cxgb4: Dump T5 registers
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
CommitLineData
fd3a4790
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
70c71606 42#include <linux/prefetch.h>
ee40fa06 43#include <linux/export.h>
fd3a4790
DM
44#include <net/ipv6.h>
45#include <net/tcp.h>
46#include "cxgb4.h"
47#include "t4_regs.h"
48#include "t4_msg.h"
49#include "t4fw_api.h"
50
51/*
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
54 */
55#if PAGE_SHIFT >= 16
56# define FL_PG_ORDER 0
57#else
58# define FL_PG_ORDER (16 - PAGE_SHIFT)
59#endif
60
61/* RX_PULL_LEN should be <= RX_COPY_THRES */
62#define RX_COPY_THRES 256
63#define RX_PULL_LEN 128
64
65/*
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 */
69#define RX_PKT_SKB_LEN 512
70
fd3a4790
DM
71/*
72 * Max number of Tx descriptors we clean up at a time. Should be modest as
73 * freeing skbs isn't cheap and it happens while holding locks. We just need
74 * to free packets faster than they arrive, we eventually catch up and keep
75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
76 */
77#define MAX_TX_RECLAIM 16
78
79/*
80 * Max number of Rx buffers we replenish at a time. Again keep this modest,
81 * allocating buffers isn't cheap either.
82 */
83#define MAX_RX_REFILL 16U
84
85/*
86 * Period of the Rx queue check timer. This timer is infrequent as it has
87 * something to do only when the system experiences severe memory shortage.
88 */
89#define RX_QCHECK_PERIOD (HZ / 2)
90
91/*
92 * Period of the Tx queue check timer.
93 */
94#define TX_QCHECK_PERIOD (HZ / 2)
95
96/*
97 * Max number of Tx descriptors to be reclaimed by the Tx timer.
98 */
99#define MAX_TIMER_TX_RECLAIM 100
100
101/*
102 * Timer index used when backing off due to memory shortage.
103 */
104#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
105
106/*
107 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
108 * attempt to refill it.
109 */
110#define FL_STARVE_THRES 4
111
112/*
113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
114 * This is the same as calc_tx_descs() for a TSO packet with
115 * nr_frags == MAX_SKB_FRAGS.
116 */
117#define ETHTXQ_STOP_THRES \
118 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
119
120/*
121 * Suspension threshold for non-Ethernet Tx queues. We require enough room
122 * for a full sized WR.
123 */
124#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
125
126/*
127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
128 * into a WR.
129 */
130#define MAX_IMM_TX_PKT_LEN 128
131
132/*
133 * Max size of a WR sent through a control Tx queue.
134 */
135#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
136
fd3a4790
DM
137struct tx_sw_desc { /* SW state per Tx descriptor */
138 struct sk_buff *skb;
139 struct ulptx_sgl *sgl;
140};
141
142struct rx_sw_desc { /* SW state per Rx descriptor */
143 struct page *page;
144 dma_addr_t dma_addr;
145};
146
147/*
52367a76
VP
148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
149 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
150 * We could easily support more but there doesn't seem to be much need for
151 * that ...
152 */
153#define FL_MTU_SMALL 1500
154#define FL_MTU_LARGE 9000
155
156static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
157 unsigned int mtu)
158{
159 struct sge *s = &adapter->sge;
160
161 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
162}
163
164#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
165#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
166
167/*
168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
169 * these to specify the buffer size as an index into the SGE Free List Buffer
170 * Size register array. We also use bit 4, when the buffer has been unmapped
171 * for DMA, but this is of course never sent to the hardware and is only used
172 * to prevent double unmappings. All of the above requires that the Free List
173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
174 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
175 * Free List Buffer alignment is 32 bytes, this works out for us ...
fd3a4790
DM
176 */
177enum {
52367a76
VP
178 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
179 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
180 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
181
182 /*
183 * XXX We shouldn't depend on being able to use these indices.
184 * XXX Especially when some other Master PF has initialized the
185 * XXX adapter or we use the Firmware Configuration File. We
186 * XXX should really search through the Host Buffer Size register
187 * XXX array for the appropriately sized buffer indices.
188 */
189 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
190 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
191
192 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
193 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
fd3a4790
DM
194};
195
196static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
197{
52367a76 198 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
fd3a4790
DM
199}
200
201static inline bool is_buf_mapped(const struct rx_sw_desc *d)
202{
203 return !(d->dma_addr & RX_UNMAPPED_BUF);
204}
205
206/**
207 * txq_avail - return the number of available slots in a Tx queue
208 * @q: the Tx queue
209 *
210 * Returns the number of descriptors in a Tx queue available to write new
211 * packets.
212 */
213static inline unsigned int txq_avail(const struct sge_txq *q)
214{
215 return q->size - 1 - q->in_use;
216}
217
218/**
219 * fl_cap - return the capacity of a free-buffer list
220 * @fl: the FL
221 *
222 * Returns the capacity of a free-buffer list. The capacity is less than
223 * the size because one descriptor needs to be left unpopulated, otherwise
224 * HW will think the FL is empty.
225 */
226static inline unsigned int fl_cap(const struct sge_fl *fl)
227{
228 return fl->size - 8; /* 1 descriptor = 8 buffers */
229}
230
231static inline bool fl_starving(const struct sge_fl *fl)
232{
233 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
234}
235
236static int map_skb(struct device *dev, const struct sk_buff *skb,
237 dma_addr_t *addr)
238{
239 const skb_frag_t *fp, *end;
240 const struct skb_shared_info *si;
241
242 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
243 if (dma_mapping_error(dev, *addr))
244 goto out_err;
245
246 si = skb_shinfo(skb);
247 end = &si->frags[si->nr_frags];
248
249 for (fp = si->frags; fp < end; fp++) {
e91b0f24
IC
250 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
251 DMA_TO_DEVICE);
fd3a4790
DM
252 if (dma_mapping_error(dev, *addr))
253 goto unwind;
254 }
255 return 0;
256
257unwind:
258 while (fp-- > si->frags)
9e903e08 259 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
260
261 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
262out_err:
263 return -ENOMEM;
264}
265
266#ifdef CONFIG_NEED_DMA_MAP_STATE
267static void unmap_skb(struct device *dev, const struct sk_buff *skb,
268 const dma_addr_t *addr)
269{
270 const skb_frag_t *fp, *end;
271 const struct skb_shared_info *si;
272
273 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
274
275 si = skb_shinfo(skb);
276 end = &si->frags[si->nr_frags];
277 for (fp = si->frags; fp < end; fp++)
9e903e08 278 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
279}
280
281/**
282 * deferred_unmap_destructor - unmap a packet when it is freed
283 * @skb: the packet
284 *
285 * This is the packet destructor used for Tx packets that need to remain
286 * mapped until they are freed rather than until their Tx descriptors are
287 * freed.
288 */
289static void deferred_unmap_destructor(struct sk_buff *skb)
290{
291 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
292}
293#endif
294
295static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
296 const struct ulptx_sgl *sgl, const struct sge_txq *q)
297{
298 const struct ulptx_sge_pair *p;
299 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
300
301 if (likely(skb_headlen(skb)))
302 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
303 DMA_TO_DEVICE);
304 else {
305 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
306 DMA_TO_DEVICE);
307 nfrags--;
308 }
309
310 /*
311 * the complexity below is because of the possibility of a wrap-around
312 * in the middle of an SGL
313 */
314 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
315 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
316unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
317 ntohl(p->len[0]), DMA_TO_DEVICE);
318 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
319 ntohl(p->len[1]), DMA_TO_DEVICE);
320 p++;
321 } else if ((u8 *)p == (u8 *)q->stat) {
322 p = (const struct ulptx_sge_pair *)q->desc;
323 goto unmap;
324 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
325 const __be64 *addr = (const __be64 *)q->desc;
326
327 dma_unmap_page(dev, be64_to_cpu(addr[0]),
328 ntohl(p->len[0]), DMA_TO_DEVICE);
329 dma_unmap_page(dev, be64_to_cpu(addr[1]),
330 ntohl(p->len[1]), DMA_TO_DEVICE);
331 p = (const struct ulptx_sge_pair *)&addr[2];
332 } else {
333 const __be64 *addr = (const __be64 *)q->desc;
334
335 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
336 ntohl(p->len[0]), DMA_TO_DEVICE);
337 dma_unmap_page(dev, be64_to_cpu(addr[0]),
338 ntohl(p->len[1]), DMA_TO_DEVICE);
339 p = (const struct ulptx_sge_pair *)&addr[1];
340 }
341 }
342 if (nfrags) {
343 __be64 addr;
344
345 if ((u8 *)p == (u8 *)q->stat)
346 p = (const struct ulptx_sge_pair *)q->desc;
347 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
348 *(const __be64 *)q->desc;
349 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
350 DMA_TO_DEVICE);
351 }
352}
353
354/**
355 * free_tx_desc - reclaims Tx descriptors and their buffers
356 * @adapter: the adapter
357 * @q: the Tx queue to reclaim descriptors from
358 * @n: the number of descriptors to reclaim
359 * @unmap: whether the buffers should be unmapped for DMA
360 *
361 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
362 * Tx buffers. Called with the Tx queue lock held.
363 */
364static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
365 unsigned int n, bool unmap)
366{
367 struct tx_sw_desc *d;
368 unsigned int cidx = q->cidx;
369 struct device *dev = adap->pdev_dev;
370
371 d = &q->sdesc[cidx];
372 while (n--) {
373 if (d->skb) { /* an SGL is present */
374 if (unmap)
375 unmap_sgl(dev, d->skb, d->sgl, q);
376 kfree_skb(d->skb);
377 d->skb = NULL;
378 }
379 ++d;
380 if (++cidx == q->size) {
381 cidx = 0;
382 d = q->sdesc;
383 }
384 }
385 q->cidx = cidx;
386}
387
388/*
389 * Return the number of reclaimable descriptors in a Tx queue.
390 */
391static inline int reclaimable(const struct sge_txq *q)
392{
393 int hw_cidx = ntohs(q->stat->cidx);
394 hw_cidx -= q->cidx;
395 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
396}
397
398/**
399 * reclaim_completed_tx - reclaims completed Tx descriptors
400 * @adap: the adapter
401 * @q: the Tx queue to reclaim completed descriptors from
402 * @unmap: whether the buffers should be unmapped for DMA
403 *
404 * Reclaims Tx descriptors that the SGE has indicated it has processed,
405 * and frees the associated buffers if possible. Called with the Tx
406 * queue locked.
407 */
408static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
409 bool unmap)
410{
411 int avail = reclaimable(q);
412
413 if (avail) {
414 /*
415 * Limit the amount of clean up work we do at a time to keep
416 * the Tx lock hold time O(1).
417 */
418 if (avail > MAX_TX_RECLAIM)
419 avail = MAX_TX_RECLAIM;
420
421 free_tx_desc(adap, q, avail, unmap);
422 q->in_use -= avail;
423 }
424}
425
52367a76
VP
426static inline int get_buf_size(struct adapter *adapter,
427 const struct rx_sw_desc *d)
fd3a4790 428{
52367a76
VP
429 struct sge *s = &adapter->sge;
430 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
431 int buf_size;
432
433 switch (rx_buf_size_idx) {
434 case RX_SMALL_PG_BUF:
435 buf_size = PAGE_SIZE;
436 break;
437
438 case RX_LARGE_PG_BUF:
439 buf_size = PAGE_SIZE << s->fl_pg_order;
440 break;
441
442 case RX_SMALL_MTU_BUF:
443 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
444 break;
445
446 case RX_LARGE_MTU_BUF:
447 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
448 break;
449
450 default:
451 BUG_ON(1);
452 }
453
454 return buf_size;
fd3a4790
DM
455}
456
457/**
458 * free_rx_bufs - free the Rx buffers on an SGE free list
459 * @adap: the adapter
460 * @q: the SGE free list to free buffers from
461 * @n: how many buffers to free
462 *
463 * Release the next @n buffers on an SGE free-buffer Rx queue. The
464 * buffers must be made inaccessible to HW before calling this function.
465 */
466static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
467{
468 while (n--) {
469 struct rx_sw_desc *d = &q->sdesc[q->cidx];
470
471 if (is_buf_mapped(d))
472 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76
VP
473 get_buf_size(adap, d),
474 PCI_DMA_FROMDEVICE);
fd3a4790
DM
475 put_page(d->page);
476 d->page = NULL;
477 if (++q->cidx == q->size)
478 q->cidx = 0;
479 q->avail--;
480 }
481}
482
483/**
484 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
485 * @adap: the adapter
486 * @q: the SGE free list
487 *
488 * Unmap the current buffer on an SGE free-buffer Rx queue. The
489 * buffer must be made inaccessible to HW before calling this function.
490 *
491 * This is similar to @free_rx_bufs above but does not free the buffer.
492 * Do note that the FL still loses any further access to the buffer.
493 */
494static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
495{
496 struct rx_sw_desc *d = &q->sdesc[q->cidx];
497
498 if (is_buf_mapped(d))
499 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76 500 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
fd3a4790
DM
501 d->page = NULL;
502 if (++q->cidx == q->size)
503 q->cidx = 0;
504 q->avail--;
505}
506
507static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
508{
0a57a536 509 u32 val;
fd3a4790 510 if (q->pend_cred >= 8) {
0a57a536
SR
511 val = PIDX(q->pend_cred / 8);
512 if (!is_t4(adap->chip))
513 val |= DBTYPE(1);
fd3a4790 514 wmb();
ce91a923 515 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
0a57a536 516 QID(q->cntxt_id) | val);
fd3a4790
DM
517 q->pend_cred &= 7;
518 }
519}
520
521static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
522 dma_addr_t mapping)
523{
524 sd->page = pg;
525 sd->dma_addr = mapping; /* includes size low bits */
526}
527
528/**
529 * refill_fl - refill an SGE Rx buffer ring
530 * @adap: the adapter
531 * @q: the ring to refill
532 * @n: the number of new buffers to allocate
533 * @gfp: the gfp flags for the allocations
534 *
535 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
536 * allocated with the supplied gfp flags. The caller must assure that
537 * @n does not exceed the queue's capacity. If afterwards the queue is
538 * found critically low mark it as starving in the bitmap of starving FLs.
539 *
540 * Returns the number of buffers allocated.
541 */
542static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
543 gfp_t gfp)
544{
52367a76 545 struct sge *s = &adap->sge;
fd3a4790
DM
546 struct page *pg;
547 dma_addr_t mapping;
548 unsigned int cred = q->avail;
549 __be64 *d = &q->desc[q->pidx];
550 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
551
1f2149c1 552 gfp |= __GFP_NOWARN | __GFP_COLD;
fd3a4790 553
52367a76
VP
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
556
fd3a4790
DM
557 /*
558 * Prefer large buffers
559 */
560 while (n) {
52367a76 561 pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
fd3a4790
DM
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
565 }
566
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
52367a76 568 PAGE_SIZE << s->fl_pg_order,
fd3a4790
DM
569 PCI_DMA_FROMDEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
52367a76 571 __free_pages(pg, s->fl_pg_order);
fd3a4790
DM
572 goto out; /* do not try small pages for this error */
573 }
52367a76 574 mapping |= RX_LARGE_PG_BUF;
fd3a4790
DM
575 *d++ = cpu_to_be64(mapping);
576
577 set_rx_sw_desc(sd, pg, mapping);
578 sd++;
579
580 q->avail++;
581 if (++q->pidx == q->size) {
582 q->pidx = 0;
583 sd = q->sdesc;
584 d = q->desc;
585 }
586 n--;
587 }
fd3a4790 588
52367a76 589alloc_small_pages:
fd3a4790 590 while (n--) {
0614002b 591 pg = __skb_alloc_page(gfp, NULL);
fd3a4790
DM
592 if (unlikely(!pg)) {
593 q->alloc_failed++;
594 break;
595 }
596
597 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
598 PCI_DMA_FROMDEVICE);
599 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
1f2149c1 600 put_page(pg);
fd3a4790
DM
601 goto out;
602 }
603 *d++ = cpu_to_be64(mapping);
604
605 set_rx_sw_desc(sd, pg, mapping);
606 sd++;
607
608 q->avail++;
609 if (++q->pidx == q->size) {
610 q->pidx = 0;
611 sd = q->sdesc;
612 d = q->desc;
613 }
614 }
615
616out: cred = q->avail - cred;
617 q->pend_cred += cred;
618 ring_fl_db(adap, q);
619
620 if (unlikely(fl_starving(q))) {
621 smp_wmb();
e46dab4d
DM
622 set_bit(q->cntxt_id - adap->sge.egr_start,
623 adap->sge.starving_fl);
fd3a4790
DM
624 }
625
626 return cred;
627}
628
629static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
630{
631 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
632 GFP_ATOMIC);
633}
634
635/**
636 * alloc_ring - allocate resources for an SGE descriptor ring
637 * @dev: the PCI device's core device
638 * @nelem: the number of descriptors
639 * @elem_size: the size of each descriptor
640 * @sw_size: the size of the SW state associated with each ring element
641 * @phys: the physical address of the allocated ring
642 * @metadata: address of the array holding the SW state for the ring
643 * @stat_size: extra space in HW ring for status information
ad6bad3e 644 * @node: preferred node for memory allocations
fd3a4790
DM
645 *
646 * Allocates resources for an SGE descriptor ring, such as Tx queues,
647 * free buffer lists, or response queues. Each SGE ring requires
648 * space for its HW descriptors plus, optionally, space for the SW state
649 * associated with each HW entry (the metadata). The function returns
650 * three values: the virtual address for the HW ring (the return value
651 * of the function), the bus address of the HW ring, and the address
652 * of the SW ring.
653 */
654static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
655 size_t sw_size, dma_addr_t *phys, void *metadata,
ad6bad3e 656 size_t stat_size, int node)
fd3a4790
DM
657{
658 size_t len = nelem * elem_size + stat_size;
659 void *s = NULL;
660 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
661
662 if (!p)
663 return NULL;
664 if (sw_size) {
ad6bad3e 665 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
fd3a4790
DM
666
667 if (!s) {
668 dma_free_coherent(dev, len, p, *phys);
669 return NULL;
670 }
671 }
672 if (metadata)
673 *(void **)metadata = s;
674 memset(p, 0, len);
675 return p;
676}
677
678/**
679 * sgl_len - calculates the size of an SGL of the given capacity
680 * @n: the number of SGL entries
681 *
682 * Calculates the number of flits needed for a scatter/gather list that
683 * can hold the given number of entries.
684 */
685static inline unsigned int sgl_len(unsigned int n)
686{
687 n--;
688 return (3 * n) / 2 + (n & 1) + 2;
689}
690
691/**
692 * flits_to_desc - returns the num of Tx descriptors for the given flits
693 * @n: the number of flits
694 *
695 * Returns the number of Tx descriptors needed for the supplied number
696 * of flits.
697 */
698static inline unsigned int flits_to_desc(unsigned int n)
699{
700 BUG_ON(n > SGE_MAX_WR_LEN / 8);
701 return DIV_ROUND_UP(n, 8);
702}
703
704/**
705 * is_eth_imm - can an Ethernet packet be sent as immediate data?
706 * @skb: the packet
707 *
708 * Returns whether an Ethernet packet is small enough to fit as
709 * immediate data.
710 */
711static inline int is_eth_imm(const struct sk_buff *skb)
712{
713 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
714}
715
716/**
717 * calc_tx_flits - calculate the number of flits for a packet Tx WR
718 * @skb: the packet
719 *
720 * Returns the number of flits needed for a Tx WR for the given Ethernet
721 * packet, including the needed WR and CPL headers.
722 */
723static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
724{
725 unsigned int flits;
726
727 if (is_eth_imm(skb))
728 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
729
730 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
731 if (skb_shinfo(skb)->gso_size)
732 flits += 2;
733 return flits;
734}
735
736/**
737 * calc_tx_descs - calculate the number of Tx descriptors for a packet
738 * @skb: the packet
739 *
740 * Returns the number of Tx descriptors needed for the given Ethernet
741 * packet, including the needed WR and CPL headers.
742 */
743static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
744{
745 return flits_to_desc(calc_tx_flits(skb));
746}
747
748/**
749 * write_sgl - populate a scatter/gather list for a packet
750 * @skb: the packet
751 * @q: the Tx queue we are writing into
752 * @sgl: starting location for writing the SGL
753 * @end: points right after the end of the SGL
754 * @start: start offset into skb main-body data to include in the SGL
755 * @addr: the list of bus addresses for the SGL elements
756 *
757 * Generates a gather list for the buffers that make up a packet.
758 * The caller must provide adequate space for the SGL that will be written.
759 * The SGL includes all of the packet's page fragments and the data in its
760 * main body except for the first @start bytes. @sgl must be 16-byte
761 * aligned and within a Tx descriptor with available space. @end points
762 * right after the end of the SGL but does not account for any potential
763 * wrap around, i.e., @end > @sgl.
764 */
765static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
766 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
767 const dma_addr_t *addr)
768{
769 unsigned int i, len;
770 struct ulptx_sge_pair *to;
771 const struct skb_shared_info *si = skb_shinfo(skb);
772 unsigned int nfrags = si->nr_frags;
773 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
774
775 len = skb_headlen(skb) - start;
776 if (likely(len)) {
777 sgl->len0 = htonl(len);
778 sgl->addr0 = cpu_to_be64(addr[0] + start);
779 nfrags++;
780 } else {
9e903e08 781 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
fd3a4790
DM
782 sgl->addr0 = cpu_to_be64(addr[1]);
783 }
784
785 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
786 if (likely(--nfrags == 0))
787 return;
788 /*
789 * Most of the complexity below deals with the possibility we hit the
790 * end of the queue in the middle of writing the SGL. For this case
791 * only we create the SGL in a temporary buffer and then copy it.
792 */
793 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
794
795 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
796 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
797 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
fd3a4790
DM
798 to->addr[0] = cpu_to_be64(addr[i]);
799 to->addr[1] = cpu_to_be64(addr[++i]);
800 }
801 if (nfrags) {
9e903e08 802 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
fd3a4790
DM
803 to->len[1] = cpu_to_be32(0);
804 to->addr[0] = cpu_to_be64(addr[i + 1]);
805 }
806 if (unlikely((u8 *)end > (u8 *)q->stat)) {
807 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
808
809 if (likely(part0))
810 memcpy(sgl->sge, buf, part0);
811 part1 = (u8 *)end - (u8 *)q->stat;
812 memcpy(q->desc, (u8 *)buf + part0, part1);
813 end = (void *)q->desc + part1;
814 }
815 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 816 *end = 0;
fd3a4790
DM
817}
818
819/**
820 * ring_tx_db - check and potentially ring a Tx queue's doorbell
821 * @adap: the adapter
822 * @q: the Tx queue
823 * @n: number of new descriptors to give to HW
824 *
825 * Ring the doorbel for a Tx queue.
826 */
827static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
828{
829 wmb(); /* write descriptors before telling HW */
3069ee9b
VP
830 spin_lock(&q->db_lock);
831 if (!q->db_disabled) {
840f3000
VP
832 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
833 QID(q->cntxt_id) | PIDX(n));
3069ee9b
VP
834 }
835 q->db_pidx = q->pidx;
836 spin_unlock(&q->db_lock);
fd3a4790
DM
837}
838
839/**
840 * inline_tx_skb - inline a packet's data into Tx descriptors
841 * @skb: the packet
842 * @q: the Tx queue where the packet will be inlined
843 * @pos: starting position in the Tx queue where to inline the packet
844 *
845 * Inline a packet's contents directly into Tx descriptors, starting at
846 * the given position within the Tx DMA ring.
847 * Most of the complexity of this operation is dealing with wrap arounds
848 * in the middle of the packet we want to inline.
849 */
850static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
851 void *pos)
852{
853 u64 *p;
854 int left = (void *)q->stat - pos;
855
856 if (likely(skb->len <= left)) {
857 if (likely(!skb->data_len))
858 skb_copy_from_linear_data(skb, pos, skb->len);
859 else
860 skb_copy_bits(skb, 0, pos, skb->len);
861 pos += skb->len;
862 } else {
863 skb_copy_bits(skb, 0, pos, left);
864 skb_copy_bits(skb, left, q->desc, skb->len - left);
865 pos = (void *)q->desc + (skb->len - left);
866 }
867
868 /* 0-pad to multiple of 16 */
869 p = PTR_ALIGN(pos, 8);
870 if ((uintptr_t)p & 8)
871 *p = 0;
872}
873
874/*
875 * Figure out what HW csum a packet wants and return the appropriate control
876 * bits.
877 */
878static u64 hwcsum(const struct sk_buff *skb)
879{
880 int csum_type;
881 const struct iphdr *iph = ip_hdr(skb);
882
883 if (iph->version == 4) {
884 if (iph->protocol == IPPROTO_TCP)
885 csum_type = TX_CSUM_TCPIP;
886 else if (iph->protocol == IPPROTO_UDP)
887 csum_type = TX_CSUM_UDPIP;
888 else {
889nocsum: /*
890 * unknown protocol, disable HW csum
891 * and hope a bad packet is detected
892 */
893 return TXPKT_L4CSUM_DIS;
894 }
895 } else {
896 /*
897 * this doesn't work with extension headers
898 */
899 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
900
901 if (ip6h->nexthdr == IPPROTO_TCP)
902 csum_type = TX_CSUM_TCPIP6;
903 else if (ip6h->nexthdr == IPPROTO_UDP)
904 csum_type = TX_CSUM_UDPIP6;
905 else
906 goto nocsum;
907 }
908
909 if (likely(csum_type >= TX_CSUM_TCPIP))
910 return TXPKT_CSUM_TYPE(csum_type) |
911 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
912 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
913 else {
914 int start = skb_transport_offset(skb);
915
916 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
917 TXPKT_CSUM_LOC(start + skb->csum_offset);
918 }
919}
920
921static void eth_txq_stop(struct sge_eth_txq *q)
922{
923 netif_tx_stop_queue(q->txq);
924 q->q.stops++;
925}
926
927static inline void txq_advance(struct sge_txq *q, unsigned int n)
928{
929 q->in_use += n;
930 q->pidx += n;
931 if (q->pidx >= q->size)
932 q->pidx -= q->size;
933}
934
935/**
936 * t4_eth_xmit - add a packet to an Ethernet Tx queue
937 * @skb: the packet
938 * @dev: the egress net device
939 *
940 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
941 */
942netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
943{
944 u32 wr_mid;
945 u64 cntrl, *end;
946 int qidx, credits;
947 unsigned int flits, ndesc;
948 struct adapter *adap;
949 struct sge_eth_txq *q;
950 const struct port_info *pi;
951 struct fw_eth_tx_pkt_wr *wr;
952 struct cpl_tx_pkt_core *cpl;
953 const struct skb_shared_info *ssi;
954 dma_addr_t addr[MAX_SKB_FRAGS + 1];
955
956 /*
957 * The chip min packet length is 10 octets but play safe and reject
958 * anything shorter than an Ethernet header.
959 */
960 if (unlikely(skb->len < ETH_HLEN)) {
961out_free: dev_kfree_skb(skb);
962 return NETDEV_TX_OK;
963 }
964
965 pi = netdev_priv(dev);
966 adap = pi->adapter;
967 qidx = skb_get_queue_mapping(skb);
968 q = &adap->sge.ethtxq[qidx + pi->first_qset];
969
970 reclaim_completed_tx(adap, &q->q, true);
971
972 flits = calc_tx_flits(skb);
973 ndesc = flits_to_desc(flits);
974 credits = txq_avail(&q->q) - ndesc;
975
976 if (unlikely(credits < 0)) {
977 eth_txq_stop(q);
978 dev_err(adap->pdev_dev,
979 "%s: Tx ring %u full while queue awake!\n",
980 dev->name, qidx);
981 return NETDEV_TX_BUSY;
982 }
983
984 if (!is_eth_imm(skb) &&
985 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
986 q->mapping_err++;
987 goto out_free;
988 }
989
990 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
991 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
992 eth_txq_stop(q);
993 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
994 }
995
996 wr = (void *)&q->q.desc[q->q.pidx];
997 wr->equiq_to_len16 = htonl(wr_mid);
998 wr->r3 = cpu_to_be64(0);
999 end = (u64 *)wr + flits;
1000
1001 ssi = skb_shinfo(skb);
1002 if (ssi->gso_size) {
625ac6ae 1003 struct cpl_tx_pkt_lso *lso = (void *)wr;
fd3a4790
DM
1004 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1005 int l3hdr_len = skb_network_header_len(skb);
1006 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1007
1008 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1009 FW_WR_IMMDLEN(sizeof(*lso)));
625ac6ae
DM
1010 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1011 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1012 LSO_IPV6(v6) |
1013 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1014 LSO_IPHDR_LEN(l3hdr_len / 4) |
1015 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1016 lso->c.ipid_ofst = htons(0);
1017 lso->c.mss = htons(ssi->gso_size);
1018 lso->c.seqno_offset = htonl(0);
1019 lso->c.len = htonl(skb->len);
fd3a4790
DM
1020 cpl = (void *)(lso + 1);
1021 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1022 TXPKT_IPHDR_LEN(l3hdr_len) |
1023 TXPKT_ETHHDR_LEN(eth_xtra_len);
1024 q->tso++;
1025 q->tx_cso += ssi->gso_segs;
1026 } else {
1027 int len;
1028
1029 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1030 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1031 FW_WR_IMMDLEN(len));
1032 cpl = (void *)(wr + 1);
1033 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1034 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1035 q->tx_cso++;
1036 } else
1037 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1038 }
1039
1040 if (vlan_tx_tag_present(skb)) {
1041 q->vlan_ins++;
1042 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1043 }
1044
1045 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1707aec9 1046 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
fd3a4790
DM
1047 cpl->pack = htons(0);
1048 cpl->len = htons(skb->len);
1049 cpl->ctrl1 = cpu_to_be64(cntrl);
1050
1051 if (is_eth_imm(skb)) {
1052 inline_tx_skb(skb, &q->q, cpl + 1);
1053 dev_kfree_skb(skb);
1054 } else {
1055 int last_desc;
1056
1057 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1058 addr);
1059 skb_orphan(skb);
1060
1061 last_desc = q->q.pidx + ndesc - 1;
1062 if (last_desc >= q->q.size)
1063 last_desc -= q->q.size;
1064 q->q.sdesc[last_desc].skb = skb;
1065 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1066 }
1067
1068 txq_advance(&q->q, ndesc);
1069
1070 ring_tx_db(adap, &q->q, ndesc);
1071 return NETDEV_TX_OK;
1072}
1073
1074/**
1075 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1076 * @q: the SGE control Tx queue
1077 *
1078 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1079 * that send only immediate data (presently just the control queues) and
1080 * thus do not have any sk_buffs to release.
1081 */
1082static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1083{
1084 int hw_cidx = ntohs(q->stat->cidx);
1085 int reclaim = hw_cidx - q->cidx;
1086
1087 if (reclaim < 0)
1088 reclaim += q->size;
1089
1090 q->in_use -= reclaim;
1091 q->cidx = hw_cidx;
1092}
1093
1094/**
1095 * is_imm - check whether a packet can be sent as immediate data
1096 * @skb: the packet
1097 *
1098 * Returns true if a packet can be sent as a WR with immediate data.
1099 */
1100static inline int is_imm(const struct sk_buff *skb)
1101{
1102 return skb->len <= MAX_CTRL_WR_LEN;
1103}
1104
1105/**
1106 * ctrlq_check_stop - check if a control queue is full and should stop
1107 * @q: the queue
1108 * @wr: most recent WR written to the queue
1109 *
1110 * Check if a control queue has become full and should be stopped.
1111 * We clean up control queue descriptors very lazily, only when we are out.
1112 * If the queue is still full after reclaiming any completed descriptors
1113 * we suspend it and have the last WR wake it up.
1114 */
1115static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1116{
1117 reclaim_completed_tx_imm(&q->q);
1118 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1119 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1120 q->q.stops++;
1121 q->full = 1;
1122 }
1123}
1124
1125/**
1126 * ctrl_xmit - send a packet through an SGE control Tx queue
1127 * @q: the control queue
1128 * @skb: the packet
1129 *
1130 * Send a packet through an SGE control Tx queue. Packets sent through
1131 * a control queue must fit entirely as immediate data.
1132 */
1133static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1134{
1135 unsigned int ndesc;
1136 struct fw_wr_hdr *wr;
1137
1138 if (unlikely(!is_imm(skb))) {
1139 WARN_ON(1);
1140 dev_kfree_skb(skb);
1141 return NET_XMIT_DROP;
1142 }
1143
1144 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1145 spin_lock(&q->sendq.lock);
1146
1147 if (unlikely(q->full)) {
1148 skb->priority = ndesc; /* save for restart */
1149 __skb_queue_tail(&q->sendq, skb);
1150 spin_unlock(&q->sendq.lock);
1151 return NET_XMIT_CN;
1152 }
1153
1154 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1155 inline_tx_skb(skb, &q->q, wr);
1156
1157 txq_advance(&q->q, ndesc);
1158 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1159 ctrlq_check_stop(q, wr);
1160
1161 ring_tx_db(q->adap, &q->q, ndesc);
1162 spin_unlock(&q->sendq.lock);
1163
1164 kfree_skb(skb);
1165 return NET_XMIT_SUCCESS;
1166}
1167
1168/**
1169 * restart_ctrlq - restart a suspended control queue
1170 * @data: the control queue to restart
1171 *
1172 * Resumes transmission on a suspended Tx control queue.
1173 */
1174static void restart_ctrlq(unsigned long data)
1175{
1176 struct sk_buff *skb;
1177 unsigned int written = 0;
1178 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1179
1180 spin_lock(&q->sendq.lock);
1181 reclaim_completed_tx_imm(&q->q);
1182 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1183
1184 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1185 struct fw_wr_hdr *wr;
1186 unsigned int ndesc = skb->priority; /* previously saved */
1187
1188 /*
1189 * Write descriptors and free skbs outside the lock to limit
1190 * wait times. q->full is still set so new skbs will be queued.
1191 */
1192 spin_unlock(&q->sendq.lock);
1193
1194 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1195 inline_tx_skb(skb, &q->q, wr);
1196 kfree_skb(skb);
1197
1198 written += ndesc;
1199 txq_advance(&q->q, ndesc);
1200 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1201 unsigned long old = q->q.stops;
1202
1203 ctrlq_check_stop(q, wr);
1204 if (q->q.stops != old) { /* suspended anew */
1205 spin_lock(&q->sendq.lock);
1206 goto ringdb;
1207 }
1208 }
1209 if (written > 16) {
1210 ring_tx_db(q->adap, &q->q, written);
1211 written = 0;
1212 }
1213 spin_lock(&q->sendq.lock);
1214 }
1215 q->full = 0;
1216ringdb: if (written)
1217 ring_tx_db(q->adap, &q->q, written);
1218 spin_unlock(&q->sendq.lock);
1219}
1220
1221/**
1222 * t4_mgmt_tx - send a management message
1223 * @adap: the adapter
1224 * @skb: the packet containing the management message
1225 *
1226 * Send a management message through control queue 0.
1227 */
1228int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1229{
1230 int ret;
1231
1232 local_bh_disable();
1233 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1234 local_bh_enable();
1235 return ret;
1236}
1237
1238/**
1239 * is_ofld_imm - check whether a packet can be sent as immediate data
1240 * @skb: the packet
1241 *
1242 * Returns true if a packet can be sent as an offload WR with immediate
1243 * data. We currently use the same limit as for Ethernet packets.
1244 */
1245static inline int is_ofld_imm(const struct sk_buff *skb)
1246{
1247 return skb->len <= MAX_IMM_TX_PKT_LEN;
1248}
1249
1250/**
1251 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1252 * @skb: the packet
1253 *
1254 * Returns the number of flits needed for the given offload packet.
1255 * These packets are already fully constructed and no additional headers
1256 * will be added.
1257 */
1258static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1259{
1260 unsigned int flits, cnt;
1261
1262 if (is_ofld_imm(skb))
1263 return DIV_ROUND_UP(skb->len, 8);
1264
1265 flits = skb_transport_offset(skb) / 8U; /* headers */
1266 cnt = skb_shinfo(skb)->nr_frags;
1267 if (skb->tail != skb->transport_header)
1268 cnt++;
1269 return flits + sgl_len(cnt);
1270}
1271
1272/**
1273 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1274 * @adap: the adapter
1275 * @q: the queue to stop
1276 *
1277 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1278 * inability to map packets. A periodic timer attempts to restart
1279 * queues so marked.
1280 */
1281static void txq_stop_maperr(struct sge_ofld_txq *q)
1282{
1283 q->mapping_err++;
1284 q->q.stops++;
e46dab4d
DM
1285 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1286 q->adap->sge.txq_maperr);
fd3a4790
DM
1287}
1288
1289/**
1290 * ofldtxq_stop - stop an offload Tx queue that has become full
1291 * @q: the queue to stop
1292 * @skb: the packet causing the queue to become full
1293 *
1294 * Stops an offload Tx queue that has become full and modifies the packet
1295 * being written to request a wakeup.
1296 */
1297static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1298{
1299 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1300
1301 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1302 q->q.stops++;
1303 q->full = 1;
1304}
1305
1306/**
1307 * service_ofldq - restart a suspended offload queue
1308 * @q: the offload queue
1309 *
1310 * Services an offload Tx queue by moving packets from its packet queue
1311 * to the HW Tx ring. The function starts and ends with the queue locked.
1312 */
1313static void service_ofldq(struct sge_ofld_txq *q)
1314{
1315 u64 *pos;
1316 int credits;
1317 struct sk_buff *skb;
1318 unsigned int written = 0;
1319 unsigned int flits, ndesc;
1320
1321 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1322 /*
1323 * We drop the lock but leave skb on sendq, thus retaining
1324 * exclusive access to the state of the queue.
1325 */
1326 spin_unlock(&q->sendq.lock);
1327
1328 reclaim_completed_tx(q->adap, &q->q, false);
1329
1330 flits = skb->priority; /* previously saved */
1331 ndesc = flits_to_desc(flits);
1332 credits = txq_avail(&q->q) - ndesc;
1333 BUG_ON(credits < 0);
1334 if (unlikely(credits < TXQ_STOP_THRES))
1335 ofldtxq_stop(q, skb);
1336
1337 pos = (u64 *)&q->q.desc[q->q.pidx];
1338 if (is_ofld_imm(skb))
1339 inline_tx_skb(skb, &q->q, pos);
1340 else if (map_skb(q->adap->pdev_dev, skb,
1341 (dma_addr_t *)skb->head)) {
1342 txq_stop_maperr(q);
1343 spin_lock(&q->sendq.lock);
1344 break;
1345 } else {
1346 int last_desc, hdr_len = skb_transport_offset(skb);
1347
1348 memcpy(pos, skb->data, hdr_len);
1349 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1350 pos + flits, hdr_len,
1351 (dma_addr_t *)skb->head);
1352#ifdef CONFIG_NEED_DMA_MAP_STATE
1353 skb->dev = q->adap->port[0];
1354 skb->destructor = deferred_unmap_destructor;
1355#endif
1356 last_desc = q->q.pidx + ndesc - 1;
1357 if (last_desc >= q->q.size)
1358 last_desc -= q->q.size;
1359 q->q.sdesc[last_desc].skb = skb;
1360 }
1361
1362 txq_advance(&q->q, ndesc);
1363 written += ndesc;
1364 if (unlikely(written > 32)) {
1365 ring_tx_db(q->adap, &q->q, written);
1366 written = 0;
1367 }
1368
1369 spin_lock(&q->sendq.lock);
1370 __skb_unlink(skb, &q->sendq);
1371 if (is_ofld_imm(skb))
1372 kfree_skb(skb);
1373 }
1374 if (likely(written))
1375 ring_tx_db(q->adap, &q->q, written);
1376}
1377
1378/**
1379 * ofld_xmit - send a packet through an offload queue
1380 * @q: the Tx offload queue
1381 * @skb: the packet
1382 *
1383 * Send an offload packet through an SGE offload queue.
1384 */
1385static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1386{
1387 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1388 spin_lock(&q->sendq.lock);
1389 __skb_queue_tail(&q->sendq, skb);
1390 if (q->sendq.qlen == 1)
1391 service_ofldq(q);
1392 spin_unlock(&q->sendq.lock);
1393 return NET_XMIT_SUCCESS;
1394}
1395
1396/**
1397 * restart_ofldq - restart a suspended offload queue
1398 * @data: the offload queue to restart
1399 *
1400 * Resumes transmission on a suspended Tx offload queue.
1401 */
1402static void restart_ofldq(unsigned long data)
1403{
1404 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1405
1406 spin_lock(&q->sendq.lock);
1407 q->full = 0; /* the queue actually is completely empty now */
1408 service_ofldq(q);
1409 spin_unlock(&q->sendq.lock);
1410}
1411
1412/**
1413 * skb_txq - return the Tx queue an offload packet should use
1414 * @skb: the packet
1415 *
1416 * Returns the Tx queue an offload packet should use as indicated by bits
1417 * 1-15 in the packet's queue_mapping.
1418 */
1419static inline unsigned int skb_txq(const struct sk_buff *skb)
1420{
1421 return skb->queue_mapping >> 1;
1422}
1423
1424/**
1425 * is_ctrl_pkt - return whether an offload packet is a control packet
1426 * @skb: the packet
1427 *
1428 * Returns whether an offload packet should use an OFLD or a CTRL
1429 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1430 */
1431static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1432{
1433 return skb->queue_mapping & 1;
1434}
1435
1436static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1437{
1438 unsigned int idx = skb_txq(skb);
1439
1440 if (unlikely(is_ctrl_pkt(skb)))
1441 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1442 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1443}
1444
1445/**
1446 * t4_ofld_send - send an offload packet
1447 * @adap: the adapter
1448 * @skb: the packet
1449 *
1450 * Sends an offload packet. We use the packet queue_mapping to select the
1451 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1452 * should be sent as regular or control, bits 1-15 select the queue.
1453 */
1454int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1455{
1456 int ret;
1457
1458 local_bh_disable();
1459 ret = ofld_send(adap, skb);
1460 local_bh_enable();
1461 return ret;
1462}
1463
1464/**
1465 * cxgb4_ofld_send - send an offload packet
1466 * @dev: the net device
1467 * @skb: the packet
1468 *
1469 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1470 * intended for ULDs.
1471 */
1472int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1473{
1474 return t4_ofld_send(netdev2adap(dev), skb);
1475}
1476EXPORT_SYMBOL(cxgb4_ofld_send);
1477
e91b0f24 1478static inline void copy_frags(struct sk_buff *skb,
fd3a4790
DM
1479 const struct pkt_gl *gl, unsigned int offset)
1480{
e91b0f24 1481 int i;
fd3a4790
DM
1482
1483 /* usually there's just one frag */
e91b0f24
IC
1484 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1485 gl->frags[0].offset + offset,
1486 gl->frags[0].size - offset);
1487 skb_shinfo(skb)->nr_frags = gl->nfrags;
1488 for (i = 1; i < gl->nfrags; i++)
1489 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1490 gl->frags[i].offset,
1491 gl->frags[i].size);
fd3a4790
DM
1492
1493 /* get a reference to the last page, we don't own it */
e91b0f24 1494 get_page(gl->frags[gl->nfrags - 1].page);
fd3a4790
DM
1495}
1496
1497/**
1498 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1499 * @gl: the gather list
1500 * @skb_len: size of sk_buff main body if it carries fragments
1501 * @pull_len: amount of data to move to the sk_buff's main body
1502 *
1503 * Builds an sk_buff from the given packet gather list. Returns the
1504 * sk_buff or %NULL if sk_buff allocation failed.
1505 */
1506struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1507 unsigned int skb_len, unsigned int pull_len)
1508{
1509 struct sk_buff *skb;
1510
1511 /*
1512 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1513 * size, which is expected since buffers are at least PAGE_SIZEd.
1514 * In this case packets up to RX_COPY_THRES have only one fragment.
1515 */
1516 if (gl->tot_len <= RX_COPY_THRES) {
1517 skb = dev_alloc_skb(gl->tot_len);
1518 if (unlikely(!skb))
1519 goto out;
1520 __skb_put(skb, gl->tot_len);
1521 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1522 } else {
1523 skb = dev_alloc_skb(skb_len);
1524 if (unlikely(!skb))
1525 goto out;
1526 __skb_put(skb, pull_len);
1527 skb_copy_to_linear_data(skb, gl->va, pull_len);
1528
e91b0f24 1529 copy_frags(skb, gl, pull_len);
fd3a4790
DM
1530 skb->len = gl->tot_len;
1531 skb->data_len = skb->len - pull_len;
1532 skb->truesize += skb->data_len;
1533 }
1534out: return skb;
1535}
1536EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1537
1538/**
1539 * t4_pktgl_free - free a packet gather list
1540 * @gl: the gather list
1541 *
1542 * Releases the pages of a packet gather list. We do not own the last
1543 * page on the list and do not free it.
1544 */
de498c89 1545static void t4_pktgl_free(const struct pkt_gl *gl)
fd3a4790
DM
1546{
1547 int n;
e91b0f24 1548 const struct page_frag *p;
fd3a4790
DM
1549
1550 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1551 put_page(p->page);
1552}
1553
1554/*
1555 * Process an MPS trace packet. Give it an unused protocol number so it won't
1556 * be delivered to anyone and send it to the stack for capture.
1557 */
1558static noinline int handle_trace_pkt(struct adapter *adap,
1559 const struct pkt_gl *gl)
1560{
1561 struct sk_buff *skb;
fd3a4790
DM
1562
1563 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1564 if (unlikely(!skb)) {
1565 t4_pktgl_free(gl);
1566 return 0;
1567 }
1568
0a57a536
SR
1569 if (is_t4(adap->chip))
1570 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1571 else
1572 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1573
fd3a4790
DM
1574 skb_reset_mac_header(skb);
1575 skb->protocol = htons(0xffff);
1576 skb->dev = adap->port[0];
1577 netif_receive_skb(skb);
1578 return 0;
1579}
1580
1581static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1582 const struct cpl_rx_pkt *pkt)
1583{
52367a76
VP
1584 struct adapter *adapter = rxq->rspq.adap;
1585 struct sge *s = &adapter->sge;
fd3a4790
DM
1586 int ret;
1587 struct sk_buff *skb;
1588
1589 skb = napi_get_frags(&rxq->rspq.napi);
1590 if (unlikely(!skb)) {
1591 t4_pktgl_free(gl);
1592 rxq->stats.rx_drops++;
1593 return;
1594 }
1595
52367a76
VP
1596 copy_frags(skb, gl, s->pktshift);
1597 skb->len = gl->tot_len - s->pktshift;
fd3a4790
DM
1598 skb->data_len = skb->len;
1599 skb->truesize += skb->data_len;
1600 skb->ip_summed = CHECKSUM_UNNECESSARY;
1601 skb_record_rx_queue(skb, rxq->rspq.idx);
87b6cf51
DM
1602 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1603 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
fd3a4790
DM
1604
1605 if (unlikely(pkt->vlan_ex)) {
19ecae2c 1606 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
fd3a4790 1607 rxq->stats.vlan_ex++;
fd3a4790
DM
1608 }
1609 ret = napi_gro_frags(&rxq->rspq.napi);
19ecae2c 1610 if (ret == GRO_HELD)
fd3a4790
DM
1611 rxq->stats.lro_pkts++;
1612 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1613 rxq->stats.lro_merged++;
1614 rxq->stats.pkts++;
1615 rxq->stats.rx_cso++;
1616}
1617
1618/**
1619 * t4_ethrx_handler - process an ingress ethernet packet
1620 * @q: the response queue that received the packet
1621 * @rsp: the response queue descriptor holding the RX_PKT message
1622 * @si: the gather list of packet fragments
1623 *
1624 * Process an ingress ethernet packet and deliver it to the stack.
1625 */
1626int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1627 const struct pkt_gl *si)
1628{
1629 bool csum_ok;
1630 struct sk_buff *skb;
fd3a4790
DM
1631 const struct cpl_rx_pkt *pkt;
1632 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76 1633 struct sge *s = &q->adap->sge;
0a57a536
SR
1634 int cpl_trace_pkt = is_t4(q->adap->chip) ?
1635 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
fd3a4790 1636
0a57a536 1637 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
fd3a4790
DM
1638 return handle_trace_pkt(q->adap, si);
1639
87b6cf51 1640 pkt = (const struct cpl_rx_pkt *)rsp;
fd3a4790
DM
1641 csum_ok = pkt->csum_calc && !pkt->err_vec;
1642 if ((pkt->l2info & htonl(RXF_TCP)) &&
1643 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1644 do_gro(rxq, si, pkt);
1645 return 0;
1646 }
1647
1648 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1649 if (unlikely(!skb)) {
1650 t4_pktgl_free(si);
1651 rxq->stats.rx_drops++;
1652 return 0;
1653 }
1654
52367a76 1655 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
fd3a4790
DM
1656 skb->protocol = eth_type_trans(skb, q->netdev);
1657 skb_record_rx_queue(skb, q->idx);
87b6cf51
DM
1658 if (skb->dev->features & NETIF_F_RXHASH)
1659 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1660
fd3a4790
DM
1661 rxq->stats.pkts++;
1662
2ed28baa 1663 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
fd3a4790 1664 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
ba5d3c66 1665 if (!pkt->ip_frag) {
fd3a4790 1666 skb->ip_summed = CHECKSUM_UNNECESSARY;
ba5d3c66
DM
1667 rxq->stats.rx_cso++;
1668 } else if (pkt->l2info & htonl(RXF_IP)) {
fd3a4790
DM
1669 __sum16 c = (__force __sum16)pkt->csum;
1670 skb->csum = csum_unfold(c);
1671 skb->ip_summed = CHECKSUM_COMPLETE;
ba5d3c66 1672 rxq->stats.rx_cso++;
fd3a4790 1673 }
fd3a4790 1674 } else
bc8acf2c 1675 skb_checksum_none_assert(skb);
fd3a4790
DM
1676
1677 if (unlikely(pkt->vlan_ex)) {
19ecae2c 1678 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
fd3a4790 1679 rxq->stats.vlan_ex++;
19ecae2c
DM
1680 }
1681 netif_receive_skb(skb);
fd3a4790
DM
1682 return 0;
1683}
1684
1685/**
1686 * restore_rx_bufs - put back a packet's Rx buffers
1687 * @si: the packet gather list
1688 * @q: the SGE free list
1689 * @frags: number of FL buffers to restore
1690 *
1691 * Puts back on an FL the Rx buffers associated with @si. The buffers
1692 * have already been unmapped and are left unmapped, we mark them so to
1693 * prevent further unmapping attempts.
1694 *
1695 * This function undoes a series of @unmap_rx_buf calls when we find out
1696 * that the current packet can't be processed right away afterall and we
1697 * need to come back to it later. This is a very rare event and there's
1698 * no effort to make this particularly efficient.
1699 */
1700static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1701 int frags)
1702{
1703 struct rx_sw_desc *d;
1704
1705 while (frags--) {
1706 if (q->cidx == 0)
1707 q->cidx = q->size - 1;
1708 else
1709 q->cidx--;
1710 d = &q->sdesc[q->cidx];
1711 d->page = si->frags[frags].page;
1712 d->dma_addr |= RX_UNMAPPED_BUF;
1713 q->avail++;
1714 }
1715}
1716
1717/**
1718 * is_new_response - check if a response is newly written
1719 * @r: the response descriptor
1720 * @q: the response queue
1721 *
1722 * Returns true if a response descriptor contains a yet unprocessed
1723 * response.
1724 */
1725static inline bool is_new_response(const struct rsp_ctrl *r,
1726 const struct sge_rspq *q)
1727{
1728 return RSPD_GEN(r->type_gen) == q->gen;
1729}
1730
1731/**
1732 * rspq_next - advance to the next entry in a response queue
1733 * @q: the queue
1734 *
1735 * Updates the state of a response queue to advance it to the next entry.
1736 */
1737static inline void rspq_next(struct sge_rspq *q)
1738{
1739 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1740 if (unlikely(++q->cidx == q->size)) {
1741 q->cidx = 0;
1742 q->gen ^= 1;
1743 q->cur_desc = q->desc;
1744 }
1745}
1746
1747/**
1748 * process_responses - process responses from an SGE response queue
1749 * @q: the ingress queue to process
1750 * @budget: how many responses can be processed in this round
1751 *
1752 * Process responses from an SGE response queue up to the supplied budget.
1753 * Responses include received packets as well as control messages from FW
1754 * or HW.
1755 *
1756 * Additionally choose the interrupt holdoff time for the next interrupt
1757 * on this queue. If the system is under memory shortage use a fairly
1758 * long delay to help recovery.
1759 */
1760static int process_responses(struct sge_rspq *q, int budget)
1761{
1762 int ret, rsp_type;
1763 int budget_left = budget;
1764 const struct rsp_ctrl *rc;
1765 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76
VP
1766 struct adapter *adapter = q->adap;
1767 struct sge *s = &adapter->sge;
fd3a4790
DM
1768
1769 while (likely(budget_left)) {
1770 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1771 if (!is_new_response(rc, q))
1772 break;
1773
1774 rmb();
1775 rsp_type = RSPD_TYPE(rc->type_gen);
1776 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
e91b0f24 1777 struct page_frag *fp;
fd3a4790
DM
1778 struct pkt_gl si;
1779 const struct rx_sw_desc *rsd;
1780 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1781
1782 if (len & RSPD_NEWBUF) {
1783 if (likely(q->offset > 0)) {
1784 free_rx_bufs(q->adap, &rxq->fl, 1);
1785 q->offset = 0;
1786 }
1704d748 1787 len = RSPD_LEN(len);
fd3a4790
DM
1788 }
1789 si.tot_len = len;
1790
1791 /* gather packet fragments */
1792 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1793 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
52367a76 1794 bufsz = get_buf_size(adapter, rsd);
fd3a4790 1795 fp->page = rsd->page;
e91b0f24
IC
1796 fp->offset = q->offset;
1797 fp->size = min(bufsz, len);
1798 len -= fp->size;
fd3a4790
DM
1799 if (!len)
1800 break;
1801 unmap_rx_buf(q->adap, &rxq->fl);
1802 }
1803
1804 /*
1805 * Last buffer remains mapped so explicitly make it
1806 * coherent for CPU access.
1807 */
1808 dma_sync_single_for_cpu(q->adap->pdev_dev,
1809 get_buf_addr(rsd),
e91b0f24 1810 fp->size, DMA_FROM_DEVICE);
fd3a4790
DM
1811
1812 si.va = page_address(si.frags[0].page) +
e91b0f24 1813 si.frags[0].offset;
fd3a4790
DM
1814 prefetch(si.va);
1815
1816 si.nfrags = frags + 1;
1817 ret = q->handler(q, q->cur_desc, &si);
1818 if (likely(ret == 0))
52367a76 1819 q->offset += ALIGN(fp->size, s->fl_align);
fd3a4790
DM
1820 else
1821 restore_rx_bufs(&si, &rxq->fl, frags);
1822 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1823 ret = q->handler(q, q->cur_desc, NULL);
1824 } else {
1825 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1826 }
1827
1828 if (unlikely(ret)) {
1829 /* couldn't process descriptor, back off for recovery */
1830 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1831 break;
1832 }
1833
1834 rspq_next(q);
1835 budget_left--;
1836 }
1837
1838 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1839 __refill_fl(q->adap, &rxq->fl);
1840 return budget - budget_left;
1841}
1842
1843/**
1844 * napi_rx_handler - the NAPI handler for Rx processing
1845 * @napi: the napi instance
1846 * @budget: how many packets we can process in this round
1847 *
1848 * Handler for new data events when using NAPI. This does not need any
1849 * locking or protection from interrupts as data interrupts are off at
1850 * this point and other adapter interrupts do not interfere (the latter
1851 * in not a concern at all with MSI-X as non-data interrupts then have
1852 * a separate handler).
1853 */
1854static int napi_rx_handler(struct napi_struct *napi, int budget)
1855{
1856 unsigned int params;
1857 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1858 int work_done = process_responses(q, budget);
1859
1860 if (likely(work_done < budget)) {
1861 napi_complete(napi);
1862 params = q->next_intr_params;
1863 q->next_intr_params = q->intr_params;
1864 } else
1865 params = QINTR_TIMER_IDX(7);
1866
1867 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1868 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1869 return work_done;
1870}
1871
1872/*
1873 * The MSI-X interrupt handler for an SGE response queue.
1874 */
1875irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1876{
1877 struct sge_rspq *q = cookie;
1878
1879 napi_schedule(&q->napi);
1880 return IRQ_HANDLED;
1881}
1882
1883/*
1884 * Process the indirect interrupt entries in the interrupt queue and kick off
1885 * NAPI for each queue that has generated an entry.
1886 */
1887static unsigned int process_intrq(struct adapter *adap)
1888{
1889 unsigned int credits;
1890 const struct rsp_ctrl *rc;
1891 struct sge_rspq *q = &adap->sge.intrq;
1892
1893 spin_lock(&adap->sge.intrq_lock);
1894 for (credits = 0; ; credits++) {
1895 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1896 if (!is_new_response(rc, q))
1897 break;
1898
1899 rmb();
1900 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1901 unsigned int qid = ntohl(rc->pldbuflen_qid);
1902
e46dab4d 1903 qid -= adap->sge.ingr_start;
fd3a4790
DM
1904 napi_schedule(&adap->sge.ingr_map[qid]->napi);
1905 }
1906
1907 rspq_next(q);
1908 }
1909
1910 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1911 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1912 spin_unlock(&adap->sge.intrq_lock);
1913 return credits;
1914}
1915
1916/*
1917 * The MSI interrupt handler, which handles data events from SGE response queues
1918 * as well as error and other async events as they all use the same MSI vector.
1919 */
1920static irqreturn_t t4_intr_msi(int irq, void *cookie)
1921{
1922 struct adapter *adap = cookie;
1923
1924 t4_slow_intr_handler(adap);
1925 process_intrq(adap);
1926 return IRQ_HANDLED;
1927}
1928
1929/*
1930 * Interrupt handler for legacy INTx interrupts.
1931 * Handles data events from SGE response queues as well as error and other
1932 * async events as they all use the same interrupt line.
1933 */
1934static irqreturn_t t4_intr_intx(int irq, void *cookie)
1935{
1936 struct adapter *adap = cookie;
1937
1938 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1939 if (t4_slow_intr_handler(adap) | process_intrq(adap))
1940 return IRQ_HANDLED;
1941 return IRQ_NONE; /* probably shared interrupt */
1942}
1943
1944/**
1945 * t4_intr_handler - select the top-level interrupt handler
1946 * @adap: the adapter
1947 *
1948 * Selects the top-level interrupt handler based on the type of interrupts
1949 * (MSI-X, MSI, or INTx).
1950 */
1951irq_handler_t t4_intr_handler(struct adapter *adap)
1952{
1953 if (adap->flags & USING_MSIX)
1954 return t4_sge_intr_msix;
1955 if (adap->flags & USING_MSI)
1956 return t4_intr_msi;
1957 return t4_intr_intx;
1958}
1959
1960static void sge_rx_timer_cb(unsigned long data)
1961{
1962 unsigned long m;
1963 unsigned int i, cnt[2];
1964 struct adapter *adap = (struct adapter *)data;
1965 struct sge *s = &adap->sge;
1966
1967 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1968 for (m = s->starving_fl[i]; m; m &= m - 1) {
1969 struct sge_eth_rxq *rxq;
1970 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1971 struct sge_fl *fl = s->egr_map[id];
1972
1973 clear_bit(id, s->starving_fl);
1974 smp_mb__after_clear_bit();
1975
1976 if (fl_starving(fl)) {
1977 rxq = container_of(fl, struct sge_eth_rxq, fl);
1978 if (napi_reschedule(&rxq->rspq.napi))
1979 fl->starving++;
1980 else
1981 set_bit(id, s->starving_fl);
1982 }
1983 }
1984
1985 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1986 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1987 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1988
1989 for (i = 0; i < 2; i++)
1990 if (cnt[i] >= s->starve_thres) {
1991 if (s->idma_state[i] || cnt[i] == 0xffffffff)
1992 continue;
1993 s->idma_state[i] = 1;
1994 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1995 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1996 dev_warn(adap->pdev_dev,
1997 "SGE idma%u starvation detected for "
1998 "queue %lu\n", i, m & 0xffff);
1999 } else if (s->idma_state[i])
2000 s->idma_state[i] = 0;
2001
2002 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2003}
2004
2005static void sge_tx_timer_cb(unsigned long data)
2006{
2007 unsigned long m;
2008 unsigned int i, budget;
2009 struct adapter *adap = (struct adapter *)data;
2010 struct sge *s = &adap->sge;
2011
2012 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2013 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2014 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2015 struct sge_ofld_txq *txq = s->egr_map[id];
2016
2017 clear_bit(id, s->txq_maperr);
2018 tasklet_schedule(&txq->qresume_tsk);
2019 }
2020
2021 budget = MAX_TIMER_TX_RECLAIM;
2022 i = s->ethtxq_rover;
2023 do {
2024 struct sge_eth_txq *q = &s->ethtxq[i];
2025
2026 if (q->q.in_use &&
2027 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2028 __netif_tx_trylock(q->txq)) {
2029 int avail = reclaimable(&q->q);
2030
2031 if (avail) {
2032 if (avail > budget)
2033 avail = budget;
2034
2035 free_tx_desc(adap, &q->q, avail, true);
2036 q->q.in_use -= avail;
2037 budget -= avail;
2038 }
2039 __netif_tx_unlock(q->txq);
2040 }
2041
2042 if (++i >= s->ethqsets)
2043 i = 0;
2044 } while (budget && i != s->ethtxq_rover);
2045 s->ethtxq_rover = i;
2046 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2047}
2048
2049int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2050 struct net_device *dev, int intr_idx,
2051 struct sge_fl *fl, rspq_handler_t hnd)
2052{
2053 int ret, flsz = 0;
2054 struct fw_iq_cmd c;
52367a76 2055 struct sge *s = &adap->sge;
fd3a4790
DM
2056 struct port_info *pi = netdev_priv(dev);
2057
2058 /* Size needs to be multiple of 16, including status entry. */
2059 iq->size = roundup(iq->size, 16);
2060
2061 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
ad6bad3e 2062 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2063 if (!iq->desc)
2064 return -ENOMEM;
2065
2066 memset(&c, 0, sizeof(c));
2067 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2068 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2069 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
fd3a4790
DM
2070 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2071 FW_LEN16(c));
2072 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2073 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2074 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2075 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2076 -intr_idx - 1));
2077 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2078 FW_IQ_CMD_IQGTSMODE |
2079 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2080 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2081 c.iqsize = htons(iq->size);
2082 c.iqaddr = cpu_to_be64(iq->phys_addr);
2083
2084 if (fl) {
2085 fl->size = roundup(fl->size, 8);
2086 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2087 sizeof(struct rx_sw_desc), &fl->addr,
52367a76 2088 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
fd3a4790
DM
2089 if (!fl->desc)
2090 goto fl_nomem;
2091
52367a76 2092 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
ce91a923 2093 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
ef306b50
DM
2094 FW_IQ_CMD_FL0FETCHRO(1) |
2095 FW_IQ_CMD_FL0DATARO(1) |
ce91a923 2096 FW_IQ_CMD_FL0PADEN(1));
fd3a4790
DM
2097 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2098 FW_IQ_CMD_FL0FBMAX(3));
2099 c.fl0size = htons(flsz);
2100 c.fl0addr = cpu_to_be64(fl->addr);
2101 }
2102
060e0c75 2103 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2104 if (ret)
2105 goto err;
2106
2107 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2108 iq->cur_desc = iq->desc;
2109 iq->cidx = 0;
2110 iq->gen = 1;
2111 iq->next_intr_params = iq->intr_params;
2112 iq->cntxt_id = ntohs(c.iqid);
2113 iq->abs_id = ntohs(c.physiqid);
2114 iq->size--; /* subtract status entry */
2115 iq->adap = adap;
2116 iq->netdev = dev;
2117 iq->handler = hnd;
2118
2119 /* set offset to -1 to distinguish ingress queues without FL */
2120 iq->offset = fl ? 0 : -1;
2121
e46dab4d 2122 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
fd3a4790
DM
2123
2124 if (fl) {
62718b32 2125 fl->cntxt_id = ntohs(c.fl0id);
fd3a4790
DM
2126 fl->avail = fl->pend_cred = 0;
2127 fl->pidx = fl->cidx = 0;
2128 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
e46dab4d 2129 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
fd3a4790
DM
2130 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2131 }
2132 return 0;
2133
2134fl_nomem:
2135 ret = -ENOMEM;
2136err:
2137 if (iq->desc) {
2138 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2139 iq->desc, iq->phys_addr);
2140 iq->desc = NULL;
2141 }
2142 if (fl && fl->desc) {
2143 kfree(fl->sdesc);
2144 fl->sdesc = NULL;
2145 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2146 fl->desc, fl->addr);
2147 fl->desc = NULL;
2148 }
2149 return ret;
2150}
2151
2152static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2153{
2154 q->in_use = 0;
2155 q->cidx = q->pidx = 0;
2156 q->stops = q->restarts = 0;
2157 q->stat = (void *)&q->desc[q->size];
2158 q->cntxt_id = id;
3069ee9b 2159 spin_lock_init(&q->db_lock);
e46dab4d 2160 adap->sge.egr_map[id - adap->sge.egr_start] = q;
fd3a4790
DM
2161}
2162
2163int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2164 struct net_device *dev, struct netdev_queue *netdevq,
2165 unsigned int iqid)
2166{
2167 int ret, nentries;
2168 struct fw_eq_eth_cmd c;
52367a76 2169 struct sge *s = &adap->sge;
fd3a4790
DM
2170 struct port_info *pi = netdev_priv(dev);
2171
2172 /* Add status entries */
52367a76 2173 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2174
2175 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2176 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2177 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2178 netdev_queue_numa_node_read(netdevq));
fd3a4790
DM
2179 if (!txq->q.desc)
2180 return -ENOMEM;
2181
2182 memset(&c, 0, sizeof(c));
2183 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2184 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2185 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
fd3a4790
DM
2186 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2187 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2188 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2189 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2190 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2191 FW_EQ_ETH_CMD_FETCHRO(1) |
fd3a4790
DM
2192 FW_EQ_ETH_CMD_IQID(iqid));
2193 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2194 FW_EQ_ETH_CMD_FBMAX(3) |
2195 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2196 FW_EQ_ETH_CMD_EQSIZE(nentries));
2197 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2198
060e0c75 2199 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2200 if (ret) {
2201 kfree(txq->q.sdesc);
2202 txq->q.sdesc = NULL;
2203 dma_free_coherent(adap->pdev_dev,
2204 nentries * sizeof(struct tx_desc),
2205 txq->q.desc, txq->q.phys_addr);
2206 txq->q.desc = NULL;
2207 return ret;
2208 }
2209
2210 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2211 txq->txq = netdevq;
2212 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2213 txq->mapping_err = 0;
2214 return 0;
2215}
2216
2217int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2218 struct net_device *dev, unsigned int iqid,
2219 unsigned int cmplqid)
2220{
2221 int ret, nentries;
2222 struct fw_eq_ctrl_cmd c;
52367a76 2223 struct sge *s = &adap->sge;
fd3a4790
DM
2224 struct port_info *pi = netdev_priv(dev);
2225
2226 /* Add status entries */
52367a76 2227 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2228
2229 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2230 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
ad6bad3e 2231 NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2232 if (!txq->q.desc)
2233 return -ENOMEM;
2234
2235 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2236 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2237 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2238 FW_EQ_CTRL_CMD_VFN(0));
fd3a4790
DM
2239 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2240 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2241 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2242 c.physeqid_pkd = htonl(0);
2243 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2244 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2245 FW_EQ_CTRL_CMD_FETCHRO |
fd3a4790
DM
2246 FW_EQ_CTRL_CMD_IQID(iqid));
2247 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2248 FW_EQ_CTRL_CMD_FBMAX(3) |
2249 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2250 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2251 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2252
060e0c75 2253 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2254 if (ret) {
2255 dma_free_coherent(adap->pdev_dev,
2256 nentries * sizeof(struct tx_desc),
2257 txq->q.desc, txq->q.phys_addr);
2258 txq->q.desc = NULL;
2259 return ret;
2260 }
2261
2262 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2263 txq->adap = adap;
2264 skb_queue_head_init(&txq->sendq);
2265 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2266 txq->full = 0;
2267 return 0;
2268}
2269
2270int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2271 struct net_device *dev, unsigned int iqid)
2272{
2273 int ret, nentries;
2274 struct fw_eq_ofld_cmd c;
52367a76 2275 struct sge *s = &adap->sge;
fd3a4790
DM
2276 struct port_info *pi = netdev_priv(dev);
2277
2278 /* Add status entries */
52367a76 2279 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2280
2281 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2282 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2283 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2284 NUMA_NO_NODE);
fd3a4790
DM
2285 if (!txq->q.desc)
2286 return -ENOMEM;
2287
2288 memset(&c, 0, sizeof(c));
2289 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2290 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2291 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2292 FW_EQ_OFLD_CMD_VFN(0));
fd3a4790
DM
2293 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2294 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2295 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2296 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2297 FW_EQ_OFLD_CMD_FETCHRO(1) |
fd3a4790
DM
2298 FW_EQ_OFLD_CMD_IQID(iqid));
2299 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2300 FW_EQ_OFLD_CMD_FBMAX(3) |
2301 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2302 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2303 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2304
060e0c75 2305 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2306 if (ret) {
2307 kfree(txq->q.sdesc);
2308 txq->q.sdesc = NULL;
2309 dma_free_coherent(adap->pdev_dev,
2310 nentries * sizeof(struct tx_desc),
2311 txq->q.desc, txq->q.phys_addr);
2312 txq->q.desc = NULL;
2313 return ret;
2314 }
2315
2316 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2317 txq->adap = adap;
2318 skb_queue_head_init(&txq->sendq);
2319 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2320 txq->full = 0;
2321 txq->mapping_err = 0;
2322 return 0;
2323}
2324
2325static void free_txq(struct adapter *adap, struct sge_txq *q)
2326{
52367a76
VP
2327 struct sge *s = &adap->sge;
2328
fd3a4790 2329 dma_free_coherent(adap->pdev_dev,
52367a76 2330 q->size * sizeof(struct tx_desc) + s->stat_len,
fd3a4790
DM
2331 q->desc, q->phys_addr);
2332 q->cntxt_id = 0;
2333 q->sdesc = NULL;
2334 q->desc = NULL;
2335}
2336
2337static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2338 struct sge_fl *fl)
2339{
52367a76 2340 struct sge *s = &adap->sge;
fd3a4790
DM
2341 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2342
e46dab4d 2343 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
060e0c75
DM
2344 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2345 rq->cntxt_id, fl_id, 0xffff);
fd3a4790
DM
2346 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2347 rq->desc, rq->phys_addr);
2348 netif_napi_del(&rq->napi);
2349 rq->netdev = NULL;
2350 rq->cntxt_id = rq->abs_id = 0;
2351 rq->desc = NULL;
2352
2353 if (fl) {
2354 free_rx_bufs(adap, fl, fl->avail);
52367a76 2355 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fd3a4790
DM
2356 fl->desc, fl->addr);
2357 kfree(fl->sdesc);
2358 fl->sdesc = NULL;
2359 fl->cntxt_id = 0;
2360 fl->desc = NULL;
2361 }
2362}
2363
2364/**
2365 * t4_free_sge_resources - free SGE resources
2366 * @adap: the adapter
2367 *
2368 * Frees resources used by the SGE queue sets.
2369 */
2370void t4_free_sge_resources(struct adapter *adap)
2371{
2372 int i;
2373 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2374 struct sge_eth_txq *etq = adap->sge.ethtxq;
2375 struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2376
2377 /* clean up Ethernet Tx/Rx queues */
2378 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2379 if (eq->rspq.desc)
2380 free_rspq_fl(adap, &eq->rspq, &eq->fl);
2381 if (etq->q.desc) {
060e0c75
DM
2382 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2383 etq->q.cntxt_id);
fd3a4790
DM
2384 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2385 kfree(etq->q.sdesc);
2386 free_txq(adap, &etq->q);
2387 }
2388 }
2389
2390 /* clean up RDMA and iSCSI Rx queues */
2391 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2392 if (oq->rspq.desc)
2393 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2394 }
2395 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2396 if (oq->rspq.desc)
2397 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2398 }
2399
2400 /* clean up offload Tx queues */
2401 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2402 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2403
2404 if (q->q.desc) {
2405 tasklet_kill(&q->qresume_tsk);
060e0c75
DM
2406 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2407 q->q.cntxt_id);
fd3a4790
DM
2408 free_tx_desc(adap, &q->q, q->q.in_use, false);
2409 kfree(q->q.sdesc);
2410 __skb_queue_purge(&q->sendq);
2411 free_txq(adap, &q->q);
2412 }
2413 }
2414
2415 /* clean up control Tx queues */
2416 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2417 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2418
2419 if (cq->q.desc) {
2420 tasklet_kill(&cq->qresume_tsk);
060e0c75
DM
2421 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2422 cq->q.cntxt_id);
fd3a4790
DM
2423 __skb_queue_purge(&cq->sendq);
2424 free_txq(adap, &cq->q);
2425 }
2426 }
2427
2428 if (adap->sge.fw_evtq.desc)
2429 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2430
2431 if (adap->sge.intrq.desc)
2432 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2433
2434 /* clear the reverse egress queue map */
2435 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2436}
2437
2438void t4_sge_start(struct adapter *adap)
2439{
2440 adap->sge.ethtxq_rover = 0;
2441 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2442 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2443}
2444
2445/**
2446 * t4_sge_stop - disable SGE operation
2447 * @adap: the adapter
2448 *
2449 * Stop tasklets and timers associated with the DMA engine. Note that
2450 * this is effective only if measures have been taken to disable any HW
2451 * events that may restart them.
2452 */
2453void t4_sge_stop(struct adapter *adap)
2454{
2455 int i;
2456 struct sge *s = &adap->sge;
2457
2458 if (in_interrupt()) /* actions below require waiting */
2459 return;
2460
2461 if (s->rx_timer.function)
2462 del_timer_sync(&s->rx_timer);
2463 if (s->tx_timer.function)
2464 del_timer_sync(&s->tx_timer);
2465
2466 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2467 struct sge_ofld_txq *q = &s->ofldtxq[i];
2468
2469 if (q->q.desc)
2470 tasklet_kill(&q->qresume_tsk);
2471 }
2472 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2473 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2474
2475 if (cq->q.desc)
2476 tasklet_kill(&cq->qresume_tsk);
2477 }
2478}
2479
2480/**
2481 * t4_sge_init - initialize SGE
2482 * @adap: the adapter
2483 *
2484 * Performs SGE initialization needed every time after a chip reset.
2485 * We do not initialize any of the queues here, instead the driver
2486 * top-level must request them individually.
52367a76
VP
2487 *
2488 * Called in two different modes:
2489 *
2490 * 1. Perform actual hardware initialization and record hard-coded
2491 * parameters which were used. This gets used when we're the
2492 * Master PF and the Firmware Configuration File support didn't
2493 * work for some reason.
2494 *
2495 * 2. We're not the Master PF or initialization was performed with
2496 * a Firmware Configuration File. In this case we need to grab
2497 * any of the SGE operating parameters that we need to have in
2498 * order to do our job and make sure we can live with them ...
fd3a4790 2499 */
52367a76
VP
2500
2501static int t4_sge_init_soft(struct adapter *adap)
fd3a4790
DM
2502{
2503 struct sge *s = &adap->sge;
52367a76
VP
2504 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2505 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2506 u32 ingress_rx_threshold;
fd3a4790 2507
52367a76
VP
2508 /*
2509 * Verify that CPL messages are going to the Ingress Queue for
2510 * process_responses() and that only packet data is going to the
2511 * Free Lists.
2512 */
2513 if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2514 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2515 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2516 return -EINVAL;
2517 }
2518
2519 /*
2520 * Validate the Host Buffer Register Array indices that we want to
2521 * use ...
2522 *
2523 * XXX Note that we should really read through the Host Buffer Size
2524 * XXX register array and find the indices of the Buffer Sizes which
2525 * XXX meet our needs!
2526 */
2527 #define READ_FL_BUF(x) \
2528 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2529
2530 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2531 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2532 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2533 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2534
2535 #undef READ_FL_BUF
2536
2537 if (fl_small_pg != PAGE_SIZE ||
2538 (fl_large_pg != 0 && (fl_large_pg <= fl_small_pg ||
2539 (fl_large_pg & (fl_large_pg-1)) != 0))) {
2540 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2541 fl_small_pg, fl_large_pg);
2542 return -EINVAL;
2543 }
2544 if (fl_large_pg)
2545 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2546
2547 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2548 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2549 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2550 fl_small_mtu, fl_large_mtu);
2551 return -EINVAL;
2552 }
2553
2554 /*
2555 * Retrieve our RX interrupt holdoff timer values and counter
2556 * threshold values from the SGE parameters.
2557 */
2558 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2559 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2560 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2561 s->timer_val[0] = core_ticks_to_us(adap,
2562 TIMERVALUE0_GET(timer_value_0_and_1));
2563 s->timer_val[1] = core_ticks_to_us(adap,
2564 TIMERVALUE1_GET(timer_value_0_and_1));
2565 s->timer_val[2] = core_ticks_to_us(adap,
2566 TIMERVALUE2_GET(timer_value_2_and_3));
2567 s->timer_val[3] = core_ticks_to_us(adap,
2568 TIMERVALUE3_GET(timer_value_2_and_3));
2569 s->timer_val[4] = core_ticks_to_us(adap,
2570 TIMERVALUE4_GET(timer_value_4_and_5));
2571 s->timer_val[5] = core_ticks_to_us(adap,
2572 TIMERVALUE5_GET(timer_value_4_and_5));
2573
2574 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2575 s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2576 s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2577 s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2578 s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2579
2580 return 0;
2581}
2582
2583static int t4_sge_init_hard(struct adapter *adap)
2584{
2585 struct sge *s = &adap->sge;
2586
2587 /*
2588 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2589 * Queue and Packet Date to the Free List.
2590 */
2591 t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2592 RXPKTCPLMODE_MASK);
060e0c75 2593
3069ee9b
VP
2594 /*
2595 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2596 * and generate an interrupt when this occurs so we can recover.
2597 */
0a57a536
SR
2598 if (is_t4(adap->chip)) {
2599 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2600 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2601 V_LP_INT_THRESH(M_LP_INT_THRESH),
2602 V_HP_INT_THRESH(dbfifo_int_thresh) |
2603 V_LP_INT_THRESH(dbfifo_int_thresh));
2604 } else {
2605 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2606 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2607 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2608 t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2609 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2610 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2611 }
881806bc
VP
2612 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2613 F_ENABLE_DROP);
2614
52367a76
VP
2615 /*
2616 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2617 * t4_fixup_host_params().
2618 */
2619 s->fl_pg_order = FL_PG_ORDER;
2620 if (s->fl_pg_order)
2621 t4_write_reg(adap,
2622 SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2623 PAGE_SIZE << FL_PG_ORDER);
2624 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2625 FL_MTU_SMALL_BUFSIZE(adap));
2626 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2627 FL_MTU_LARGE_BUFSIZE(adap));
2628
2629 /*
2630 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2631 * Timer Holdoff values must be supplied by our caller.
2632 */
fd3a4790
DM
2633 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2634 THRESHOLD_0(s->counter_val[0]) |
2635 THRESHOLD_1(s->counter_val[1]) |
2636 THRESHOLD_2(s->counter_val[2]) |
2637 THRESHOLD_3(s->counter_val[3]));
2638 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2639 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2640 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2641 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
52367a76
VP
2642 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2643 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
fd3a4790 2644 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
52367a76
VP
2645 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2646 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2647
2648 return 0;
2649}
2650
2651int t4_sge_init(struct adapter *adap)
2652{
2653 struct sge *s = &adap->sge;
2654 u32 sge_control;
2655 int ret;
2656
2657 /*
2658 * Ingress Padding Boundary and Egress Status Page Size are set up by
2659 * t4_fixup_host_params().
2660 */
2661 sge_control = t4_read_reg(adap, SGE_CONTROL);
2662 s->pktshift = PKTSHIFT_GET(sge_control);
2663 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2664 s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2665 X_INGPADBOUNDARY_SHIFT);
2666
2667 if (adap->flags & USING_SOFT_PARAMS)
2668 ret = t4_sge_init_soft(adap);
2669 else
2670 ret = t4_sge_init_hard(adap);
2671 if (ret < 0)
2672 return ret;
2673
2674 /*
2675 * A FL with <= fl_starve_thres buffers is starving and a periodic
2676 * timer will attempt to refill it. This needs to be larger than the
2677 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2678 * stuck waiting for new packets while the SGE is waiting for us to
2679 * give it more Free List entries. (Note that the SGE's Egress
2680 * Congestion Threshold is in units of 2 Free List pointers.)
2681 */
2682 s->fl_starve_thres
2683 = EGRTHRESHOLD_GET(t4_read_reg(adap, SGE_CONM_CTRL))*2 + 1;
2684
fd3a4790
DM
2685 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2686 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2687 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2688 s->idma_state[0] = s->idma_state[1] = 0;
2689 spin_lock_init(&s->intrq_lock);
52367a76
VP
2690
2691 return 0;
fd3a4790 2692}
This page took 0.41911 seconds and 5 git commands to generate.