drivers/net: Remove unnecessary k.alloc/v.alloc OOM messages
[deliverable/linux.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4
LT
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4
LT
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121*/
122#define MAX_UNITS 8 /* More are supported, limit only on options */
123static int options[MAX_UNITS] = {0, };
124static int full_duplex[MAX_UNITS] = {0, };
125
126/* Operational parameters that are set at compile time. */
127
128/* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130*/
131#define RX_RING_SIZE 256
132#define TX_RING_SIZE 32
133/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134#define DONE_Q_SIZE 1024
135/* All queues must be aligned on a 256-byte boundary */
136#define QUEUE_ALIGN 256
137
138#if RX_RING_SIZE > 256
139#define RX_Q_ENTRIES Rx2048QEntries
140#else
141#define RX_Q_ENTRIES Rx256QEntries
142#endif
143
144/* Operational parameters that usually are not changed. */
145/* Time in jiffies before concluding the transmitter is hung. */
146#define TX_TIMEOUT (2 * HZ)
147
1591cb60 148#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
149/* 64-bit dma_addr_t */
150#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 151#define netdrv_addr_t __le64
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le64(x)
153#define dma_to_cpu(x) le64_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158#define RX_DESC_ADDR_SIZE RxDescAddr64bit
159#else /* 32-bit dma_addr_t */
88b1943b 160#define netdrv_addr_t __le32
1da177e4
LT
161#define cpu_to_dma(x) cpu_to_le32(x)
162#define dma_to_cpu(x) le32_to_cpu(x)
163#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167#define RX_DESC_ADDR_SIZE RxDescAddr32bit
168#endif
169
1da177e4
LT
170#define skb_first_frag_len(skb) skb_headlen(skb)
171#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 172
cfc3a44c
JSR
173/* Firmware names */
174#define FIRMWARE_RX "adaptec/starfire_rx.bin"
175#define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
1da177e4 177/* These identify the driver base version and may not be removed. */
b5defaa5 178static const char version[] __devinitconst =
1da177e4 179KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 180" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
181
182MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184MODULE_LICENSE("GPL");
fdecea66 185MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
186MODULE_FIRMWARE(FIRMWARE_RX);
187MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
188
189module_param(max_interrupt_work, int, 0);
190module_param(mtu, int, 0);
191module_param(debug, int, 0);
192module_param(rx_copybreak, int, 0);
193module_param(intr_latency, int, 0);
194module_param(small_frames, int, 0);
195module_param_array(options, int, NULL, 0);
196module_param_array(full_duplex, int, NULL, 0);
197module_param(enable_hw_cksum, int, 0);
198MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199MODULE_PARM_DESC(mtu, "MTU (all boards)");
200MODULE_PARM_DESC(debug, "Debug level (0-6)");
201MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208/*
209 Theory of Operation
210
211I. Board Compatibility
212
213This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215II. Board-specific settings
216
217III. Driver operation
218
219IIIa. Ring buffers
220
221The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222ring sizes are set fixed by the hardware, but may optionally be wrapped
223earlier by the END bit in the descriptor.
224This driver uses that hardware queue size for the Rx ring, where a large
225number of entries has no ill effect beyond increases the potential backlog.
226The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227disables the queue layer priority ordering and we have no mechanism to
228utilize the hardware two-level priority queue. When modifying the
229RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230levels.
231
232IIIb/c. Transmit/Receive Structure
233
234See the Adaptec manual for the many possible structures, and options for
235each structure. There are far too many to document all of them here.
236
237For transmit this driver uses type 0/1 transmit descriptors (depending
238on the 32/64 bitness of the architecture), and relies on automatic
239minimum-length padding. It does not use the completion queue
240consumer index, but instead checks for non-zero status entries.
241
fdecea66 242For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
243allocates full frame size skbuffs for the Rx ring buffers, so all frames
244should fit in a single descriptor. The driver does not use the completion
245queue consumer index, but instead checks for non-zero status entries.
246
247When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248is allocated and the frame is copied to the new skbuff. When the incoming
249frame is larger, the skbuff is passed directly up the protocol stack.
250Buffers consumed this way are replaced by newly allocated skbuffs in a later
251phase of receive.
252
253A notable aspect of operation is that unaligned buffers are not permitted by
254the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255isn't longword aligned, which may cause problems on some machine
256e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257the frame into a new skbuff unconditionally. Copied frames are put into the
258skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260IIId. Synchronization
261
262The driver runs as two independent, single-threaded flows of control. One
263is the send-packet routine, which enforces single-threaded use by the
264dev->tbusy flag. The other thread is the interrupt handler, which is single
265threaded by the hardware and interrupt handling software.
266
267The send packet thread has partial control over the Tx ring and the netif_queue
268status. If the number of free Tx slots in the ring falls below a certain number
269(currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271The interrupt handler has exclusive control over the Rx ring and records stats
272from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274number of free Tx slow is above the threshold, it signals the upper layer to
275restart the queue.
276
277IV. Notes
278
279IVb. References
280
281The Adaptec Starfire manuals, available only from Adaptec.
282http://www.scyld.com/expert/100mbps.html
283http://www.scyld.com/expert/NWay.html
284
285IVc. Errata
286
287- StopOnPerr is broken, don't enable
288- Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291*/
292
fdecea66 293
1da177e4
LT
294
295enum chip_capability_flags {CanHaveMII=1, };
296
297enum chipset {
298 CH_6915 = 0,
299};
300
a3aa1884 301static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
d08336e9 302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
303 { 0, }
304};
305MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 308static const struct chip_info {
1da177e4
LT
309 const char *name;
310 int drv_flags;
311} netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313};
314
315
316/* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323*/
324enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341};
342
343/*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367};
368
369/* Bits in the RxFilterMode register. */
370enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375};
376
377/* Bits in the TxMode register */
378enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382};
383
384/* Bits in the TxDescCtrl register. */
385enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394};
395
396/* Bits in the RxDescQCtrl register. */
397enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407};
408
409/* Bits in the RxDMACtrl register. */
410enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423};
424
425/* Bits in the RxCompletionAddr register */
426enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432};
433
434/* Bits in the TxCompletionAddr register */
435enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441};
442
443/* Bits in the GenCtrl register */
444enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447};
448
449/* Bits in the IntrTimerCtrl register */
450enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454};
455
456/* The Rx and Tx buffer descriptors. */
457struct starfire_rx_desc {
88b1943b 458 netdrv_addr_t rxaddr;
1da177e4
LT
459};
460enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462};
463
464/* Completion queue entry. */
465struct short_rx_done_desc {
88b1943b 466 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
467};
468struct basic_rx_done_desc {
88b1943b
AV
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
1da177e4
LT
472};
473struct csum_rx_done_desc {
88b1943b
AV
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
1da177e4
LT
477};
478struct full_rx_done_desc {
88b1943b
AV
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
1da177e4
LT
485};
486/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
487#ifdef VLAN_SUPPORT
488typedef struct full_rx_done_desc rx_done_desc;
489#define RxComplType RxComplType3
490#else /* not VLAN_SUPPORT */
491typedef struct csum_rx_done_desc rx_done_desc;
492#define RxComplType RxComplType2
493#endif /* not VLAN_SUPPORT */
1da177e4
LT
494
495enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497};
498
499/* Type 1 Tx descriptor. */
500struct starfire_tx_desc_1 {
88b1943b
AV
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
1da177e4
LT
503};
504
505/* Type 2 Tx descriptor. */
506struct starfire_tx_desc_2 {
88b1943b
AV
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
1da177e4
LT
510};
511
512#ifdef ADDR_64BITS
513typedef struct starfire_tx_desc_2 starfire_tx_desc;
514#define TX_DESC_TYPE TxDescType2
515#else /* not ADDR_64BITS */
516typedef struct starfire_tx_desc_1 starfire_tx_desc;
517#define TX_DESC_TYPE TxDescType1
518#endif /* not ADDR_64BITS */
519#define TX_DESC_SPACING TxDescSpaceUnlim
520
521enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525};
526struct tx_done_desc {
88b1943b 527 __le32 status; /* timestamp, index. */
1da177e4 528#if 0
88b1943b 529 __le32 intrstatus; /* interrupt status */
1da177e4
LT
530#endif
531};
532
533struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536};
537struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541};
542
543#define PHY_CNT 2
544struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
bea3348e
SH
560 struct napi_struct napi;
561 struct net_device *dev;
1da177e4
LT
562 struct pci_dev *pci_dev;
563#ifdef VLAN_SUPPORT
5da96be5 564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
565#endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585};
586
587
588static int mdio_read(struct net_device *dev, int phy_id, int location);
589static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590static int netdev_open(struct net_device *dev);
591static void check_duplex(struct net_device *dev);
592static void tx_timeout(struct net_device *dev);
593static void init_ring(struct net_device *dev);
61357325 594static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 595static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
596static void netdev_error(struct net_device *dev, int intr_status);
597static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 598static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
599static void refill_rx_ring(struct net_device *dev);
600static void netdev_error(struct net_device *dev, int intr_status);
601static void set_rx_mode(struct net_device *dev);
602static struct net_device_stats *get_stats(struct net_device *dev);
603static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604static int netdev_close(struct net_device *dev);
605static void netdev_media_change(struct net_device *dev);
7282d491 606static const struct ethtool_ops ethtool_ops;
1da177e4
LT
607
608
609#ifdef VLAN_SUPPORT
8e586137 610static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
611{
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 617 set_bit(vid, np->active_vlans);
1da177e4
LT
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
8e586137
JP
620
621 return 0;
1da177e4
LT
622}
623
8e586137 624static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
625{
626 struct netdev_private *np = netdev_priv(dev);
627
628 spin_lock(&np->lock);
629 if (debug > 1)
630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 631 clear_bit(vid, np->active_vlans);
1da177e4
LT
632 set_rx_mode(dev);
633 spin_unlock(&np->lock);
8e586137
JP
634
635 return 0;
1da177e4
LT
636}
637#endif /* VLAN_SUPPORT */
638
639
4fc8006e
SH
640static const struct net_device_ops netdev_ops = {
641 .ndo_open = netdev_open,
642 .ndo_stop = netdev_close,
643 .ndo_start_xmit = start_tx,
5da96be5
JP
644 .ndo_tx_timeout = tx_timeout,
645 .ndo_get_stats = get_stats,
afc4b13d 646 .ndo_set_rx_mode = set_rx_mode,
5da96be5 647 .ndo_do_ioctl = netdev_ioctl,
4fc8006e 648 .ndo_change_mtu = eth_change_mtu,
5da96be5 649 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
650 .ndo_validate_addr = eth_validate_addr,
651#ifdef VLAN_SUPPORT
4fc8006e
SH
652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
654#endif
655};
656
1da177e4
LT
657static int __devinit starfire_init_one(struct pci_dev *pdev,
658 const struct pci_device_id *ent)
659{
660 struct netdev_private *np;
661 int i, irq, option, chip_idx = ent->driver_data;
662 struct net_device *dev;
663 static int card_idx = -1;
664 long ioaddr;
665 void __iomem *base;
666 int drv_flags, io_size;
667 int boguscnt;
668
669/* when built into the kernel, we only print version if device is found */
670#ifndef MODULE
671 static int printed_version;
672 if (!printed_version++)
673 printk(version);
674#endif
675
676 card_idx++;
677
678 if (pci_enable_device (pdev))
679 return -EIO;
680
681 ioaddr = pci_resource_start(pdev, 0);
682 io_size = pci_resource_len(pdev, 0);
683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 return -ENODEV;
686 }
687
688 dev = alloc_etherdev(sizeof(*np));
689 if (!dev) {
690 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
691 return -ENOMEM;
692 }
1da177e4
LT
693 SET_NETDEV_DEV(dev, &pdev->dev);
694
695 irq = pdev->irq;
696
697 if (pci_request_regions (pdev, DRV_NAME)) {
698 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
699 goto err_out_free_netdev;
700 }
701
1da177e4
LT
702 base = ioremap(ioaddr, io_size);
703 if (!base) {
704 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
705 card_idx, io_size, ioaddr);
706 goto err_out_free_res;
707 }
708
709 pci_set_master(pdev);
710
711 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 712 pci_try_set_mwi(pdev);
1da177e4 713
1da177e4
LT
714#ifdef ZEROCOPY
715 /* Starfire can do TCP/UDP checksumming */
716 if (enable_hw_cksum)
fdecea66 717 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 718#endif /* ZEROCOPY */
4fc8006e 719
1da177e4
LT
720#ifdef VLAN_SUPPORT
721 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1da177e4
LT
722#endif /* VLAN_RX_KILL_VID */
723#ifdef ADDR_64BITS
724 dev->features |= NETIF_F_HIGHDMA;
725#endif /* ADDR_64BITS */
726
727 /* Serial EEPROM reads are hidden by the hardware. */
728 for (i = 0; i < 6; i++)
729 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
730
731#if ! defined(final_version) /* Dump the EEPROM contents during development. */
732 if (debug > 4)
733 for (i = 0; i < 0x20; i++)
734 printk("%2.2x%s",
735 (unsigned int)readb(base + EEPROMCtrl + i),
736 i % 16 != 15 ? " " : "\n");
737#endif
738
739 /* Issue soft reset */
740 writel(MiiSoftReset, base + TxMode);
741 udelay(1000);
742 writel(0, base + TxMode);
743
744 /* Reset the chip to erase previous misconfiguration. */
745 writel(1, base + PCIDeviceConfig);
746 boguscnt = 1000;
747 while (--boguscnt > 0) {
748 udelay(10);
749 if ((readl(base + PCIDeviceConfig) & 1) == 0)
750 break;
751 }
752 if (boguscnt == 0)
753 printk("%s: chipset reset never completed!\n", dev->name);
754 /* wait a little longer */
755 udelay(1000);
756
757 dev->base_addr = (unsigned long)base;
758 dev->irq = irq;
759
760 np = netdev_priv(dev);
bea3348e 761 np->dev = dev;
1da177e4
LT
762 np->base = base;
763 spin_lock_init(&np->lock);
764 pci_set_drvdata(pdev, dev);
765
766 np->pci_dev = pdev;
767
768 np->mii_if.dev = dev;
769 np->mii_if.mdio_read = mdio_read;
770 np->mii_if.mdio_write = mdio_write;
771 np->mii_if.phy_id_mask = 0x1f;
772 np->mii_if.reg_num_mask = 0x1f;
773
774 drv_flags = netdrv_tbl[chip_idx].drv_flags;
775
776 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
777 if (dev->mem_start)
778 option = dev->mem_start;
779
780 /* The lower four bits are the media type. */
781 if (option & 0x200)
782 np->mii_if.full_duplex = 1;
783
784 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
785 np->mii_if.full_duplex = 1;
786
787 if (np->mii_if.full_duplex)
788 np->mii_if.force_media = 1;
789 else
790 np->mii_if.force_media = 0;
791 np->speed100 = 1;
792
793 /* timer resolution is 128 * 0.8us */
794 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
795 Timer10X | EnableIntrMasking;
796
797 if (small_frames > 0) {
798 np->intr_timer_ctrl |= SmallFrameBypass;
799 switch (small_frames) {
800 case 1 ... 64:
801 np->intr_timer_ctrl |= SmallFrame64;
802 break;
803 case 65 ... 128:
804 np->intr_timer_ctrl |= SmallFrame128;
805 break;
806 case 129 ... 256:
807 np->intr_timer_ctrl |= SmallFrame256;
808 break;
809 default:
810 np->intr_timer_ctrl |= SmallFrame512;
811 if (small_frames > 512)
812 printk("Adjusting small_frames down to 512\n");
813 break;
814 }
815 }
816
4fc8006e 817 dev->netdev_ops = &netdev_ops;
fdecea66 818 dev->watchdog_timeo = TX_TIMEOUT;
1da177e4
LT
819 SET_ETHTOOL_OPS(dev, &ethtool_ops);
820
4fc8006e
SH
821 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
822
1da177e4
LT
823 if (mtu)
824 dev->mtu = mtu;
825
826 if (register_netdev(dev))
827 goto err_out_cleardev;
828
e174961c 829 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 830 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 831 dev->dev_addr, irq);
1da177e4
LT
832
833 if (drv_flags & CanHaveMII) {
834 int phy, phy_idx = 0;
835 int mii_status;
836 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
837 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
838 mdelay(100);
839 boguscnt = 1000;
840 while (--boguscnt > 0)
841 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
842 break;
843 if (boguscnt == 0) {
fdecea66 844 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
845 continue;
846 }
847 mii_status = mdio_read(dev, phy, MII_BMSR);
848 if (mii_status != 0) {
849 np->phys[phy_idx++] = phy;
850 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
851 printk(KERN_INFO "%s: MII PHY found at address %d, status "
852 "%#4.4x advertising %#4.4x.\n",
853 dev->name, phy, mii_status, np->mii_if.advertising);
854 /* there can be only one PHY on-board */
855 break;
856 }
857 }
858 np->phy_cnt = phy_idx;
859 if (np->phy_cnt > 0)
860 np->mii_if.phy_id = np->phys[0];
861 else
862 memset(&np->mii_if, 0, sizeof(np->mii_if));
863 }
864
865 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
866 dev->name, enable_hw_cksum ? "enabled" : "disabled");
867 return 0;
868
869err_out_cleardev:
870 pci_set_drvdata(pdev, NULL);
871 iounmap(base);
872err_out_free_res:
873 pci_release_regions (pdev);
874err_out_free_netdev:
875 free_netdev(dev);
876 return -ENODEV;
877}
878
879
880/* Read the MII Management Data I/O (MDIO) interfaces. */
881static int mdio_read(struct net_device *dev, int phy_id, int location)
882{
883 struct netdev_private *np = netdev_priv(dev);
884 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
885 int result, boguscnt=1000;
886 /* ??? Should we add a busy-wait here? */
e4c3c13c 887 do {
1da177e4 888 result = readl(mdio_addr);
e4c3c13c 889 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
890 if (boguscnt == 0)
891 return 0;
892 if ((result & 0xffff) == 0xffff)
893 return 0;
894 return result & 0xffff;
895}
896
897
898static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
899{
900 struct netdev_private *np = netdev_priv(dev);
901 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
902 writel(value, mdio_addr);
903 /* The busy-wait will occur before a read. */
904}
905
906
907static int netdev_open(struct net_device *dev)
908{
cfc3a44c
JSR
909 const struct firmware *fw_rx, *fw_tx;
910 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
911 struct netdev_private *np = netdev_priv(dev);
912 void __iomem *ioaddr = np->base;
913 int i, retval;
cfc3a44c 914 size_t tx_size, rx_size;
1da177e4
LT
915 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
916
917 /* Do we ever need to reset the chip??? */
fdecea66 918
a0607fd3 919 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
920 if (retval)
921 return retval;
922
923 /* Disable the Rx and Tx, and reset the chip. */
924 writel(0, ioaddr + GenCtrl);
925 writel(1, ioaddr + PCIDeviceConfig);
926 if (debug > 1)
927 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
928 dev->name, dev->irq);
929
930 /* Allocate the various queues. */
88b1943b 931 if (!np->queue_mem) {
1da177e4
LT
932 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
935 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
936 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
937 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9
AD
938 if (np->queue_mem == NULL) {
939 free_irq(dev->irq, dev);
1da177e4 940 return -ENOMEM;
d8840ac9 941 }
1da177e4
LT
942
943 np->tx_done_q = np->queue_mem;
944 np->tx_done_q_dma = np->queue_mem_dma;
945 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
946 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
947 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
948 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
949 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
950 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
951 }
952
953 /* Start with no carrier, it gets adjusted later */
954 netif_carrier_off(dev);
955 init_ring(dev);
956 /* Set the size of the Rx buffers. */
957 writel((np->rx_buf_sz << RxBufferLenShift) |
958 (0 << RxMinDescrThreshShift) |
959 RxPrefetchMode | RxVariableQ |
960 RX_Q_ENTRIES |
961 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
962 RxDescSpace4,
963 ioaddr + RxDescQCtrl);
964
965 /* Set up the Rx DMA controller. */
966 writel(RxChecksumIgnore |
967 (0 << RxEarlyIntThreshShift) |
968 (6 << RxHighPrioThreshShift) |
969 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
970 ioaddr + RxDMACtrl);
971
972 /* Set Tx descriptor */
973 writel((2 << TxHiPriFIFOThreshShift) |
974 (0 << TxPadLenShift) |
975 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
976 TX_DESC_Q_ADDR_SIZE |
977 TX_DESC_SPACING | TX_DESC_TYPE,
978 ioaddr + TxDescCtrl);
979
980 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
981 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
982 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
983 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
984 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
985
986 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
987 writel(np->rx_done_q_dma |
988 RxComplType |
989 (0 << RxComplThreshShift),
990 ioaddr + RxCompletionAddr);
991
992 if (debug > 1)
993 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
994
995 /* Fill both the Tx SA register and the Rx perfect filter. */
996 for (i = 0; i < 6; i++)
997 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
998 /* The first entry is special because it bypasses the VLAN filter.
999 Don't use it. */
1000 writew(0, ioaddr + PerfFilterTable);
1001 writew(0, ioaddr + PerfFilterTable + 4);
1002 writew(0, ioaddr + PerfFilterTable + 8);
1003 for (i = 1; i < 16; i++) {
88b1943b 1004 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1005 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
1006 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1007 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1008 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1009 }
1010
1011 /* Initialize other registers. */
1012 /* Configure the PCI bus bursts and FIFO thresholds. */
1013 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1014 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1015 udelay(1000);
1016 writel(np->tx_mode, ioaddr + TxMode);
1017 np->tx_threshold = 4;
1018 writel(np->tx_threshold, ioaddr + TxThreshold);
1019
1020 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1021
bea3348e 1022 napi_enable(&np->napi);
a6676019 1023
1da177e4
LT
1024 netif_start_queue(dev);
1025
1026 if (debug > 1)
1027 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1028 set_rx_mode(dev);
1029
1030 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1031 check_duplex(dev);
1032
1033 /* Enable GPIO interrupts on link change */
1034 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1035
1036 /* Set the interrupt mask */
1037 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1038 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1039 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1040 ioaddr + IntrEnable);
1041 /* Enable PCI interrupts. */
1042 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1043 ioaddr + PCIDeviceConfig);
1044
1045#ifdef VLAN_SUPPORT
1046 /* Set VLAN type to 802.1q */
1047 writel(ETH_P_8021Q, ioaddr + VlanType);
1048#endif /* VLAN_SUPPORT */
1049
cfc3a44c
JSR
1050 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1051 if (retval) {
1052 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1053 FIRMWARE_RX);
c928febf 1054 goto out_init;
cfc3a44c
JSR
1055 }
1056 if (fw_rx->size % 4) {
1057 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1058 fw_rx->size, FIRMWARE_RX);
1059 retval = -EINVAL;
1060 goto out_rx;
1061 }
1062 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1063 if (retval) {
1064 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1065 FIRMWARE_TX);
1066 goto out_rx;
1067 }
1068 if (fw_tx->size % 4) {
1069 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1070 fw_tx->size, FIRMWARE_TX);
1071 retval = -EINVAL;
1072 goto out_tx;
1073 }
1074 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1075 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1076 rx_size = fw_rx->size / 4;
1077 tx_size = fw_tx->size / 4;
1078
1da177e4 1079 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1080 for (i = 0; i < rx_size; i++)
1081 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1082 for (i = 0; i < tx_size; i++)
1083 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1084 if (enable_hw_cksum)
1085 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1086 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1087 else
1088 /* Enable the Rx and Tx units only. */
1089 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1090
1091 if (debug > 1)
1092 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1093 dev->name);
1094
cfc3a44c
JSR
1095out_tx:
1096 release_firmware(fw_tx);
1097out_rx:
1098 release_firmware(fw_rx);
c928febf
BH
1099out_init:
1100 if (retval)
1101 netdev_close(dev);
cfc3a44c 1102 return retval;
1da177e4
LT
1103}
1104
1105
1106static void check_duplex(struct net_device *dev)
1107{
1108 struct netdev_private *np = netdev_priv(dev);
1109 u16 reg0;
1110 int silly_count = 1000;
1111
1112 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1113 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1114 udelay(500);
1115 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1116 /* do nothing */;
1117 if (!silly_count) {
1118 printk("%s: MII reset failed!\n", dev->name);
1119 return;
1120 }
1121
1122 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1123
1124 if (!np->mii_if.force_media) {
1125 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1126 } else {
1127 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1128 if (np->speed100)
1129 reg0 |= BMCR_SPEED100;
1130 if (np->mii_if.full_duplex)
1131 reg0 |= BMCR_FULLDPLX;
1132 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1133 dev->name,
1134 np->speed100 ? "100" : "10",
1135 np->mii_if.full_duplex ? "full" : "half");
1136 }
1137 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1138}
1139
1140
1141static void tx_timeout(struct net_device *dev)
1142{
1143 struct netdev_private *np = netdev_priv(dev);
1144 void __iomem *ioaddr = np->base;
1145 int old_debug;
1146
1147 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1148 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1149
1150 /* Perhaps we should reinitialize the hardware here. */
1151
1152 /*
1153 * Stop and restart the interface.
1154 * Cheat and increase the debug level temporarily.
1155 */
1156 old_debug = debug;
1157 debug = 2;
1158 netdev_close(dev);
1159 netdev_open(dev);
1160 debug = old_debug;
1161
1162 /* Trigger an immediate transmit demand. */
1163
1ae5dc34 1164 dev->trans_start = jiffies; /* prevent tx timeout */
86678a20 1165 dev->stats.tx_errors++;
1da177e4
LT
1166 netif_wake_queue(dev);
1167}
1168
1169
1170/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1171static void init_ring(struct net_device *dev)
1172{
1173 struct netdev_private *np = netdev_priv(dev);
1174 int i;
1175
1176 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1177 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1178
1179 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1180
1181 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1182 for (i = 0; i < RX_RING_SIZE; i++) {
1183 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1184 np->rx_info[i].skb = skb;
1185 if (skb == NULL)
1186 break;
689be439 1187 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1188 skb->dev = dev; /* Mark as being used by this device. */
1189 /* Grrr, we cannot offset to correctly align the IP header. */
1190 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1191 }
1192 writew(i - 1, np->base + RxDescQIdx);
1193 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1194
1195 /* Clear the remainder of the Rx buffer ring. */
1196 for ( ; i < RX_RING_SIZE; i++) {
1197 np->rx_ring[i].rxaddr = 0;
1198 np->rx_info[i].skb = NULL;
1199 np->rx_info[i].mapping = 0;
1200 }
1201 /* Mark the last entry as wrapping the ring. */
1202 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1203
1204 /* Clear the completion rings. */
1205 for (i = 0; i < DONE_Q_SIZE; i++) {
1206 np->rx_done_q[i].status = 0;
1207 np->tx_done_q[i].status = 0;
1208 }
1209
1210 for (i = 0; i < TX_RING_SIZE; i++)
1211 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1212}
1213
1214
61357325 1215static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1216{
1217 struct netdev_private *np = netdev_priv(dev);
1218 unsigned int entry;
1219 u32 status;
1220 int i;
1221
1da177e4
LT
1222 /*
1223 * be cautious here, wrapping the queue has weird semantics
1224 * and we may not have enough slots even when it seems we do.
1225 */
1226 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1227 netif_stop_queue(dev);
5b548140 1228 return NETDEV_TX_BUSY;
1da177e4
LT
1229 }
1230
1231#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1232 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1233 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1234 return NETDEV_TX_OK;
1da177e4
LT
1235 }
1236#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1237
1238 entry = np->cur_tx % TX_RING_SIZE;
1239 for (i = 0; i < skb_num_frags(skb); i++) {
1240 int wrap_ring = 0;
1241 status = TxDescID;
1242
1243 if (i == 0) {
1244 np->tx_info[entry].skb = skb;
1245 status |= TxCRCEn;
1246 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1247 status |= TxRingWrap;
1248 wrap_ring = 1;
1249 }
1250 if (np->reap_tx) {
1251 status |= TxDescIntr;
1252 np->reap_tx = 0;
1253 }
84fa7933 1254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1255 status |= TxCalTCP;
86678a20 1256 dev->stats.tx_compressed++;
1da177e4
LT
1257 }
1258 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1259
1260 np->tx_info[entry].mapping =
1261 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1262 } else {
9e903e08
ED
1263 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1264 status |= skb_frag_size(this_frag);
1da177e4 1265 np->tx_info[entry].mapping =
0cd83cc0
IC
1266 pci_map_single(np->pci_dev,
1267 skb_frag_address(this_frag),
9e903e08 1268 skb_frag_size(this_frag),
0cd83cc0 1269 PCI_DMA_TODEVICE);
1da177e4
LT
1270 }
1271
1272 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1273 np->tx_ring[entry].status = cpu_to_le32(status);
1274 if (debug > 3)
1275 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1276 dev->name, np->cur_tx, np->dirty_tx,
1277 entry, status);
1278 if (wrap_ring) {
1279 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1280 np->cur_tx += np->tx_info[entry].used_slots;
1281 entry = 0;
1282 } else {
1283 np->tx_info[entry].used_slots = 1;
1284 np->cur_tx += np->tx_info[entry].used_slots;
1285 entry++;
1286 }
1287 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1288 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1289 np->reap_tx = 1;
1290 }
1291
1292 /* Non-x86: explicitly flush descriptor cache lines here. */
1293 /* Ensure all descriptors are written back before the transmit is
1294 initiated. - Jes */
1295 wmb();
1296
1297 /* Update the producer index. */
1298 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1299
1300 /* 4 is arbitrary, but should be ok */
1301 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1302 netif_stop_queue(dev);
1303
6ed10654 1304 return NETDEV_TX_OK;
1da177e4
LT
1305}
1306
1307
1308/* The interrupt handler does all of the Rx thread work and cleans up
1309 after the Tx thread. */
7d12e780 1310static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1311{
1312 struct net_device *dev = dev_instance;
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = np->base;
1315 int boguscnt = max_interrupt_work;
1316 int consumer;
1317 int tx_status;
1318 int handled = 0;
1319
1320 do {
1321 u32 intr_status = readl(ioaddr + IntrClear);
1322
1323 if (debug > 4)
1324 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1325 dev->name, intr_status);
1326
1327 if (intr_status == 0 || intr_status == (u32) -1)
1328 break;
1329
1330 handled = 1;
1331
a6676019
FR
1332 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1333 u32 enable;
1334
288379f0
BH
1335 if (likely(napi_schedule_prep(&np->napi))) {
1336 __napi_schedule(&np->napi);
a6676019
FR
1337 enable = readl(ioaddr + IntrEnable);
1338 enable &= ~(IntrRxDone | IntrRxEmpty);
1339 writel(enable, ioaddr + IntrEnable);
1340 /* flush PCI posting buffers */
1341 readl(ioaddr + IntrEnable);
1342 } else {
1343 /* Paranoia check */
1344 enable = readl(ioaddr + IntrEnable);
1345 if (enable & (IntrRxDone | IntrRxEmpty)) {
1346 printk(KERN_INFO
1347 "%s: interrupt while in poll!\n",
1348 dev->name);
1349 enable &= ~(IntrRxDone | IntrRxEmpty);
1350 writel(enable, ioaddr + IntrEnable);
1351 }
1352 }
1353 }
1da177e4
LT
1354
1355 /* Scavenge the skbuff list based on the Tx-done queue.
1356 There are redundant checks here that may be cleaned up
1357 after the driver has proven to be reliable. */
1358 consumer = readl(ioaddr + TxConsumerIdx);
1359 if (debug > 3)
1360 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1361 dev->name, consumer);
1362
1363 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1364 if (debug > 3)
1365 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1366 dev->name, np->dirty_tx, np->tx_done, tx_status);
1367 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1368 dev->stats.tx_packets++;
1da177e4
LT
1369 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1370 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1371 struct sk_buff *skb = np->tx_info[entry].skb;
1372 np->tx_info[entry].skb = NULL;
1373 pci_unmap_single(np->pci_dev,
1374 np->tx_info[entry].mapping,
1375 skb_first_frag_len(skb),
1376 PCI_DMA_TODEVICE);
1377 np->tx_info[entry].mapping = 0;
1378 np->dirty_tx += np->tx_info[entry].used_slots;
1379 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1380 {
1381 int i;
1382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1383 pci_unmap_single(np->pci_dev,
1384 np->tx_info[entry].mapping,
9e903e08 1385 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1386 PCI_DMA_TODEVICE);
1387 np->dirty_tx++;
1388 entry++;
1389 }
1390 }
fdecea66 1391
1da177e4
LT
1392 dev_kfree_skb_irq(skb);
1393 }
1394 np->tx_done_q[np->tx_done].status = 0;
1395 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1396 }
1397 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1398
1399 if (netif_queue_stopped(dev) &&
1400 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1401 /* The ring is no longer full, wake the queue. */
1402 netif_wake_queue(dev);
1403 }
1404
1405 /* Stats overflow */
1406 if (intr_status & IntrStatsMax)
1407 get_stats(dev);
1408
1409 /* Media change interrupt. */
1410 if (intr_status & IntrLinkChange)
1411 netdev_media_change(dev);
1412
1413 /* Abnormal error summary/uncommon events handlers. */
1414 if (intr_status & IntrAbnormalSummary)
1415 netdev_error(dev, intr_status);
1416
1417 if (--boguscnt < 0) {
1418 if (debug > 1)
1419 printk(KERN_WARNING "%s: Too much work at interrupt, "
1420 "status=%#8.8x.\n",
1421 dev->name, intr_status);
1422 break;
1423 }
1424 } while (1);
1425
1426 if (debug > 4)
1427 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1428 dev->name, (int) readl(ioaddr + IntrStatus));
1429 return IRQ_RETVAL(handled);
1430}
1431
1432
a6676019
FR
1433/*
1434 * This routine is logically part of the interrupt/poll handler, but separated
1435 * for clarity and better register allocation.
1436 */
1da177e4
LT
1437static int __netdev_rx(struct net_device *dev, int *quota)
1438{
1439 struct netdev_private *np = netdev_priv(dev);
1440 u32 desc_status;
1441 int retcode = 0;
1442
1443 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1444 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1445 struct sk_buff *skb;
1446 u16 pkt_len;
1447 int entry;
1448 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1449
1450 if (debug > 4)
1451 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1452 if (!(desc_status & RxOK)) {
fdecea66 1453 /* There was an error. */
1da177e4
LT
1454 if (debug > 2)
1455 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1456 dev->stats.rx_errors++;
1da177e4 1457 if (desc_status & RxFIFOErr)
86678a20 1458 dev->stats.rx_fifo_errors++;
1da177e4
LT
1459 goto next_rx;
1460 }
1461
1462 if (*quota <= 0) { /* out of rx quota */
1463 retcode = 1;
1464 goto out;
1465 }
1466 (*quota)--;
1467
1468 pkt_len = desc_status; /* Implicitly Truncate */
1469 entry = (desc_status >> 16) & 0x7ff;
1470
1471 if (debug > 4)
1472 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1473 /* Check if the packet is long enough to accept without copying
1474 to a minimally-sized skbuff. */
8e95a202
JP
1475 if (pkt_len < rx_copybreak &&
1476 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1477 skb_reserve(skb, 2); /* 16 byte align the IP header */
1478 pci_dma_sync_single_for_cpu(np->pci_dev,
1479 np->rx_info[entry].mapping,
1480 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1481 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1482 pci_dma_sync_single_for_device(np->pci_dev,
1483 np->rx_info[entry].mapping,
1484 pkt_len, PCI_DMA_FROMDEVICE);
1485 skb_put(skb, pkt_len);
1486 } else {
1487 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1488 skb = np->rx_info[entry].skb;
1489 skb_put(skb, pkt_len);
1490 np->rx_info[entry].skb = NULL;
1491 np->rx_info[entry].mapping = 0;
1492 }
1493#ifndef final_version /* Remove after testing. */
1494 /* You will want this info for the initial debug. */
0795af57 1495 if (debug > 5) {
e174961c
JB
1496 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1497 skb->data, skb->data + 6,
0795af57
JP
1498 skb->data[12], skb->data[13]);
1499 }
1da177e4
LT
1500#endif
1501
1502 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1503#ifdef VLAN_SUPPORT
1da177e4
LT
1504 if (debug > 4)
1505 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1506#endif
1da177e4
LT
1507 if (le16_to_cpu(desc->status2) & 0x0100) {
1508 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1509 dev->stats.rx_compressed++;
1da177e4
LT
1510 }
1511 /*
1512 * This feature doesn't seem to be working, at least
1513 * with the two firmware versions I have. If the GFP sees
1514 * an IP fragment, it either ignores it completely, or reports
1515 * "bad checksum" on it.
1516 *
1517 * Maybe I missed something -- corrections are welcome.
1518 * Until then, the printk stays. :-) -Ion
1519 */
1520 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1521 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1522 skb->csum = le16_to_cpu(desc->csum);
1523 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1524 }
1da177e4 1525#ifdef VLAN_SUPPORT
5da96be5 1526 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1527 u16 vlid = le16_to_cpu(desc->vlanid);
1528
1529 if (debug > 4) {
1530 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1531 vlid);
1532 }
5da96be5
JP
1533 __vlan_hwaccel_put_tag(skb, vlid);
1534 }
1da177e4 1535#endif /* VLAN_SUPPORT */
5da96be5 1536 netif_receive_skb(skb);
86678a20 1537 dev->stats.rx_packets++;
1da177e4
LT
1538
1539 next_rx:
1540 np->cur_rx++;
1541 desc->status = 0;
1542 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1543 }
9a3de255
JP
1544
1545 if (*quota == 0) { /* out of rx quota */
1546 retcode = 1;
1547 goto out;
1548 }
1da177e4
LT
1549 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1550
1551 out:
1552 refill_rx_ring(dev);
1553 if (debug > 5)
1554 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1555 retcode, np->rx_done, desc_status);
1556 return retcode;
1557}
1558
bea3348e 1559static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1560{
bea3348e
SH
1561 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1562 struct net_device *dev = np->dev;
1da177e4 1563 u32 intr_status;
1da177e4 1564 void __iomem *ioaddr = np->base;
bea3348e 1565 int quota = budget;
1da177e4
LT
1566
1567 do {
1568 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1569
bea3348e 1570 if (__netdev_rx(dev, &quota))
1da177e4
LT
1571 goto out;
1572
1573 intr_status = readl(ioaddr + IntrStatus);
1574 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1575
288379f0 1576 napi_complete(napi);
1da177e4
LT
1577 intr_status = readl(ioaddr + IntrEnable);
1578 intr_status |= IntrRxDone | IntrRxEmpty;
1579 writel(intr_status, ioaddr + IntrEnable);
1580
1581 out:
1582 if (debug > 5)
bea3348e
SH
1583 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1584 budget - quota);
1da177e4
LT
1585
1586 /* Restart Rx engine if stopped. */
bea3348e 1587 return budget - quota;
1da177e4 1588}
1da177e4
LT
1589
1590static void refill_rx_ring(struct net_device *dev)
1591{
1592 struct netdev_private *np = netdev_priv(dev);
1593 struct sk_buff *skb;
1594 int entry = -1;
1595
1596 /* Refill the Rx ring buffers. */
1597 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1598 entry = np->dirty_rx % RX_RING_SIZE;
1599 if (np->rx_info[entry].skb == NULL) {
1600 skb = dev_alloc_skb(np->rx_buf_sz);
1601 np->rx_info[entry].skb = skb;
1602 if (skb == NULL)
1603 break; /* Better luck next round. */
1604 np->rx_info[entry].mapping =
689be439 1605 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1606 skb->dev = dev; /* Mark as being used by this device. */
1607 np->rx_ring[entry].rxaddr =
1608 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1609 }
1610 if (entry == RX_RING_SIZE - 1)
1611 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1612 }
1613 if (entry >= 0)
1614 writew(entry, np->base + RxDescQIdx);
1615}
1616
1617
1618static void netdev_media_change(struct net_device *dev)
1619{
1620 struct netdev_private *np = netdev_priv(dev);
1621 void __iomem *ioaddr = np->base;
1622 u16 reg0, reg1, reg4, reg5;
1623 u32 new_tx_mode;
1624 u32 new_intr_timer_ctrl;
1625
1626 /* reset status first */
1627 mdio_read(dev, np->phys[0], MII_BMCR);
1628 mdio_read(dev, np->phys[0], MII_BMSR);
1629
1630 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1631 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1632
1633 if (reg1 & BMSR_LSTATUS) {
1634 /* link is up */
1635 if (reg0 & BMCR_ANENABLE) {
1636 /* autonegotiation is enabled */
1637 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1638 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1639 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1640 np->speed100 = 1;
1641 np->mii_if.full_duplex = 1;
1642 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1643 np->speed100 = 1;
1644 np->mii_if.full_duplex = 0;
1645 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1646 np->speed100 = 0;
1647 np->mii_if.full_duplex = 1;
1648 } else {
1649 np->speed100 = 0;
1650 np->mii_if.full_duplex = 0;
1651 }
1652 } else {
1653 /* autonegotiation is disabled */
1654 if (reg0 & BMCR_SPEED100)
1655 np->speed100 = 1;
1656 else
1657 np->speed100 = 0;
1658 if (reg0 & BMCR_FULLDPLX)
1659 np->mii_if.full_duplex = 1;
1660 else
1661 np->mii_if.full_duplex = 0;
1662 }
1663 netif_carrier_on(dev);
1664 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1665 dev->name,
1666 np->speed100 ? "100" : "10",
1667 np->mii_if.full_duplex ? "full" : "half");
1668
1669 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1670 if (np->mii_if.full_duplex)
1671 new_tx_mode |= FullDuplex;
1672 if (np->tx_mode != new_tx_mode) {
1673 np->tx_mode = new_tx_mode;
1674 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1675 udelay(1000);
1676 writel(np->tx_mode, ioaddr + TxMode);
1677 }
1678
1679 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1680 if (np->speed100)
1681 new_intr_timer_ctrl |= Timer10X;
1682 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1683 np->intr_timer_ctrl = new_intr_timer_ctrl;
1684 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1685 }
1686 } else {
1687 netif_carrier_off(dev);
1688 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1689 }
1690}
1691
1692
1693static void netdev_error(struct net_device *dev, int intr_status)
1694{
1695 struct netdev_private *np = netdev_priv(dev);
1696
1697 /* Came close to underrunning the Tx FIFO, increase threshold. */
1698 if (intr_status & IntrTxDataLow) {
1699 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1700 writel(++np->tx_threshold, np->base + TxThreshold);
1701 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1702 dev->name, np->tx_threshold * 16);
1703 } else
1704 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1705 }
1706 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1707 dev->stats.rx_fifo_errors++;
1708 dev->stats.rx_errors++;
1da177e4
LT
1709 }
1710 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1711 dev->stats.tx_fifo_errors++;
1712 dev->stats.tx_errors++;
1da177e4
LT
1713 }
1714 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1715 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1716 dev->name, intr_status);
1717}
1718
1719
1720static struct net_device_stats *get_stats(struct net_device *dev)
1721{
1722 struct netdev_private *np = netdev_priv(dev);
1723 void __iomem *ioaddr = np->base;
1724
1725 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1726 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1727 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1728 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1729 dev->stats.tx_aborted_errors =
1da177e4 1730 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1731 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1732 dev->stats.collisions =
1da177e4
LT
1733 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1734
1735 /* The chip only need report frame silently dropped. */
86678a20 1736 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1737 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1738 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1739 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1740 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1741 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1742
86678a20 1743 return &dev->stats;
1da177e4
LT
1744}
1745
5da96be5
JP
1746#ifdef VLAN_SUPPORT
1747static u32 set_vlan_mode(struct netdev_private *np)
1748{
1749 u32 ret = VlanMode;
1750 u16 vid;
1751 void __iomem *filter_addr = np->base + HashTable + 8;
1752 int vlan_count = 0;
1753
1754 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1755 if (vlan_count == 32)
1756 break;
1757 writew(vid, filter_addr);
1758 filter_addr += 16;
1759 vlan_count++;
1760 }
1761 if (vlan_count == 32) {
1762 ret |= PerfectFilterVlan;
1763 while (vlan_count < 32) {
1764 writew(0, filter_addr);
1765 filter_addr += 16;
1766 vlan_count++;
1767 }
1768 }
1769 return ret;
1770}
1771#endif /* VLAN_SUPPORT */
1da177e4 1772
1da177e4
LT
1773static void set_rx_mode(struct net_device *dev)
1774{
1775 struct netdev_private *np = netdev_priv(dev);
1776 void __iomem *ioaddr = np->base;
1777 u32 rx_mode = MinVLANPrio;
22bedad3 1778 struct netdev_hw_addr *ha;
1da177e4 1779 int i;
1da177e4 1780
5da96be5
JP
1781#ifdef VLAN_SUPPORT
1782 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1783#endif /* VLAN_SUPPORT */
1784
1785 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1786 rx_mode |= AcceptAll;
4cd24eaf 1787 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1788 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1789 /* Too many to match, or accept all multicasts. */
1790 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1791 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1792 /* Use the 16 element perfect filter, skip first two entries. */
1793 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1794 __be16 *eaddrs;
22bedad3
JP
1795 netdev_for_each_mc_addr(ha, dev) {
1796 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1799 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1800 }
88b1943b 1801 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1802 i = netdev_mc_count(dev) + 2;
1da177e4 1803 while (i++ < 16) {
88b1943b
AV
1804 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1806 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1807 }
1808 rx_mode |= AcceptBroadcast|PerfectFilter;
1809 } else {
1810 /* Must use a multicast hash table. */
1811 void __iomem *filter_addr;
88b1943b
AV
1812 __be16 *eaddrs;
1813 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1814
1815 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1816 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1817 /* The chip uses the upper 9 CRC bits
1818 as index into the hash table */
22bedad3 1819 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1820 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1821
1822 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1823 }
1824 /* Clear the perfect filter list, skip first two entries. */
1825 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1826 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1827 for (i = 2; i < 16; i++) {
88b1943b
AV
1828 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1829 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1830 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1831 }
1832 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1833 writew(mc_filter[i], filter_addr);
1834 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1835 }
1836 writel(rx_mode, ioaddr + RxFilterMode);
1837}
1838
1839static int check_if_running(struct net_device *dev)
1840{
1841 if (!netif_running(dev))
1842 return -EINVAL;
1843 return 0;
1844}
1845
1846static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1847{
1848 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1849 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1850 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1851 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1852}
1853
1854static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1855{
1856 struct netdev_private *np = netdev_priv(dev);
1857 spin_lock_irq(&np->lock);
1858 mii_ethtool_gset(&np->mii_if, ecmd);
1859 spin_unlock_irq(&np->lock);
1860 return 0;
1861}
1862
1863static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1864{
1865 struct netdev_private *np = netdev_priv(dev);
1866 int res;
1867 spin_lock_irq(&np->lock);
1868 res = mii_ethtool_sset(&np->mii_if, ecmd);
1869 spin_unlock_irq(&np->lock);
1870 check_duplex(dev);
1871 return res;
1872}
1873
1874static int nway_reset(struct net_device *dev)
1875{
1876 struct netdev_private *np = netdev_priv(dev);
1877 return mii_nway_restart(&np->mii_if);
1878}
1879
1880static u32 get_link(struct net_device *dev)
1881{
1882 struct netdev_private *np = netdev_priv(dev);
1883 return mii_link_ok(&np->mii_if);
1884}
1885
1886static u32 get_msglevel(struct net_device *dev)
1887{
1888 return debug;
1889}
1890
1891static void set_msglevel(struct net_device *dev, u32 val)
1892{
1893 debug = val;
1894}
1895
7282d491 1896static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1897 .begin = check_if_running,
1898 .get_drvinfo = get_drvinfo,
1899 .get_settings = get_settings,
1900 .set_settings = set_settings,
1901 .nway_reset = nway_reset,
1902 .get_link = get_link,
1903 .get_msglevel = get_msglevel,
1904 .set_msglevel = set_msglevel,
1905};
1906
1907static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1908{
1909 struct netdev_private *np = netdev_priv(dev);
1910 struct mii_ioctl_data *data = if_mii(rq);
1911 int rc;
1912
1913 if (!netif_running(dev))
1914 return -EINVAL;
1915
1916 spin_lock_irq(&np->lock);
1917 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1918 spin_unlock_irq(&np->lock);
1919
1920 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1921 check_duplex(dev);
1922
1923 return rc;
1924}
1925
1926static int netdev_close(struct net_device *dev)
1927{
1928 struct netdev_private *np = netdev_priv(dev);
1929 void __iomem *ioaddr = np->base;
1930 int i;
1931
1932 netif_stop_queue(dev);
a6676019 1933
bea3348e 1934 napi_disable(&np->napi);
1da177e4
LT
1935
1936 if (debug > 1) {
1937 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1938 dev->name, (int) readl(ioaddr + IntrStatus));
1939 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1940 dev->name, np->cur_tx, np->dirty_tx,
1941 np->cur_rx, np->dirty_rx);
1942 }
1943
1944 /* Disable interrupts by clearing the interrupt mask. */
1945 writel(0, ioaddr + IntrEnable);
1946
1947 /* Stop the chip's Tx and Rx processes. */
1948 writel(0, ioaddr + GenCtrl);
1949 readl(ioaddr + GenCtrl);
1950
1951 if (debug > 5) {
1952 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1953 (long long) np->tx_ring_dma);
1954 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1955 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1956 i, le32_to_cpu(np->tx_ring[i].status),
1957 (long long) dma_to_cpu(np->tx_ring[i].addr),
1958 le32_to_cpu(np->tx_done_q[i].status));
1959 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1960 (long long) np->rx_ring_dma, np->rx_done_q);
1961 if (np->rx_done_q)
1962 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1963 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1964 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1965 }
1966 }
1967
1968 free_irq(dev->irq, dev);
1969
1970 /* Free all the skbuffs in the Rx queue. */
1971 for (i = 0; i < RX_RING_SIZE; i++) {
1972 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1973 if (np->rx_info[i].skb != NULL) {
1974 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1975 dev_kfree_skb(np->rx_info[i].skb);
1976 }
1977 np->rx_info[i].skb = NULL;
1978 np->rx_info[i].mapping = 0;
1979 }
1980 for (i = 0; i < TX_RING_SIZE; i++) {
1981 struct sk_buff *skb = np->tx_info[i].skb;
1982 if (skb == NULL)
1983 continue;
1984 pci_unmap_single(np->pci_dev,
1985 np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1987 np->tx_info[i].mapping = 0;
1988 dev_kfree_skb(skb);
1989 np->tx_info[i].skb = NULL;
1990 }
1991
1992 return 0;
1993}
1994
d4fbeabb
SR
1995#ifdef CONFIG_PM
1996static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1997{
1998 struct net_device *dev = pci_get_drvdata(pdev);
1999
2000 if (netif_running(dev)) {
2001 netif_device_detach(dev);
2002 netdev_close(dev);
2003 }
2004
2005 pci_save_state(pdev);
2006 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2007
2008 return 0;
2009}
2010
2011static int starfire_resume(struct pci_dev *pdev)
2012{
2013 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 2014
d4fbeabb
SR
2015 pci_set_power_state(pdev, PCI_D0);
2016 pci_restore_state(pdev);
2017
2018 if (netif_running(dev)) {
2019 netdev_open(dev);
2020 netif_device_attach(dev);
2021 }
2022
2023 return 0;
2024}
2025#endif /* CONFIG_PM */
2026
1da177e4
LT
2027
2028static void __devexit starfire_remove_one (struct pci_dev *pdev)
2029{
2030 struct net_device *dev = pci_get_drvdata(pdev);
2031 struct netdev_private *np = netdev_priv(dev);
2032
5d9428de 2033 BUG_ON(!dev);
1da177e4
LT
2034
2035 unregister_netdev(dev);
2036
2037 if (np->queue_mem)
2038 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2039
2040
2041 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2042 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2043 pci_disable_device(pdev);
2044
2045 iounmap(np->base);
2046 pci_release_regions(pdev);
2047
2048 pci_set_drvdata(pdev, NULL);
2049 free_netdev(dev); /* Will also free np!! */
2050}
2051
2052
2053static struct pci_driver starfire_driver = {
2054 .name = DRV_NAME,
2055 .probe = starfire_init_one,
2056 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2057#ifdef CONFIG_PM
2058 .suspend = starfire_suspend,
2059 .resume = starfire_resume,
2060#endif /* CONFIG_PM */
1da177e4
LT
2061 .id_table = starfire_pci_tbl,
2062};
2063
2064
2065static int __init starfire_init (void)
2066{
2067/* when a module, this is printed whether or not devices are found in probe */
2068#ifdef MODULE
2069 printk(version);
a6676019 2070
fdecea66 2071 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2072#endif
2073
56543af9 2074 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2075
29917620 2076 return pci_register_driver(&starfire_driver);
1da177e4
LT
2077}
2078
2079
2080static void __exit starfire_cleanup (void)
2081{
2082 pci_unregister_driver (&starfire_driver);
2083}
2084
2085
2086module_init(starfire_init);
2087module_exit(starfire_cleanup);
2088
2089
2090/*
2091 * Local variables:
2092 * c-basic-offset: 8
2093 * tab-width: 8
2094 * End:
2095 */
This page took 1.145488 seconds and 5 git commands to generate.