iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[deliverable/linux.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
111b9dc5 47#include <linux/aer.h>
bc7f75fa
AK
48
49#include "e1000.h"
50
3be8c940 51#define DRV_VERSION "1.0.2-k2"
bc7f75fa
AK
52char e1000e_driver_name[] = "e1000e";
53const char e1000e_driver_version[] = DRV_VERSION;
54
55static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
4662e82b 59 [board_82574] = &e1000_82574_info,
8c81c9c3 60 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
f4187b56 64 [board_ich10lan] = &e1000_ich10_info,
a4f58f54 65 [board_pchlan] = &e1000_pch_info,
bc7f75fa
AK
66};
67
bc7f75fa
AK
68/**
69 * e1000_desc_unused - calculate if we have unused descriptors
70 **/
71static int e1000_desc_unused(struct e1000_ring *ring)
72{
73 if (ring->next_to_clean > ring->next_to_use)
74 return ring->next_to_clean - ring->next_to_use - 1;
75
76 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77}
78
79/**
ad68076e 80 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
85 **/
86static void e1000_receive_skb(struct e1000_adapter *adapter,
87 struct net_device *netdev,
88 struct sk_buff *skb,
a39fe742 89 u8 status, __le16 vlan)
bc7f75fa
AK
90{
91 skb->protocol = eth_type_trans(skb, netdev);
92
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
c405b828
HX
94 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95 le16_to_cpu(vlan), skb);
bc7f75fa 96 else
89c88b16 97 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
98}
99
100/**
101 * e1000_rx_checksum - Receive Checksum Offload for 82543
102 * @adapter: board private structure
103 * @status_err: receive descriptor status and error fields
104 * @csum: receive descriptor csum field
105 * @sk_buff: socket buffer with received data
106 **/
107static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108 u32 csum, struct sk_buff *skb)
109{
110 u16 status = (u16)status_err;
111 u8 errors = (u8)(status_err >> 24);
112 skb->ip_summed = CHECKSUM_NONE;
113
114 /* Ignore Checksum bit is set */
115 if (status & E1000_RXD_STAT_IXSM)
116 return;
117 /* TCP/UDP checksum error bit is set */
118 if (errors & E1000_RXD_ERR_TCPE) {
119 /* let the stack verify checksum errors */
120 adapter->hw_csum_err++;
121 return;
122 }
123
124 /* TCP/UDP Checksum has not been calculated */
125 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126 return;
127
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status & E1000_RXD_STAT_TCPCS) {
130 /* TCP checksum is good */
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
132 } else {
ad68076e
BA
133 /*
134 * IP fragment with UDP payload
135 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
136 * and then put the value in host order for further stack use.
137 */
a39fe742
AV
138 __sum16 sum = (__force __sum16)htons(csum);
139 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
140 skb->ip_summed = CHECKSUM_COMPLETE;
141 }
142 adapter->hw_csum_good++;
143}
144
145/**
146 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147 * @adapter: address of board private structure
148 **/
149static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150 int cleaned_count)
151{
152 struct net_device *netdev = adapter->netdev;
153 struct pci_dev *pdev = adapter->pdev;
154 struct e1000_ring *rx_ring = adapter->rx_ring;
155 struct e1000_rx_desc *rx_desc;
156 struct e1000_buffer *buffer_info;
157 struct sk_buff *skb;
158 unsigned int i;
89d71a66 159 unsigned int bufsz = adapter->rx_buffer_len;
bc7f75fa
AK
160
161 i = rx_ring->next_to_use;
162 buffer_info = &rx_ring->buffer_info[i];
163
164 while (cleaned_count--) {
165 skb = buffer_info->skb;
166 if (skb) {
167 skb_trim(skb, 0);
168 goto map_skb;
169 }
170
89d71a66 171 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
bc7f75fa
AK
172 if (!skb) {
173 /* Better luck next round */
174 adapter->alloc_rx_buff_failed++;
175 break;
176 }
177
bc7f75fa
AK
178 buffer_info->skb = skb;
179map_skb:
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 adapter->rx_buffer_len,
182 PCI_DMA_FROMDEVICE);
8d8bb39b 183 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
184 dev_err(&pdev->dev, "RX DMA map failed\n");
185 adapter->rx_dma_failed++;
186 break;
187 }
188
189 rx_desc = E1000_RX_DESC(*rx_ring, i);
190 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192 i++;
193 if (i == rx_ring->count)
194 i = 0;
195 buffer_info = &rx_ring->buffer_info[i];
196 }
197
198 if (rx_ring->next_to_use != i) {
199 rx_ring->next_to_use = i;
200 if (i-- == 0)
201 i = (rx_ring->count - 1);
202
ad68076e
BA
203 /*
204 * Force memory writes to complete before letting h/w
bc7f75fa
AK
205 * know there are new descriptors to fetch. (Only
206 * applicable for weak-ordered memory model archs,
ad68076e
BA
207 * such as IA-64).
208 */
bc7f75fa
AK
209 wmb();
210 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211 }
212}
213
214/**
215 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216 * @adapter: address of board private structure
217 **/
218static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219 int cleaned_count)
220{
221 struct net_device *netdev = adapter->netdev;
222 struct pci_dev *pdev = adapter->pdev;
223 union e1000_rx_desc_packet_split *rx_desc;
224 struct e1000_ring *rx_ring = adapter->rx_ring;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ps_page *ps_page;
227 struct sk_buff *skb;
228 unsigned int i, j;
229
230 i = rx_ring->next_to_use;
231 buffer_info = &rx_ring->buffer_info[i];
232
233 while (cleaned_count--) {
234 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
237 ps_page = &buffer_info->ps_pages[j];
238 if (j >= adapter->rx_ps_pages) {
239 /* all unused desc entries get hw null ptr */
a39fe742 240 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
241 continue;
242 }
243 if (!ps_page->page) {
244 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 245 if (!ps_page->page) {
47f44e40
AK
246 adapter->alloc_rx_buff_failed++;
247 goto no_buffers;
248 }
249 ps_page->dma = pci_map_page(pdev,
250 ps_page->page,
251 0, PAGE_SIZE,
252 PCI_DMA_FROMDEVICE);
8d8bb39b 253 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
254 dev_err(&adapter->pdev->dev,
255 "RX DMA page map failed\n");
256 adapter->rx_dma_failed++;
257 goto no_buffers;
bc7f75fa 258 }
bc7f75fa 259 }
47f44e40
AK
260 /*
261 * Refresh the desc even if buffer_addrs
262 * didn't change because each write-back
263 * erases this info.
264 */
265 rx_desc->read.buffer_addr[j+1] =
266 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
267 }
268
89d71a66
ED
269 skb = netdev_alloc_skb_ip_align(netdev,
270 adapter->rx_ps_bsize0);
bc7f75fa
AK
271
272 if (!skb) {
273 adapter->alloc_rx_buff_failed++;
274 break;
275 }
276
bc7f75fa
AK
277 buffer_info->skb = skb;
278 buffer_info->dma = pci_map_single(pdev, skb->data,
279 adapter->rx_ps_bsize0,
280 PCI_DMA_FROMDEVICE);
8d8bb39b 281 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
282 dev_err(&pdev->dev, "RX DMA map failed\n");
283 adapter->rx_dma_failed++;
284 /* cleanup skb */
285 dev_kfree_skb_any(skb);
286 buffer_info->skb = NULL;
287 break;
288 }
289
290 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292 i++;
293 if (i == rx_ring->count)
294 i = 0;
295 buffer_info = &rx_ring->buffer_info[i];
296 }
297
298no_buffers:
299 if (rx_ring->next_to_use != i) {
300 rx_ring->next_to_use = i;
301
302 if (!(i--))
303 i = (rx_ring->count - 1);
304
ad68076e
BA
305 /*
306 * Force memory writes to complete before letting h/w
bc7f75fa
AK
307 * know there are new descriptors to fetch. (Only
308 * applicable for weak-ordered memory model archs,
ad68076e
BA
309 * such as IA-64).
310 */
bc7f75fa 311 wmb();
ad68076e
BA
312 /*
313 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
314 * descriptors are 32 bytes...so we increment tail
315 * twice as much.
316 */
317 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318 }
319}
320
97ac8cae
BA
321/**
322 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323 * @adapter: address of board private structure
97ac8cae
BA
324 * @cleaned_count: number of buffers to allocate this pass
325 **/
326
327static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328 int cleaned_count)
329{
330 struct net_device *netdev = adapter->netdev;
331 struct pci_dev *pdev = adapter->pdev;
332 struct e1000_rx_desc *rx_desc;
333 struct e1000_ring *rx_ring = adapter->rx_ring;
334 struct e1000_buffer *buffer_info;
335 struct sk_buff *skb;
336 unsigned int i;
89d71a66 337 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
97ac8cae
BA
338
339 i = rx_ring->next_to_use;
340 buffer_info = &rx_ring->buffer_info[i];
341
342 while (cleaned_count--) {
343 skb = buffer_info->skb;
344 if (skb) {
345 skb_trim(skb, 0);
346 goto check_page;
347 }
348
89d71a66 349 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
97ac8cae
BA
350 if (unlikely(!skb)) {
351 /* Better luck next round */
352 adapter->alloc_rx_buff_failed++;
353 break;
354 }
355
97ac8cae
BA
356 buffer_info->skb = skb;
357check_page:
358 /* allocate a new page if necessary */
359 if (!buffer_info->page) {
360 buffer_info->page = alloc_page(GFP_ATOMIC);
361 if (unlikely(!buffer_info->page)) {
362 adapter->alloc_rx_buff_failed++;
363 break;
364 }
365 }
366
367 if (!buffer_info->dma)
368 buffer_info->dma = pci_map_page(pdev,
369 buffer_info->page, 0,
370 PAGE_SIZE,
371 PCI_DMA_FROMDEVICE);
372
373 rx_desc = E1000_RX_DESC(*rx_ring, i);
374 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376 if (unlikely(++i == rx_ring->count))
377 i = 0;
378 buffer_info = &rx_ring->buffer_info[i];
379 }
380
381 if (likely(rx_ring->next_to_use != i)) {
382 rx_ring->next_to_use = i;
383 if (unlikely(i-- == 0))
384 i = (rx_ring->count - 1);
385
386 /* Force memory writes to complete before letting h/w
387 * know there are new descriptors to fetch. (Only
388 * applicable for weak-ordered memory model archs,
389 * such as IA-64). */
390 wmb();
391 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392 }
393}
394
bc7f75fa
AK
395/**
396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
397 * @adapter: board private structure
398 *
399 * the return value indicates whether actual cleaning was done, there
400 * is no guarantee that everything was cleaned
401 **/
402static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403 int *work_done, int work_to_do)
404{
405 struct net_device *netdev = adapter->netdev;
406 struct pci_dev *pdev = adapter->pdev;
3bb99fe2 407 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
408 struct e1000_ring *rx_ring = adapter->rx_ring;
409 struct e1000_rx_desc *rx_desc, *next_rxd;
410 struct e1000_buffer *buffer_info, *next_buffer;
411 u32 length;
412 unsigned int i;
413 int cleaned_count = 0;
414 bool cleaned = 0;
415 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417 i = rx_ring->next_to_clean;
418 rx_desc = E1000_RX_DESC(*rx_ring, i);
419 buffer_info = &rx_ring->buffer_info[i];
420
421 while (rx_desc->status & E1000_RXD_STAT_DD) {
422 struct sk_buff *skb;
423 u8 status;
424
425 if (*work_done >= work_to_do)
426 break;
427 (*work_done)++;
428
429 status = rx_desc->status;
430 skb = buffer_info->skb;
431 buffer_info->skb = NULL;
432
433 prefetch(skb->data - NET_IP_ALIGN);
434
435 i++;
436 if (i == rx_ring->count)
437 i = 0;
438 next_rxd = E1000_RX_DESC(*rx_ring, i);
439 prefetch(next_rxd);
440
441 next_buffer = &rx_ring->buffer_info[i];
442
443 cleaned = 1;
444 cleaned_count++;
445 pci_unmap_single(pdev,
446 buffer_info->dma,
447 adapter->rx_buffer_len,
448 PCI_DMA_FROMDEVICE);
449 buffer_info->dma = 0;
450
451 length = le16_to_cpu(rx_desc->length);
452
b94b5028
JB
453 /*
454 * !EOP means multiple descriptors were used to store a single
455 * packet, if that's the case we need to toss it. In fact, we
456 * need to toss every packet with the EOP bit clear and the
457 * next frame that _does_ have the EOP bit set, as it is by
458 * definition only a frame fragment
459 */
460 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
461 adapter->flags2 |= FLAG2_IS_DISCARDING;
462
463 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
bc7f75fa 464 /* All receives must fit into a single buffer */
3bb99fe2 465 e_dbg("Receive packet consumed multiple buffers\n");
bc7f75fa
AK
466 /* recycle */
467 buffer_info->skb = skb;
b94b5028
JB
468 if (status & E1000_RXD_STAT_EOP)
469 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
470 goto next_desc;
471 }
472
473 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
474 /* recycle */
475 buffer_info->skb = skb;
476 goto next_desc;
477 }
478
eb7c3adb
JK
479 /* adjust length to remove Ethernet CRC */
480 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
481 length -= 4;
482
bc7f75fa
AK
483 total_rx_bytes += length;
484 total_rx_packets++;
485
ad68076e
BA
486 /*
487 * code added for copybreak, this should improve
bc7f75fa 488 * performance for small packets with large amounts
ad68076e
BA
489 * of reassembly being done in the stack
490 */
bc7f75fa
AK
491 if (length < copybreak) {
492 struct sk_buff *new_skb =
89d71a66 493 netdev_alloc_skb_ip_align(netdev, length);
bc7f75fa 494 if (new_skb) {
808ff676
BA
495 skb_copy_to_linear_data_offset(new_skb,
496 -NET_IP_ALIGN,
497 (skb->data -
498 NET_IP_ALIGN),
499 (length +
500 NET_IP_ALIGN));
bc7f75fa
AK
501 /* save the skb in buffer_info as good */
502 buffer_info->skb = skb;
503 skb = new_skb;
504 }
505 /* else just continue with the old one */
506 }
507 /* end copybreak code */
508 skb_put(skb, length);
509
510 /* Receive Checksum Offload */
511 e1000_rx_checksum(adapter,
512 (u32)(status) |
513 ((u32)(rx_desc->errors) << 24),
514 le16_to_cpu(rx_desc->csum), skb);
515
516 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
517
518next_desc:
519 rx_desc->status = 0;
520
521 /* return some buffers to hardware, one at a time is too slow */
522 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
523 adapter->alloc_rx_buf(adapter, cleaned_count);
524 cleaned_count = 0;
525 }
526
527 /* use prefetched values */
528 rx_desc = next_rxd;
529 buffer_info = next_buffer;
530 }
531 rx_ring->next_to_clean = i;
532
533 cleaned_count = e1000_desc_unused(rx_ring);
534 if (cleaned_count)
535 adapter->alloc_rx_buf(adapter, cleaned_count);
536
bc7f75fa 537 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 538 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
539 netdev->stats.rx_bytes += total_rx_bytes;
540 netdev->stats.rx_packets += total_rx_packets;
bc7f75fa
AK
541 return cleaned;
542}
543
bc7f75fa
AK
544static void e1000_put_txbuf(struct e1000_adapter *adapter,
545 struct e1000_buffer *buffer_info)
546{
03b1320d
AD
547 if (buffer_info->dma) {
548 if (buffer_info->mapped_as_page)
549 pci_unmap_page(adapter->pdev, buffer_info->dma,
550 buffer_info->length, PCI_DMA_TODEVICE);
551 else
552 pci_unmap_single(adapter->pdev, buffer_info->dma,
553 buffer_info->length,
554 PCI_DMA_TODEVICE);
555 buffer_info->dma = 0;
556 }
bc7f75fa
AK
557 if (buffer_info->skb) {
558 dev_kfree_skb_any(buffer_info->skb);
559 buffer_info->skb = NULL;
560 }
1b7719c4 561 buffer_info->time_stamp = 0;
bc7f75fa
AK
562}
563
41cec6f1 564static void e1000_print_hw_hang(struct work_struct *work)
bc7f75fa 565{
41cec6f1
BA
566 struct e1000_adapter *adapter = container_of(work,
567 struct e1000_adapter,
568 print_hang_task);
bc7f75fa
AK
569 struct e1000_ring *tx_ring = adapter->tx_ring;
570 unsigned int i = tx_ring->next_to_clean;
571 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
572 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
41cec6f1
BA
573 struct e1000_hw *hw = &adapter->hw;
574 u16 phy_status, phy_1000t_status, phy_ext_status;
575 u16 pci_status;
576
577 e1e_rphy(hw, PHY_STATUS, &phy_status);
578 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
579 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
bc7f75fa 580
41cec6f1
BA
581 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
582
583 /* detected Hardware unit hang */
584 e_err("Detected Hardware Unit Hang:\n"
44defeb3
JK
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
41cec6f1
BA
593 " next_to_watch.status <%x>\n"
594 "MAC Status <%x>\n"
595 "PHY Status <%x>\n"
596 "PHY 1000BASE-T Status <%x>\n"
597 "PHY Extended Status <%x>\n"
598 "PCI Status <%x>\n",
44defeb3
JK
599 readl(adapter->hw.hw_addr + tx_ring->head),
600 readl(adapter->hw.hw_addr + tx_ring->tail),
601 tx_ring->next_to_use,
602 tx_ring->next_to_clean,
603 tx_ring->buffer_info[eop].time_stamp,
604 eop,
605 jiffies,
41cec6f1
BA
606 eop_desc->upper.fields.status,
607 er32(STATUS),
608 phy_status,
609 phy_1000t_status,
610 phy_ext_status,
611 pci_status);
bc7f75fa
AK
612}
613
614/**
615 * e1000_clean_tx_irq - Reclaim resources after transmit completes
616 * @adapter: board private structure
617 *
618 * the return value indicates whether actual cleaning was done, there
619 * is no guarantee that everything was cleaned
620 **/
621static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
622{
623 struct net_device *netdev = adapter->netdev;
624 struct e1000_hw *hw = &adapter->hw;
625 struct e1000_ring *tx_ring = adapter->tx_ring;
626 struct e1000_tx_desc *tx_desc, *eop_desc;
627 struct e1000_buffer *buffer_info;
628 unsigned int i, eop;
629 unsigned int count = 0;
bc7f75fa
AK
630 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
631
632 i = tx_ring->next_to_clean;
633 eop = tx_ring->buffer_info[i].next_to_watch;
634 eop_desc = E1000_TX_DESC(*tx_ring, eop);
635
12d04a3c
AD
636 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
637 (count < tx_ring->count)) {
a86043c2
JB
638 bool cleaned = false;
639 for (; !cleaned; count++) {
bc7f75fa
AK
640 tx_desc = E1000_TX_DESC(*tx_ring, i);
641 buffer_info = &tx_ring->buffer_info[i];
642 cleaned = (i == eop);
643
644 if (cleaned) {
645 struct sk_buff *skb = buffer_info->skb;
646 unsigned int segs, bytecount;
647 segs = skb_shinfo(skb)->gso_segs ?: 1;
648 /* multiply data chunks by size of headers */
649 bytecount = ((segs - 1) * skb_headlen(skb)) +
650 skb->len;
651 total_tx_packets += segs;
652 total_tx_bytes += bytecount;
653 }
654
655 e1000_put_txbuf(adapter, buffer_info);
656 tx_desc->upper.data = 0;
657
658 i++;
659 if (i == tx_ring->count)
660 i = 0;
661 }
662
663 eop = tx_ring->buffer_info[i].next_to_watch;
664 eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
665 }
666
667 tx_ring->next_to_clean = i;
668
669#define TX_WAKE_THRESHOLD 32
a86043c2
JB
670 if (count && netif_carrier_ok(netdev) &&
671 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
bc7f75fa
AK
672 /* Make sure that anybody stopping the queue after this
673 * sees the new next_to_clean.
674 */
675 smp_mb();
676
677 if (netif_queue_stopped(netdev) &&
678 !(test_bit(__E1000_DOWN, &adapter->state))) {
679 netif_wake_queue(netdev);
680 ++adapter->restart_queue;
681 }
682 }
683
684 if (adapter->detect_tx_hung) {
41cec6f1
BA
685 /*
686 * Detect a transmit hang in hardware, this serializes the
687 * check with the clearing of time_stamp and movement of i
688 */
bc7f75fa 689 adapter->detect_tx_hung = 0;
12d04a3c
AD
690 if (tx_ring->buffer_info[i].time_stamp &&
691 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
8e95a202
JP
692 + (adapter->tx_timeout_factor * HZ)) &&
693 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
41cec6f1 694 schedule_work(&adapter->print_hang_task);
bc7f75fa
AK
695 netif_stop_queue(netdev);
696 }
697 }
698 adapter->total_tx_bytes += total_tx_bytes;
699 adapter->total_tx_packets += total_tx_packets;
7274c20f
AK
700 netdev->stats.tx_bytes += total_tx_bytes;
701 netdev->stats.tx_packets += total_tx_packets;
12d04a3c 702 return (count < tx_ring->count);
bc7f75fa
AK
703}
704
bc7f75fa
AK
705/**
706 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
707 * @adapter: board private structure
708 *
709 * the return value indicates whether actual cleaning was done, there
710 * is no guarantee that everything was cleaned
711 **/
712static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
713 int *work_done, int work_to_do)
714{
3bb99fe2 715 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
716 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
717 struct net_device *netdev = adapter->netdev;
718 struct pci_dev *pdev = adapter->pdev;
719 struct e1000_ring *rx_ring = adapter->rx_ring;
720 struct e1000_buffer *buffer_info, *next_buffer;
721 struct e1000_ps_page *ps_page;
722 struct sk_buff *skb;
723 unsigned int i, j;
724 u32 length, staterr;
725 int cleaned_count = 0;
726 bool cleaned = 0;
727 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
728
729 i = rx_ring->next_to_clean;
730 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
732 buffer_info = &rx_ring->buffer_info[i];
733
734 while (staterr & E1000_RXD_STAT_DD) {
735 if (*work_done >= work_to_do)
736 break;
737 (*work_done)++;
738 skb = buffer_info->skb;
739
740 /* in the packet split case this is header only */
741 prefetch(skb->data - NET_IP_ALIGN);
742
743 i++;
744 if (i == rx_ring->count)
745 i = 0;
746 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
747 prefetch(next_rxd);
748
749 next_buffer = &rx_ring->buffer_info[i];
750
751 cleaned = 1;
752 cleaned_count++;
753 pci_unmap_single(pdev, buffer_info->dma,
754 adapter->rx_ps_bsize0,
755 PCI_DMA_FROMDEVICE);
756 buffer_info->dma = 0;
757
b94b5028
JB
758 /* see !EOP comment in other rx routine */
759 if (!(staterr & E1000_RXD_STAT_EOP))
760 adapter->flags2 |= FLAG2_IS_DISCARDING;
761
762 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
3bb99fe2
BA
763 e_dbg("Packet Split buffers didn't pick up the full "
764 "packet\n");
bc7f75fa 765 dev_kfree_skb_irq(skb);
b94b5028
JB
766 if (staterr & E1000_RXD_STAT_EOP)
767 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
768 goto next_desc;
769 }
770
771 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
772 dev_kfree_skb_irq(skb);
773 goto next_desc;
774 }
775
776 length = le16_to_cpu(rx_desc->wb.middle.length0);
777
778 if (!length) {
3bb99fe2
BA
779 e_dbg("Last part of the packet spanning multiple "
780 "descriptors\n");
bc7f75fa
AK
781 dev_kfree_skb_irq(skb);
782 goto next_desc;
783 }
784
785 /* Good Receive */
786 skb_put(skb, length);
787
788 {
ad68076e
BA
789 /*
790 * this looks ugly, but it seems compiler issues make it
791 * more efficient than reusing j
792 */
bc7f75fa
AK
793 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
794
ad68076e
BA
795 /*
796 * page alloc/put takes too long and effects small packet
797 * throughput, so unsplit small packets and save the alloc/put
798 * only valid in softirq (napi) context to call kmap_*
799 */
bc7f75fa
AK
800 if (l1 && (l1 <= copybreak) &&
801 ((length + l1) <= adapter->rx_ps_bsize0)) {
802 u8 *vaddr;
803
47f44e40 804 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 805
ad68076e
BA
806 /*
807 * there is no documentation about how to call
bc7f75fa 808 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
809 * very long
810 */
bc7f75fa
AK
811 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
812 PAGE_SIZE, PCI_DMA_FROMDEVICE);
813 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
814 memcpy(skb_tail_pointer(skb), vaddr, l1);
815 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
816 pci_dma_sync_single_for_device(pdev, ps_page->dma,
817 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 818
eb7c3adb
JK
819 /* remove the CRC */
820 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
821 l1 -= 4;
822
bc7f75fa
AK
823 skb_put(skb, l1);
824 goto copydone;
825 } /* if */
826 }
827
828 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
829 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
830 if (!length)
831 break;
832
47f44e40 833 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
834 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
835 PCI_DMA_FROMDEVICE);
836 ps_page->dma = 0;
837 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
838 ps_page->page = NULL;
839 skb->len += length;
840 skb->data_len += length;
841 skb->truesize += length;
842 }
843
eb7c3adb
JK
844 /* strip the ethernet crc, problem is we're using pages now so
845 * this whole operation can get a little cpu intensive
846 */
847 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
848 pskb_trim(skb, skb->len - 4);
849
bc7f75fa
AK
850copydone:
851 total_rx_bytes += skb->len;
852 total_rx_packets++;
853
854 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
855 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
856
857 if (rx_desc->wb.upper.header_status &
858 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
859 adapter->rx_hdr_split++;
860
861 e1000_receive_skb(adapter, netdev, skb,
862 staterr, rx_desc->wb.middle.vlan);
863
864next_desc:
865 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
866 buffer_info->skb = NULL;
867
868 /* return some buffers to hardware, one at a time is too slow */
869 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
870 adapter->alloc_rx_buf(adapter, cleaned_count);
871 cleaned_count = 0;
872 }
873
874 /* use prefetched values */
875 rx_desc = next_rxd;
876 buffer_info = next_buffer;
877
878 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
879 }
880 rx_ring->next_to_clean = i;
881
882 cleaned_count = e1000_desc_unused(rx_ring);
883 if (cleaned_count)
884 adapter->alloc_rx_buf(adapter, cleaned_count);
885
bc7f75fa 886 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 887 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
888 netdev->stats.rx_bytes += total_rx_bytes;
889 netdev->stats.rx_packets += total_rx_packets;
bc7f75fa
AK
890 return cleaned;
891}
892
97ac8cae
BA
893/**
894 * e1000_consume_page - helper function
895 **/
896static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
897 u16 length)
898{
899 bi->page = NULL;
900 skb->len += length;
901 skb->data_len += length;
902 skb->truesize += length;
903}
904
905/**
906 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
907 * @adapter: board private structure
908 *
909 * the return value indicates whether actual cleaning was done, there
910 * is no guarantee that everything was cleaned
911 **/
912
913static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
914 int *work_done, int work_to_do)
915{
916 struct net_device *netdev = adapter->netdev;
917 struct pci_dev *pdev = adapter->pdev;
918 struct e1000_ring *rx_ring = adapter->rx_ring;
919 struct e1000_rx_desc *rx_desc, *next_rxd;
920 struct e1000_buffer *buffer_info, *next_buffer;
921 u32 length;
922 unsigned int i;
923 int cleaned_count = 0;
924 bool cleaned = false;
925 unsigned int total_rx_bytes=0, total_rx_packets=0;
926
927 i = rx_ring->next_to_clean;
928 rx_desc = E1000_RX_DESC(*rx_ring, i);
929 buffer_info = &rx_ring->buffer_info[i];
930
931 while (rx_desc->status & E1000_RXD_STAT_DD) {
932 struct sk_buff *skb;
933 u8 status;
934
935 if (*work_done >= work_to_do)
936 break;
937 (*work_done)++;
938
939 status = rx_desc->status;
940 skb = buffer_info->skb;
941 buffer_info->skb = NULL;
942
943 ++i;
944 if (i == rx_ring->count)
945 i = 0;
946 next_rxd = E1000_RX_DESC(*rx_ring, i);
947 prefetch(next_rxd);
948
949 next_buffer = &rx_ring->buffer_info[i];
950
951 cleaned = true;
952 cleaned_count++;
953 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
954 PCI_DMA_FROMDEVICE);
955 buffer_info->dma = 0;
956
957 length = le16_to_cpu(rx_desc->length);
958
959 /* errors is only valid for DD + EOP descriptors */
960 if (unlikely((status & E1000_RXD_STAT_EOP) &&
961 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
962 /* recycle both page and skb */
963 buffer_info->skb = skb;
964 /* an error means any chain goes out the window
965 * too */
966 if (rx_ring->rx_skb_top)
967 dev_kfree_skb(rx_ring->rx_skb_top);
968 rx_ring->rx_skb_top = NULL;
969 goto next_desc;
970 }
971
972#define rxtop rx_ring->rx_skb_top
973 if (!(status & E1000_RXD_STAT_EOP)) {
974 /* this descriptor is only the beginning (or middle) */
975 if (!rxtop) {
976 /* this is the beginning of a chain */
977 rxtop = skb;
978 skb_fill_page_desc(rxtop, 0, buffer_info->page,
979 0, length);
980 } else {
981 /* this is the middle of a chain */
982 skb_fill_page_desc(rxtop,
983 skb_shinfo(rxtop)->nr_frags,
984 buffer_info->page, 0, length);
985 /* re-use the skb, only consumed the page */
986 buffer_info->skb = skb;
987 }
988 e1000_consume_page(buffer_info, rxtop, length);
989 goto next_desc;
990 } else {
991 if (rxtop) {
992 /* end of the chain */
993 skb_fill_page_desc(rxtop,
994 skb_shinfo(rxtop)->nr_frags,
995 buffer_info->page, 0, length);
996 /* re-use the current skb, we only consumed the
997 * page */
998 buffer_info->skb = skb;
999 skb = rxtop;
1000 rxtop = NULL;
1001 e1000_consume_page(buffer_info, skb, length);
1002 } else {
1003 /* no chain, got EOP, this buf is the packet
1004 * copybreak to save the put_page/alloc_page */
1005 if (length <= copybreak &&
1006 skb_tailroom(skb) >= length) {
1007 u8 *vaddr;
1008 vaddr = kmap_atomic(buffer_info->page,
1009 KM_SKB_DATA_SOFTIRQ);
1010 memcpy(skb_tail_pointer(skb), vaddr,
1011 length);
1012 kunmap_atomic(vaddr,
1013 KM_SKB_DATA_SOFTIRQ);
1014 /* re-use the page, so don't erase
1015 * buffer_info->page */
1016 skb_put(skb, length);
1017 } else {
1018 skb_fill_page_desc(skb, 0,
1019 buffer_info->page, 0,
1020 length);
1021 e1000_consume_page(buffer_info, skb,
1022 length);
1023 }
1024 }
1025 }
1026
1027 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1028 e1000_rx_checksum(adapter,
1029 (u32)(status) |
1030 ((u32)(rx_desc->errors) << 24),
1031 le16_to_cpu(rx_desc->csum), skb);
1032
1033 /* probably a little skewed due to removing CRC */
1034 total_rx_bytes += skb->len;
1035 total_rx_packets++;
1036
1037 /* eth type trans needs skb->data to point to something */
1038 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1039 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1040 dev_kfree_skb(skb);
1041 goto next_desc;
1042 }
1043
1044 e1000_receive_skb(adapter, netdev, skb, status,
1045 rx_desc->special);
1046
1047next_desc:
1048 rx_desc->status = 0;
1049
1050 /* return some buffers to hardware, one at a time is too slow */
1051 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1052 adapter->alloc_rx_buf(adapter, cleaned_count);
1053 cleaned_count = 0;
1054 }
1055
1056 /* use prefetched values */
1057 rx_desc = next_rxd;
1058 buffer_info = next_buffer;
1059 }
1060 rx_ring->next_to_clean = i;
1061
1062 cleaned_count = e1000_desc_unused(rx_ring);
1063 if (cleaned_count)
1064 adapter->alloc_rx_buf(adapter, cleaned_count);
1065
1066 adapter->total_rx_bytes += total_rx_bytes;
1067 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
1068 netdev->stats.rx_bytes += total_rx_bytes;
1069 netdev->stats.rx_packets += total_rx_packets;
97ac8cae
BA
1070 return cleaned;
1071}
1072
bc7f75fa
AK
1073/**
1074 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1075 * @adapter: board private structure
1076 **/
1077static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1078{
1079 struct e1000_ring *rx_ring = adapter->rx_ring;
1080 struct e1000_buffer *buffer_info;
1081 struct e1000_ps_page *ps_page;
1082 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1083 unsigned int i, j;
1084
1085 /* Free all the Rx ring sk_buffs */
1086 for (i = 0; i < rx_ring->count; i++) {
1087 buffer_info = &rx_ring->buffer_info[i];
1088 if (buffer_info->dma) {
1089 if (adapter->clean_rx == e1000_clean_rx_irq)
1090 pci_unmap_single(pdev, buffer_info->dma,
1091 adapter->rx_buffer_len,
1092 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1093 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1094 pci_unmap_page(pdev, buffer_info->dma,
1095 PAGE_SIZE,
1096 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1097 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1098 pci_unmap_single(pdev, buffer_info->dma,
1099 adapter->rx_ps_bsize0,
1100 PCI_DMA_FROMDEVICE);
1101 buffer_info->dma = 0;
1102 }
1103
97ac8cae
BA
1104 if (buffer_info->page) {
1105 put_page(buffer_info->page);
1106 buffer_info->page = NULL;
1107 }
1108
bc7f75fa
AK
1109 if (buffer_info->skb) {
1110 dev_kfree_skb(buffer_info->skb);
1111 buffer_info->skb = NULL;
1112 }
1113
1114 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1115 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1116 if (!ps_page->page)
1117 break;
1118 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1119 PCI_DMA_FROMDEVICE);
1120 ps_page->dma = 0;
1121 put_page(ps_page->page);
1122 ps_page->page = NULL;
1123 }
1124 }
1125
1126 /* there also may be some cached data from a chained receive */
1127 if (rx_ring->rx_skb_top) {
1128 dev_kfree_skb(rx_ring->rx_skb_top);
1129 rx_ring->rx_skb_top = NULL;
1130 }
1131
bc7f75fa
AK
1132 /* Zero out the descriptor ring */
1133 memset(rx_ring->desc, 0, rx_ring->size);
1134
1135 rx_ring->next_to_clean = 0;
1136 rx_ring->next_to_use = 0;
b94b5028 1137 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1138
1139 writel(0, adapter->hw.hw_addr + rx_ring->head);
1140 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1141}
1142
a8f88ff5
JB
1143static void e1000e_downshift_workaround(struct work_struct *work)
1144{
1145 struct e1000_adapter *adapter = container_of(work,
1146 struct e1000_adapter, downshift_task);
1147
1148 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1149}
1150
bc7f75fa
AK
1151/**
1152 * e1000_intr_msi - Interrupt Handler
1153 * @irq: interrupt number
1154 * @data: pointer to a network interface device structure
1155 **/
1156static irqreturn_t e1000_intr_msi(int irq, void *data)
1157{
1158 struct net_device *netdev = data;
1159 struct e1000_adapter *adapter = netdev_priv(netdev);
1160 struct e1000_hw *hw = &adapter->hw;
1161 u32 icr = er32(ICR);
1162
ad68076e
BA
1163 /*
1164 * read ICR disables interrupts using IAM
1165 */
bc7f75fa 1166
573cca8c 1167 if (icr & E1000_ICR_LSC) {
bc7f75fa 1168 hw->mac.get_link_status = 1;
ad68076e
BA
1169 /*
1170 * ICH8 workaround-- Call gig speed drop workaround on cable
1171 * disconnect (LSC) before accessing any PHY registers
1172 */
bc7f75fa
AK
1173 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1174 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1175 schedule_work(&adapter->downshift_task);
bc7f75fa 1176
ad68076e
BA
1177 /*
1178 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1179 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1180 * adapter in watchdog
1181 */
bc7f75fa
AK
1182 if (netif_carrier_ok(netdev) &&
1183 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1184 /* disable receives */
1185 u32 rctl = er32(RCTL);
1186 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1187 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1188 }
1189 /* guard against interrupt when we're going down */
1190 if (!test_bit(__E1000_DOWN, &adapter->state))
1191 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1192 }
1193
288379f0 1194 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1195 adapter->total_tx_bytes = 0;
1196 adapter->total_tx_packets = 0;
1197 adapter->total_rx_bytes = 0;
1198 adapter->total_rx_packets = 0;
288379f0 1199 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1200 }
1201
1202 return IRQ_HANDLED;
1203}
1204
1205/**
1206 * e1000_intr - Interrupt Handler
1207 * @irq: interrupt number
1208 * @data: pointer to a network interface device structure
1209 **/
1210static irqreturn_t e1000_intr(int irq, void *data)
1211{
1212 struct net_device *netdev = data;
1213 struct e1000_adapter *adapter = netdev_priv(netdev);
1214 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1215 u32 rctl, icr = er32(ICR);
4662e82b 1216
a68ea775 1217 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
bc7f75fa
AK
1218 return IRQ_NONE; /* Not our interrupt */
1219
ad68076e
BA
1220 /*
1221 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1222 * not set, then the adapter didn't send an interrupt
1223 */
bc7f75fa
AK
1224 if (!(icr & E1000_ICR_INT_ASSERTED))
1225 return IRQ_NONE;
1226
ad68076e
BA
1227 /*
1228 * Interrupt Auto-Mask...upon reading ICR,
1229 * interrupts are masked. No need for the
1230 * IMC write
1231 */
bc7f75fa 1232
573cca8c 1233 if (icr & E1000_ICR_LSC) {
bc7f75fa 1234 hw->mac.get_link_status = 1;
ad68076e
BA
1235 /*
1236 * ICH8 workaround-- Call gig speed drop workaround on cable
1237 * disconnect (LSC) before accessing any PHY registers
1238 */
bc7f75fa
AK
1239 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1240 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1241 schedule_work(&adapter->downshift_task);
bc7f75fa 1242
ad68076e
BA
1243 /*
1244 * 80003ES2LAN workaround--
bc7f75fa
AK
1245 * For packet buffer work-around on link down event;
1246 * disable receives here in the ISR and
1247 * reset adapter in watchdog
1248 */
1249 if (netif_carrier_ok(netdev) &&
1250 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1251 /* disable receives */
1252 rctl = er32(RCTL);
1253 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1254 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1255 }
1256 /* guard against interrupt when we're going down */
1257 if (!test_bit(__E1000_DOWN, &adapter->state))
1258 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1259 }
1260
288379f0 1261 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1262 adapter->total_tx_bytes = 0;
1263 adapter->total_tx_packets = 0;
1264 adapter->total_rx_bytes = 0;
1265 adapter->total_rx_packets = 0;
288379f0 1266 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1267 }
1268
1269 return IRQ_HANDLED;
1270}
1271
4662e82b
BA
1272static irqreturn_t e1000_msix_other(int irq, void *data)
1273{
1274 struct net_device *netdev = data;
1275 struct e1000_adapter *adapter = netdev_priv(netdev);
1276 struct e1000_hw *hw = &adapter->hw;
1277 u32 icr = er32(ICR);
1278
1279 if (!(icr & E1000_ICR_INT_ASSERTED)) {
a3c69fef
JB
1280 if (!test_bit(__E1000_DOWN, &adapter->state))
1281 ew32(IMS, E1000_IMS_OTHER);
4662e82b
BA
1282 return IRQ_NONE;
1283 }
1284
1285 if (icr & adapter->eiac_mask)
1286 ew32(ICS, (icr & adapter->eiac_mask));
1287
1288 if (icr & E1000_ICR_OTHER) {
1289 if (!(icr & E1000_ICR_LSC))
1290 goto no_link_interrupt;
1291 hw->mac.get_link_status = 1;
1292 /* guard against interrupt when we're going down */
1293 if (!test_bit(__E1000_DOWN, &adapter->state))
1294 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1295 }
1296
1297no_link_interrupt:
a3c69fef
JB
1298 if (!test_bit(__E1000_DOWN, &adapter->state))
1299 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
4662e82b
BA
1300
1301 return IRQ_HANDLED;
1302}
1303
1304
1305static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1306{
1307 struct net_device *netdev = data;
1308 struct e1000_adapter *adapter = netdev_priv(netdev);
1309 struct e1000_hw *hw = &adapter->hw;
1310 struct e1000_ring *tx_ring = adapter->tx_ring;
1311
1312
1313 adapter->total_tx_bytes = 0;
1314 adapter->total_tx_packets = 0;
1315
1316 if (!e1000_clean_tx_irq(adapter))
1317 /* Ring was not completely cleaned, so fire another interrupt */
1318 ew32(ICS, tx_ring->ims_val);
1319
1320 return IRQ_HANDLED;
1321}
1322
1323static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1324{
1325 struct net_device *netdev = data;
1326 struct e1000_adapter *adapter = netdev_priv(netdev);
1327
1328 /* Write the ITR value calculated at the end of the
1329 * previous interrupt.
1330 */
1331 if (adapter->rx_ring->set_itr) {
1332 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1333 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1334 adapter->rx_ring->set_itr = 0;
1335 }
1336
288379f0 1337 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1338 adapter->total_rx_bytes = 0;
1339 adapter->total_rx_packets = 0;
288379f0 1340 __napi_schedule(&adapter->napi);
4662e82b
BA
1341 }
1342 return IRQ_HANDLED;
1343}
1344
1345/**
1346 * e1000_configure_msix - Configure MSI-X hardware
1347 *
1348 * e1000_configure_msix sets up the hardware to properly
1349 * generate MSI-X interrupts.
1350 **/
1351static void e1000_configure_msix(struct e1000_adapter *adapter)
1352{
1353 struct e1000_hw *hw = &adapter->hw;
1354 struct e1000_ring *rx_ring = adapter->rx_ring;
1355 struct e1000_ring *tx_ring = adapter->tx_ring;
1356 int vector = 0;
1357 u32 ctrl_ext, ivar = 0;
1358
1359 adapter->eiac_mask = 0;
1360
1361 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1362 if (hw->mac.type == e1000_82574) {
1363 u32 rfctl = er32(RFCTL);
1364 rfctl |= E1000_RFCTL_ACK_DIS;
1365 ew32(RFCTL, rfctl);
1366 }
1367
1368#define E1000_IVAR_INT_ALLOC_VALID 0x8
1369 /* Configure Rx vector */
1370 rx_ring->ims_val = E1000_IMS_RXQ0;
1371 adapter->eiac_mask |= rx_ring->ims_val;
1372 if (rx_ring->itr_val)
1373 writel(1000000000 / (rx_ring->itr_val * 256),
1374 hw->hw_addr + rx_ring->itr_register);
1375 else
1376 writel(1, hw->hw_addr + rx_ring->itr_register);
1377 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1378
1379 /* Configure Tx vector */
1380 tx_ring->ims_val = E1000_IMS_TXQ0;
1381 vector++;
1382 if (tx_ring->itr_val)
1383 writel(1000000000 / (tx_ring->itr_val * 256),
1384 hw->hw_addr + tx_ring->itr_register);
1385 else
1386 writel(1, hw->hw_addr + tx_ring->itr_register);
1387 adapter->eiac_mask |= tx_ring->ims_val;
1388 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1389
1390 /* set vector for Other Causes, e.g. link changes */
1391 vector++;
1392 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1393 if (rx_ring->itr_val)
1394 writel(1000000000 / (rx_ring->itr_val * 256),
1395 hw->hw_addr + E1000_EITR_82574(vector));
1396 else
1397 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1398
1399 /* Cause Tx interrupts on every write back */
1400 ivar |= (1 << 31);
1401
1402 ew32(IVAR, ivar);
1403
1404 /* enable MSI-X PBA support */
1405 ctrl_ext = er32(CTRL_EXT);
1406 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1407
1408 /* Auto-Mask Other interrupts upon ICR read */
1409#define E1000_EIAC_MASK_82574 0x01F00000
1410 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1411 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1412 ew32(CTRL_EXT, ctrl_ext);
1413 e1e_flush();
1414}
1415
1416void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1417{
1418 if (adapter->msix_entries) {
1419 pci_disable_msix(adapter->pdev);
1420 kfree(adapter->msix_entries);
1421 adapter->msix_entries = NULL;
1422 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1423 pci_disable_msi(adapter->pdev);
1424 adapter->flags &= ~FLAG_MSI_ENABLED;
1425 }
1426
1427 return;
1428}
1429
1430/**
1431 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1432 *
1433 * Attempt to configure interrupts using the best available
1434 * capabilities of the hardware and kernel.
1435 **/
1436void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1437{
1438 int err;
1439 int numvecs, i;
1440
1441
1442 switch (adapter->int_mode) {
1443 case E1000E_INT_MODE_MSIX:
1444 if (adapter->flags & FLAG_HAS_MSIX) {
1445 numvecs = 3; /* RxQ0, TxQ0 and other */
1446 adapter->msix_entries = kcalloc(numvecs,
1447 sizeof(struct msix_entry),
1448 GFP_KERNEL);
1449 if (adapter->msix_entries) {
1450 for (i = 0; i < numvecs; i++)
1451 adapter->msix_entries[i].entry = i;
1452
1453 err = pci_enable_msix(adapter->pdev,
1454 adapter->msix_entries,
1455 numvecs);
1456 if (err == 0)
1457 return;
1458 }
1459 /* MSI-X failed, so fall through and try MSI */
1460 e_err("Failed to initialize MSI-X interrupts. "
1461 "Falling back to MSI interrupts.\n");
1462 e1000e_reset_interrupt_capability(adapter);
1463 }
1464 adapter->int_mode = E1000E_INT_MODE_MSI;
1465 /* Fall through */
1466 case E1000E_INT_MODE_MSI:
1467 if (!pci_enable_msi(adapter->pdev)) {
1468 adapter->flags |= FLAG_MSI_ENABLED;
1469 } else {
1470 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1471 e_err("Failed to initialize MSI interrupts. Falling "
1472 "back to legacy interrupts.\n");
1473 }
1474 /* Fall through */
1475 case E1000E_INT_MODE_LEGACY:
1476 /* Don't do anything; this is the system default */
1477 break;
1478 }
1479
1480 return;
1481}
1482
1483/**
1484 * e1000_request_msix - Initialize MSI-X interrupts
1485 *
1486 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1487 * kernel.
1488 **/
1489static int e1000_request_msix(struct e1000_adapter *adapter)
1490{
1491 struct net_device *netdev = adapter->netdev;
1492 int err = 0, vector = 0;
1493
1494 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1495 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
4662e82b
BA
1496 else
1497 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1498 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1499 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
4662e82b
BA
1500 netdev);
1501 if (err)
1502 goto out;
1503 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1504 adapter->rx_ring->itr_val = adapter->itr;
1505 vector++;
1506
1507 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1508 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
4662e82b
BA
1509 else
1510 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1511 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1512 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
4662e82b
BA
1513 netdev);
1514 if (err)
1515 goto out;
1516 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1517 adapter->tx_ring->itr_val = adapter->itr;
1518 vector++;
1519
1520 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1521 e1000_msix_other, 0, netdev->name, netdev);
4662e82b
BA
1522 if (err)
1523 goto out;
1524
1525 e1000_configure_msix(adapter);
1526 return 0;
1527out:
1528 return err;
1529}
1530
f8d59f78
BA
1531/**
1532 * e1000_request_irq - initialize interrupts
1533 *
1534 * Attempts to configure interrupts using the best available
1535 * capabilities of the hardware and kernel.
1536 **/
bc7f75fa
AK
1537static int e1000_request_irq(struct e1000_adapter *adapter)
1538{
1539 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1540 int err;
1541
4662e82b
BA
1542 if (adapter->msix_entries) {
1543 err = e1000_request_msix(adapter);
1544 if (!err)
1545 return err;
1546 /* fall back to MSI */
1547 e1000e_reset_interrupt_capability(adapter);
1548 adapter->int_mode = E1000E_INT_MODE_MSI;
1549 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1550 }
4662e82b 1551 if (adapter->flags & FLAG_MSI_ENABLED) {
a0607fd3 1552 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
4662e82b
BA
1553 netdev->name, netdev);
1554 if (!err)
1555 return err;
bc7f75fa 1556
4662e82b
BA
1557 /* fall back to legacy interrupt */
1558 e1000e_reset_interrupt_capability(adapter);
1559 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1560 }
1561
a0607fd3 1562 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
4662e82b
BA
1563 netdev->name, netdev);
1564 if (err)
1565 e_err("Unable to allocate interrupt, Error: %d\n", err);
1566
bc7f75fa
AK
1567 return err;
1568}
1569
1570static void e1000_free_irq(struct e1000_adapter *adapter)
1571{
1572 struct net_device *netdev = adapter->netdev;
1573
4662e82b
BA
1574 if (adapter->msix_entries) {
1575 int vector = 0;
1576
1577 free_irq(adapter->msix_entries[vector].vector, netdev);
1578 vector++;
1579
1580 free_irq(adapter->msix_entries[vector].vector, netdev);
1581 vector++;
1582
1583 /* Other Causes interrupt vector */
1584 free_irq(adapter->msix_entries[vector].vector, netdev);
1585 return;
bc7f75fa 1586 }
4662e82b
BA
1587
1588 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1589}
1590
1591/**
1592 * e1000_irq_disable - Mask off interrupt generation on the NIC
1593 **/
1594static void e1000_irq_disable(struct e1000_adapter *adapter)
1595{
1596 struct e1000_hw *hw = &adapter->hw;
1597
bc7f75fa 1598 ew32(IMC, ~0);
4662e82b
BA
1599 if (adapter->msix_entries)
1600 ew32(EIAC_82574, 0);
bc7f75fa
AK
1601 e1e_flush();
1602 synchronize_irq(adapter->pdev->irq);
1603}
1604
1605/**
1606 * e1000_irq_enable - Enable default interrupt generation settings
1607 **/
1608static void e1000_irq_enable(struct e1000_adapter *adapter)
1609{
1610 struct e1000_hw *hw = &adapter->hw;
1611
4662e82b
BA
1612 if (adapter->msix_entries) {
1613 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1614 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1615 } else {
1616 ew32(IMS, IMS_ENABLE_MASK);
1617 }
74ef9c39 1618 e1e_flush();
bc7f75fa
AK
1619}
1620
1621/**
1622 * e1000_get_hw_control - get control of the h/w from f/w
1623 * @adapter: address of board private structure
1624 *
489815ce 1625 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1626 * For ASF and Pass Through versions of f/w this means that
1627 * the driver is loaded. For AMT version (only with 82573)
1628 * of the f/w this means that the network i/f is open.
1629 **/
1630static void e1000_get_hw_control(struct e1000_adapter *adapter)
1631{
1632 struct e1000_hw *hw = &adapter->hw;
1633 u32 ctrl_ext;
1634 u32 swsm;
1635
1636 /* Let firmware know the driver has taken over */
1637 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1638 swsm = er32(SWSM);
1639 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1640 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1641 ctrl_ext = er32(CTRL_EXT);
ad68076e 1642 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1643 }
1644}
1645
1646/**
1647 * e1000_release_hw_control - release control of the h/w to f/w
1648 * @adapter: address of board private structure
1649 *
489815ce 1650 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1651 * For ASF and Pass Through versions of f/w this means that the
1652 * driver is no longer loaded. For AMT version (only with 82573) i
1653 * of the f/w this means that the network i/f is closed.
1654 *
1655 **/
1656static void e1000_release_hw_control(struct e1000_adapter *adapter)
1657{
1658 struct e1000_hw *hw = &adapter->hw;
1659 u32 ctrl_ext;
1660 u32 swsm;
1661
1662 /* Let firmware taken over control of h/w */
1663 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1664 swsm = er32(SWSM);
1665 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1666 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1667 ctrl_ext = er32(CTRL_EXT);
ad68076e 1668 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1669 }
1670}
1671
bc7f75fa
AK
1672/**
1673 * @e1000_alloc_ring - allocate memory for a ring structure
1674 **/
1675static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1676 struct e1000_ring *ring)
1677{
1678 struct pci_dev *pdev = adapter->pdev;
1679
1680 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1681 GFP_KERNEL);
1682 if (!ring->desc)
1683 return -ENOMEM;
1684
1685 return 0;
1686}
1687
1688/**
1689 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1690 * @adapter: board private structure
1691 *
1692 * Return 0 on success, negative on failure
1693 **/
1694int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1695{
1696 struct e1000_ring *tx_ring = adapter->tx_ring;
1697 int err = -ENOMEM, size;
1698
1699 size = sizeof(struct e1000_buffer) * tx_ring->count;
1700 tx_ring->buffer_info = vmalloc(size);
1701 if (!tx_ring->buffer_info)
1702 goto err;
1703 memset(tx_ring->buffer_info, 0, size);
1704
1705 /* round up to nearest 4K */
1706 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1707 tx_ring->size = ALIGN(tx_ring->size, 4096);
1708
1709 err = e1000_alloc_ring_dma(adapter, tx_ring);
1710 if (err)
1711 goto err;
1712
1713 tx_ring->next_to_use = 0;
1714 tx_ring->next_to_clean = 0;
bc7f75fa
AK
1715
1716 return 0;
1717err:
1718 vfree(tx_ring->buffer_info);
44defeb3 1719 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1720 return err;
1721}
1722
1723/**
1724 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1725 * @adapter: board private structure
1726 *
1727 * Returns 0 on success, negative on failure
1728 **/
1729int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1730{
1731 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1732 struct e1000_buffer *buffer_info;
1733 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1734
1735 size = sizeof(struct e1000_buffer) * rx_ring->count;
1736 rx_ring->buffer_info = vmalloc(size);
1737 if (!rx_ring->buffer_info)
1738 goto err;
1739 memset(rx_ring->buffer_info, 0, size);
1740
47f44e40
AK
1741 for (i = 0; i < rx_ring->count; i++) {
1742 buffer_info = &rx_ring->buffer_info[i];
1743 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1744 sizeof(struct e1000_ps_page),
1745 GFP_KERNEL);
1746 if (!buffer_info->ps_pages)
1747 goto err_pages;
1748 }
bc7f75fa
AK
1749
1750 desc_len = sizeof(union e1000_rx_desc_packet_split);
1751
1752 /* Round up to nearest 4K */
1753 rx_ring->size = rx_ring->count * desc_len;
1754 rx_ring->size = ALIGN(rx_ring->size, 4096);
1755
1756 err = e1000_alloc_ring_dma(adapter, rx_ring);
1757 if (err)
47f44e40 1758 goto err_pages;
bc7f75fa
AK
1759
1760 rx_ring->next_to_clean = 0;
1761 rx_ring->next_to_use = 0;
1762 rx_ring->rx_skb_top = NULL;
1763
1764 return 0;
47f44e40
AK
1765
1766err_pages:
1767 for (i = 0; i < rx_ring->count; i++) {
1768 buffer_info = &rx_ring->buffer_info[i];
1769 kfree(buffer_info->ps_pages);
1770 }
bc7f75fa
AK
1771err:
1772 vfree(rx_ring->buffer_info);
44defeb3 1773 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1774 return err;
1775}
1776
1777/**
1778 * e1000_clean_tx_ring - Free Tx Buffers
1779 * @adapter: board private structure
1780 **/
1781static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1782{
1783 struct e1000_ring *tx_ring = adapter->tx_ring;
1784 struct e1000_buffer *buffer_info;
1785 unsigned long size;
1786 unsigned int i;
1787
1788 for (i = 0; i < tx_ring->count; i++) {
1789 buffer_info = &tx_ring->buffer_info[i];
1790 e1000_put_txbuf(adapter, buffer_info);
1791 }
1792
1793 size = sizeof(struct e1000_buffer) * tx_ring->count;
1794 memset(tx_ring->buffer_info, 0, size);
1795
1796 memset(tx_ring->desc, 0, tx_ring->size);
1797
1798 tx_ring->next_to_use = 0;
1799 tx_ring->next_to_clean = 0;
1800
1801 writel(0, adapter->hw.hw_addr + tx_ring->head);
1802 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1803}
1804
1805/**
1806 * e1000e_free_tx_resources - Free Tx Resources per Queue
1807 * @adapter: board private structure
1808 *
1809 * Free all transmit software resources
1810 **/
1811void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1812{
1813 struct pci_dev *pdev = adapter->pdev;
1814 struct e1000_ring *tx_ring = adapter->tx_ring;
1815
1816 e1000_clean_tx_ring(adapter);
1817
1818 vfree(tx_ring->buffer_info);
1819 tx_ring->buffer_info = NULL;
1820
1821 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1822 tx_ring->dma);
1823 tx_ring->desc = NULL;
1824}
1825
1826/**
1827 * e1000e_free_rx_resources - Free Rx Resources
1828 * @adapter: board private structure
1829 *
1830 * Free all receive software resources
1831 **/
1832
1833void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1834{
1835 struct pci_dev *pdev = adapter->pdev;
1836 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1837 int i;
bc7f75fa
AK
1838
1839 e1000_clean_rx_ring(adapter);
1840
47f44e40
AK
1841 for (i = 0; i < rx_ring->count; i++) {
1842 kfree(rx_ring->buffer_info[i].ps_pages);
1843 }
1844
bc7f75fa
AK
1845 vfree(rx_ring->buffer_info);
1846 rx_ring->buffer_info = NULL;
1847
bc7f75fa
AK
1848 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1849 rx_ring->dma);
1850 rx_ring->desc = NULL;
1851}
1852
1853/**
1854 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1855 * @adapter: pointer to adapter
1856 * @itr_setting: current adapter->itr
1857 * @packets: the number of packets during this measurement interval
1858 * @bytes: the number of bytes during this measurement interval
1859 *
bc7f75fa
AK
1860 * Stores a new ITR value based on packets and byte
1861 * counts during the last interrupt. The advantage of per interrupt
1862 * computation is faster updates and more accurate ITR for the current
1863 * traffic pattern. Constants in this function were computed
1864 * based on theoretical maximum wire speed and thresholds were set based
1865 * on testing data as well as attempting to minimize response time
4662e82b
BA
1866 * while increasing bulk throughput. This functionality is controlled
1867 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1868 **/
1869static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1870 u16 itr_setting, int packets,
1871 int bytes)
1872{
1873 unsigned int retval = itr_setting;
1874
1875 if (packets == 0)
1876 goto update_itr_done;
1877
1878 switch (itr_setting) {
1879 case lowest_latency:
1880 /* handle TSO and jumbo frames */
1881 if (bytes/packets > 8000)
1882 retval = bulk_latency;
1883 else if ((packets < 5) && (bytes > 512)) {
1884 retval = low_latency;
1885 }
1886 break;
1887 case low_latency: /* 50 usec aka 20000 ints/s */
1888 if (bytes > 10000) {
1889 /* this if handles the TSO accounting */
1890 if (bytes/packets > 8000) {
1891 retval = bulk_latency;
1892 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1893 retval = bulk_latency;
1894 } else if ((packets > 35)) {
1895 retval = lowest_latency;
1896 }
1897 } else if (bytes/packets > 2000) {
1898 retval = bulk_latency;
1899 } else if (packets <= 2 && bytes < 512) {
1900 retval = lowest_latency;
1901 }
1902 break;
1903 case bulk_latency: /* 250 usec aka 4000 ints/s */
1904 if (bytes > 25000) {
1905 if (packets > 35) {
1906 retval = low_latency;
1907 }
1908 } else if (bytes < 6000) {
1909 retval = low_latency;
1910 }
1911 break;
1912 }
1913
1914update_itr_done:
1915 return retval;
1916}
1917
1918static void e1000_set_itr(struct e1000_adapter *adapter)
1919{
1920 struct e1000_hw *hw = &adapter->hw;
1921 u16 current_itr;
1922 u32 new_itr = adapter->itr;
1923
1924 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1925 if (adapter->link_speed != SPEED_1000) {
1926 current_itr = 0;
1927 new_itr = 4000;
1928 goto set_itr_now;
1929 }
1930
1931 adapter->tx_itr = e1000_update_itr(adapter,
1932 adapter->tx_itr,
1933 adapter->total_tx_packets,
1934 adapter->total_tx_bytes);
1935 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1936 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1937 adapter->tx_itr = low_latency;
1938
1939 adapter->rx_itr = e1000_update_itr(adapter,
1940 adapter->rx_itr,
1941 adapter->total_rx_packets,
1942 adapter->total_rx_bytes);
1943 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1944 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1945 adapter->rx_itr = low_latency;
1946
1947 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1948
1949 switch (current_itr) {
1950 /* counts and packets in update_itr are dependent on these numbers */
1951 case lowest_latency:
1952 new_itr = 70000;
1953 break;
1954 case low_latency:
1955 new_itr = 20000; /* aka hwitr = ~200 */
1956 break;
1957 case bulk_latency:
1958 new_itr = 4000;
1959 break;
1960 default:
1961 break;
1962 }
1963
1964set_itr_now:
1965 if (new_itr != adapter->itr) {
ad68076e
BA
1966 /*
1967 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1968 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1969 * increasing
1970 */
bc7f75fa
AK
1971 new_itr = new_itr > adapter->itr ?
1972 min(adapter->itr + (new_itr >> 2), new_itr) :
1973 new_itr;
1974 adapter->itr = new_itr;
4662e82b
BA
1975 adapter->rx_ring->itr_val = new_itr;
1976 if (adapter->msix_entries)
1977 adapter->rx_ring->set_itr = 1;
1978 else
1979 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1980 }
1981}
1982
4662e82b
BA
1983/**
1984 * e1000_alloc_queues - Allocate memory for all rings
1985 * @adapter: board private structure to initialize
1986 **/
1987static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1988{
1989 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1990 if (!adapter->tx_ring)
1991 goto err;
1992
1993 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1994 if (!adapter->rx_ring)
1995 goto err;
1996
1997 return 0;
1998err:
1999 e_err("Unable to allocate memory for queues\n");
2000 kfree(adapter->rx_ring);
2001 kfree(adapter->tx_ring);
2002 return -ENOMEM;
2003}
2004
bc7f75fa
AK
2005/**
2006 * e1000_clean - NAPI Rx polling callback
ad68076e 2007 * @napi: struct associated with this polling callback
489815ce 2008 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
2009 **/
2010static int e1000_clean(struct napi_struct *napi, int budget)
2011{
2012 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 2013 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2014 struct net_device *poll_dev = adapter->netdev;
679e8a0f 2015 int tx_cleaned = 1, work_done = 0;
bc7f75fa 2016
4cf1653a 2017 adapter = netdev_priv(poll_dev);
bc7f75fa 2018
4662e82b
BA
2019 if (adapter->msix_entries &&
2020 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2021 goto clean_rx;
2022
92af3e95 2023 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa 2024
4662e82b 2025clean_rx:
bc7f75fa 2026 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6 2027
12d04a3c 2028 if (!tx_cleaned)
d2c7ddd6 2029 work_done = budget;
bc7f75fa 2030
53e52c72
DM
2031 /* If budget not fully consumed, exit the polling mode */
2032 if (work_done < budget) {
bc7f75fa
AK
2033 if (adapter->itr_setting & 3)
2034 e1000_set_itr(adapter);
288379f0 2035 napi_complete(napi);
a3c69fef
JB
2036 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2037 if (adapter->msix_entries)
2038 ew32(IMS, adapter->rx_ring->ims_val);
2039 else
2040 e1000_irq_enable(adapter);
2041 }
bc7f75fa
AK
2042 }
2043
2044 return work_done;
2045}
2046
2047static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2048{
2049 struct e1000_adapter *adapter = netdev_priv(netdev);
2050 struct e1000_hw *hw = &adapter->hw;
2051 u32 vfta, index;
2052
2053 /* don't update vlan cookie if already programmed */
2054 if ((adapter->hw.mng_cookie.status &
2055 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2056 (vid == adapter->mng_vlan_id))
2057 return;
caaddaf8 2058
bc7f75fa 2059 /* add VID to filter table */
caaddaf8
BA
2060 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2061 index = (vid >> 5) & 0x7F;
2062 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2063 vfta |= (1 << (vid & 0x1F));
2064 hw->mac.ops.write_vfta(hw, index, vfta);
2065 }
bc7f75fa
AK
2066}
2067
2068static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2069{
2070 struct e1000_adapter *adapter = netdev_priv(netdev);
2071 struct e1000_hw *hw = &adapter->hw;
2072 u32 vfta, index;
2073
74ef9c39
JB
2074 if (!test_bit(__E1000_DOWN, &adapter->state))
2075 e1000_irq_disable(adapter);
bc7f75fa 2076 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2077
2078 if (!test_bit(__E1000_DOWN, &adapter->state))
2079 e1000_irq_enable(adapter);
bc7f75fa
AK
2080
2081 if ((adapter->hw.mng_cookie.status &
2082 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2083 (vid == adapter->mng_vlan_id)) {
2084 /* release control to f/w */
2085 e1000_release_hw_control(adapter);
2086 return;
2087 }
2088
2089 /* remove VID from filter table */
caaddaf8
BA
2090 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2091 index = (vid >> 5) & 0x7F;
2092 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2093 vfta &= ~(1 << (vid & 0x1F));
2094 hw->mac.ops.write_vfta(hw, index, vfta);
2095 }
bc7f75fa
AK
2096}
2097
2098static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2099{
2100 struct net_device *netdev = adapter->netdev;
2101 u16 vid = adapter->hw.mng_cookie.vlan_id;
2102 u16 old_vid = adapter->mng_vlan_id;
2103
2104 if (!adapter->vlgrp)
2105 return;
2106
2107 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2108 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2109 if (adapter->hw.mng_cookie.status &
2110 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2111 e1000_vlan_rx_add_vid(netdev, vid);
2112 adapter->mng_vlan_id = vid;
2113 }
2114
2115 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2116 (vid != old_vid) &&
2117 !vlan_group_get_device(adapter->vlgrp, old_vid))
2118 e1000_vlan_rx_kill_vid(netdev, old_vid);
2119 } else {
2120 adapter->mng_vlan_id = vid;
2121 }
2122}
2123
2124
2125static void e1000_vlan_rx_register(struct net_device *netdev,
2126 struct vlan_group *grp)
2127{
2128 struct e1000_adapter *adapter = netdev_priv(netdev);
2129 struct e1000_hw *hw = &adapter->hw;
2130 u32 ctrl, rctl;
2131
74ef9c39
JB
2132 if (!test_bit(__E1000_DOWN, &adapter->state))
2133 e1000_irq_disable(adapter);
bc7f75fa
AK
2134 adapter->vlgrp = grp;
2135
2136 if (grp) {
2137 /* enable VLAN tag insert/strip */
2138 ctrl = er32(CTRL);
2139 ctrl |= E1000_CTRL_VME;
2140 ew32(CTRL, ctrl);
2141
2142 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2143 /* enable VLAN receive filtering */
2144 rctl = er32(RCTL);
bc7f75fa
AK
2145 rctl &= ~E1000_RCTL_CFIEN;
2146 ew32(RCTL, rctl);
2147 e1000_update_mng_vlan(adapter);
2148 }
2149 } else {
2150 /* disable VLAN tag insert/strip */
2151 ctrl = er32(CTRL);
2152 ctrl &= ~E1000_CTRL_VME;
2153 ew32(CTRL, ctrl);
2154
2155 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2156 if (adapter->mng_vlan_id !=
2157 (u16)E1000_MNG_VLAN_NONE) {
2158 e1000_vlan_rx_kill_vid(netdev,
2159 adapter->mng_vlan_id);
2160 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2161 }
2162 }
2163 }
2164
74ef9c39
JB
2165 if (!test_bit(__E1000_DOWN, &adapter->state))
2166 e1000_irq_enable(adapter);
bc7f75fa
AK
2167}
2168
2169static void e1000_restore_vlan(struct e1000_adapter *adapter)
2170{
2171 u16 vid;
2172
2173 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2174
2175 if (!adapter->vlgrp)
2176 return;
2177
2178 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2179 if (!vlan_group_get_device(adapter->vlgrp, vid))
2180 continue;
2181 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2182 }
2183}
2184
2185static void e1000_init_manageability(struct e1000_adapter *adapter)
2186{
2187 struct e1000_hw *hw = &adapter->hw;
2188 u32 manc, manc2h;
2189
2190 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2191 return;
2192
2193 manc = er32(MANC);
2194
ad68076e
BA
2195 /*
2196 * enable receiving management packets to the host. this will probably
bc7f75fa 2197 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2198 * the packets will be handled on SMBUS
2199 */
bc7f75fa
AK
2200 manc |= E1000_MANC_EN_MNG2HOST;
2201 manc2h = er32(MANC2H);
2202#define E1000_MNG2HOST_PORT_623 (1 << 5)
2203#define E1000_MNG2HOST_PORT_664 (1 << 6)
2204 manc2h |= E1000_MNG2HOST_PORT_623;
2205 manc2h |= E1000_MNG2HOST_PORT_664;
2206 ew32(MANC2H, manc2h);
2207 ew32(MANC, manc);
2208}
2209
2210/**
2211 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2212 * @adapter: board private structure
2213 *
2214 * Configure the Tx unit of the MAC after a reset.
2215 **/
2216static void e1000_configure_tx(struct e1000_adapter *adapter)
2217{
2218 struct e1000_hw *hw = &adapter->hw;
2219 struct e1000_ring *tx_ring = adapter->tx_ring;
2220 u64 tdba;
2221 u32 tdlen, tctl, tipg, tarc;
2222 u32 ipgr1, ipgr2;
2223
2224 /* Setup the HW Tx Head and Tail descriptor pointers */
2225 tdba = tx_ring->dma;
2226 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
284901a9 2227 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
bc7f75fa
AK
2228 ew32(TDBAH, (tdba >> 32));
2229 ew32(TDLEN, tdlen);
2230 ew32(TDH, 0);
2231 ew32(TDT, 0);
2232 tx_ring->head = E1000_TDH;
2233 tx_ring->tail = E1000_TDT;
2234
2235 /* Set the default values for the Tx Inter Packet Gap timer */
2236 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2237 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2238 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2239
2240 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2241 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2242
2243 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2244 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2245 ew32(TIPG, tipg);
2246
2247 /* Set the Tx Interrupt Delay register */
2248 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2249 /* Tx irq moderation */
bc7f75fa
AK
2250 ew32(TADV, adapter->tx_abs_int_delay);
2251
2252 /* Program the Transmit Control Register */
2253 tctl = er32(TCTL);
2254 tctl &= ~E1000_TCTL_CT;
2255 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2256 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2257
2258 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2259 tarc = er32(TARC(0));
ad68076e
BA
2260 /*
2261 * set the speed mode bit, we'll clear it if we're not at
2262 * gigabit link later
2263 */
bc7f75fa
AK
2264#define SPEED_MODE_BIT (1 << 21)
2265 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2266 ew32(TARC(0), tarc);
bc7f75fa
AK
2267 }
2268
2269 /* errata: program both queues to unweighted RR */
2270 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2271 tarc = er32(TARC(0));
bc7f75fa 2272 tarc |= 1;
e9ec2c0f
JK
2273 ew32(TARC(0), tarc);
2274 tarc = er32(TARC(1));
bc7f75fa 2275 tarc |= 1;
e9ec2c0f 2276 ew32(TARC(1), tarc);
bc7f75fa
AK
2277 }
2278
bc7f75fa
AK
2279 /* Setup Transmit Descriptor Settings for eop descriptor */
2280 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2281
2282 /* only set IDE if we are delaying interrupts using the timers */
2283 if (adapter->tx_int_delay)
2284 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2285
2286 /* enable Report Status bit */
2287 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2288
2289 ew32(TCTL, tctl);
2290
edfea6e6 2291 e1000e_config_collision_dist(hw);
bc7f75fa
AK
2292}
2293
2294/**
2295 * e1000_setup_rctl - configure the receive control registers
2296 * @adapter: Board private structure
2297 **/
2298#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2299 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2300static void e1000_setup_rctl(struct e1000_adapter *adapter)
2301{
2302 struct e1000_hw *hw = &adapter->hw;
2303 u32 rctl, rfctl;
2304 u32 psrctl = 0;
2305 u32 pages = 0;
2306
2307 /* Program MC offset vector base */
2308 rctl = er32(RCTL);
2309 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2310 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2311 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2312 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2313
2314 /* Do not Store bad packets */
2315 rctl &= ~E1000_RCTL_SBP;
2316
2317 /* Enable Long Packet receive */
2318 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2319 rctl &= ~E1000_RCTL_LPE;
2320 else
2321 rctl |= E1000_RCTL_LPE;
2322
eb7c3adb
JK
2323 /* Some systems expect that the CRC is included in SMBUS traffic. The
2324 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2325 * host memory when this is enabled
2326 */
2327 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2328 rctl |= E1000_RCTL_SECRC;
5918bd88 2329
a4f58f54
BA
2330 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2331 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2332 u16 phy_data;
2333
2334 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2335 phy_data &= 0xfff8;
2336 phy_data |= (1 << 2);
2337 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2338
2339 e1e_rphy(hw, 22, &phy_data);
2340 phy_data &= 0x0fff;
2341 phy_data |= (1 << 14);
2342 e1e_wphy(hw, 0x10, 0x2823);
2343 e1e_wphy(hw, 0x11, 0x0003);
2344 e1e_wphy(hw, 22, phy_data);
2345 }
2346
bc7f75fa
AK
2347 /* Setup buffer sizes */
2348 rctl &= ~E1000_RCTL_SZ_4096;
2349 rctl |= E1000_RCTL_BSEX;
2350 switch (adapter->rx_buffer_len) {
bc7f75fa
AK
2351 case 2048:
2352 default:
2353 rctl |= E1000_RCTL_SZ_2048;
2354 rctl &= ~E1000_RCTL_BSEX;
2355 break;
2356 case 4096:
2357 rctl |= E1000_RCTL_SZ_4096;
2358 break;
2359 case 8192:
2360 rctl |= E1000_RCTL_SZ_8192;
2361 break;
2362 case 16384:
2363 rctl |= E1000_RCTL_SZ_16384;
2364 break;
2365 }
2366
2367 /*
2368 * 82571 and greater support packet-split where the protocol
2369 * header is placed in skb->data and the packet data is
2370 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2371 * In the case of a non-split, skb->data is linearly filled,
2372 * followed by the page buffers. Therefore, skb->data is
2373 * sized to hold the largest protocol header.
2374 *
2375 * allocations using alloc_page take too long for regular MTU
2376 * so only enable packet split for jumbo frames
2377 *
2378 * Using pages when the page size is greater than 16k wastes
2379 * a lot of memory, since we allocate 3 pages at all times
2380 * per packet.
2381 */
bc7f75fa 2382 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2383 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2384 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2385 adapter->rx_ps_pages = pages;
97ac8cae
BA
2386 else
2387 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2388
2389 if (adapter->rx_ps_pages) {
2390 /* Configure extra packet-split registers */
2391 rfctl = er32(RFCTL);
2392 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2393 /*
2394 * disable packet split support for IPv6 extension headers,
2395 * because some malformed IPv6 headers can hang the Rx
2396 */
bc7f75fa
AK
2397 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2398 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2399
2400 ew32(RFCTL, rfctl);
2401
140a7480
AK
2402 /* Enable Packet split descriptors */
2403 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2404
2405 psrctl |= adapter->rx_ps_bsize0 >>
2406 E1000_PSRCTL_BSIZE0_SHIFT;
2407
2408 switch (adapter->rx_ps_pages) {
2409 case 3:
2410 psrctl |= PAGE_SIZE <<
2411 E1000_PSRCTL_BSIZE3_SHIFT;
2412 case 2:
2413 psrctl |= PAGE_SIZE <<
2414 E1000_PSRCTL_BSIZE2_SHIFT;
2415 case 1:
2416 psrctl |= PAGE_SIZE >>
2417 E1000_PSRCTL_BSIZE1_SHIFT;
2418 break;
2419 }
2420
2421 ew32(PSRCTL, psrctl);
2422 }
2423
2424 ew32(RCTL, rctl);
318a94d6
JK
2425 /* just started the receive unit, no need to restart */
2426 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2427}
2428
2429/**
2430 * e1000_configure_rx - Configure Receive Unit after Reset
2431 * @adapter: board private structure
2432 *
2433 * Configure the Rx unit of the MAC after a reset.
2434 **/
2435static void e1000_configure_rx(struct e1000_adapter *adapter)
2436{
2437 struct e1000_hw *hw = &adapter->hw;
2438 struct e1000_ring *rx_ring = adapter->rx_ring;
2439 u64 rdba;
2440 u32 rdlen, rctl, rxcsum, ctrl_ext;
2441
2442 if (adapter->rx_ps_pages) {
2443 /* this is a 32 byte descriptor */
2444 rdlen = rx_ring->count *
2445 sizeof(union e1000_rx_desc_packet_split);
2446 adapter->clean_rx = e1000_clean_rx_irq_ps;
2447 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2448 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2449 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2450 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2451 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2452 } else {
97ac8cae 2453 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2454 adapter->clean_rx = e1000_clean_rx_irq;
2455 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2456 }
2457
2458 /* disable receives while setting up the descriptors */
2459 rctl = er32(RCTL);
2460 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2461 e1e_flush();
2462 msleep(10);
2463
2464 /* set the Receive Delay Timer Register */
2465 ew32(RDTR, adapter->rx_int_delay);
2466
2467 /* irq moderation */
2468 ew32(RADV, adapter->rx_abs_int_delay);
2469 if (adapter->itr_setting != 0)
ad68076e 2470 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2471
2472 ctrl_ext = er32(CTRL_EXT);
bc7f75fa
AK
2473 /* Auto-Mask interrupts upon ICR access */
2474 ctrl_ext |= E1000_CTRL_EXT_IAME;
2475 ew32(IAM, 0xffffffff);
2476 ew32(CTRL_EXT, ctrl_ext);
2477 e1e_flush();
2478
ad68076e
BA
2479 /*
2480 * Setup the HW Rx Head and Tail Descriptor Pointers and
2481 * the Base and Length of the Rx Descriptor Ring
2482 */
bc7f75fa 2483 rdba = rx_ring->dma;
284901a9 2484 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
bc7f75fa
AK
2485 ew32(RDBAH, (rdba >> 32));
2486 ew32(RDLEN, rdlen);
2487 ew32(RDH, 0);
2488 ew32(RDT, 0);
2489 rx_ring->head = E1000_RDH;
2490 rx_ring->tail = E1000_RDT;
2491
2492 /* Enable Receive Checksum Offload for TCP and UDP */
2493 rxcsum = er32(RXCSUM);
2494 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2495 rxcsum |= E1000_RXCSUM_TUOFL;
2496
ad68076e
BA
2497 /*
2498 * IPv4 payload checksum for UDP fragments must be
2499 * used in conjunction with packet-split.
2500 */
bc7f75fa
AK
2501 if (adapter->rx_ps_pages)
2502 rxcsum |= E1000_RXCSUM_IPPCSE;
2503 } else {
2504 rxcsum &= ~E1000_RXCSUM_TUOFL;
2505 /* no need to clear IPPCSE as it defaults to 0 */
2506 }
2507 ew32(RXCSUM, rxcsum);
2508
ad68076e
BA
2509 /*
2510 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2511 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2512 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2513 */
53ec5498
BA
2514 if (adapter->flags & FLAG_HAS_ERT) {
2515 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2516 u32 rxdctl = er32(RXDCTL(0));
2517 ew32(RXDCTL(0), rxdctl | 0x3);
2518 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2519 /*
2520 * With jumbo frames and early-receive enabled,
2521 * excessive C-state transition latencies result in
2522 * dropped transactions.
2523 */
2524 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2525 adapter->netdev->name, 55);
2526 } else {
2527 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2528 adapter->netdev->name,
2529 PM_QOS_DEFAULT_VALUE);
2530 }
97ac8cae 2531 }
bc7f75fa
AK
2532
2533 /* Enable Receives */
2534 ew32(RCTL, rctl);
2535}
2536
2537/**
e2de3eb6 2538 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2539 * @hw: pointer to the HW structure
2540 * @mc_addr_list: array of multicast addresses to program
2541 * @mc_addr_count: number of multicast addresses to program
bc7f75fa 2542 *
ab8932f3 2543 * Updates the Multicast Table Array.
bc7f75fa 2544 * The caller must have a packed mc_addr_list of multicast addresses.
bc7f75fa 2545 **/
e2de3eb6 2546static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
ab8932f3 2547 u32 mc_addr_count)
bc7f75fa 2548{
ab8932f3 2549 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
bc7f75fa
AK
2550}
2551
2552/**
2553 * e1000_set_multi - Multicast and Promiscuous mode set
2554 * @netdev: network interface device structure
2555 *
2556 * The set_multi entry point is called whenever the multicast address
2557 * list or the network interface flags are updated. This routine is
2558 * responsible for configuring the hardware for proper multicast,
2559 * promiscuous mode, and all-multi behavior.
2560 **/
2561static void e1000_set_multi(struct net_device *netdev)
2562{
2563 struct e1000_adapter *adapter = netdev_priv(netdev);
2564 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
2565 struct dev_mc_list *mc_ptr;
2566 u8 *mta_list;
2567 u32 rctl;
2568 int i;
2569
2570 /* Check for Promiscuous and All Multicast modes */
2571
2572 rctl = er32(RCTL);
2573
2574 if (netdev->flags & IFF_PROMISC) {
2575 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2576 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2577 } else {
746b9f02
PM
2578 if (netdev->flags & IFF_ALLMULTI) {
2579 rctl |= E1000_RCTL_MPE;
2580 rctl &= ~E1000_RCTL_UPE;
2581 } else {
2582 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2583 }
78ed11a5 2584 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2585 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2586 }
2587
2588 ew32(RCTL, rctl);
2589
7aeef972
JP
2590 if (!netdev_mc_empty(netdev)) {
2591 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
bc7f75fa
AK
2592 if (!mta_list)
2593 return;
2594
2595 /* prepare a packed array of only addresses. */
7aeef972
JP
2596 i = 0;
2597 netdev_for_each_mc_addr(mc_ptr, netdev)
2598 memcpy(mta_list + (i++ * ETH_ALEN),
2599 mc_ptr->dmi_addr, ETH_ALEN);
bc7f75fa 2600
ab8932f3 2601 e1000_update_mc_addr_list(hw, mta_list, i);
bc7f75fa
AK
2602 kfree(mta_list);
2603 } else {
2604 /*
2605 * if we're called from probe, we might not have
2606 * anything to do here, so clear out the list
2607 */
ab8932f3 2608 e1000_update_mc_addr_list(hw, NULL, 0);
bc7f75fa
AK
2609 }
2610}
2611
2612/**
ad68076e 2613 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2614 * @adapter: private board structure
2615 **/
2616static void e1000_configure(struct e1000_adapter *adapter)
2617{
2618 e1000_set_multi(adapter->netdev);
2619
2620 e1000_restore_vlan(adapter);
2621 e1000_init_manageability(adapter);
2622
2623 e1000_configure_tx(adapter);
2624 e1000_setup_rctl(adapter);
2625 e1000_configure_rx(adapter);
ad68076e 2626 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2627}
2628
2629/**
2630 * e1000e_power_up_phy - restore link in case the phy was powered down
2631 * @adapter: address of board private structure
2632 *
2633 * The phy may be powered down to save power and turn off link when the
2634 * driver is unloaded and wake on lan is not enabled (among others)
2635 * *** this routine MUST be followed by a call to e1000e_reset ***
2636 **/
2637void e1000e_power_up_phy(struct e1000_adapter *adapter)
2638{
17f208de
BA
2639 if (adapter->hw.phy.ops.power_up)
2640 adapter->hw.phy.ops.power_up(&adapter->hw);
bc7f75fa
AK
2641
2642 adapter->hw.mac.ops.setup_link(&adapter->hw);
2643}
2644
2645/**
2646 * e1000_power_down_phy - Power down the PHY
2647 *
17f208de
BA
2648 * Power down the PHY so no link is implied when interface is down.
2649 * The PHY cannot be powered down if management or WoL is active.
bc7f75fa
AK
2650 */
2651static void e1000_power_down_phy(struct e1000_adapter *adapter)
2652{
bc7f75fa 2653 /* WoL is enabled */
23b66e2b 2654 if (adapter->wol)
bc7f75fa
AK
2655 return;
2656
17f208de
BA
2657 if (adapter->hw.phy.ops.power_down)
2658 adapter->hw.phy.ops.power_down(&adapter->hw);
bc7f75fa
AK
2659}
2660
2661/**
2662 * e1000e_reset - bring the hardware into a known good state
2663 *
2664 * This function boots the hardware and enables some settings that
2665 * require a configuration cycle of the hardware - those cannot be
2666 * set/changed during runtime. After reset the device needs to be
ad68076e 2667 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2668 */
2669void e1000e_reset(struct e1000_adapter *adapter)
2670{
2671 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2672 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2673 struct e1000_hw *hw = &adapter->hw;
2674 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2675 u32 pba = adapter->pba;
bc7f75fa
AK
2676 u16 hwm;
2677
ad68076e 2678 /* reset Packet Buffer Allocation to default */
318a94d6 2679 ew32(PBA, pba);
df762464 2680
318a94d6 2681 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2682 /*
2683 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2684 * large enough to accommodate two full transmit packets,
2685 * rounded up to the next 1KB and expressed in KB. Likewise,
2686 * the Rx FIFO should be large enough to accommodate at least
2687 * one full receive packet and is similarly rounded up and
ad68076e
BA
2688 * expressed in KB.
2689 */
df762464 2690 pba = er32(PBA);
bc7f75fa 2691 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2692 tx_space = pba >> 16;
bc7f75fa 2693 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2694 pba &= 0xffff;
ad68076e
BA
2695 /*
2696 * the Tx fifo also stores 16 bytes of information about the tx
2697 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2698 */
2699 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2700 sizeof(struct e1000_tx_desc) -
2701 ETH_FCS_LEN) * 2;
2702 min_tx_space = ALIGN(min_tx_space, 1024);
2703 min_tx_space >>= 10;
2704 /* software strips receive CRC, so leave room for it */
318a94d6 2705 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2706 min_rx_space = ALIGN(min_rx_space, 1024);
2707 min_rx_space >>= 10;
2708
ad68076e
BA
2709 /*
2710 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2711 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2712 * allocation, take space away from current Rx allocation
2713 */
df762464
AK
2714 if ((tx_space < min_tx_space) &&
2715 ((min_tx_space - tx_space) < pba)) {
2716 pba -= min_tx_space - tx_space;
bc7f75fa 2717
ad68076e
BA
2718 /*
2719 * if short on Rx space, Rx wins and must trump tx
2720 * adjustment or use Early Receive if available
2721 */
df762464 2722 if ((pba < min_rx_space) &&
bc7f75fa
AK
2723 (!(adapter->flags & FLAG_HAS_ERT)))
2724 /* ERT enabled in e1000_configure_rx */
df762464 2725 pba = min_rx_space;
bc7f75fa 2726 }
df762464
AK
2727
2728 ew32(PBA, pba);
bc7f75fa
AK
2729 }
2730
bc7f75fa 2731
ad68076e
BA
2732 /*
2733 * flow control settings
2734 *
38eb394e 2735 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2736 * (or the size used for early receive) above it in the Rx FIFO.
2737 * Set it to the lower of:
2738 * - 90% of the Rx FIFO size, and
2739 * - the full Rx FIFO size minus the early receive size (for parts
2740 * with ERT support assuming ERT set to E1000_ERT_2048), or
38eb394e 2741 * - the full Rx FIFO size minus one full frame
ad68076e 2742 */
38eb394e
BA
2743 if (hw->mac.type == e1000_pchlan) {
2744 /*
2745 * Workaround PCH LOM adapter hangs with certain network
2746 * loads. If hangs persist, try disabling Tx flow control.
2747 */
2748 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2749 fc->high_water = 0x3500;
2750 fc->low_water = 0x1500;
2751 } else {
2752 fc->high_water = 0x5000;
2753 fc->low_water = 0x3000;
2754 }
2755 } else {
2756 if ((adapter->flags & FLAG_HAS_ERT) &&
2757 (adapter->netdev->mtu > ETH_DATA_LEN))
2758 hwm = min(((pba << 10) * 9 / 10),
2759 ((pba << 10) - (E1000_ERT_2048 << 3)));
2760 else
2761 hwm = min(((pba << 10) * 9 / 10),
2762 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2763
38eb394e
BA
2764 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2765 fc->low_water = fc->high_water - 8;
2766 }
bc7f75fa
AK
2767
2768 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2769 fc->pause_time = 0xFFFF;
bc7f75fa 2770 else
318a94d6
JK
2771 fc->pause_time = E1000_FC_PAUSE_TIME;
2772 fc->send_xon = 1;
5c48ef3e 2773 fc->current_mode = fc->requested_mode;
bc7f75fa
AK
2774
2775 /* Allow time for pending master requests to run */
2776 mac->ops.reset_hw(hw);
97ac8cae
BA
2777
2778 /*
2779 * For parts with AMT enabled, let the firmware know
2780 * that the network interface is in control
2781 */
c43bc57e 2782 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2783 e1000_get_hw_control(adapter);
2784
bc7f75fa 2785 ew32(WUC, 0);
a4f58f54
BA
2786 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2787 e1e_wphy(&adapter->hw, BM_WUC, 0);
bc7f75fa
AK
2788
2789 if (mac->ops.init_hw(hw))
44defeb3 2790 e_err("Hardware Error\n");
bc7f75fa 2791
38eb394e
BA
2792 /* additional part of the flow-control workaround above */
2793 if (hw->mac.type == e1000_pchlan)
2794 ew32(FCRTV_PCH, 0x1000);
2795
bc7f75fa
AK
2796 e1000_update_mng_vlan(adapter);
2797
2798 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2799 ew32(VET, ETH_P_8021Q);
2800
2801 e1000e_reset_adaptive(hw);
2802 e1000_get_phy_info(hw);
2803
918d7197
BA
2804 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2805 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
bc7f75fa 2806 u16 phy_data = 0;
ad68076e
BA
2807 /*
2808 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2809 * the return value of this function because there is nothing
ad68076e
BA
2810 * different we would do if it failed
2811 */
bc7f75fa
AK
2812 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2813 phy_data &= ~IGP02E1000_PM_SPD;
2814 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2815 }
bc7f75fa
AK
2816}
2817
2818int e1000e_up(struct e1000_adapter *adapter)
2819{
2820 struct e1000_hw *hw = &adapter->hw;
2821
53ec5498
BA
2822 /* DMA latency requirement to workaround early-receive/jumbo issue */
2823 if (adapter->flags & FLAG_HAS_ERT)
2824 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2825 adapter->netdev->name,
2826 PM_QOS_DEFAULT_VALUE);
2827
bc7f75fa
AK
2828 /* hardware has been reset, we need to reload some things */
2829 e1000_configure(adapter);
2830
2831 clear_bit(__E1000_DOWN, &adapter->state);
2832
2833 napi_enable(&adapter->napi);
4662e82b
BA
2834 if (adapter->msix_entries)
2835 e1000_configure_msix(adapter);
bc7f75fa
AK
2836 e1000_irq_enable(adapter);
2837
4cb9be7a
JB
2838 netif_wake_queue(adapter->netdev);
2839
bc7f75fa
AK
2840 /* fire a link change interrupt to start the watchdog */
2841 ew32(ICS, E1000_ICS_LSC);
2842 return 0;
2843}
2844
2845void e1000e_down(struct e1000_adapter *adapter)
2846{
2847 struct net_device *netdev = adapter->netdev;
2848 struct e1000_hw *hw = &adapter->hw;
2849 u32 tctl, rctl;
2850
ad68076e
BA
2851 /*
2852 * signal that we're down so the interrupt handler does not
2853 * reschedule our watchdog timer
2854 */
bc7f75fa
AK
2855 set_bit(__E1000_DOWN, &adapter->state);
2856
2857 /* disable receives in the hardware */
2858 rctl = er32(RCTL);
2859 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2860 /* flush and sleep below */
2861
4cb9be7a 2862 netif_stop_queue(netdev);
bc7f75fa
AK
2863
2864 /* disable transmits in the hardware */
2865 tctl = er32(TCTL);
2866 tctl &= ~E1000_TCTL_EN;
2867 ew32(TCTL, tctl);
2868 /* flush both disables and wait for them to finish */
2869 e1e_flush();
2870 msleep(10);
2871
2872 napi_disable(&adapter->napi);
2873 e1000_irq_disable(adapter);
2874
2875 del_timer_sync(&adapter->watchdog_timer);
2876 del_timer_sync(&adapter->phy_info_timer);
2877
bc7f75fa
AK
2878 netif_carrier_off(netdev);
2879 adapter->link_speed = 0;
2880 adapter->link_duplex = 0;
2881
52cc3086
JK
2882 if (!pci_channel_offline(adapter->pdev))
2883 e1000e_reset(adapter);
bc7f75fa
AK
2884 e1000_clean_tx_ring(adapter);
2885 e1000_clean_rx_ring(adapter);
2886
53ec5498
BA
2887 if (adapter->flags & FLAG_HAS_ERT)
2888 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2889 adapter->netdev->name);
2890
bc7f75fa
AK
2891 /*
2892 * TODO: for power management, we could drop the link and
2893 * pci_disable_device here.
2894 */
2895}
2896
2897void e1000e_reinit_locked(struct e1000_adapter *adapter)
2898{
2899 might_sleep();
2900 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2901 msleep(1);
2902 e1000e_down(adapter);
2903 e1000e_up(adapter);
2904 clear_bit(__E1000_RESETTING, &adapter->state);
2905}
2906
2907/**
2908 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2909 * @adapter: board private structure to initialize
2910 *
2911 * e1000_sw_init initializes the Adapter private data structure.
2912 * Fields are initialized based on PCI device information and
2913 * OS network device settings (MTU size).
2914 **/
2915static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2916{
bc7f75fa
AK
2917 struct net_device *netdev = adapter->netdev;
2918
2919 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2920 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2921 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2922 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2923
4662e82b 2924 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2925
4662e82b
BA
2926 if (e1000_alloc_queues(adapter))
2927 return -ENOMEM;
bc7f75fa 2928
bc7f75fa 2929 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2930 e1000_irq_disable(adapter);
2931
bc7f75fa
AK
2932 set_bit(__E1000_DOWN, &adapter->state);
2933 return 0;
bc7f75fa
AK
2934}
2935
f8d59f78
BA
2936/**
2937 * e1000_intr_msi_test - Interrupt Handler
2938 * @irq: interrupt number
2939 * @data: pointer to a network interface device structure
2940 **/
2941static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2942{
2943 struct net_device *netdev = data;
2944 struct e1000_adapter *adapter = netdev_priv(netdev);
2945 struct e1000_hw *hw = &adapter->hw;
2946 u32 icr = er32(ICR);
2947
3bb99fe2 2948 e_dbg("icr is %08X\n", icr);
f8d59f78
BA
2949 if (icr & E1000_ICR_RXSEQ) {
2950 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2951 wmb();
2952 }
2953
2954 return IRQ_HANDLED;
2955}
2956
2957/**
2958 * e1000_test_msi_interrupt - Returns 0 for successful test
2959 * @adapter: board private struct
2960 *
2961 * code flow taken from tg3.c
2962 **/
2963static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2964{
2965 struct net_device *netdev = adapter->netdev;
2966 struct e1000_hw *hw = &adapter->hw;
2967 int err;
2968
2969 /* poll_enable hasn't been called yet, so don't need disable */
2970 /* clear any pending events */
2971 er32(ICR);
2972
2973 /* free the real vector and request a test handler */
2974 e1000_free_irq(adapter);
4662e82b 2975 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2976
2977 /* Assume that the test fails, if it succeeds then the test
2978 * MSI irq handler will unset this flag */
2979 adapter->flags |= FLAG_MSI_TEST_FAILED;
2980
2981 err = pci_enable_msi(adapter->pdev);
2982 if (err)
2983 goto msi_test_failed;
2984
a0607fd3 2985 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
f8d59f78
BA
2986 netdev->name, netdev);
2987 if (err) {
2988 pci_disable_msi(adapter->pdev);
2989 goto msi_test_failed;
2990 }
2991
2992 wmb();
2993
2994 e1000_irq_enable(adapter);
2995
2996 /* fire an unusual interrupt on the test handler */
2997 ew32(ICS, E1000_ICS_RXSEQ);
2998 e1e_flush();
2999 msleep(50);
3000
3001 e1000_irq_disable(adapter);
3002
3003 rmb();
3004
3005 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 3006 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
3007 err = -EIO;
3008 e_info("MSI interrupt test failed!\n");
3009 }
3010
3011 free_irq(adapter->pdev->irq, netdev);
3012 pci_disable_msi(adapter->pdev);
3013
3014 if (err == -EIO)
3015 goto msi_test_failed;
3016
3017 /* okay so the test worked, restore settings */
3bb99fe2 3018 e_dbg("MSI interrupt test succeeded!\n");
f8d59f78 3019msi_test_failed:
4662e82b 3020 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
3021 e1000_request_irq(adapter);
3022 return err;
3023}
3024
3025/**
3026 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3027 * @adapter: board private struct
3028 *
3029 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3030 **/
3031static int e1000_test_msi(struct e1000_adapter *adapter)
3032{
3033 int err;
3034 u16 pci_cmd;
3035
3036 if (!(adapter->flags & FLAG_MSI_ENABLED))
3037 return 0;
3038
3039 /* disable SERR in case the MSI write causes a master abort */
3040 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3041 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3042 pci_cmd & ~PCI_COMMAND_SERR);
3043
3044 err = e1000_test_msi_interrupt(adapter);
3045
3046 /* restore previous setting of command word */
3047 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3048
3049 /* success ! */
3050 if (!err)
3051 return 0;
3052
3053 /* EIO means MSI test failed */
3054 if (err != -EIO)
3055 return err;
3056
3057 /* back to INTx mode */
3058 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3059
3060 e1000_free_irq(adapter);
3061
3062 err = e1000_request_irq(adapter);
3063
3064 return err;
3065}
3066
bc7f75fa
AK
3067/**
3068 * e1000_open - Called when a network interface is made active
3069 * @netdev: network interface device structure
3070 *
3071 * Returns 0 on success, negative value on failure
3072 *
3073 * The open entry point is called when a network interface is made
3074 * active by the system (IFF_UP). At this point all resources needed
3075 * for transmit and receive operations are allocated, the interrupt
3076 * handler is registered with the OS, the watchdog timer is started,
3077 * and the stack is notified that the interface is ready.
3078 **/
3079static int e1000_open(struct net_device *netdev)
3080{
3081 struct e1000_adapter *adapter = netdev_priv(netdev);
3082 struct e1000_hw *hw = &adapter->hw;
3083 int err;
3084
3085 /* disallow open during test */
3086 if (test_bit(__E1000_TESTING, &adapter->state))
3087 return -EBUSY;
3088
9c563d20
JB
3089 netif_carrier_off(netdev);
3090
bc7f75fa
AK
3091 /* allocate transmit descriptors */
3092 err = e1000e_setup_tx_resources(adapter);
3093 if (err)
3094 goto err_setup_tx;
3095
3096 /* allocate receive descriptors */
3097 err = e1000e_setup_rx_resources(adapter);
3098 if (err)
3099 goto err_setup_rx;
3100
3101 e1000e_power_up_phy(adapter);
3102
3103 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3104 if ((adapter->hw.mng_cookie.status &
3105 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3106 e1000_update_mng_vlan(adapter);
3107
ad68076e
BA
3108 /*
3109 * If AMT is enabled, let the firmware know that the network
3110 * interface is now open
3111 */
c43bc57e 3112 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3113 e1000_get_hw_control(adapter);
3114
ad68076e
BA
3115 /*
3116 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3117 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3118 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3119 * clean_rx handler before we do so.
3120 */
bc7f75fa
AK
3121 e1000_configure(adapter);
3122
3123 err = e1000_request_irq(adapter);
3124 if (err)
3125 goto err_req_irq;
3126
f8d59f78
BA
3127 /*
3128 * Work around PCIe errata with MSI interrupts causing some chipsets to
3129 * ignore e1000e MSI messages, which means we need to test our MSI
3130 * interrupt now
3131 */
4662e82b 3132 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3133 err = e1000_test_msi(adapter);
3134 if (err) {
3135 e_err("Interrupt allocation failed\n");
3136 goto err_req_irq;
3137 }
3138 }
3139
bc7f75fa
AK
3140 /* From here on the code is the same as e1000e_up() */
3141 clear_bit(__E1000_DOWN, &adapter->state);
3142
3143 napi_enable(&adapter->napi);
3144
3145 e1000_irq_enable(adapter);
3146
4cb9be7a 3147 netif_start_queue(netdev);
d55b53ff 3148
bc7f75fa
AK
3149 /* fire a link status change interrupt to start the watchdog */
3150 ew32(ICS, E1000_ICS_LSC);
3151
3152 return 0;
3153
3154err_req_irq:
3155 e1000_release_hw_control(adapter);
3156 e1000_power_down_phy(adapter);
3157 e1000e_free_rx_resources(adapter);
3158err_setup_rx:
3159 e1000e_free_tx_resources(adapter);
3160err_setup_tx:
3161 e1000e_reset(adapter);
3162
3163 return err;
3164}
3165
3166/**
3167 * e1000_close - Disables a network interface
3168 * @netdev: network interface device structure
3169 *
3170 * Returns 0, this is not allowed to fail
3171 *
3172 * The close entry point is called when an interface is de-activated
3173 * by the OS. The hardware is still under the drivers control, but
3174 * needs to be disabled. A global MAC reset is issued to stop the
3175 * hardware, and all transmit and receive resources are freed.
3176 **/
3177static int e1000_close(struct net_device *netdev)
3178{
3179 struct e1000_adapter *adapter = netdev_priv(netdev);
3180
3181 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3182 e1000e_down(adapter);
3183 e1000_power_down_phy(adapter);
3184 e1000_free_irq(adapter);
3185
3186 e1000e_free_tx_resources(adapter);
3187 e1000e_free_rx_resources(adapter);
3188
ad68076e
BA
3189 /*
3190 * kill manageability vlan ID if supported, but not if a vlan with
3191 * the same ID is registered on the host OS (let 8021q kill it)
3192 */
bc7f75fa
AK
3193 if ((adapter->hw.mng_cookie.status &
3194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3195 !(adapter->vlgrp &&
3196 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3197 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3198
ad68076e
BA
3199 /*
3200 * If AMT is enabled, let the firmware know that the network
3201 * interface is now closed
3202 */
c43bc57e 3203 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3204 e1000_release_hw_control(adapter);
3205
3206 return 0;
3207}
3208/**
3209 * e1000_set_mac - Change the Ethernet Address of the NIC
3210 * @netdev: network interface device structure
3211 * @p: pointer to an address structure
3212 *
3213 * Returns 0 on success, negative on failure
3214 **/
3215static int e1000_set_mac(struct net_device *netdev, void *p)
3216{
3217 struct e1000_adapter *adapter = netdev_priv(netdev);
3218 struct sockaddr *addr = p;
3219
3220 if (!is_valid_ether_addr(addr->sa_data))
3221 return -EADDRNOTAVAIL;
3222
3223 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3224 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3225
3226 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3227
3228 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3229 /* activate the work around */
3230 e1000e_set_laa_state_82571(&adapter->hw, 1);
3231
ad68076e
BA
3232 /*
3233 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3234 * between the time RAR[0] gets clobbered and the time it
3235 * gets fixed (in e1000_watchdog), the actual LAA is in one
3236 * of the RARs and no incoming packets directed to this port
3237 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3238 * RAR[14]
3239 */
bc7f75fa
AK
3240 e1000e_rar_set(&adapter->hw,
3241 adapter->hw.mac.addr,
3242 adapter->hw.mac.rar_entry_count - 1);
3243 }
3244
3245 return 0;
3246}
3247
a8f88ff5
JB
3248/**
3249 * e1000e_update_phy_task - work thread to update phy
3250 * @work: pointer to our work struct
3251 *
3252 * this worker thread exists because we must acquire a
3253 * semaphore to read the phy, which we could msleep while
3254 * waiting for it, and we can't msleep in a timer.
3255 **/
3256static void e1000e_update_phy_task(struct work_struct *work)
3257{
3258 struct e1000_adapter *adapter = container_of(work,
3259 struct e1000_adapter, update_phy_task);
3260 e1000_get_phy_info(&adapter->hw);
3261}
3262
ad68076e
BA
3263/*
3264 * Need to wait a few seconds after link up to get diagnostic information from
3265 * the phy
3266 */
bc7f75fa
AK
3267static void e1000_update_phy_info(unsigned long data)
3268{
3269 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3270 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3271}
3272
3273/**
3274 * e1000e_update_stats - Update the board statistics counters
3275 * @adapter: board private structure
3276 **/
3277void e1000e_update_stats(struct e1000_adapter *adapter)
3278{
7274c20f 3279 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
3280 struct e1000_hw *hw = &adapter->hw;
3281 struct pci_dev *pdev = adapter->pdev;
a4f58f54 3282 u16 phy_data;
bc7f75fa
AK
3283
3284 /*
3285 * Prevent stats update while adapter is being reset, or if the pci
3286 * connection is down.
3287 */
3288 if (adapter->link_speed == 0)
3289 return;
3290 if (pci_channel_offline(pdev))
3291 return;
3292
bc7f75fa
AK
3293 adapter->stats.crcerrs += er32(CRCERRS);
3294 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3295 adapter->stats.gorc += er32(GORCL);
3296 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3297 adapter->stats.bprc += er32(BPRC);
3298 adapter->stats.mprc += er32(MPRC);
3299 adapter->stats.roc += er32(ROC);
3300
bc7f75fa 3301 adapter->stats.mpc += er32(MPC);
a4f58f54
BA
3302 if ((hw->phy.type == e1000_phy_82578) ||
3303 (hw->phy.type == e1000_phy_82577)) {
3304 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
29477e24
BA
3305 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3306 adapter->stats.scc += phy_data;
a4f58f54
BA
3307
3308 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
29477e24
BA
3309 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3310 adapter->stats.ecol += phy_data;
a4f58f54
BA
3311
3312 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
29477e24
BA
3313 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3314 adapter->stats.mcc += phy_data;
a4f58f54
BA
3315
3316 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
29477e24
BA
3317 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3318 adapter->stats.latecol += phy_data;
a4f58f54
BA
3319
3320 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
29477e24
BA
3321 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3322 adapter->stats.dc += phy_data;
a4f58f54
BA
3323 } else {
3324 adapter->stats.scc += er32(SCC);
3325 adapter->stats.ecol += er32(ECOL);
3326 adapter->stats.mcc += er32(MCC);
3327 adapter->stats.latecol += er32(LATECOL);
3328 adapter->stats.dc += er32(DC);
3329 }
bc7f75fa
AK
3330 adapter->stats.xonrxc += er32(XONRXC);
3331 adapter->stats.xontxc += er32(XONTXC);
3332 adapter->stats.xoffrxc += er32(XOFFRXC);
3333 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3334 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3335 adapter->stats.gotc += er32(GOTCL);
3336 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3337 adapter->stats.rnbc += er32(RNBC);
3338 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3339
3340 adapter->stats.mptc += er32(MPTC);
3341 adapter->stats.bptc += er32(BPTC);
3342
3343 /* used for adaptive IFS */
3344
3345 hw->mac.tx_packet_delta = er32(TPT);
3346 adapter->stats.tpt += hw->mac.tx_packet_delta;
a4f58f54
BA
3347 if ((hw->phy.type == e1000_phy_82578) ||
3348 (hw->phy.type == e1000_phy_82577)) {
3349 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
29477e24
BA
3350 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3351 hw->mac.collision_delta = phy_data;
a4f58f54
BA
3352 } else {
3353 hw->mac.collision_delta = er32(COLC);
3354 }
bc7f75fa
AK
3355 adapter->stats.colc += hw->mac.collision_delta;
3356
3357 adapter->stats.algnerrc += er32(ALGNERRC);
3358 adapter->stats.rxerrc += er32(RXERRC);
a4f58f54
BA
3359 if ((hw->phy.type == e1000_phy_82578) ||
3360 (hw->phy.type == e1000_phy_82577)) {
3361 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
29477e24
BA
3362 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3363 adapter->stats.tncrs += phy_data;
a4f58f54
BA
3364 } else {
3365 if ((hw->mac.type != e1000_82574) &&
3366 (hw->mac.type != e1000_82583))
3367 adapter->stats.tncrs += er32(TNCRS);
3368 }
bc7f75fa
AK
3369 adapter->stats.cexterr += er32(CEXTERR);
3370 adapter->stats.tsctc += er32(TSCTC);
3371 adapter->stats.tsctfc += er32(TSCTFC);
3372
bc7f75fa 3373 /* Fill out the OS statistics structure */
7274c20f
AK
3374 netdev->stats.multicast = adapter->stats.mprc;
3375 netdev->stats.collisions = adapter->stats.colc;
bc7f75fa
AK
3376
3377 /* Rx Errors */
3378
ad68076e
BA
3379 /*
3380 * RLEC on some newer hardware can be incorrect so build
3381 * our own version based on RUC and ROC
3382 */
7274c20f 3383 netdev->stats.rx_errors = adapter->stats.rxerrc +
bc7f75fa
AK
3384 adapter->stats.crcerrs + adapter->stats.algnerrc +
3385 adapter->stats.ruc + adapter->stats.roc +
3386 adapter->stats.cexterr;
7274c20f 3387 netdev->stats.rx_length_errors = adapter->stats.ruc +
bc7f75fa 3388 adapter->stats.roc;
7274c20f
AK
3389 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3390 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3391 netdev->stats.rx_missed_errors = adapter->stats.mpc;
bc7f75fa
AK
3392
3393 /* Tx Errors */
7274c20f 3394 netdev->stats.tx_errors = adapter->stats.ecol +
bc7f75fa 3395 adapter->stats.latecol;
7274c20f
AK
3396 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3397 netdev->stats.tx_window_errors = adapter->stats.latecol;
3398 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
bc7f75fa
AK
3399
3400 /* Tx Dropped needs to be maintained elsewhere */
3401
bc7f75fa
AK
3402 /* Management Stats */
3403 adapter->stats.mgptc += er32(MGTPTC);
3404 adapter->stats.mgprc += er32(MGTPRC);
3405 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3406}
3407
7c25769f
BA
3408/**
3409 * e1000_phy_read_status - Update the PHY register status snapshot
3410 * @adapter: board private structure
3411 **/
3412static void e1000_phy_read_status(struct e1000_adapter *adapter)
3413{
3414 struct e1000_hw *hw = &adapter->hw;
3415 struct e1000_phy_regs *phy = &adapter->phy_regs;
3416 int ret_val;
7c25769f
BA
3417
3418 if ((er32(STATUS) & E1000_STATUS_LU) &&
3419 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3420 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3421 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3422 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3423 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3424 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3425 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3426 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3427 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3428 if (ret_val)
44defeb3 3429 e_warn("Error reading PHY register\n");
7c25769f
BA
3430 } else {
3431 /*
3432 * Do not read PHY registers if link is not up
3433 * Set values to typical power-on defaults
3434 */
3435 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3436 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3437 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3438 BMSR_ERCAP);
3439 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3440 ADVERTISE_ALL | ADVERTISE_CSMA);
3441 phy->lpa = 0;
3442 phy->expansion = EXPANSION_ENABLENPAGE;
3443 phy->ctrl1000 = ADVERTISE_1000FULL;
3444 phy->stat1000 = 0;
3445 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3446 }
7c25769f
BA
3447}
3448
bc7f75fa
AK
3449static void e1000_print_link_info(struct e1000_adapter *adapter)
3450{
bc7f75fa
AK
3451 struct e1000_hw *hw = &adapter->hw;
3452 u32 ctrl = er32(CTRL);
3453
8f12fe86
BA
3454 /* Link status message must follow this format for user tools */
3455 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3456 "Flow Control: %s\n",
3457 adapter->netdev->name,
44defeb3
JK
3458 adapter->link_speed,
3459 (adapter->link_duplex == FULL_DUPLEX) ?
3460 "Full Duplex" : "Half Duplex",
3461 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3462 "RX/TX" :
3463 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3464 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3465}
3466
b405e8df 3467bool e1000e_has_link(struct e1000_adapter *adapter)
318a94d6
JK
3468{
3469 struct e1000_hw *hw = &adapter->hw;
3470 bool link_active = 0;
3471 s32 ret_val = 0;
3472
3473 /*
3474 * get_link_status is set on LSC (link status) interrupt or
3475 * Rx sequence error interrupt. get_link_status will stay
3476 * false until the check_for_link establishes link
3477 * for copper adapters ONLY
3478 */
3479 switch (hw->phy.media_type) {
3480 case e1000_media_type_copper:
3481 if (hw->mac.get_link_status) {
3482 ret_val = hw->mac.ops.check_for_link(hw);
3483 link_active = !hw->mac.get_link_status;
3484 } else {
3485 link_active = 1;
3486 }
3487 break;
3488 case e1000_media_type_fiber:
3489 ret_val = hw->mac.ops.check_for_link(hw);
3490 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3491 break;
3492 case e1000_media_type_internal_serdes:
3493 ret_val = hw->mac.ops.check_for_link(hw);
3494 link_active = adapter->hw.mac.serdes_has_link;
3495 break;
3496 default:
3497 case e1000_media_type_unknown:
3498 break;
3499 }
3500
3501 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3502 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3503 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3504 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3505 }
3506
3507 return link_active;
3508}
3509
3510static void e1000e_enable_receives(struct e1000_adapter *adapter)
3511{
3512 /* make sure the receive unit is started */
3513 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3514 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3515 struct e1000_hw *hw = &adapter->hw;
3516 u32 rctl = er32(RCTL);
3517 ew32(RCTL, rctl | E1000_RCTL_EN);
3518 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3519 }
3520}
3521
bc7f75fa
AK
3522/**
3523 * e1000_watchdog - Timer Call-back
3524 * @data: pointer to adapter cast into an unsigned long
3525 **/
3526static void e1000_watchdog(unsigned long data)
3527{
3528 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3529
3530 /* Do the rest outside of interrupt context */
3531 schedule_work(&adapter->watchdog_task);
3532
3533 /* TODO: make this use queue_delayed_work() */
3534}
3535
3536static void e1000_watchdog_task(struct work_struct *work)
3537{
3538 struct e1000_adapter *adapter = container_of(work,
3539 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3540 struct net_device *netdev = adapter->netdev;
3541 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 3542 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa
AK
3543 struct e1000_ring *tx_ring = adapter->tx_ring;
3544 struct e1000_hw *hw = &adapter->hw;
3545 u32 link, tctl;
bc7f75fa
AK
3546 int tx_pending = 0;
3547
b405e8df 3548 link = e1000e_has_link(adapter);
318a94d6
JK
3549 if ((netif_carrier_ok(netdev)) && link) {
3550 e1000e_enable_receives(adapter);
bc7f75fa 3551 goto link_up;
bc7f75fa
AK
3552 }
3553
3554 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3555 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3556 e1000_update_mng_vlan(adapter);
3557
bc7f75fa
AK
3558 if (link) {
3559 if (!netif_carrier_ok(netdev)) {
3560 bool txb2b = 1;
318a94d6 3561 /* update snapshot of PHY registers on LSC */
7c25769f 3562 e1000_phy_read_status(adapter);
bc7f75fa
AK
3563 mac->ops.get_link_up_info(&adapter->hw,
3564 &adapter->link_speed,
3565 &adapter->link_duplex);
3566 e1000_print_link_info(adapter);
f4187b56
BA
3567 /*
3568 * On supported PHYs, check for duplex mismatch only
3569 * if link has autonegotiated at 10/100 half
3570 */
3571 if ((hw->phy.type == e1000_phy_igp_3 ||
3572 hw->phy.type == e1000_phy_bm) &&
3573 (hw->mac.autoneg == true) &&
3574 (adapter->link_speed == SPEED_10 ||
3575 adapter->link_speed == SPEED_100) &&
3576 (adapter->link_duplex == HALF_DUPLEX)) {
3577 u16 autoneg_exp;
3578
3579 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3580
3581 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3582 e_info("Autonegotiated half duplex but"
3583 " link partner cannot autoneg. "
3584 " Try forcing full duplex if "
3585 "link gets many collisions.\n");
3586 }
3587
f49c57e1 3588 /* adjust timeout factor according to speed/duplex */
bc7f75fa
AK
3589 adapter->tx_timeout_factor = 1;
3590 switch (adapter->link_speed) {
3591 case SPEED_10:
3592 txb2b = 0;
10f1b492 3593 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3594 break;
3595 case SPEED_100:
3596 txb2b = 0;
4c86e0b9 3597 adapter->tx_timeout_factor = 10;
bc7f75fa
AK
3598 break;
3599 }
3600
ad68076e
BA
3601 /*
3602 * workaround: re-program speed mode bit after
3603 * link-up event
3604 */
bc7f75fa
AK
3605 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3606 !txb2b) {
3607 u32 tarc0;
e9ec2c0f 3608 tarc0 = er32(TARC(0));
bc7f75fa 3609 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3610 ew32(TARC(0), tarc0);
bc7f75fa
AK
3611 }
3612
ad68076e
BA
3613 /*
3614 * disable TSO for pcie and 10/100 speeds, to avoid
3615 * some hardware issues
3616 */
bc7f75fa
AK
3617 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3618 switch (adapter->link_speed) {
3619 case SPEED_10:
3620 case SPEED_100:
44defeb3 3621 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3622 netdev->features &= ~NETIF_F_TSO;
3623 netdev->features &= ~NETIF_F_TSO6;
3624 break;
3625 case SPEED_1000:
3626 netdev->features |= NETIF_F_TSO;
3627 netdev->features |= NETIF_F_TSO6;
3628 break;
3629 default:
3630 /* oops */
3631 break;
3632 }
3633 }
3634
ad68076e
BA
3635 /*
3636 * enable transmits in the hardware, need to do this
3637 * after setting TARC(0)
3638 */
bc7f75fa
AK
3639 tctl = er32(TCTL);
3640 tctl |= E1000_TCTL_EN;
3641 ew32(TCTL, tctl);
3642
75eb0fad
BA
3643 /*
3644 * Perform any post-link-up configuration before
3645 * reporting link up.
3646 */
3647 if (phy->ops.cfg_on_link_up)
3648 phy->ops.cfg_on_link_up(hw);
3649
bc7f75fa 3650 netif_carrier_on(netdev);
bc7f75fa
AK
3651
3652 if (!test_bit(__E1000_DOWN, &adapter->state))
3653 mod_timer(&adapter->phy_info_timer,
3654 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3655 }
3656 } else {
3657 if (netif_carrier_ok(netdev)) {
3658 adapter->link_speed = 0;
3659 adapter->link_duplex = 0;
8f12fe86
BA
3660 /* Link status message must follow this format */
3661 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3662 adapter->netdev->name);
bc7f75fa 3663 netif_carrier_off(netdev);
bc7f75fa
AK
3664 if (!test_bit(__E1000_DOWN, &adapter->state))
3665 mod_timer(&adapter->phy_info_timer,
3666 round_jiffies(jiffies + 2 * HZ));
3667
3668 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3669 schedule_work(&adapter->reset_task);
3670 }
3671 }
3672
3673link_up:
3674 e1000e_update_stats(adapter);
3675
3676 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3677 adapter->tpt_old = adapter->stats.tpt;
3678 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3679 adapter->colc_old = adapter->stats.colc;
3680
7c25769f
BA
3681 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3682 adapter->gorc_old = adapter->stats.gorc;
3683 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3684 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3685
3686 e1000e_update_adaptive(&adapter->hw);
3687
3688 if (!netif_carrier_ok(netdev)) {
3689 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3690 tx_ring->count);
3691 if (tx_pending) {
ad68076e
BA
3692 /*
3693 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3694 * but we've got queued Tx work that's never going
3695 * to get done, so reset controller to flush Tx.
ad68076e
BA
3696 * (Do the reset outside of interrupt context).
3697 */
bc7f75fa
AK
3698 adapter->tx_timeout_count++;
3699 schedule_work(&adapter->reset_task);
c2d5ab49
JB
3700 /* return immediately since reset is imminent */
3701 return;
bc7f75fa
AK
3702 }
3703 }
3704
ad68076e 3705 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3706 if (adapter->msix_entries)
3707 ew32(ICS, adapter->rx_ring->ims_val);
3708 else
3709 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3710
3711 /* Force detection of hung controller every watchdog period */
3712 adapter->detect_tx_hung = 1;
3713
ad68076e
BA
3714 /*
3715 * With 82571 controllers, LAA may be overwritten due to controller
3716 * reset from the other port. Set the appropriate LAA in RAR[0]
3717 */
bc7f75fa
AK
3718 if (e1000e_get_laa_state_82571(hw))
3719 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3720
3721 /* Reset the timer */
3722 if (!test_bit(__E1000_DOWN, &adapter->state))
3723 mod_timer(&adapter->watchdog_timer,
3724 round_jiffies(jiffies + 2 * HZ));
3725}
3726
3727#define E1000_TX_FLAGS_CSUM 0x00000001
3728#define E1000_TX_FLAGS_VLAN 0x00000002
3729#define E1000_TX_FLAGS_TSO 0x00000004
3730#define E1000_TX_FLAGS_IPV4 0x00000008
3731#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3732#define E1000_TX_FLAGS_VLAN_SHIFT 16
3733
3734static int e1000_tso(struct e1000_adapter *adapter,
3735 struct sk_buff *skb)
3736{
3737 struct e1000_ring *tx_ring = adapter->tx_ring;
3738 struct e1000_context_desc *context_desc;
3739 struct e1000_buffer *buffer_info;
3740 unsigned int i;
3741 u32 cmd_length = 0;
3742 u16 ipcse = 0, tucse, mss;
3743 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3744 int err;
3745
3d5e33c9
BA
3746 if (!skb_is_gso(skb))
3747 return 0;
bc7f75fa 3748
3d5e33c9
BA
3749 if (skb_header_cloned(skb)) {
3750 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3751 if (err)
3752 return err;
bc7f75fa
AK
3753 }
3754
3d5e33c9
BA
3755 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3756 mss = skb_shinfo(skb)->gso_size;
3757 if (skb->protocol == htons(ETH_P_IP)) {
3758 struct iphdr *iph = ip_hdr(skb);
3759 iph->tot_len = 0;
3760 iph->check = 0;
3761 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3762 0, IPPROTO_TCP, 0);
3763 cmd_length = E1000_TXD_CMD_IP;
3764 ipcse = skb_transport_offset(skb) - 1;
8e1e8a47 3765 } else if (skb_is_gso_v6(skb)) {
3d5e33c9
BA
3766 ipv6_hdr(skb)->payload_len = 0;
3767 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3768 &ipv6_hdr(skb)->daddr,
3769 0, IPPROTO_TCP, 0);
3770 ipcse = 0;
3771 }
3772 ipcss = skb_network_offset(skb);
3773 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3774 tucss = skb_transport_offset(skb);
3775 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3776 tucse = 0;
3777
3778 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3779 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3780
3781 i = tx_ring->next_to_use;
3782 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3783 buffer_info = &tx_ring->buffer_info[i];
3784
3785 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3786 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3787 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3788 context_desc->upper_setup.tcp_fields.tucss = tucss;
3789 context_desc->upper_setup.tcp_fields.tucso = tucso;
3790 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3791 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3792 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3793 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3794
3795 buffer_info->time_stamp = jiffies;
3796 buffer_info->next_to_watch = i;
3797
3798 i++;
3799 if (i == tx_ring->count)
3800 i = 0;
3801 tx_ring->next_to_use = i;
3802
3803 return 1;
bc7f75fa
AK
3804}
3805
3806static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3807{
3808 struct e1000_ring *tx_ring = adapter->tx_ring;
3809 struct e1000_context_desc *context_desc;
3810 struct e1000_buffer *buffer_info;
3811 unsigned int i;
3812 u8 css;
af807c82 3813 u32 cmd_len = E1000_TXD_CMD_DEXT;
5f66f208 3814 __be16 protocol;
bc7f75fa 3815
af807c82
DG
3816 if (skb->ip_summed != CHECKSUM_PARTIAL)
3817 return 0;
bc7f75fa 3818
5f66f208
AJ
3819 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3820 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3821 else
3822 protocol = skb->protocol;
3823
3f518390 3824 switch (protocol) {
09640e63 3825 case cpu_to_be16(ETH_P_IP):
af807c82
DG
3826 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3827 cmd_len |= E1000_TXD_CMD_TCP;
3828 break;
09640e63 3829 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
3830 /* XXX not handling all IPV6 headers */
3831 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3832 cmd_len |= E1000_TXD_CMD_TCP;
3833 break;
3834 default:
3835 if (unlikely(net_ratelimit()))
5f66f208
AJ
3836 e_warn("checksum_partial proto=%x!\n",
3837 be16_to_cpu(protocol));
af807c82 3838 break;
bc7f75fa
AK
3839 }
3840
af807c82
DG
3841 css = skb_transport_offset(skb);
3842
3843 i = tx_ring->next_to_use;
3844 buffer_info = &tx_ring->buffer_info[i];
3845 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3846
3847 context_desc->lower_setup.ip_config = 0;
3848 context_desc->upper_setup.tcp_fields.tucss = css;
3849 context_desc->upper_setup.tcp_fields.tucso =
3850 css + skb->csum_offset;
3851 context_desc->upper_setup.tcp_fields.tucse = 0;
3852 context_desc->tcp_seg_setup.data = 0;
3853 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3854
3855 buffer_info->time_stamp = jiffies;
3856 buffer_info->next_to_watch = i;
3857
3858 i++;
3859 if (i == tx_ring->count)
3860 i = 0;
3861 tx_ring->next_to_use = i;
3862
3863 return 1;
bc7f75fa
AK
3864}
3865
3866#define E1000_MAX_PER_TXD 8192
3867#define E1000_MAX_TXD_PWR 12
3868
3869static int e1000_tx_map(struct e1000_adapter *adapter,
3870 struct sk_buff *skb, unsigned int first,
3871 unsigned int max_per_txd, unsigned int nr_frags,
3872 unsigned int mss)
3873{
3874 struct e1000_ring *tx_ring = adapter->tx_ring;
03b1320d 3875 struct pci_dev *pdev = adapter->pdev;
1b7719c4 3876 struct e1000_buffer *buffer_info;
8ddc951c 3877 unsigned int len = skb_headlen(skb);
03b1320d 3878 unsigned int offset = 0, size, count = 0, i;
bc7f75fa
AK
3879 unsigned int f;
3880
3881 i = tx_ring->next_to_use;
3882
3883 while (len) {
1b7719c4 3884 buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
3885 size = min(len, max_per_txd);
3886
bc7f75fa 3887 buffer_info->length = size;
bc7f75fa 3888 buffer_info->time_stamp = jiffies;
bc7f75fa 3889 buffer_info->next_to_watch = i;
03b1320d
AD
3890 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
3891 size, PCI_DMA_TODEVICE);
3892 buffer_info->mapped_as_page = false;
3893 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3894 goto dma_error;
bc7f75fa
AK
3895
3896 len -= size;
3897 offset += size;
03b1320d 3898 count++;
1b7719c4
AD
3899
3900 if (len) {
3901 i++;
3902 if (i == tx_ring->count)
3903 i = 0;
3904 }
bc7f75fa
AK
3905 }
3906
3907 for (f = 0; f < nr_frags; f++) {
3908 struct skb_frag_struct *frag;
3909
3910 frag = &skb_shinfo(skb)->frags[f];
3911 len = frag->size;
03b1320d 3912 offset = frag->page_offset;
bc7f75fa
AK
3913
3914 while (len) {
1b7719c4
AD
3915 i++;
3916 if (i == tx_ring->count)
3917 i = 0;
3918
bc7f75fa
AK
3919 buffer_info = &tx_ring->buffer_info[i];
3920 size = min(len, max_per_txd);
bc7f75fa
AK
3921
3922 buffer_info->length = size;
3923 buffer_info->time_stamp = jiffies;
bc7f75fa 3924 buffer_info->next_to_watch = i;
03b1320d
AD
3925 buffer_info->dma = pci_map_page(pdev, frag->page,
3926 offset, size,
3927 PCI_DMA_TODEVICE);
3928 buffer_info->mapped_as_page = true;
3929 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3930 goto dma_error;
bc7f75fa
AK
3931
3932 len -= size;
3933 offset += size;
3934 count++;
bc7f75fa
AK
3935 }
3936 }
3937
bc7f75fa
AK
3938 tx_ring->buffer_info[i].skb = skb;
3939 tx_ring->buffer_info[first].next_to_watch = i;
3940
3941 return count;
03b1320d
AD
3942
3943dma_error:
3944 dev_err(&pdev->dev, "TX DMA map failed\n");
3945 buffer_info->dma = 0;
c1fa347f 3946 if (count)
03b1320d 3947 count--;
c1fa347f
RK
3948
3949 while (count--) {
3950 if (i==0)
03b1320d 3951 i += tx_ring->count;
c1fa347f 3952 i--;
03b1320d
AD
3953 buffer_info = &tx_ring->buffer_info[i];
3954 e1000_put_txbuf(adapter, buffer_info);;
3955 }
3956
3957 return 0;
bc7f75fa
AK
3958}
3959
3960static void e1000_tx_queue(struct e1000_adapter *adapter,
3961 int tx_flags, int count)
3962{
3963 struct e1000_ring *tx_ring = adapter->tx_ring;
3964 struct e1000_tx_desc *tx_desc = NULL;
3965 struct e1000_buffer *buffer_info;
3966 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3967 unsigned int i;
3968
3969 if (tx_flags & E1000_TX_FLAGS_TSO) {
3970 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3971 E1000_TXD_CMD_TSE;
3972 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3973
3974 if (tx_flags & E1000_TX_FLAGS_IPV4)
3975 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3976 }
3977
3978 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3979 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3980 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3981 }
3982
3983 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3984 txd_lower |= E1000_TXD_CMD_VLE;
3985 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3986 }
3987
3988 i = tx_ring->next_to_use;
3989
3990 while (count--) {
3991 buffer_info = &tx_ring->buffer_info[i];
3992 tx_desc = E1000_TX_DESC(*tx_ring, i);
3993 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3994 tx_desc->lower.data =
3995 cpu_to_le32(txd_lower | buffer_info->length);
3996 tx_desc->upper.data = cpu_to_le32(txd_upper);
3997
3998 i++;
3999 if (i == tx_ring->count)
4000 i = 0;
4001 }
4002
4003 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4004
ad68076e
BA
4005 /*
4006 * Force memory writes to complete before letting h/w
bc7f75fa
AK
4007 * know there are new descriptors to fetch. (Only
4008 * applicable for weak-ordered memory model archs,
ad68076e
BA
4009 * such as IA-64).
4010 */
bc7f75fa
AK
4011 wmb();
4012
4013 tx_ring->next_to_use = i;
4014 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
4015 /*
4016 * we need this if more than one processor can write to our tail
4017 * at a time, it synchronizes IO on IA64/Altix systems
4018 */
bc7f75fa
AK
4019 mmiowb();
4020}
4021
4022#define MINIMUM_DHCP_PACKET_SIZE 282
4023static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4024 struct sk_buff *skb)
4025{
4026 struct e1000_hw *hw = &adapter->hw;
4027 u16 length, offset;
4028
4029 if (vlan_tx_tag_present(skb)) {
8e95a202
JP
4030 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4031 (adapter->hw.mng_cookie.status &
bc7f75fa
AK
4032 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4033 return 0;
4034 }
4035
4036 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4037 return 0;
4038
4039 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4040 return 0;
4041
4042 {
4043 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4044 struct udphdr *udp;
4045
4046 if (ip->protocol != IPPROTO_UDP)
4047 return 0;
4048
4049 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4050 if (ntohs(udp->dest) != 67)
4051 return 0;
4052
4053 offset = (u8 *)udp + 8 - skb->data;
4054 length = skb->len - offset;
4055 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4056 }
4057
4058 return 0;
4059}
4060
4061static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4062{
4063 struct e1000_adapter *adapter = netdev_priv(netdev);
4064
4065 netif_stop_queue(netdev);
ad68076e
BA
4066 /*
4067 * Herbert's original patch had:
bc7f75fa 4068 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4069 * but since that doesn't exist yet, just open code it.
4070 */
bc7f75fa
AK
4071 smp_mb();
4072
ad68076e
BA
4073 /*
4074 * We need to check again in a case another CPU has just
4075 * made room available.
4076 */
bc7f75fa
AK
4077 if (e1000_desc_unused(adapter->tx_ring) < size)
4078 return -EBUSY;
4079
4080 /* A reprieve! */
4081 netif_start_queue(netdev);
4082 ++adapter->restart_queue;
4083 return 0;
4084}
4085
4086static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4087{
4088 struct e1000_adapter *adapter = netdev_priv(netdev);
4089
4090 if (e1000_desc_unused(adapter->tx_ring) >= size)
4091 return 0;
4092 return __e1000_maybe_stop_tx(netdev, size);
4093}
4094
4095#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3b29a56d
SH
4096static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4097 struct net_device *netdev)
bc7f75fa
AK
4098{
4099 struct e1000_adapter *adapter = netdev_priv(netdev);
4100 struct e1000_ring *tx_ring = adapter->tx_ring;
4101 unsigned int first;
4102 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4103 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4104 unsigned int tx_flags = 0;
4e6c709c 4105 unsigned int len = skb->len - skb->data_len;
4e6c709c
AK
4106 unsigned int nr_frags;
4107 unsigned int mss;
bc7f75fa
AK
4108 int count = 0;
4109 int tso;
4110 unsigned int f;
bc7f75fa
AK
4111
4112 if (test_bit(__E1000_DOWN, &adapter->state)) {
4113 dev_kfree_skb_any(skb);
4114 return NETDEV_TX_OK;
4115 }
4116
4117 if (skb->len <= 0) {
4118 dev_kfree_skb_any(skb);
4119 return NETDEV_TX_OK;
4120 }
4121
4122 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4123 /*
4124 * The controller does a simple calculation to
bc7f75fa
AK
4125 * make sure there is enough room in the FIFO before
4126 * initiating the DMA for each buffer. The calc is:
4127 * 4 = ceil(buffer len/mss). To make sure we don't
4128 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4129 * drops.
4130 */
bc7f75fa
AK
4131 if (mss) {
4132 u8 hdr_len;
4133 max_per_txd = min(mss << 2, max_per_txd);
4134 max_txd_pwr = fls(max_per_txd) - 1;
4135
ad68076e
BA
4136 /*
4137 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4138 * points to just header, pull a few bytes of payload from
4139 * frags into skb->data
4140 */
bc7f75fa 4141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4142 /*
4143 * we do this workaround for ES2LAN, but it is un-necessary,
4144 * avoiding it could save a lot of cycles
4145 */
4e6c709c 4146 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4147 unsigned int pull_size;
4148
4149 pull_size = min((unsigned int)4, skb->data_len);
4150 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4151 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4152 dev_kfree_skb_any(skb);
4153 return NETDEV_TX_OK;
4154 }
4155 len = skb->len - skb->data_len;
4156 }
4157 }
4158
4159 /* reserve a descriptor for the offload context */
4160 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4161 count++;
4162 count++;
4163
4164 count += TXD_USE_COUNT(len, max_txd_pwr);
4165
4166 nr_frags = skb_shinfo(skb)->nr_frags;
4167 for (f = 0; f < nr_frags; f++)
4168 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4169 max_txd_pwr);
4170
4171 if (adapter->hw.mac.tx_pkt_filtering)
4172 e1000_transfer_dhcp_info(adapter, skb);
4173
ad68076e
BA
4174 /*
4175 * need: count + 2 desc gap to keep tail from touching
4176 * head, otherwise try next time
4177 */
92af3e95 4178 if (e1000_maybe_stop_tx(netdev, count + 2))
bc7f75fa 4179 return NETDEV_TX_BUSY;
bc7f75fa
AK
4180
4181 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4182 tx_flags |= E1000_TX_FLAGS_VLAN;
4183 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4184 }
4185
4186 first = tx_ring->next_to_use;
4187
4188 tso = e1000_tso(adapter, skb);
4189 if (tso < 0) {
4190 dev_kfree_skb_any(skb);
bc7f75fa
AK
4191 return NETDEV_TX_OK;
4192 }
4193
4194 if (tso)
4195 tx_flags |= E1000_TX_FLAGS_TSO;
4196 else if (e1000_tx_csum(adapter, skb))
4197 tx_flags |= E1000_TX_FLAGS_CSUM;
4198
ad68076e
BA
4199 /*
4200 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4201 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4202 * no longer assume, we must.
4203 */
bc7f75fa
AK
4204 if (skb->protocol == htons(ETH_P_IP))
4205 tx_flags |= E1000_TX_FLAGS_IPV4;
4206
1b7719c4 4207 /* if count is 0 then mapping error has occured */
bc7f75fa 4208 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
1b7719c4
AD
4209 if (count) {
4210 e1000_tx_queue(adapter, tx_flags, count);
1b7719c4
AD
4211 /* Make sure there is space in the ring for the next send. */
4212 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4213
4214 } else {
bc7f75fa 4215 dev_kfree_skb_any(skb);
1b7719c4
AD
4216 tx_ring->buffer_info[first].time_stamp = 0;
4217 tx_ring->next_to_use = first;
bc7f75fa
AK
4218 }
4219
bc7f75fa
AK
4220 return NETDEV_TX_OK;
4221}
4222
4223/**
4224 * e1000_tx_timeout - Respond to a Tx Hang
4225 * @netdev: network interface device structure
4226 **/
4227static void e1000_tx_timeout(struct net_device *netdev)
4228{
4229 struct e1000_adapter *adapter = netdev_priv(netdev);
4230
4231 /* Do the reset outside of interrupt context */
4232 adapter->tx_timeout_count++;
4233 schedule_work(&adapter->reset_task);
4234}
4235
4236static void e1000_reset_task(struct work_struct *work)
4237{
4238 struct e1000_adapter *adapter;
4239 adapter = container_of(work, struct e1000_adapter, reset_task);
4240
4241 e1000e_reinit_locked(adapter);
4242}
4243
4244/**
4245 * e1000_get_stats - Get System Network Statistics
4246 * @netdev: network interface device structure
4247 *
4248 * Returns the address of the device statistics structure.
4249 * The statistics are actually updated from the timer callback.
4250 **/
4251static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4252{
bc7f75fa 4253 /* only return the current stats */
7274c20f 4254 return &netdev->stats;
bc7f75fa
AK
4255}
4256
4257/**
4258 * e1000_change_mtu - Change the Maximum Transfer Unit
4259 * @netdev: network interface device structure
4260 * @new_mtu: new value for maximum frame size
4261 *
4262 * Returns 0 on success, negative on failure
4263 **/
4264static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4265{
4266 struct e1000_adapter *adapter = netdev_priv(netdev);
4267 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4268
2adc55c9
BA
4269 /* Jumbo frame support */
4270 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4271 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4272 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4273 return -EINVAL;
4274 }
4275
2adc55c9
BA
4276 /* Supported frame sizes */
4277 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4278 (max_frame > adapter->max_hw_frame_size)) {
4279 e_err("Unsupported MTU setting\n");
bc7f75fa
AK
4280 return -EINVAL;
4281 }
4282
4283 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4284 msleep(1);
610c9928 4285 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
318a94d6 4286 adapter->max_frame_size = max_frame;
610c9928
BA
4287 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4288 netdev->mtu = new_mtu;
bc7f75fa
AK
4289 if (netif_running(netdev))
4290 e1000e_down(adapter);
4291
ad68076e
BA
4292 /*
4293 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4294 * means we reserve 2 more, this pushes us to allocate from the next
4295 * larger slab size.
ad68076e 4296 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4297 * However with the new *_jumbo_rx* routines, jumbo receives will use
4298 * fragmented skbs
ad68076e 4299 */
bc7f75fa 4300
9926146b 4301 if (max_frame <= 2048)
bc7f75fa
AK
4302 adapter->rx_buffer_len = 2048;
4303 else
4304 adapter->rx_buffer_len = 4096;
4305
4306 /* adjust allocation if LPE protects us, and we aren't using SBP */
4307 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4308 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4309 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4310 + ETH_FCS_LEN;
bc7f75fa 4311
bc7f75fa
AK
4312 if (netif_running(netdev))
4313 e1000e_up(adapter);
4314 else
4315 e1000e_reset(adapter);
4316
4317 clear_bit(__E1000_RESETTING, &adapter->state);
4318
4319 return 0;
4320}
4321
4322static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4323 int cmd)
4324{
4325 struct e1000_adapter *adapter = netdev_priv(netdev);
4326 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4327
318a94d6 4328 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4329 return -EOPNOTSUPP;
4330
4331 switch (cmd) {
4332 case SIOCGMIIPHY:
4333 data->phy_id = adapter->hw.phy.addr;
4334 break;
4335 case SIOCGMIIREG:
b16a002e
BA
4336 e1000_phy_read_status(adapter);
4337
7c25769f
BA
4338 switch (data->reg_num & 0x1F) {
4339 case MII_BMCR:
4340 data->val_out = adapter->phy_regs.bmcr;
4341 break;
4342 case MII_BMSR:
4343 data->val_out = adapter->phy_regs.bmsr;
4344 break;
4345 case MII_PHYSID1:
4346 data->val_out = (adapter->hw.phy.id >> 16);
4347 break;
4348 case MII_PHYSID2:
4349 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4350 break;
4351 case MII_ADVERTISE:
4352 data->val_out = adapter->phy_regs.advertise;
4353 break;
4354 case MII_LPA:
4355 data->val_out = adapter->phy_regs.lpa;
4356 break;
4357 case MII_EXPANSION:
4358 data->val_out = adapter->phy_regs.expansion;
4359 break;
4360 case MII_CTRL1000:
4361 data->val_out = adapter->phy_regs.ctrl1000;
4362 break;
4363 case MII_STAT1000:
4364 data->val_out = adapter->phy_regs.stat1000;
4365 break;
4366 case MII_ESTATUS:
4367 data->val_out = adapter->phy_regs.estatus;
4368 break;
4369 default:
bc7f75fa
AK
4370 return -EIO;
4371 }
bc7f75fa
AK
4372 break;
4373 case SIOCSMIIREG:
4374 default:
4375 return -EOPNOTSUPP;
4376 }
4377 return 0;
4378}
4379
4380static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4381{
4382 switch (cmd) {
4383 case SIOCGMIIPHY:
4384 case SIOCGMIIREG:
4385 case SIOCSMIIREG:
4386 return e1000_mii_ioctl(netdev, ifr, cmd);
4387 default:
4388 return -EOPNOTSUPP;
4389 }
4390}
4391
a4f58f54
BA
4392static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4393{
4394 struct e1000_hw *hw = &adapter->hw;
4395 u32 i, mac_reg;
4396 u16 phy_reg;
4397 int retval = 0;
4398
4399 /* copy MAC RARs to PHY RARs */
4400 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4401 mac_reg = er32(RAL(i));
4402 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4403 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4404 mac_reg = er32(RAH(i));
4405 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4406 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4407 }
4408
4409 /* copy MAC MTA to PHY MTA */
4410 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4411 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4412 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4413 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4414 }
4415
4416 /* configure PHY Rx Control register */
4417 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4418 mac_reg = er32(RCTL);
4419 if (mac_reg & E1000_RCTL_UPE)
4420 phy_reg |= BM_RCTL_UPE;
4421 if (mac_reg & E1000_RCTL_MPE)
4422 phy_reg |= BM_RCTL_MPE;
4423 phy_reg &= ~(BM_RCTL_MO_MASK);
4424 if (mac_reg & E1000_RCTL_MO_3)
4425 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4426 << BM_RCTL_MO_SHIFT);
4427 if (mac_reg & E1000_RCTL_BAM)
4428 phy_reg |= BM_RCTL_BAM;
4429 if (mac_reg & E1000_RCTL_PMCF)
4430 phy_reg |= BM_RCTL_PMCF;
4431 mac_reg = er32(CTRL);
4432 if (mac_reg & E1000_CTRL_RFCE)
4433 phy_reg |= BM_RCTL_RFCE;
4434 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4435
4436 /* enable PHY wakeup in MAC register */
4437 ew32(WUFC, wufc);
4438 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4439
4440 /* configure and enable PHY wakeup in PHY registers */
4441 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4442 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4443
4444 /* activate PHY wakeup */
94d8186a 4445 retval = hw->phy.ops.acquire(hw);
a4f58f54
BA
4446 if (retval) {
4447 e_err("Could not acquire PHY\n");
4448 return retval;
4449 }
4450 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4451 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4452 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4453 if (retval) {
4454 e_err("Could not read PHY page 769\n");
4455 goto out;
4456 }
4457 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4458 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4459 if (retval)
4460 e_err("Could not set PHY Host Wakeup bit\n");
4461out:
94d8186a 4462 hw->phy.ops.release(hw);
a4f58f54
BA
4463
4464 return retval;
4465}
4466
4f9de721 4467static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
bc7f75fa
AK
4468{
4469 struct net_device *netdev = pci_get_drvdata(pdev);
4470 struct e1000_adapter *adapter = netdev_priv(netdev);
4471 struct e1000_hw *hw = &adapter->hw;
4472 u32 ctrl, ctrl_ext, rctl, status;
4473 u32 wufc = adapter->wol;
4474 int retval = 0;
4475
4476 netif_device_detach(netdev);
4477
4478 if (netif_running(netdev)) {
4479 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4480 e1000e_down(adapter);
4481 e1000_free_irq(adapter);
4482 }
4662e82b 4483 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4484
4485 retval = pci_save_state(pdev);
4486 if (retval)
4487 return retval;
4488
4489 status = er32(STATUS);
4490 if (status & E1000_STATUS_LU)
4491 wufc &= ~E1000_WUFC_LNKC;
4492
4493 if (wufc) {
4494 e1000_setup_rctl(adapter);
4495 e1000_set_multi(netdev);
4496
4497 /* turn on all-multi mode if wake on multicast is enabled */
4498 if (wufc & E1000_WUFC_MC) {
4499 rctl = er32(RCTL);
4500 rctl |= E1000_RCTL_MPE;
4501 ew32(RCTL, rctl);
4502 }
4503
4504 ctrl = er32(CTRL);
4505 /* advertise wake from D3Cold */
4506 #define E1000_CTRL_ADVD3WUC 0x00100000
4507 /* phy power management enable */
4508 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
a4f58f54
BA
4509 ctrl |= E1000_CTRL_ADVD3WUC;
4510 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4511 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
bc7f75fa
AK
4512 ew32(CTRL, ctrl);
4513
318a94d6
JK
4514 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4515 adapter->hw.phy.media_type ==
4516 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4517 /* keep the laser running in D3 */
4518 ctrl_ext = er32(CTRL_EXT);
93a23f48 4519 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
bc7f75fa
AK
4520 ew32(CTRL_EXT, ctrl_ext);
4521 }
4522
97ac8cae
BA
4523 if (adapter->flags & FLAG_IS_ICH)
4524 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4525
bc7f75fa
AK
4526 /* Allow time for pending master requests to run */
4527 e1000e_disable_pcie_master(&adapter->hw);
4528
82776a4b 4529 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
a4f58f54
BA
4530 /* enable wakeup by the PHY */
4531 retval = e1000_init_phy_wakeup(adapter, wufc);
4532 if (retval)
4533 return retval;
4534 } else {
4535 /* enable wakeup by the MAC */
4536 ew32(WUFC, wufc);
4537 ew32(WUC, E1000_WUC_PME_EN);
4538 }
bc7f75fa
AK
4539 } else {
4540 ew32(WUC, 0);
4541 ew32(WUFC, 0);
bc7f75fa
AK
4542 }
4543
4f9de721
RW
4544 *enable_wake = !!wufc;
4545
bc7f75fa 4546 /* make sure adapter isn't asleep if manageability is enabled */
82776a4b
BA
4547 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4548 (hw->mac.ops.check_mng_mode(hw)))
4f9de721 4549 *enable_wake = true;
bc7f75fa
AK
4550
4551 if (adapter->hw.phy.type == e1000_phy_igp_3)
4552 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4553
ad68076e
BA
4554 /*
4555 * Release control of h/w to f/w. If f/w is AMT enabled, this
4556 * would have already happened in close and is redundant.
4557 */
bc7f75fa
AK
4558 e1000_release_hw_control(adapter);
4559
4560 pci_disable_device(pdev);
4561
4f9de721
RW
4562 return 0;
4563}
4564
4565static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4566{
4567 if (sleep && wake) {
4568 pci_prepare_to_sleep(pdev);
4569 return;
4570 }
4571
4572 pci_wake_from_d3(pdev, wake);
4573 pci_set_power_state(pdev, PCI_D3hot);
4574}
4575
4576static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4577 bool wake)
4578{
4579 struct net_device *netdev = pci_get_drvdata(pdev);
4580 struct e1000_adapter *adapter = netdev_priv(netdev);
4581
005cbdfc
AD
4582 /*
4583 * The pci-e switch on some quad port adapters will report a
4584 * correctable error when the MAC transitions from D0 to D3. To
4585 * prevent this we need to mask off the correctable errors on the
4586 * downstream port of the pci-e switch.
4587 */
4588 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4589 struct pci_dev *us_dev = pdev->bus->self;
4590 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4591 u16 devctl;
4592
4593 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4594 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4595 (devctl & ~PCI_EXP_DEVCTL_CERE));
4596
4f9de721 4597 e1000_power_off(pdev, sleep, wake);
005cbdfc
AD
4598
4599 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4600 } else {
4f9de721 4601 e1000_power_off(pdev, sleep, wake);
005cbdfc 4602 }
bc7f75fa
AK
4603}
4604
1eae4eb2
AK
4605static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4606{
4607 int pos;
1eae4eb2
AK
4608 u16 val;
4609
4610 /*
4611 * 82573 workaround - disable L1 ASPM on mobile chipsets
4612 *
4613 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4614 * resulting in lost data or garbage information on the pci-e link
4615 * level. This could result in (false) bad EEPROM checksum errors,
4616 * long ping times (up to 2s) or even a system freeze/hang.
4617 *
4618 * Unfortunately this feature saves about 1W power consumption when
4619 * active.
4620 */
4621 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4622 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4623 if (val & 0x2) {
4624 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4625 val &= ~0x2;
4626 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4627 }
4628}
4629
bc7f75fa 4630#ifdef CONFIG_PM
4f9de721
RW
4631static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4632{
4633 int retval;
4634 bool wake;
4635
4636 retval = __e1000_shutdown(pdev, &wake);
4637 if (!retval)
4638 e1000_complete_shutdown(pdev, true, wake);
4639
4640 return retval;
4641}
4642
bc7f75fa
AK
4643static int e1000_resume(struct pci_dev *pdev)
4644{
4645 struct net_device *netdev = pci_get_drvdata(pdev);
4646 struct e1000_adapter *adapter = netdev_priv(netdev);
4647 struct e1000_hw *hw = &adapter->hw;
4648 u32 err;
4649
4650 pci_set_power_state(pdev, PCI_D0);
4651 pci_restore_state(pdev);
28b8f04a 4652 pci_save_state(pdev);
1eae4eb2 4653 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4654
f0f422e5 4655 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4656 if (err) {
4657 dev_err(&pdev->dev,
4658 "Cannot enable PCI device from suspend\n");
4659 return err;
4660 }
4661
4662 pci_set_master(pdev);
4663
4664 pci_enable_wake(pdev, PCI_D3hot, 0);
4665 pci_enable_wake(pdev, PCI_D3cold, 0);
4666
4662e82b 4667 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4668 if (netif_running(netdev)) {
4669 err = e1000_request_irq(adapter);
4670 if (err)
4671 return err;
4672 }
4673
4674 e1000e_power_up_phy(adapter);
a4f58f54
BA
4675
4676 /* report the system wakeup cause from S3/S4 */
4677 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4678 u16 phy_data;
4679
4680 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4681 if (phy_data) {
4682 e_info("PHY Wakeup cause - %s\n",
4683 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4684 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4685 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4686 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4687 phy_data & E1000_WUS_LNKC ? "Link Status "
4688 " Change" : "other");
4689 }
4690 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4691 } else {
4692 u32 wus = er32(WUS);
4693 if (wus) {
4694 e_info("MAC Wakeup cause - %s\n",
4695 wus & E1000_WUS_EX ? "Unicast Packet" :
4696 wus & E1000_WUS_MC ? "Multicast Packet" :
4697 wus & E1000_WUS_BC ? "Broadcast Packet" :
4698 wus & E1000_WUS_MAG ? "Magic Packet" :
4699 wus & E1000_WUS_LNKC ? "Link Status Change" :
4700 "other");
4701 }
4702 ew32(WUS, ~0);
4703 }
4704
bc7f75fa 4705 e1000e_reset(adapter);
bc7f75fa
AK
4706
4707 e1000_init_manageability(adapter);
4708
4709 if (netif_running(netdev))
4710 e1000e_up(adapter);
4711
4712 netif_device_attach(netdev);
4713
ad68076e
BA
4714 /*
4715 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4716 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4717 * under the control of the driver.
4718 */
c43bc57e 4719 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4720 e1000_get_hw_control(adapter);
4721
4722 return 0;
4723}
4724#endif
4725
4726static void e1000_shutdown(struct pci_dev *pdev)
4727{
4f9de721
RW
4728 bool wake = false;
4729
4730 __e1000_shutdown(pdev, &wake);
4731
4732 if (system_state == SYSTEM_POWER_OFF)
4733 e1000_complete_shutdown(pdev, false, wake);
bc7f75fa
AK
4734}
4735
4736#ifdef CONFIG_NET_POLL_CONTROLLER
4737/*
4738 * Polling 'interrupt' - used by things like netconsole to send skbs
4739 * without having to re-enable interrupts. It's not called while
4740 * the interrupt routine is executing.
4741 */
4742static void e1000_netpoll(struct net_device *netdev)
4743{
4744 struct e1000_adapter *adapter = netdev_priv(netdev);
4745
4746 disable_irq(adapter->pdev->irq);
4747 e1000_intr(adapter->pdev->irq, netdev);
4748
bc7f75fa
AK
4749 enable_irq(adapter->pdev->irq);
4750}
4751#endif
4752
4753/**
4754 * e1000_io_error_detected - called when PCI error is detected
4755 * @pdev: Pointer to PCI device
4756 * @state: The current pci connection state
4757 *
4758 * This function is called after a PCI bus error affecting
4759 * this device has been detected.
4760 */
4761static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4762 pci_channel_state_t state)
4763{
4764 struct net_device *netdev = pci_get_drvdata(pdev);
4765 struct e1000_adapter *adapter = netdev_priv(netdev);
4766
4767 netif_device_detach(netdev);
4768
c93b5a76
MM
4769 if (state == pci_channel_io_perm_failure)
4770 return PCI_ERS_RESULT_DISCONNECT;
4771
bc7f75fa
AK
4772 if (netif_running(netdev))
4773 e1000e_down(adapter);
4774 pci_disable_device(pdev);
4775
4776 /* Request a slot slot reset. */
4777 return PCI_ERS_RESULT_NEED_RESET;
4778}
4779
4780/**
4781 * e1000_io_slot_reset - called after the pci bus has been reset.
4782 * @pdev: Pointer to PCI device
4783 *
4784 * Restart the card from scratch, as if from a cold-boot. Implementation
4785 * resembles the first-half of the e1000_resume routine.
4786 */
4787static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4788{
4789 struct net_device *netdev = pci_get_drvdata(pdev);
4790 struct e1000_adapter *adapter = netdev_priv(netdev);
4791 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4792 int err;
111b9dc5 4793 pci_ers_result_t result;
bc7f75fa 4794
1eae4eb2 4795 e1000e_disable_l1aspm(pdev);
f0f422e5 4796 err = pci_enable_device_mem(pdev);
6e4f6f6b 4797 if (err) {
bc7f75fa
AK
4798 dev_err(&pdev->dev,
4799 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
4800 result = PCI_ERS_RESULT_DISCONNECT;
4801 } else {
4802 pci_set_master(pdev);
4803 pci_restore_state(pdev);
28b8f04a 4804 pci_save_state(pdev);
bc7f75fa 4805
111b9dc5
JB
4806 pci_enable_wake(pdev, PCI_D3hot, 0);
4807 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 4808
111b9dc5
JB
4809 e1000e_reset(adapter);
4810 ew32(WUS, ~0);
4811 result = PCI_ERS_RESULT_RECOVERED;
4812 }
bc7f75fa 4813
111b9dc5
JB
4814 pci_cleanup_aer_uncorrect_error_status(pdev);
4815
4816 return result;
bc7f75fa
AK
4817}
4818
4819/**
4820 * e1000_io_resume - called when traffic can start flowing again.
4821 * @pdev: Pointer to PCI device
4822 *
4823 * This callback is called when the error recovery driver tells us that
4824 * its OK to resume normal operation. Implementation resembles the
4825 * second-half of the e1000_resume routine.
4826 */
4827static void e1000_io_resume(struct pci_dev *pdev)
4828{
4829 struct net_device *netdev = pci_get_drvdata(pdev);
4830 struct e1000_adapter *adapter = netdev_priv(netdev);
4831
4832 e1000_init_manageability(adapter);
4833
4834 if (netif_running(netdev)) {
4835 if (e1000e_up(adapter)) {
4836 dev_err(&pdev->dev,
4837 "can't bring device back up after reset\n");
4838 return;
4839 }
4840 }
4841
4842 netif_device_attach(netdev);
4843
ad68076e
BA
4844 /*
4845 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4846 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4847 * under the control of the driver.
4848 */
c43bc57e 4849 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4850 e1000_get_hw_control(adapter);
4851
4852}
4853
4854static void e1000_print_device_info(struct e1000_adapter *adapter)
4855{
4856 struct e1000_hw *hw = &adapter->hw;
4857 struct net_device *netdev = adapter->netdev;
69e3fd8c 4858 u32 pba_num;
bc7f75fa
AK
4859
4860 /* print bus type/speed/width info */
7c510e4b 4861 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
44defeb3
JK
4862 /* bus width */
4863 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4864 "Width x1"),
4865 /* MAC address */
7c510e4b 4866 netdev->dev_addr);
44defeb3
JK
4867 e_info("Intel(R) PRO/%s Network Connection\n",
4868 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4869 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4870 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4871 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4872}
4873
10aa4c04
AK
4874static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4875{
4876 struct e1000_hw *hw = &adapter->hw;
4877 int ret_val;
4878 u16 buf = 0;
4879
4880 if (hw->mac.type != e1000_82573)
4881 return;
4882
4883 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e243455d 4884 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
10aa4c04 4885 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4886 dev_warn(&adapter->pdev->dev,
4887 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4888 }
4889
4890 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
e243455d 4891 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
10aa4c04 4892 /* ASPM enable */
6c2a9efa
FP
4893 dev_warn(&adapter->pdev->dev,
4894 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4895 }
4896}
4897
651c2466
SH
4898static const struct net_device_ops e1000e_netdev_ops = {
4899 .ndo_open = e1000_open,
4900 .ndo_stop = e1000_close,
00829823 4901 .ndo_start_xmit = e1000_xmit_frame,
651c2466
SH
4902 .ndo_get_stats = e1000_get_stats,
4903 .ndo_set_multicast_list = e1000_set_multi,
4904 .ndo_set_mac_address = e1000_set_mac,
4905 .ndo_change_mtu = e1000_change_mtu,
4906 .ndo_do_ioctl = e1000_ioctl,
4907 .ndo_tx_timeout = e1000_tx_timeout,
4908 .ndo_validate_addr = eth_validate_addr,
4909
4910 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4911 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4912 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4913#ifdef CONFIG_NET_POLL_CONTROLLER
4914 .ndo_poll_controller = e1000_netpoll,
4915#endif
4916};
4917
bc7f75fa
AK
4918/**
4919 * e1000_probe - Device Initialization Routine
4920 * @pdev: PCI device information struct
4921 * @ent: entry in e1000_pci_tbl
4922 *
4923 * Returns 0 on success, negative on failure
4924 *
4925 * e1000_probe initializes an adapter identified by a pci_dev structure.
4926 * The OS initialization, configuring of the adapter private structure,
4927 * and a hardware reset occur.
4928 **/
4929static int __devinit e1000_probe(struct pci_dev *pdev,
4930 const struct pci_device_id *ent)
4931{
4932 struct net_device *netdev;
4933 struct e1000_adapter *adapter;
4934 struct e1000_hw *hw;
4935 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4936 resource_size_t mmio_start, mmio_len;
4937 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4938
4939 static int cards_found;
4940 int i, err, pci_using_dac;
4941 u16 eeprom_data = 0;
4942 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4943
1eae4eb2 4944 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4945
f0f422e5 4946 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4947 if (err)
4948 return err;
4949
4950 pci_using_dac = 0;
6a35528a 4951 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
bc7f75fa 4952 if (!err) {
6a35528a 4953 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
bc7f75fa
AK
4954 if (!err)
4955 pci_using_dac = 1;
4956 } else {
284901a9 4957 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
bc7f75fa
AK
4958 if (err) {
4959 err = pci_set_consistent_dma_mask(pdev,
284901a9 4960 DMA_BIT_MASK(32));
bc7f75fa
AK
4961 if (err) {
4962 dev_err(&pdev->dev, "No usable DMA "
4963 "configuration, aborting\n");
4964 goto err_dma;
4965 }
4966 }
4967 }
4968
e8de1481 4969 err = pci_request_selected_regions_exclusive(pdev,
f0f422e5
BA
4970 pci_select_bars(pdev, IORESOURCE_MEM),
4971 e1000e_driver_name);
bc7f75fa
AK
4972 if (err)
4973 goto err_pci_reg;
4974
68eac460 4975 /* AER (Advanced Error Reporting) hooks */
19d5afd4 4976 pci_enable_pcie_error_reporting(pdev);
68eac460 4977
bc7f75fa 4978 pci_set_master(pdev);
438b365a
BA
4979 /* PCI config space info */
4980 err = pci_save_state(pdev);
4981 if (err)
4982 goto err_alloc_etherdev;
bc7f75fa
AK
4983
4984 err = -ENOMEM;
4985 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4986 if (!netdev)
4987 goto err_alloc_etherdev;
4988
bc7f75fa
AK
4989 SET_NETDEV_DEV(netdev, &pdev->dev);
4990
4991 pci_set_drvdata(pdev, netdev);
4992 adapter = netdev_priv(netdev);
4993 hw = &adapter->hw;
4994 adapter->netdev = netdev;
4995 adapter->pdev = pdev;
4996 adapter->ei = ei;
4997 adapter->pba = ei->pba;
4998 adapter->flags = ei->flags;
eb7c3adb 4999 adapter->flags2 = ei->flags2;
bc7f75fa
AK
5000 adapter->hw.adapter = adapter;
5001 adapter->hw.mac.type = ei->mac;
2adc55c9 5002 adapter->max_hw_frame_size = ei->max_hw_frame_size;
bc7f75fa
AK
5003 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5004
5005 mmio_start = pci_resource_start(pdev, 0);
5006 mmio_len = pci_resource_len(pdev, 0);
5007
5008 err = -EIO;
5009 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5010 if (!adapter->hw.hw_addr)
5011 goto err_ioremap;
5012
5013 if ((adapter->flags & FLAG_HAS_FLASH) &&
5014 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5015 flash_start = pci_resource_start(pdev, 1);
5016 flash_len = pci_resource_len(pdev, 1);
5017 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5018 if (!adapter->hw.flash_address)
5019 goto err_flashmap;
5020 }
5021
5022 /* construct the net_device struct */
651c2466 5023 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 5024 e1000e_set_ethtool_ops(netdev);
bc7f75fa
AK
5025 netdev->watchdog_timeo = 5 * HZ;
5026 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
bc7f75fa
AK
5027 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5028
5029 netdev->mem_start = mmio_start;
5030 netdev->mem_end = mmio_start + mmio_len;
5031
5032 adapter->bd_number = cards_found++;
5033
4662e82b
BA
5034 e1000e_check_options(adapter);
5035
bc7f75fa
AK
5036 /* setup adapter struct */
5037 err = e1000_sw_init(adapter);
5038 if (err)
5039 goto err_sw_init;
5040
5041 err = -EIO;
5042
5043 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5044 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5045 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5046
69e3fd8c 5047 err = ei->get_variants(adapter);
bc7f75fa
AK
5048 if (err)
5049 goto err_hw_init;
5050
4a770358
BA
5051 if ((adapter->flags & FLAG_IS_ICH) &&
5052 (adapter->flags & FLAG_READ_ONLY_NVM))
5053 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5054
bc7f75fa
AK
5055 hw->mac.ops.get_bus_info(&adapter->hw);
5056
318a94d6 5057 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
5058
5059 /* Copper options */
318a94d6 5060 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
5061 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5062 adapter->hw.phy.disable_polarity_correction = 0;
5063 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5064 }
5065
5066 if (e1000_check_reset_block(&adapter->hw))
44defeb3 5067 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
5068
5069 netdev->features = NETIF_F_SG |
5070 NETIF_F_HW_CSUM |
5071 NETIF_F_HW_VLAN_TX |
5072 NETIF_F_HW_VLAN_RX;
5073
5074 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5075 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5076
5077 netdev->features |= NETIF_F_TSO;
5078 netdev->features |= NETIF_F_TSO6;
5079
a5136e23
JK
5080 netdev->vlan_features |= NETIF_F_TSO;
5081 netdev->vlan_features |= NETIF_F_TSO6;
5082 netdev->vlan_features |= NETIF_F_HW_CSUM;
5083 netdev->vlan_features |= NETIF_F_SG;
5084
bc7f75fa
AK
5085 if (pci_using_dac)
5086 netdev->features |= NETIF_F_HIGHDMA;
5087
bc7f75fa
AK
5088 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5089 adapter->flags |= FLAG_MNG_PT_ENABLED;
5090
ad68076e
BA
5091 /*
5092 * before reading the NVM, reset the controller to
5093 * put the device in a known good starting state
5094 */
bc7f75fa
AK
5095 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5096
5097 /*
5098 * systems with ASPM and others may see the checksum fail on the first
5099 * attempt. Let's give it a few tries
5100 */
5101 for (i = 0;; i++) {
5102 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5103 break;
5104 if (i == 2) {
44defeb3 5105 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
5106 err = -EIO;
5107 goto err_eeprom;
5108 }
5109 }
5110
10aa4c04
AK
5111 e1000_eeprom_checks(adapter);
5112
608f8a0d 5113 /* copy the MAC address */
bc7f75fa 5114 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 5115 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
5116
5117 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5118 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5119
5120 if (!is_valid_ether_addr(netdev->perm_addr)) {
7c510e4b 5121 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
bc7f75fa
AK
5122 err = -EIO;
5123 goto err_eeprom;
5124 }
5125
5126 init_timer(&adapter->watchdog_timer);
5127 adapter->watchdog_timer.function = &e1000_watchdog;
5128 adapter->watchdog_timer.data = (unsigned long) adapter;
5129
5130 init_timer(&adapter->phy_info_timer);
5131 adapter->phy_info_timer.function = &e1000_update_phy_info;
5132 adapter->phy_info_timer.data = (unsigned long) adapter;
5133
5134 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5135 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
5136 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5137 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
41cec6f1 5138 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
bc7f75fa 5139
bc7f75fa
AK
5140 /* Initialize link parameters. User can change them with ethtool */
5141 adapter->hw.mac.autoneg = 1;
309af40b 5142 adapter->fc_autoneg = 1;
5c48ef3e
BA
5143 adapter->hw.fc.requested_mode = e1000_fc_default;
5144 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
5145 adapter->hw.phy.autoneg_advertised = 0x2f;
5146
5147 /* ring size defaults */
5148 adapter->rx_ring->count = 256;
5149 adapter->tx_ring->count = 256;
5150
5151 /*
5152 * Initial Wake on LAN setting - If APM wake is enabled in
5153 * the EEPROM, enable the ACPI Magic Packet filter
5154 */
5155 if (adapter->flags & FLAG_APME_IN_WUC) {
5156 /* APME bit in EEPROM is mapped to WUC.APME */
5157 eeprom_data = er32(WUC);
5158 eeprom_apme_mask = E1000_WUC_APME;
a4f58f54
BA
5159 if (eeprom_data & E1000_WUC_PHY_WAKE)
5160 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
bc7f75fa
AK
5161 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5162 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5163 (adapter->hw.bus.func == 1))
5164 e1000_read_nvm(&adapter->hw,
5165 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5166 else
5167 e1000_read_nvm(&adapter->hw,
5168 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5169 }
5170
5171 /* fetch WoL from EEPROM */
5172 if (eeprom_data & eeprom_apme_mask)
5173 adapter->eeprom_wol |= E1000_WUFC_MAG;
5174
5175 /*
5176 * now that we have the eeprom settings, apply the special cases
5177 * where the eeprom may be wrong or the board simply won't support
5178 * wake on lan on a particular port
5179 */
5180 if (!(adapter->flags & FLAG_HAS_WOL))
5181 adapter->eeprom_wol = 0;
5182
5183 /* initialize the wol settings based on the eeprom settings */
5184 adapter->wol = adapter->eeprom_wol;
6ff68026 5185 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa 5186
84527590
BA
5187 /* save off EEPROM version number */
5188 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5189
bc7f75fa
AK
5190 /* reset the hardware with the new settings */
5191 e1000e_reset(adapter);
5192
ad68076e
BA
5193 /*
5194 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 5195 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
5196 * under the control of the driver.
5197 */
c43bc57e 5198 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5199 e1000_get_hw_control(adapter);
5200
bc7f75fa
AK
5201 strcpy(netdev->name, "eth%d");
5202 err = register_netdev(netdev);
5203 if (err)
5204 goto err_register;
5205
9c563d20
JB
5206 /* carrier off reporting is important to ethtool even BEFORE open */
5207 netif_carrier_off(netdev);
5208
bc7f75fa
AK
5209 e1000_print_device_info(adapter);
5210
5211 return 0;
5212
5213err_register:
c43bc57e
JB
5214 if (!(adapter->flags & FLAG_HAS_AMT))
5215 e1000_release_hw_control(adapter);
bc7f75fa
AK
5216err_eeprom:
5217 if (!e1000_check_reset_block(&adapter->hw))
5218 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5219err_hw_init:
bc7f75fa 5220
bc7f75fa
AK
5221 kfree(adapter->tx_ring);
5222 kfree(adapter->rx_ring);
5223err_sw_init:
c43bc57e
JB
5224 if (adapter->hw.flash_address)
5225 iounmap(adapter->hw.flash_address);
e82f54ba 5226 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5227err_flashmap:
bc7f75fa
AK
5228 iounmap(adapter->hw.hw_addr);
5229err_ioremap:
5230 free_netdev(netdev);
5231err_alloc_etherdev:
f0f422e5
BA
5232 pci_release_selected_regions(pdev,
5233 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5234err_pci_reg:
5235err_dma:
5236 pci_disable_device(pdev);
5237 return err;
5238}
5239
5240/**
5241 * e1000_remove - Device Removal Routine
5242 * @pdev: PCI device information struct
5243 *
5244 * e1000_remove is called by the PCI subsystem to alert the driver
5245 * that it should release a PCI device. The could be caused by a
5246 * Hot-Plug event, or because the driver is going to be removed from
5247 * memory.
5248 **/
5249static void __devexit e1000_remove(struct pci_dev *pdev)
5250{
5251 struct net_device *netdev = pci_get_drvdata(pdev);
5252 struct e1000_adapter *adapter = netdev_priv(netdev);
5253
ad68076e
BA
5254 /*
5255 * flush_scheduled work may reschedule our watchdog task, so
5256 * explicitly disable watchdog tasks from being rescheduled
5257 */
bc7f75fa
AK
5258 set_bit(__E1000_DOWN, &adapter->state);
5259 del_timer_sync(&adapter->watchdog_timer);
5260 del_timer_sync(&adapter->phy_info_timer);
5261
41cec6f1
BA
5262 cancel_work_sync(&adapter->reset_task);
5263 cancel_work_sync(&adapter->watchdog_task);
5264 cancel_work_sync(&adapter->downshift_task);
5265 cancel_work_sync(&adapter->update_phy_task);
5266 cancel_work_sync(&adapter->print_hang_task);
bc7f75fa
AK
5267 flush_scheduled_work();
5268
17f208de
BA
5269 if (!(netdev->flags & IFF_UP))
5270 e1000_power_down_phy(adapter);
5271
5272 unregister_netdev(netdev);
5273
ad68076e
BA
5274 /*
5275 * Release control of h/w to f/w. If f/w is AMT enabled, this
5276 * would have already happened in close and is redundant.
5277 */
bc7f75fa
AK
5278 e1000_release_hw_control(adapter);
5279
4662e82b 5280 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5281 kfree(adapter->tx_ring);
5282 kfree(adapter->rx_ring);
5283
5284 iounmap(adapter->hw.hw_addr);
5285 if (adapter->hw.flash_address)
5286 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5287 pci_release_selected_regions(pdev,
5288 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5289
5290 free_netdev(netdev);
5291
111b9dc5 5292 /* AER disable */
19d5afd4 5293 pci_disable_pcie_error_reporting(pdev);
111b9dc5 5294
bc7f75fa
AK
5295 pci_disable_device(pdev);
5296}
5297
5298/* PCI Error Recovery (ERS) */
5299static struct pci_error_handlers e1000_err_handler = {
5300 .error_detected = e1000_io_error_detected,
5301 .slot_reset = e1000_io_slot_reset,
5302 .resume = e1000_io_resume,
5303};
5304
a3aa1884 5305static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
bc7f75fa
AK
5306 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5307 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5308 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5309 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5310 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5311 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5312 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5313 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5314 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5315
bc7f75fa
AK
5316 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5317 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5318 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5319 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5320
bc7f75fa
AK
5321 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5322 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5323 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5324
4662e82b 5325 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
bef28b11 5326 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
8c81c9c3 5327 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 5328
bc7f75fa
AK
5329 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5330 board_80003es2lan },
5331 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5332 board_80003es2lan },
5333 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5334 board_80003es2lan },
5335 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5336 board_80003es2lan },
ad68076e 5337
bc7f75fa
AK
5338 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5339 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5340 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5341 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5342 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5343 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5344 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
9e135a2e 5345 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
ad68076e 5346
bc7f75fa
AK
5347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5350 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5352 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5354 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5356
5357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5358 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5360
f4187b56
BA
5361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5362 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5363
a4f58f54
BA
5364 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5367 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5368
bc7f75fa
AK
5369 { } /* terminate list */
5370};
5371MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5372
5373/* PCI Device API Driver */
5374static struct pci_driver e1000_driver = {
5375 .name = e1000e_driver_name,
5376 .id_table = e1000_pci_tbl,
5377 .probe = e1000_probe,
5378 .remove = __devexit_p(e1000_remove),
5379#ifdef CONFIG_PM
ad68076e 5380 /* Power Management Hooks */
bc7f75fa
AK
5381 .suspend = e1000_suspend,
5382 .resume = e1000_resume,
5383#endif
5384 .shutdown = e1000_shutdown,
5385 .err_handler = &e1000_err_handler
5386};
5387
5388/**
5389 * e1000_init_module - Driver Registration Routine
5390 *
5391 * e1000_init_module is the first routine called when the driver is
5392 * loaded. All it does is register with the PCI subsystem.
5393 **/
5394static int __init e1000_init_module(void)
5395{
5396 int ret;
5397 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5398 e1000e_driver_name, e1000e_driver_version);
c7e54b1b 5399 printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
bc7f75fa
AK
5400 e1000e_driver_name);
5401 ret = pci_register_driver(&e1000_driver);
53ec5498 5402
bc7f75fa
AK
5403 return ret;
5404}
5405module_init(e1000_init_module);
5406
5407/**
5408 * e1000_exit_module - Driver Exit Cleanup Routine
5409 *
5410 * e1000_exit_module is called just before the driver is removed
5411 * from memory.
5412 **/
5413static void __exit e1000_exit_module(void)
5414{
5415 pci_unregister_driver(&e1000_driver);
5416}
5417module_exit(e1000_exit_module);
5418
5419
5420MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5421MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5422MODULE_LICENSE("GPL");
5423MODULE_VERSION(DRV_VERSION);
5424
5425/* e1000_main.c */
This page took 1.32129 seconds and 5 git commands to generate.