cxgb4: Add macros, structures and inline functions for T5
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
CommitLineData
fd3a4790
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
70c71606 42#include <linux/prefetch.h>
ee40fa06 43#include <linux/export.h>
fd3a4790
DM
44#include <net/ipv6.h>
45#include <net/tcp.h>
46#include "cxgb4.h"
47#include "t4_regs.h"
48#include "t4_msg.h"
49#include "t4fw_api.h"
50
51/*
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
54 */
55#if PAGE_SHIFT >= 16
56# define FL_PG_ORDER 0
57#else
58# define FL_PG_ORDER (16 - PAGE_SHIFT)
59#endif
60
61/* RX_PULL_LEN should be <= RX_COPY_THRES */
62#define RX_COPY_THRES 256
63#define RX_PULL_LEN 128
64
65/*
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 */
69#define RX_PKT_SKB_LEN 512
70
fd3a4790
DM
71/*
72 * Max number of Tx descriptors we clean up at a time. Should be modest as
73 * freeing skbs isn't cheap and it happens while holding locks. We just need
74 * to free packets faster than they arrive, we eventually catch up and keep
75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
76 */
77#define MAX_TX_RECLAIM 16
78
79/*
80 * Max number of Rx buffers we replenish at a time. Again keep this modest,
81 * allocating buffers isn't cheap either.
82 */
83#define MAX_RX_REFILL 16U
84
85/*
86 * Period of the Rx queue check timer. This timer is infrequent as it has
87 * something to do only when the system experiences severe memory shortage.
88 */
89#define RX_QCHECK_PERIOD (HZ / 2)
90
91/*
92 * Period of the Tx queue check timer.
93 */
94#define TX_QCHECK_PERIOD (HZ / 2)
95
96/*
97 * Max number of Tx descriptors to be reclaimed by the Tx timer.
98 */
99#define MAX_TIMER_TX_RECLAIM 100
100
101/*
102 * Timer index used when backing off due to memory shortage.
103 */
104#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
105
106/*
107 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
108 * attempt to refill it.
109 */
110#define FL_STARVE_THRES 4
111
112/*
113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
114 * This is the same as calc_tx_descs() for a TSO packet with
115 * nr_frags == MAX_SKB_FRAGS.
116 */
117#define ETHTXQ_STOP_THRES \
118 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
119
120/*
121 * Suspension threshold for non-Ethernet Tx queues. We require enough room
122 * for a full sized WR.
123 */
124#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
125
126/*
127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
128 * into a WR.
129 */
130#define MAX_IMM_TX_PKT_LEN 128
131
132/*
133 * Max size of a WR sent through a control Tx queue.
134 */
135#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
136
fd3a4790
DM
137struct tx_sw_desc { /* SW state per Tx descriptor */
138 struct sk_buff *skb;
139 struct ulptx_sgl *sgl;
140};
141
142struct rx_sw_desc { /* SW state per Rx descriptor */
143 struct page *page;
144 dma_addr_t dma_addr;
145};
146
147/*
52367a76
VP
148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
149 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
150 * We could easily support more but there doesn't seem to be much need for
151 * that ...
152 */
153#define FL_MTU_SMALL 1500
154#define FL_MTU_LARGE 9000
155
156static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
157 unsigned int mtu)
158{
159 struct sge *s = &adapter->sge;
160
161 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
162}
163
164#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
165#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
166
167/*
168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
169 * these to specify the buffer size as an index into the SGE Free List Buffer
170 * Size register array. We also use bit 4, when the buffer has been unmapped
171 * for DMA, but this is of course never sent to the hardware and is only used
172 * to prevent double unmappings. All of the above requires that the Free List
173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
174 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
175 * Free List Buffer alignment is 32 bytes, this works out for us ...
fd3a4790
DM
176 */
177enum {
52367a76
VP
178 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
179 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
180 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
181
182 /*
183 * XXX We shouldn't depend on being able to use these indices.
184 * XXX Especially when some other Master PF has initialized the
185 * XXX adapter or we use the Firmware Configuration File. We
186 * XXX should really search through the Host Buffer Size register
187 * XXX array for the appropriately sized buffer indices.
188 */
189 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
190 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
191
192 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
193 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
fd3a4790
DM
194};
195
196static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
197{
52367a76 198 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
fd3a4790
DM
199}
200
201static inline bool is_buf_mapped(const struct rx_sw_desc *d)
202{
203 return !(d->dma_addr & RX_UNMAPPED_BUF);
204}
205
206/**
207 * txq_avail - return the number of available slots in a Tx queue
208 * @q: the Tx queue
209 *
210 * Returns the number of descriptors in a Tx queue available to write new
211 * packets.
212 */
213static inline unsigned int txq_avail(const struct sge_txq *q)
214{
215 return q->size - 1 - q->in_use;
216}
217
218/**
219 * fl_cap - return the capacity of a free-buffer list
220 * @fl: the FL
221 *
222 * Returns the capacity of a free-buffer list. The capacity is less than
223 * the size because one descriptor needs to be left unpopulated, otherwise
224 * HW will think the FL is empty.
225 */
226static inline unsigned int fl_cap(const struct sge_fl *fl)
227{
228 return fl->size - 8; /* 1 descriptor = 8 buffers */
229}
230
231static inline bool fl_starving(const struct sge_fl *fl)
232{
233 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
234}
235
236static int map_skb(struct device *dev, const struct sk_buff *skb,
237 dma_addr_t *addr)
238{
239 const skb_frag_t *fp, *end;
240 const struct skb_shared_info *si;
241
242 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
243 if (dma_mapping_error(dev, *addr))
244 goto out_err;
245
246 si = skb_shinfo(skb);
247 end = &si->frags[si->nr_frags];
248
249 for (fp = si->frags; fp < end; fp++) {
e91b0f24
IC
250 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
251 DMA_TO_DEVICE);
fd3a4790
DM
252 if (dma_mapping_error(dev, *addr))
253 goto unwind;
254 }
255 return 0;
256
257unwind:
258 while (fp-- > si->frags)
9e903e08 259 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
260
261 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
262out_err:
263 return -ENOMEM;
264}
265
266#ifdef CONFIG_NEED_DMA_MAP_STATE
267static void unmap_skb(struct device *dev, const struct sk_buff *skb,
268 const dma_addr_t *addr)
269{
270 const skb_frag_t *fp, *end;
271 const struct skb_shared_info *si;
272
273 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
274
275 si = skb_shinfo(skb);
276 end = &si->frags[si->nr_frags];
277 for (fp = si->frags; fp < end; fp++)
9e903e08 278 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
279}
280
281/**
282 * deferred_unmap_destructor - unmap a packet when it is freed
283 * @skb: the packet
284 *
285 * This is the packet destructor used for Tx packets that need to remain
286 * mapped until they are freed rather than until their Tx descriptors are
287 * freed.
288 */
289static void deferred_unmap_destructor(struct sk_buff *skb)
290{
291 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
292}
293#endif
294
295static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
296 const struct ulptx_sgl *sgl, const struct sge_txq *q)
297{
298 const struct ulptx_sge_pair *p;
299 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
300
301 if (likely(skb_headlen(skb)))
302 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
303 DMA_TO_DEVICE);
304 else {
305 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
306 DMA_TO_DEVICE);
307 nfrags--;
308 }
309
310 /*
311 * the complexity below is because of the possibility of a wrap-around
312 * in the middle of an SGL
313 */
314 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
315 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
316unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
317 ntohl(p->len[0]), DMA_TO_DEVICE);
318 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
319 ntohl(p->len[1]), DMA_TO_DEVICE);
320 p++;
321 } else if ((u8 *)p == (u8 *)q->stat) {
322 p = (const struct ulptx_sge_pair *)q->desc;
323 goto unmap;
324 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
325 const __be64 *addr = (const __be64 *)q->desc;
326
327 dma_unmap_page(dev, be64_to_cpu(addr[0]),
328 ntohl(p->len[0]), DMA_TO_DEVICE);
329 dma_unmap_page(dev, be64_to_cpu(addr[1]),
330 ntohl(p->len[1]), DMA_TO_DEVICE);
331 p = (const struct ulptx_sge_pair *)&addr[2];
332 } else {
333 const __be64 *addr = (const __be64 *)q->desc;
334
335 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
336 ntohl(p->len[0]), DMA_TO_DEVICE);
337 dma_unmap_page(dev, be64_to_cpu(addr[0]),
338 ntohl(p->len[1]), DMA_TO_DEVICE);
339 p = (const struct ulptx_sge_pair *)&addr[1];
340 }
341 }
342 if (nfrags) {
343 __be64 addr;
344
345 if ((u8 *)p == (u8 *)q->stat)
346 p = (const struct ulptx_sge_pair *)q->desc;
347 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
348 *(const __be64 *)q->desc;
349 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
350 DMA_TO_DEVICE);
351 }
352}
353
354/**
355 * free_tx_desc - reclaims Tx descriptors and their buffers
356 * @adapter: the adapter
357 * @q: the Tx queue to reclaim descriptors from
358 * @n: the number of descriptors to reclaim
359 * @unmap: whether the buffers should be unmapped for DMA
360 *
361 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
362 * Tx buffers. Called with the Tx queue lock held.
363 */
364static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
365 unsigned int n, bool unmap)
366{
367 struct tx_sw_desc *d;
368 unsigned int cidx = q->cidx;
369 struct device *dev = adap->pdev_dev;
370
371 d = &q->sdesc[cidx];
372 while (n--) {
373 if (d->skb) { /* an SGL is present */
374 if (unmap)
375 unmap_sgl(dev, d->skb, d->sgl, q);
376 kfree_skb(d->skb);
377 d->skb = NULL;
378 }
379 ++d;
380 if (++cidx == q->size) {
381 cidx = 0;
382 d = q->sdesc;
383 }
384 }
385 q->cidx = cidx;
386}
387
388/*
389 * Return the number of reclaimable descriptors in a Tx queue.
390 */
391static inline int reclaimable(const struct sge_txq *q)
392{
393 int hw_cidx = ntohs(q->stat->cidx);
394 hw_cidx -= q->cidx;
395 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
396}
397
398/**
399 * reclaim_completed_tx - reclaims completed Tx descriptors
400 * @adap: the adapter
401 * @q: the Tx queue to reclaim completed descriptors from
402 * @unmap: whether the buffers should be unmapped for DMA
403 *
404 * Reclaims Tx descriptors that the SGE has indicated it has processed,
405 * and frees the associated buffers if possible. Called with the Tx
406 * queue locked.
407 */
408static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
409 bool unmap)
410{
411 int avail = reclaimable(q);
412
413 if (avail) {
414 /*
415 * Limit the amount of clean up work we do at a time to keep
416 * the Tx lock hold time O(1).
417 */
418 if (avail > MAX_TX_RECLAIM)
419 avail = MAX_TX_RECLAIM;
420
421 free_tx_desc(adap, q, avail, unmap);
422 q->in_use -= avail;
423 }
424}
425
52367a76
VP
426static inline int get_buf_size(struct adapter *adapter,
427 const struct rx_sw_desc *d)
fd3a4790 428{
52367a76
VP
429 struct sge *s = &adapter->sge;
430 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
431 int buf_size;
432
433 switch (rx_buf_size_idx) {
434 case RX_SMALL_PG_BUF:
435 buf_size = PAGE_SIZE;
436 break;
437
438 case RX_LARGE_PG_BUF:
439 buf_size = PAGE_SIZE << s->fl_pg_order;
440 break;
441
442 case RX_SMALL_MTU_BUF:
443 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
444 break;
445
446 case RX_LARGE_MTU_BUF:
447 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
448 break;
449
450 default:
451 BUG_ON(1);
452 }
453
454 return buf_size;
fd3a4790
DM
455}
456
457/**
458 * free_rx_bufs - free the Rx buffers on an SGE free list
459 * @adap: the adapter
460 * @q: the SGE free list to free buffers from
461 * @n: how many buffers to free
462 *
463 * Release the next @n buffers on an SGE free-buffer Rx queue. The
464 * buffers must be made inaccessible to HW before calling this function.
465 */
466static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
467{
468 while (n--) {
469 struct rx_sw_desc *d = &q->sdesc[q->cidx];
470
471 if (is_buf_mapped(d))
472 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76
VP
473 get_buf_size(adap, d),
474 PCI_DMA_FROMDEVICE);
fd3a4790
DM
475 put_page(d->page);
476 d->page = NULL;
477 if (++q->cidx == q->size)
478 q->cidx = 0;
479 q->avail--;
480 }
481}
482
483/**
484 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
485 * @adap: the adapter
486 * @q: the SGE free list
487 *
488 * Unmap the current buffer on an SGE free-buffer Rx queue. The
489 * buffer must be made inaccessible to HW before calling this function.
490 *
491 * This is similar to @free_rx_bufs above but does not free the buffer.
492 * Do note that the FL still loses any further access to the buffer.
493 */
494static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
495{
496 struct rx_sw_desc *d = &q->sdesc[q->cidx];
497
498 if (is_buf_mapped(d))
499 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76 500 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
fd3a4790
DM
501 d->page = NULL;
502 if (++q->cidx == q->size)
503 q->cidx = 0;
504 q->avail--;
505}
506
507static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
508{
509 if (q->pend_cred >= 8) {
510 wmb();
ce91a923 511 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
fd3a4790
DM
512 QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
513 q->pend_cred &= 7;
514 }
515}
516
517static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
518 dma_addr_t mapping)
519{
520 sd->page = pg;
521 sd->dma_addr = mapping; /* includes size low bits */
522}
523
524/**
525 * refill_fl - refill an SGE Rx buffer ring
526 * @adap: the adapter
527 * @q: the ring to refill
528 * @n: the number of new buffers to allocate
529 * @gfp: the gfp flags for the allocations
530 *
531 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
532 * allocated with the supplied gfp flags. The caller must assure that
533 * @n does not exceed the queue's capacity. If afterwards the queue is
534 * found critically low mark it as starving in the bitmap of starving FLs.
535 *
536 * Returns the number of buffers allocated.
537 */
538static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
539 gfp_t gfp)
540{
52367a76 541 struct sge *s = &adap->sge;
fd3a4790
DM
542 struct page *pg;
543 dma_addr_t mapping;
544 unsigned int cred = q->avail;
545 __be64 *d = &q->desc[q->pidx];
546 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
547
1f2149c1 548 gfp |= __GFP_NOWARN | __GFP_COLD;
fd3a4790 549
52367a76
VP
550 if (s->fl_pg_order == 0)
551 goto alloc_small_pages;
552
fd3a4790
DM
553 /*
554 * Prefer large buffers
555 */
556 while (n) {
52367a76 557 pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
fd3a4790
DM
558 if (unlikely(!pg)) {
559 q->large_alloc_failed++;
560 break; /* fall back to single pages */
561 }
562
563 mapping = dma_map_page(adap->pdev_dev, pg, 0,
52367a76 564 PAGE_SIZE << s->fl_pg_order,
fd3a4790
DM
565 PCI_DMA_FROMDEVICE);
566 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
52367a76 567 __free_pages(pg, s->fl_pg_order);
fd3a4790
DM
568 goto out; /* do not try small pages for this error */
569 }
52367a76 570 mapping |= RX_LARGE_PG_BUF;
fd3a4790
DM
571 *d++ = cpu_to_be64(mapping);
572
573 set_rx_sw_desc(sd, pg, mapping);
574 sd++;
575
576 q->avail++;
577 if (++q->pidx == q->size) {
578 q->pidx = 0;
579 sd = q->sdesc;
580 d = q->desc;
581 }
582 n--;
583 }
fd3a4790 584
52367a76 585alloc_small_pages:
fd3a4790 586 while (n--) {
0614002b 587 pg = __skb_alloc_page(gfp, NULL);
fd3a4790
DM
588 if (unlikely(!pg)) {
589 q->alloc_failed++;
590 break;
591 }
592
593 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
594 PCI_DMA_FROMDEVICE);
595 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
1f2149c1 596 put_page(pg);
fd3a4790
DM
597 goto out;
598 }
599 *d++ = cpu_to_be64(mapping);
600
601 set_rx_sw_desc(sd, pg, mapping);
602 sd++;
603
604 q->avail++;
605 if (++q->pidx == q->size) {
606 q->pidx = 0;
607 sd = q->sdesc;
608 d = q->desc;
609 }
610 }
611
612out: cred = q->avail - cred;
613 q->pend_cred += cred;
614 ring_fl_db(adap, q);
615
616 if (unlikely(fl_starving(q))) {
617 smp_wmb();
e46dab4d
DM
618 set_bit(q->cntxt_id - adap->sge.egr_start,
619 adap->sge.starving_fl);
fd3a4790
DM
620 }
621
622 return cred;
623}
624
625static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
626{
627 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
628 GFP_ATOMIC);
629}
630
631/**
632 * alloc_ring - allocate resources for an SGE descriptor ring
633 * @dev: the PCI device's core device
634 * @nelem: the number of descriptors
635 * @elem_size: the size of each descriptor
636 * @sw_size: the size of the SW state associated with each ring element
637 * @phys: the physical address of the allocated ring
638 * @metadata: address of the array holding the SW state for the ring
639 * @stat_size: extra space in HW ring for status information
ad6bad3e 640 * @node: preferred node for memory allocations
fd3a4790
DM
641 *
642 * Allocates resources for an SGE descriptor ring, such as Tx queues,
643 * free buffer lists, or response queues. Each SGE ring requires
644 * space for its HW descriptors plus, optionally, space for the SW state
645 * associated with each HW entry (the metadata). The function returns
646 * three values: the virtual address for the HW ring (the return value
647 * of the function), the bus address of the HW ring, and the address
648 * of the SW ring.
649 */
650static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
651 size_t sw_size, dma_addr_t *phys, void *metadata,
ad6bad3e 652 size_t stat_size, int node)
fd3a4790
DM
653{
654 size_t len = nelem * elem_size + stat_size;
655 void *s = NULL;
656 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
657
658 if (!p)
659 return NULL;
660 if (sw_size) {
ad6bad3e 661 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
fd3a4790
DM
662
663 if (!s) {
664 dma_free_coherent(dev, len, p, *phys);
665 return NULL;
666 }
667 }
668 if (metadata)
669 *(void **)metadata = s;
670 memset(p, 0, len);
671 return p;
672}
673
674/**
675 * sgl_len - calculates the size of an SGL of the given capacity
676 * @n: the number of SGL entries
677 *
678 * Calculates the number of flits needed for a scatter/gather list that
679 * can hold the given number of entries.
680 */
681static inline unsigned int sgl_len(unsigned int n)
682{
683 n--;
684 return (3 * n) / 2 + (n & 1) + 2;
685}
686
687/**
688 * flits_to_desc - returns the num of Tx descriptors for the given flits
689 * @n: the number of flits
690 *
691 * Returns the number of Tx descriptors needed for the supplied number
692 * of flits.
693 */
694static inline unsigned int flits_to_desc(unsigned int n)
695{
696 BUG_ON(n > SGE_MAX_WR_LEN / 8);
697 return DIV_ROUND_UP(n, 8);
698}
699
700/**
701 * is_eth_imm - can an Ethernet packet be sent as immediate data?
702 * @skb: the packet
703 *
704 * Returns whether an Ethernet packet is small enough to fit as
705 * immediate data.
706 */
707static inline int is_eth_imm(const struct sk_buff *skb)
708{
709 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
710}
711
712/**
713 * calc_tx_flits - calculate the number of flits for a packet Tx WR
714 * @skb: the packet
715 *
716 * Returns the number of flits needed for a Tx WR for the given Ethernet
717 * packet, including the needed WR and CPL headers.
718 */
719static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
720{
721 unsigned int flits;
722
723 if (is_eth_imm(skb))
724 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
725
726 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
727 if (skb_shinfo(skb)->gso_size)
728 flits += 2;
729 return flits;
730}
731
732/**
733 * calc_tx_descs - calculate the number of Tx descriptors for a packet
734 * @skb: the packet
735 *
736 * Returns the number of Tx descriptors needed for the given Ethernet
737 * packet, including the needed WR and CPL headers.
738 */
739static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
740{
741 return flits_to_desc(calc_tx_flits(skb));
742}
743
744/**
745 * write_sgl - populate a scatter/gather list for a packet
746 * @skb: the packet
747 * @q: the Tx queue we are writing into
748 * @sgl: starting location for writing the SGL
749 * @end: points right after the end of the SGL
750 * @start: start offset into skb main-body data to include in the SGL
751 * @addr: the list of bus addresses for the SGL elements
752 *
753 * Generates a gather list for the buffers that make up a packet.
754 * The caller must provide adequate space for the SGL that will be written.
755 * The SGL includes all of the packet's page fragments and the data in its
756 * main body except for the first @start bytes. @sgl must be 16-byte
757 * aligned and within a Tx descriptor with available space. @end points
758 * right after the end of the SGL but does not account for any potential
759 * wrap around, i.e., @end > @sgl.
760 */
761static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
762 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
763 const dma_addr_t *addr)
764{
765 unsigned int i, len;
766 struct ulptx_sge_pair *to;
767 const struct skb_shared_info *si = skb_shinfo(skb);
768 unsigned int nfrags = si->nr_frags;
769 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
770
771 len = skb_headlen(skb) - start;
772 if (likely(len)) {
773 sgl->len0 = htonl(len);
774 sgl->addr0 = cpu_to_be64(addr[0] + start);
775 nfrags++;
776 } else {
9e903e08 777 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
fd3a4790
DM
778 sgl->addr0 = cpu_to_be64(addr[1]);
779 }
780
781 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
782 if (likely(--nfrags == 0))
783 return;
784 /*
785 * Most of the complexity below deals with the possibility we hit the
786 * end of the queue in the middle of writing the SGL. For this case
787 * only we create the SGL in a temporary buffer and then copy it.
788 */
789 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
790
791 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
792 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
793 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
fd3a4790
DM
794 to->addr[0] = cpu_to_be64(addr[i]);
795 to->addr[1] = cpu_to_be64(addr[++i]);
796 }
797 if (nfrags) {
9e903e08 798 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
fd3a4790
DM
799 to->len[1] = cpu_to_be32(0);
800 to->addr[0] = cpu_to_be64(addr[i + 1]);
801 }
802 if (unlikely((u8 *)end > (u8 *)q->stat)) {
803 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
804
805 if (likely(part0))
806 memcpy(sgl->sge, buf, part0);
807 part1 = (u8 *)end - (u8 *)q->stat;
808 memcpy(q->desc, (u8 *)buf + part0, part1);
809 end = (void *)q->desc + part1;
810 }
811 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 812 *end = 0;
fd3a4790
DM
813}
814
815/**
816 * ring_tx_db - check and potentially ring a Tx queue's doorbell
817 * @adap: the adapter
818 * @q: the Tx queue
819 * @n: number of new descriptors to give to HW
820 *
821 * Ring the doorbel for a Tx queue.
822 */
823static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
824{
825 wmb(); /* write descriptors before telling HW */
3069ee9b
VP
826 spin_lock(&q->db_lock);
827 if (!q->db_disabled) {
840f3000
VP
828 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
829 QID(q->cntxt_id) | PIDX(n));
3069ee9b
VP
830 }
831 q->db_pidx = q->pidx;
832 spin_unlock(&q->db_lock);
fd3a4790
DM
833}
834
835/**
836 * inline_tx_skb - inline a packet's data into Tx descriptors
837 * @skb: the packet
838 * @q: the Tx queue where the packet will be inlined
839 * @pos: starting position in the Tx queue where to inline the packet
840 *
841 * Inline a packet's contents directly into Tx descriptors, starting at
842 * the given position within the Tx DMA ring.
843 * Most of the complexity of this operation is dealing with wrap arounds
844 * in the middle of the packet we want to inline.
845 */
846static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
847 void *pos)
848{
849 u64 *p;
850 int left = (void *)q->stat - pos;
851
852 if (likely(skb->len <= left)) {
853 if (likely(!skb->data_len))
854 skb_copy_from_linear_data(skb, pos, skb->len);
855 else
856 skb_copy_bits(skb, 0, pos, skb->len);
857 pos += skb->len;
858 } else {
859 skb_copy_bits(skb, 0, pos, left);
860 skb_copy_bits(skb, left, q->desc, skb->len - left);
861 pos = (void *)q->desc + (skb->len - left);
862 }
863
864 /* 0-pad to multiple of 16 */
865 p = PTR_ALIGN(pos, 8);
866 if ((uintptr_t)p & 8)
867 *p = 0;
868}
869
870/*
871 * Figure out what HW csum a packet wants and return the appropriate control
872 * bits.
873 */
874static u64 hwcsum(const struct sk_buff *skb)
875{
876 int csum_type;
877 const struct iphdr *iph = ip_hdr(skb);
878
879 if (iph->version == 4) {
880 if (iph->protocol == IPPROTO_TCP)
881 csum_type = TX_CSUM_TCPIP;
882 else if (iph->protocol == IPPROTO_UDP)
883 csum_type = TX_CSUM_UDPIP;
884 else {
885nocsum: /*
886 * unknown protocol, disable HW csum
887 * and hope a bad packet is detected
888 */
889 return TXPKT_L4CSUM_DIS;
890 }
891 } else {
892 /*
893 * this doesn't work with extension headers
894 */
895 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
896
897 if (ip6h->nexthdr == IPPROTO_TCP)
898 csum_type = TX_CSUM_TCPIP6;
899 else if (ip6h->nexthdr == IPPROTO_UDP)
900 csum_type = TX_CSUM_UDPIP6;
901 else
902 goto nocsum;
903 }
904
905 if (likely(csum_type >= TX_CSUM_TCPIP))
906 return TXPKT_CSUM_TYPE(csum_type) |
907 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
908 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
909 else {
910 int start = skb_transport_offset(skb);
911
912 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
913 TXPKT_CSUM_LOC(start + skb->csum_offset);
914 }
915}
916
917static void eth_txq_stop(struct sge_eth_txq *q)
918{
919 netif_tx_stop_queue(q->txq);
920 q->q.stops++;
921}
922
923static inline void txq_advance(struct sge_txq *q, unsigned int n)
924{
925 q->in_use += n;
926 q->pidx += n;
927 if (q->pidx >= q->size)
928 q->pidx -= q->size;
929}
930
931/**
932 * t4_eth_xmit - add a packet to an Ethernet Tx queue
933 * @skb: the packet
934 * @dev: the egress net device
935 *
936 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
937 */
938netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
939{
940 u32 wr_mid;
941 u64 cntrl, *end;
942 int qidx, credits;
943 unsigned int flits, ndesc;
944 struct adapter *adap;
945 struct sge_eth_txq *q;
946 const struct port_info *pi;
947 struct fw_eth_tx_pkt_wr *wr;
948 struct cpl_tx_pkt_core *cpl;
949 const struct skb_shared_info *ssi;
950 dma_addr_t addr[MAX_SKB_FRAGS + 1];
951
952 /*
953 * The chip min packet length is 10 octets but play safe and reject
954 * anything shorter than an Ethernet header.
955 */
956 if (unlikely(skb->len < ETH_HLEN)) {
957out_free: dev_kfree_skb(skb);
958 return NETDEV_TX_OK;
959 }
960
961 pi = netdev_priv(dev);
962 adap = pi->adapter;
963 qidx = skb_get_queue_mapping(skb);
964 q = &adap->sge.ethtxq[qidx + pi->first_qset];
965
966 reclaim_completed_tx(adap, &q->q, true);
967
968 flits = calc_tx_flits(skb);
969 ndesc = flits_to_desc(flits);
970 credits = txq_avail(&q->q) - ndesc;
971
972 if (unlikely(credits < 0)) {
973 eth_txq_stop(q);
974 dev_err(adap->pdev_dev,
975 "%s: Tx ring %u full while queue awake!\n",
976 dev->name, qidx);
977 return NETDEV_TX_BUSY;
978 }
979
980 if (!is_eth_imm(skb) &&
981 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
982 q->mapping_err++;
983 goto out_free;
984 }
985
986 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
987 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
988 eth_txq_stop(q);
989 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
990 }
991
992 wr = (void *)&q->q.desc[q->q.pidx];
993 wr->equiq_to_len16 = htonl(wr_mid);
994 wr->r3 = cpu_to_be64(0);
995 end = (u64 *)wr + flits;
996
997 ssi = skb_shinfo(skb);
998 if (ssi->gso_size) {
625ac6ae 999 struct cpl_tx_pkt_lso *lso = (void *)wr;
fd3a4790
DM
1000 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1001 int l3hdr_len = skb_network_header_len(skb);
1002 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1003
1004 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1005 FW_WR_IMMDLEN(sizeof(*lso)));
625ac6ae
DM
1006 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1007 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1008 LSO_IPV6(v6) |
1009 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1010 LSO_IPHDR_LEN(l3hdr_len / 4) |
1011 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1012 lso->c.ipid_ofst = htons(0);
1013 lso->c.mss = htons(ssi->gso_size);
1014 lso->c.seqno_offset = htonl(0);
1015 lso->c.len = htonl(skb->len);
fd3a4790
DM
1016 cpl = (void *)(lso + 1);
1017 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1018 TXPKT_IPHDR_LEN(l3hdr_len) |
1019 TXPKT_ETHHDR_LEN(eth_xtra_len);
1020 q->tso++;
1021 q->tx_cso += ssi->gso_segs;
1022 } else {
1023 int len;
1024
1025 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1026 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1027 FW_WR_IMMDLEN(len));
1028 cpl = (void *)(wr + 1);
1029 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1030 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1031 q->tx_cso++;
1032 } else
1033 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1034 }
1035
1036 if (vlan_tx_tag_present(skb)) {
1037 q->vlan_ins++;
1038 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1039 }
1040
1041 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1707aec9 1042 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
fd3a4790
DM
1043 cpl->pack = htons(0);
1044 cpl->len = htons(skb->len);
1045 cpl->ctrl1 = cpu_to_be64(cntrl);
1046
1047 if (is_eth_imm(skb)) {
1048 inline_tx_skb(skb, &q->q, cpl + 1);
1049 dev_kfree_skb(skb);
1050 } else {
1051 int last_desc;
1052
1053 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1054 addr);
1055 skb_orphan(skb);
1056
1057 last_desc = q->q.pidx + ndesc - 1;
1058 if (last_desc >= q->q.size)
1059 last_desc -= q->q.size;
1060 q->q.sdesc[last_desc].skb = skb;
1061 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1062 }
1063
1064 txq_advance(&q->q, ndesc);
1065
1066 ring_tx_db(adap, &q->q, ndesc);
1067 return NETDEV_TX_OK;
1068}
1069
1070/**
1071 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1072 * @q: the SGE control Tx queue
1073 *
1074 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1075 * that send only immediate data (presently just the control queues) and
1076 * thus do not have any sk_buffs to release.
1077 */
1078static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1079{
1080 int hw_cidx = ntohs(q->stat->cidx);
1081 int reclaim = hw_cidx - q->cidx;
1082
1083 if (reclaim < 0)
1084 reclaim += q->size;
1085
1086 q->in_use -= reclaim;
1087 q->cidx = hw_cidx;
1088}
1089
1090/**
1091 * is_imm - check whether a packet can be sent as immediate data
1092 * @skb: the packet
1093 *
1094 * Returns true if a packet can be sent as a WR with immediate data.
1095 */
1096static inline int is_imm(const struct sk_buff *skb)
1097{
1098 return skb->len <= MAX_CTRL_WR_LEN;
1099}
1100
1101/**
1102 * ctrlq_check_stop - check if a control queue is full and should stop
1103 * @q: the queue
1104 * @wr: most recent WR written to the queue
1105 *
1106 * Check if a control queue has become full and should be stopped.
1107 * We clean up control queue descriptors very lazily, only when we are out.
1108 * If the queue is still full after reclaiming any completed descriptors
1109 * we suspend it and have the last WR wake it up.
1110 */
1111static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1112{
1113 reclaim_completed_tx_imm(&q->q);
1114 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1115 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1116 q->q.stops++;
1117 q->full = 1;
1118 }
1119}
1120
1121/**
1122 * ctrl_xmit - send a packet through an SGE control Tx queue
1123 * @q: the control queue
1124 * @skb: the packet
1125 *
1126 * Send a packet through an SGE control Tx queue. Packets sent through
1127 * a control queue must fit entirely as immediate data.
1128 */
1129static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1130{
1131 unsigned int ndesc;
1132 struct fw_wr_hdr *wr;
1133
1134 if (unlikely(!is_imm(skb))) {
1135 WARN_ON(1);
1136 dev_kfree_skb(skb);
1137 return NET_XMIT_DROP;
1138 }
1139
1140 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1141 spin_lock(&q->sendq.lock);
1142
1143 if (unlikely(q->full)) {
1144 skb->priority = ndesc; /* save for restart */
1145 __skb_queue_tail(&q->sendq, skb);
1146 spin_unlock(&q->sendq.lock);
1147 return NET_XMIT_CN;
1148 }
1149
1150 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1151 inline_tx_skb(skb, &q->q, wr);
1152
1153 txq_advance(&q->q, ndesc);
1154 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1155 ctrlq_check_stop(q, wr);
1156
1157 ring_tx_db(q->adap, &q->q, ndesc);
1158 spin_unlock(&q->sendq.lock);
1159
1160 kfree_skb(skb);
1161 return NET_XMIT_SUCCESS;
1162}
1163
1164/**
1165 * restart_ctrlq - restart a suspended control queue
1166 * @data: the control queue to restart
1167 *
1168 * Resumes transmission on a suspended Tx control queue.
1169 */
1170static void restart_ctrlq(unsigned long data)
1171{
1172 struct sk_buff *skb;
1173 unsigned int written = 0;
1174 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1175
1176 spin_lock(&q->sendq.lock);
1177 reclaim_completed_tx_imm(&q->q);
1178 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1179
1180 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1181 struct fw_wr_hdr *wr;
1182 unsigned int ndesc = skb->priority; /* previously saved */
1183
1184 /*
1185 * Write descriptors and free skbs outside the lock to limit
1186 * wait times. q->full is still set so new skbs will be queued.
1187 */
1188 spin_unlock(&q->sendq.lock);
1189
1190 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1191 inline_tx_skb(skb, &q->q, wr);
1192 kfree_skb(skb);
1193
1194 written += ndesc;
1195 txq_advance(&q->q, ndesc);
1196 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1197 unsigned long old = q->q.stops;
1198
1199 ctrlq_check_stop(q, wr);
1200 if (q->q.stops != old) { /* suspended anew */
1201 spin_lock(&q->sendq.lock);
1202 goto ringdb;
1203 }
1204 }
1205 if (written > 16) {
1206 ring_tx_db(q->adap, &q->q, written);
1207 written = 0;
1208 }
1209 spin_lock(&q->sendq.lock);
1210 }
1211 q->full = 0;
1212ringdb: if (written)
1213 ring_tx_db(q->adap, &q->q, written);
1214 spin_unlock(&q->sendq.lock);
1215}
1216
1217/**
1218 * t4_mgmt_tx - send a management message
1219 * @adap: the adapter
1220 * @skb: the packet containing the management message
1221 *
1222 * Send a management message through control queue 0.
1223 */
1224int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1225{
1226 int ret;
1227
1228 local_bh_disable();
1229 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1230 local_bh_enable();
1231 return ret;
1232}
1233
1234/**
1235 * is_ofld_imm - check whether a packet can be sent as immediate data
1236 * @skb: the packet
1237 *
1238 * Returns true if a packet can be sent as an offload WR with immediate
1239 * data. We currently use the same limit as for Ethernet packets.
1240 */
1241static inline int is_ofld_imm(const struct sk_buff *skb)
1242{
1243 return skb->len <= MAX_IMM_TX_PKT_LEN;
1244}
1245
1246/**
1247 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1248 * @skb: the packet
1249 *
1250 * Returns the number of flits needed for the given offload packet.
1251 * These packets are already fully constructed and no additional headers
1252 * will be added.
1253 */
1254static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1255{
1256 unsigned int flits, cnt;
1257
1258 if (is_ofld_imm(skb))
1259 return DIV_ROUND_UP(skb->len, 8);
1260
1261 flits = skb_transport_offset(skb) / 8U; /* headers */
1262 cnt = skb_shinfo(skb)->nr_frags;
1263 if (skb->tail != skb->transport_header)
1264 cnt++;
1265 return flits + sgl_len(cnt);
1266}
1267
1268/**
1269 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1270 * @adap: the adapter
1271 * @q: the queue to stop
1272 *
1273 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1274 * inability to map packets. A periodic timer attempts to restart
1275 * queues so marked.
1276 */
1277static void txq_stop_maperr(struct sge_ofld_txq *q)
1278{
1279 q->mapping_err++;
1280 q->q.stops++;
e46dab4d
DM
1281 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1282 q->adap->sge.txq_maperr);
fd3a4790
DM
1283}
1284
1285/**
1286 * ofldtxq_stop - stop an offload Tx queue that has become full
1287 * @q: the queue to stop
1288 * @skb: the packet causing the queue to become full
1289 *
1290 * Stops an offload Tx queue that has become full and modifies the packet
1291 * being written to request a wakeup.
1292 */
1293static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1294{
1295 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1296
1297 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1298 q->q.stops++;
1299 q->full = 1;
1300}
1301
1302/**
1303 * service_ofldq - restart a suspended offload queue
1304 * @q: the offload queue
1305 *
1306 * Services an offload Tx queue by moving packets from its packet queue
1307 * to the HW Tx ring. The function starts and ends with the queue locked.
1308 */
1309static void service_ofldq(struct sge_ofld_txq *q)
1310{
1311 u64 *pos;
1312 int credits;
1313 struct sk_buff *skb;
1314 unsigned int written = 0;
1315 unsigned int flits, ndesc;
1316
1317 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1318 /*
1319 * We drop the lock but leave skb on sendq, thus retaining
1320 * exclusive access to the state of the queue.
1321 */
1322 spin_unlock(&q->sendq.lock);
1323
1324 reclaim_completed_tx(q->adap, &q->q, false);
1325
1326 flits = skb->priority; /* previously saved */
1327 ndesc = flits_to_desc(flits);
1328 credits = txq_avail(&q->q) - ndesc;
1329 BUG_ON(credits < 0);
1330 if (unlikely(credits < TXQ_STOP_THRES))
1331 ofldtxq_stop(q, skb);
1332
1333 pos = (u64 *)&q->q.desc[q->q.pidx];
1334 if (is_ofld_imm(skb))
1335 inline_tx_skb(skb, &q->q, pos);
1336 else if (map_skb(q->adap->pdev_dev, skb,
1337 (dma_addr_t *)skb->head)) {
1338 txq_stop_maperr(q);
1339 spin_lock(&q->sendq.lock);
1340 break;
1341 } else {
1342 int last_desc, hdr_len = skb_transport_offset(skb);
1343
1344 memcpy(pos, skb->data, hdr_len);
1345 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1346 pos + flits, hdr_len,
1347 (dma_addr_t *)skb->head);
1348#ifdef CONFIG_NEED_DMA_MAP_STATE
1349 skb->dev = q->adap->port[0];
1350 skb->destructor = deferred_unmap_destructor;
1351#endif
1352 last_desc = q->q.pidx + ndesc - 1;
1353 if (last_desc >= q->q.size)
1354 last_desc -= q->q.size;
1355 q->q.sdesc[last_desc].skb = skb;
1356 }
1357
1358 txq_advance(&q->q, ndesc);
1359 written += ndesc;
1360 if (unlikely(written > 32)) {
1361 ring_tx_db(q->adap, &q->q, written);
1362 written = 0;
1363 }
1364
1365 spin_lock(&q->sendq.lock);
1366 __skb_unlink(skb, &q->sendq);
1367 if (is_ofld_imm(skb))
1368 kfree_skb(skb);
1369 }
1370 if (likely(written))
1371 ring_tx_db(q->adap, &q->q, written);
1372}
1373
1374/**
1375 * ofld_xmit - send a packet through an offload queue
1376 * @q: the Tx offload queue
1377 * @skb: the packet
1378 *
1379 * Send an offload packet through an SGE offload queue.
1380 */
1381static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1382{
1383 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1384 spin_lock(&q->sendq.lock);
1385 __skb_queue_tail(&q->sendq, skb);
1386 if (q->sendq.qlen == 1)
1387 service_ofldq(q);
1388 spin_unlock(&q->sendq.lock);
1389 return NET_XMIT_SUCCESS;
1390}
1391
1392/**
1393 * restart_ofldq - restart a suspended offload queue
1394 * @data: the offload queue to restart
1395 *
1396 * Resumes transmission on a suspended Tx offload queue.
1397 */
1398static void restart_ofldq(unsigned long data)
1399{
1400 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1401
1402 spin_lock(&q->sendq.lock);
1403 q->full = 0; /* the queue actually is completely empty now */
1404 service_ofldq(q);
1405 spin_unlock(&q->sendq.lock);
1406}
1407
1408/**
1409 * skb_txq - return the Tx queue an offload packet should use
1410 * @skb: the packet
1411 *
1412 * Returns the Tx queue an offload packet should use as indicated by bits
1413 * 1-15 in the packet's queue_mapping.
1414 */
1415static inline unsigned int skb_txq(const struct sk_buff *skb)
1416{
1417 return skb->queue_mapping >> 1;
1418}
1419
1420/**
1421 * is_ctrl_pkt - return whether an offload packet is a control packet
1422 * @skb: the packet
1423 *
1424 * Returns whether an offload packet should use an OFLD or a CTRL
1425 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1426 */
1427static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1428{
1429 return skb->queue_mapping & 1;
1430}
1431
1432static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1433{
1434 unsigned int idx = skb_txq(skb);
1435
1436 if (unlikely(is_ctrl_pkt(skb)))
1437 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1438 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1439}
1440
1441/**
1442 * t4_ofld_send - send an offload packet
1443 * @adap: the adapter
1444 * @skb: the packet
1445 *
1446 * Sends an offload packet. We use the packet queue_mapping to select the
1447 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1448 * should be sent as regular or control, bits 1-15 select the queue.
1449 */
1450int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1451{
1452 int ret;
1453
1454 local_bh_disable();
1455 ret = ofld_send(adap, skb);
1456 local_bh_enable();
1457 return ret;
1458}
1459
1460/**
1461 * cxgb4_ofld_send - send an offload packet
1462 * @dev: the net device
1463 * @skb: the packet
1464 *
1465 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1466 * intended for ULDs.
1467 */
1468int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1469{
1470 return t4_ofld_send(netdev2adap(dev), skb);
1471}
1472EXPORT_SYMBOL(cxgb4_ofld_send);
1473
e91b0f24 1474static inline void copy_frags(struct sk_buff *skb,
fd3a4790
DM
1475 const struct pkt_gl *gl, unsigned int offset)
1476{
e91b0f24 1477 int i;
fd3a4790
DM
1478
1479 /* usually there's just one frag */
e91b0f24
IC
1480 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1481 gl->frags[0].offset + offset,
1482 gl->frags[0].size - offset);
1483 skb_shinfo(skb)->nr_frags = gl->nfrags;
1484 for (i = 1; i < gl->nfrags; i++)
1485 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1486 gl->frags[i].offset,
1487 gl->frags[i].size);
fd3a4790
DM
1488
1489 /* get a reference to the last page, we don't own it */
e91b0f24 1490 get_page(gl->frags[gl->nfrags - 1].page);
fd3a4790
DM
1491}
1492
1493/**
1494 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1495 * @gl: the gather list
1496 * @skb_len: size of sk_buff main body if it carries fragments
1497 * @pull_len: amount of data to move to the sk_buff's main body
1498 *
1499 * Builds an sk_buff from the given packet gather list. Returns the
1500 * sk_buff or %NULL if sk_buff allocation failed.
1501 */
1502struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1503 unsigned int skb_len, unsigned int pull_len)
1504{
1505 struct sk_buff *skb;
1506
1507 /*
1508 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1509 * size, which is expected since buffers are at least PAGE_SIZEd.
1510 * In this case packets up to RX_COPY_THRES have only one fragment.
1511 */
1512 if (gl->tot_len <= RX_COPY_THRES) {
1513 skb = dev_alloc_skb(gl->tot_len);
1514 if (unlikely(!skb))
1515 goto out;
1516 __skb_put(skb, gl->tot_len);
1517 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1518 } else {
1519 skb = dev_alloc_skb(skb_len);
1520 if (unlikely(!skb))
1521 goto out;
1522 __skb_put(skb, pull_len);
1523 skb_copy_to_linear_data(skb, gl->va, pull_len);
1524
e91b0f24 1525 copy_frags(skb, gl, pull_len);
fd3a4790
DM
1526 skb->len = gl->tot_len;
1527 skb->data_len = skb->len - pull_len;
1528 skb->truesize += skb->data_len;
1529 }
1530out: return skb;
1531}
1532EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1533
1534/**
1535 * t4_pktgl_free - free a packet gather list
1536 * @gl: the gather list
1537 *
1538 * Releases the pages of a packet gather list. We do not own the last
1539 * page on the list and do not free it.
1540 */
de498c89 1541static void t4_pktgl_free(const struct pkt_gl *gl)
fd3a4790
DM
1542{
1543 int n;
e91b0f24 1544 const struct page_frag *p;
fd3a4790
DM
1545
1546 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1547 put_page(p->page);
1548}
1549
1550/*
1551 * Process an MPS trace packet. Give it an unused protocol number so it won't
1552 * be delivered to anyone and send it to the stack for capture.
1553 */
1554static noinline int handle_trace_pkt(struct adapter *adap,
1555 const struct pkt_gl *gl)
1556{
1557 struct sk_buff *skb;
1558 struct cpl_trace_pkt *p;
1559
1560 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1561 if (unlikely(!skb)) {
1562 t4_pktgl_free(gl);
1563 return 0;
1564 }
1565
1566 p = (struct cpl_trace_pkt *)skb->data;
1567 __skb_pull(skb, sizeof(*p));
1568 skb_reset_mac_header(skb);
1569 skb->protocol = htons(0xffff);
1570 skb->dev = adap->port[0];
1571 netif_receive_skb(skb);
1572 return 0;
1573}
1574
1575static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1576 const struct cpl_rx_pkt *pkt)
1577{
52367a76
VP
1578 struct adapter *adapter = rxq->rspq.adap;
1579 struct sge *s = &adapter->sge;
fd3a4790
DM
1580 int ret;
1581 struct sk_buff *skb;
1582
1583 skb = napi_get_frags(&rxq->rspq.napi);
1584 if (unlikely(!skb)) {
1585 t4_pktgl_free(gl);
1586 rxq->stats.rx_drops++;
1587 return;
1588 }
1589
52367a76
VP
1590 copy_frags(skb, gl, s->pktshift);
1591 skb->len = gl->tot_len - s->pktshift;
fd3a4790
DM
1592 skb->data_len = skb->len;
1593 skb->truesize += skb->data_len;
1594 skb->ip_summed = CHECKSUM_UNNECESSARY;
1595 skb_record_rx_queue(skb, rxq->rspq.idx);
87b6cf51
DM
1596 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1597 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
fd3a4790
DM
1598
1599 if (unlikely(pkt->vlan_ex)) {
19ecae2c 1600 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
fd3a4790 1601 rxq->stats.vlan_ex++;
fd3a4790
DM
1602 }
1603 ret = napi_gro_frags(&rxq->rspq.napi);
19ecae2c 1604 if (ret == GRO_HELD)
fd3a4790
DM
1605 rxq->stats.lro_pkts++;
1606 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1607 rxq->stats.lro_merged++;
1608 rxq->stats.pkts++;
1609 rxq->stats.rx_cso++;
1610}
1611
1612/**
1613 * t4_ethrx_handler - process an ingress ethernet packet
1614 * @q: the response queue that received the packet
1615 * @rsp: the response queue descriptor holding the RX_PKT message
1616 * @si: the gather list of packet fragments
1617 *
1618 * Process an ingress ethernet packet and deliver it to the stack.
1619 */
1620int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1621 const struct pkt_gl *si)
1622{
1623 bool csum_ok;
1624 struct sk_buff *skb;
fd3a4790
DM
1625 const struct cpl_rx_pkt *pkt;
1626 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76 1627 struct sge *s = &q->adap->sge;
fd3a4790
DM
1628
1629 if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
1630 return handle_trace_pkt(q->adap, si);
1631
87b6cf51 1632 pkt = (const struct cpl_rx_pkt *)rsp;
fd3a4790
DM
1633 csum_ok = pkt->csum_calc && !pkt->err_vec;
1634 if ((pkt->l2info & htonl(RXF_TCP)) &&
1635 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1636 do_gro(rxq, si, pkt);
1637 return 0;
1638 }
1639
1640 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1641 if (unlikely(!skb)) {
1642 t4_pktgl_free(si);
1643 rxq->stats.rx_drops++;
1644 return 0;
1645 }
1646
52367a76 1647 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
fd3a4790
DM
1648 skb->protocol = eth_type_trans(skb, q->netdev);
1649 skb_record_rx_queue(skb, q->idx);
87b6cf51
DM
1650 if (skb->dev->features & NETIF_F_RXHASH)
1651 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1652
fd3a4790
DM
1653 rxq->stats.pkts++;
1654
2ed28baa 1655 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
fd3a4790 1656 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
ba5d3c66 1657 if (!pkt->ip_frag) {
fd3a4790 1658 skb->ip_summed = CHECKSUM_UNNECESSARY;
ba5d3c66
DM
1659 rxq->stats.rx_cso++;
1660 } else if (pkt->l2info & htonl(RXF_IP)) {
fd3a4790
DM
1661 __sum16 c = (__force __sum16)pkt->csum;
1662 skb->csum = csum_unfold(c);
1663 skb->ip_summed = CHECKSUM_COMPLETE;
ba5d3c66 1664 rxq->stats.rx_cso++;
fd3a4790 1665 }
fd3a4790 1666 } else
bc8acf2c 1667 skb_checksum_none_assert(skb);
fd3a4790
DM
1668
1669 if (unlikely(pkt->vlan_ex)) {
19ecae2c 1670 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
fd3a4790 1671 rxq->stats.vlan_ex++;
19ecae2c
DM
1672 }
1673 netif_receive_skb(skb);
fd3a4790
DM
1674 return 0;
1675}
1676
1677/**
1678 * restore_rx_bufs - put back a packet's Rx buffers
1679 * @si: the packet gather list
1680 * @q: the SGE free list
1681 * @frags: number of FL buffers to restore
1682 *
1683 * Puts back on an FL the Rx buffers associated with @si. The buffers
1684 * have already been unmapped and are left unmapped, we mark them so to
1685 * prevent further unmapping attempts.
1686 *
1687 * This function undoes a series of @unmap_rx_buf calls when we find out
1688 * that the current packet can't be processed right away afterall and we
1689 * need to come back to it later. This is a very rare event and there's
1690 * no effort to make this particularly efficient.
1691 */
1692static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1693 int frags)
1694{
1695 struct rx_sw_desc *d;
1696
1697 while (frags--) {
1698 if (q->cidx == 0)
1699 q->cidx = q->size - 1;
1700 else
1701 q->cidx--;
1702 d = &q->sdesc[q->cidx];
1703 d->page = si->frags[frags].page;
1704 d->dma_addr |= RX_UNMAPPED_BUF;
1705 q->avail++;
1706 }
1707}
1708
1709/**
1710 * is_new_response - check if a response is newly written
1711 * @r: the response descriptor
1712 * @q: the response queue
1713 *
1714 * Returns true if a response descriptor contains a yet unprocessed
1715 * response.
1716 */
1717static inline bool is_new_response(const struct rsp_ctrl *r,
1718 const struct sge_rspq *q)
1719{
1720 return RSPD_GEN(r->type_gen) == q->gen;
1721}
1722
1723/**
1724 * rspq_next - advance to the next entry in a response queue
1725 * @q: the queue
1726 *
1727 * Updates the state of a response queue to advance it to the next entry.
1728 */
1729static inline void rspq_next(struct sge_rspq *q)
1730{
1731 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1732 if (unlikely(++q->cidx == q->size)) {
1733 q->cidx = 0;
1734 q->gen ^= 1;
1735 q->cur_desc = q->desc;
1736 }
1737}
1738
1739/**
1740 * process_responses - process responses from an SGE response queue
1741 * @q: the ingress queue to process
1742 * @budget: how many responses can be processed in this round
1743 *
1744 * Process responses from an SGE response queue up to the supplied budget.
1745 * Responses include received packets as well as control messages from FW
1746 * or HW.
1747 *
1748 * Additionally choose the interrupt holdoff time for the next interrupt
1749 * on this queue. If the system is under memory shortage use a fairly
1750 * long delay to help recovery.
1751 */
1752static int process_responses(struct sge_rspq *q, int budget)
1753{
1754 int ret, rsp_type;
1755 int budget_left = budget;
1756 const struct rsp_ctrl *rc;
1757 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76
VP
1758 struct adapter *adapter = q->adap;
1759 struct sge *s = &adapter->sge;
fd3a4790
DM
1760
1761 while (likely(budget_left)) {
1762 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1763 if (!is_new_response(rc, q))
1764 break;
1765
1766 rmb();
1767 rsp_type = RSPD_TYPE(rc->type_gen);
1768 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
e91b0f24 1769 struct page_frag *fp;
fd3a4790
DM
1770 struct pkt_gl si;
1771 const struct rx_sw_desc *rsd;
1772 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1773
1774 if (len & RSPD_NEWBUF) {
1775 if (likely(q->offset > 0)) {
1776 free_rx_bufs(q->adap, &rxq->fl, 1);
1777 q->offset = 0;
1778 }
1704d748 1779 len = RSPD_LEN(len);
fd3a4790
DM
1780 }
1781 si.tot_len = len;
1782
1783 /* gather packet fragments */
1784 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1785 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
52367a76 1786 bufsz = get_buf_size(adapter, rsd);
fd3a4790 1787 fp->page = rsd->page;
e91b0f24
IC
1788 fp->offset = q->offset;
1789 fp->size = min(bufsz, len);
1790 len -= fp->size;
fd3a4790
DM
1791 if (!len)
1792 break;
1793 unmap_rx_buf(q->adap, &rxq->fl);
1794 }
1795
1796 /*
1797 * Last buffer remains mapped so explicitly make it
1798 * coherent for CPU access.
1799 */
1800 dma_sync_single_for_cpu(q->adap->pdev_dev,
1801 get_buf_addr(rsd),
e91b0f24 1802 fp->size, DMA_FROM_DEVICE);
fd3a4790
DM
1803
1804 si.va = page_address(si.frags[0].page) +
e91b0f24 1805 si.frags[0].offset;
fd3a4790
DM
1806 prefetch(si.va);
1807
1808 si.nfrags = frags + 1;
1809 ret = q->handler(q, q->cur_desc, &si);
1810 if (likely(ret == 0))
52367a76 1811 q->offset += ALIGN(fp->size, s->fl_align);
fd3a4790
DM
1812 else
1813 restore_rx_bufs(&si, &rxq->fl, frags);
1814 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1815 ret = q->handler(q, q->cur_desc, NULL);
1816 } else {
1817 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1818 }
1819
1820 if (unlikely(ret)) {
1821 /* couldn't process descriptor, back off for recovery */
1822 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1823 break;
1824 }
1825
1826 rspq_next(q);
1827 budget_left--;
1828 }
1829
1830 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1831 __refill_fl(q->adap, &rxq->fl);
1832 return budget - budget_left;
1833}
1834
1835/**
1836 * napi_rx_handler - the NAPI handler for Rx processing
1837 * @napi: the napi instance
1838 * @budget: how many packets we can process in this round
1839 *
1840 * Handler for new data events when using NAPI. This does not need any
1841 * locking or protection from interrupts as data interrupts are off at
1842 * this point and other adapter interrupts do not interfere (the latter
1843 * in not a concern at all with MSI-X as non-data interrupts then have
1844 * a separate handler).
1845 */
1846static int napi_rx_handler(struct napi_struct *napi, int budget)
1847{
1848 unsigned int params;
1849 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1850 int work_done = process_responses(q, budget);
1851
1852 if (likely(work_done < budget)) {
1853 napi_complete(napi);
1854 params = q->next_intr_params;
1855 q->next_intr_params = q->intr_params;
1856 } else
1857 params = QINTR_TIMER_IDX(7);
1858
1859 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1860 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1861 return work_done;
1862}
1863
1864/*
1865 * The MSI-X interrupt handler for an SGE response queue.
1866 */
1867irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1868{
1869 struct sge_rspq *q = cookie;
1870
1871 napi_schedule(&q->napi);
1872 return IRQ_HANDLED;
1873}
1874
1875/*
1876 * Process the indirect interrupt entries in the interrupt queue and kick off
1877 * NAPI for each queue that has generated an entry.
1878 */
1879static unsigned int process_intrq(struct adapter *adap)
1880{
1881 unsigned int credits;
1882 const struct rsp_ctrl *rc;
1883 struct sge_rspq *q = &adap->sge.intrq;
1884
1885 spin_lock(&adap->sge.intrq_lock);
1886 for (credits = 0; ; credits++) {
1887 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1888 if (!is_new_response(rc, q))
1889 break;
1890
1891 rmb();
1892 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1893 unsigned int qid = ntohl(rc->pldbuflen_qid);
1894
e46dab4d 1895 qid -= adap->sge.ingr_start;
fd3a4790
DM
1896 napi_schedule(&adap->sge.ingr_map[qid]->napi);
1897 }
1898
1899 rspq_next(q);
1900 }
1901
1902 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1903 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1904 spin_unlock(&adap->sge.intrq_lock);
1905 return credits;
1906}
1907
1908/*
1909 * The MSI interrupt handler, which handles data events from SGE response queues
1910 * as well as error and other async events as they all use the same MSI vector.
1911 */
1912static irqreturn_t t4_intr_msi(int irq, void *cookie)
1913{
1914 struct adapter *adap = cookie;
1915
1916 t4_slow_intr_handler(adap);
1917 process_intrq(adap);
1918 return IRQ_HANDLED;
1919}
1920
1921/*
1922 * Interrupt handler for legacy INTx interrupts.
1923 * Handles data events from SGE response queues as well as error and other
1924 * async events as they all use the same interrupt line.
1925 */
1926static irqreturn_t t4_intr_intx(int irq, void *cookie)
1927{
1928 struct adapter *adap = cookie;
1929
1930 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1931 if (t4_slow_intr_handler(adap) | process_intrq(adap))
1932 return IRQ_HANDLED;
1933 return IRQ_NONE; /* probably shared interrupt */
1934}
1935
1936/**
1937 * t4_intr_handler - select the top-level interrupt handler
1938 * @adap: the adapter
1939 *
1940 * Selects the top-level interrupt handler based on the type of interrupts
1941 * (MSI-X, MSI, or INTx).
1942 */
1943irq_handler_t t4_intr_handler(struct adapter *adap)
1944{
1945 if (adap->flags & USING_MSIX)
1946 return t4_sge_intr_msix;
1947 if (adap->flags & USING_MSI)
1948 return t4_intr_msi;
1949 return t4_intr_intx;
1950}
1951
1952static void sge_rx_timer_cb(unsigned long data)
1953{
1954 unsigned long m;
1955 unsigned int i, cnt[2];
1956 struct adapter *adap = (struct adapter *)data;
1957 struct sge *s = &adap->sge;
1958
1959 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1960 for (m = s->starving_fl[i]; m; m &= m - 1) {
1961 struct sge_eth_rxq *rxq;
1962 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1963 struct sge_fl *fl = s->egr_map[id];
1964
1965 clear_bit(id, s->starving_fl);
1966 smp_mb__after_clear_bit();
1967
1968 if (fl_starving(fl)) {
1969 rxq = container_of(fl, struct sge_eth_rxq, fl);
1970 if (napi_reschedule(&rxq->rspq.napi))
1971 fl->starving++;
1972 else
1973 set_bit(id, s->starving_fl);
1974 }
1975 }
1976
1977 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1978 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1979 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1980
1981 for (i = 0; i < 2; i++)
1982 if (cnt[i] >= s->starve_thres) {
1983 if (s->idma_state[i] || cnt[i] == 0xffffffff)
1984 continue;
1985 s->idma_state[i] = 1;
1986 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1987 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1988 dev_warn(adap->pdev_dev,
1989 "SGE idma%u starvation detected for "
1990 "queue %lu\n", i, m & 0xffff);
1991 } else if (s->idma_state[i])
1992 s->idma_state[i] = 0;
1993
1994 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1995}
1996
1997static void sge_tx_timer_cb(unsigned long data)
1998{
1999 unsigned long m;
2000 unsigned int i, budget;
2001 struct adapter *adap = (struct adapter *)data;
2002 struct sge *s = &adap->sge;
2003
2004 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2005 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2006 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2007 struct sge_ofld_txq *txq = s->egr_map[id];
2008
2009 clear_bit(id, s->txq_maperr);
2010 tasklet_schedule(&txq->qresume_tsk);
2011 }
2012
2013 budget = MAX_TIMER_TX_RECLAIM;
2014 i = s->ethtxq_rover;
2015 do {
2016 struct sge_eth_txq *q = &s->ethtxq[i];
2017
2018 if (q->q.in_use &&
2019 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2020 __netif_tx_trylock(q->txq)) {
2021 int avail = reclaimable(&q->q);
2022
2023 if (avail) {
2024 if (avail > budget)
2025 avail = budget;
2026
2027 free_tx_desc(adap, &q->q, avail, true);
2028 q->q.in_use -= avail;
2029 budget -= avail;
2030 }
2031 __netif_tx_unlock(q->txq);
2032 }
2033
2034 if (++i >= s->ethqsets)
2035 i = 0;
2036 } while (budget && i != s->ethtxq_rover);
2037 s->ethtxq_rover = i;
2038 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2039}
2040
2041int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2042 struct net_device *dev, int intr_idx,
2043 struct sge_fl *fl, rspq_handler_t hnd)
2044{
2045 int ret, flsz = 0;
2046 struct fw_iq_cmd c;
52367a76 2047 struct sge *s = &adap->sge;
fd3a4790
DM
2048 struct port_info *pi = netdev_priv(dev);
2049
2050 /* Size needs to be multiple of 16, including status entry. */
2051 iq->size = roundup(iq->size, 16);
2052
2053 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
ad6bad3e 2054 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2055 if (!iq->desc)
2056 return -ENOMEM;
2057
2058 memset(&c, 0, sizeof(c));
2059 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2060 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2061 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
fd3a4790
DM
2062 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2063 FW_LEN16(c));
2064 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2065 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2066 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2067 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2068 -intr_idx - 1));
2069 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2070 FW_IQ_CMD_IQGTSMODE |
2071 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2072 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2073 c.iqsize = htons(iq->size);
2074 c.iqaddr = cpu_to_be64(iq->phys_addr);
2075
2076 if (fl) {
2077 fl->size = roundup(fl->size, 8);
2078 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2079 sizeof(struct rx_sw_desc), &fl->addr,
52367a76 2080 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
fd3a4790
DM
2081 if (!fl->desc)
2082 goto fl_nomem;
2083
52367a76 2084 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
ce91a923 2085 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
ef306b50
DM
2086 FW_IQ_CMD_FL0FETCHRO(1) |
2087 FW_IQ_CMD_FL0DATARO(1) |
ce91a923 2088 FW_IQ_CMD_FL0PADEN(1));
fd3a4790
DM
2089 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2090 FW_IQ_CMD_FL0FBMAX(3));
2091 c.fl0size = htons(flsz);
2092 c.fl0addr = cpu_to_be64(fl->addr);
2093 }
2094
060e0c75 2095 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2096 if (ret)
2097 goto err;
2098
2099 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2100 iq->cur_desc = iq->desc;
2101 iq->cidx = 0;
2102 iq->gen = 1;
2103 iq->next_intr_params = iq->intr_params;
2104 iq->cntxt_id = ntohs(c.iqid);
2105 iq->abs_id = ntohs(c.physiqid);
2106 iq->size--; /* subtract status entry */
2107 iq->adap = adap;
2108 iq->netdev = dev;
2109 iq->handler = hnd;
2110
2111 /* set offset to -1 to distinguish ingress queues without FL */
2112 iq->offset = fl ? 0 : -1;
2113
e46dab4d 2114 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
fd3a4790
DM
2115
2116 if (fl) {
62718b32 2117 fl->cntxt_id = ntohs(c.fl0id);
fd3a4790
DM
2118 fl->avail = fl->pend_cred = 0;
2119 fl->pidx = fl->cidx = 0;
2120 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
e46dab4d 2121 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
fd3a4790
DM
2122 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2123 }
2124 return 0;
2125
2126fl_nomem:
2127 ret = -ENOMEM;
2128err:
2129 if (iq->desc) {
2130 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2131 iq->desc, iq->phys_addr);
2132 iq->desc = NULL;
2133 }
2134 if (fl && fl->desc) {
2135 kfree(fl->sdesc);
2136 fl->sdesc = NULL;
2137 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2138 fl->desc, fl->addr);
2139 fl->desc = NULL;
2140 }
2141 return ret;
2142}
2143
2144static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2145{
2146 q->in_use = 0;
2147 q->cidx = q->pidx = 0;
2148 q->stops = q->restarts = 0;
2149 q->stat = (void *)&q->desc[q->size];
2150 q->cntxt_id = id;
3069ee9b 2151 spin_lock_init(&q->db_lock);
e46dab4d 2152 adap->sge.egr_map[id - adap->sge.egr_start] = q;
fd3a4790
DM
2153}
2154
2155int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2156 struct net_device *dev, struct netdev_queue *netdevq,
2157 unsigned int iqid)
2158{
2159 int ret, nentries;
2160 struct fw_eq_eth_cmd c;
52367a76 2161 struct sge *s = &adap->sge;
fd3a4790
DM
2162 struct port_info *pi = netdev_priv(dev);
2163
2164 /* Add status entries */
52367a76 2165 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2166
2167 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2168 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2169 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2170 netdev_queue_numa_node_read(netdevq));
fd3a4790
DM
2171 if (!txq->q.desc)
2172 return -ENOMEM;
2173
2174 memset(&c, 0, sizeof(c));
2175 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2176 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2177 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
fd3a4790
DM
2178 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2179 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2180 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2181 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2182 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2183 FW_EQ_ETH_CMD_FETCHRO(1) |
fd3a4790
DM
2184 FW_EQ_ETH_CMD_IQID(iqid));
2185 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2186 FW_EQ_ETH_CMD_FBMAX(3) |
2187 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2188 FW_EQ_ETH_CMD_EQSIZE(nentries));
2189 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2190
060e0c75 2191 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2192 if (ret) {
2193 kfree(txq->q.sdesc);
2194 txq->q.sdesc = NULL;
2195 dma_free_coherent(adap->pdev_dev,
2196 nentries * sizeof(struct tx_desc),
2197 txq->q.desc, txq->q.phys_addr);
2198 txq->q.desc = NULL;
2199 return ret;
2200 }
2201
2202 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2203 txq->txq = netdevq;
2204 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2205 txq->mapping_err = 0;
2206 return 0;
2207}
2208
2209int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2210 struct net_device *dev, unsigned int iqid,
2211 unsigned int cmplqid)
2212{
2213 int ret, nentries;
2214 struct fw_eq_ctrl_cmd c;
52367a76 2215 struct sge *s = &adap->sge;
fd3a4790
DM
2216 struct port_info *pi = netdev_priv(dev);
2217
2218 /* Add status entries */
52367a76 2219 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2220
2221 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2222 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
ad6bad3e 2223 NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2224 if (!txq->q.desc)
2225 return -ENOMEM;
2226
2227 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2228 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2229 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2230 FW_EQ_CTRL_CMD_VFN(0));
fd3a4790
DM
2231 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2232 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2233 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2234 c.physeqid_pkd = htonl(0);
2235 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2236 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2237 FW_EQ_CTRL_CMD_FETCHRO |
fd3a4790
DM
2238 FW_EQ_CTRL_CMD_IQID(iqid));
2239 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2240 FW_EQ_CTRL_CMD_FBMAX(3) |
2241 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2242 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2243 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2244
060e0c75 2245 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2246 if (ret) {
2247 dma_free_coherent(adap->pdev_dev,
2248 nentries * sizeof(struct tx_desc),
2249 txq->q.desc, txq->q.phys_addr);
2250 txq->q.desc = NULL;
2251 return ret;
2252 }
2253
2254 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2255 txq->adap = adap;
2256 skb_queue_head_init(&txq->sendq);
2257 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2258 txq->full = 0;
2259 return 0;
2260}
2261
2262int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2263 struct net_device *dev, unsigned int iqid)
2264{
2265 int ret, nentries;
2266 struct fw_eq_ofld_cmd c;
52367a76 2267 struct sge *s = &adap->sge;
fd3a4790
DM
2268 struct port_info *pi = netdev_priv(dev);
2269
2270 /* Add status entries */
52367a76 2271 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2272
2273 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2274 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2275 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2276 NUMA_NO_NODE);
fd3a4790
DM
2277 if (!txq->q.desc)
2278 return -ENOMEM;
2279
2280 memset(&c, 0, sizeof(c));
2281 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2282 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2283 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2284 FW_EQ_OFLD_CMD_VFN(0));
fd3a4790
DM
2285 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2286 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2287 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2288 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2289 FW_EQ_OFLD_CMD_FETCHRO(1) |
fd3a4790
DM
2290 FW_EQ_OFLD_CMD_IQID(iqid));
2291 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2292 FW_EQ_OFLD_CMD_FBMAX(3) |
2293 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2294 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2295 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2296
060e0c75 2297 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2298 if (ret) {
2299 kfree(txq->q.sdesc);
2300 txq->q.sdesc = NULL;
2301 dma_free_coherent(adap->pdev_dev,
2302 nentries * sizeof(struct tx_desc),
2303 txq->q.desc, txq->q.phys_addr);
2304 txq->q.desc = NULL;
2305 return ret;
2306 }
2307
2308 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2309 txq->adap = adap;
2310 skb_queue_head_init(&txq->sendq);
2311 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2312 txq->full = 0;
2313 txq->mapping_err = 0;
2314 return 0;
2315}
2316
2317static void free_txq(struct adapter *adap, struct sge_txq *q)
2318{
52367a76
VP
2319 struct sge *s = &adap->sge;
2320
fd3a4790 2321 dma_free_coherent(adap->pdev_dev,
52367a76 2322 q->size * sizeof(struct tx_desc) + s->stat_len,
fd3a4790
DM
2323 q->desc, q->phys_addr);
2324 q->cntxt_id = 0;
2325 q->sdesc = NULL;
2326 q->desc = NULL;
2327}
2328
2329static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2330 struct sge_fl *fl)
2331{
52367a76 2332 struct sge *s = &adap->sge;
fd3a4790
DM
2333 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2334
e46dab4d 2335 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
060e0c75
DM
2336 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2337 rq->cntxt_id, fl_id, 0xffff);
fd3a4790
DM
2338 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2339 rq->desc, rq->phys_addr);
2340 netif_napi_del(&rq->napi);
2341 rq->netdev = NULL;
2342 rq->cntxt_id = rq->abs_id = 0;
2343 rq->desc = NULL;
2344
2345 if (fl) {
2346 free_rx_bufs(adap, fl, fl->avail);
52367a76 2347 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fd3a4790
DM
2348 fl->desc, fl->addr);
2349 kfree(fl->sdesc);
2350 fl->sdesc = NULL;
2351 fl->cntxt_id = 0;
2352 fl->desc = NULL;
2353 }
2354}
2355
2356/**
2357 * t4_free_sge_resources - free SGE resources
2358 * @adap: the adapter
2359 *
2360 * Frees resources used by the SGE queue sets.
2361 */
2362void t4_free_sge_resources(struct adapter *adap)
2363{
2364 int i;
2365 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2366 struct sge_eth_txq *etq = adap->sge.ethtxq;
2367 struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2368
2369 /* clean up Ethernet Tx/Rx queues */
2370 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2371 if (eq->rspq.desc)
2372 free_rspq_fl(adap, &eq->rspq, &eq->fl);
2373 if (etq->q.desc) {
060e0c75
DM
2374 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2375 etq->q.cntxt_id);
fd3a4790
DM
2376 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2377 kfree(etq->q.sdesc);
2378 free_txq(adap, &etq->q);
2379 }
2380 }
2381
2382 /* clean up RDMA and iSCSI Rx queues */
2383 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2384 if (oq->rspq.desc)
2385 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2386 }
2387 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2388 if (oq->rspq.desc)
2389 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2390 }
2391
2392 /* clean up offload Tx queues */
2393 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2394 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2395
2396 if (q->q.desc) {
2397 tasklet_kill(&q->qresume_tsk);
060e0c75
DM
2398 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2399 q->q.cntxt_id);
fd3a4790
DM
2400 free_tx_desc(adap, &q->q, q->q.in_use, false);
2401 kfree(q->q.sdesc);
2402 __skb_queue_purge(&q->sendq);
2403 free_txq(adap, &q->q);
2404 }
2405 }
2406
2407 /* clean up control Tx queues */
2408 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2409 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2410
2411 if (cq->q.desc) {
2412 tasklet_kill(&cq->qresume_tsk);
060e0c75
DM
2413 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2414 cq->q.cntxt_id);
fd3a4790
DM
2415 __skb_queue_purge(&cq->sendq);
2416 free_txq(adap, &cq->q);
2417 }
2418 }
2419
2420 if (adap->sge.fw_evtq.desc)
2421 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2422
2423 if (adap->sge.intrq.desc)
2424 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2425
2426 /* clear the reverse egress queue map */
2427 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2428}
2429
2430void t4_sge_start(struct adapter *adap)
2431{
2432 adap->sge.ethtxq_rover = 0;
2433 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2434 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2435}
2436
2437/**
2438 * t4_sge_stop - disable SGE operation
2439 * @adap: the adapter
2440 *
2441 * Stop tasklets and timers associated with the DMA engine. Note that
2442 * this is effective only if measures have been taken to disable any HW
2443 * events that may restart them.
2444 */
2445void t4_sge_stop(struct adapter *adap)
2446{
2447 int i;
2448 struct sge *s = &adap->sge;
2449
2450 if (in_interrupt()) /* actions below require waiting */
2451 return;
2452
2453 if (s->rx_timer.function)
2454 del_timer_sync(&s->rx_timer);
2455 if (s->tx_timer.function)
2456 del_timer_sync(&s->tx_timer);
2457
2458 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2459 struct sge_ofld_txq *q = &s->ofldtxq[i];
2460
2461 if (q->q.desc)
2462 tasklet_kill(&q->qresume_tsk);
2463 }
2464 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2465 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2466
2467 if (cq->q.desc)
2468 tasklet_kill(&cq->qresume_tsk);
2469 }
2470}
2471
2472/**
2473 * t4_sge_init - initialize SGE
2474 * @adap: the adapter
2475 *
2476 * Performs SGE initialization needed every time after a chip reset.
2477 * We do not initialize any of the queues here, instead the driver
2478 * top-level must request them individually.
52367a76
VP
2479 *
2480 * Called in two different modes:
2481 *
2482 * 1. Perform actual hardware initialization and record hard-coded
2483 * parameters which were used. This gets used when we're the
2484 * Master PF and the Firmware Configuration File support didn't
2485 * work for some reason.
2486 *
2487 * 2. We're not the Master PF or initialization was performed with
2488 * a Firmware Configuration File. In this case we need to grab
2489 * any of the SGE operating parameters that we need to have in
2490 * order to do our job and make sure we can live with them ...
fd3a4790 2491 */
52367a76
VP
2492
2493static int t4_sge_init_soft(struct adapter *adap)
fd3a4790
DM
2494{
2495 struct sge *s = &adap->sge;
52367a76
VP
2496 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2497 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2498 u32 ingress_rx_threshold;
fd3a4790 2499
52367a76
VP
2500 /*
2501 * Verify that CPL messages are going to the Ingress Queue for
2502 * process_responses() and that only packet data is going to the
2503 * Free Lists.
2504 */
2505 if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2506 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2507 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2508 return -EINVAL;
2509 }
2510
2511 /*
2512 * Validate the Host Buffer Register Array indices that we want to
2513 * use ...
2514 *
2515 * XXX Note that we should really read through the Host Buffer Size
2516 * XXX register array and find the indices of the Buffer Sizes which
2517 * XXX meet our needs!
2518 */
2519 #define READ_FL_BUF(x) \
2520 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2521
2522 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2523 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2524 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2525 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2526
2527 #undef READ_FL_BUF
2528
2529 if (fl_small_pg != PAGE_SIZE ||
2530 (fl_large_pg != 0 && (fl_large_pg <= fl_small_pg ||
2531 (fl_large_pg & (fl_large_pg-1)) != 0))) {
2532 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2533 fl_small_pg, fl_large_pg);
2534 return -EINVAL;
2535 }
2536 if (fl_large_pg)
2537 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2538
2539 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2540 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2541 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2542 fl_small_mtu, fl_large_mtu);
2543 return -EINVAL;
2544 }
2545
2546 /*
2547 * Retrieve our RX interrupt holdoff timer values and counter
2548 * threshold values from the SGE parameters.
2549 */
2550 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2551 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2552 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2553 s->timer_val[0] = core_ticks_to_us(adap,
2554 TIMERVALUE0_GET(timer_value_0_and_1));
2555 s->timer_val[1] = core_ticks_to_us(adap,
2556 TIMERVALUE1_GET(timer_value_0_and_1));
2557 s->timer_val[2] = core_ticks_to_us(adap,
2558 TIMERVALUE2_GET(timer_value_2_and_3));
2559 s->timer_val[3] = core_ticks_to_us(adap,
2560 TIMERVALUE3_GET(timer_value_2_and_3));
2561 s->timer_val[4] = core_ticks_to_us(adap,
2562 TIMERVALUE4_GET(timer_value_4_and_5));
2563 s->timer_val[5] = core_ticks_to_us(adap,
2564 TIMERVALUE5_GET(timer_value_4_and_5));
2565
2566 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2567 s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2568 s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2569 s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2570 s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2571
2572 return 0;
2573}
2574
2575static int t4_sge_init_hard(struct adapter *adap)
2576{
2577 struct sge *s = &adap->sge;
2578
2579 /*
2580 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2581 * Queue and Packet Date to the Free List.
2582 */
2583 t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2584 RXPKTCPLMODE_MASK);
060e0c75 2585
3069ee9b
VP
2586 /*
2587 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2588 * and generate an interrupt when this occurs so we can recover.
2589 */
881806bc 2590 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
3069ee9b
VP
2591 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2592 V_LP_INT_THRESH(M_LP_INT_THRESH),
2593 V_HP_INT_THRESH(dbfifo_int_thresh) |
2594 V_LP_INT_THRESH(dbfifo_int_thresh));
881806bc
VP
2595 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2596 F_ENABLE_DROP);
2597
52367a76
VP
2598 /*
2599 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2600 * t4_fixup_host_params().
2601 */
2602 s->fl_pg_order = FL_PG_ORDER;
2603 if (s->fl_pg_order)
2604 t4_write_reg(adap,
2605 SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2606 PAGE_SIZE << FL_PG_ORDER);
2607 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2608 FL_MTU_SMALL_BUFSIZE(adap));
2609 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2610 FL_MTU_LARGE_BUFSIZE(adap));
2611
2612 /*
2613 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2614 * Timer Holdoff values must be supplied by our caller.
2615 */
fd3a4790
DM
2616 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2617 THRESHOLD_0(s->counter_val[0]) |
2618 THRESHOLD_1(s->counter_val[1]) |
2619 THRESHOLD_2(s->counter_val[2]) |
2620 THRESHOLD_3(s->counter_val[3]));
2621 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2622 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2623 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2624 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
52367a76
VP
2625 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2626 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
fd3a4790 2627 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
52367a76
VP
2628 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2629 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2630
2631 return 0;
2632}
2633
2634int t4_sge_init(struct adapter *adap)
2635{
2636 struct sge *s = &adap->sge;
2637 u32 sge_control;
2638 int ret;
2639
2640 /*
2641 * Ingress Padding Boundary and Egress Status Page Size are set up by
2642 * t4_fixup_host_params().
2643 */
2644 sge_control = t4_read_reg(adap, SGE_CONTROL);
2645 s->pktshift = PKTSHIFT_GET(sge_control);
2646 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2647 s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2648 X_INGPADBOUNDARY_SHIFT);
2649
2650 if (adap->flags & USING_SOFT_PARAMS)
2651 ret = t4_sge_init_soft(adap);
2652 else
2653 ret = t4_sge_init_hard(adap);
2654 if (ret < 0)
2655 return ret;
2656
2657 /*
2658 * A FL with <= fl_starve_thres buffers is starving and a periodic
2659 * timer will attempt to refill it. This needs to be larger than the
2660 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2661 * stuck waiting for new packets while the SGE is waiting for us to
2662 * give it more Free List entries. (Note that the SGE's Egress
2663 * Congestion Threshold is in units of 2 Free List pointers.)
2664 */
2665 s->fl_starve_thres
2666 = EGRTHRESHOLD_GET(t4_read_reg(adap, SGE_CONM_CTRL))*2 + 1;
2667
fd3a4790
DM
2668 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2669 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2670 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2671 s->idma_state[0] = s->idma_state[1] = 0;
2672 spin_lock_init(&s->intrq_lock);
52367a76
VP
2673
2674 return 0;
fd3a4790 2675}
This page took 0.495881 seconds and 5 git commands to generate.