net: Adding support for Cavium ThunderX network controller
[deliverable/linux.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
CommitLineData
4863dea3
SG
1/*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/ip.h>
12#include <linux/etherdevice.h>
13#include <net/ip.h>
14#include <net/tso.h>
15
16#include "nic_reg.h"
17#include "nic.h"
18#include "q_struct.h"
19#include "nicvf_queues.h"
20
21struct rbuf_info {
22 struct page *page;
23 void *data;
24 u64 offset;
25};
26
27#define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28
29/* Poll a register for a specific value */
30static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 u64 reg, int bit_pos, int bits, int val)
32{
33 u64 bit_mask;
34 u64 reg_val;
35 int timeout = 10;
36
37 bit_mask = (1ULL << bits) - 1;
38 bit_mask = (bit_mask << bit_pos);
39
40 while (timeout) {
41 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 if (((reg_val & bit_mask) >> bit_pos) == val)
43 return 0;
44 usleep_range(1000, 2000);
45 timeout--;
46 }
47 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 return 1;
49}
50
51/* Allocate memory for a queue's descriptors */
52static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 int q_len, int desc_size, int align_bytes)
54{
55 dmem->q_len = q_len;
56 dmem->size = (desc_size * q_len) + align_bytes;
57 /* Save address, need it while freeing */
58 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 &dmem->dma, GFP_KERNEL);
60 if (!dmem->unalign_base)
61 return -ENOMEM;
62
63 /* Align memory address for 'align_bytes' */
64 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 dmem->base = (void *)((u8 *)dmem->unalign_base +
66 (dmem->phys_base - dmem->dma));
67 return 0;
68}
69
70/* Free queue's descriptor memory */
71static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
72{
73 if (!dmem)
74 return;
75
76 dma_free_coherent(&nic->pdev->dev, dmem->size,
77 dmem->unalign_base, dmem->dma);
78 dmem->unalign_base = NULL;
79 dmem->base = NULL;
80}
81
82/* Allocate buffer for packet reception
83 * HW returns memory address where packet is DMA'ed but not a pointer
84 * into RBDR ring, so save buffer address at the start of fragment and
85 * align the start address to a cache aligned address
86 */
87static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
88 u32 buf_len, u64 **rbuf)
89{
90 u64 data;
91 struct rbuf_info *rinfo;
92 int order = get_order(buf_len);
93
94 /* Check if request can be accomodated in previous allocated page */
95 if (nic->rb_page) {
96 if ((nic->rb_page_offset + buf_len + buf_len) >
97 (PAGE_SIZE << order)) {
98 nic->rb_page = NULL;
99 } else {
100 nic->rb_page_offset += buf_len;
101 get_page(nic->rb_page);
102 }
103 }
104
105 /* Allocate a new page */
106 if (!nic->rb_page) {
107 nic->rb_page = alloc_pages(gfp | __GFP_COMP, order);
108 if (!nic->rb_page) {
109 netdev_err(nic->netdev, "Failed to allocate new rcv buffer\n");
110 return -ENOMEM;
111 }
112 nic->rb_page_offset = 0;
113 }
114
115 data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
116
117 /* Align buffer addr to cache line i.e 128 bytes */
118 rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
119 /* Save page address for reference updation */
120 rinfo->page = nic->rb_page;
121 /* Store start address for later retrieval */
122 rinfo->data = (void *)data;
123 /* Store alignment offset */
124 rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
125
126 data += rinfo->offset;
127
128 /* Give next aligned address to hw for DMA */
129 *rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
130 return 0;
131}
132
133/* Retrieve actual buffer start address and build skb for received packet */
134static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
135 u64 rb_ptr, int len)
136{
137 struct sk_buff *skb;
138 struct rbuf_info *rinfo;
139
140 rb_ptr = (u64)phys_to_virt(rb_ptr);
141 /* Get buffer start address and alignment offset */
142 rinfo = GET_RBUF_INFO(rb_ptr);
143
144 /* Now build an skb to give to stack */
145 skb = build_skb(rinfo->data, RCV_FRAG_LEN);
146 if (!skb) {
147 put_page(rinfo->page);
148 return NULL;
149 }
150
151 /* Set correct skb->data */
152 skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
153
154 prefetch((void *)rb_ptr);
155 return skb;
156}
157
158/* Allocate RBDR ring and populate receive buffers */
159static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
160 int ring_len, int buf_size)
161{
162 int idx;
163 u64 *rbuf;
164 struct rbdr_entry_t *desc;
165 int err;
166
167 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
168 sizeof(struct rbdr_entry_t),
169 NICVF_RCV_BUF_ALIGN_BYTES);
170 if (err)
171 return err;
172
173 rbdr->desc = rbdr->dmem.base;
174 /* Buffer size has to be in multiples of 128 bytes */
175 rbdr->dma_size = buf_size;
176 rbdr->enable = true;
177 rbdr->thresh = RBDR_THRESH;
178
179 nic->rb_page = NULL;
180 for (idx = 0; idx < ring_len; idx++) {
181 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
182 &rbuf);
183 if (err)
184 return err;
185
186 desc = GET_RBDR_DESC(rbdr, idx);
187 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
188 }
189 return 0;
190}
191
192/* Free RBDR ring and its receive buffers */
193static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
194{
195 int head, tail;
196 u64 buf_addr;
197 struct rbdr_entry_t *desc;
198 struct rbuf_info *rinfo;
199
200 if (!rbdr)
201 return;
202
203 rbdr->enable = false;
204 if (!rbdr->dmem.base)
205 return;
206
207 head = rbdr->head;
208 tail = rbdr->tail;
209
210 /* Free SKBs */
211 while (head != tail) {
212 desc = GET_RBDR_DESC(rbdr, head);
213 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
214 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
215 put_page(rinfo->page);
216 head++;
217 head &= (rbdr->dmem.q_len - 1);
218 }
219 /* Free SKB of tail desc */
220 desc = GET_RBDR_DESC(rbdr, tail);
221 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
222 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
223 put_page(rinfo->page);
224
225 /* Free RBDR ring */
226 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
227}
228
229/* Refill receive buffer descriptors with new buffers.
230 */
231void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
232{
233 struct queue_set *qs = nic->qs;
234 int rbdr_idx = qs->rbdr_cnt;
235 int tail, qcount;
236 int refill_rb_cnt;
237 struct rbdr *rbdr;
238 struct rbdr_entry_t *desc;
239 u64 *rbuf;
240 int new_rb = 0;
241
242refill:
243 if (!rbdr_idx)
244 return;
245 rbdr_idx--;
246 rbdr = &qs->rbdr[rbdr_idx];
247 /* Check if it's enabled */
248 if (!rbdr->enable)
249 goto next_rbdr;
250
251 /* Get no of desc's to be refilled */
252 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
253 qcount &= 0x7FFFF;
254 /* Doorbell can be ringed with a max of ring size minus 1 */
255 if (qcount >= (qs->rbdr_len - 1))
256 goto next_rbdr;
257 else
258 refill_rb_cnt = qs->rbdr_len - qcount - 1;
259
260 /* Start filling descs from tail */
261 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
262 while (refill_rb_cnt) {
263 tail++;
264 tail &= (rbdr->dmem.q_len - 1);
265
266 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
267 break;
268
269 desc = GET_RBDR_DESC(rbdr, tail);
270 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
271 refill_rb_cnt--;
272 new_rb++;
273 }
274
275 /* make sure all memory stores are done before ringing doorbell */
276 smp_wmb();
277
278 /* Check if buffer allocation failed */
279 if (refill_rb_cnt)
280 nic->rb_alloc_fail = true;
281 else
282 nic->rb_alloc_fail = false;
283
284 /* Notify HW */
285 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
286 rbdr_idx, new_rb);
287next_rbdr:
288 /* Re-enable RBDR interrupts only if buffer allocation is success */
289 if (!nic->rb_alloc_fail && rbdr->enable)
290 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
291
292 if (rbdr_idx)
293 goto refill;
294}
295
296/* Alloc rcv buffers in non-atomic mode for better success */
297void nicvf_rbdr_work(struct work_struct *work)
298{
299 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
300
301 nicvf_refill_rbdr(nic, GFP_KERNEL);
302 if (nic->rb_alloc_fail)
303 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
304 else
305 nic->rb_work_scheduled = false;
306}
307
308/* In Softirq context, alloc rcv buffers in atomic mode */
309void nicvf_rbdr_task(unsigned long data)
310{
311 struct nicvf *nic = (struct nicvf *)data;
312
313 nicvf_refill_rbdr(nic, GFP_ATOMIC);
314 if (nic->rb_alloc_fail) {
315 nic->rb_work_scheduled = true;
316 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
317 }
318}
319
320/* Initialize completion queue */
321static int nicvf_init_cmp_queue(struct nicvf *nic,
322 struct cmp_queue *cq, int q_len)
323{
324 int err;
325
326 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
327 NICVF_CQ_BASE_ALIGN_BYTES);
328 if (err)
329 return err;
330
331 cq->desc = cq->dmem.base;
332 cq->thresh = CMP_QUEUE_CQE_THRESH;
333 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
334
335 return 0;
336}
337
338static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
339{
340 if (!cq)
341 return;
342 if (!cq->dmem.base)
343 return;
344
345 nicvf_free_q_desc_mem(nic, &cq->dmem);
346}
347
348/* Initialize transmit queue */
349static int nicvf_init_snd_queue(struct nicvf *nic,
350 struct snd_queue *sq, int q_len)
351{
352 int err;
353
354 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
355 NICVF_SQ_BASE_ALIGN_BYTES);
356 if (err)
357 return err;
358
359 sq->desc = sq->dmem.base;
360 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_ATOMIC);
361 sq->head = 0;
362 sq->tail = 0;
363 atomic_set(&sq->free_cnt, q_len - 1);
364 sq->thresh = SND_QUEUE_THRESH;
365
366 /* Preallocate memory for TSO segment's header */
367 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
368 q_len * TSO_HEADER_SIZE,
369 &sq->tso_hdrs_phys, GFP_KERNEL);
370 if (!sq->tso_hdrs)
371 return -ENOMEM;
372
373 return 0;
374}
375
376static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
377{
378 if (!sq)
379 return;
380 if (!sq->dmem.base)
381 return;
382
383 if (sq->tso_hdrs)
384 dma_free_coherent(&nic->pdev->dev, sq->dmem.q_len,
385 sq->tso_hdrs, sq->tso_hdrs_phys);
386
387 kfree(sq->skbuff);
388 nicvf_free_q_desc_mem(nic, &sq->dmem);
389}
390
391static void nicvf_reclaim_snd_queue(struct nicvf *nic,
392 struct queue_set *qs, int qidx)
393{
394 /* Disable send queue */
395 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
396 /* Check if SQ is stopped */
397 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
398 return;
399 /* Reset send queue */
400 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
401}
402
403static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
404 struct queue_set *qs, int qidx)
405{
406 union nic_mbx mbx = {};
407
408 /* Make sure all packets in the pipeline are written back into mem */
409 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
410 nicvf_send_msg_to_pf(nic, &mbx);
411}
412
413static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
414 struct queue_set *qs, int qidx)
415{
416 /* Disable timer threshold (doesn't get reset upon CQ reset */
417 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
418 /* Disable completion queue */
419 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
420 /* Reset completion queue */
421 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
422}
423
424static void nicvf_reclaim_rbdr(struct nicvf *nic,
425 struct rbdr *rbdr, int qidx)
426{
427 u64 tmp, fifo_state;
428 int timeout = 10;
429
430 /* Save head and tail pointers for feeing up buffers */
431 rbdr->head = nicvf_queue_reg_read(nic,
432 NIC_QSET_RBDR_0_1_HEAD,
433 qidx) >> 3;
434 rbdr->tail = nicvf_queue_reg_read(nic,
435 NIC_QSET_RBDR_0_1_TAIL,
436 qidx) >> 3;
437
438 /* If RBDR FIFO is in 'FAIL' state then do a reset first
439 * before relaiming.
440 */
441 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
442 if (((fifo_state >> 62) & 0x03) == 0x3)
443 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
444 qidx, NICVF_RBDR_RESET);
445
446 /* Disable RBDR */
447 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
448 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
449 return;
450 while (1) {
451 tmp = nicvf_queue_reg_read(nic,
452 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
453 qidx);
454 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
455 break;
456 usleep_range(1000, 2000);
457 timeout--;
458 if (!timeout) {
459 netdev_err(nic->netdev,
460 "Failed polling on prefetch status\n");
461 return;
462 }
463 }
464 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
465 qidx, NICVF_RBDR_RESET);
466
467 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
468 return;
469 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
470 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
471 return;
472}
473
474/* Configures receive queue */
475static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
476 int qidx, bool enable)
477{
478 union nic_mbx mbx = {};
479 struct rcv_queue *rq;
480 struct rq_cfg rq_cfg;
481
482 rq = &qs->rq[qidx];
483 rq->enable = enable;
484
485 /* Disable receive queue */
486 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
487
488 if (!rq->enable) {
489 nicvf_reclaim_rcv_queue(nic, qs, qidx);
490 return;
491 }
492
493 rq->cq_qs = qs->vnic_id;
494 rq->cq_idx = qidx;
495 rq->start_rbdr_qs = qs->vnic_id;
496 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
497 rq->cont_rbdr_qs = qs->vnic_id;
498 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
499 /* all writes of RBDR data to be loaded into L2 Cache as well*/
500 rq->caching = 1;
501
502 /* Send a mailbox msg to PF to config RQ */
503 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
504 mbx.rq.qs_num = qs->vnic_id;
505 mbx.rq.rq_num = qidx;
506 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
507 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
508 (rq->cont_qs_rbdr_idx << 8) |
509 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
510 nicvf_send_msg_to_pf(nic, &mbx);
511
512 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
513 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
514 nicvf_send_msg_to_pf(nic, &mbx);
515
516 /* RQ drop config
517 * Enable CQ drop to reserve sufficient CQEs for all tx packets
518 */
519 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
520 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
521 nicvf_send_msg_to_pf(nic, &mbx);
522
523 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
524
525 /* Enable Receive queue */
526 rq_cfg.ena = 1;
527 rq_cfg.tcp_ena = 0;
528 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
529}
530
531/* Configures completion queue */
532void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
533 int qidx, bool enable)
534{
535 struct cmp_queue *cq;
536 struct cq_cfg cq_cfg;
537
538 cq = &qs->cq[qidx];
539 cq->enable = enable;
540
541 if (!cq->enable) {
542 nicvf_reclaim_cmp_queue(nic, qs, qidx);
543 return;
544 }
545
546 /* Reset completion queue */
547 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
548
549 if (!cq->enable)
550 return;
551
552 spin_lock_init(&cq->lock);
553 /* Set completion queue base address */
554 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
555 qidx, (u64)(cq->dmem.phys_base));
556
557 /* Enable Completion queue */
558 cq_cfg.ena = 1;
559 cq_cfg.reset = 0;
560 cq_cfg.caching = 0;
561 cq_cfg.qsize = CMP_QSIZE;
562 cq_cfg.avg_con = 0;
563 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
564
565 /* Set threshold value for interrupt generation */
566 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
567 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
568 qidx, nic->cq_coalesce_usecs);
569}
570
571/* Configures transmit queue */
572static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
573 int qidx, bool enable)
574{
575 union nic_mbx mbx = {};
576 struct snd_queue *sq;
577 struct sq_cfg sq_cfg;
578
579 sq = &qs->sq[qidx];
580 sq->enable = enable;
581
582 if (!sq->enable) {
583 nicvf_reclaim_snd_queue(nic, qs, qidx);
584 return;
585 }
586
587 /* Reset send queue */
588 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
589
590 sq->cq_qs = qs->vnic_id;
591 sq->cq_idx = qidx;
592
593 /* Send a mailbox msg to PF to config SQ */
594 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
595 mbx.sq.qs_num = qs->vnic_id;
596 mbx.sq.sq_num = qidx;
597 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
598 nicvf_send_msg_to_pf(nic, &mbx);
599
600 /* Set queue base address */
601 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
602 qidx, (u64)(sq->dmem.phys_base));
603
604 /* Enable send queue & set queue size */
605 sq_cfg.ena = 1;
606 sq_cfg.reset = 0;
607 sq_cfg.ldwb = 0;
608 sq_cfg.qsize = SND_QSIZE;
609 sq_cfg.tstmp_bgx_intf = 0;
610 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
611
612 /* Set threshold value for interrupt generation */
613 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
614
615 /* Set queue:cpu affinity for better load distribution */
616 if (cpu_online(qidx)) {
617 cpumask_set_cpu(qidx, &sq->affinity_mask);
618 netif_set_xps_queue(nic->netdev,
619 &sq->affinity_mask, qidx);
620 }
621}
622
623/* Configures receive buffer descriptor ring */
624static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
625 int qidx, bool enable)
626{
627 struct rbdr *rbdr;
628 struct rbdr_cfg rbdr_cfg;
629
630 rbdr = &qs->rbdr[qidx];
631 nicvf_reclaim_rbdr(nic, rbdr, qidx);
632 if (!enable)
633 return;
634
635 /* Set descriptor base address */
636 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
637 qidx, (u64)(rbdr->dmem.phys_base));
638
639 /* Enable RBDR & set queue size */
640 /* Buffer size should be in multiples of 128 bytes */
641 rbdr_cfg.ena = 1;
642 rbdr_cfg.reset = 0;
643 rbdr_cfg.ldwb = 0;
644 rbdr_cfg.qsize = RBDR_SIZE;
645 rbdr_cfg.avg_con = 0;
646 rbdr_cfg.lines = rbdr->dma_size / 128;
647 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
648 qidx, *(u64 *)&rbdr_cfg);
649
650 /* Notify HW */
651 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
652 qidx, qs->rbdr_len - 1);
653
654 /* Set threshold value for interrupt generation */
655 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
656 qidx, rbdr->thresh - 1);
657}
658
659/* Requests PF to assign and enable Qset */
660void nicvf_qset_config(struct nicvf *nic, bool enable)
661{
662 union nic_mbx mbx = {};
663 struct queue_set *qs = nic->qs;
664 struct qs_cfg *qs_cfg;
665
666 if (!qs) {
667 netdev_warn(nic->netdev,
668 "Qset is still not allocated, don't init queues\n");
669 return;
670 }
671
672 qs->enable = enable;
673 qs->vnic_id = nic->vf_id;
674
675 /* Send a mailbox msg to PF to config Qset */
676 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
677 mbx.qs.num = qs->vnic_id;
678
679 mbx.qs.cfg = 0;
680 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
681 if (qs->enable) {
682 qs_cfg->ena = 1;
683#ifdef __BIG_ENDIAN
684 qs_cfg->be = 1;
685#endif
686 qs_cfg->vnic = qs->vnic_id;
687 }
688 nicvf_send_msg_to_pf(nic, &mbx);
689}
690
691static void nicvf_free_resources(struct nicvf *nic)
692{
693 int qidx;
694 struct queue_set *qs = nic->qs;
695
696 /* Free receive buffer descriptor ring */
697 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
698 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
699
700 /* Free completion queue */
701 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
702 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
703
704 /* Free send queue */
705 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
706 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
707}
708
709static int nicvf_alloc_resources(struct nicvf *nic)
710{
711 int qidx;
712 struct queue_set *qs = nic->qs;
713
714 /* Alloc receive buffer descriptor ring */
715 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
716 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
717 DMA_BUFFER_LEN))
718 goto alloc_fail;
719 }
720
721 /* Alloc send queue */
722 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
723 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
724 goto alloc_fail;
725 }
726
727 /* Alloc completion queue */
728 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
729 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
730 goto alloc_fail;
731 }
732
733 return 0;
734alloc_fail:
735 nicvf_free_resources(nic);
736 return -ENOMEM;
737}
738
739int nicvf_set_qset_resources(struct nicvf *nic)
740{
741 struct queue_set *qs;
742
743 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
744 if (!qs)
745 return -ENOMEM;
746 nic->qs = qs;
747
748 /* Set count of each queue */
749 qs->rbdr_cnt = RBDR_CNT;
750 qs->rq_cnt = RCV_QUEUE_CNT;
751 qs->sq_cnt = SND_QUEUE_CNT;
752 qs->cq_cnt = CMP_QUEUE_CNT;
753
754 /* Set queue lengths */
755 qs->rbdr_len = RCV_BUF_COUNT;
756 qs->sq_len = SND_QUEUE_LEN;
757 qs->cq_len = CMP_QUEUE_LEN;
758 return 0;
759}
760
761int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
762{
763 bool disable = false;
764 struct queue_set *qs = nic->qs;
765 int qidx;
766
767 if (!qs)
768 return 0;
769
770 if (enable) {
771 if (nicvf_alloc_resources(nic))
772 return -ENOMEM;
773
774 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
775 nicvf_snd_queue_config(nic, qs, qidx, enable);
776 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
777 nicvf_cmp_queue_config(nic, qs, qidx, enable);
778 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
779 nicvf_rbdr_config(nic, qs, qidx, enable);
780 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
781 nicvf_rcv_queue_config(nic, qs, qidx, enable);
782 } else {
783 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
784 nicvf_rcv_queue_config(nic, qs, qidx, disable);
785 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
786 nicvf_rbdr_config(nic, qs, qidx, disable);
787 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
788 nicvf_snd_queue_config(nic, qs, qidx, disable);
789 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
790 nicvf_cmp_queue_config(nic, qs, qidx, disable);
791
792 nicvf_free_resources(nic);
793 }
794
795 return 0;
796}
797
798/* Get a free desc from SQ
799 * returns descriptor ponter & descriptor number
800 */
801static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
802{
803 int qentry;
804
805 qentry = sq->tail;
806 atomic_sub(desc_cnt, &sq->free_cnt);
807 sq->tail += desc_cnt;
808 sq->tail &= (sq->dmem.q_len - 1);
809
810 return qentry;
811}
812
813/* Free descriptor back to SQ for future use */
814void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
815{
816 atomic_add(desc_cnt, &sq->free_cnt);
817 sq->head += desc_cnt;
818 sq->head &= (sq->dmem.q_len - 1);
819}
820
821static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
822{
823 qentry++;
824 qentry &= (sq->dmem.q_len - 1);
825 return qentry;
826}
827
828void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
829{
830 u64 sq_cfg;
831
832 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
833 sq_cfg |= NICVF_SQ_EN;
834 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
835 /* Ring doorbell so that H/W restarts processing SQEs */
836 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
837}
838
839void nicvf_sq_disable(struct nicvf *nic, int qidx)
840{
841 u64 sq_cfg;
842
843 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
844 sq_cfg &= ~NICVF_SQ_EN;
845 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
846}
847
848void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
849 int qidx)
850{
851 u64 head, tail;
852 struct sk_buff *skb;
853 struct nicvf *nic = netdev_priv(netdev);
854 struct sq_hdr_subdesc *hdr;
855
856 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
857 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
858 while (sq->head != head) {
859 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
860 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
861 nicvf_put_sq_desc(sq, 1);
862 continue;
863 }
864 skb = (struct sk_buff *)sq->skbuff[sq->head];
865 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
866 atomic64_add(hdr->tot_len,
867 (atomic64_t *)&netdev->stats.tx_bytes);
868 dev_kfree_skb_any(skb);
869 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
870 }
871}
872
873/* Calculate no of SQ subdescriptors needed to transmit all
874 * segments of this TSO packet.
875 * Taken from 'Tilera network driver' with a minor modification.
876 */
877static int nicvf_tso_count_subdescs(struct sk_buff *skb)
878{
879 struct skb_shared_info *sh = skb_shinfo(skb);
880 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
881 unsigned int data_len = skb->len - sh_len;
882 unsigned int p_len = sh->gso_size;
883 long f_id = -1; /* id of the current fragment */
884 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
885 long f_used = 0; /* bytes used from the current fragment */
886 long n; /* size of the current piece of payload */
887 int num_edescs = 0;
888 int segment;
889
890 for (segment = 0; segment < sh->gso_segs; segment++) {
891 unsigned int p_used = 0;
892
893 /* One edesc for header and for each piece of the payload. */
894 for (num_edescs++; p_used < p_len; num_edescs++) {
895 /* Advance as needed. */
896 while (f_used >= f_size) {
897 f_id++;
898 f_size = skb_frag_size(&sh->frags[f_id]);
899 f_used = 0;
900 }
901
902 /* Use bytes from the current fragment. */
903 n = p_len - p_used;
904 if (n > f_size - f_used)
905 n = f_size - f_used;
906 f_used += n;
907 p_used += n;
908 }
909
910 /* The last segment may be less than gso_size. */
911 data_len -= p_len;
912 if (data_len < p_len)
913 p_len = data_len;
914 }
915
916 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
917 return num_edescs + sh->gso_segs;
918}
919
920/* Get the number of SQ descriptors needed to xmit this skb */
921static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
922{
923 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
924
925 if (skb_shinfo(skb)->gso_size) {
926 subdesc_cnt = nicvf_tso_count_subdescs(skb);
927 return subdesc_cnt;
928 }
929
930 if (skb_shinfo(skb)->nr_frags)
931 subdesc_cnt += skb_shinfo(skb)->nr_frags;
932
933 return subdesc_cnt;
934}
935
936/* Add SQ HEADER subdescriptor.
937 * First subdescriptor for every send descriptor.
938 */
939static inline void
940nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
941 int subdesc_cnt, struct sk_buff *skb, int len)
942{
943 int proto;
944 struct sq_hdr_subdesc *hdr;
945
946 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
947 sq->skbuff[qentry] = (u64)skb;
948
949 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
950 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
951 /* Enable notification via CQE after processing SQE */
952 hdr->post_cqe = 1;
953 /* No of subdescriptors following this */
954 hdr->subdesc_cnt = subdesc_cnt;
955 hdr->tot_len = len;
956
957 /* Offload checksum calculation to HW */
958 if (skb->ip_summed == CHECKSUM_PARTIAL) {
959 if (skb->protocol != htons(ETH_P_IP))
960 return;
961
962 hdr->csum_l3 = 1; /* Enable IP csum calculation */
963 hdr->l3_offset = skb_network_offset(skb);
964 hdr->l4_offset = skb_transport_offset(skb);
965
966 proto = ip_hdr(skb)->protocol;
967 switch (proto) {
968 case IPPROTO_TCP:
969 hdr->csum_l4 = SEND_L4_CSUM_TCP;
970 break;
971 case IPPROTO_UDP:
972 hdr->csum_l4 = SEND_L4_CSUM_UDP;
973 break;
974 case IPPROTO_SCTP:
975 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
976 break;
977 }
978 }
979}
980
981/* SQ GATHER subdescriptor
982 * Must follow HDR descriptor
983 */
984static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
985 int size, u64 data)
986{
987 struct sq_gather_subdesc *gather;
988
989 qentry &= (sq->dmem.q_len - 1);
990 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
991
992 memset(gather, 0, SND_QUEUE_DESC_SIZE);
993 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
994 gather->ld_type = NIC_SEND_LD_TYPE_E_LDWB;
995 gather->size = size;
996 gather->addr = data;
997}
998
999/* Segment a TSO packet into 'gso_size' segments and append
1000 * them to SQ for transfer
1001 */
1002static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1003 int qentry, struct sk_buff *skb)
1004{
1005 struct tso_t tso;
1006 int seg_subdescs = 0, desc_cnt = 0;
1007 int seg_len, total_len, data_left;
1008 int hdr_qentry = qentry;
1009 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1010
1011 tso_start(skb, &tso);
1012 total_len = skb->len - hdr_len;
1013 while (total_len > 0) {
1014 char *hdr;
1015
1016 /* Save Qentry for adding HDR_SUBDESC at the end */
1017 hdr_qentry = qentry;
1018
1019 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1020 total_len -= data_left;
1021
1022 /* Add segment's header */
1023 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1024 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1025 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1026 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1027 sq->tso_hdrs_phys +
1028 qentry * TSO_HEADER_SIZE);
1029 /* HDR_SUDESC + GATHER */
1030 seg_subdescs = 2;
1031 seg_len = hdr_len;
1032
1033 /* Add segment's payload fragments */
1034 while (data_left > 0) {
1035 int size;
1036
1037 size = min_t(int, tso.size, data_left);
1038
1039 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1040 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1041 virt_to_phys(tso.data));
1042 seg_subdescs++;
1043 seg_len += size;
1044
1045 data_left -= size;
1046 tso_build_data(skb, &tso, size);
1047 }
1048 nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1049 seg_subdescs - 1, skb, seg_len);
1050 sq->skbuff[hdr_qentry] = 0;
1051 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1052
1053 desc_cnt += seg_subdescs;
1054 }
1055 /* Save SKB in the last segment for freeing */
1056 sq->skbuff[hdr_qentry] = (u64)skb;
1057
1058 /* make sure all memory stores are done before ringing doorbell */
1059 smp_wmb();
1060
1061 /* Inform HW to xmit all TSO segments */
1062 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1063 skb_get_queue_mapping(skb), desc_cnt);
1064 return 1;
1065}
1066
1067/* Append an skb to a SQ for packet transfer. */
1068int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1069{
1070 int i, size;
1071 int subdesc_cnt;
1072 int sq_num, qentry;
1073 struct queue_set *qs = nic->qs;
1074 struct snd_queue *sq;
1075
1076 sq_num = skb_get_queue_mapping(skb);
1077 sq = &qs->sq[sq_num];
1078
1079 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1080 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1081 goto append_fail;
1082
1083 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1084
1085 /* Check if its a TSO packet */
1086 if (skb_shinfo(skb)->gso_size)
1087 return nicvf_sq_append_tso(nic, sq, qentry, skb);
1088
1089 /* Add SQ header subdesc */
1090 nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1091
1092 /* Add SQ gather subdescs */
1093 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1094 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1095 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1096
1097 /* Check for scattered buffer */
1098 if (!skb_is_nonlinear(skb))
1099 goto doorbell;
1100
1101 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1102 const struct skb_frag_struct *frag;
1103
1104 frag = &skb_shinfo(skb)->frags[i];
1105
1106 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1107 size = skb_frag_size(frag);
1108 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1109 virt_to_phys(
1110 skb_frag_address(frag)));
1111 }
1112
1113doorbell:
1114 /* make sure all memory stores are done before ringing doorbell */
1115 smp_wmb();
1116
1117 /* Inform HW to xmit new packet */
1118 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1119 sq_num, subdesc_cnt);
1120 return 1;
1121
1122append_fail:
1123 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1124 return 0;
1125}
1126
1127static inline unsigned frag_num(unsigned i)
1128{
1129#ifdef __BIG_ENDIAN
1130 return (i & ~3) + 3 - (i & 3);
1131#else
1132 return i;
1133#endif
1134}
1135
1136/* Returns SKB for a received packet */
1137struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1138{
1139 int frag;
1140 int payload_len = 0;
1141 struct sk_buff *skb = NULL;
1142 struct sk_buff *skb_frag = NULL;
1143 struct sk_buff *prev_frag = NULL;
1144 u16 *rb_lens = NULL;
1145 u64 *rb_ptrs = NULL;
1146
1147 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1148 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1149
1150 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1151 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1152
1153 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1154 payload_len = rb_lens[frag_num(frag)];
1155 if (!frag) {
1156 /* First fragment */
1157 skb = nicvf_rb_ptr_to_skb(nic,
1158 *rb_ptrs - cqe_rx->align_pad,
1159 payload_len);
1160 if (!skb)
1161 return NULL;
1162 skb_reserve(skb, cqe_rx->align_pad);
1163 skb_put(skb, payload_len);
1164 } else {
1165 /* Add fragments */
1166 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1167 payload_len);
1168 if (!skb_frag) {
1169 dev_kfree_skb(skb);
1170 return NULL;
1171 }
1172
1173 if (!skb_shinfo(skb)->frag_list)
1174 skb_shinfo(skb)->frag_list = skb_frag;
1175 else
1176 prev_frag->next = skb_frag;
1177
1178 prev_frag = skb_frag;
1179 skb->len += payload_len;
1180 skb->data_len += payload_len;
1181 skb_frag->len = payload_len;
1182 }
1183 /* Next buffer pointer */
1184 rb_ptrs++;
1185 }
1186 return skb;
1187}
1188
1189/* Enable interrupt */
1190void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1191{
1192 u64 reg_val;
1193
1194 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1195
1196 switch (int_type) {
1197 case NICVF_INTR_CQ:
1198 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1199 break;
1200 case NICVF_INTR_SQ:
1201 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1202 break;
1203 case NICVF_INTR_RBDR:
1204 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1205 break;
1206 case NICVF_INTR_PKT_DROP:
1207 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1208 break;
1209 case NICVF_INTR_TCP_TIMER:
1210 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1211 break;
1212 case NICVF_INTR_MBOX:
1213 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1214 break;
1215 case NICVF_INTR_QS_ERR:
1216 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1217 break;
1218 default:
1219 netdev_err(nic->netdev,
1220 "Failed to enable interrupt: unknown type\n");
1221 break;
1222 }
1223
1224 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1225}
1226
1227/* Disable interrupt */
1228void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1229{
1230 u64 reg_val = 0;
1231
1232 switch (int_type) {
1233 case NICVF_INTR_CQ:
1234 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1235 break;
1236 case NICVF_INTR_SQ:
1237 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1238 break;
1239 case NICVF_INTR_RBDR:
1240 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1241 break;
1242 case NICVF_INTR_PKT_DROP:
1243 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1244 break;
1245 case NICVF_INTR_TCP_TIMER:
1246 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1247 break;
1248 case NICVF_INTR_MBOX:
1249 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1250 break;
1251 case NICVF_INTR_QS_ERR:
1252 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1253 break;
1254 default:
1255 netdev_err(nic->netdev,
1256 "Failed to disable interrupt: unknown type\n");
1257 break;
1258 }
1259
1260 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1261}
1262
1263/* Clear interrupt */
1264void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1265{
1266 u64 reg_val = 0;
1267
1268 switch (int_type) {
1269 case NICVF_INTR_CQ:
1270 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1271 break;
1272 case NICVF_INTR_SQ:
1273 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1274 break;
1275 case NICVF_INTR_RBDR:
1276 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1277 break;
1278 case NICVF_INTR_PKT_DROP:
1279 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1280 break;
1281 case NICVF_INTR_TCP_TIMER:
1282 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1283 break;
1284 case NICVF_INTR_MBOX:
1285 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1286 break;
1287 case NICVF_INTR_QS_ERR:
1288 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1289 break;
1290 default:
1291 netdev_err(nic->netdev,
1292 "Failed to clear interrupt: unknown type\n");
1293 break;
1294 }
1295
1296 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1297}
1298
1299/* Check if interrupt is enabled */
1300int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1301{
1302 u64 reg_val;
1303 u64 mask = 0xff;
1304
1305 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1306
1307 switch (int_type) {
1308 case NICVF_INTR_CQ:
1309 mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1310 break;
1311 case NICVF_INTR_SQ:
1312 mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1313 break;
1314 case NICVF_INTR_RBDR:
1315 mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1316 break;
1317 case NICVF_INTR_PKT_DROP:
1318 mask = NICVF_INTR_PKT_DROP_MASK;
1319 break;
1320 case NICVF_INTR_TCP_TIMER:
1321 mask = NICVF_INTR_TCP_TIMER_MASK;
1322 break;
1323 case NICVF_INTR_MBOX:
1324 mask = NICVF_INTR_MBOX_MASK;
1325 break;
1326 case NICVF_INTR_QS_ERR:
1327 mask = NICVF_INTR_QS_ERR_MASK;
1328 break;
1329 default:
1330 netdev_err(nic->netdev,
1331 "Failed to check interrupt enable: unknown type\n");
1332 break;
1333 }
1334
1335 return (reg_val & mask);
1336}
1337
1338void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1339{
1340 struct rcv_queue *rq;
1341
1342#define GET_RQ_STATS(reg) \
1343 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1344 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1345
1346 rq = &nic->qs->rq[rq_idx];
1347 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1348 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1349}
1350
1351void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1352{
1353 struct snd_queue *sq;
1354
1355#define GET_SQ_STATS(reg) \
1356 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1357 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1358
1359 sq = &nic->qs->sq[sq_idx];
1360 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1361 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1362}
1363
1364/* Check for errors in the receive cmp.queue entry */
1365int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1366 struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1367{
1368 struct cmp_queue_stats *stats = &cq->stats;
1369
1370 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1371 stats->rx.errop.good++;
1372 return 0;
1373 }
1374
1375 if (netif_msg_rx_err(nic))
1376 netdev_err(nic->netdev,
1377 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1378 nic->netdev->name,
1379 cqe_rx->err_level, cqe_rx->err_opcode);
1380
1381 switch (cqe_rx->err_level) {
1382 case CQ_ERRLVL_MAC:
1383 stats->rx.errlvl.mac_errs++;
1384 break;
1385 case CQ_ERRLVL_L2:
1386 stats->rx.errlvl.l2_errs++;
1387 break;
1388 case CQ_ERRLVL_L3:
1389 stats->rx.errlvl.l3_errs++;
1390 break;
1391 case CQ_ERRLVL_L4:
1392 stats->rx.errlvl.l4_errs++;
1393 break;
1394 }
1395
1396 switch (cqe_rx->err_opcode) {
1397 case CQ_RX_ERROP_RE_PARTIAL:
1398 stats->rx.errop.partial_pkts++;
1399 break;
1400 case CQ_RX_ERROP_RE_JABBER:
1401 stats->rx.errop.jabber_errs++;
1402 break;
1403 case CQ_RX_ERROP_RE_FCS:
1404 stats->rx.errop.fcs_errs++;
1405 break;
1406 case CQ_RX_ERROP_RE_TERMINATE:
1407 stats->rx.errop.terminate_errs++;
1408 break;
1409 case CQ_RX_ERROP_RE_RX_CTL:
1410 stats->rx.errop.bgx_rx_errs++;
1411 break;
1412 case CQ_RX_ERROP_PREL2_ERR:
1413 stats->rx.errop.prel2_errs++;
1414 break;
1415 case CQ_RX_ERROP_L2_FRAGMENT:
1416 stats->rx.errop.l2_frags++;
1417 break;
1418 case CQ_RX_ERROP_L2_OVERRUN:
1419 stats->rx.errop.l2_overruns++;
1420 break;
1421 case CQ_RX_ERROP_L2_PFCS:
1422 stats->rx.errop.l2_pfcs++;
1423 break;
1424 case CQ_RX_ERROP_L2_PUNY:
1425 stats->rx.errop.l2_puny++;
1426 break;
1427 case CQ_RX_ERROP_L2_MAL:
1428 stats->rx.errop.l2_hdr_malformed++;
1429 break;
1430 case CQ_RX_ERROP_L2_OVERSIZE:
1431 stats->rx.errop.l2_oversize++;
1432 break;
1433 case CQ_RX_ERROP_L2_UNDERSIZE:
1434 stats->rx.errop.l2_undersize++;
1435 break;
1436 case CQ_RX_ERROP_L2_LENMISM:
1437 stats->rx.errop.l2_len_mismatch++;
1438 break;
1439 case CQ_RX_ERROP_L2_PCLP:
1440 stats->rx.errop.l2_pclp++;
1441 break;
1442 case CQ_RX_ERROP_IP_NOT:
1443 stats->rx.errop.non_ip++;
1444 break;
1445 case CQ_RX_ERROP_IP_CSUM_ERR:
1446 stats->rx.errop.ip_csum_err++;
1447 break;
1448 case CQ_RX_ERROP_IP_MAL:
1449 stats->rx.errop.ip_hdr_malformed++;
1450 break;
1451 case CQ_RX_ERROP_IP_MALD:
1452 stats->rx.errop.ip_payload_malformed++;
1453 break;
1454 case CQ_RX_ERROP_IP_HOP:
1455 stats->rx.errop.ip_hop_errs++;
1456 break;
1457 case CQ_RX_ERROP_L3_ICRC:
1458 stats->rx.errop.l3_icrc_errs++;
1459 break;
1460 case CQ_RX_ERROP_L3_PCLP:
1461 stats->rx.errop.l3_pclp++;
1462 break;
1463 case CQ_RX_ERROP_L4_MAL:
1464 stats->rx.errop.l4_malformed++;
1465 break;
1466 case CQ_RX_ERROP_L4_CHK:
1467 stats->rx.errop.l4_csum_errs++;
1468 break;
1469 case CQ_RX_ERROP_UDP_LEN:
1470 stats->rx.errop.udp_len_err++;
1471 break;
1472 case CQ_RX_ERROP_L4_PORT:
1473 stats->rx.errop.bad_l4_port++;
1474 break;
1475 case CQ_RX_ERROP_TCP_FLAG:
1476 stats->rx.errop.bad_tcp_flag++;
1477 break;
1478 case CQ_RX_ERROP_TCP_OFFSET:
1479 stats->rx.errop.tcp_offset_errs++;
1480 break;
1481 case CQ_RX_ERROP_L4_PCLP:
1482 stats->rx.errop.l4_pclp++;
1483 break;
1484 case CQ_RX_ERROP_RBDR_TRUNC:
1485 stats->rx.errop.pkt_truncated++;
1486 break;
1487 }
1488
1489 return 1;
1490}
1491
1492/* Check for errors in the send cmp.queue entry */
1493int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1494 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1495{
1496 struct cmp_queue_stats *stats = &cq->stats;
1497
1498 switch (cqe_tx->send_status) {
1499 case CQ_TX_ERROP_GOOD:
1500 stats->tx.good++;
1501 return 0;
1502 case CQ_TX_ERROP_DESC_FAULT:
1503 stats->tx.desc_fault++;
1504 break;
1505 case CQ_TX_ERROP_HDR_CONS_ERR:
1506 stats->tx.hdr_cons_err++;
1507 break;
1508 case CQ_TX_ERROP_SUBDC_ERR:
1509 stats->tx.subdesc_err++;
1510 break;
1511 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1512 stats->tx.imm_size_oflow++;
1513 break;
1514 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1515 stats->tx.data_seq_err++;
1516 break;
1517 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1518 stats->tx.mem_seq_err++;
1519 break;
1520 case CQ_TX_ERROP_LOCK_VIOL:
1521 stats->tx.lock_viol++;
1522 break;
1523 case CQ_TX_ERROP_DATA_FAULT:
1524 stats->tx.data_fault++;
1525 break;
1526 case CQ_TX_ERROP_TSTMP_CONFLICT:
1527 stats->tx.tstmp_conflict++;
1528 break;
1529 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1530 stats->tx.tstmp_timeout++;
1531 break;
1532 case CQ_TX_ERROP_MEM_FAULT:
1533 stats->tx.mem_fault++;
1534 break;
1535 case CQ_TX_ERROP_CK_OVERLAP:
1536 stats->tx.csum_overlap++;
1537 break;
1538 case CQ_TX_ERROP_CK_OFLOW:
1539 stats->tx.csum_overflow++;
1540 break;
1541 }
1542
1543 return 1;
1544}
This page took 0.080758 seconds and 5 git commands to generate.