cxgb4vf: Move fl_starv_thres into adapter->sge data structure
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
CommitLineData
fd3a4790
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
fd3a4790
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
70c71606 42#include <linux/prefetch.h>
ee40fa06 43#include <linux/export.h>
fd3a4790
DM
44#include <net/ipv6.h>
45#include <net/tcp.h>
46#include "cxgb4.h"
47#include "t4_regs.h"
48#include "t4_msg.h"
49#include "t4fw_api.h"
50
51/*
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
54 */
55#if PAGE_SHIFT >= 16
56# define FL_PG_ORDER 0
57#else
58# define FL_PG_ORDER (16 - PAGE_SHIFT)
59#endif
60
61/* RX_PULL_LEN should be <= RX_COPY_THRES */
62#define RX_COPY_THRES 256
63#define RX_PULL_LEN 128
64
65/*
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 */
69#define RX_PKT_SKB_LEN 512
70
fd3a4790
DM
71/*
72 * Max number of Tx descriptors we clean up at a time. Should be modest as
73 * freeing skbs isn't cheap and it happens while holding locks. We just need
74 * to free packets faster than they arrive, we eventually catch up and keep
75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
76 */
77#define MAX_TX_RECLAIM 16
78
79/*
80 * Max number of Rx buffers we replenish at a time. Again keep this modest,
81 * allocating buffers isn't cheap either.
82 */
83#define MAX_RX_REFILL 16U
84
85/*
86 * Period of the Rx queue check timer. This timer is infrequent as it has
87 * something to do only when the system experiences severe memory shortage.
88 */
89#define RX_QCHECK_PERIOD (HZ / 2)
90
91/*
92 * Period of the Tx queue check timer.
93 */
94#define TX_QCHECK_PERIOD (HZ / 2)
95
0f4d201f
KS
96/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
97 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
98 * State Machines in the same state for this amount of time (in HZ) then we'll
99 * issue a warning about a potential hang. We'll repeat the warning as the
100 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
101 * the situation clears. If the situation clears, we'll note that as well.
102 */
103#define SGE_IDMA_WARN_THRESH (1 * HZ)
104#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
105
fd3a4790
DM
106/*
107 * Max number of Tx descriptors to be reclaimed by the Tx timer.
108 */
109#define MAX_TIMER_TX_RECLAIM 100
110
111/*
112 * Timer index used when backing off due to memory shortage.
113 */
114#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
115
116/*
117 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
118 * attempt to refill it.
119 */
120#define FL_STARVE_THRES 4
121
122/*
123 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
124 * This is the same as calc_tx_descs() for a TSO packet with
125 * nr_frags == MAX_SKB_FRAGS.
126 */
127#define ETHTXQ_STOP_THRES \
128 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
129
130/*
131 * Suspension threshold for non-Ethernet Tx queues. We require enough room
132 * for a full sized WR.
133 */
134#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
135
136/*
137 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
138 * into a WR.
139 */
140#define MAX_IMM_TX_PKT_LEN 128
141
142/*
143 * Max size of a WR sent through a control Tx queue.
144 */
145#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
146
fd3a4790
DM
147struct tx_sw_desc { /* SW state per Tx descriptor */
148 struct sk_buff *skb;
149 struct ulptx_sgl *sgl;
150};
151
152struct rx_sw_desc { /* SW state per Rx descriptor */
153 struct page *page;
154 dma_addr_t dma_addr;
155};
156
157/*
52367a76
VP
158 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
159 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
160 * We could easily support more but there doesn't seem to be much need for
161 * that ...
162 */
163#define FL_MTU_SMALL 1500
164#define FL_MTU_LARGE 9000
165
166static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
167 unsigned int mtu)
168{
169 struct sge *s = &adapter->sge;
170
171 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
172}
173
174#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
175#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
176
177/*
178 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
179 * these to specify the buffer size as an index into the SGE Free List Buffer
180 * Size register array. We also use bit 4, when the buffer has been unmapped
181 * for DMA, but this is of course never sent to the hardware and is only used
182 * to prevent double unmappings. All of the above requires that the Free List
183 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
184 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
185 * Free List Buffer alignment is 32 bytes, this works out for us ...
fd3a4790
DM
186 */
187enum {
52367a76
VP
188 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
189 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
190 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
191
192 /*
193 * XXX We shouldn't depend on being able to use these indices.
194 * XXX Especially when some other Master PF has initialized the
195 * XXX adapter or we use the Firmware Configuration File. We
196 * XXX should really search through the Host Buffer Size register
197 * XXX array for the appropriately sized buffer indices.
198 */
199 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
200 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
201
202 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
203 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
fd3a4790
DM
204};
205
e553ec3f
HS
206static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
207#define MIN_NAPI_WORK 1
208
fd3a4790
DM
209static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
210{
52367a76 211 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
fd3a4790
DM
212}
213
214static inline bool is_buf_mapped(const struct rx_sw_desc *d)
215{
216 return !(d->dma_addr & RX_UNMAPPED_BUF);
217}
218
219/**
220 * txq_avail - return the number of available slots in a Tx queue
221 * @q: the Tx queue
222 *
223 * Returns the number of descriptors in a Tx queue available to write new
224 * packets.
225 */
226static inline unsigned int txq_avail(const struct sge_txq *q)
227{
228 return q->size - 1 - q->in_use;
229}
230
231/**
232 * fl_cap - return the capacity of a free-buffer list
233 * @fl: the FL
234 *
235 * Returns the capacity of a free-buffer list. The capacity is less than
236 * the size because one descriptor needs to be left unpopulated, otherwise
237 * HW will think the FL is empty.
238 */
239static inline unsigned int fl_cap(const struct sge_fl *fl)
240{
241 return fl->size - 8; /* 1 descriptor = 8 buffers */
242}
243
244static inline bool fl_starving(const struct sge_fl *fl)
245{
246 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
247}
248
249static int map_skb(struct device *dev, const struct sk_buff *skb,
250 dma_addr_t *addr)
251{
252 const skb_frag_t *fp, *end;
253 const struct skb_shared_info *si;
254
255 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
256 if (dma_mapping_error(dev, *addr))
257 goto out_err;
258
259 si = skb_shinfo(skb);
260 end = &si->frags[si->nr_frags];
261
262 for (fp = si->frags; fp < end; fp++) {
e91b0f24
IC
263 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
264 DMA_TO_DEVICE);
fd3a4790
DM
265 if (dma_mapping_error(dev, *addr))
266 goto unwind;
267 }
268 return 0;
269
270unwind:
271 while (fp-- > si->frags)
9e903e08 272 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
273
274 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
275out_err:
276 return -ENOMEM;
277}
278
279#ifdef CONFIG_NEED_DMA_MAP_STATE
280static void unmap_skb(struct device *dev, const struct sk_buff *skb,
281 const dma_addr_t *addr)
282{
283 const skb_frag_t *fp, *end;
284 const struct skb_shared_info *si;
285
286 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
287
288 si = skb_shinfo(skb);
289 end = &si->frags[si->nr_frags];
290 for (fp = si->frags; fp < end; fp++)
9e903e08 291 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
292}
293
294/**
295 * deferred_unmap_destructor - unmap a packet when it is freed
296 * @skb: the packet
297 *
298 * This is the packet destructor used for Tx packets that need to remain
299 * mapped until they are freed rather than until their Tx descriptors are
300 * freed.
301 */
302static void deferred_unmap_destructor(struct sk_buff *skb)
303{
304 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
305}
306#endif
307
308static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
309 const struct ulptx_sgl *sgl, const struct sge_txq *q)
310{
311 const struct ulptx_sge_pair *p;
312 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
313
314 if (likely(skb_headlen(skb)))
315 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
316 DMA_TO_DEVICE);
317 else {
318 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
319 DMA_TO_DEVICE);
320 nfrags--;
321 }
322
323 /*
324 * the complexity below is because of the possibility of a wrap-around
325 * in the middle of an SGL
326 */
327 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
328 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
329unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
330 ntohl(p->len[0]), DMA_TO_DEVICE);
331 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
332 ntohl(p->len[1]), DMA_TO_DEVICE);
333 p++;
334 } else if ((u8 *)p == (u8 *)q->stat) {
335 p = (const struct ulptx_sge_pair *)q->desc;
336 goto unmap;
337 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
338 const __be64 *addr = (const __be64 *)q->desc;
339
340 dma_unmap_page(dev, be64_to_cpu(addr[0]),
341 ntohl(p->len[0]), DMA_TO_DEVICE);
342 dma_unmap_page(dev, be64_to_cpu(addr[1]),
343 ntohl(p->len[1]), DMA_TO_DEVICE);
344 p = (const struct ulptx_sge_pair *)&addr[2];
345 } else {
346 const __be64 *addr = (const __be64 *)q->desc;
347
348 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
349 ntohl(p->len[0]), DMA_TO_DEVICE);
350 dma_unmap_page(dev, be64_to_cpu(addr[0]),
351 ntohl(p->len[1]), DMA_TO_DEVICE);
352 p = (const struct ulptx_sge_pair *)&addr[1];
353 }
354 }
355 if (nfrags) {
356 __be64 addr;
357
358 if ((u8 *)p == (u8 *)q->stat)
359 p = (const struct ulptx_sge_pair *)q->desc;
360 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
361 *(const __be64 *)q->desc;
362 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
363 DMA_TO_DEVICE);
364 }
365}
366
367/**
368 * free_tx_desc - reclaims Tx descriptors and their buffers
369 * @adapter: the adapter
370 * @q: the Tx queue to reclaim descriptors from
371 * @n: the number of descriptors to reclaim
372 * @unmap: whether the buffers should be unmapped for DMA
373 *
374 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
375 * Tx buffers. Called with the Tx queue lock held.
376 */
377static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
378 unsigned int n, bool unmap)
379{
380 struct tx_sw_desc *d;
381 unsigned int cidx = q->cidx;
382 struct device *dev = adap->pdev_dev;
383
384 d = &q->sdesc[cidx];
385 while (n--) {
386 if (d->skb) { /* an SGL is present */
387 if (unmap)
388 unmap_sgl(dev, d->skb, d->sgl, q);
a7525198 389 dev_consume_skb_any(d->skb);
fd3a4790
DM
390 d->skb = NULL;
391 }
392 ++d;
393 if (++cidx == q->size) {
394 cidx = 0;
395 d = q->sdesc;
396 }
397 }
398 q->cidx = cidx;
399}
400
401/*
402 * Return the number of reclaimable descriptors in a Tx queue.
403 */
404static inline int reclaimable(const struct sge_txq *q)
405{
406 int hw_cidx = ntohs(q->stat->cidx);
407 hw_cidx -= q->cidx;
408 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
409}
410
411/**
412 * reclaim_completed_tx - reclaims completed Tx descriptors
413 * @adap: the adapter
414 * @q: the Tx queue to reclaim completed descriptors from
415 * @unmap: whether the buffers should be unmapped for DMA
416 *
417 * Reclaims Tx descriptors that the SGE has indicated it has processed,
418 * and frees the associated buffers if possible. Called with the Tx
419 * queue locked.
420 */
421static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
422 bool unmap)
423{
424 int avail = reclaimable(q);
425
426 if (avail) {
427 /*
428 * Limit the amount of clean up work we do at a time to keep
429 * the Tx lock hold time O(1).
430 */
431 if (avail > MAX_TX_RECLAIM)
432 avail = MAX_TX_RECLAIM;
433
434 free_tx_desc(adap, q, avail, unmap);
435 q->in_use -= avail;
436 }
437}
438
52367a76
VP
439static inline int get_buf_size(struct adapter *adapter,
440 const struct rx_sw_desc *d)
fd3a4790 441{
52367a76
VP
442 struct sge *s = &adapter->sge;
443 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
444 int buf_size;
445
446 switch (rx_buf_size_idx) {
447 case RX_SMALL_PG_BUF:
448 buf_size = PAGE_SIZE;
449 break;
450
451 case RX_LARGE_PG_BUF:
452 buf_size = PAGE_SIZE << s->fl_pg_order;
453 break;
454
455 case RX_SMALL_MTU_BUF:
456 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
457 break;
458
459 case RX_LARGE_MTU_BUF:
460 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
461 break;
462
463 default:
464 BUG_ON(1);
465 }
466
467 return buf_size;
fd3a4790
DM
468}
469
470/**
471 * free_rx_bufs - free the Rx buffers on an SGE free list
472 * @adap: the adapter
473 * @q: the SGE free list to free buffers from
474 * @n: how many buffers to free
475 *
476 * Release the next @n buffers on an SGE free-buffer Rx queue. The
477 * buffers must be made inaccessible to HW before calling this function.
478 */
479static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
480{
481 while (n--) {
482 struct rx_sw_desc *d = &q->sdesc[q->cidx];
483
484 if (is_buf_mapped(d))
485 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76
VP
486 get_buf_size(adap, d),
487 PCI_DMA_FROMDEVICE);
fd3a4790
DM
488 put_page(d->page);
489 d->page = NULL;
490 if (++q->cidx == q->size)
491 q->cidx = 0;
492 q->avail--;
493 }
494}
495
496/**
497 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
498 * @adap: the adapter
499 * @q: the SGE free list
500 *
501 * Unmap the current buffer on an SGE free-buffer Rx queue. The
502 * buffer must be made inaccessible to HW before calling this function.
503 *
504 * This is similar to @free_rx_bufs above but does not free the buffer.
505 * Do note that the FL still loses any further access to the buffer.
506 */
507static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
508{
509 struct rx_sw_desc *d = &q->sdesc[q->cidx];
510
511 if (is_buf_mapped(d))
512 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76 513 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
fd3a4790
DM
514 d->page = NULL;
515 if (++q->cidx == q->size)
516 q->cidx = 0;
517 q->avail--;
518}
519
520static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
521{
0a57a536 522 u32 val;
fd3a4790 523 if (q->pend_cred >= 8) {
0a57a536 524 val = PIDX(q->pend_cred / 8);
d14807dd 525 if (!is_t4(adap->params.chip))
0a57a536 526 val |= DBTYPE(1);
d63a6dcf 527 val |= DBPRIO(1);
fd3a4790 528 wmb();
d63a6dcf
HS
529
530 /* If we're on T4, use the old doorbell mechanism; otherwise
531 * use the new BAR2 mechanism.
532 */
533 if (is_t4(adap->params.chip)) {
534 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
535 val | QID(q->cntxt_id));
536 } else {
537 writel(val, adap->bar2 + q->udb + SGE_UDB_KDOORBELL);
538
539 /* This Write memory Barrier will force the write to
540 * the User Doorbell area to be flushed.
541 */
542 wmb();
543 }
fd3a4790
DM
544 q->pend_cred &= 7;
545 }
546}
547
548static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
549 dma_addr_t mapping)
550{
551 sd->page = pg;
552 sd->dma_addr = mapping; /* includes size low bits */
553}
554
555/**
556 * refill_fl - refill an SGE Rx buffer ring
557 * @adap: the adapter
558 * @q: the ring to refill
559 * @n: the number of new buffers to allocate
560 * @gfp: the gfp flags for the allocations
561 *
562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
563 * allocated with the supplied gfp flags. The caller must assure that
564 * @n does not exceed the queue's capacity. If afterwards the queue is
565 * found critically low mark it as starving in the bitmap of starving FLs.
566 *
567 * Returns the number of buffers allocated.
568 */
569static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
570 gfp_t gfp)
571{
52367a76 572 struct sge *s = &adap->sge;
fd3a4790
DM
573 struct page *pg;
574 dma_addr_t mapping;
575 unsigned int cred = q->avail;
576 __be64 *d = &q->desc[q->pidx];
577 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
578
1f2149c1 579 gfp |= __GFP_NOWARN | __GFP_COLD;
fd3a4790 580
52367a76
VP
581 if (s->fl_pg_order == 0)
582 goto alloc_small_pages;
583
fd3a4790
DM
584 /*
585 * Prefer large buffers
586 */
587 while (n) {
52367a76 588 pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
fd3a4790
DM
589 if (unlikely(!pg)) {
590 q->large_alloc_failed++;
591 break; /* fall back to single pages */
592 }
593
594 mapping = dma_map_page(adap->pdev_dev, pg, 0,
52367a76 595 PAGE_SIZE << s->fl_pg_order,
fd3a4790
DM
596 PCI_DMA_FROMDEVICE);
597 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
52367a76 598 __free_pages(pg, s->fl_pg_order);
fd3a4790
DM
599 goto out; /* do not try small pages for this error */
600 }
52367a76 601 mapping |= RX_LARGE_PG_BUF;
fd3a4790
DM
602 *d++ = cpu_to_be64(mapping);
603
604 set_rx_sw_desc(sd, pg, mapping);
605 sd++;
606
607 q->avail++;
608 if (++q->pidx == q->size) {
609 q->pidx = 0;
610 sd = q->sdesc;
611 d = q->desc;
612 }
613 n--;
614 }
fd3a4790 615
52367a76 616alloc_small_pages:
fd3a4790 617 while (n--) {
0614002b 618 pg = __skb_alloc_page(gfp, NULL);
fd3a4790
DM
619 if (unlikely(!pg)) {
620 q->alloc_failed++;
621 break;
622 }
623
624 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
625 PCI_DMA_FROMDEVICE);
626 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
1f2149c1 627 put_page(pg);
fd3a4790
DM
628 goto out;
629 }
630 *d++ = cpu_to_be64(mapping);
631
632 set_rx_sw_desc(sd, pg, mapping);
633 sd++;
634
635 q->avail++;
636 if (++q->pidx == q->size) {
637 q->pidx = 0;
638 sd = q->sdesc;
639 d = q->desc;
640 }
641 }
642
643out: cred = q->avail - cred;
644 q->pend_cred += cred;
645 ring_fl_db(adap, q);
646
647 if (unlikely(fl_starving(q))) {
648 smp_wmb();
e46dab4d
DM
649 set_bit(q->cntxt_id - adap->sge.egr_start,
650 adap->sge.starving_fl);
fd3a4790
DM
651 }
652
653 return cred;
654}
655
656static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
657{
658 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
659 GFP_ATOMIC);
660}
661
662/**
663 * alloc_ring - allocate resources for an SGE descriptor ring
664 * @dev: the PCI device's core device
665 * @nelem: the number of descriptors
666 * @elem_size: the size of each descriptor
667 * @sw_size: the size of the SW state associated with each ring element
668 * @phys: the physical address of the allocated ring
669 * @metadata: address of the array holding the SW state for the ring
670 * @stat_size: extra space in HW ring for status information
ad6bad3e 671 * @node: preferred node for memory allocations
fd3a4790
DM
672 *
673 * Allocates resources for an SGE descriptor ring, such as Tx queues,
674 * free buffer lists, or response queues. Each SGE ring requires
675 * space for its HW descriptors plus, optionally, space for the SW state
676 * associated with each HW entry (the metadata). The function returns
677 * three values: the virtual address for the HW ring (the return value
678 * of the function), the bus address of the HW ring, and the address
679 * of the SW ring.
680 */
681static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
682 size_t sw_size, dma_addr_t *phys, void *metadata,
ad6bad3e 683 size_t stat_size, int node)
fd3a4790
DM
684{
685 size_t len = nelem * elem_size + stat_size;
686 void *s = NULL;
687 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
688
689 if (!p)
690 return NULL;
691 if (sw_size) {
ad6bad3e 692 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
fd3a4790
DM
693
694 if (!s) {
695 dma_free_coherent(dev, len, p, *phys);
696 return NULL;
697 }
698 }
699 if (metadata)
700 *(void **)metadata = s;
701 memset(p, 0, len);
702 return p;
703}
704
705/**
706 * sgl_len - calculates the size of an SGL of the given capacity
707 * @n: the number of SGL entries
708 *
709 * Calculates the number of flits needed for a scatter/gather list that
710 * can hold the given number of entries.
711 */
712static inline unsigned int sgl_len(unsigned int n)
713{
714 n--;
715 return (3 * n) / 2 + (n & 1) + 2;
716}
717
718/**
719 * flits_to_desc - returns the num of Tx descriptors for the given flits
720 * @n: the number of flits
721 *
722 * Returns the number of Tx descriptors needed for the supplied number
723 * of flits.
724 */
725static inline unsigned int flits_to_desc(unsigned int n)
726{
727 BUG_ON(n > SGE_MAX_WR_LEN / 8);
728 return DIV_ROUND_UP(n, 8);
729}
730
731/**
732 * is_eth_imm - can an Ethernet packet be sent as immediate data?
733 * @skb: the packet
734 *
735 * Returns whether an Ethernet packet is small enough to fit as
0034b298 736 * immediate data. Return value corresponds to headroom required.
fd3a4790
DM
737 */
738static inline int is_eth_imm(const struct sk_buff *skb)
739{
0034b298
KS
740 int hdrlen = skb_shinfo(skb)->gso_size ?
741 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742
743 hdrlen += sizeof(struct cpl_tx_pkt);
744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 return hdrlen;
746 return 0;
fd3a4790
DM
747}
748
749/**
750 * calc_tx_flits - calculate the number of flits for a packet Tx WR
751 * @skb: the packet
752 *
753 * Returns the number of flits needed for a Tx WR for the given Ethernet
754 * packet, including the needed WR and CPL headers.
755 */
756static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
757{
758 unsigned int flits;
0034b298 759 int hdrlen = is_eth_imm(skb);
fd3a4790 760
0034b298
KS
761 if (hdrlen)
762 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
fd3a4790
DM
763
764 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
765 if (skb_shinfo(skb)->gso_size)
766 flits += 2;
767 return flits;
768}
769
770/**
771 * calc_tx_descs - calculate the number of Tx descriptors for a packet
772 * @skb: the packet
773 *
774 * Returns the number of Tx descriptors needed for the given Ethernet
775 * packet, including the needed WR and CPL headers.
776 */
777static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
778{
779 return flits_to_desc(calc_tx_flits(skb));
780}
781
782/**
783 * write_sgl - populate a scatter/gather list for a packet
784 * @skb: the packet
785 * @q: the Tx queue we are writing into
786 * @sgl: starting location for writing the SGL
787 * @end: points right after the end of the SGL
788 * @start: start offset into skb main-body data to include in the SGL
789 * @addr: the list of bus addresses for the SGL elements
790 *
791 * Generates a gather list for the buffers that make up a packet.
792 * The caller must provide adequate space for the SGL that will be written.
793 * The SGL includes all of the packet's page fragments and the data in its
794 * main body except for the first @start bytes. @sgl must be 16-byte
795 * aligned and within a Tx descriptor with available space. @end points
796 * right after the end of the SGL but does not account for any potential
797 * wrap around, i.e., @end > @sgl.
798 */
799static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
800 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
801 const dma_addr_t *addr)
802{
803 unsigned int i, len;
804 struct ulptx_sge_pair *to;
805 const struct skb_shared_info *si = skb_shinfo(skb);
806 unsigned int nfrags = si->nr_frags;
807 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
808
809 len = skb_headlen(skb) - start;
810 if (likely(len)) {
811 sgl->len0 = htonl(len);
812 sgl->addr0 = cpu_to_be64(addr[0] + start);
813 nfrags++;
814 } else {
9e903e08 815 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
fd3a4790
DM
816 sgl->addr0 = cpu_to_be64(addr[1]);
817 }
818
819 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
820 if (likely(--nfrags == 0))
821 return;
822 /*
823 * Most of the complexity below deals with the possibility we hit the
824 * end of the queue in the middle of writing the SGL. For this case
825 * only we create the SGL in a temporary buffer and then copy it.
826 */
827 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
828
829 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
830 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
831 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
fd3a4790
DM
832 to->addr[0] = cpu_to_be64(addr[i]);
833 to->addr[1] = cpu_to_be64(addr[++i]);
834 }
835 if (nfrags) {
9e903e08 836 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
fd3a4790
DM
837 to->len[1] = cpu_to_be32(0);
838 to->addr[0] = cpu_to_be64(addr[i + 1]);
839 }
840 if (unlikely((u8 *)end > (u8 *)q->stat)) {
841 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
842
843 if (likely(part0))
844 memcpy(sgl->sge, buf, part0);
845 part1 = (u8 *)end - (u8 *)q->stat;
846 memcpy(q->desc, (u8 *)buf + part0, part1);
847 end = (void *)q->desc + part1;
848 }
849 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 850 *end = 0;
fd3a4790
DM
851}
852
fb5ac0de
DC
853/* This function copies a tx_desc struct to memory mapped BAR2 space(user space
854 * writes). For coalesced WR SGE, fetches data from the FIFO instead of from
855 * Host.
22adfe0a 856 */
fb5ac0de 857static void cxgb_pio_copy(u64 __iomem *dst, struct tx_desc *desc)
22adfe0a 858{
fb5ac0de
DC
859 int count = sizeof(*desc) / sizeof(u64);
860 u64 *src = (u64 *)desc;
22adfe0a
SR
861
862 while (count) {
863 writeq(*src, dst);
864 src++;
865 dst++;
866 count--;
867 }
868}
869
fd3a4790
DM
870/**
871 * ring_tx_db - check and potentially ring a Tx queue's doorbell
872 * @adap: the adapter
873 * @q: the Tx queue
874 * @n: number of new descriptors to give to HW
875 *
876 * Ring the doorbel for a Tx queue.
877 */
878static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
879{
880 wmb(); /* write descriptors before telling HW */
d63a6dcf
HS
881
882 if (is_t4(adap->params.chip)) {
883 u32 val = PIDX(n);
884 unsigned long flags;
885
886 /* For T4 we need to participate in the Doorbell Recovery
887 * mechanism.
888 */
889 spin_lock_irqsave(&q->db_lock, flags);
890 if (!q->db_disabled)
22adfe0a 891 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
d63a6dcf
HS
892 QID(q->cntxt_id) | val);
893 else
894 q->db_pidx_inc += n;
895 q->db_pidx = q->pidx;
896 spin_unlock_irqrestore(&q->db_lock, flags);
897 } else {
898 u32 val = PIDX_T5(n);
899
900 /* T4 and later chips share the same PIDX field offset within
901 * the doorbell, but T5 and later shrank the field in order to
902 * gain a bit for Doorbell Priority. The field was absurdly
903 * large in the first place (14 bits) so we just use the T5
904 * and later limits and warn if a Queue ID is too large.
905 */
906 WARN_ON(val & DBPRIO(1));
907
908 /* For T5 and later we use the Write-Combine mapped BAR2 User
909 * Doorbell mechanism. If we're only writing a single TX
910 * Descriptor and TX Write Combining hasn't been disabled, we
911 * can use the Write Combining Gather Buffer; otherwise we use
912 * the simple doorbell.
913 */
914 if (n == 1) {
915 int index = (q->pidx
916 ? (q->pidx - 1)
917 : (q->size - 1));
d63a6dcf 918
fb5ac0de
DC
919 cxgb_pio_copy(adap->bar2 + q->udb + SGE_UDB_WCDOORBELL,
920 q->desc + index);
22adfe0a 921 } else {
d63a6dcf 922 writel(val, adap->bar2 + q->udb + SGE_UDB_KDOORBELL);
22adfe0a 923 }
d63a6dcf
HS
924
925 /* This Write Memory Barrier will force the write to the User
926 * Doorbell area to be flushed. This is needed to prevent
927 * writes on different CPUs for the same queue from hitting
928 * the adapter out of order. This is required when some Work
929 * Requests take the Write Combine Gather Buffer path (user
930 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
931 * take the traditional path where we simply increment the
932 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
933 * hardware DMA read the actual Work Request.
934 */
935 wmb();
936 }
fd3a4790
DM
937}
938
939/**
940 * inline_tx_skb - inline a packet's data into Tx descriptors
941 * @skb: the packet
942 * @q: the Tx queue where the packet will be inlined
943 * @pos: starting position in the Tx queue where to inline the packet
944 *
945 * Inline a packet's contents directly into Tx descriptors, starting at
946 * the given position within the Tx DMA ring.
947 * Most of the complexity of this operation is dealing with wrap arounds
948 * in the middle of the packet we want to inline.
949 */
950static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
951 void *pos)
952{
953 u64 *p;
954 int left = (void *)q->stat - pos;
955
956 if (likely(skb->len <= left)) {
957 if (likely(!skb->data_len))
958 skb_copy_from_linear_data(skb, pos, skb->len);
959 else
960 skb_copy_bits(skb, 0, pos, skb->len);
961 pos += skb->len;
962 } else {
963 skb_copy_bits(skb, 0, pos, left);
964 skb_copy_bits(skb, left, q->desc, skb->len - left);
965 pos = (void *)q->desc + (skb->len - left);
966 }
967
968 /* 0-pad to multiple of 16 */
969 p = PTR_ALIGN(pos, 8);
970 if ((uintptr_t)p & 8)
971 *p = 0;
972}
973
974/*
975 * Figure out what HW csum a packet wants and return the appropriate control
976 * bits.
977 */
978static u64 hwcsum(const struct sk_buff *skb)
979{
980 int csum_type;
981 const struct iphdr *iph = ip_hdr(skb);
982
983 if (iph->version == 4) {
984 if (iph->protocol == IPPROTO_TCP)
985 csum_type = TX_CSUM_TCPIP;
986 else if (iph->protocol == IPPROTO_UDP)
987 csum_type = TX_CSUM_UDPIP;
988 else {
989nocsum: /*
990 * unknown protocol, disable HW csum
991 * and hope a bad packet is detected
992 */
993 return TXPKT_L4CSUM_DIS;
994 }
995 } else {
996 /*
997 * this doesn't work with extension headers
998 */
999 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1000
1001 if (ip6h->nexthdr == IPPROTO_TCP)
1002 csum_type = TX_CSUM_TCPIP6;
1003 else if (ip6h->nexthdr == IPPROTO_UDP)
1004 csum_type = TX_CSUM_UDPIP6;
1005 else
1006 goto nocsum;
1007 }
1008
1009 if (likely(csum_type >= TX_CSUM_TCPIP))
1010 return TXPKT_CSUM_TYPE(csum_type) |
1011 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1012 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1013 else {
1014 int start = skb_transport_offset(skb);
1015
1016 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1017 TXPKT_CSUM_LOC(start + skb->csum_offset);
1018 }
1019}
1020
1021static void eth_txq_stop(struct sge_eth_txq *q)
1022{
1023 netif_tx_stop_queue(q->txq);
1024 q->q.stops++;
1025}
1026
1027static inline void txq_advance(struct sge_txq *q, unsigned int n)
1028{
1029 q->in_use += n;
1030 q->pidx += n;
1031 if (q->pidx >= q->size)
1032 q->pidx -= q->size;
1033}
1034
1035/**
1036 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1037 * @skb: the packet
1038 * @dev: the egress net device
1039 *
1040 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1041 */
1042netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1043{
0034b298 1044 int len;
fd3a4790
DM
1045 u32 wr_mid;
1046 u64 cntrl, *end;
1047 int qidx, credits;
1048 unsigned int flits, ndesc;
1049 struct adapter *adap;
1050 struct sge_eth_txq *q;
1051 const struct port_info *pi;
1052 struct fw_eth_tx_pkt_wr *wr;
1053 struct cpl_tx_pkt_core *cpl;
1054 const struct skb_shared_info *ssi;
1055 dma_addr_t addr[MAX_SKB_FRAGS + 1];
0034b298 1056 bool immediate = false;
fd3a4790
DM
1057
1058 /*
1059 * The chip min packet length is 10 octets but play safe and reject
1060 * anything shorter than an Ethernet header.
1061 */
1062 if (unlikely(skb->len < ETH_HLEN)) {
a7525198 1063out_free: dev_kfree_skb_any(skb);
fd3a4790
DM
1064 return NETDEV_TX_OK;
1065 }
1066
1067 pi = netdev_priv(dev);
1068 adap = pi->adapter;
1069 qidx = skb_get_queue_mapping(skb);
1070 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1071
1072 reclaim_completed_tx(adap, &q->q, true);
1073
1074 flits = calc_tx_flits(skb);
1075 ndesc = flits_to_desc(flits);
1076 credits = txq_avail(&q->q) - ndesc;
1077
1078 if (unlikely(credits < 0)) {
1079 eth_txq_stop(q);
1080 dev_err(adap->pdev_dev,
1081 "%s: Tx ring %u full while queue awake!\n",
1082 dev->name, qidx);
1083 return NETDEV_TX_BUSY;
1084 }
1085
0034b298
KS
1086 if (is_eth_imm(skb))
1087 immediate = true;
1088
1089 if (!immediate &&
fd3a4790
DM
1090 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1091 q->mapping_err++;
1092 goto out_free;
1093 }
1094
1095 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1096 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1097 eth_txq_stop(q);
1098 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1099 }
1100
1101 wr = (void *)&q->q.desc[q->q.pidx];
1102 wr->equiq_to_len16 = htonl(wr_mid);
1103 wr->r3 = cpu_to_be64(0);
1104 end = (u64 *)wr + flits;
1105
0034b298 1106 len = immediate ? skb->len : 0;
fd3a4790
DM
1107 ssi = skb_shinfo(skb);
1108 if (ssi->gso_size) {
625ac6ae 1109 struct cpl_tx_pkt_lso *lso = (void *)wr;
fd3a4790
DM
1110 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1111 int l3hdr_len = skb_network_header_len(skb);
1112 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1113
0034b298 1114 len += sizeof(*lso);
fd3a4790 1115 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
0034b298 1116 FW_WR_IMMDLEN(len));
625ac6ae
DM
1117 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1118 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1119 LSO_IPV6(v6) |
1120 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1121 LSO_IPHDR_LEN(l3hdr_len / 4) |
1122 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1123 lso->c.ipid_ofst = htons(0);
1124 lso->c.mss = htons(ssi->gso_size);
1125 lso->c.seqno_offset = htonl(0);
7207c0d1
HS
1126 if (is_t4(adap->params.chip))
1127 lso->c.len = htonl(skb->len);
1128 else
1129 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
fd3a4790
DM
1130 cpl = (void *)(lso + 1);
1131 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1132 TXPKT_IPHDR_LEN(l3hdr_len) |
1133 TXPKT_ETHHDR_LEN(eth_xtra_len);
1134 q->tso++;
1135 q->tx_cso += ssi->gso_segs;
1136 } else {
ca71de6b 1137 len += sizeof(*cpl);
fd3a4790
DM
1138 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1139 FW_WR_IMMDLEN(len));
1140 cpl = (void *)(wr + 1);
1141 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1142 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1143 q->tx_cso++;
1144 } else
1145 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1146 }
1147
1148 if (vlan_tx_tag_present(skb)) {
1149 q->vlan_ins++;
1150 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1151 }
1152
1153 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1707aec9 1154 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
fd3a4790
DM
1155 cpl->pack = htons(0);
1156 cpl->len = htons(skb->len);
1157 cpl->ctrl1 = cpu_to_be64(cntrl);
1158
0034b298 1159 if (immediate) {
fd3a4790 1160 inline_tx_skb(skb, &q->q, cpl + 1);
a7525198 1161 dev_consume_skb_any(skb);
fd3a4790
DM
1162 } else {
1163 int last_desc;
1164
1165 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1166 addr);
1167 skb_orphan(skb);
1168
1169 last_desc = q->q.pidx + ndesc - 1;
1170 if (last_desc >= q->q.size)
1171 last_desc -= q->q.size;
1172 q->q.sdesc[last_desc].skb = skb;
1173 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1174 }
1175
1176 txq_advance(&q->q, ndesc);
1177
1178 ring_tx_db(adap, &q->q, ndesc);
1179 return NETDEV_TX_OK;
1180}
1181
1182/**
1183 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1184 * @q: the SGE control Tx queue
1185 *
1186 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1187 * that send only immediate data (presently just the control queues) and
1188 * thus do not have any sk_buffs to release.
1189 */
1190static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1191{
1192 int hw_cidx = ntohs(q->stat->cidx);
1193 int reclaim = hw_cidx - q->cidx;
1194
1195 if (reclaim < 0)
1196 reclaim += q->size;
1197
1198 q->in_use -= reclaim;
1199 q->cidx = hw_cidx;
1200}
1201
1202/**
1203 * is_imm - check whether a packet can be sent as immediate data
1204 * @skb: the packet
1205 *
1206 * Returns true if a packet can be sent as a WR with immediate data.
1207 */
1208static inline int is_imm(const struct sk_buff *skb)
1209{
1210 return skb->len <= MAX_CTRL_WR_LEN;
1211}
1212
1213/**
1214 * ctrlq_check_stop - check if a control queue is full and should stop
1215 * @q: the queue
1216 * @wr: most recent WR written to the queue
1217 *
1218 * Check if a control queue has become full and should be stopped.
1219 * We clean up control queue descriptors very lazily, only when we are out.
1220 * If the queue is still full after reclaiming any completed descriptors
1221 * we suspend it and have the last WR wake it up.
1222 */
1223static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1224{
1225 reclaim_completed_tx_imm(&q->q);
1226 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1227 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1228 q->q.stops++;
1229 q->full = 1;
1230 }
1231}
1232
1233/**
1234 * ctrl_xmit - send a packet through an SGE control Tx queue
1235 * @q: the control queue
1236 * @skb: the packet
1237 *
1238 * Send a packet through an SGE control Tx queue. Packets sent through
1239 * a control queue must fit entirely as immediate data.
1240 */
1241static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1242{
1243 unsigned int ndesc;
1244 struct fw_wr_hdr *wr;
1245
1246 if (unlikely(!is_imm(skb))) {
1247 WARN_ON(1);
1248 dev_kfree_skb(skb);
1249 return NET_XMIT_DROP;
1250 }
1251
1252 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1253 spin_lock(&q->sendq.lock);
1254
1255 if (unlikely(q->full)) {
1256 skb->priority = ndesc; /* save for restart */
1257 __skb_queue_tail(&q->sendq, skb);
1258 spin_unlock(&q->sendq.lock);
1259 return NET_XMIT_CN;
1260 }
1261
1262 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1263 inline_tx_skb(skb, &q->q, wr);
1264
1265 txq_advance(&q->q, ndesc);
1266 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1267 ctrlq_check_stop(q, wr);
1268
1269 ring_tx_db(q->adap, &q->q, ndesc);
1270 spin_unlock(&q->sendq.lock);
1271
1272 kfree_skb(skb);
1273 return NET_XMIT_SUCCESS;
1274}
1275
1276/**
1277 * restart_ctrlq - restart a suspended control queue
1278 * @data: the control queue to restart
1279 *
1280 * Resumes transmission on a suspended Tx control queue.
1281 */
1282static void restart_ctrlq(unsigned long data)
1283{
1284 struct sk_buff *skb;
1285 unsigned int written = 0;
1286 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1287
1288 spin_lock(&q->sendq.lock);
1289 reclaim_completed_tx_imm(&q->q);
1290 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1291
1292 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1293 struct fw_wr_hdr *wr;
1294 unsigned int ndesc = skb->priority; /* previously saved */
1295
1296 /*
1297 * Write descriptors and free skbs outside the lock to limit
1298 * wait times. q->full is still set so new skbs will be queued.
1299 */
1300 spin_unlock(&q->sendq.lock);
1301
1302 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1303 inline_tx_skb(skb, &q->q, wr);
1304 kfree_skb(skb);
1305
1306 written += ndesc;
1307 txq_advance(&q->q, ndesc);
1308 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1309 unsigned long old = q->q.stops;
1310
1311 ctrlq_check_stop(q, wr);
1312 if (q->q.stops != old) { /* suspended anew */
1313 spin_lock(&q->sendq.lock);
1314 goto ringdb;
1315 }
1316 }
1317 if (written > 16) {
1318 ring_tx_db(q->adap, &q->q, written);
1319 written = 0;
1320 }
1321 spin_lock(&q->sendq.lock);
1322 }
1323 q->full = 0;
1324ringdb: if (written)
1325 ring_tx_db(q->adap, &q->q, written);
1326 spin_unlock(&q->sendq.lock);
1327}
1328
1329/**
1330 * t4_mgmt_tx - send a management message
1331 * @adap: the adapter
1332 * @skb: the packet containing the management message
1333 *
1334 * Send a management message through control queue 0.
1335 */
1336int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1337{
1338 int ret;
1339
1340 local_bh_disable();
1341 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1342 local_bh_enable();
1343 return ret;
1344}
1345
1346/**
1347 * is_ofld_imm - check whether a packet can be sent as immediate data
1348 * @skb: the packet
1349 *
1350 * Returns true if a packet can be sent as an offload WR with immediate
1351 * data. We currently use the same limit as for Ethernet packets.
1352 */
1353static inline int is_ofld_imm(const struct sk_buff *skb)
1354{
1355 return skb->len <= MAX_IMM_TX_PKT_LEN;
1356}
1357
1358/**
1359 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1360 * @skb: the packet
1361 *
1362 * Returns the number of flits needed for the given offload packet.
1363 * These packets are already fully constructed and no additional headers
1364 * will be added.
1365 */
1366static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1367{
1368 unsigned int flits, cnt;
1369
1370 if (is_ofld_imm(skb))
1371 return DIV_ROUND_UP(skb->len, 8);
1372
1373 flits = skb_transport_offset(skb) / 8U; /* headers */
1374 cnt = skb_shinfo(skb)->nr_frags;
15dd16c2 1375 if (skb_tail_pointer(skb) != skb_transport_header(skb))
fd3a4790
DM
1376 cnt++;
1377 return flits + sgl_len(cnt);
1378}
1379
1380/**
1381 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1382 * @adap: the adapter
1383 * @q: the queue to stop
1384 *
1385 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1386 * inability to map packets. A periodic timer attempts to restart
1387 * queues so marked.
1388 */
1389static void txq_stop_maperr(struct sge_ofld_txq *q)
1390{
1391 q->mapping_err++;
1392 q->q.stops++;
e46dab4d
DM
1393 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1394 q->adap->sge.txq_maperr);
fd3a4790
DM
1395}
1396
1397/**
1398 * ofldtxq_stop - stop an offload Tx queue that has become full
1399 * @q: the queue to stop
1400 * @skb: the packet causing the queue to become full
1401 *
1402 * Stops an offload Tx queue that has become full and modifies the packet
1403 * being written to request a wakeup.
1404 */
1405static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1406{
1407 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1408
1409 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1410 q->q.stops++;
1411 q->full = 1;
1412}
1413
1414/**
1415 * service_ofldq - restart a suspended offload queue
1416 * @q: the offload queue
1417 *
1418 * Services an offload Tx queue by moving packets from its packet queue
1419 * to the HW Tx ring. The function starts and ends with the queue locked.
1420 */
1421static void service_ofldq(struct sge_ofld_txq *q)
1422{
1423 u64 *pos;
1424 int credits;
1425 struct sk_buff *skb;
1426 unsigned int written = 0;
1427 unsigned int flits, ndesc;
1428
1429 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1430 /*
1431 * We drop the lock but leave skb on sendq, thus retaining
1432 * exclusive access to the state of the queue.
1433 */
1434 spin_unlock(&q->sendq.lock);
1435
1436 reclaim_completed_tx(q->adap, &q->q, false);
1437
1438 flits = skb->priority; /* previously saved */
1439 ndesc = flits_to_desc(flits);
1440 credits = txq_avail(&q->q) - ndesc;
1441 BUG_ON(credits < 0);
1442 if (unlikely(credits < TXQ_STOP_THRES))
1443 ofldtxq_stop(q, skb);
1444
1445 pos = (u64 *)&q->q.desc[q->q.pidx];
1446 if (is_ofld_imm(skb))
1447 inline_tx_skb(skb, &q->q, pos);
1448 else if (map_skb(q->adap->pdev_dev, skb,
1449 (dma_addr_t *)skb->head)) {
1450 txq_stop_maperr(q);
1451 spin_lock(&q->sendq.lock);
1452 break;
1453 } else {
1454 int last_desc, hdr_len = skb_transport_offset(skb);
1455
1456 memcpy(pos, skb->data, hdr_len);
1457 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1458 pos + flits, hdr_len,
1459 (dma_addr_t *)skb->head);
1460#ifdef CONFIG_NEED_DMA_MAP_STATE
1461 skb->dev = q->adap->port[0];
1462 skb->destructor = deferred_unmap_destructor;
1463#endif
1464 last_desc = q->q.pidx + ndesc - 1;
1465 if (last_desc >= q->q.size)
1466 last_desc -= q->q.size;
1467 q->q.sdesc[last_desc].skb = skb;
1468 }
1469
1470 txq_advance(&q->q, ndesc);
1471 written += ndesc;
1472 if (unlikely(written > 32)) {
1473 ring_tx_db(q->adap, &q->q, written);
1474 written = 0;
1475 }
1476
1477 spin_lock(&q->sendq.lock);
1478 __skb_unlink(skb, &q->sendq);
1479 if (is_ofld_imm(skb))
1480 kfree_skb(skb);
1481 }
1482 if (likely(written))
1483 ring_tx_db(q->adap, &q->q, written);
1484}
1485
1486/**
1487 * ofld_xmit - send a packet through an offload queue
1488 * @q: the Tx offload queue
1489 * @skb: the packet
1490 *
1491 * Send an offload packet through an SGE offload queue.
1492 */
1493static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1494{
1495 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1496 spin_lock(&q->sendq.lock);
1497 __skb_queue_tail(&q->sendq, skb);
1498 if (q->sendq.qlen == 1)
1499 service_ofldq(q);
1500 spin_unlock(&q->sendq.lock);
1501 return NET_XMIT_SUCCESS;
1502}
1503
1504/**
1505 * restart_ofldq - restart a suspended offload queue
1506 * @data: the offload queue to restart
1507 *
1508 * Resumes transmission on a suspended Tx offload queue.
1509 */
1510static void restart_ofldq(unsigned long data)
1511{
1512 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1513
1514 spin_lock(&q->sendq.lock);
1515 q->full = 0; /* the queue actually is completely empty now */
1516 service_ofldq(q);
1517 spin_unlock(&q->sendq.lock);
1518}
1519
1520/**
1521 * skb_txq - return the Tx queue an offload packet should use
1522 * @skb: the packet
1523 *
1524 * Returns the Tx queue an offload packet should use as indicated by bits
1525 * 1-15 in the packet's queue_mapping.
1526 */
1527static inline unsigned int skb_txq(const struct sk_buff *skb)
1528{
1529 return skb->queue_mapping >> 1;
1530}
1531
1532/**
1533 * is_ctrl_pkt - return whether an offload packet is a control packet
1534 * @skb: the packet
1535 *
1536 * Returns whether an offload packet should use an OFLD or a CTRL
1537 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1538 */
1539static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1540{
1541 return skb->queue_mapping & 1;
1542}
1543
1544static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1545{
1546 unsigned int idx = skb_txq(skb);
1547
4fe44dd7
KS
1548 if (unlikely(is_ctrl_pkt(skb))) {
1549 /* Single ctrl queue is a requirement for LE workaround path */
1550 if (adap->tids.nsftids)
1551 idx = 0;
fd3a4790 1552 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
4fe44dd7 1553 }
fd3a4790
DM
1554 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1555}
1556
1557/**
1558 * t4_ofld_send - send an offload packet
1559 * @adap: the adapter
1560 * @skb: the packet
1561 *
1562 * Sends an offload packet. We use the packet queue_mapping to select the
1563 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1564 * should be sent as regular or control, bits 1-15 select the queue.
1565 */
1566int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1567{
1568 int ret;
1569
1570 local_bh_disable();
1571 ret = ofld_send(adap, skb);
1572 local_bh_enable();
1573 return ret;
1574}
1575
1576/**
1577 * cxgb4_ofld_send - send an offload packet
1578 * @dev: the net device
1579 * @skb: the packet
1580 *
1581 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1582 * intended for ULDs.
1583 */
1584int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1585{
1586 return t4_ofld_send(netdev2adap(dev), skb);
1587}
1588EXPORT_SYMBOL(cxgb4_ofld_send);
1589
e91b0f24 1590static inline void copy_frags(struct sk_buff *skb,
fd3a4790
DM
1591 const struct pkt_gl *gl, unsigned int offset)
1592{
e91b0f24 1593 int i;
fd3a4790
DM
1594
1595 /* usually there's just one frag */
e91b0f24
IC
1596 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1597 gl->frags[0].offset + offset,
1598 gl->frags[0].size - offset);
1599 skb_shinfo(skb)->nr_frags = gl->nfrags;
1600 for (i = 1; i < gl->nfrags; i++)
1601 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1602 gl->frags[i].offset,
1603 gl->frags[i].size);
fd3a4790
DM
1604
1605 /* get a reference to the last page, we don't own it */
e91b0f24 1606 get_page(gl->frags[gl->nfrags - 1].page);
fd3a4790
DM
1607}
1608
1609/**
1610 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1611 * @gl: the gather list
1612 * @skb_len: size of sk_buff main body if it carries fragments
1613 * @pull_len: amount of data to move to the sk_buff's main body
1614 *
1615 * Builds an sk_buff from the given packet gather list. Returns the
1616 * sk_buff or %NULL if sk_buff allocation failed.
1617 */
1618struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1619 unsigned int skb_len, unsigned int pull_len)
1620{
1621 struct sk_buff *skb;
1622
1623 /*
1624 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1625 * size, which is expected since buffers are at least PAGE_SIZEd.
1626 * In this case packets up to RX_COPY_THRES have only one fragment.
1627 */
1628 if (gl->tot_len <= RX_COPY_THRES) {
1629 skb = dev_alloc_skb(gl->tot_len);
1630 if (unlikely(!skb))
1631 goto out;
1632 __skb_put(skb, gl->tot_len);
1633 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1634 } else {
1635 skb = dev_alloc_skb(skb_len);
1636 if (unlikely(!skb))
1637 goto out;
1638 __skb_put(skb, pull_len);
1639 skb_copy_to_linear_data(skb, gl->va, pull_len);
1640
e91b0f24 1641 copy_frags(skb, gl, pull_len);
fd3a4790
DM
1642 skb->len = gl->tot_len;
1643 skb->data_len = skb->len - pull_len;
1644 skb->truesize += skb->data_len;
1645 }
1646out: return skb;
1647}
1648EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1649
1650/**
1651 * t4_pktgl_free - free a packet gather list
1652 * @gl: the gather list
1653 *
1654 * Releases the pages of a packet gather list. We do not own the last
1655 * page on the list and do not free it.
1656 */
de498c89 1657static void t4_pktgl_free(const struct pkt_gl *gl)
fd3a4790
DM
1658{
1659 int n;
e91b0f24 1660 const struct page_frag *p;
fd3a4790
DM
1661
1662 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1663 put_page(p->page);
1664}
1665
1666/*
1667 * Process an MPS trace packet. Give it an unused protocol number so it won't
1668 * be delivered to anyone and send it to the stack for capture.
1669 */
1670static noinline int handle_trace_pkt(struct adapter *adap,
1671 const struct pkt_gl *gl)
1672{
1673 struct sk_buff *skb;
fd3a4790
DM
1674
1675 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1676 if (unlikely(!skb)) {
1677 t4_pktgl_free(gl);
1678 return 0;
1679 }
1680
d14807dd 1681 if (is_t4(adap->params.chip))
0a57a536
SR
1682 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1683 else
1684 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1685
fd3a4790
DM
1686 skb_reset_mac_header(skb);
1687 skb->protocol = htons(0xffff);
1688 skb->dev = adap->port[0];
1689 netif_receive_skb(skb);
1690 return 0;
1691}
1692
1693static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1694 const struct cpl_rx_pkt *pkt)
1695{
52367a76
VP
1696 struct adapter *adapter = rxq->rspq.adap;
1697 struct sge *s = &adapter->sge;
fd3a4790
DM
1698 int ret;
1699 struct sk_buff *skb;
1700
1701 skb = napi_get_frags(&rxq->rspq.napi);
1702 if (unlikely(!skb)) {
1703 t4_pktgl_free(gl);
1704 rxq->stats.rx_drops++;
1705 return;
1706 }
1707
52367a76
VP
1708 copy_frags(skb, gl, s->pktshift);
1709 skb->len = gl->tot_len - s->pktshift;
fd3a4790
DM
1710 skb->data_len = skb->len;
1711 skb->truesize += skb->data_len;
1712 skb->ip_summed = CHECKSUM_UNNECESSARY;
1713 skb_record_rx_queue(skb, rxq->rspq.idx);
87b6cf51 1714 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
8264989c
TH
1715 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1716 PKT_HASH_TYPE_L3);
fd3a4790
DM
1717
1718 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1719 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1720 rxq->stats.vlan_ex++;
fd3a4790
DM
1721 }
1722 ret = napi_gro_frags(&rxq->rspq.napi);
19ecae2c 1723 if (ret == GRO_HELD)
fd3a4790
DM
1724 rxq->stats.lro_pkts++;
1725 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1726 rxq->stats.lro_merged++;
1727 rxq->stats.pkts++;
1728 rxq->stats.rx_cso++;
1729}
1730
1731/**
1732 * t4_ethrx_handler - process an ingress ethernet packet
1733 * @q: the response queue that received the packet
1734 * @rsp: the response queue descriptor holding the RX_PKT message
1735 * @si: the gather list of packet fragments
1736 *
1737 * Process an ingress ethernet packet and deliver it to the stack.
1738 */
1739int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1740 const struct pkt_gl *si)
1741{
1742 bool csum_ok;
1743 struct sk_buff *skb;
fd3a4790
DM
1744 const struct cpl_rx_pkt *pkt;
1745 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76 1746 struct sge *s = &q->adap->sge;
d14807dd 1747 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
0a57a536 1748 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
fd3a4790 1749
0a57a536 1750 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
fd3a4790
DM
1751 return handle_trace_pkt(q->adap, si);
1752
87b6cf51 1753 pkt = (const struct cpl_rx_pkt *)rsp;
cca2822d
HS
1754 csum_ok = pkt->csum_calc && !pkt->err_vec &&
1755 (q->netdev->features & NETIF_F_RXCSUM);
fd3a4790
DM
1756 if ((pkt->l2info & htonl(RXF_TCP)) &&
1757 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1758 do_gro(rxq, si, pkt);
1759 return 0;
1760 }
1761
1762 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1763 if (unlikely(!skb)) {
1764 t4_pktgl_free(si);
1765 rxq->stats.rx_drops++;
1766 return 0;
1767 }
1768
52367a76 1769 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
fd3a4790
DM
1770 skb->protocol = eth_type_trans(skb, q->netdev);
1771 skb_record_rx_queue(skb, q->idx);
87b6cf51 1772 if (skb->dev->features & NETIF_F_RXHASH)
8264989c
TH
1773 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1774 PKT_HASH_TYPE_L3);
87b6cf51 1775
fd3a4790
DM
1776 rxq->stats.pkts++;
1777
cca2822d 1778 if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
ba5d3c66 1779 if (!pkt->ip_frag) {
fd3a4790 1780 skb->ip_summed = CHECKSUM_UNNECESSARY;
ba5d3c66
DM
1781 rxq->stats.rx_cso++;
1782 } else if (pkt->l2info & htonl(RXF_IP)) {
fd3a4790
DM
1783 __sum16 c = (__force __sum16)pkt->csum;
1784 skb->csum = csum_unfold(c);
1785 skb->ip_summed = CHECKSUM_COMPLETE;
ba5d3c66 1786 rxq->stats.rx_cso++;
fd3a4790 1787 }
fd3a4790 1788 } else
bc8acf2c 1789 skb_checksum_none_assert(skb);
fd3a4790
DM
1790
1791 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1792 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1793 rxq->stats.vlan_ex++;
19ecae2c
DM
1794 }
1795 netif_receive_skb(skb);
fd3a4790
DM
1796 return 0;
1797}
1798
1799/**
1800 * restore_rx_bufs - put back a packet's Rx buffers
1801 * @si: the packet gather list
1802 * @q: the SGE free list
1803 * @frags: number of FL buffers to restore
1804 *
1805 * Puts back on an FL the Rx buffers associated with @si. The buffers
1806 * have already been unmapped and are left unmapped, we mark them so to
1807 * prevent further unmapping attempts.
1808 *
1809 * This function undoes a series of @unmap_rx_buf calls when we find out
1810 * that the current packet can't be processed right away afterall and we
1811 * need to come back to it later. This is a very rare event and there's
1812 * no effort to make this particularly efficient.
1813 */
1814static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1815 int frags)
1816{
1817 struct rx_sw_desc *d;
1818
1819 while (frags--) {
1820 if (q->cidx == 0)
1821 q->cidx = q->size - 1;
1822 else
1823 q->cidx--;
1824 d = &q->sdesc[q->cidx];
1825 d->page = si->frags[frags].page;
1826 d->dma_addr |= RX_UNMAPPED_BUF;
1827 q->avail++;
1828 }
1829}
1830
1831/**
1832 * is_new_response - check if a response is newly written
1833 * @r: the response descriptor
1834 * @q: the response queue
1835 *
1836 * Returns true if a response descriptor contains a yet unprocessed
1837 * response.
1838 */
1839static inline bool is_new_response(const struct rsp_ctrl *r,
1840 const struct sge_rspq *q)
1841{
1842 return RSPD_GEN(r->type_gen) == q->gen;
1843}
1844
1845/**
1846 * rspq_next - advance to the next entry in a response queue
1847 * @q: the queue
1848 *
1849 * Updates the state of a response queue to advance it to the next entry.
1850 */
1851static inline void rspq_next(struct sge_rspq *q)
1852{
1853 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1854 if (unlikely(++q->cidx == q->size)) {
1855 q->cidx = 0;
1856 q->gen ^= 1;
1857 q->cur_desc = q->desc;
1858 }
1859}
1860
1861/**
1862 * process_responses - process responses from an SGE response queue
1863 * @q: the ingress queue to process
1864 * @budget: how many responses can be processed in this round
1865 *
1866 * Process responses from an SGE response queue up to the supplied budget.
1867 * Responses include received packets as well as control messages from FW
1868 * or HW.
1869 *
1870 * Additionally choose the interrupt holdoff time for the next interrupt
1871 * on this queue. If the system is under memory shortage use a fairly
1872 * long delay to help recovery.
1873 */
1874static int process_responses(struct sge_rspq *q, int budget)
1875{
1876 int ret, rsp_type;
1877 int budget_left = budget;
1878 const struct rsp_ctrl *rc;
1879 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76
VP
1880 struct adapter *adapter = q->adap;
1881 struct sge *s = &adapter->sge;
fd3a4790
DM
1882
1883 while (likely(budget_left)) {
1884 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1885 if (!is_new_response(rc, q))
1886 break;
1887
1888 rmb();
1889 rsp_type = RSPD_TYPE(rc->type_gen);
1890 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
e91b0f24 1891 struct page_frag *fp;
fd3a4790
DM
1892 struct pkt_gl si;
1893 const struct rx_sw_desc *rsd;
1894 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1895
1896 if (len & RSPD_NEWBUF) {
1897 if (likely(q->offset > 0)) {
1898 free_rx_bufs(q->adap, &rxq->fl, 1);
1899 q->offset = 0;
1900 }
1704d748 1901 len = RSPD_LEN(len);
fd3a4790
DM
1902 }
1903 si.tot_len = len;
1904
1905 /* gather packet fragments */
1906 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1907 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
52367a76 1908 bufsz = get_buf_size(adapter, rsd);
fd3a4790 1909 fp->page = rsd->page;
e91b0f24
IC
1910 fp->offset = q->offset;
1911 fp->size = min(bufsz, len);
1912 len -= fp->size;
fd3a4790
DM
1913 if (!len)
1914 break;
1915 unmap_rx_buf(q->adap, &rxq->fl);
1916 }
1917
1918 /*
1919 * Last buffer remains mapped so explicitly make it
1920 * coherent for CPU access.
1921 */
1922 dma_sync_single_for_cpu(q->adap->pdev_dev,
1923 get_buf_addr(rsd),
e91b0f24 1924 fp->size, DMA_FROM_DEVICE);
fd3a4790
DM
1925
1926 si.va = page_address(si.frags[0].page) +
e91b0f24 1927 si.frags[0].offset;
fd3a4790
DM
1928 prefetch(si.va);
1929
1930 si.nfrags = frags + 1;
1931 ret = q->handler(q, q->cur_desc, &si);
1932 if (likely(ret == 0))
52367a76 1933 q->offset += ALIGN(fp->size, s->fl_align);
fd3a4790
DM
1934 else
1935 restore_rx_bufs(&si, &rxq->fl, frags);
1936 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1937 ret = q->handler(q, q->cur_desc, NULL);
1938 } else {
1939 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1940 }
1941
1942 if (unlikely(ret)) {
1943 /* couldn't process descriptor, back off for recovery */
1944 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1945 break;
1946 }
1947
1948 rspq_next(q);
1949 budget_left--;
1950 }
1951
1952 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1953 __refill_fl(q->adap, &rxq->fl);
1954 return budget - budget_left;
1955}
1956
1957/**
1958 * napi_rx_handler - the NAPI handler for Rx processing
1959 * @napi: the napi instance
1960 * @budget: how many packets we can process in this round
1961 *
1962 * Handler for new data events when using NAPI. This does not need any
1963 * locking or protection from interrupts as data interrupts are off at
1964 * this point and other adapter interrupts do not interfere (the latter
1965 * in not a concern at all with MSI-X as non-data interrupts then have
1966 * a separate handler).
1967 */
1968static int napi_rx_handler(struct napi_struct *napi, int budget)
1969{
1970 unsigned int params;
1971 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1972 int work_done = process_responses(q, budget);
d63a6dcf 1973 u32 val;
fd3a4790
DM
1974
1975 if (likely(work_done < budget)) {
e553ec3f
HS
1976 int timer_index;
1977
fd3a4790 1978 napi_complete(napi);
e553ec3f
HS
1979 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
1980
1981 if (q->adaptive_rx) {
1982 if (work_done > max(timer_pkt_quota[timer_index],
1983 MIN_NAPI_WORK))
1984 timer_index = (timer_index + 1);
1985 else
1986 timer_index = timer_index - 1;
1987
1988 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
1989 q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
1990 V_QINTR_CNT_EN;
1991 params = q->next_intr_params;
1992 } else {
1993 params = q->next_intr_params;
1994 q->next_intr_params = q->intr_params;
1995 }
fd3a4790
DM
1996 } else
1997 params = QINTR_TIMER_IDX(7);
1998
d63a6dcf
HS
1999 val = CIDXINC(work_done) | SEINTARM(params);
2000 if (is_t4(q->adap->params.chip)) {
2001 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS),
2002 val | INGRESSQID((u32)q->cntxt_id));
2003 } else {
2004 writel(val, q->adap->bar2 + q->udb + SGE_UDB_GTS);
2005 wmb();
2006 }
fd3a4790
DM
2007 return work_done;
2008}
2009
2010/*
2011 * The MSI-X interrupt handler for an SGE response queue.
2012 */
2013irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2014{
2015 struct sge_rspq *q = cookie;
2016
2017 napi_schedule(&q->napi);
2018 return IRQ_HANDLED;
2019}
2020
2021/*
2022 * Process the indirect interrupt entries in the interrupt queue and kick off
2023 * NAPI for each queue that has generated an entry.
2024 */
2025static unsigned int process_intrq(struct adapter *adap)
2026{
2027 unsigned int credits;
2028 const struct rsp_ctrl *rc;
2029 struct sge_rspq *q = &adap->sge.intrq;
d63a6dcf 2030 u32 val;
fd3a4790
DM
2031
2032 spin_lock(&adap->sge.intrq_lock);
2033 for (credits = 0; ; credits++) {
2034 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2035 if (!is_new_response(rc, q))
2036 break;
2037
2038 rmb();
2039 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2040 unsigned int qid = ntohl(rc->pldbuflen_qid);
2041
e46dab4d 2042 qid -= adap->sge.ingr_start;
fd3a4790
DM
2043 napi_schedule(&adap->sge.ingr_map[qid]->napi);
2044 }
2045
2046 rspq_next(q);
2047 }
2048
d63a6dcf
HS
2049 val = CIDXINC(credits) | SEINTARM(q->intr_params);
2050 if (is_t4(adap->params.chip)) {
2051 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
2052 val | INGRESSQID(q->cntxt_id));
2053 } else {
2054 writel(val, adap->bar2 + q->udb + SGE_UDB_GTS);
2055 wmb();
2056 }
fd3a4790
DM
2057 spin_unlock(&adap->sge.intrq_lock);
2058 return credits;
2059}
2060
2061/*
2062 * The MSI interrupt handler, which handles data events from SGE response queues
2063 * as well as error and other async events as they all use the same MSI vector.
2064 */
2065static irqreturn_t t4_intr_msi(int irq, void *cookie)
2066{
2067 struct adapter *adap = cookie;
2068
2069 t4_slow_intr_handler(adap);
2070 process_intrq(adap);
2071 return IRQ_HANDLED;
2072}
2073
2074/*
2075 * Interrupt handler for legacy INTx interrupts.
2076 * Handles data events from SGE response queues as well as error and other
2077 * async events as they all use the same interrupt line.
2078 */
2079static irqreturn_t t4_intr_intx(int irq, void *cookie)
2080{
2081 struct adapter *adap = cookie;
2082
2083 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
2084 if (t4_slow_intr_handler(adap) | process_intrq(adap))
2085 return IRQ_HANDLED;
2086 return IRQ_NONE; /* probably shared interrupt */
2087}
2088
2089/**
2090 * t4_intr_handler - select the top-level interrupt handler
2091 * @adap: the adapter
2092 *
2093 * Selects the top-level interrupt handler based on the type of interrupts
2094 * (MSI-X, MSI, or INTx).
2095 */
2096irq_handler_t t4_intr_handler(struct adapter *adap)
2097{
2098 if (adap->flags & USING_MSIX)
2099 return t4_sge_intr_msix;
2100 if (adap->flags & USING_MSI)
2101 return t4_intr_msi;
2102 return t4_intr_intx;
2103}
2104
2105static void sge_rx_timer_cb(unsigned long data)
2106{
2107 unsigned long m;
0f4d201f 2108 unsigned int i, idma_same_state_cnt[2];
fd3a4790
DM
2109 struct adapter *adap = (struct adapter *)data;
2110 struct sge *s = &adap->sge;
2111
2112 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
2113 for (m = s->starving_fl[i]; m; m &= m - 1) {
2114 struct sge_eth_rxq *rxq;
2115 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2116 struct sge_fl *fl = s->egr_map[id];
2117
2118 clear_bit(id, s->starving_fl);
4e857c58 2119 smp_mb__after_atomic();
fd3a4790
DM
2120
2121 if (fl_starving(fl)) {
2122 rxq = container_of(fl, struct sge_eth_rxq, fl);
2123 if (napi_reschedule(&rxq->rspq.napi))
2124 fl->starving++;
2125 else
2126 set_bit(id, s->starving_fl);
2127 }
2128 }
2129
2130 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
0f4d201f
KS
2131 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2132 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2133
2134 for (i = 0; i < 2; i++) {
2135 u32 debug0, debug11;
2136
2137 /* If the Ingress DMA Same State Counter ("timer") is less
2138 * than 1s, then we can reset our synthesized Stall Timer and
2139 * continue. If we have previously emitted warnings about a
2140 * potential stalled Ingress Queue, issue a note indicating
2141 * that the Ingress Queue has resumed forward progress.
2142 */
2143 if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2144 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2145 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2146 i, s->idma_qid[i],
2147 s->idma_stalled[i]/HZ);
2148 s->idma_stalled[i] = 0;
2149 continue;
2150 }
2151
2152 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2153 * domain. The first time we get here it'll be because we
2154 * passed the 1s Threshold; each additional time it'll be
2155 * because the RX Timer Callback is being fired on its regular
2156 * schedule.
2157 *
2158 * If the stall is below our Potential Hung Ingress Queue
2159 * Warning Threshold, continue.
2160 */
2161 if (s->idma_stalled[i] == 0)
2162 s->idma_stalled[i] = HZ;
2163 else
2164 s->idma_stalled[i] += RX_QCHECK_PERIOD;
2165
2166 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2167 continue;
2168
2169 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2170 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2171 continue;
2172
2173 /* Read and save the SGE IDMA State and Queue ID information.
2174 * We do this every time in case it changes across time ...
2175 */
2176 t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
2177 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2178 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2179
2180 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2181 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2182 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2183
2184 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2185 i, s->idma_qid[i], s->idma_state[i],
2186 s->idma_stalled[i]/HZ, debug0, debug11);
2187 t4_sge_decode_idma_state(adap, s->idma_state[i]);
2188 }
fd3a4790
DM
2189
2190 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2191}
2192
2193static void sge_tx_timer_cb(unsigned long data)
2194{
2195 unsigned long m;
2196 unsigned int i, budget;
2197 struct adapter *adap = (struct adapter *)data;
2198 struct sge *s = &adap->sge;
2199
2200 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2201 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2202 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2203 struct sge_ofld_txq *txq = s->egr_map[id];
2204
2205 clear_bit(id, s->txq_maperr);
2206 tasklet_schedule(&txq->qresume_tsk);
2207 }
2208
2209 budget = MAX_TIMER_TX_RECLAIM;
2210 i = s->ethtxq_rover;
2211 do {
2212 struct sge_eth_txq *q = &s->ethtxq[i];
2213
2214 if (q->q.in_use &&
2215 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2216 __netif_tx_trylock(q->txq)) {
2217 int avail = reclaimable(&q->q);
2218
2219 if (avail) {
2220 if (avail > budget)
2221 avail = budget;
2222
2223 free_tx_desc(adap, &q->q, avail, true);
2224 q->q.in_use -= avail;
2225 budget -= avail;
2226 }
2227 __netif_tx_unlock(q->txq);
2228 }
2229
2230 if (++i >= s->ethqsets)
2231 i = 0;
2232 } while (budget && i != s->ethtxq_rover);
2233 s->ethtxq_rover = i;
2234 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2235}
2236
d63a6dcf
HS
2237/**
2238 * udb_address - return the BAR2 User Doorbell address for a Queue
2239 * @adap: the adapter
2240 * @cntxt_id: the Queue Context ID
2241 * @qpp: Queues Per Page (for all PFs)
2242 *
2243 * Returns the BAR2 address of the user Doorbell associated with the
2244 * indicated Queue Context ID. Note that this is only applicable
2245 * for T5 and later.
2246 */
2247static u64 udb_address(struct adapter *adap, unsigned int cntxt_id,
2248 unsigned int qpp)
2249{
2250 u64 udb;
2251 unsigned int s_qpp;
2252 unsigned short udb_density;
2253 unsigned long qpshift;
2254 int page;
2255
2256 BUG_ON(is_t4(adap->params.chip));
2257
2258 s_qpp = (QUEUESPERPAGEPF0 +
2259 (QUEUESPERPAGEPF1 - QUEUESPERPAGEPF0) * adap->fn);
2260 udb_density = 1 << ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK);
2261 qpshift = PAGE_SHIFT - ilog2(udb_density);
9fef8478 2262 udb = (u64)cntxt_id << qpshift;
d63a6dcf
HS
2263 udb &= PAGE_MASK;
2264 page = udb / PAGE_SIZE;
2265 udb += (cntxt_id - (page * udb_density)) * SGE_UDB_SIZE;
2266
2267 return udb;
2268}
2269
2270static u64 udb_address_eq(struct adapter *adap, unsigned int cntxt_id)
2271{
2272 return udb_address(adap, cntxt_id,
2273 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF));
2274}
2275
2276static u64 udb_address_iq(struct adapter *adap, unsigned int cntxt_id)
2277{
2278 return udb_address(adap, cntxt_id,
2279 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF));
2280}
2281
fd3a4790
DM
2282int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2283 struct net_device *dev, int intr_idx,
2284 struct sge_fl *fl, rspq_handler_t hnd)
2285{
2286 int ret, flsz = 0;
2287 struct fw_iq_cmd c;
52367a76 2288 struct sge *s = &adap->sge;
fd3a4790
DM
2289 struct port_info *pi = netdev_priv(dev);
2290
2291 /* Size needs to be multiple of 16, including status entry. */
2292 iq->size = roundup(iq->size, 16);
2293
2294 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
ad6bad3e 2295 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2296 if (!iq->desc)
2297 return -ENOMEM;
2298
2299 memset(&c, 0, sizeof(c));
2300 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2301 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2302 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
fd3a4790
DM
2303 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2304 FW_LEN16(c));
2305 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2306 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2307 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2308 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2309 -intr_idx - 1));
2310 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2311 FW_IQ_CMD_IQGTSMODE |
2312 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2313 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2314 c.iqsize = htons(iq->size);
2315 c.iqaddr = cpu_to_be64(iq->phys_addr);
2316
2317 if (fl) {
2318 fl->size = roundup(fl->size, 8);
2319 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2320 sizeof(struct rx_sw_desc), &fl->addr,
52367a76 2321 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
fd3a4790
DM
2322 if (!fl->desc)
2323 goto fl_nomem;
2324
52367a76 2325 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
ce91a923 2326 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
ef306b50
DM
2327 FW_IQ_CMD_FL0FETCHRO(1) |
2328 FW_IQ_CMD_FL0DATARO(1) |
ce91a923 2329 FW_IQ_CMD_FL0PADEN(1));
fd3a4790
DM
2330 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2331 FW_IQ_CMD_FL0FBMAX(3));
2332 c.fl0size = htons(flsz);
2333 c.fl0addr = cpu_to_be64(fl->addr);
2334 }
2335
060e0c75 2336 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2337 if (ret)
2338 goto err;
2339
2340 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2341 iq->cur_desc = iq->desc;
2342 iq->cidx = 0;
2343 iq->gen = 1;
2344 iq->next_intr_params = iq->intr_params;
2345 iq->cntxt_id = ntohs(c.iqid);
2346 iq->abs_id = ntohs(c.physiqid);
d63a6dcf
HS
2347 if (!is_t4(adap->params.chip))
2348 iq->udb = udb_address_iq(adap, iq->cntxt_id);
fd3a4790 2349 iq->size--; /* subtract status entry */
fd3a4790
DM
2350 iq->netdev = dev;
2351 iq->handler = hnd;
2352
2353 /* set offset to -1 to distinguish ingress queues without FL */
2354 iq->offset = fl ? 0 : -1;
2355
e46dab4d 2356 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
fd3a4790
DM
2357
2358 if (fl) {
62718b32 2359 fl->cntxt_id = ntohs(c.fl0id);
fd3a4790
DM
2360 fl->avail = fl->pend_cred = 0;
2361 fl->pidx = fl->cidx = 0;
2362 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
e46dab4d 2363 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
d63a6dcf
HS
2364
2365 /* Note, we must initialize the Free List User Doorbell
2366 * address before refilling the Free List!
2367 */
2368 if (!is_t4(adap->params.chip))
2369 fl->udb = udb_address_eq(adap, fl->cntxt_id);
fd3a4790
DM
2370 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2371 }
2372 return 0;
2373
2374fl_nomem:
2375 ret = -ENOMEM;
2376err:
2377 if (iq->desc) {
2378 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2379 iq->desc, iq->phys_addr);
2380 iq->desc = NULL;
2381 }
2382 if (fl && fl->desc) {
2383 kfree(fl->sdesc);
2384 fl->sdesc = NULL;
2385 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2386 fl->desc, fl->addr);
2387 fl->desc = NULL;
2388 }
2389 return ret;
2390}
2391
2392static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2393{
22adfe0a 2394 q->cntxt_id = id;
d63a6dcf
HS
2395 if (!is_t4(adap->params.chip))
2396 q->udb = udb_address_eq(adap, q->cntxt_id);
22adfe0a 2397
fd3a4790
DM
2398 q->in_use = 0;
2399 q->cidx = q->pidx = 0;
2400 q->stops = q->restarts = 0;
2401 q->stat = (void *)&q->desc[q->size];
3069ee9b 2402 spin_lock_init(&q->db_lock);
e46dab4d 2403 adap->sge.egr_map[id - adap->sge.egr_start] = q;
fd3a4790
DM
2404}
2405
2406int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2407 struct net_device *dev, struct netdev_queue *netdevq,
2408 unsigned int iqid)
2409{
2410 int ret, nentries;
2411 struct fw_eq_eth_cmd c;
52367a76 2412 struct sge *s = &adap->sge;
fd3a4790
DM
2413 struct port_info *pi = netdev_priv(dev);
2414
2415 /* Add status entries */
52367a76 2416 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2417
2418 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2419 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2420 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2421 netdev_queue_numa_node_read(netdevq));
fd3a4790
DM
2422 if (!txq->q.desc)
2423 return -ENOMEM;
2424
2425 memset(&c, 0, sizeof(c));
2426 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2427 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2428 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
fd3a4790
DM
2429 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2430 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
08f1a1b9
HS
2431 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE |
2432 FW_EQ_ETH_CMD_VIID(pi->viid));
fd3a4790
DM
2433 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2434 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2435 FW_EQ_ETH_CMD_FETCHRO(1) |
fd3a4790
DM
2436 FW_EQ_ETH_CMD_IQID(iqid));
2437 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2438 FW_EQ_ETH_CMD_FBMAX(3) |
2439 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2440 FW_EQ_ETH_CMD_EQSIZE(nentries));
2441 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2442
060e0c75 2443 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2444 if (ret) {
2445 kfree(txq->q.sdesc);
2446 txq->q.sdesc = NULL;
2447 dma_free_coherent(adap->pdev_dev,
2448 nentries * sizeof(struct tx_desc),
2449 txq->q.desc, txq->q.phys_addr);
2450 txq->q.desc = NULL;
2451 return ret;
2452 }
2453
2454 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2455 txq->txq = netdevq;
2456 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2457 txq->mapping_err = 0;
2458 return 0;
2459}
2460
2461int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2462 struct net_device *dev, unsigned int iqid,
2463 unsigned int cmplqid)
2464{
2465 int ret, nentries;
2466 struct fw_eq_ctrl_cmd c;
52367a76 2467 struct sge *s = &adap->sge;
fd3a4790
DM
2468 struct port_info *pi = netdev_priv(dev);
2469
2470 /* Add status entries */
52367a76 2471 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2472
2473 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2474 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
ad6bad3e 2475 NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2476 if (!txq->q.desc)
2477 return -ENOMEM;
2478
2479 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2480 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2481 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2482 FW_EQ_CTRL_CMD_VFN(0));
fd3a4790
DM
2483 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2484 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2485 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2486 c.physeqid_pkd = htonl(0);
2487 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2488 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2489 FW_EQ_CTRL_CMD_FETCHRO |
fd3a4790
DM
2490 FW_EQ_CTRL_CMD_IQID(iqid));
2491 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2492 FW_EQ_CTRL_CMD_FBMAX(3) |
2493 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2494 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2495 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2496
060e0c75 2497 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2498 if (ret) {
2499 dma_free_coherent(adap->pdev_dev,
2500 nentries * sizeof(struct tx_desc),
2501 txq->q.desc, txq->q.phys_addr);
2502 txq->q.desc = NULL;
2503 return ret;
2504 }
2505
2506 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2507 txq->adap = adap;
2508 skb_queue_head_init(&txq->sendq);
2509 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2510 txq->full = 0;
2511 return 0;
2512}
2513
2514int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2515 struct net_device *dev, unsigned int iqid)
2516{
2517 int ret, nentries;
2518 struct fw_eq_ofld_cmd c;
52367a76 2519 struct sge *s = &adap->sge;
fd3a4790
DM
2520 struct port_info *pi = netdev_priv(dev);
2521
2522 /* Add status entries */
52367a76 2523 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2524
2525 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2526 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2527 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2528 NUMA_NO_NODE);
fd3a4790
DM
2529 if (!txq->q.desc)
2530 return -ENOMEM;
2531
2532 memset(&c, 0, sizeof(c));
2533 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2534 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2535 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2536 FW_EQ_OFLD_CMD_VFN(0));
fd3a4790
DM
2537 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2538 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2539 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2540 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2541 FW_EQ_OFLD_CMD_FETCHRO(1) |
fd3a4790
DM
2542 FW_EQ_OFLD_CMD_IQID(iqid));
2543 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2544 FW_EQ_OFLD_CMD_FBMAX(3) |
2545 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2546 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2547 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2548
060e0c75 2549 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2550 if (ret) {
2551 kfree(txq->q.sdesc);
2552 txq->q.sdesc = NULL;
2553 dma_free_coherent(adap->pdev_dev,
2554 nentries * sizeof(struct tx_desc),
2555 txq->q.desc, txq->q.phys_addr);
2556 txq->q.desc = NULL;
2557 return ret;
2558 }
2559
2560 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2561 txq->adap = adap;
2562 skb_queue_head_init(&txq->sendq);
2563 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2564 txq->full = 0;
2565 txq->mapping_err = 0;
2566 return 0;
2567}
2568
2569static void free_txq(struct adapter *adap, struct sge_txq *q)
2570{
52367a76
VP
2571 struct sge *s = &adap->sge;
2572
fd3a4790 2573 dma_free_coherent(adap->pdev_dev,
52367a76 2574 q->size * sizeof(struct tx_desc) + s->stat_len,
fd3a4790
DM
2575 q->desc, q->phys_addr);
2576 q->cntxt_id = 0;
2577 q->sdesc = NULL;
2578 q->desc = NULL;
2579}
2580
2581static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2582 struct sge_fl *fl)
2583{
52367a76 2584 struct sge *s = &adap->sge;
fd3a4790
DM
2585 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2586
e46dab4d 2587 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
060e0c75
DM
2588 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2589 rq->cntxt_id, fl_id, 0xffff);
fd3a4790
DM
2590 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2591 rq->desc, rq->phys_addr);
2592 netif_napi_del(&rq->napi);
2593 rq->netdev = NULL;
2594 rq->cntxt_id = rq->abs_id = 0;
2595 rq->desc = NULL;
2596
2597 if (fl) {
2598 free_rx_bufs(adap, fl, fl->avail);
52367a76 2599 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fd3a4790
DM
2600 fl->desc, fl->addr);
2601 kfree(fl->sdesc);
2602 fl->sdesc = NULL;
2603 fl->cntxt_id = 0;
2604 fl->desc = NULL;
2605 }
2606}
2607
5fa76694
HS
2608/**
2609 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
2610 * @adap: the adapter
2611 * @n: number of queues
2612 * @q: pointer to first queue
2613 *
2614 * Release the resources of a consecutive block of offload Rx queues.
2615 */
2616void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2617{
2618 for ( ; n; n--, q++)
2619 if (q->rspq.desc)
2620 free_rspq_fl(adap, &q->rspq,
2621 q->fl.size ? &q->fl : NULL);
2622}
2623
fd3a4790
DM
2624/**
2625 * t4_free_sge_resources - free SGE resources
2626 * @adap: the adapter
2627 *
2628 * Frees resources used by the SGE queue sets.
2629 */
2630void t4_free_sge_resources(struct adapter *adap)
2631{
2632 int i;
2633 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2634 struct sge_eth_txq *etq = adap->sge.ethtxq;
fd3a4790
DM
2635
2636 /* clean up Ethernet Tx/Rx queues */
2637 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2638 if (eq->rspq.desc)
5fa76694
HS
2639 free_rspq_fl(adap, &eq->rspq,
2640 eq->fl.size ? &eq->fl : NULL);
fd3a4790 2641 if (etq->q.desc) {
060e0c75
DM
2642 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2643 etq->q.cntxt_id);
fd3a4790
DM
2644 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2645 kfree(etq->q.sdesc);
2646 free_txq(adap, &etq->q);
2647 }
2648 }
2649
2650 /* clean up RDMA and iSCSI Rx queues */
5fa76694
HS
2651 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2652 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2653 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
fd3a4790
DM
2654
2655 /* clean up offload Tx queues */
2656 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2657 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2658
2659 if (q->q.desc) {
2660 tasklet_kill(&q->qresume_tsk);
060e0c75
DM
2661 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2662 q->q.cntxt_id);
fd3a4790
DM
2663 free_tx_desc(adap, &q->q, q->q.in_use, false);
2664 kfree(q->q.sdesc);
2665 __skb_queue_purge(&q->sendq);
2666 free_txq(adap, &q->q);
2667 }
2668 }
2669
2670 /* clean up control Tx queues */
2671 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2672 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2673
2674 if (cq->q.desc) {
2675 tasklet_kill(&cq->qresume_tsk);
060e0c75
DM
2676 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2677 cq->q.cntxt_id);
fd3a4790
DM
2678 __skb_queue_purge(&cq->sendq);
2679 free_txq(adap, &cq->q);
2680 }
2681 }
2682
2683 if (adap->sge.fw_evtq.desc)
2684 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2685
2686 if (adap->sge.intrq.desc)
2687 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2688
2689 /* clear the reverse egress queue map */
2690 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2691}
2692
2693void t4_sge_start(struct adapter *adap)
2694{
2695 adap->sge.ethtxq_rover = 0;
2696 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2697 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2698}
2699
2700/**
2701 * t4_sge_stop - disable SGE operation
2702 * @adap: the adapter
2703 *
2704 * Stop tasklets and timers associated with the DMA engine. Note that
2705 * this is effective only if measures have been taken to disable any HW
2706 * events that may restart them.
2707 */
2708void t4_sge_stop(struct adapter *adap)
2709{
2710 int i;
2711 struct sge *s = &adap->sge;
2712
2713 if (in_interrupt()) /* actions below require waiting */
2714 return;
2715
2716 if (s->rx_timer.function)
2717 del_timer_sync(&s->rx_timer);
2718 if (s->tx_timer.function)
2719 del_timer_sync(&s->tx_timer);
2720
2721 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2722 struct sge_ofld_txq *q = &s->ofldtxq[i];
2723
2724 if (q->q.desc)
2725 tasklet_kill(&q->qresume_tsk);
2726 }
2727 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2728 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2729
2730 if (cq->q.desc)
2731 tasklet_kill(&cq->qresume_tsk);
2732 }
2733}
2734
2735/**
2736 * t4_sge_init - initialize SGE
2737 * @adap: the adapter
2738 *
2739 * Performs SGE initialization needed every time after a chip reset.
2740 * We do not initialize any of the queues here, instead the driver
2741 * top-level must request them individually.
52367a76
VP
2742 *
2743 * Called in two different modes:
2744 *
2745 * 1. Perform actual hardware initialization and record hard-coded
2746 * parameters which were used. This gets used when we're the
2747 * Master PF and the Firmware Configuration File support didn't
2748 * work for some reason.
2749 *
2750 * 2. We're not the Master PF or initialization was performed with
2751 * a Firmware Configuration File. In this case we need to grab
2752 * any of the SGE operating parameters that we need to have in
2753 * order to do our job and make sure we can live with them ...
fd3a4790 2754 */
52367a76
VP
2755
2756static int t4_sge_init_soft(struct adapter *adap)
fd3a4790
DM
2757{
2758 struct sge *s = &adap->sge;
52367a76
VP
2759 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2760 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2761 u32 ingress_rx_threshold;
fd3a4790 2762
52367a76
VP
2763 /*
2764 * Verify that CPL messages are going to the Ingress Queue for
2765 * process_responses() and that only packet data is going to the
2766 * Free Lists.
2767 */
2768 if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2769 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2770 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2771 return -EINVAL;
2772 }
2773
2774 /*
2775 * Validate the Host Buffer Register Array indices that we want to
2776 * use ...
2777 *
2778 * XXX Note that we should really read through the Host Buffer Size
2779 * XXX register array and find the indices of the Buffer Sizes which
2780 * XXX meet our needs!
2781 */
2782 #define READ_FL_BUF(x) \
2783 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2784
2785 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2786 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2787 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2788 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2789
92ddcc7b
KS
2790 /* We only bother using the Large Page logic if the Large Page Buffer
2791 * is larger than our Page Size Buffer.
2792 */
2793 if (fl_large_pg <= fl_small_pg)
2794 fl_large_pg = 0;
2795
52367a76
VP
2796 #undef READ_FL_BUF
2797
92ddcc7b
KS
2798 /* The Page Size Buffer must be exactly equal to our Page Size and the
2799 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2800 */
52367a76 2801 if (fl_small_pg != PAGE_SIZE ||
92ddcc7b 2802 (fl_large_pg & (fl_large_pg-1)) != 0) {
52367a76
VP
2803 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2804 fl_small_pg, fl_large_pg);
2805 return -EINVAL;
2806 }
2807 if (fl_large_pg)
2808 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2809
2810 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2811 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2812 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2813 fl_small_mtu, fl_large_mtu);
2814 return -EINVAL;
2815 }
2816
2817 /*
2818 * Retrieve our RX interrupt holdoff timer values and counter
2819 * threshold values from the SGE parameters.
2820 */
2821 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2822 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2823 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2824 s->timer_val[0] = core_ticks_to_us(adap,
2825 TIMERVALUE0_GET(timer_value_0_and_1));
2826 s->timer_val[1] = core_ticks_to_us(adap,
2827 TIMERVALUE1_GET(timer_value_0_and_1));
2828 s->timer_val[2] = core_ticks_to_us(adap,
2829 TIMERVALUE2_GET(timer_value_2_and_3));
2830 s->timer_val[3] = core_ticks_to_us(adap,
2831 TIMERVALUE3_GET(timer_value_2_and_3));
2832 s->timer_val[4] = core_ticks_to_us(adap,
2833 TIMERVALUE4_GET(timer_value_4_and_5));
2834 s->timer_val[5] = core_ticks_to_us(adap,
2835 TIMERVALUE5_GET(timer_value_4_and_5));
2836
2837 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2838 s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2839 s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2840 s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2841 s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2842
2843 return 0;
2844}
2845
2846static int t4_sge_init_hard(struct adapter *adap)
2847{
2848 struct sge *s = &adap->sge;
2849
2850 /*
2851 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2852 * Queue and Packet Date to the Free List.
2853 */
2854 t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2855 RXPKTCPLMODE_MASK);
060e0c75 2856
3069ee9b
VP
2857 /*
2858 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2859 * and generate an interrupt when this occurs so we can recover.
2860 */
d14807dd 2861 if (is_t4(adap->params.chip)) {
0a57a536
SR
2862 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2863 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2864 V_LP_INT_THRESH(M_LP_INT_THRESH),
2865 V_HP_INT_THRESH(dbfifo_int_thresh) |
2866 V_LP_INT_THRESH(dbfifo_int_thresh));
2867 } else {
2868 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2869 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2870 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2871 t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2872 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2873 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2874 }
881806bc
VP
2875 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2876 F_ENABLE_DROP);
2877
52367a76
VP
2878 /*
2879 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2880 * t4_fixup_host_params().
2881 */
2882 s->fl_pg_order = FL_PG_ORDER;
2883 if (s->fl_pg_order)
2884 t4_write_reg(adap,
2885 SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2886 PAGE_SIZE << FL_PG_ORDER);
2887 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2888 FL_MTU_SMALL_BUFSIZE(adap));
2889 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2890 FL_MTU_LARGE_BUFSIZE(adap));
2891
2892 /*
2893 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2894 * Timer Holdoff values must be supplied by our caller.
2895 */
fd3a4790
DM
2896 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2897 THRESHOLD_0(s->counter_val[0]) |
2898 THRESHOLD_1(s->counter_val[1]) |
2899 THRESHOLD_2(s->counter_val[2]) |
2900 THRESHOLD_3(s->counter_val[3]));
2901 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2902 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2903 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2904 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
52367a76
VP
2905 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2906 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
fd3a4790 2907 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
52367a76
VP
2908 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2909 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2910
2911 return 0;
2912}
2913
2914int t4_sge_init(struct adapter *adap)
2915{
2916 struct sge *s = &adap->sge;
c2b955e0
KS
2917 u32 sge_control, sge_conm_ctrl;
2918 int ret, egress_threshold;
52367a76
VP
2919
2920 /*
2921 * Ingress Padding Boundary and Egress Status Page Size are set up by
2922 * t4_fixup_host_params().
2923 */
2924 sge_control = t4_read_reg(adap, SGE_CONTROL);
2925 s->pktshift = PKTSHIFT_GET(sge_control);
2926 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2927 s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2928 X_INGPADBOUNDARY_SHIFT);
2929
2930 if (adap->flags & USING_SOFT_PARAMS)
2931 ret = t4_sge_init_soft(adap);
2932 else
2933 ret = t4_sge_init_hard(adap);
2934 if (ret < 0)
2935 return ret;
2936
2937 /*
2938 * A FL with <= fl_starve_thres buffers is starving and a periodic
2939 * timer will attempt to refill it. This needs to be larger than the
2940 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2941 * stuck waiting for new packets while the SGE is waiting for us to
2942 * give it more Free List entries. (Note that the SGE's Egress
c2b955e0
KS
2943 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2944 * there was only a single field to control this. For T5 there's the
2945 * original field which now only applies to Unpacked Mode Free List
2946 * buffers and a new field which only applies to Packed Mode Free List
2947 * buffers.
52367a76 2948 */
c2b955e0
KS
2949 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
2950 if (is_t4(adap->params.chip))
2951 egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
2952 else
2953 egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
2954 s->fl_starve_thres = 2*egress_threshold + 1;
52367a76 2955
fd3a4790
DM
2956 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2957 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
0f4d201f
KS
2958 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2959 s->idma_stalled[0] = 0;
2960 s->idma_stalled[1] = 0;
fd3a4790 2961 spin_lock_init(&s->intrq_lock);
52367a76
VP
2962
2963 return 0;
fd3a4790 2964}
This page took 0.549928 seconds and 5 git commands to generate.