bnx2x: Don't pretend during register dump
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_init.h
CommitLineData
a2fbb9ea 1/* bnx2x_init.h: Broadcom Everest network driver.
94a78b79 2 * Structures and macroes needed during the initialization.
a2fbb9ea 3 *
247fa82b 4 * Copyright (c) 2007-2013 Broadcom Corporation
a2fbb9ea
ET
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 *
24e3fcef
EG
10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
11 * Written by: Eliezer Tamir
94a78b79 12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
a2fbb9ea
ET
13 */
14
15#ifndef BNX2X_INIT_H
16#define BNX2X_INIT_H
17
a2fbb9ea 18/* Init operation types and structures */
619c5cb6
VZ
19enum {
20 OP_RD = 0x1, /* read a single register */
21 OP_WR, /* write a single register */
22 OP_SW, /* copy a string to the device */
23 OP_ZR, /* clear memory */
24 OP_ZP, /* unzip then copy with DMAE */
25 OP_WR_64, /* write 64 bit pattern */
26 OP_WB, /* copy a string using DMAE */
27 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
28 /* Skip the following ops if all of the init modes don't match */
29 OP_IF_MODE_OR,
30 /* Skip the following ops if any of the init modes don't match */
31 OP_IF_MODE_AND,
32 OP_MAX
33};
573f2035 34
619c5cb6
VZ
35enum {
36 STAGE_START,
37 STAGE_END,
38};
94a78b79
VZ
39
40/* Returns the index of start or end of a specific block stage in ops array*/
41#define BLOCK_OPS_IDX(block, stage, end) \
619c5cb6 42 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
ad8d3948 43
a2fbb9ea 44
619c5cb6 45/* structs for the various opcodes */
a2fbb9ea 46struct raw_op {
6378c025
EG
47 u32 op:8;
48 u32 offset:24;
a2fbb9ea
ET
49 u32 raw_data;
50};
51
52struct op_read {
6378c025
EG
53 u32 op:8;
54 u32 offset:24;
619c5cb6 55 u32 val;
a2fbb9ea
ET
56};
57
58struct op_write {
6378c025
EG
59 u32 op:8;
60 u32 offset:24;
a2fbb9ea
ET
61 u32 val;
62};
63
619c5cb6 64struct op_arr_write {
6378c025
EG
65 u32 op:8;
66 u32 offset:24;
619c5cb6 67#ifdef __BIG_ENDIAN
a2fbb9ea
ET
68 u16 data_len;
69 u16 data_off;
619c5cb6
VZ
70#else /* __LITTLE_ENDIAN */
71 u16 data_off;
72 u16 data_len;
a2fbb9ea
ET
73#endif
74};
75
76struct op_zero {
6378c025
EG
77 u32 op:8;
78 u32 offset:24;
a2fbb9ea
ET
79 u32 len;
80};
81
619c5cb6
VZ
82struct op_if_mode {
83 u32 op:8;
84 u32 cmd_offset:24;
85 u32 mode_bit_map;
86};
87
88
a2fbb9ea
ET
89union init_op {
90 struct op_read read;
91 struct op_write write;
619c5cb6 92 struct op_arr_write arr_wr;
a2fbb9ea
ET
93 struct op_zero zero;
94 struct raw_op raw;
619c5cb6
VZ
95 struct op_if_mode if_mode;
96};
97
98
99/* Init Phases */
100enum {
101 PHASE_COMMON,
102 PHASE_PORT0,
103 PHASE_PORT1,
104 PHASE_PF0,
105 PHASE_PF1,
106 PHASE_PF2,
107 PHASE_PF3,
108 PHASE_PF4,
109 PHASE_PF5,
110 PHASE_PF6,
111 PHASE_PF7,
112 NUM_OF_INIT_PHASES
113};
114
115/* Init Modes */
116enum {
117 MODE_ASIC = 0x00000001,
118 MODE_FPGA = 0x00000002,
119 MODE_EMUL = 0x00000004,
120 MODE_E2 = 0x00000008,
121 MODE_E3 = 0x00000010,
122 MODE_PORT2 = 0x00000020,
123 MODE_PORT4 = 0x00000040,
124 MODE_SF = 0x00000080,
125 MODE_MF = 0x00000100,
126 MODE_MF_SD = 0x00000200,
127 MODE_MF_SI = 0x00000400,
a3348722 128 MODE_MF_AFEX = 0x00000800,
619c5cb6
VZ
129 MODE_E3_A0 = 0x00001000,
130 MODE_E3_B0 = 0x00002000,
6383c0b3
AE
131 MODE_COS3 = 0x00004000,
132 MODE_COS6 = 0x00008000,
133 MODE_LITTLE_ENDIAN = 0x00010000,
134 MODE_BIG_ENDIAN = 0x00020000,
619c5cb6
VZ
135};
136
137/* Init Blocks */
138enum {
139 BLOCK_ATC,
140 BLOCK_BRB1,
141 BLOCK_CCM,
142 BLOCK_CDU,
143 BLOCK_CFC,
144 BLOCK_CSDM,
145 BLOCK_CSEM,
146 BLOCK_DBG,
147 BLOCK_DMAE,
148 BLOCK_DORQ,
149 BLOCK_HC,
150 BLOCK_IGU,
151 BLOCK_MISC,
152 BLOCK_NIG,
153 BLOCK_PBF,
154 BLOCK_PGLUE_B,
155 BLOCK_PRS,
156 BLOCK_PXP2,
157 BLOCK_PXP,
158 BLOCK_QM,
159 BLOCK_SRC,
160 BLOCK_TCM,
161 BLOCK_TM,
162 BLOCK_TSDM,
163 BLOCK_TSEM,
164 BLOCK_UCM,
165 BLOCK_UPB,
166 BLOCK_USDM,
167 BLOCK_USEM,
168 BLOCK_XCM,
169 BLOCK_XPB,
170 BLOCK_XSDM,
171 BLOCK_XSEM,
172 BLOCK_MISC_AEU,
173 NUM_OF_INIT_BLOCKS
a2fbb9ea
ET
174};
175
619c5cb6
VZ
176/* QM queue numbers */
177#define BNX2X_ETH_Q 0
178#define BNX2X_TOE_Q 3
179#define BNX2X_TOE_ACK_Q 6
180#define BNX2X_ISCSI_Q 9
6383c0b3 181#define BNX2X_ISCSI_ACK_Q 11
619c5cb6
VZ
182#define BNX2X_FCOE_Q 10
183
184/* Vnics per mode */
185#define BNX2X_PORT2_MODE_NUM_VNICS 4
186#define BNX2X_PORT4_MODE_NUM_VNICS 2
187
188/* COS offset for port1 in E3 B0 4port mode */
189#define BNX2X_E3B0_PORT1_COS_OFFSET 3
190
191/* QM Register addresses */
192#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
193 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
194#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
195 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
196#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
197 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
198
199/* extracts the QM queue number for the specified port and vnic */
200#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
201 ((((port) << 1) | (vnic)) * 16 + (q_num))
202
203
204/* Maps the specified queue to the specified COS */
205static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
206{
207 /* find current COS mapping */
208 u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
209
210 /* check if queue->COS mapping has changed */
211 if (curr_cos != new_cos) {
212 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
213 u32 reg_addr, reg_bit_map, vnic;
214
215 /* update parameters for 4port mode */
216 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
217 num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
218 if (BP_PORT(bp)) {
219 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
220 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221 }
222 }
223
224 /* change queue mapping for each VNIC */
225 for (vnic = 0; vnic < num_vnics; vnic++) {
226 u32 pf_q_num =
227 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
228 u32 q_bit_map = 1 << (pf_q_num & 0x1f);
229
230 /* overwrite queue->VOQ mapping */
231 REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
232
233 /* clear queue bit from current COS bit map */
234 reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
235 reg_bit_map = REG_RD(bp, reg_addr);
236 REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
237
238 /* set queue bit in new COS bit map */
239 reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
240 reg_bit_map = REG_RD(bp, reg_addr);
241 REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
242
243 /* set/clear queue bit in command-queue bit map
b475d78f
YM
244 * (E2/E3A0 only, valid COS values are 0/1)
245 */
619c5cb6
VZ
246 if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
247 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
248 reg_bit_map = REG_RD(bp, reg_addr);
249 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
250 reg_bit_map = new_cos ?
251 (reg_bit_map | q_bit_map) :
252 (reg_bit_map & (~q_bit_map));
253 REG_WR(bp, reg_addr, reg_bit_map);
254 }
255 }
256 }
257}
258
259/* Configures the QM according to the specified per-traffic-type COSes */
6383c0b3 260static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
619c5cb6
VZ
261 struct priority_cos *traffic_cos)
262{
263 bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
264 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
265 bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
266 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
6383c0b3
AE
267 bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
268 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
269 if (mode != STATIC_COS) {
619c5cb6
VZ
270 /* required only in backward compatible COS mode */
271 bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
272 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
273 bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
274 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
276 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
619c5cb6
VZ
277 }
278}
279
280
b475d78f
YM
281/* congestion managment port init api description
282 * the api works as follows:
283 * the driver should pass the cmng_init_input struct, the port_init function
284 * will prepare the required internal ram structure which will be passed back
285 * to the driver (cmng_init) that will write it into the internal ram.
286 *
287 * IMPORTANT REMARKS:
288 * 1. the cmng_init struct does not represent the contiguous internal ram
289 * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
290 * offset in order to write the port sub struct and the
291 * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
292 * words - don't use memcpy!).
293 * 2. although the cmng_init struct is filled for the maximal vnic number
294 * possible, the driver should only write the valid vnics into the internal
295 * ram according to the appropriate port mode.
296 */
297#define BITS_TO_BYTES(x) ((x)/8)
298
299/* CMNG constants, as derived from system spec calculations */
300
301/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
302#define DEF_MIN_RATE 100
303
304/* resolution of the rate shaping timer - 400 usec */
305#define RS_PERIODIC_TIMEOUT_USEC 400
306
307/* number of bytes in single QM arbitration cycle -
308 * coefficient for calculating the fairness timer
309 */
310#define QM_ARB_BYTES 160000
311
312/* resolution of Min algorithm 1:100 */
313#define MIN_RES 100
314
315/* how many bytes above threshold for
316 * the minimal credit of Min algorithm
317 */
318#define MIN_ABOVE_THRESH 32768
319
320/* Fairness algorithm integration time coefficient -
321 * for calculating the actual Tfair
322 */
323#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
324
325/* Memory of fairness algorithm - 2 cycles */
326#define FAIR_MEM 2
327#define SAFC_TIMEOUT_USEC 52
328
329#define SDM_TICKS 4
330
331
332static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
333 u32 r_param, struct cmng_init *ram_data)
334{
335 u32 vnic;
336 struct cmng_vnic *vdata = &ram_data->vnic;
337 struct cmng_struct_per_port *pdata = &ram_data->port;
338 /* rate shaping per-port variables
339 * 100 micro seconds in SDM ticks = 25
340 * since each tick is 4 microSeconds
341 */
342
343 pdata->rs_vars.rs_periodic_timeout =
344 RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
345
346 /* this is the threshold below which no timer arming will occur.
347 * 1.25 coefficient is for the threshold to be a little bigger
348 * then the real time to compensate for timer in-accuracy
349 */
350 pdata->rs_vars.rs_threshold =
351 (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
352
353 /* rate shaping per-vnic variables */
354 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
355 /* global vnic counter */
356 vdata->vnic_max_rate[vnic].vn_counter.rate =
357 input_data->vnic_max_rate[vnic];
358 /* maximal Mbps for this vnic
359 * the quota in each timer period - number of bytes
360 * transmitted in this period
361 */
362 vdata->vnic_max_rate[vnic].vn_counter.quota =
363 RS_PERIODIC_TIMEOUT_USEC *
364 (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
365 }
366
367}
368
369static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
370 u32 r_param, struct cmng_init *ram_data)
371{
372 u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
373 struct cmng_vnic *vdata = &ram_data->vnic;
374 struct cmng_struct_per_port *pdata = &ram_data->port;
375
376 /* this is the resolution of the fairness timer */
377 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
378
379 /* fairness per-port variables
380 * for 10G it is 1000usec. for 1G it is 10000usec.
381 */
382 tFair = T_FAIR_COEF / input_data->port_rate;
383
384 /* this is the threshold below which we won't arm the timer anymore */
385 pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
386
387 /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
388 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
389 */
390 pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
391
392 /* since each tick is 4 microSeconds */
393 pdata->fair_vars.fairness_timeout =
394 fair_periodic_timeout_usec / SDM_TICKS;
395
396 /* calculate sum of weights */
397 vnicWeightSum = 0;
398
399 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
400 vnicWeightSum += input_data->vnic_min_rate[vnic];
401
402 /* global vnic counter */
403 if (vnicWeightSum > 0) {
404 /* fairness per-vnic variables */
405 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
406 /* this is the credit for each period of the fairness
407 * algorithm - number of bytes in T_FAIR (this vnic
408 * share of the port rate)
409 */
410 vdata->vnic_min_rate[vnic].vn_credit_delta =
411 (u32)input_data->vnic_min_rate[vnic] * 100 *
cfcadc97 412 (T_FAIR_COEF / (8 * 100 * vnicWeightSum));
b475d78f
YM
413 if (vdata->vnic_min_rate[vnic].vn_credit_delta <
414 pdata->fair_vars.fair_threshold +
415 MIN_ABOVE_THRESH) {
416 vdata->vnic_min_rate[vnic].vn_credit_delta =
417 pdata->fair_vars.fair_threshold +
418 MIN_ABOVE_THRESH;
419 }
420 }
421 }
422}
423
424static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
425 u32 r_param, struct cmng_init *ram_data)
426{
427 u32 vnic, cos;
428 u32 cosWeightSum = 0;
429 struct cmng_vnic *vdata = &ram_data->vnic;
430 struct cmng_struct_per_port *pdata = &ram_data->port;
431
432 for (cos = 0; cos < MAX_COS_NUMBER; cos++)
433 cosWeightSum += input_data->cos_min_rate[cos];
434
435 if (cosWeightSum > 0) {
436
437 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
438 /* Since cos and vnic shouldn't work together the rate
439 * to divide between the coses is the port rate.
440 */
441 u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
442 for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
443 /* this is the credit for each period of
444 * the fairness algorithm - number of bytes
445 * in T_FAIR (this cos share of the vnic rate)
446 */
447 ccd[cos] =
448 (u32)input_data->cos_min_rate[cos] * 100 *
cfcadc97 449 (T_FAIR_COEF / (8 * 100 * cosWeightSum));
b475d78f
YM
450 if (ccd[cos] < pdata->fair_vars.fair_threshold
451 + MIN_ABOVE_THRESH) {
452 ccd[cos] =
453 pdata->fair_vars.fair_threshold +
454 MIN_ABOVE_THRESH;
455 }
456 }
457 }
458 }
459}
460
461static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
462 struct cmng_init *ram_data)
463{
464 /* in microSeconds */
465 ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
466}
467
468/* Congestion management port init */
469static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
470 struct cmng_init *ram_data)
471{
472 u32 r_param;
473 memset(ram_data, 0, sizeof(struct cmng_init));
474
475 ram_data->port.flags = input_data->flags;
476
477 /* number of bytes transmitted in a rate of 10Gbps
478 * in one usec = 1.25KB.
479 */
480 r_param = BITS_TO_BYTES(input_data->port_rate);
481 bnx2x_init_max(input_data, r_param, ram_data);
482 bnx2x_init_min(input_data, r_param, ram_data);
483 bnx2x_init_fw_wrr(input_data, r_param, ram_data);
484 bnx2x_init_safc(input_data, ram_data);
485}
486
487
488
489/* Returns the index of start or end of a specific block stage in ops array */
619c5cb6
VZ
490#define BLOCK_OPS_IDX(block, stage, end) \
491 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
492
493
523224a3
DK
494#define INITOP_SET 0 /* set the HW directly */
495#define INITOP_CLEAR 1 /* clear the HW directly */
496#define INITOP_INIT 2 /* set the init-value array */
497
498/****************************************************************************
499* ILT management
500****************************************************************************/
501struct ilt_line {
502 dma_addr_t page_mapping;
503 void *page;
504 u32 size;
505};
506
507struct ilt_client_info {
508 u32 page_size;
509 u16 start;
510 u16 end;
511 u16 client_num;
512 u16 flags;
513#define ILT_CLIENT_SKIP_INIT 0x1
514#define ILT_CLIENT_SKIP_MEM 0x2
515};
516
517struct bnx2x_ilt {
518 u32 start_line;
519 struct ilt_line *lines;
520 struct ilt_client_info clients[4];
521#define ILT_CLIENT_CDU 0
522#define ILT_CLIENT_QM 1
523#define ILT_CLIENT_SRC 2
524#define ILT_CLIENT_TM 3
525};
526
527/****************************************************************************
528* SRC configuration
529****************************************************************************/
530struct src_ent {
531 u8 opaque[56];
532 u64 next;
533};
534
4a33bc03
VZ
535/****************************************************************************
536* Parity configuration
537****************************************************************************/
8736c826 538#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
4a33bc03
VZ
539{ \
540 block##_REG_##block##_PRTY_MASK, \
541 block##_REG_##block##_PRTY_STS_CLR, \
8736c826 542 en_mask, {m1, m1h, m2, m3}, #block \
4a33bc03
VZ
543}
544
8736c826 545#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
4a33bc03
VZ
546{ \
547 block##_REG_##block##_PRTY_MASK_0, \
548 block##_REG_##block##_PRTY_STS_CLR_0, \
8736c826 549 en_mask, {m1, m1h, m2, m3}, #block"_0" \
4a33bc03
VZ
550}
551
8736c826 552#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
4a33bc03
VZ
553{ \
554 block##_REG_##block##_PRTY_MASK_1, \
555 block##_REG_##block##_PRTY_STS_CLR_1, \
8736c826 556 en_mask, {m1, m1h, m2, m3}, #block"_1" \
4a33bc03
VZ
557}
558
559static const struct {
560 u32 mask_addr;
561 u32 sts_clr_addr;
562 u32 en_mask; /* Mask to enable parity attentions */
563 struct {
564 u32 e1; /* 57710 */
565 u32 e1h; /* 57711 */
566 u32 e2; /* 57712 */
8736c826 567 u32 e3; /* 578xx */
4a33bc03 568 } reg_mask; /* Register mask (all valid bits) */
96bed4b9 569 char name[8]; /* Block's longest name is 7 characters long
4a33bc03
VZ
570 * (name + suffix)
571 */
572} bnx2x_blocks_parity_data[] = {
573 /* bit 19 masked */
574 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
575 /* bit 5,18,20-31 */
576 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
577 /* bit 5 */
578 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
579 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
580 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
581
582 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
583 * want to handle "system kill" flow at the moment.
584 */
8736c826
VZ
585 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
586 0x7ffffff),
587 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
588 0xffffffff),
589 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
590 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
591 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
592 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
593 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
594 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
595 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
596 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
597 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
598 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
599 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
4a33bc03 600 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
c9ee9206 601 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
8736c826 602 {0xf, 0xf, 0xf, 0xf}, "UPB"},
4a33bc03
VZ
603 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
604 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
8736c826
VZ
605 {0xf, 0xf, 0xf, 0xf}, "XPB"},
606 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
607 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
608 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
609 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
610 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
611 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
612 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
613 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
614 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
615 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
616 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
617 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
618 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
619 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
620 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
621 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
622 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
623 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
624 0xffffffff),
625 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
626 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
627 0xffffffff),
628 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
629 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
630 0xffffffff),
631 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
632 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
633 0xffffffff),
634 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
4a33bc03
VZ
635};
636
637
638/* [28] MCP Latched rom_parity
639 * [29] MCP Latched ump_rx_parity
640 * [30] MCP Latched ump_tx_parity
641 * [31] MCP Latched scpad_parity
642 */
4293b9f5 643#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
4a33bc03
VZ
644 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
645 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
4293b9f5
DK
646 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
647
648#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
649 (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
4a33bc03
VZ
650 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
651
652/* Below registers control the MCP parity attention output. When
653 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
654 * enabled, when cleared - disabled.
655 */
4293b9f5
DK
656static const struct {
657 u32 addr;
658 u32 bits;
659} mcp_attn_ctl_regs[] = {
660 { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
661 MISC_AEU_ENABLE_MCP_PRTY_BITS },
662 { MISC_REG_AEU_ENABLE4_NIG_0,
663 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
664 { MISC_REG_AEU_ENABLE4_PXP_0,
665 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
666 { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
667 MISC_AEU_ENABLE_MCP_PRTY_BITS },
668 { MISC_REG_AEU_ENABLE4_NIG_1,
669 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
670 { MISC_REG_AEU_ENABLE4_PXP_1,
671 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
4a33bc03
VZ
672};
673
674static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
675{
676 int i;
677 u32 reg_val;
678
679 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
4293b9f5 680 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
4a33bc03
VZ
681
682 if (enable)
4293b9f5 683 reg_val |= mcp_attn_ctl_regs[i].bits;
4a33bc03 684 else
4293b9f5 685 reg_val &= ~mcp_attn_ctl_regs[i].bits;
4a33bc03 686
4293b9f5 687 REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
4a33bc03
VZ
688 }
689}
690
691static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
692{
693 if (CHIP_IS_E1(bp))
694 return bnx2x_blocks_parity_data[idx].reg_mask.e1;
695 else if (CHIP_IS_E1H(bp))
696 return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
8736c826 697 else if (CHIP_IS_E2(bp))
4a33bc03 698 return bnx2x_blocks_parity_data[idx].reg_mask.e2;
8736c826
VZ
699 else /* CHIP_IS_E3 */
700 return bnx2x_blocks_parity_data[idx].reg_mask.e3;
4a33bc03
VZ
701}
702
703static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
704{
705 int i;
706
707 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
708 u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
709
710 if (dis_mask) {
711 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
712 dis_mask);
713 DP(NETIF_MSG_HW, "Setting parity mask "
714 "for %s to\t\t0x%x\n",
715 bnx2x_blocks_parity_data[i].name, dis_mask);
716 }
717 }
718
719 /* Disable MCP parity attentions */
720 bnx2x_set_mcp_parity(bp, false);
721}
722
b475d78f 723/* Clear the parity error status registers. */
4a33bc03
VZ
724static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
725{
726 int i;
727 u32 reg_val, mcp_aeu_bits =
728 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
729 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
730 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
731 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
732
733 /* Clear SEM_FAST parities */
734 REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
735 REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
736 REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
737 REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
738
739 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
740 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
741
742 if (reg_mask) {
743 reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
744 sts_clr_addr);
745 if (reg_val & reg_mask)
746 DP(NETIF_MSG_HW,
747 "Parity errors in %s: 0x%x\n",
748 bnx2x_blocks_parity_data[i].name,
749 reg_val & reg_mask);
750 }
751 }
752
753 /* Check if there were parity attentions in MCP */
754 reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
755 if (reg_val & mcp_aeu_bits)
756 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
757 reg_val & mcp_aeu_bits);
758
759 /* Clear parity attentions in MCP:
760 * [7] clears Latched rom_parity
761 * [8] clears Latched ump_rx_parity
762 * [9] clears Latched ump_tx_parity
763 * [10] clears Latched scpad_parity (both ports)
764 */
765 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
766}
767
768static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
769{
770 int i;
771
772 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
773 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
774
775 if (reg_mask)
776 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
777 bnx2x_blocks_parity_data[i].en_mask & reg_mask);
778 }
779
780 /* Enable MCP parity attentions */
781 bnx2x_set_mcp_parity(bp, true);
782}
783
784
a2fbb9ea
ET
785#endif /* BNX2X_INIT_H */
786
This page took 0.624224 seconds and 5 git commands to generate.