net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb / sge.c
CommitLineData
8199d3a7
CL
1/*****************************************************************************
2 * *
3 * File: sge.c *
559fb51b
SB
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
8199d3a7
CL
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40#include "common.h"
41
8199d3a7
CL
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
f1d3d38a 45#include <linux/ktime.h>
8199d3a7
CL
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/if_vlan.h>
49#include <linux/skbuff.h>
50#include <linux/init.h>
51#include <linux/mm.h>
f1d3d38a 52#include <linux/tcp.h>
8199d3a7
CL
53#include <linux/ip.h>
54#include <linux/in.h>
55#include <linux/if_arp.h>
5a0e3ad6 56#include <linux/slab.h>
70c71606 57#include <linux/prefetch.h>
8199d3a7
CL
58
59#include "cpl5_cmd.h"
60#include "sge.h"
61#include "regs.h"
62#include "espi.h"
63
f1d3d38a
SH
64/* This belongs in if_ether.h */
65#define ETH_P_CPL5 0xf
8199d3a7
CL
66
67#define SGE_CMDQ_N 2
68#define SGE_FREELQ_N 2
559fb51b 69#define SGE_CMDQ0_E_N 1024
8199d3a7
CL
70#define SGE_CMDQ1_E_N 128
71#define SGE_FREEL_SIZE 4096
72#define SGE_JUMBO_FREEL_SIZE 512
73#define SGE_FREEL_REFILL_THRESH 16
74#define SGE_RESPQ_E_N 1024
559fb51b 75#define SGE_INTRTIMER_NRES 1000
8199d3a7 76#define SGE_RX_SM_BUF_SIZE 1536
f1d3d38a 77#define SGE_TX_DESC_MAX_PLEN 16384
8199d3a7 78
559fb51b
SB
79#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80
81/*
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
84 */
85#define TX_RECLAIM_PERIOD (HZ / 4)
8199d3a7 86
559fb51b
SB
87#define M_CMD_LEN 0x7fffffff
88#define V_CMD_LEN(v) (v)
89#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90#define V_CMD_GEN1(v) ((v) << 31)
91#define V_CMD_GEN2(v) (v)
92#define F_CMD_DATAVALID (1 << 1)
93#define F_CMD_SOP (1 << 2)
94#define V_CMD_EOP(v) ((v) << 3)
95
8199d3a7 96/*
559fb51b 97 * Command queue, receive buffer list, and response queue descriptors.
8199d3a7
CL
98 */
99#if defined(__BIG_ENDIAN_BITFIELD)
100struct cmdQ_e {
559fb51b
SB
101 u32 addr_lo;
102 u32 len_gen;
103 u32 flags;
104 u32 addr_hi;
8199d3a7
CL
105};
106
107struct freelQ_e {
559fb51b
SB
108 u32 addr_lo;
109 u32 len_gen;
110 u32 gen2;
111 u32 addr_hi;
8199d3a7
CL
112};
113
114struct respQ_e {
115 u32 Qsleeping : 4;
116 u32 Cmdq1CreditReturn : 5;
117 u32 Cmdq1DmaComplete : 5;
118 u32 Cmdq0CreditReturn : 5;
119 u32 Cmdq0DmaComplete : 5;
120 u32 FreelistQid : 2;
121 u32 CreditValid : 1;
122 u32 DataValid : 1;
123 u32 Offload : 1;
124 u32 Eop : 1;
125 u32 Sop : 1;
126 u32 GenerationBit : 1;
127 u32 BufferLength;
128};
8199d3a7
CL
129#elif defined(__LITTLE_ENDIAN_BITFIELD)
130struct cmdQ_e {
559fb51b
SB
131 u32 len_gen;
132 u32 addr_lo;
133 u32 addr_hi;
134 u32 flags;
8199d3a7
CL
135};
136
137struct freelQ_e {
559fb51b
SB
138 u32 len_gen;
139 u32 addr_lo;
140 u32 addr_hi;
141 u32 gen2;
8199d3a7
CL
142};
143
144struct respQ_e {
145 u32 BufferLength;
146 u32 GenerationBit : 1;
147 u32 Sop : 1;
148 u32 Eop : 1;
149 u32 Offload : 1;
150 u32 DataValid : 1;
151 u32 CreditValid : 1;
152 u32 FreelistQid : 2;
153 u32 Cmdq0DmaComplete : 5;
154 u32 Cmdq0CreditReturn : 5;
155 u32 Cmdq1DmaComplete : 5;
156 u32 Cmdq1CreditReturn : 5;
157 u32 Qsleeping : 4;
158} ;
159#endif
160
161/*
162 * SW Context Command and Freelist Queue Descriptors
163 */
164struct cmdQ_ce {
165 struct sk_buff *skb;
094f92a6
FT
166 DEFINE_DMA_UNMAP_ADDR(dma_addr);
167 DEFINE_DMA_UNMAP_LEN(dma_len);
8199d3a7
CL
168};
169
170struct freelQ_ce {
171 struct sk_buff *skb;
094f92a6
FT
172 DEFINE_DMA_UNMAP_ADDR(dma_addr);
173 DEFINE_DMA_UNMAP_LEN(dma_len);
8199d3a7
CL
174};
175
176/*
559fb51b 177 * SW command, freelist and response rings
8199d3a7
CL
178 */
179struct cmdQ {
559fb51b
SB
180 unsigned long status; /* HW DMA fetch status */
181 unsigned int in_use; /* # of in-use command descriptors */
182 unsigned int size; /* # of descriptors */
f1d3d38a
SH
183 unsigned int processed; /* total # of descs HW has processed */
184 unsigned int cleaned; /* total # of descs SW has reclaimed */
185 unsigned int stop_thres; /* SW TX queue suspend threshold */
559fb51b
SB
186 u16 pidx; /* producer index (SW) */
187 u16 cidx; /* consumer index (HW) */
188 u8 genbit; /* current generation (=valid) bit */
f1d3d38a 189 u8 sop; /* is next entry start of packet? */
559fb51b
SB
190 struct cmdQ_e *entries; /* HW command descriptor Q */
191 struct cmdQ_ce *centries; /* SW command context descriptor Q */
559fb51b 192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
356bd146 193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
8199d3a7
CL
194};
195
196struct freelQ {
559fb51b
SB
197 unsigned int credits; /* # of available RX buffers */
198 unsigned int size; /* free list capacity */
199 u16 pidx; /* producer index (SW) */
200 u16 cidx; /* consumer index (HW) */
8199d3a7 201 u16 rx_buffer_size; /* Buffer size on this free list */
f1d3d38a
SH
202 u16 dma_offset; /* DMA offset to align IP headers */
203 u16 recycleq_idx; /* skb recycle q to use */
559fb51b
SB
204 u8 genbit; /* current generation (=valid) bit */
205 struct freelQ_e *entries; /* HW freelist descriptor Q */
206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
8199d3a7
CL
208};
209
210struct respQ {
559fb51b
SB
211 unsigned int credits; /* credits to be returned to SGE */
212 unsigned int size; /* # of response Q descriptors */
213 u16 cidx; /* consumer index (SW) */
214 u8 genbit; /* current generation(=valid) bit */
8199d3a7 215 struct respQ_e *entries; /* HW response descriptor Q */
559fb51b
SB
216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217};
218
219/* Bit flags for cmdQ.status */
220enum {
221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
8199d3a7
CL
223};
224
f1d3d38a
SH
225/* T204 TX SW scheduler */
226
227/* Per T204 TX port */
228struct sched_port {
229 unsigned int avail; /* available bits - quota */
230 unsigned int drain_bits_per_1024ns; /* drain rate */
231 unsigned int speed; /* drain rate, mbps */
232 unsigned int mtu; /* mtu size */
233 struct sk_buff_head skbq; /* pending skbs */
234};
235
236/* Per T204 device */
237struct sched {
238 ktime_t last_updated; /* last time quotas were computed */
356bd146
FR
239 unsigned int max_avail; /* max bits to be sent to any port */
240 unsigned int port; /* port index (round robin ports) */
241 unsigned int num; /* num skbs in per port queues */
f1d3d38a
SH
242 struct sched_port p[MAX_NPORTS];
243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244};
245static void restart_sched(unsigned long);
246
247
8199d3a7
CL
248/*
249 * Main SGE data structure
250 *
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
3ad2f3fb 253 * separate the RX(in irq context) and TX state in order to decrease memory
8199d3a7
CL
254 * contention.
255 */
256struct sge {
356bd146 257 struct adapter *adapter; /* adapter backpointer */
559fb51b 258 struct net_device *netdev; /* netdevice backpointer */
356bd146
FR
259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260 struct respQ respQ; /* response Q */
559fb51b 261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
8199d3a7
CL
262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263 unsigned int jumbo_fl; /* jumbo freelist Q index */
559fb51b 264 unsigned int intrtimer_nres; /* no-resource interrupt timer */
f1d3d38a 265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
559fb51b
SB
266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267 struct timer_list espibug_timer;
f1d3d38a
SH
268 unsigned long espibug_timeout;
269 struct sk_buff *espibug_skb[MAX_NPORTS];
559fb51b
SB
270 u32 sge_control; /* shadow value of sge control reg */
271 struct sge_intr_counts stats;
47d74275 272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
f1d3d38a 273 struct sched *tx_sched;
559fb51b 274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
8199d3a7
CL
275};
276
215faf9c
JP
277static const u8 ch_mac_addr[ETH_ALEN] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279};
280
f1d3d38a
SH
281/*
282 * stop tasklet and free all pending skb's
283 */
284static void tx_sched_stop(struct sge *sge)
285{
286 struct sched *s = sge->tx_sched;
287 int i;
288
289 tasklet_kill(&s->sched_tsk);
290
291 for (i = 0; i < MAX_NPORTS; i++)
292 __skb_queue_purge(&s->p[s->port].skbq);
293}
294
295/*
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
298 */
299unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300 unsigned int mtu, unsigned int speed)
301{
302 struct sched *s = sge->tx_sched;
303 struct sched_port *p = &s->p[port];
304 unsigned int max_avail_segs;
305
306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307 if (speed)
308 p->speed = speed;
309 if (mtu)
310 p->mtu = mtu;
311
312 if (speed || mtu) {
313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314 do_div(drain, (p->mtu + 50) * 1000);
315 p->drain_bits_per_1024ns = (unsigned int) drain;
316
317 if (p->speed < 1000)
318 p->drain_bits_per_1024ns =
319 90 * p->drain_bits_per_1024ns / 100;
320 }
321
322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323 p->drain_bits_per_1024ns -= 16;
324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326 } else {
327 s->max_avail = 16384;
328 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329 }
330
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333 p->speed, s->max_avail, max_avail_segs,
334 p->drain_bits_per_1024ns);
335
336 return max_avail_segs * (p->mtu - 40);
337}
338
68d579fb
AB
339#if 0
340
f1d3d38a
SH
341/*
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
344 */
345void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346{
347 struct sched *s = sge->tx_sched;
348 unsigned int i;
349
350 s->max_avail = val;
351 for (i = 0; i < MAX_NPORTS; i++)
352 t1_sched_update_parms(sge, i, 0, 0);
353}
354
355/*
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
358 */
359void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360 unsigned int val)
361{
362 struct sched *s = sge->tx_sched;
363 struct sched_port *p = &s->p[port];
364 p->drain_bits_per_1024ns = val * 1024 / 1000;
365 t1_sched_update_parms(sge, port, 0, 0);
366}
367
68d579fb
AB
368#endif /* 0 */
369
f1d3d38a
SH
370/*
371 * tx_sched_init() allocates resources and does basic initialization.
372 */
373static int tx_sched_init(struct sge *sge)
374{
375 struct sched *s;
376 int i;
377
378 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
379 if (!s)
380 return -ENOMEM;
381
382 pr_debug("tx_sched_init\n");
383 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
384 sge->tx_sched = s;
385
386 for (i = 0; i < MAX_NPORTS; i++) {
387 skb_queue_head_init(&s->p[i].skbq);
388 t1_sched_update_parms(sge, i, 1500, 1000);
389 }
390
391 return 0;
392}
393
394/*
395 * sched_update_avail() computes the delta since the last time it was called
396 * and updates the per port quota (number of bits that can be sent to the any
397 * port).
398 */
399static inline int sched_update_avail(struct sge *sge)
400{
401 struct sched *s = sge->tx_sched;
fd3065b2 402 ktime_t now = ktime_get();
f1d3d38a
SH
403 unsigned int i;
404 long long delta_time_ns;
405
406 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
407
408 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
409 if (delta_time_ns < 15000)
410 return 0;
411
412 for (i = 0; i < MAX_NPORTS; i++) {
413 struct sched_port *p = &s->p[i];
414 unsigned int delta_avail;
415
416 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
417 p->avail = min(p->avail + delta_avail, s->max_avail);
418 }
419
420 s->last_updated = now;
421
422 return 1;
423}
424
425/*
426 * sched_skb() is called from two different places. In the tx path, any
427 * packet generating load on an output port will call sched_skb()
428 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
429 * context (skb == NULL).
430 * The scheduler only returns a skb (which will then be sent) if the
431 * length of the skb is <= the current quota of the output port.
432 */
433static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
434 unsigned int credits)
435{
436 struct sched *s = sge->tx_sched;
437 struct sk_buff_head *skbq;
438 unsigned int i, len, update = 1;
439
440 pr_debug("sched_skb %p\n", skb);
441 if (!skb) {
442 if (!s->num)
443 return NULL;
444 } else {
445 skbq = &s->p[skb->dev->if_port].skbq;
446 __skb_queue_tail(skbq, skb);
447 s->num++;
448 skb = NULL;
449 }
450
451 if (credits < MAX_SKB_FRAGS + 1)
452 goto out;
453
356bd146 454again:
f1d3d38a 455 for (i = 0; i < MAX_NPORTS; i++) {
18d777a5 456 s->port = (s->port + 1) & (MAX_NPORTS - 1);
f1d3d38a
SH
457 skbq = &s->p[s->port].skbq;
458
459 skb = skb_peek(skbq);
460
461 if (!skb)
462 continue;
463
464 len = skb->len;
465 if (len <= s->p[s->port].avail) {
466 s->p[s->port].avail -= len;
467 s->num--;
468 __skb_unlink(skb, skbq);
469 goto out;
470 }
471 skb = NULL;
472 }
473
474 if (update-- && sched_update_avail(sge))
475 goto again;
476
356bd146
FR
477out:
478 /* If there are more pending skbs, we use the hardware to schedule us
f1d3d38a
SH
479 * again.
480 */
481 if (s->num && !skb) {
482 struct cmdQ *q = &sge->cmdQ[0];
483 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
484 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
485 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
487 }
488 }
489 pr_debug("sched_skb ret %p\n", skb);
490
491 return skb;
492}
493
8199d3a7
CL
494/*
495 * PIO to indicate that memory mapped Q contains valid descriptor(s).
496 */
559fb51b 497static inline void doorbell_pio(struct adapter *adapter, u32 val)
8199d3a7
CL
498{
499 wmb();
559fb51b 500 writel(val, adapter->regs + A_SG_DOORBELL);
8199d3a7
CL
501}
502
503/*
504 * Frees all RX buffers on the freelist Q. The caller must make sure that
505 * the SGE is turned off before calling this function.
506 */
559fb51b 507static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
8199d3a7 508{
559fb51b 509 unsigned int cidx = q->cidx;
8199d3a7 510
559fb51b
SB
511 while (q->credits--) {
512 struct freelQ_ce *ce = &q->centries[cidx];
8199d3a7 513
094f92a6
FT
514 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
515 dma_unmap_len(ce, dma_len),
8199d3a7
CL
516 PCI_DMA_FROMDEVICE);
517 dev_kfree_skb(ce->skb);
518 ce->skb = NULL;
559fb51b 519 if (++cidx == q->size)
8199d3a7
CL
520 cidx = 0;
521 }
522}
523
524/*
525 * Free RX free list and response queue resources.
526 */
527static void free_rx_resources(struct sge *sge)
528{
529 struct pci_dev *pdev = sge->adapter->pdev;
530 unsigned int size, i;
531
532 if (sge->respQ.entries) {
559fb51b 533 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
534 pci_free_consistent(pdev, size, sge->respQ.entries,
535 sge->respQ.dma_addr);
536 }
537
538 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b 539 struct freelQ *q = &sge->freelQ[i];
8199d3a7 540
559fb51b
SB
541 if (q->centries) {
542 free_freelQ_buffers(pdev, q);
543 kfree(q->centries);
8199d3a7 544 }
559fb51b
SB
545 if (q->entries) {
546 size = sizeof(struct freelQ_e) * q->size;
547 pci_free_consistent(pdev, size, q->entries,
548 q->dma_addr);
8199d3a7
CL
549 }
550 }
551}
552
553/*
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
559fb51b 555 * response queue.
8199d3a7
CL
556 */
557static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
558{
559 struct pci_dev *pdev = sge->adapter->pdev;
560 unsigned int size, i;
561
562 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b
SB
563 struct freelQ *q = &sge->freelQ[i];
564
565 q->genbit = 1;
566 q->size = p->freelQ_size[i];
567 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
568 size = sizeof(struct freelQ_e) * q->size;
3e0f75be 569 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 570 if (!q->entries)
8199d3a7 571 goto err_no_mem;
3e0f75be 572
559fb51b 573 size = sizeof(struct freelQ_ce) * q->size;
cbee9f91 574 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 575 if (!q->centries)
8199d3a7
CL
576 goto err_no_mem;
577 }
578
579 /*
580 * Calculate the buffer sizes for the two free lists. FL0 accommodates
581 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
582 * including all the sk_buff overhead.
583 *
584 * Note: For T2 FL0 and FL1 are reversed.
585 */
586 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
587 sizeof(struct cpl_rx_data) +
588 sge->freelQ[!sge->jumbo_fl].dma_offset;
f1d3d38a
SH
589
590 size = (16 * 1024) -
591 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592
593 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
8199d3a7 594
559fb51b
SB
595 /*
596 * Setup which skb recycle Q should be used when recycling buffers from
597 * each free list.
598 */
599 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
600 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
601
8199d3a7 602 sge->respQ.genbit = 1;
559fb51b
SB
603 sge->respQ.size = SGE_RESPQ_E_N;
604 sge->respQ.credits = 0;
605 size = sizeof(struct respQ_e) * sge->respQ.size;
3e0f75be 606 sge->respQ.entries =
8199d3a7
CL
607 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
608 if (!sge->respQ.entries)
609 goto err_no_mem;
8199d3a7
CL
610 return 0;
611
612err_no_mem:
613 free_rx_resources(sge);
614 return -ENOMEM;
615}
616
617/*
559fb51b 618 * Reclaims n TX descriptors and frees the buffers associated with them.
8199d3a7 619 */
559fb51b 620static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
8199d3a7 621{
559fb51b 622 struct cmdQ_ce *ce;
8199d3a7 623 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b 624 unsigned int cidx = q->cidx;
8199d3a7 625
559fb51b
SB
626 q->in_use -= n;
627 ce = &q->centries[cidx];
628 while (n--) {
094f92a6
FT
629 if (likely(dma_unmap_len(ce, dma_len))) {
630 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
631 dma_unmap_len(ce, dma_len),
3e0f75be
FR
632 PCI_DMA_TODEVICE);
633 if (q->sop)
f1d3d38a 634 q->sop = 0;
f1d3d38a 635 }
559fb51b 636 if (ce->skb) {
f1d3d38a 637 dev_kfree_skb_any(ce->skb);
559fb51b
SB
638 q->sop = 1;
639 }
8199d3a7 640 ce++;
559fb51b 641 if (++cidx == q->size) {
8199d3a7 642 cidx = 0;
559fb51b 643 ce = q->centries;
8199d3a7
CL
644 }
645 }
559fb51b 646 q->cidx = cidx;
8199d3a7
CL
647}
648
649/*
650 * Free TX resources.
651 *
652 * Assumes that SGE is stopped and all interrupts are disabled.
653 */
654static void free_tx_resources(struct sge *sge)
655{
656 struct pci_dev *pdev = sge->adapter->pdev;
657 unsigned int size, i;
658
659 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b 660 struct cmdQ *q = &sge->cmdQ[i];
8199d3a7 661
559fb51b
SB
662 if (q->centries) {
663 if (q->in_use)
664 free_cmdQ_buffers(sge, q, q->in_use);
665 kfree(q->centries);
8199d3a7 666 }
559fb51b
SB
667 if (q->entries) {
668 size = sizeof(struct cmdQ_e) * q->size;
669 pci_free_consistent(pdev, size, q->entries,
670 q->dma_addr);
8199d3a7
CL
671 }
672 }
673}
674
675/*
676 * Allocates basic TX resources, consisting of memory mapped command Qs.
677 */
678static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
679{
680 struct pci_dev *pdev = sge->adapter->pdev;
681 unsigned int size, i;
682
683 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b
SB
684 struct cmdQ *q = &sge->cmdQ[i];
685
686 q->genbit = 1;
687 q->sop = 1;
688 q->size = p->cmdQ_size[i];
689 q->in_use = 0;
690 q->status = 0;
691 q->processed = q->cleaned = 0;
692 q->stop_thres = 0;
693 spin_lock_init(&q->lock);
694 size = sizeof(struct cmdQ_e) * q->size;
3e0f75be 695 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 696 if (!q->entries)
8199d3a7 697 goto err_no_mem;
3e0f75be 698
559fb51b 699 size = sizeof(struct cmdQ_ce) * q->size;
cbee9f91 700 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 701 if (!q->centries)
8199d3a7
CL
702 goto err_no_mem;
703 }
704
559fb51b
SB
705 /*
706 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
707 * only. For queue 0 set the stop threshold so we can handle one more
708 * packet from each port, plus reserve an additional 24 entries for
709 * Ethernet packets only. Queue 1 never suspends nor do we reserve
710 * space for Ethernet packets.
711 */
712 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
713 (MAX_SKB_FRAGS + 1);
8199d3a7
CL
714 return 0;
715
716err_no_mem:
717 free_tx_resources(sge);
718 return -ENOMEM;
719}
720
721static inline void setup_ring_params(struct adapter *adapter, u64 addr,
722 u32 size, int base_reg_lo,
723 int base_reg_hi, int size_reg)
724{
559fb51b
SB
725 writel((u32)addr, adapter->regs + base_reg_lo);
726 writel(addr >> 32, adapter->regs + base_reg_hi);
727 writel(size, adapter->regs + size_reg);
8199d3a7
CL
728}
729
730/*
731 * Enable/disable VLAN acceleration.
732 */
c8f44aff 733void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
8199d3a7
CL
734{
735 struct sge *sge = adapter->sge;
736
f646968f 737 if (features & NETIF_F_HW_VLAN_CTAG_RX)
8199d3a7 738 sge->sge_control |= F_VLAN_XTRACT;
133b0851
JP
739 else
740 sge->sge_control &= ~F_VLAN_XTRACT;
8199d3a7 741 if (adapter->open_device_map) {
559fb51b 742 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
f1d3d38a 743 readl(adapter->regs + A_SG_CONTROL); /* flush */
8199d3a7
CL
744 }
745}
746
8199d3a7
CL
747/*
748 * Programs the various SGE registers. However, the engine is not yet enabled,
749 * but sge->sge_control is setup and ready to go.
750 */
751static void configure_sge(struct sge *sge, struct sge_params *p)
752{
753 struct adapter *ap = sge->adapter;
356bd146 754
559fb51b
SB
755 writel(0, ap->regs + A_SG_CONTROL);
756 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
8199d3a7 757 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
559fb51b 758 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
8199d3a7
CL
759 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
760 setup_ring_params(ap, sge->freelQ[0].dma_addr,
559fb51b 761 sge->freelQ[0].size, A_SG_FL0BASELWR,
8199d3a7
CL
762 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
763 setup_ring_params(ap, sge->freelQ[1].dma_addr,
559fb51b 764 sge->freelQ[1].size, A_SG_FL1BASELWR,
8199d3a7
CL
765 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
766
767 /* The threshold comparison uses <. */
559fb51b 768 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
8199d3a7 769
559fb51b
SB
770 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
771 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
772 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
8199d3a7
CL
773
774 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
775 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
776 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
777 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
778
779#if defined(__BIG_ENDIAN_BITFIELD)
780 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
781#endif
782
559fb51b
SB
783 /* Initialize no-resource timer */
784 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
785
786 t1_sge_set_coalesce_params(sge, p);
8199d3a7
CL
787}
788
789/*
790 * Return the payload capacity of the jumbo free-list buffers.
791 */
792static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
793{
794 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
559fb51b
SB
795 sge->freelQ[sge->jumbo_fl].dma_offset -
796 sizeof(struct cpl_rx_data);
8199d3a7
CL
797}
798
799/*
800 * Frees all SGE related resources and the sge structure itself
801 */
802void t1_sge_destroy(struct sge *sge)
803{
56f643c2
SH
804 int i;
805
806 for_each_port(sge->adapter, i)
807 free_percpu(sge->port_stats[i]);
808
f1d3d38a 809 kfree(sge->tx_sched);
8199d3a7
CL
810 free_tx_resources(sge);
811 free_rx_resources(sge);
812 kfree(sge);
813}
814
815/*
816 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
817 * context Q) until the Q is full or alloc_skb fails.
818 *
819 * It is possible that the generation bits already match, indicating that the
820 * buffer is already valid and nothing needs to be done. This happens when we
821 * copied a received buffer into a new sk_buff during the interrupt processing.
822 *
823 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
824 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
825 * aligned.
826 */
559fb51b 827static void refill_free_list(struct sge *sge, struct freelQ *q)
8199d3a7
CL
828{
829 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b
SB
830 struct freelQ_ce *ce = &q->centries[q->pidx];
831 struct freelQ_e *e = &q->entries[q->pidx];
832 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
8199d3a7 833
559fb51b
SB
834 while (q->credits < q->size) {
835 struct sk_buff *skb;
836 dma_addr_t mapping;
8199d3a7 837
70386d40 838 skb = dev_alloc_skb(q->rx_buffer_size);
559fb51b
SB
839 if (!skb)
840 break;
841
842 skb_reserve(skb, q->dma_offset);
843 mapping = pci_map_single(pdev, skb->data, dma_len,
844 PCI_DMA_FROMDEVICE);
24a427cf
SH
845 skb_reserve(skb, sge->rx_pkt_pad);
846
559fb51b 847 ce->skb = skb;
094f92a6
FT
848 dma_unmap_addr_set(ce, dma_addr, mapping);
849 dma_unmap_len_set(ce, dma_len, dma_len);
559fb51b
SB
850 e->addr_lo = (u32)mapping;
851 e->addr_hi = (u64)mapping >> 32;
852 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
853 wmb();
854 e->gen2 = V_CMD_GEN2(q->genbit);
8199d3a7
CL
855
856 e++;
857 ce++;
559fb51b
SB
858 if (++q->pidx == q->size) {
859 q->pidx = 0;
860 q->genbit ^= 1;
861 ce = q->centries;
862 e = q->entries;
8199d3a7 863 }
559fb51b 864 q->credits++;
8199d3a7 865 }
8199d3a7
CL
866}
867
868/*
559fb51b
SB
869 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
870 * of both rings, we go into 'few interrupt mode' in order to give the system
871 * time to free up resources.
8199d3a7
CL
872 */
873static void freelQs_empty(struct sge *sge)
874{
559fb51b
SB
875 struct adapter *adapter = sge->adapter;
876 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
877 u32 irqholdoff_reg;
878
879 refill_free_list(sge, &sge->freelQ[0]);
880 refill_free_list(sge, &sge->freelQ[1]);
881
559fb51b
SB
882 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
883 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
8199d3a7 884 irq_reg |= F_FL_EXHAUSTED;
559fb51b 885 irqholdoff_reg = sge->fixed_intrtimer;
8199d3a7
CL
886 } else {
887 /* Clear the F_FL_EXHAUSTED interrupts for now */
888 irq_reg &= ~F_FL_EXHAUSTED;
889 irqholdoff_reg = sge->intrtimer_nres;
890 }
559fb51b
SB
891 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
892 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
893
894 /* We reenable the Qs to force a freelist GTS interrupt later */
559fb51b 895 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
8199d3a7
CL
896}
897
898#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
899#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
900#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
901 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902
903/*
904 * Disable SGE Interrupts
905 */
906void t1_sge_intr_disable(struct sge *sge)
907{
559fb51b 908 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 909
559fb51b
SB
910 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
911 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
912}
913
914/*
915 * Enable SGE interrupts.
916 */
917void t1_sge_intr_enable(struct sge *sge)
918{
919 u32 en = SGE_INT_ENABLE;
559fb51b 920 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 921
30f554f9 922 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
8199d3a7 923 en &= ~F_PACKET_TOO_BIG;
559fb51b
SB
924 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
925 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
926}
927
928/*
929 * Clear SGE interrupts.
930 */
931void t1_sge_intr_clear(struct sge *sge)
932{
559fb51b
SB
933 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
934 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
935}
936
937/*
938 * SGE 'Error' interrupt handler
939 */
940int t1_sge_intr_error_handler(struct sge *sge)
941{
942 struct adapter *adapter = sge->adapter;
559fb51b 943 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
8199d3a7 944
30f554f9 945 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
8199d3a7
CL
946 cause &= ~F_PACKET_TOO_BIG;
947 if (cause & F_RESPQ_EXHAUSTED)
559fb51b 948 sge->stats.respQ_empty++;
8199d3a7 949 if (cause & F_RESPQ_OVERFLOW) {
559fb51b 950 sge->stats.respQ_overflow++;
c1f51212 951 pr_alert("%s: SGE response queue overflow\n",
8199d3a7
CL
952 adapter->name);
953 }
954 if (cause & F_FL_EXHAUSTED) {
559fb51b 955 sge->stats.freelistQ_empty++;
8199d3a7
CL
956 freelQs_empty(sge);
957 }
958 if (cause & F_PACKET_TOO_BIG) {
559fb51b 959 sge->stats.pkt_too_big++;
c1f51212 960 pr_alert("%s: SGE max packet size exceeded\n",
8199d3a7
CL
961 adapter->name);
962 }
963 if (cause & F_PACKET_MISMATCH) {
559fb51b 964 sge->stats.pkt_mismatch++;
c1f51212 965 pr_alert("%s: SGE packet mismatch\n", adapter->name);
8199d3a7
CL
966 }
967 if (cause & SGE_INT_FATAL)
968 t1_fatal_err(adapter);
969
559fb51b 970 writel(cause, adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
971 return 0;
972}
973
56f643c2 974const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
559fb51b
SB
975{
976 return &sge->stats;
977}
978
56f643c2
SH
979void t1_sge_get_port_stats(const struct sge *sge, int port,
980 struct sge_port_stats *ss)
559fb51b 981{
56f643c2
SH
982 int cpu;
983
984 memset(ss, 0, sizeof(*ss));
985 for_each_possible_cpu(cpu) {
986 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
987
56f643c2 988 ss->rx_cso_good += st->rx_cso_good;
56f643c2
SH
989 ss->tx_cso += st->tx_cso;
990 ss->tx_tso += st->tx_tso;
7832ee03 991 ss->tx_need_hdrroom += st->tx_need_hdrroom;
56f643c2
SH
992 ss->vlan_xtract += st->vlan_xtract;
993 ss->vlan_insert += st->vlan_insert;
994 }
559fb51b
SB
995}
996
997/**
998 * recycle_fl_buf - recycle a free list buffer
999 * @fl: the free list
1000 * @idx: index of buffer to recycle
8199d3a7 1001 *
559fb51b
SB
1002 * Recycles the specified buffer on the given free list by adding it at
1003 * the next available slot on the list.
8199d3a7 1004 */
559fb51b 1005static void recycle_fl_buf(struct freelQ *fl, int idx)
8199d3a7 1006{
559fb51b
SB
1007 struct freelQ_e *from = &fl->entries[idx];
1008 struct freelQ_e *to = &fl->entries[fl->pidx];
8199d3a7 1009
559fb51b
SB
1010 fl->centries[fl->pidx] = fl->centries[idx];
1011 to->addr_lo = from->addr_lo;
1012 to->addr_hi = from->addr_hi;
1013 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1014 wmb();
1015 to->gen2 = V_CMD_GEN2(fl->genbit);
1016 fl->credits++;
8199d3a7 1017
559fb51b
SB
1018 if (++fl->pidx == fl->size) {
1019 fl->pidx = 0;
1020 fl->genbit ^= 1;
8199d3a7 1021 }
559fb51b 1022}
8199d3a7 1023
24a427cf
SH
1024static int copybreak __read_mostly = 256;
1025module_param(copybreak, int, 0);
1026MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1027
559fb51b
SB
1028/**
1029 * get_packet - return the next ingress packet buffer
1030 * @pdev: the PCI device that received the packet
1031 * @fl: the SGE free list holding the packet
1032 * @len: the actual packet length, excluding any SGE padding
559fb51b
SB
1033 *
1034 * Get the next packet from a free list and complete setup of the
1035 * sk_buff. If the packet is small we make a copy and recycle the
1036 * original buffer, otherwise we use the original buffer itself. If a
1037 * positive drop threshold is supplied packets are dropped and their
1038 * buffers recycled if (a) the number of remaining buffers is under the
1039 * threshold and the packet is too big to copy, or (b) the packet should
1040 * be copied but there is no memory for the copy.
1041 */
1042static inline struct sk_buff *get_packet(struct pci_dev *pdev,
24a427cf 1043 struct freelQ *fl, unsigned int len)
559fb51b
SB
1044{
1045 struct sk_buff *skb;
24a427cf 1046 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
559fb51b 1047
24a427cf 1048 if (len < copybreak) {
e76d120b 1049 skb = netdev_alloc_skb_ip_align(NULL, len);
24a427cf
SH
1050 if (!skb)
1051 goto use_orig_buf;
1052
24a427cf
SH
1053 skb_put(skb, len);
1054 pci_dma_sync_single_for_cpu(pdev,
094f92a6
FT
1055 dma_unmap_addr(ce, dma_addr),
1056 dma_unmap_len(ce, dma_len),
559fb51b 1057 PCI_DMA_FROMDEVICE);
d626f62b 1058 skb_copy_from_linear_data(ce->skb, skb->data, len);
24a427cf 1059 pci_dma_sync_single_for_device(pdev,
094f92a6
FT
1060 dma_unmap_addr(ce, dma_addr),
1061 dma_unmap_len(ce, dma_len),
24a427cf 1062 PCI_DMA_FROMDEVICE);
559fb51b
SB
1063 recycle_fl_buf(fl, fl->cidx);
1064 return skb;
8199d3a7
CL
1065 }
1066
24a427cf
SH
1067use_orig_buf:
1068 if (fl->credits < 2) {
559fb51b
SB
1069 recycle_fl_buf(fl, fl->cidx);
1070 return NULL;
1071 }
8199d3a7 1072
094f92a6
FT
1073 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1074 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
559fb51b 1075 skb = ce->skb;
24a427cf
SH
1076 prefetch(skb->data);
1077
559fb51b
SB
1078 skb_put(skb, len);
1079 return skb;
1080}
8199d3a7 1081
559fb51b
SB
1082/**
1083 * unexpected_offload - handle an unexpected offload packet
1084 * @adapter: the adapter
1085 * @fl: the free list that received the packet
1086 *
1087 * Called when we receive an unexpected offload packet (e.g., the TOE
1088 * function is disabled or the card is a NIC). Prints a message and
1089 * recycles the buffer.
1090 */
1091static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1092{
1093 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1094 struct sk_buff *skb = ce->skb;
1095
094f92a6
FT
1096 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1097 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
c1f51212 1098 pr_err("%s: unexpected offload packet, cmd %u\n",
559fb51b
SB
1099 adapter->name, *skb->data);
1100 recycle_fl_buf(fl, fl->cidx);
8199d3a7
CL
1101}
1102
f1d3d38a
SH
1103/*
1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107 * Note that the *_large_page_tx_descs stuff will be optimized out when
1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1109 *
1110 * compute_large_page_descs() computes how many additional descriptors are
1111 * required to break down the stack's request.
1112 */
1113static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1114{
1115 unsigned int count = 0;
356bd146 1116
f1d3d38a
SH
1117 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1118 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
e743d313 1119 unsigned int i, len = skb_headlen(skb);
f1d3d38a
SH
1120 while (len > SGE_TX_DESC_MAX_PLEN) {
1121 count++;
1122 len -= SGE_TX_DESC_MAX_PLEN;
1123 }
1124 for (i = 0; nfrags--; i++) {
9e903e08
ED
1125 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126 len = skb_frag_size(frag);
f1d3d38a
SH
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1130 }
1131 }
1132 }
1133 return count;
1134}
1135
1136/*
1137 * Write a cmdQ entry.
1138 *
1139 * Since this function writes the 'flags' field, it must not be used to
1140 * write the first cmdQ entry.
1141 */
1142static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1143 unsigned int len, unsigned int gen,
1144 unsigned int eop)
1145{
0ee904c3
AB
1146 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1147
f1d3d38a
SH
1148 e->addr_lo = (u32)mapping;
1149 e->addr_hi = (u64)mapping >> 32;
1150 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1151 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1152}
1153
1154/*
1155 * See comment for previous function.
1156 *
1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158 * *desc_len exceeds HW's capability.
1159 */
1160static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1161 struct cmdQ_e **e,
1162 struct cmdQ_ce **ce,
1163 unsigned int *gen,
1164 dma_addr_t *desc_mapping,
1165 unsigned int *desc_len,
1166 unsigned int nfrags,
1167 struct cmdQ *q)
1168{
1169 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1170 struct cmdQ_e *e1 = *e;
1171 struct cmdQ_ce *ce1 = *ce;
1172
1173 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1174 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1175 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1176 *gen, nfrags == 0 && *desc_len == 0);
1177 ce1->skb = NULL;
094f92a6 1178 dma_unmap_len_set(ce1, dma_len, 0);
f1d3d38a
SH
1179 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1180 if (*desc_len) {
1181 ce1++;
1182 e1++;
1183 if (++pidx == q->size) {
1184 pidx = 0;
1185 *gen ^= 1;
1186 ce1 = q->centries;
1187 e1 = q->entries;
1188 }
1189 }
1190 }
1191 *e = e1;
1192 *ce = ce1;
1193 }
1194 return pidx;
1195}
1196
8199d3a7 1197/*
559fb51b
SB
1198 * Write the command descriptors to transmit the given skb starting at
1199 * descriptor pidx with the given generation.
8199d3a7 1200 */
559fb51b
SB
1201static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1202 unsigned int pidx, unsigned int gen,
1203 struct cmdQ *q)
8199d3a7 1204{
f1d3d38a 1205 dma_addr_t mapping, desc_mapping;
559fb51b
SB
1206 struct cmdQ_e *e, *e1;
1207 struct cmdQ_ce *ce;
f1d3d38a
SH
1208 unsigned int i, flags, first_desc_len, desc_len,
1209 nfrags = skb_shinfo(skb)->nr_frags;
559fb51b 1210
f1d3d38a 1211 e = e1 = &q->entries[pidx];
559fb51b 1212 ce = &q->centries[pidx];
f1d3d38a
SH
1213
1214 mapping = pci_map_single(adapter->pdev, skb->data,
e743d313 1215 skb_headlen(skb), PCI_DMA_TODEVICE);
f1d3d38a
SH
1216
1217 desc_mapping = mapping;
e743d313 1218 desc_len = skb_headlen(skb);
f1d3d38a
SH
1219
1220 flags = F_CMD_DATAVALID | F_CMD_SOP |
1221 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1222 V_CMD_GEN2(gen);
1223 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1224 desc_len : SGE_TX_DESC_MAX_PLEN;
1225 e->addr_lo = (u32)desc_mapping;
1226 e->addr_hi = (u64)desc_mapping >> 32;
1227 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1228 ce->skb = NULL;
094f92a6 1229 dma_unmap_len_set(ce, dma_len, 0);
f1d3d38a
SH
1230
1231 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1232 desc_len > SGE_TX_DESC_MAX_PLEN) {
1233 desc_mapping += first_desc_len;
1234 desc_len -= first_desc_len;
1235 e1++;
1236 ce++;
1237 if (++pidx == q->size) {
1238 pidx = 0;
1239 gen ^= 1;
1240 e1 = q->entries;
1241 ce = q->centries;
1242 }
1243 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1244 &desc_mapping, &desc_len,
1245 nfrags, q);
1246
1247 if (likely(desc_len))
1248 write_tx_desc(e1, desc_mapping, desc_len, gen,
1249 nfrags == 0);
1250 }
1251
559fb51b 1252 ce->skb = NULL;
094f92a6 1253 dma_unmap_addr_set(ce, dma_addr, mapping);
e743d313 1254 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
8199d3a7 1255
f1d3d38a 1256 for (i = 0; nfrags--; i++) {
559fb51b 1257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
559fb51b 1258 e1++;
f1d3d38a 1259 ce++;
559fb51b
SB
1260 if (++pidx == q->size) {
1261 pidx = 0;
1262 gen ^= 1;
559fb51b 1263 e1 = q->entries;
f1d3d38a 1264 ce = q->centries;
8199d3a7 1265 }
8199d3a7 1266
01139222 1267 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
9e903e08 1268 skb_frag_size(frag), DMA_TO_DEVICE);
f1d3d38a 1269 desc_mapping = mapping;
9e903e08 1270 desc_len = skb_frag_size(frag);
f1d3d38a
SH
1271
1272 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1273 &desc_mapping, &desc_len,
1274 nfrags, q);
1275 if (likely(desc_len))
1276 write_tx_desc(e1, desc_mapping, desc_len, gen,
1277 nfrags == 0);
559fb51b 1278 ce->skb = NULL;
094f92a6 1279 dma_unmap_addr_set(ce, dma_addr, mapping);
9e903e08 1280 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
8199d3a7 1281 }
559fb51b
SB
1282 ce->skb = skb;
1283 wmb();
1284 e->flags = flags;
1285}
8199d3a7 1286
559fb51b
SB
1287/*
1288 * Clean up completed Tx buffers.
1289 */
1290static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1291{
1292 unsigned int reclaim = q->processed - q->cleaned;
8199d3a7 1293
559fb51b 1294 if (reclaim) {
f1d3d38a
SH
1295 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296 q->processed, q->cleaned);
559fb51b
SB
1297 free_cmdQ_buffers(sge, q, reclaim);
1298 q->cleaned += reclaim;
8199d3a7 1299 }
559fb51b 1300}
8199d3a7 1301
f1d3d38a
SH
1302/*
1303 * Called from tasklet. Checks the scheduler for any
1304 * pending skbs that can be sent.
1305 */
1306static void restart_sched(unsigned long arg)
1307{
1308 struct sge *sge = (struct sge *) arg;
1309 struct adapter *adapter = sge->adapter;
1310 struct cmdQ *q = &sge->cmdQ[0];
1311 struct sk_buff *skb;
1312 unsigned int credits, queued_skb = 0;
1313
1314 spin_lock(&q->lock);
1315 reclaim_completed_tx(sge, q);
1316
1317 credits = q->size - q->in_use;
1318 pr_debug("restart_sched credits=%d\n", credits);
1319 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1320 unsigned int genbit, pidx, count;
1321 count = 1 + skb_shinfo(skb)->nr_frags;
356bd146 1322 count += compute_large_page_tx_descs(skb);
f1d3d38a
SH
1323 q->in_use += count;
1324 genbit = q->genbit;
1325 pidx = q->pidx;
1326 q->pidx += count;
1327 if (q->pidx >= q->size) {
1328 q->pidx -= q->size;
1329 q->genbit ^= 1;
1330 }
1331 write_tx_descs(adapter, skb, pidx, genbit, q);
1332 credits = q->size - q->in_use;
1333 queued_skb = 1;
1334 }
1335
1336 if (queued_skb) {
1337 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1339 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1340 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1341 }
1342 }
1343 spin_unlock(&q->lock);
1344}
8199d3a7 1345
559fb51b
SB
1346/**
1347 * sge_rx - process an ingress ethernet packet
1348 * @sge: the sge structure
1349 * @fl: the free list that contains the packet buffer
1350 * @len: the packet length
8199d3a7 1351 *
559fb51b 1352 * Process an ingress ethernet pakcet and deliver it to the stack.
8199d3a7 1353 */
24a427cf 1354static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
8199d3a7 1355{
559fb51b 1356 struct sk_buff *skb;
24a427cf 1357 const struct cpl_rx_pkt *p;
559fb51b 1358 struct adapter *adapter = sge->adapter;
56f643c2 1359 struct sge_port_stats *st;
30f554f9 1360 struct net_device *dev;
8199d3a7 1361
24a427cf 1362 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
56f643c2
SH
1363 if (unlikely(!skb)) {
1364 sge->stats.rx_drops++;
24a427cf 1365 return;
8199d3a7 1366 }
559fb51b 1367
24a427cf 1368 p = (const struct cpl_rx_pkt *) skb->data;
f1d3d38a
SH
1369 if (p->iff >= adapter->params.nports) {
1370 kfree_skb(skb);
24a427cf 1371 return;
f1d3d38a 1372 }
24a427cf 1373 __skb_pull(skb, sizeof(*p));
f1d3d38a 1374
ca0c9584 1375 st = this_cpu_ptr(sge->port_stats[p->iff]);
30f554f9 1376 dev = adapter->port[p->iff].dev;
56f643c2 1377
30f554f9
MM
1378 skb->protocol = eth_type_trans(skb, dev);
1379 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
559fb51b
SB
1380 skb->protocol == htons(ETH_P_IP) &&
1381 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
56f643c2 1382 ++st->rx_cso_good;
559fb51b
SB
1383 skb->ip_summed = CHECKSUM_UNNECESSARY;
1384 } else
bc8acf2c 1385 skb_checksum_none_assert(skb);
559fb51b 1386
133b0851 1387 if (p->vlan_valid) {
56f643c2 1388 st->vlan_xtract++;
133b0851
JP
1389 __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
1390 }
1391 netif_receive_skb(skb);
8199d3a7
CL
1392}
1393
1394/*
559fb51b 1395 * Returns true if a command queue has enough available descriptors that
8199d3a7
CL
1396 * we can resume Tx operation after temporarily disabling its packet queue.
1397 */
559fb51b 1398static inline int enough_free_Tx_descs(const struct cmdQ *q)
8199d3a7 1399{
559fb51b
SB
1400 unsigned int r = q->processed - q->cleaned;
1401
1402 return q->in_use - r < (q->size >> 1);
8199d3a7
CL
1403}
1404
1405/*
559fb51b
SB
1406 * Called when sufficient space has become available in the SGE command queues
1407 * after the Tx packet schedulers have been suspended to restart the Tx path.
8199d3a7 1408 */
559fb51b 1409static void restart_tx_queues(struct sge *sge)
8199d3a7 1410{
559fb51b 1411 struct adapter *adap = sge->adapter;
3e0f75be 1412 int i;
8199d3a7 1413
3e0f75be
FR
1414 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1415 return;
559fb51b 1416
3e0f75be
FR
1417 for_each_port(adap, i) {
1418 struct net_device *nd = adap->port[i].dev;
559fb51b 1419
3e0f75be
FR
1420 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1421 netif_running(nd)) {
1422 sge->stats.cmdQ_restarted[2]++;
1423 netif_wake_queue(nd);
559fb51b
SB
1424 }
1425 }
1426}
1427
1428/*
356bd146 1429 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
559fb51b
SB
1430 * information.
1431 */
356bd146
FR
1432static unsigned int update_tx_info(struct adapter *adapter,
1433 unsigned int flags,
559fb51b
SB
1434 unsigned int pr0)
1435{
1436 struct sge *sge = adapter->sge;
1437 struct cmdQ *cmdq = &sge->cmdQ[0];
8199d3a7 1438
559fb51b 1439 cmdq->processed += pr0;
f1d3d38a
SH
1440 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1441 freelQs_empty(sge);
1442 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1443 }
559fb51b
SB
1444 if (flags & F_CMDQ0_ENABLE) {
1445 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
f1d3d38a 1446
559fb51b
SB
1447 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1448 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1449 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1450 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1451 }
f1d3d38a
SH
1452 if (sge->tx_sched)
1453 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1454
1455 flags &= ~F_CMDQ0_ENABLE;
559fb51b 1456 }
f1d3d38a 1457
559fb51b
SB
1458 if (unlikely(sge->stopped_tx_queues != 0))
1459 restart_tx_queues(sge);
8199d3a7 1460
559fb51b
SB
1461 return flags;
1462}
8199d3a7 1463
559fb51b
SB
1464/*
1465 * Process SGE responses, up to the supplied budget. Returns the number of
1466 * responses processed. A negative budget is effectively unlimited.
1467 */
1468static int process_responses(struct adapter *adapter, int budget)
1469{
1470 struct sge *sge = adapter->sge;
1471 struct respQ *q = &sge->respQ;
1472 struct respQ_e *e = &q->entries[q->cidx];
24a427cf 1473 int done = 0;
559fb51b
SB
1474 unsigned int flags = 0;
1475 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
356bd146 1476
24a427cf 1477 while (done < budget && e->GenerationBit == q->genbit) {
559fb51b 1478 flags |= e->Qsleeping;
356bd146 1479
559fb51b
SB
1480 cmdq_processed[0] += e->Cmdq0CreditReturn;
1481 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1482
559fb51b
SB
1483 /* We batch updates to the TX side to avoid cacheline
1484 * ping-pong of TX state information on MP where the sender
1485 * might run on a different CPU than this function...
1486 */
24a427cf 1487 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
559fb51b
SB
1488 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1489 cmdq_processed[0] = 0;
1490 }
24a427cf 1491
559fb51b
SB
1492 if (unlikely(cmdq_processed[1] > 16)) {
1493 sge->cmdQ[1].processed += cmdq_processed[1];
1494 cmdq_processed[1] = 0;
8199d3a7 1495 }
24a427cf 1496
8199d3a7 1497 if (likely(e->DataValid)) {
559fb51b
SB
1498 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1499
5d9428de 1500 BUG_ON(!e->Sop || !e->Eop);
559fb51b
SB
1501 if (unlikely(e->Offload))
1502 unexpected_offload(adapter, fl);
1503 else
1504 sge_rx(sge, fl, e->BufferLength);
1505
24a427cf
SH
1506 ++done;
1507
559fb51b
SB
1508 /*
1509 * Note: this depends on each packet consuming a
1510 * single free-list buffer; cf. the BUG above.
1511 */
1512 if (++fl->cidx == fl->size)
1513 fl->cidx = 0;
24a427cf
SH
1514 prefetch(fl->centries[fl->cidx].skb);
1515
559fb51b
SB
1516 if (unlikely(--fl->credits <
1517 fl->size - SGE_FREEL_REFILL_THRESH))
1518 refill_free_list(sge, fl);
1519 } else
1520 sge->stats.pure_rsps++;
8199d3a7 1521
8199d3a7 1522 e++;
559fb51b
SB
1523 if (unlikely(++q->cidx == q->size)) {
1524 q->cidx = 0;
1525 q->genbit ^= 1;
1526 e = q->entries;
1527 }
1528 prefetch(e);
1529
1530 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1531 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1532 q->credits = 0;
8199d3a7
CL
1533 }
1534 }
1535
356bd146 1536 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1537 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1538
24a427cf 1539 return done;
559fb51b 1540}
8199d3a7 1541
3de00b89
SH
1542static inline int responses_pending(const struct adapter *adapter)
1543{
1544 const struct respQ *Q = &adapter->sge->respQ;
1545 const struct respQ_e *e = &Q->entries[Q->cidx];
1546
807540ba 1547 return e->GenerationBit == Q->genbit;
3de00b89
SH
1548}
1549
559fb51b
SB
1550/*
1551 * A simpler version of process_responses() that handles only pure (i.e.,
1552 * non data-carrying) responses. Such respones are too light-weight to justify
1553 * calling a softirq when using NAPI, so we handle them specially in hard
1554 * interrupt context. The function is called with a pointer to a response,
1555 * which the caller must ensure is a valid pure response. Returns 1 if it
1556 * encounters a valid data-carrying response, 0 otherwise.
1557 */
3de00b89 1558static int process_pure_responses(struct adapter *adapter)
559fb51b
SB
1559{
1560 struct sge *sge = adapter->sge;
1561 struct respQ *q = &sge->respQ;
3de00b89 1562 struct respQ_e *e = &q->entries[q->cidx];
24a427cf 1563 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
559fb51b
SB
1564 unsigned int flags = 0;
1565 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
8199d3a7 1566
24a427cf 1567 prefetch(fl->centries[fl->cidx].skb);
3de00b89
SH
1568 if (e->DataValid)
1569 return 1;
24a427cf 1570
559fb51b
SB
1571 do {
1572 flags |= e->Qsleeping;
8199d3a7 1573
559fb51b
SB
1574 cmdq_processed[0] += e->Cmdq0CreditReturn;
1575 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1576
559fb51b
SB
1577 e++;
1578 if (unlikely(++q->cidx == q->size)) {
1579 q->cidx = 0;
1580 q->genbit ^= 1;
1581 e = q->entries;
8199d3a7 1582 }
559fb51b 1583 prefetch(e);
8199d3a7 1584
559fb51b
SB
1585 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1586 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1587 q->credits = 0;
8199d3a7 1588 }
559fb51b
SB
1589 sge->stats.pure_rsps++;
1590 } while (e->GenerationBit == q->genbit && !e->DataValid);
8199d3a7 1591
356bd146 1592 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1593 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1594
559fb51b 1595 return e->GenerationBit == q->genbit;
8199d3a7
CL
1596}
1597
1598/*
559fb51b
SB
1599 * Handler for new data events when using NAPI. This does not need any locking
1600 * or protection from interrupts as data interrupts are off at this point and
1601 * other adapter interrupts do not interfere.
8199d3a7 1602 */
bea3348e 1603int t1_poll(struct napi_struct *napi, int budget)
8199d3a7 1604{
bea3348e 1605 struct adapter *adapter = container_of(napi, struct adapter, napi);
445cf803 1606 int work_done = process_responses(adapter, budget);
7fe26a60 1607
445cf803 1608 if (likely(work_done < budget)) {
288379f0 1609 napi_complete(napi);
bea3348e
SH
1610 writel(adapter->sge->respQ.cidx,
1611 adapter->regs + A_SG_SLEEPING);
1612 }
1613 return work_done;
559fb51b 1614}
8199d3a7 1615
7fe26a60 1616irqreturn_t t1_interrupt(int irq, void *data)
559fb51b 1617{
559fb51b
SB
1618 struct adapter *adapter = data;
1619 struct sge *sge = adapter->sge;
3de00b89 1620 int handled;
559fb51b 1621
3de00b89 1622 if (likely(responses_pending(adapter))) {
356bd146 1623 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
7fe26a60 1624
bea3348e 1625 if (napi_schedule_prep(&adapter->napi)) {
3de00b89 1626 if (process_pure_responses(adapter))
288379f0 1627 __napi_schedule(&adapter->napi);
3de00b89
SH
1628 else {
1629 /* no data, no NAPI needed */
1630 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
4422b003
FR
1631 /* undo schedule_prep */
1632 napi_enable(&adapter->napi);
7fe26a60 1633 }
7fe26a60 1634 }
3de00b89
SH
1635 return IRQ_HANDLED;
1636 }
1637
1638 spin_lock(&adapter->async_lock);
1639 handled = t1_slow_intr_handler(adapter);
1640 spin_unlock(&adapter->async_lock);
7fe26a60 1641
559fb51b
SB
1642 if (!handled)
1643 sge->stats.unhandled_irqs++;
3de00b89 1644
559fb51b
SB
1645 return IRQ_RETVAL(handled != 0);
1646}
8199d3a7 1647
559fb51b
SB
1648/*
1649 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1650 *
1651 * The code figures out how many entries the sk_buff will require in the
1652 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1653 * has complete. Then, it doesn't access the global structure anymore, but
25985edc 1654 * uses the corresponding fields on the stack. In conjunction with a spinlock
559fb51b
SB
1655 * around that code, we can make the function reentrant without holding the
1656 * lock when we actually enqueue (which might be expensive, especially on
1657 * architectures with IO MMUs).
1658 *
1659 * This runs with softirqs disabled.
1660 */
aa84505f
SH
1661static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1662 unsigned int qid, struct net_device *dev)
559fb51b
SB
1663{
1664 struct sge *sge = adapter->sge;
1665 struct cmdQ *q = &sge->cmdQ[qid];
f1d3d38a 1666 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
559fb51b 1667
cabdfb37
SH
1668 if (!spin_trylock(&q->lock))
1669 return NETDEV_TX_LOCKED;
1670
559fb51b
SB
1671 reclaim_completed_tx(sge, q);
1672
1673 pidx = q->pidx;
1674 credits = q->size - q->in_use;
1675 count = 1 + skb_shinfo(skb)->nr_frags;
f1d3d38a 1676 count += compute_large_page_tx_descs(skb);
559fb51b 1677
f1d3d38a
SH
1678 /* Ethernet packet */
1679 if (unlikely(credits < count)) {
1680 if (!netif_queue_stopped(dev)) {
559fb51b
SB
1681 netif_stop_queue(dev);
1682 set_bit(dev->if_port, &sge->stopped_tx_queues);
232a347a 1683 sge->stats.cmdQ_full[2]++;
c1f51212 1684 pr_err("%s: Tx ring full while queue awake!\n",
f1d3d38a 1685 adapter->name);
8199d3a7 1686 }
f1d3d38a
SH
1687 spin_unlock(&q->lock);
1688 return NETDEV_TX_BUSY;
1689 }
1690
1691 if (unlikely(credits - count < q->stop_thres)) {
1692 netif_stop_queue(dev);
1693 set_bit(dev->if_port, &sge->stopped_tx_queues);
1694 sge->stats.cmdQ_full[2]++;
1695 }
1696
1697 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1698 * through the scheduler.
1699 */
1700 if (sge->tx_sched && !qid && skb->dev) {
356bd146 1701use_sched:
f1d3d38a
SH
1702 use_sched_skb = 1;
1703 /* Note that the scheduler might return a different skb than
1704 * the one passed in.
1705 */
1706 skb = sched_skb(sge, skb, credits);
1707 if (!skb) {
1708 spin_unlock(&q->lock);
1709 return NETDEV_TX_OK;
559fb51b 1710 }
f1d3d38a
SH
1711 pidx = q->pidx;
1712 count = 1 + skb_shinfo(skb)->nr_frags;
1713 count += compute_large_page_tx_descs(skb);
559fb51b 1714 }
f1d3d38a 1715
559fb51b
SB
1716 q->in_use += count;
1717 genbit = q->genbit;
f1d3d38a 1718 pidx = q->pidx;
559fb51b
SB
1719 q->pidx += count;
1720 if (q->pidx >= q->size) {
1721 q->pidx -= q->size;
1722 q->genbit ^= 1;
8199d3a7 1723 }
559fb51b 1724 spin_unlock(&q->lock);
8199d3a7 1725
559fb51b 1726 write_tx_descs(adapter, skb, pidx, genbit, q);
8199d3a7
CL
1727
1728 /*
1729 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1730 * the doorbell if the Q is asleep. There is a natural race, where
1731 * the hardware is going to sleep just after we checked, however,
1732 * then the interrupt handler will detect the outstanding TX packet
1733 * and ring the doorbell for us.
1734 */
559fb51b
SB
1735 if (qid)
1736 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1737 else {
1738 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1739 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1740 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1741 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1742 }
8199d3a7 1743 }
f1d3d38a
SH
1744
1745 if (use_sched_skb) {
1746 if (spin_trylock(&q->lock)) {
1747 credits = q->size - q->in_use;
1748 skb = NULL;
1749 goto use_sched;
1750 }
1751 }
aa84505f 1752 return NETDEV_TX_OK;
8199d3a7
CL
1753}
1754
1755#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1756
559fb51b
SB
1757/*
1758 * eth_hdr_len - return the length of an Ethernet header
1759 * @data: pointer to the start of the Ethernet header
1760 *
1761 * Returns the length of an Ethernet header, including optional VLAN tag.
1762 */
1763static inline int eth_hdr_len(const void *data)
1764{
1765 const struct ethhdr *e = data;
1766
1767 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1768}
1769
8199d3a7
CL
1770/*
1771 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1772 */
61357325 1773netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
8199d3a7 1774{
c3ccc123 1775 struct adapter *adapter = dev->ml_priv;
559fb51b 1776 struct sge *sge = adapter->sge;
ca0c9584 1777 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
8199d3a7 1778 struct cpl_tx_pkt *cpl;
cabdfb37
SH
1779 struct sk_buff *orig_skb = skb;
1780 int ret;
8199d3a7 1781
f1d3d38a
SH
1782 if (skb->protocol == htons(ETH_P_CPL5))
1783 goto send;
1784
7832ee03
DLR
1785 /*
1786 * We are using a non-standard hard_header_len.
1787 * Allocate more header room in the rare cases it is not big enough.
1788 */
1789 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1790 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1791 ++st->tx_need_hdrroom;
1792 dev_kfree_skb_any(orig_skb);
1793 if (!skb)
1794 return NETDEV_TX_OK;
1795 }
1796
f1d3d38a 1797 if (skb_shinfo(skb)->gso_size) {
8199d3a7
CL
1798 int eth_type;
1799 struct cpl_tx_pkt_lso *hdr;
1800
56f643c2 1801 ++st->tx_tso;
559fb51b 1802
bbe735e4 1803 eth_type = skb_network_offset(skb) == ETH_HLEN ?
8199d3a7
CL
1804 CPL_ETH_II : CPL_ETH_II_VLAN;
1805
1806 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1807 hdr->opcode = CPL_TX_PKT_LSO;
1808 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
eddc9ec5 1809 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
aa8223c7 1810 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
8199d3a7 1811 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
f1d3d38a 1812 skb_shinfo(skb)->gso_size));
8199d3a7
CL
1813 hdr->len = htonl(skb->len - sizeof(*hdr));
1814 cpl = (struct cpl_tx_pkt *)hdr;
f1d3d38a 1815 } else {
8199d3a7 1816 /*
356bd146 1817 * Packets shorter than ETH_HLEN can break the MAC, drop them
559fb51b
SB
1818 * early. Also, we may get oversized packets because some
1819 * parts of the kernel don't handle our unusual hard_header_len
1820 * right, drop those too.
8199d3a7 1821 */
559fb51b
SB
1822 if (unlikely(skb->len < ETH_HLEN ||
1823 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
428ac43f
JP
1824 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1825 skb->len, eth_hdr_len(skb->data), dev->mtu);
559fb51b 1826 dev_kfree_skb_any(skb);
aa84505f 1827 return NETDEV_TX_OK;
559fb51b
SB
1828 }
1829
30f554f9 1830 if (skb->ip_summed == CHECKSUM_PARTIAL &&
eddc9ec5 1831 ip_hdr(skb)->protocol == IPPROTO_UDP) {
84fa7933 1832 if (unlikely(skb_checksum_help(skb))) {
428ac43f 1833 netdev_dbg(dev, "unable to do udp checksum\n");
559fb51b 1834 dev_kfree_skb_any(skb);
aa84505f 1835 return NETDEV_TX_OK;
559fb51b 1836 }
f1d3d38a 1837 }
8199d3a7 1838
559fb51b
SB
1839 /* Hmmm, assuming to catch the gratious arp... and we'll use
1840 * it to flush out stuck espi packets...
f1d3d38a
SH
1841 */
1842 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
8199d3a7 1843 if (skb->protocol == htons(ETH_P_ARP) &&
d0a92be0 1844 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
f1d3d38a 1845 adapter->sge->espibug_skb[dev->if_port] = skb;
559fb51b
SB
1846 /* We want to re-use this skb later. We
1847 * simply bump the reference count and it
1848 * will not be freed...
1849 */
1850 skb = skb_get(skb);
1851 }
8199d3a7 1852 }
559fb51b
SB
1853
1854 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
8199d3a7
CL
1855 cpl->opcode = CPL_TX_PKT;
1856 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
84fa7933 1857 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
8199d3a7 1858 /* the length field isn't used so don't bother setting it */
559fb51b 1859
84fa7933 1860 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
8199d3a7
CL
1861 }
1862 cpl->iff = dev->if_port;
1863
eab6d18d 1864 if (vlan_tx_tag_present(skb)) {
8199d3a7
CL
1865 cpl->vlan_valid = 1;
1866 cpl->vlan = htons(vlan_tx_tag_get(skb));
559fb51b 1867 st->vlan_insert++;
8199d3a7 1868 } else
8199d3a7
CL
1869 cpl->vlan_valid = 0;
1870
f1d3d38a 1871send:
cabdfb37
SH
1872 ret = t1_sge_tx(skb, adapter, 0, dev);
1873
1874 /* If transmit busy, and we reallocated skb's due to headroom limit,
1875 * then silently discard to avoid leak.
1876 */
1877 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
356bd146 1878 dev_kfree_skb_any(skb);
cabdfb37 1879 ret = NETDEV_TX_OK;
356bd146 1880 }
cabdfb37 1881 return ret;
559fb51b 1882}
8199d3a7 1883
559fb51b
SB
1884/*
1885 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1886 */
1887static void sge_tx_reclaim_cb(unsigned long data)
1888{
1889 int i;
1890 struct sge *sge = (struct sge *)data;
1891
1892 for (i = 0; i < SGE_CMDQ_N; ++i) {
1893 struct cmdQ *q = &sge->cmdQ[i];
1894
1895 if (!spin_trylock(&q->lock))
1896 continue;
8199d3a7 1897
559fb51b 1898 reclaim_completed_tx(sge, q);
f1d3d38a
SH
1899 if (i == 0 && q->in_use) { /* flush pending credits */
1900 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1901 }
559fb51b
SB
1902 spin_unlock(&q->lock);
1903 }
1904 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1905}
1906
1907/*
1908 * Propagate changes of the SGE coalescing parameters to the HW.
1909 */
1910int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1911{
559fb51b
SB
1912 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1913 core_ticks_per_usec(sge->adapter);
1914 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
8199d3a7
CL
1915 return 0;
1916}
1917
559fb51b
SB
1918/*
1919 * Allocates both RX and TX resources and configures the SGE. However,
1920 * the hardware is not enabled yet.
1921 */
1922int t1_sge_configure(struct sge *sge, struct sge_params *p)
8199d3a7 1923{
559fb51b
SB
1924 if (alloc_rx_resources(sge, p))
1925 return -ENOMEM;
1926 if (alloc_tx_resources(sge, p)) {
1927 free_rx_resources(sge);
1928 return -ENOMEM;
1929 }
1930 configure_sge(sge, p);
1931
1932 /*
1933 * Now that we have sized the free lists calculate the payload
1934 * capacity of the large buffers. Other parts of the driver use
1935 * this to set the max offload coalescing size so that RX packets
1936 * do not overflow our large buffers.
1937 */
1938 p->large_buf_capacity = jumbo_payload_capacity(sge);
1939 return 0;
1940}
8199d3a7 1941
559fb51b
SB
1942/*
1943 * Disables the DMA engine.
1944 */
1945void t1_sge_stop(struct sge *sge)
1946{
f1d3d38a 1947 int i;
559fb51b 1948 writel(0, sge->adapter->regs + A_SG_CONTROL);
f1d3d38a
SH
1949 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1950
559fb51b
SB
1951 if (is_T2(sge->adapter))
1952 del_timer_sync(&sge->espibug_timer);
f1d3d38a 1953
559fb51b 1954 del_timer_sync(&sge->tx_reclaim_timer);
f1d3d38a
SH
1955 if (sge->tx_sched)
1956 tx_sched_stop(sge);
1957
1958 for (i = 0; i < MAX_NPORTS; i++)
f4fe5a9c 1959 kfree_skb(sge->espibug_skb[i]);
8199d3a7
CL
1960}
1961
559fb51b
SB
1962/*
1963 * Enables the DMA engine.
1964 */
1965void t1_sge_start(struct sge *sge)
8199d3a7 1966{
559fb51b
SB
1967 refill_free_list(sge, &sge->freelQ[0]);
1968 refill_free_list(sge, &sge->freelQ[1]);
1969
1970 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1971 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
f1d3d38a 1972 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
559fb51b
SB
1973
1974 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1975
f1d3d38a 1976 if (is_T2(sge->adapter))
559fb51b
SB
1977 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1978}
1979
1980/*
1981 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1982 */
f1d3d38a 1983static void espibug_workaround_t204(unsigned long data)
559fb51b
SB
1984{
1985 struct adapter *adapter = (struct adapter *)data;
8199d3a7 1986 struct sge *sge = adapter->sge;
f1d3d38a
SH
1987 unsigned int nports = adapter->params.nports;
1988 u32 seop[MAX_NPORTS];
8199d3a7 1989
f1d3d38a
SH
1990 if (adapter->open_device_map & PORT_MASK) {
1991 int i;
356bd146
FR
1992
1993 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
f1d3d38a 1994 return;
356bd146 1995
f1d3d38a 1996 for (i = 0; i < nports; i++) {
356bd146
FR
1997 struct sk_buff *skb = sge->espibug_skb[i];
1998
1999 if (!netif_running(adapter->port[i].dev) ||
2000 netif_queue_stopped(adapter->port[i].dev) ||
2001 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2002 continue;
2003
2004 if (!skb->cb[0]) {
27d7ff46
ACM
2005 skb_copy_to_linear_data_offset(skb,
2006 sizeof(struct cpl_tx_pkt),
2007 ch_mac_addr,
2008 ETH_ALEN);
2009 skb_copy_to_linear_data_offset(skb,
2010 skb->len - 10,
2011 ch_mac_addr,
2012 ETH_ALEN);
356bd146 2013 skb->cb[0] = 0xff;
559fb51b 2014 }
356bd146
FR
2015
2016 /* bump the reference count to avoid freeing of
2017 * the skb once the DMA has completed.
2018 */
2019 skb = skb_get(skb);
2020 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
559fb51b
SB
2021 }
2022 }
2023 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
8199d3a7
CL
2024}
2025
f1d3d38a
SH
2026static void espibug_workaround(unsigned long data)
2027{
2028 struct adapter *adapter = (struct adapter *)data;
2029 struct sge *sge = adapter->sge;
2030
2031 if (netif_running(adapter->port[0].dev)) {
2032 struct sk_buff *skb = sge->espibug_skb[0];
2033 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2034
2035 if ((seop & 0xfff0fff) == 0xfff && skb) {
2036 if (!skb->cb[0]) {
27d7ff46
ACM
2037 skb_copy_to_linear_data_offset(skb,
2038 sizeof(struct cpl_tx_pkt),
2039 ch_mac_addr,
2040 ETH_ALEN);
2041 skb_copy_to_linear_data_offset(skb,
2042 skb->len - 10,
2043 ch_mac_addr,
2044 ETH_ALEN);
f1d3d38a
SH
2045 skb->cb[0] = 0xff;
2046 }
2047
2048 /* bump the reference count to avoid freeing of the
2049 * skb once the DMA has completed.
2050 */
2051 skb = skb_get(skb);
2052 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2053 }
2054 }
2055 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2056}
2057
559fb51b
SB
2058/*
2059 * Creates a t1_sge structure and returns suggested resource parameters.
2060 */
1dd06ae8 2061struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
559fb51b 2062{
cbee9f91 2063 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
56f643c2 2064 int i;
559fb51b
SB
2065
2066 if (!sge)
2067 return NULL;
559fb51b
SB
2068
2069 sge->adapter = adapter;
2070 sge->netdev = adapter->port[0].dev;
2071 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2072 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2073
56f643c2
SH
2074 for_each_port(adapter, i) {
2075 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2076 if (!sge->port_stats[i])
2077 goto nomem_port;
2078 }
2079
559fb51b
SB
2080 init_timer(&sge->tx_reclaim_timer);
2081 sge->tx_reclaim_timer.data = (unsigned long)sge;
2082 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2083
2084 if (is_T2(sge->adapter)) {
2085 init_timer(&sge->espibug_timer);
f1d3d38a
SH
2086
2087 if (adapter->params.nports > 1) {
2088 tx_sched_init(sge);
2089 sge->espibug_timer.function = espibug_workaround_t204;
d7487421 2090 } else
f1d3d38a 2091 sge->espibug_timer.function = espibug_workaround;
559fb51b 2092 sge->espibug_timer.data = (unsigned long)sge->adapter;
f1d3d38a 2093
559fb51b 2094 sge->espibug_timeout = 1;
f1d3d38a
SH
2095 /* for T204, every 10ms */
2096 if (adapter->params.nports > 1)
2097 sge->espibug_timeout = HZ/100;
559fb51b 2098 }
356bd146 2099
559fb51b
SB
2100
2101 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2102 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2103 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2104 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
f1d3d38a
SH
2105 if (sge->tx_sched) {
2106 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2107 p->rx_coalesce_usecs = 15;
2108 else
2109 p->rx_coalesce_usecs = 50;
2110 } else
2111 p->rx_coalesce_usecs = 50;
2112
559fb51b
SB
2113 p->coalesce_enable = 0;
2114 p->sample_interval_usecs = 0;
559fb51b
SB
2115
2116 return sge;
56f643c2
SH
2117nomem_port:
2118 while (i >= 0) {
2119 free_percpu(sge->port_stats[i]);
2120 --i;
2121 }
2122 kfree(sge);
2123 return NULL;
2124
559fb51b 2125}
This page took 0.973205 seconds and 5 git commands to generate.