starfire: stop using net_device.{base_addr, irq}.
[deliverable/linux.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4
LT
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4
LT
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121*/
122#define MAX_UNITS 8 /* More are supported, limit only on options */
123static int options[MAX_UNITS] = {0, };
124static int full_duplex[MAX_UNITS] = {0, };
125
126/* Operational parameters that are set at compile time. */
127
128/* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130*/
131#define RX_RING_SIZE 256
132#define TX_RING_SIZE 32
133/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134#define DONE_Q_SIZE 1024
135/* All queues must be aligned on a 256-byte boundary */
136#define QUEUE_ALIGN 256
137
138#if RX_RING_SIZE > 256
139#define RX_Q_ENTRIES Rx2048QEntries
140#else
141#define RX_Q_ENTRIES Rx256QEntries
142#endif
143
144/* Operational parameters that usually are not changed. */
145/* Time in jiffies before concluding the transmitter is hung. */
146#define TX_TIMEOUT (2 * HZ)
147
1591cb60 148#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
149/* 64-bit dma_addr_t */
150#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 151#define netdrv_addr_t __le64
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le64(x)
153#define dma_to_cpu(x) le64_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158#define RX_DESC_ADDR_SIZE RxDescAddr64bit
159#else /* 32-bit dma_addr_t */
88b1943b 160#define netdrv_addr_t __le32
1da177e4
LT
161#define cpu_to_dma(x) cpu_to_le32(x)
162#define dma_to_cpu(x) le32_to_cpu(x)
163#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167#define RX_DESC_ADDR_SIZE RxDescAddr32bit
168#endif
169
1da177e4
LT
170#define skb_first_frag_len(skb) skb_headlen(skb)
171#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 172
cfc3a44c
JSR
173/* Firmware names */
174#define FIRMWARE_RX "adaptec/starfire_rx.bin"
175#define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
1da177e4 177/* These identify the driver base version and may not be removed. */
b5defaa5 178static const char version[] __devinitconst =
1da177e4 179KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 180" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
181
182MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184MODULE_LICENSE("GPL");
fdecea66 185MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
186MODULE_FIRMWARE(FIRMWARE_RX);
187MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
188
189module_param(max_interrupt_work, int, 0);
190module_param(mtu, int, 0);
191module_param(debug, int, 0);
192module_param(rx_copybreak, int, 0);
193module_param(intr_latency, int, 0);
194module_param(small_frames, int, 0);
195module_param_array(options, int, NULL, 0);
196module_param_array(full_duplex, int, NULL, 0);
197module_param(enable_hw_cksum, int, 0);
198MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199MODULE_PARM_DESC(mtu, "MTU (all boards)");
200MODULE_PARM_DESC(debug, "Debug level (0-6)");
201MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208/*
209 Theory of Operation
210
211I. Board Compatibility
212
213This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215II. Board-specific settings
216
217III. Driver operation
218
219IIIa. Ring buffers
220
221The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222ring sizes are set fixed by the hardware, but may optionally be wrapped
223earlier by the END bit in the descriptor.
224This driver uses that hardware queue size for the Rx ring, where a large
225number of entries has no ill effect beyond increases the potential backlog.
226The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227disables the queue layer priority ordering and we have no mechanism to
228utilize the hardware two-level priority queue. When modifying the
229RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230levels.
231
232IIIb/c. Transmit/Receive Structure
233
234See the Adaptec manual for the many possible structures, and options for
235each structure. There are far too many to document all of them here.
236
237For transmit this driver uses type 0/1 transmit descriptors (depending
238on the 32/64 bitness of the architecture), and relies on automatic
239minimum-length padding. It does not use the completion queue
240consumer index, but instead checks for non-zero status entries.
241
fdecea66 242For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
243allocates full frame size skbuffs for the Rx ring buffers, so all frames
244should fit in a single descriptor. The driver does not use the completion
245queue consumer index, but instead checks for non-zero status entries.
246
247When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248is allocated and the frame is copied to the new skbuff. When the incoming
249frame is larger, the skbuff is passed directly up the protocol stack.
250Buffers consumed this way are replaced by newly allocated skbuffs in a later
251phase of receive.
252
253A notable aspect of operation is that unaligned buffers are not permitted by
254the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255isn't longword aligned, which may cause problems on some machine
256e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257the frame into a new skbuff unconditionally. Copied frames are put into the
258skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260IIId. Synchronization
261
262The driver runs as two independent, single-threaded flows of control. One
263is the send-packet routine, which enforces single-threaded use by the
264dev->tbusy flag. The other thread is the interrupt handler, which is single
265threaded by the hardware and interrupt handling software.
266
267The send packet thread has partial control over the Tx ring and the netif_queue
268status. If the number of free Tx slots in the ring falls below a certain number
269(currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271The interrupt handler has exclusive control over the Rx ring and records stats
272from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274number of free Tx slow is above the threshold, it signals the upper layer to
275restart the queue.
276
277IV. Notes
278
279IVb. References
280
281The Adaptec Starfire manuals, available only from Adaptec.
282http://www.scyld.com/expert/100mbps.html
283http://www.scyld.com/expert/NWay.html
284
285IVc. Errata
286
287- StopOnPerr is broken, don't enable
288- Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291*/
292
fdecea66 293
1da177e4
LT
294
295enum chip_capability_flags {CanHaveMII=1, };
296
297enum chipset {
298 CH_6915 = 0,
299};
300
a3aa1884 301static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
d08336e9 302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
303 { 0, }
304};
305MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 308static const struct chip_info {
1da177e4
LT
309 const char *name;
310 int drv_flags;
311} netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313};
314
315
316/* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323*/
324enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341};
342
343/*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367};
368
369/* Bits in the RxFilterMode register. */
370enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375};
376
377/* Bits in the TxMode register */
378enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382};
383
384/* Bits in the TxDescCtrl register. */
385enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394};
395
396/* Bits in the RxDescQCtrl register. */
397enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407};
408
409/* Bits in the RxDMACtrl register. */
410enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423};
424
425/* Bits in the RxCompletionAddr register */
426enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432};
433
434/* Bits in the TxCompletionAddr register */
435enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441};
442
443/* Bits in the GenCtrl register */
444enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447};
448
449/* Bits in the IntrTimerCtrl register */
450enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454};
455
456/* The Rx and Tx buffer descriptors. */
457struct starfire_rx_desc {
88b1943b 458 netdrv_addr_t rxaddr;
1da177e4
LT
459};
460enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462};
463
464/* Completion queue entry. */
465struct short_rx_done_desc {
88b1943b 466 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
467};
468struct basic_rx_done_desc {
88b1943b
AV
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
1da177e4
LT
472};
473struct csum_rx_done_desc {
88b1943b
AV
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
1da177e4
LT
477};
478struct full_rx_done_desc {
88b1943b
AV
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
1da177e4
LT
485};
486/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
487#ifdef VLAN_SUPPORT
488typedef struct full_rx_done_desc rx_done_desc;
489#define RxComplType RxComplType3
490#else /* not VLAN_SUPPORT */
491typedef struct csum_rx_done_desc rx_done_desc;
492#define RxComplType RxComplType2
493#endif /* not VLAN_SUPPORT */
1da177e4
LT
494
495enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497};
498
499/* Type 1 Tx descriptor. */
500struct starfire_tx_desc_1 {
88b1943b
AV
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
1da177e4
LT
503};
504
505/* Type 2 Tx descriptor. */
506struct starfire_tx_desc_2 {
88b1943b
AV
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
1da177e4
LT
510};
511
512#ifdef ADDR_64BITS
513typedef struct starfire_tx_desc_2 starfire_tx_desc;
514#define TX_DESC_TYPE TxDescType2
515#else /* not ADDR_64BITS */
516typedef struct starfire_tx_desc_1 starfire_tx_desc;
517#define TX_DESC_TYPE TxDescType1
518#endif /* not ADDR_64BITS */
519#define TX_DESC_SPACING TxDescSpaceUnlim
520
521enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525};
526struct tx_done_desc {
88b1943b 527 __le32 status; /* timestamp, index. */
1da177e4 528#if 0
88b1943b 529 __le32 intrstatus; /* interrupt status */
1da177e4
LT
530#endif
531};
532
533struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536};
537struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541};
542
543#define PHY_CNT 2
544struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
bea3348e
SH
560 struct napi_struct napi;
561 struct net_device *dev;
1da177e4
LT
562 struct pci_dev *pci_dev;
563#ifdef VLAN_SUPPORT
5da96be5 564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
565#endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585};
586
587
588static int mdio_read(struct net_device *dev, int phy_id, int location);
589static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590static int netdev_open(struct net_device *dev);
591static void check_duplex(struct net_device *dev);
592static void tx_timeout(struct net_device *dev);
593static void init_ring(struct net_device *dev);
61357325 594static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 595static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
596static void netdev_error(struct net_device *dev, int intr_status);
597static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 598static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
599static void refill_rx_ring(struct net_device *dev);
600static void netdev_error(struct net_device *dev, int intr_status);
601static void set_rx_mode(struct net_device *dev);
602static struct net_device_stats *get_stats(struct net_device *dev);
603static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604static int netdev_close(struct net_device *dev);
605static void netdev_media_change(struct net_device *dev);
7282d491 606static const struct ethtool_ops ethtool_ops;
1da177e4
LT
607
608
609#ifdef VLAN_SUPPORT
8e586137 610static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
611{
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 617 set_bit(vid, np->active_vlans);
1da177e4
LT
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
8e586137
JP
620
621 return 0;
1da177e4
LT
622}
623
8e586137 624static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
625{
626 struct netdev_private *np = netdev_priv(dev);
627
628 spin_lock(&np->lock);
629 if (debug > 1)
630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 631 clear_bit(vid, np->active_vlans);
1da177e4
LT
632 set_rx_mode(dev);
633 spin_unlock(&np->lock);
8e586137
JP
634
635 return 0;
1da177e4
LT
636}
637#endif /* VLAN_SUPPORT */
638
639
4fc8006e
SH
640static const struct net_device_ops netdev_ops = {
641 .ndo_open = netdev_open,
642 .ndo_stop = netdev_close,
643 .ndo_start_xmit = start_tx,
5da96be5
JP
644 .ndo_tx_timeout = tx_timeout,
645 .ndo_get_stats = get_stats,
afc4b13d 646 .ndo_set_rx_mode = set_rx_mode,
5da96be5 647 .ndo_do_ioctl = netdev_ioctl,
4fc8006e 648 .ndo_change_mtu = eth_change_mtu,
5da96be5 649 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
650 .ndo_validate_addr = eth_validate_addr,
651#ifdef VLAN_SUPPORT
4fc8006e
SH
652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
654#endif
655};
656
1da177e4
LT
657static int __devinit starfire_init_one(struct pci_dev *pdev,
658 const struct pci_device_id *ent)
659{
660 struct netdev_private *np;
661 int i, irq, option, chip_idx = ent->driver_data;
662 struct net_device *dev;
663 static int card_idx = -1;
664 long ioaddr;
665 void __iomem *base;
666 int drv_flags, io_size;
667 int boguscnt;
668
669/* when built into the kernel, we only print version if device is found */
670#ifndef MODULE
671 static int printed_version;
672 if (!printed_version++)
673 printk(version);
674#endif
675
676 card_idx++;
677
678 if (pci_enable_device (pdev))
679 return -EIO;
680
681 ioaddr = pci_resource_start(pdev, 0);
682 io_size = pci_resource_len(pdev, 0);
683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 return -ENODEV;
686 }
687
688 dev = alloc_etherdev(sizeof(*np));
41de8d4c 689 if (!dev)
1da177e4 690 return -ENOMEM;
41de8d4c 691
1da177e4
LT
692 SET_NETDEV_DEV(dev, &pdev->dev);
693
694 irq = pdev->irq;
695
696 if (pci_request_regions (pdev, DRV_NAME)) {
697 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
698 goto err_out_free_netdev;
699 }
700
1da177e4
LT
701 base = ioremap(ioaddr, io_size);
702 if (!base) {
703 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
704 card_idx, io_size, ioaddr);
705 goto err_out_free_res;
706 }
707
708 pci_set_master(pdev);
709
710 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 711 pci_try_set_mwi(pdev);
1da177e4 712
1da177e4
LT
713#ifdef ZEROCOPY
714 /* Starfire can do TCP/UDP checksumming */
715 if (enable_hw_cksum)
fdecea66 716 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 717#endif /* ZEROCOPY */
4fc8006e 718
1da177e4
LT
719#ifdef VLAN_SUPPORT
720 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1da177e4
LT
721#endif /* VLAN_RX_KILL_VID */
722#ifdef ADDR_64BITS
723 dev->features |= NETIF_F_HIGHDMA;
724#endif /* ADDR_64BITS */
725
726 /* Serial EEPROM reads are hidden by the hardware. */
727 for (i = 0; i < 6; i++)
728 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
729
730#if ! defined(final_version) /* Dump the EEPROM contents during development. */
731 if (debug > 4)
732 for (i = 0; i < 0x20; i++)
733 printk("%2.2x%s",
734 (unsigned int)readb(base + EEPROMCtrl + i),
735 i % 16 != 15 ? " " : "\n");
736#endif
737
738 /* Issue soft reset */
739 writel(MiiSoftReset, base + TxMode);
740 udelay(1000);
741 writel(0, base + TxMode);
742
743 /* Reset the chip to erase previous misconfiguration. */
744 writel(1, base + PCIDeviceConfig);
745 boguscnt = 1000;
746 while (--boguscnt > 0) {
747 udelay(10);
748 if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 break;
750 }
751 if (boguscnt == 0)
752 printk("%s: chipset reset never completed!\n", dev->name);
753 /* wait a little longer */
754 udelay(1000);
755
1da177e4 756 np = netdev_priv(dev);
bea3348e 757 np->dev = dev;
1da177e4
LT
758 np->base = base;
759 spin_lock_init(&np->lock);
760 pci_set_drvdata(pdev, dev);
761
762 np->pci_dev = pdev;
763
764 np->mii_if.dev = dev;
765 np->mii_if.mdio_read = mdio_read;
766 np->mii_if.mdio_write = mdio_write;
767 np->mii_if.phy_id_mask = 0x1f;
768 np->mii_if.reg_num_mask = 0x1f;
769
770 drv_flags = netdrv_tbl[chip_idx].drv_flags;
771
772 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
1da177e4
LT
773
774 /* The lower four bits are the media type. */
775 if (option & 0x200)
776 np->mii_if.full_duplex = 1;
777
778 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
779 np->mii_if.full_duplex = 1;
780
781 if (np->mii_if.full_duplex)
782 np->mii_if.force_media = 1;
783 else
784 np->mii_if.force_media = 0;
785 np->speed100 = 1;
786
787 /* timer resolution is 128 * 0.8us */
788 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
789 Timer10X | EnableIntrMasking;
790
791 if (small_frames > 0) {
792 np->intr_timer_ctrl |= SmallFrameBypass;
793 switch (small_frames) {
794 case 1 ... 64:
795 np->intr_timer_ctrl |= SmallFrame64;
796 break;
797 case 65 ... 128:
798 np->intr_timer_ctrl |= SmallFrame128;
799 break;
800 case 129 ... 256:
801 np->intr_timer_ctrl |= SmallFrame256;
802 break;
803 default:
804 np->intr_timer_ctrl |= SmallFrame512;
805 if (small_frames > 512)
806 printk("Adjusting small_frames down to 512\n");
807 break;
808 }
809 }
810
4fc8006e 811 dev->netdev_ops = &netdev_ops;
fdecea66 812 dev->watchdog_timeo = TX_TIMEOUT;
1da177e4
LT
813 SET_ETHTOOL_OPS(dev, &ethtool_ops);
814
4fc8006e
SH
815 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
816
1da177e4
LT
817 if (mtu)
818 dev->mtu = mtu;
819
820 if (register_netdev(dev))
821 goto err_out_cleardev;
822
e174961c 823 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 824 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 825 dev->dev_addr, irq);
1da177e4
LT
826
827 if (drv_flags & CanHaveMII) {
828 int phy, phy_idx = 0;
829 int mii_status;
830 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
831 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
832 mdelay(100);
833 boguscnt = 1000;
834 while (--boguscnt > 0)
835 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
836 break;
837 if (boguscnt == 0) {
fdecea66 838 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
839 continue;
840 }
841 mii_status = mdio_read(dev, phy, MII_BMSR);
842 if (mii_status != 0) {
843 np->phys[phy_idx++] = phy;
844 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
845 printk(KERN_INFO "%s: MII PHY found at address %d, status "
846 "%#4.4x advertising %#4.4x.\n",
847 dev->name, phy, mii_status, np->mii_if.advertising);
848 /* there can be only one PHY on-board */
849 break;
850 }
851 }
852 np->phy_cnt = phy_idx;
853 if (np->phy_cnt > 0)
854 np->mii_if.phy_id = np->phys[0];
855 else
856 memset(&np->mii_if, 0, sizeof(np->mii_if));
857 }
858
859 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
860 dev->name, enable_hw_cksum ? "enabled" : "disabled");
861 return 0;
862
863err_out_cleardev:
864 pci_set_drvdata(pdev, NULL);
865 iounmap(base);
866err_out_free_res:
867 pci_release_regions (pdev);
868err_out_free_netdev:
869 free_netdev(dev);
870 return -ENODEV;
871}
872
873
874/* Read the MII Management Data I/O (MDIO) interfaces. */
875static int mdio_read(struct net_device *dev, int phy_id, int location)
876{
877 struct netdev_private *np = netdev_priv(dev);
878 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
879 int result, boguscnt=1000;
880 /* ??? Should we add a busy-wait here? */
e4c3c13c 881 do {
1da177e4 882 result = readl(mdio_addr);
e4c3c13c 883 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
884 if (boguscnt == 0)
885 return 0;
886 if ((result & 0xffff) == 0xffff)
887 return 0;
888 return result & 0xffff;
889}
890
891
892static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
893{
894 struct netdev_private *np = netdev_priv(dev);
895 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
896 writel(value, mdio_addr);
897 /* The busy-wait will occur before a read. */
898}
899
900
901static int netdev_open(struct net_device *dev)
902{
cfc3a44c
JSR
903 const struct firmware *fw_rx, *fw_tx;
904 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
905 struct netdev_private *np = netdev_priv(dev);
906 void __iomem *ioaddr = np->base;
ea8f2ed0 907 const int irq = np->pci_dev->irq;
1da177e4 908 int i, retval;
cfc3a44c 909 size_t tx_size, rx_size;
1da177e4
LT
910 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
911
912 /* Do we ever need to reset the chip??? */
fdecea66 913
ea8f2ed0 914 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
915 if (retval)
916 return retval;
917
918 /* Disable the Rx and Tx, and reset the chip. */
919 writel(0, ioaddr + GenCtrl);
920 writel(1, ioaddr + PCIDeviceConfig);
921 if (debug > 1)
922 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
ea8f2ed0 923 dev->name, irq);
1da177e4
LT
924
925 /* Allocate the various queues. */
88b1943b 926 if (!np->queue_mem) {
1da177e4
LT
927 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
928 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
929 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
930 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
931 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
932 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9 933 if (np->queue_mem == NULL) {
ea8f2ed0 934 free_irq(irq, dev);
1da177e4 935 return -ENOMEM;
d8840ac9 936 }
1da177e4
LT
937
938 np->tx_done_q = np->queue_mem;
939 np->tx_done_q_dma = np->queue_mem_dma;
940 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
941 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
942 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
943 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
944 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
945 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
946 }
947
948 /* Start with no carrier, it gets adjusted later */
949 netif_carrier_off(dev);
950 init_ring(dev);
951 /* Set the size of the Rx buffers. */
952 writel((np->rx_buf_sz << RxBufferLenShift) |
953 (0 << RxMinDescrThreshShift) |
954 RxPrefetchMode | RxVariableQ |
955 RX_Q_ENTRIES |
956 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
957 RxDescSpace4,
958 ioaddr + RxDescQCtrl);
959
960 /* Set up the Rx DMA controller. */
961 writel(RxChecksumIgnore |
962 (0 << RxEarlyIntThreshShift) |
963 (6 << RxHighPrioThreshShift) |
964 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
965 ioaddr + RxDMACtrl);
966
967 /* Set Tx descriptor */
968 writel((2 << TxHiPriFIFOThreshShift) |
969 (0 << TxPadLenShift) |
970 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
971 TX_DESC_Q_ADDR_SIZE |
972 TX_DESC_SPACING | TX_DESC_TYPE,
973 ioaddr + TxDescCtrl);
974
975 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
976 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
977 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
978 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
979 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
980
981 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
982 writel(np->rx_done_q_dma |
983 RxComplType |
984 (0 << RxComplThreshShift),
985 ioaddr + RxCompletionAddr);
986
987 if (debug > 1)
988 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
989
990 /* Fill both the Tx SA register and the Rx perfect filter. */
991 for (i = 0; i < 6; i++)
992 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
993 /* The first entry is special because it bypasses the VLAN filter.
994 Don't use it. */
995 writew(0, ioaddr + PerfFilterTable);
996 writew(0, ioaddr + PerfFilterTable + 4);
997 writew(0, ioaddr + PerfFilterTable + 8);
998 for (i = 1; i < 16; i++) {
88b1943b 999 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1000 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
1001 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1002 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1003 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1004 }
1005
1006 /* Initialize other registers. */
1007 /* Configure the PCI bus bursts and FIFO thresholds. */
1008 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1009 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1010 udelay(1000);
1011 writel(np->tx_mode, ioaddr + TxMode);
1012 np->tx_threshold = 4;
1013 writel(np->tx_threshold, ioaddr + TxThreshold);
1014
1015 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1016
bea3348e 1017 napi_enable(&np->napi);
a6676019 1018
1da177e4
LT
1019 netif_start_queue(dev);
1020
1021 if (debug > 1)
1022 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1023 set_rx_mode(dev);
1024
1025 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1026 check_duplex(dev);
1027
1028 /* Enable GPIO interrupts on link change */
1029 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1030
1031 /* Set the interrupt mask */
1032 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1033 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1034 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1035 ioaddr + IntrEnable);
1036 /* Enable PCI interrupts. */
1037 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1038 ioaddr + PCIDeviceConfig);
1039
1040#ifdef VLAN_SUPPORT
1041 /* Set VLAN type to 802.1q */
1042 writel(ETH_P_8021Q, ioaddr + VlanType);
1043#endif /* VLAN_SUPPORT */
1044
cfc3a44c
JSR
1045 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1046 if (retval) {
1047 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1048 FIRMWARE_RX);
c928febf 1049 goto out_init;
cfc3a44c
JSR
1050 }
1051 if (fw_rx->size % 4) {
1052 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1053 fw_rx->size, FIRMWARE_RX);
1054 retval = -EINVAL;
1055 goto out_rx;
1056 }
1057 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1058 if (retval) {
1059 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1060 FIRMWARE_TX);
1061 goto out_rx;
1062 }
1063 if (fw_tx->size % 4) {
1064 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1065 fw_tx->size, FIRMWARE_TX);
1066 retval = -EINVAL;
1067 goto out_tx;
1068 }
1069 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1070 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1071 rx_size = fw_rx->size / 4;
1072 tx_size = fw_tx->size / 4;
1073
1da177e4 1074 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1075 for (i = 0; i < rx_size; i++)
1076 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1077 for (i = 0; i < tx_size; i++)
1078 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1079 if (enable_hw_cksum)
1080 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1081 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1082 else
1083 /* Enable the Rx and Tx units only. */
1084 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1085
1086 if (debug > 1)
1087 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1088 dev->name);
1089
cfc3a44c
JSR
1090out_tx:
1091 release_firmware(fw_tx);
1092out_rx:
1093 release_firmware(fw_rx);
c928febf
BH
1094out_init:
1095 if (retval)
1096 netdev_close(dev);
cfc3a44c 1097 return retval;
1da177e4
LT
1098}
1099
1100
1101static void check_duplex(struct net_device *dev)
1102{
1103 struct netdev_private *np = netdev_priv(dev);
1104 u16 reg0;
1105 int silly_count = 1000;
1106
1107 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1108 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1109 udelay(500);
1110 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1111 /* do nothing */;
1112 if (!silly_count) {
1113 printk("%s: MII reset failed!\n", dev->name);
1114 return;
1115 }
1116
1117 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1118
1119 if (!np->mii_if.force_media) {
1120 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1121 } else {
1122 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1123 if (np->speed100)
1124 reg0 |= BMCR_SPEED100;
1125 if (np->mii_if.full_duplex)
1126 reg0 |= BMCR_FULLDPLX;
1127 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1128 dev->name,
1129 np->speed100 ? "100" : "10",
1130 np->mii_if.full_duplex ? "full" : "half");
1131 }
1132 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1133}
1134
1135
1136static void tx_timeout(struct net_device *dev)
1137{
1138 struct netdev_private *np = netdev_priv(dev);
1139 void __iomem *ioaddr = np->base;
1140 int old_debug;
1141
1142 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1143 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1144
1145 /* Perhaps we should reinitialize the hardware here. */
1146
1147 /*
1148 * Stop and restart the interface.
1149 * Cheat and increase the debug level temporarily.
1150 */
1151 old_debug = debug;
1152 debug = 2;
1153 netdev_close(dev);
1154 netdev_open(dev);
1155 debug = old_debug;
1156
1157 /* Trigger an immediate transmit demand. */
1158
1ae5dc34 1159 dev->trans_start = jiffies; /* prevent tx timeout */
86678a20 1160 dev->stats.tx_errors++;
1da177e4
LT
1161 netif_wake_queue(dev);
1162}
1163
1164
1165/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1166static void init_ring(struct net_device *dev)
1167{
1168 struct netdev_private *np = netdev_priv(dev);
1169 int i;
1170
1171 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1172 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1173
1174 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1175
1176 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1177 for (i = 0; i < RX_RING_SIZE; i++) {
1d266430 1178 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1179 np->rx_info[i].skb = skb;
1180 if (skb == NULL)
1181 break;
689be439 1182 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1183 /* Grrr, we cannot offset to correctly align the IP header. */
1184 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1185 }
1186 writew(i - 1, np->base + RxDescQIdx);
1187 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1188
1189 /* Clear the remainder of the Rx buffer ring. */
1190 for ( ; i < RX_RING_SIZE; i++) {
1191 np->rx_ring[i].rxaddr = 0;
1192 np->rx_info[i].skb = NULL;
1193 np->rx_info[i].mapping = 0;
1194 }
1195 /* Mark the last entry as wrapping the ring. */
1196 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1197
1198 /* Clear the completion rings. */
1199 for (i = 0; i < DONE_Q_SIZE; i++) {
1200 np->rx_done_q[i].status = 0;
1201 np->tx_done_q[i].status = 0;
1202 }
1203
1204 for (i = 0; i < TX_RING_SIZE; i++)
1205 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1206}
1207
1208
61357325 1209static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1210{
1211 struct netdev_private *np = netdev_priv(dev);
1212 unsigned int entry;
1213 u32 status;
1214 int i;
1215
1da177e4
LT
1216 /*
1217 * be cautious here, wrapping the queue has weird semantics
1218 * and we may not have enough slots even when it seems we do.
1219 */
1220 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1221 netif_stop_queue(dev);
5b548140 1222 return NETDEV_TX_BUSY;
1da177e4
LT
1223 }
1224
1225#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1226 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1227 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1228 return NETDEV_TX_OK;
1da177e4
LT
1229 }
1230#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1231
1232 entry = np->cur_tx % TX_RING_SIZE;
1233 for (i = 0; i < skb_num_frags(skb); i++) {
1234 int wrap_ring = 0;
1235 status = TxDescID;
1236
1237 if (i == 0) {
1238 np->tx_info[entry].skb = skb;
1239 status |= TxCRCEn;
1240 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1241 status |= TxRingWrap;
1242 wrap_ring = 1;
1243 }
1244 if (np->reap_tx) {
1245 status |= TxDescIntr;
1246 np->reap_tx = 0;
1247 }
84fa7933 1248 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1249 status |= TxCalTCP;
86678a20 1250 dev->stats.tx_compressed++;
1da177e4
LT
1251 }
1252 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1253
1254 np->tx_info[entry].mapping =
1255 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1256 } else {
9e903e08
ED
1257 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1258 status |= skb_frag_size(this_frag);
1da177e4 1259 np->tx_info[entry].mapping =
0cd83cc0
IC
1260 pci_map_single(np->pci_dev,
1261 skb_frag_address(this_frag),
9e903e08 1262 skb_frag_size(this_frag),
0cd83cc0 1263 PCI_DMA_TODEVICE);
1da177e4
LT
1264 }
1265
1266 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1267 np->tx_ring[entry].status = cpu_to_le32(status);
1268 if (debug > 3)
1269 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1270 dev->name, np->cur_tx, np->dirty_tx,
1271 entry, status);
1272 if (wrap_ring) {
1273 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1274 np->cur_tx += np->tx_info[entry].used_slots;
1275 entry = 0;
1276 } else {
1277 np->tx_info[entry].used_slots = 1;
1278 np->cur_tx += np->tx_info[entry].used_slots;
1279 entry++;
1280 }
1281 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1282 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1283 np->reap_tx = 1;
1284 }
1285
1286 /* Non-x86: explicitly flush descriptor cache lines here. */
1287 /* Ensure all descriptors are written back before the transmit is
1288 initiated. - Jes */
1289 wmb();
1290
1291 /* Update the producer index. */
1292 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1293
1294 /* 4 is arbitrary, but should be ok */
1295 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1296 netif_stop_queue(dev);
1297
6ed10654 1298 return NETDEV_TX_OK;
1da177e4
LT
1299}
1300
1301
1302/* The interrupt handler does all of the Rx thread work and cleans up
1303 after the Tx thread. */
7d12e780 1304static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1305{
1306 struct net_device *dev = dev_instance;
1307 struct netdev_private *np = netdev_priv(dev);
1308 void __iomem *ioaddr = np->base;
1309 int boguscnt = max_interrupt_work;
1310 int consumer;
1311 int tx_status;
1312 int handled = 0;
1313
1314 do {
1315 u32 intr_status = readl(ioaddr + IntrClear);
1316
1317 if (debug > 4)
1318 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1319 dev->name, intr_status);
1320
1321 if (intr_status == 0 || intr_status == (u32) -1)
1322 break;
1323
1324 handled = 1;
1325
a6676019
FR
1326 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1327 u32 enable;
1328
288379f0
BH
1329 if (likely(napi_schedule_prep(&np->napi))) {
1330 __napi_schedule(&np->napi);
a6676019
FR
1331 enable = readl(ioaddr + IntrEnable);
1332 enable &= ~(IntrRxDone | IntrRxEmpty);
1333 writel(enable, ioaddr + IntrEnable);
1334 /* flush PCI posting buffers */
1335 readl(ioaddr + IntrEnable);
1336 } else {
1337 /* Paranoia check */
1338 enable = readl(ioaddr + IntrEnable);
1339 if (enable & (IntrRxDone | IntrRxEmpty)) {
1340 printk(KERN_INFO
1341 "%s: interrupt while in poll!\n",
1342 dev->name);
1343 enable &= ~(IntrRxDone | IntrRxEmpty);
1344 writel(enable, ioaddr + IntrEnable);
1345 }
1346 }
1347 }
1da177e4
LT
1348
1349 /* Scavenge the skbuff list based on the Tx-done queue.
1350 There are redundant checks here that may be cleaned up
1351 after the driver has proven to be reliable. */
1352 consumer = readl(ioaddr + TxConsumerIdx);
1353 if (debug > 3)
1354 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1355 dev->name, consumer);
1356
1357 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1358 if (debug > 3)
1359 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1360 dev->name, np->dirty_tx, np->tx_done, tx_status);
1361 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1362 dev->stats.tx_packets++;
1da177e4
LT
1363 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1364 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1365 struct sk_buff *skb = np->tx_info[entry].skb;
1366 np->tx_info[entry].skb = NULL;
1367 pci_unmap_single(np->pci_dev,
1368 np->tx_info[entry].mapping,
1369 skb_first_frag_len(skb),
1370 PCI_DMA_TODEVICE);
1371 np->tx_info[entry].mapping = 0;
1372 np->dirty_tx += np->tx_info[entry].used_slots;
1373 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1374 {
1375 int i;
1376 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1377 pci_unmap_single(np->pci_dev,
1378 np->tx_info[entry].mapping,
9e903e08 1379 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1380 PCI_DMA_TODEVICE);
1381 np->dirty_tx++;
1382 entry++;
1383 }
1384 }
fdecea66 1385
1da177e4
LT
1386 dev_kfree_skb_irq(skb);
1387 }
1388 np->tx_done_q[np->tx_done].status = 0;
1389 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1390 }
1391 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1392
1393 if (netif_queue_stopped(dev) &&
1394 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1395 /* The ring is no longer full, wake the queue. */
1396 netif_wake_queue(dev);
1397 }
1398
1399 /* Stats overflow */
1400 if (intr_status & IntrStatsMax)
1401 get_stats(dev);
1402
1403 /* Media change interrupt. */
1404 if (intr_status & IntrLinkChange)
1405 netdev_media_change(dev);
1406
1407 /* Abnormal error summary/uncommon events handlers. */
1408 if (intr_status & IntrAbnormalSummary)
1409 netdev_error(dev, intr_status);
1410
1411 if (--boguscnt < 0) {
1412 if (debug > 1)
1413 printk(KERN_WARNING "%s: Too much work at interrupt, "
1414 "status=%#8.8x.\n",
1415 dev->name, intr_status);
1416 break;
1417 }
1418 } while (1);
1419
1420 if (debug > 4)
1421 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1422 dev->name, (int) readl(ioaddr + IntrStatus));
1423 return IRQ_RETVAL(handled);
1424}
1425
1426
a6676019
FR
1427/*
1428 * This routine is logically part of the interrupt/poll handler, but separated
1429 * for clarity and better register allocation.
1430 */
1da177e4
LT
1431static int __netdev_rx(struct net_device *dev, int *quota)
1432{
1433 struct netdev_private *np = netdev_priv(dev);
1434 u32 desc_status;
1435 int retcode = 0;
1436
1437 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1438 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1439 struct sk_buff *skb;
1440 u16 pkt_len;
1441 int entry;
1442 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1443
1444 if (debug > 4)
1445 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1446 if (!(desc_status & RxOK)) {
fdecea66 1447 /* There was an error. */
1da177e4
LT
1448 if (debug > 2)
1449 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1450 dev->stats.rx_errors++;
1da177e4 1451 if (desc_status & RxFIFOErr)
86678a20 1452 dev->stats.rx_fifo_errors++;
1da177e4
LT
1453 goto next_rx;
1454 }
1455
1456 if (*quota <= 0) { /* out of rx quota */
1457 retcode = 1;
1458 goto out;
1459 }
1460 (*quota)--;
1461
1462 pkt_len = desc_status; /* Implicitly Truncate */
1463 entry = (desc_status >> 16) & 0x7ff;
1464
1465 if (debug > 4)
1466 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1467 /* Check if the packet is long enough to accept without copying
1468 to a minimally-sized skbuff. */
8e95a202 1469 if (pkt_len < rx_copybreak &&
1d266430 1470 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1da177e4
LT
1471 skb_reserve(skb, 2); /* 16 byte align the IP header */
1472 pci_dma_sync_single_for_cpu(np->pci_dev,
1473 np->rx_info[entry].mapping,
1474 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1475 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1476 pci_dma_sync_single_for_device(np->pci_dev,
1477 np->rx_info[entry].mapping,
1478 pkt_len, PCI_DMA_FROMDEVICE);
1479 skb_put(skb, pkt_len);
1480 } else {
1481 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1482 skb = np->rx_info[entry].skb;
1483 skb_put(skb, pkt_len);
1484 np->rx_info[entry].skb = NULL;
1485 np->rx_info[entry].mapping = 0;
1486 }
1487#ifndef final_version /* Remove after testing. */
1488 /* You will want this info for the initial debug. */
0795af57 1489 if (debug > 5) {
e174961c
JB
1490 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1491 skb->data, skb->data + 6,
0795af57
JP
1492 skb->data[12], skb->data[13]);
1493 }
1da177e4
LT
1494#endif
1495
1496 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1497#ifdef VLAN_SUPPORT
1da177e4
LT
1498 if (debug > 4)
1499 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1500#endif
1da177e4
LT
1501 if (le16_to_cpu(desc->status2) & 0x0100) {
1502 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1503 dev->stats.rx_compressed++;
1da177e4
LT
1504 }
1505 /*
1506 * This feature doesn't seem to be working, at least
1507 * with the two firmware versions I have. If the GFP sees
1508 * an IP fragment, it either ignores it completely, or reports
1509 * "bad checksum" on it.
1510 *
1511 * Maybe I missed something -- corrections are welcome.
1512 * Until then, the printk stays. :-) -Ion
1513 */
1514 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1515 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1516 skb->csum = le16_to_cpu(desc->csum);
1517 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1518 }
1da177e4 1519#ifdef VLAN_SUPPORT
5da96be5 1520 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1521 u16 vlid = le16_to_cpu(desc->vlanid);
1522
1523 if (debug > 4) {
1524 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1525 vlid);
1526 }
5da96be5
JP
1527 __vlan_hwaccel_put_tag(skb, vlid);
1528 }
1da177e4 1529#endif /* VLAN_SUPPORT */
5da96be5 1530 netif_receive_skb(skb);
86678a20 1531 dev->stats.rx_packets++;
1da177e4
LT
1532
1533 next_rx:
1534 np->cur_rx++;
1535 desc->status = 0;
1536 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1537 }
9a3de255
JP
1538
1539 if (*quota == 0) { /* out of rx quota */
1540 retcode = 1;
1541 goto out;
1542 }
1da177e4
LT
1543 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1544
1545 out:
1546 refill_rx_ring(dev);
1547 if (debug > 5)
1548 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1549 retcode, np->rx_done, desc_status);
1550 return retcode;
1551}
1552
bea3348e 1553static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1554{
bea3348e
SH
1555 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1556 struct net_device *dev = np->dev;
1da177e4 1557 u32 intr_status;
1da177e4 1558 void __iomem *ioaddr = np->base;
bea3348e 1559 int quota = budget;
1da177e4
LT
1560
1561 do {
1562 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1563
bea3348e 1564 if (__netdev_rx(dev, &quota))
1da177e4
LT
1565 goto out;
1566
1567 intr_status = readl(ioaddr + IntrStatus);
1568 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1569
288379f0 1570 napi_complete(napi);
1da177e4
LT
1571 intr_status = readl(ioaddr + IntrEnable);
1572 intr_status |= IntrRxDone | IntrRxEmpty;
1573 writel(intr_status, ioaddr + IntrEnable);
1574
1575 out:
1576 if (debug > 5)
bea3348e
SH
1577 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1578 budget - quota);
1da177e4
LT
1579
1580 /* Restart Rx engine if stopped. */
bea3348e 1581 return budget - quota;
1da177e4 1582}
1da177e4
LT
1583
1584static void refill_rx_ring(struct net_device *dev)
1585{
1586 struct netdev_private *np = netdev_priv(dev);
1587 struct sk_buff *skb;
1588 int entry = -1;
1589
1590 /* Refill the Rx ring buffers. */
1591 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1592 entry = np->dirty_rx % RX_RING_SIZE;
1593 if (np->rx_info[entry].skb == NULL) {
1d266430 1594 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1595 np->rx_info[entry].skb = skb;
1596 if (skb == NULL)
1597 break; /* Better luck next round. */
1598 np->rx_info[entry].mapping =
689be439 1599 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1600 np->rx_ring[entry].rxaddr =
1601 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1602 }
1603 if (entry == RX_RING_SIZE - 1)
1604 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1605 }
1606 if (entry >= 0)
1607 writew(entry, np->base + RxDescQIdx);
1608}
1609
1610
1611static void netdev_media_change(struct net_device *dev)
1612{
1613 struct netdev_private *np = netdev_priv(dev);
1614 void __iomem *ioaddr = np->base;
1615 u16 reg0, reg1, reg4, reg5;
1616 u32 new_tx_mode;
1617 u32 new_intr_timer_ctrl;
1618
1619 /* reset status first */
1620 mdio_read(dev, np->phys[0], MII_BMCR);
1621 mdio_read(dev, np->phys[0], MII_BMSR);
1622
1623 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1624 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1625
1626 if (reg1 & BMSR_LSTATUS) {
1627 /* link is up */
1628 if (reg0 & BMCR_ANENABLE) {
1629 /* autonegotiation is enabled */
1630 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1631 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1632 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1633 np->speed100 = 1;
1634 np->mii_if.full_duplex = 1;
1635 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1636 np->speed100 = 1;
1637 np->mii_if.full_duplex = 0;
1638 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1639 np->speed100 = 0;
1640 np->mii_if.full_duplex = 1;
1641 } else {
1642 np->speed100 = 0;
1643 np->mii_if.full_duplex = 0;
1644 }
1645 } else {
1646 /* autonegotiation is disabled */
1647 if (reg0 & BMCR_SPEED100)
1648 np->speed100 = 1;
1649 else
1650 np->speed100 = 0;
1651 if (reg0 & BMCR_FULLDPLX)
1652 np->mii_if.full_duplex = 1;
1653 else
1654 np->mii_if.full_duplex = 0;
1655 }
1656 netif_carrier_on(dev);
1657 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1658 dev->name,
1659 np->speed100 ? "100" : "10",
1660 np->mii_if.full_duplex ? "full" : "half");
1661
1662 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1663 if (np->mii_if.full_duplex)
1664 new_tx_mode |= FullDuplex;
1665 if (np->tx_mode != new_tx_mode) {
1666 np->tx_mode = new_tx_mode;
1667 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1668 udelay(1000);
1669 writel(np->tx_mode, ioaddr + TxMode);
1670 }
1671
1672 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1673 if (np->speed100)
1674 new_intr_timer_ctrl |= Timer10X;
1675 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1676 np->intr_timer_ctrl = new_intr_timer_ctrl;
1677 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1678 }
1679 } else {
1680 netif_carrier_off(dev);
1681 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1682 }
1683}
1684
1685
1686static void netdev_error(struct net_device *dev, int intr_status)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689
1690 /* Came close to underrunning the Tx FIFO, increase threshold. */
1691 if (intr_status & IntrTxDataLow) {
1692 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1693 writel(++np->tx_threshold, np->base + TxThreshold);
1694 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1695 dev->name, np->tx_threshold * 16);
1696 } else
1697 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1698 }
1699 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1700 dev->stats.rx_fifo_errors++;
1701 dev->stats.rx_errors++;
1da177e4
LT
1702 }
1703 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1704 dev->stats.tx_fifo_errors++;
1705 dev->stats.tx_errors++;
1da177e4
LT
1706 }
1707 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1708 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1709 dev->name, intr_status);
1710}
1711
1712
1713static struct net_device_stats *get_stats(struct net_device *dev)
1714{
1715 struct netdev_private *np = netdev_priv(dev);
1716 void __iomem *ioaddr = np->base;
1717
1718 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1719 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1720 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1721 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1722 dev->stats.tx_aborted_errors =
1da177e4 1723 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1724 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1725 dev->stats.collisions =
1da177e4
LT
1726 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1727
1728 /* The chip only need report frame silently dropped. */
86678a20 1729 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1730 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1731 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1732 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1733 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1734 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1735
86678a20 1736 return &dev->stats;
1da177e4
LT
1737}
1738
5da96be5
JP
1739#ifdef VLAN_SUPPORT
1740static u32 set_vlan_mode(struct netdev_private *np)
1741{
1742 u32 ret = VlanMode;
1743 u16 vid;
1744 void __iomem *filter_addr = np->base + HashTable + 8;
1745 int vlan_count = 0;
1746
1747 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1748 if (vlan_count == 32)
1749 break;
1750 writew(vid, filter_addr);
1751 filter_addr += 16;
1752 vlan_count++;
1753 }
1754 if (vlan_count == 32) {
1755 ret |= PerfectFilterVlan;
1756 while (vlan_count < 32) {
1757 writew(0, filter_addr);
1758 filter_addr += 16;
1759 vlan_count++;
1760 }
1761 }
1762 return ret;
1763}
1764#endif /* VLAN_SUPPORT */
1da177e4 1765
1da177e4
LT
1766static void set_rx_mode(struct net_device *dev)
1767{
1768 struct netdev_private *np = netdev_priv(dev);
1769 void __iomem *ioaddr = np->base;
1770 u32 rx_mode = MinVLANPrio;
22bedad3 1771 struct netdev_hw_addr *ha;
1da177e4 1772 int i;
1da177e4 1773
5da96be5
JP
1774#ifdef VLAN_SUPPORT
1775 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1776#endif /* VLAN_SUPPORT */
1777
1778 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1779 rx_mode |= AcceptAll;
4cd24eaf 1780 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1781 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1782 /* Too many to match, or accept all multicasts. */
1783 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1784 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1785 /* Use the 16 element perfect filter, skip first two entries. */
1786 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1787 __be16 *eaddrs;
22bedad3
JP
1788 netdev_for_each_mc_addr(ha, dev) {
1789 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1790 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1791 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1792 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1793 }
88b1943b 1794 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1795 i = netdev_mc_count(dev) + 2;
1da177e4 1796 while (i++ < 16) {
88b1943b
AV
1797 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1799 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1800 }
1801 rx_mode |= AcceptBroadcast|PerfectFilter;
1802 } else {
1803 /* Must use a multicast hash table. */
1804 void __iomem *filter_addr;
88b1943b
AV
1805 __be16 *eaddrs;
1806 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1807
1808 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1809 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1810 /* The chip uses the upper 9 CRC bits
1811 as index into the hash table */
22bedad3 1812 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1813 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1814
1815 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1816 }
1817 /* Clear the perfect filter list, skip first two entries. */
1818 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1819 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1820 for (i = 2; i < 16; i++) {
88b1943b
AV
1821 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1822 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1823 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1824 }
1825 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1826 writew(mc_filter[i], filter_addr);
1827 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1828 }
1829 writel(rx_mode, ioaddr + RxFilterMode);
1830}
1831
1832static int check_if_running(struct net_device *dev)
1833{
1834 if (!netif_running(dev))
1835 return -EINVAL;
1836 return 0;
1837}
1838
1839static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1840{
1841 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1842 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1843 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1844 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1845}
1846
1847static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1848{
1849 struct netdev_private *np = netdev_priv(dev);
1850 spin_lock_irq(&np->lock);
1851 mii_ethtool_gset(&np->mii_if, ecmd);
1852 spin_unlock_irq(&np->lock);
1853 return 0;
1854}
1855
1856static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1857{
1858 struct netdev_private *np = netdev_priv(dev);
1859 int res;
1860 spin_lock_irq(&np->lock);
1861 res = mii_ethtool_sset(&np->mii_if, ecmd);
1862 spin_unlock_irq(&np->lock);
1863 check_duplex(dev);
1864 return res;
1865}
1866
1867static int nway_reset(struct net_device *dev)
1868{
1869 struct netdev_private *np = netdev_priv(dev);
1870 return mii_nway_restart(&np->mii_if);
1871}
1872
1873static u32 get_link(struct net_device *dev)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_link_ok(&np->mii_if);
1877}
1878
1879static u32 get_msglevel(struct net_device *dev)
1880{
1881 return debug;
1882}
1883
1884static void set_msglevel(struct net_device *dev, u32 val)
1885{
1886 debug = val;
1887}
1888
7282d491 1889static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1890 .begin = check_if_running,
1891 .get_drvinfo = get_drvinfo,
1892 .get_settings = get_settings,
1893 .set_settings = set_settings,
1894 .nway_reset = nway_reset,
1895 .get_link = get_link,
1896 .get_msglevel = get_msglevel,
1897 .set_msglevel = set_msglevel,
1898};
1899
1900static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1901{
1902 struct netdev_private *np = netdev_priv(dev);
1903 struct mii_ioctl_data *data = if_mii(rq);
1904 int rc;
1905
1906 if (!netif_running(dev))
1907 return -EINVAL;
1908
1909 spin_lock_irq(&np->lock);
1910 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1911 spin_unlock_irq(&np->lock);
1912
1913 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1914 check_duplex(dev);
1915
1916 return rc;
1917}
1918
1919static int netdev_close(struct net_device *dev)
1920{
1921 struct netdev_private *np = netdev_priv(dev);
1922 void __iomem *ioaddr = np->base;
1923 int i;
1924
1925 netif_stop_queue(dev);
a6676019 1926
bea3348e 1927 napi_disable(&np->napi);
1da177e4
LT
1928
1929 if (debug > 1) {
1930 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1931 dev->name, (int) readl(ioaddr + IntrStatus));
1932 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1933 dev->name, np->cur_tx, np->dirty_tx,
1934 np->cur_rx, np->dirty_rx);
1935 }
1936
1937 /* Disable interrupts by clearing the interrupt mask. */
1938 writel(0, ioaddr + IntrEnable);
1939
1940 /* Stop the chip's Tx and Rx processes. */
1941 writel(0, ioaddr + GenCtrl);
1942 readl(ioaddr + GenCtrl);
1943
1944 if (debug > 5) {
1945 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1946 (long long) np->tx_ring_dma);
1947 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1948 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1949 i, le32_to_cpu(np->tx_ring[i].status),
1950 (long long) dma_to_cpu(np->tx_ring[i].addr),
1951 le32_to_cpu(np->tx_done_q[i].status));
1952 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1953 (long long) np->rx_ring_dma, np->rx_done_q);
1954 if (np->rx_done_q)
1955 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1956 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1957 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1958 }
1959 }
1960
ea8f2ed0 1961 free_irq(np->pci_dev->irq, dev);
1da177e4
LT
1962
1963 /* Free all the skbuffs in the Rx queue. */
1964 for (i = 0; i < RX_RING_SIZE; i++) {
1965 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1966 if (np->rx_info[i].skb != NULL) {
1967 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1968 dev_kfree_skb(np->rx_info[i].skb);
1969 }
1970 np->rx_info[i].skb = NULL;
1971 np->rx_info[i].mapping = 0;
1972 }
1973 for (i = 0; i < TX_RING_SIZE; i++) {
1974 struct sk_buff *skb = np->tx_info[i].skb;
1975 if (skb == NULL)
1976 continue;
1977 pci_unmap_single(np->pci_dev,
1978 np->tx_info[i].mapping,
1979 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1980 np->tx_info[i].mapping = 0;
1981 dev_kfree_skb(skb);
1982 np->tx_info[i].skb = NULL;
1983 }
1984
1985 return 0;
1986}
1987
d4fbeabb
SR
1988#ifdef CONFIG_PM
1989static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1990{
1991 struct net_device *dev = pci_get_drvdata(pdev);
1992
1993 if (netif_running(dev)) {
1994 netif_device_detach(dev);
1995 netdev_close(dev);
1996 }
1997
1998 pci_save_state(pdev);
1999 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2000
2001 return 0;
2002}
2003
2004static int starfire_resume(struct pci_dev *pdev)
2005{
2006 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 2007
d4fbeabb
SR
2008 pci_set_power_state(pdev, PCI_D0);
2009 pci_restore_state(pdev);
2010
2011 if (netif_running(dev)) {
2012 netdev_open(dev);
2013 netif_device_attach(dev);
2014 }
2015
2016 return 0;
2017}
2018#endif /* CONFIG_PM */
2019
1da177e4
LT
2020
2021static void __devexit starfire_remove_one (struct pci_dev *pdev)
2022{
2023 struct net_device *dev = pci_get_drvdata(pdev);
2024 struct netdev_private *np = netdev_priv(dev);
2025
5d9428de 2026 BUG_ON(!dev);
1da177e4
LT
2027
2028 unregister_netdev(dev);
2029
2030 if (np->queue_mem)
2031 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2032
2033
2034 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2035 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2036 pci_disable_device(pdev);
2037
2038 iounmap(np->base);
2039 pci_release_regions(pdev);
2040
2041 pci_set_drvdata(pdev, NULL);
2042 free_netdev(dev); /* Will also free np!! */
2043}
2044
2045
2046static struct pci_driver starfire_driver = {
2047 .name = DRV_NAME,
2048 .probe = starfire_init_one,
2049 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2050#ifdef CONFIG_PM
2051 .suspend = starfire_suspend,
2052 .resume = starfire_resume,
2053#endif /* CONFIG_PM */
1da177e4
LT
2054 .id_table = starfire_pci_tbl,
2055};
2056
2057
2058static int __init starfire_init (void)
2059{
2060/* when a module, this is printed whether or not devices are found in probe */
2061#ifdef MODULE
2062 printk(version);
a6676019 2063
fdecea66 2064 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2065#endif
2066
56543af9 2067 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2068
29917620 2069 return pci_register_driver(&starfire_driver);
1da177e4
LT
2070}
2071
2072
2073static void __exit starfire_cleanup (void)
2074{
2075 pci_unregister_driver (&starfire_driver);
2076}
2077
2078
2079module_init(starfire_init);
2080module_exit(starfire_cleanup);
2081
2082
2083/*
2084 * Local variables:
2085 * c-basic-offset: 8
2086 * tab-width: 8
2087 * End:
2088 */
This page took 0.978206 seconds and 5 git commands to generate.