4260 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4261 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4262 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 4263
bc7f75fa
AK
4264 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4265 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4266 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4267 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 4268
bc7f75fa
AK
4269 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4270 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4271 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 4272
bc7f75fa
AK
4273 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4274 board_80003es2lan },
4275 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4276 board_80003es2lan },
4277 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4278 board_80003es2lan },
4279 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4280 board_80003es2lan },
ad68076e 4281
bc7f75fa
AK
4282 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4283 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4284 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4285 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4286 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4287 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4288 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 4289
bc7f75fa
AK
4290 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4291 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4292 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4293 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4294 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4295
4296 { } /* terminate list */
4297};
4298MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4299
4300/* PCI Device API Driver */
4301static struct pci_driver e1000_driver = {
4302 .name = e1000e_driver_name,
4303 .id_table = e1000_pci_tbl,
4304 .probe = e1000_probe,
4305 .remove = __devexit_p(e1000_remove),
4306#ifdef CONFIG_PM
ad68076e 4307 /* Power Management Hooks */
bc7f75fa
AK
4308 .suspend = e1000_suspend,
4309 .resume = e1000_resume,
4310#endif
4311 .shutdown = e1000_shutdown,
4312 .err_handler = &e1000_err_handler
4313};
4314
4315/**
4316 * e1000_init_module - Driver Registration Routine
4317 *
4318 * e1000_init_module is the first routine called when the driver is
4319 * loaded. All it does is register with the PCI subsystem.
4320 **/
4321static int __init e1000_init_module(void)
4322{
4323 int ret;
4324 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4325 e1000e_driver_name, e1000e_driver_version);
ad68076e 4326 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
4327 e1000e_driver_name);
4328 ret = pci_register_driver(&e1000_driver);
4329
4330 return ret;
4331}
4332module_init(e1000_init_module);
4333
4334/**
4335 * e1000_exit_module - Driver Exit Cleanup Routine
4336 *
4337 * e1000_exit_module is called just before the driver is removed
4338 * from memory.
4339 **/
4340static void __exit e1000_exit_module(void)
4341{
4342 pci_unregister_driver(&e1000_driver);
4343}
4344module_exit(e1000_exit_module);
4345
4346
4347MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4348MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4349MODULE_LICENSE("GPL");
4350MODULE_VERSION(DRV_VERSION);
4351
4352/* e1000_main.c */
This page took 0.359948 seconds and 5 git commands to generate.