RDMA/cxgb4/cxgb4vf/csiostor: Cleanup SGE register defines
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
CommitLineData
fd3a4790
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
fd3a4790
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
70c71606 42#include <linux/prefetch.h>
ee40fa06 43#include <linux/export.h>
fd3a4790
DM
44#include <net/ipv6.h>
45#include <net/tcp.h>
46#include "cxgb4.h"
47#include "t4_regs.h"
f612b815 48#include "t4_values.h"
fd3a4790
DM
49#include "t4_msg.h"
50#include "t4fw_api.h"
51
52/*
53 * Rx buffer size. We use largish buffers if possible but settle for single
54 * pages under memory shortage.
55 */
56#if PAGE_SHIFT >= 16
57# define FL_PG_ORDER 0
58#else
59# define FL_PG_ORDER (16 - PAGE_SHIFT)
60#endif
61
62/* RX_PULL_LEN should be <= RX_COPY_THRES */
63#define RX_COPY_THRES 256
64#define RX_PULL_LEN 128
65
66/*
67 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
68 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
69 */
70#define RX_PKT_SKB_LEN 512
71
fd3a4790
DM
72/*
73 * Max number of Tx descriptors we clean up at a time. Should be modest as
74 * freeing skbs isn't cheap and it happens while holding locks. We just need
75 * to free packets faster than they arrive, we eventually catch up and keep
76 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
77 */
78#define MAX_TX_RECLAIM 16
79
80/*
81 * Max number of Rx buffers we replenish at a time. Again keep this modest,
82 * allocating buffers isn't cheap either.
83 */
84#define MAX_RX_REFILL 16U
85
86/*
87 * Period of the Rx queue check timer. This timer is infrequent as it has
88 * something to do only when the system experiences severe memory shortage.
89 */
90#define RX_QCHECK_PERIOD (HZ / 2)
91
92/*
93 * Period of the Tx queue check timer.
94 */
95#define TX_QCHECK_PERIOD (HZ / 2)
96
0f4d201f
KS
97/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
98 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
99 * State Machines in the same state for this amount of time (in HZ) then we'll
100 * issue a warning about a potential hang. We'll repeat the warning as the
101 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
102 * the situation clears. If the situation clears, we'll note that as well.
103 */
104#define SGE_IDMA_WARN_THRESH (1 * HZ)
105#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
106
fd3a4790
DM
107/*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110#define MAX_TIMER_TX_RECLAIM 100
111
112/*
113 * Timer index used when backing off due to memory shortage.
114 */
115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117/*
118 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
119 * attempt to refill it.
120 */
121#define FL_STARVE_THRES 4
122
123/*
124 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
125 * This is the same as calc_tx_descs() for a TSO packet with
126 * nr_frags == MAX_SKB_FRAGS.
127 */
128#define ETHTXQ_STOP_THRES \
129 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
130
131/*
132 * Suspension threshold for non-Ethernet Tx queues. We require enough room
133 * for a full sized WR.
134 */
135#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
136
137/*
138 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
139 * into a WR.
140 */
141#define MAX_IMM_TX_PKT_LEN 128
142
143/*
144 * Max size of a WR sent through a control Tx queue.
145 */
146#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
147
fd3a4790
DM
148struct tx_sw_desc { /* SW state per Tx descriptor */
149 struct sk_buff *skb;
150 struct ulptx_sgl *sgl;
151};
152
153struct rx_sw_desc { /* SW state per Rx descriptor */
154 struct page *page;
155 dma_addr_t dma_addr;
156};
157
158/*
52367a76
VP
159 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
160 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
161 * We could easily support more but there doesn't seem to be much need for
162 * that ...
163 */
164#define FL_MTU_SMALL 1500
165#define FL_MTU_LARGE 9000
166
167static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
168 unsigned int mtu)
169{
170 struct sge *s = &adapter->sge;
171
172 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
173}
174
175#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
176#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
177
178/*
179 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
180 * these to specify the buffer size as an index into the SGE Free List Buffer
181 * Size register array. We also use bit 4, when the buffer has been unmapped
182 * for DMA, but this is of course never sent to the hardware and is only used
183 * to prevent double unmappings. All of the above requires that the Free List
184 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
185 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
186 * Free List Buffer alignment is 32 bytes, this works out for us ...
fd3a4790
DM
187 */
188enum {
52367a76
VP
189 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
190 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
191 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
192
193 /*
194 * XXX We shouldn't depend on being able to use these indices.
195 * XXX Especially when some other Master PF has initialized the
196 * XXX adapter or we use the Firmware Configuration File. We
197 * XXX should really search through the Host Buffer Size register
198 * XXX array for the appropriately sized buffer indices.
199 */
200 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
201 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
202
203 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
204 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
fd3a4790
DM
205};
206
e553ec3f
HS
207static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
208#define MIN_NAPI_WORK 1
209
fd3a4790
DM
210static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
211{
52367a76 212 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
fd3a4790
DM
213}
214
215static inline bool is_buf_mapped(const struct rx_sw_desc *d)
216{
217 return !(d->dma_addr & RX_UNMAPPED_BUF);
218}
219
220/**
221 * txq_avail - return the number of available slots in a Tx queue
222 * @q: the Tx queue
223 *
224 * Returns the number of descriptors in a Tx queue available to write new
225 * packets.
226 */
227static inline unsigned int txq_avail(const struct sge_txq *q)
228{
229 return q->size - 1 - q->in_use;
230}
231
232/**
233 * fl_cap - return the capacity of a free-buffer list
234 * @fl: the FL
235 *
236 * Returns the capacity of a free-buffer list. The capacity is less than
237 * the size because one descriptor needs to be left unpopulated, otherwise
238 * HW will think the FL is empty.
239 */
240static inline unsigned int fl_cap(const struct sge_fl *fl)
241{
242 return fl->size - 8; /* 1 descriptor = 8 buffers */
243}
244
245static inline bool fl_starving(const struct sge_fl *fl)
246{
247 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
248}
249
250static int map_skb(struct device *dev, const struct sk_buff *skb,
251 dma_addr_t *addr)
252{
253 const skb_frag_t *fp, *end;
254 const struct skb_shared_info *si;
255
256 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
257 if (dma_mapping_error(dev, *addr))
258 goto out_err;
259
260 si = skb_shinfo(skb);
261 end = &si->frags[si->nr_frags];
262
263 for (fp = si->frags; fp < end; fp++) {
e91b0f24
IC
264 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
265 DMA_TO_DEVICE);
fd3a4790
DM
266 if (dma_mapping_error(dev, *addr))
267 goto unwind;
268 }
269 return 0;
270
271unwind:
272 while (fp-- > si->frags)
9e903e08 273 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
274
275 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
276out_err:
277 return -ENOMEM;
278}
279
280#ifdef CONFIG_NEED_DMA_MAP_STATE
281static void unmap_skb(struct device *dev, const struct sk_buff *skb,
282 const dma_addr_t *addr)
283{
284 const skb_frag_t *fp, *end;
285 const struct skb_shared_info *si;
286
287 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
288
289 si = skb_shinfo(skb);
290 end = &si->frags[si->nr_frags];
291 for (fp = si->frags; fp < end; fp++)
9e903e08 292 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
293}
294
295/**
296 * deferred_unmap_destructor - unmap a packet when it is freed
297 * @skb: the packet
298 *
299 * This is the packet destructor used for Tx packets that need to remain
300 * mapped until they are freed rather than until their Tx descriptors are
301 * freed.
302 */
303static void deferred_unmap_destructor(struct sk_buff *skb)
304{
305 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
306}
307#endif
308
309static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
310 const struct ulptx_sgl *sgl, const struct sge_txq *q)
311{
312 const struct ulptx_sge_pair *p;
313 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
314
315 if (likely(skb_headlen(skb)))
316 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
317 DMA_TO_DEVICE);
318 else {
319 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
320 DMA_TO_DEVICE);
321 nfrags--;
322 }
323
324 /*
325 * the complexity below is because of the possibility of a wrap-around
326 * in the middle of an SGL
327 */
328 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
329 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
330unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
331 ntohl(p->len[0]), DMA_TO_DEVICE);
332 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
333 ntohl(p->len[1]), DMA_TO_DEVICE);
334 p++;
335 } else if ((u8 *)p == (u8 *)q->stat) {
336 p = (const struct ulptx_sge_pair *)q->desc;
337 goto unmap;
338 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
339 const __be64 *addr = (const __be64 *)q->desc;
340
341 dma_unmap_page(dev, be64_to_cpu(addr[0]),
342 ntohl(p->len[0]), DMA_TO_DEVICE);
343 dma_unmap_page(dev, be64_to_cpu(addr[1]),
344 ntohl(p->len[1]), DMA_TO_DEVICE);
345 p = (const struct ulptx_sge_pair *)&addr[2];
346 } else {
347 const __be64 *addr = (const __be64 *)q->desc;
348
349 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
350 ntohl(p->len[0]), DMA_TO_DEVICE);
351 dma_unmap_page(dev, be64_to_cpu(addr[0]),
352 ntohl(p->len[1]), DMA_TO_DEVICE);
353 p = (const struct ulptx_sge_pair *)&addr[1];
354 }
355 }
356 if (nfrags) {
357 __be64 addr;
358
359 if ((u8 *)p == (u8 *)q->stat)
360 p = (const struct ulptx_sge_pair *)q->desc;
361 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
362 *(const __be64 *)q->desc;
363 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
364 DMA_TO_DEVICE);
365 }
366}
367
368/**
369 * free_tx_desc - reclaims Tx descriptors and their buffers
370 * @adapter: the adapter
371 * @q: the Tx queue to reclaim descriptors from
372 * @n: the number of descriptors to reclaim
373 * @unmap: whether the buffers should be unmapped for DMA
374 *
375 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
376 * Tx buffers. Called with the Tx queue lock held.
377 */
378static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
379 unsigned int n, bool unmap)
380{
381 struct tx_sw_desc *d;
382 unsigned int cidx = q->cidx;
383 struct device *dev = adap->pdev_dev;
384
385 d = &q->sdesc[cidx];
386 while (n--) {
387 if (d->skb) { /* an SGL is present */
388 if (unmap)
389 unmap_sgl(dev, d->skb, d->sgl, q);
a7525198 390 dev_consume_skb_any(d->skb);
fd3a4790
DM
391 d->skb = NULL;
392 }
393 ++d;
394 if (++cidx == q->size) {
395 cidx = 0;
396 d = q->sdesc;
397 }
398 }
399 q->cidx = cidx;
400}
401
402/*
403 * Return the number of reclaimable descriptors in a Tx queue.
404 */
405static inline int reclaimable(const struct sge_txq *q)
406{
407 int hw_cidx = ntohs(q->stat->cidx);
408 hw_cidx -= q->cidx;
409 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
410}
411
412/**
413 * reclaim_completed_tx - reclaims completed Tx descriptors
414 * @adap: the adapter
415 * @q: the Tx queue to reclaim completed descriptors from
416 * @unmap: whether the buffers should be unmapped for DMA
417 *
418 * Reclaims Tx descriptors that the SGE has indicated it has processed,
419 * and frees the associated buffers if possible. Called with the Tx
420 * queue locked.
421 */
422static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
423 bool unmap)
424{
425 int avail = reclaimable(q);
426
427 if (avail) {
428 /*
429 * Limit the amount of clean up work we do at a time to keep
430 * the Tx lock hold time O(1).
431 */
432 if (avail > MAX_TX_RECLAIM)
433 avail = MAX_TX_RECLAIM;
434
435 free_tx_desc(adap, q, avail, unmap);
436 q->in_use -= avail;
437 }
438}
439
52367a76
VP
440static inline int get_buf_size(struct adapter *adapter,
441 const struct rx_sw_desc *d)
fd3a4790 442{
52367a76
VP
443 struct sge *s = &adapter->sge;
444 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
445 int buf_size;
446
447 switch (rx_buf_size_idx) {
448 case RX_SMALL_PG_BUF:
449 buf_size = PAGE_SIZE;
450 break;
451
452 case RX_LARGE_PG_BUF:
453 buf_size = PAGE_SIZE << s->fl_pg_order;
454 break;
455
456 case RX_SMALL_MTU_BUF:
457 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
458 break;
459
460 case RX_LARGE_MTU_BUF:
461 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
462 break;
463
464 default:
465 BUG_ON(1);
466 }
467
468 return buf_size;
fd3a4790
DM
469}
470
471/**
472 * free_rx_bufs - free the Rx buffers on an SGE free list
473 * @adap: the adapter
474 * @q: the SGE free list to free buffers from
475 * @n: how many buffers to free
476 *
477 * Release the next @n buffers on an SGE free-buffer Rx queue. The
478 * buffers must be made inaccessible to HW before calling this function.
479 */
480static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
481{
482 while (n--) {
483 struct rx_sw_desc *d = &q->sdesc[q->cidx];
484
485 if (is_buf_mapped(d))
486 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76
VP
487 get_buf_size(adap, d),
488 PCI_DMA_FROMDEVICE);
fd3a4790
DM
489 put_page(d->page);
490 d->page = NULL;
491 if (++q->cidx == q->size)
492 q->cidx = 0;
493 q->avail--;
494 }
495}
496
497/**
498 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
499 * @adap: the adapter
500 * @q: the SGE free list
501 *
502 * Unmap the current buffer on an SGE free-buffer Rx queue. The
503 * buffer must be made inaccessible to HW before calling this function.
504 *
505 * This is similar to @free_rx_bufs above but does not free the buffer.
506 * Do note that the FL still loses any further access to the buffer.
507 */
508static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
509{
510 struct rx_sw_desc *d = &q->sdesc[q->cidx];
511
512 if (is_buf_mapped(d))
513 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76 514 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
fd3a4790
DM
515 d->page = NULL;
516 if (++q->cidx == q->size)
517 q->cidx = 0;
518 q->avail--;
519}
520
521static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
522{
0a57a536 523 u32 val;
fd3a4790 524 if (q->pend_cred >= 8) {
f612b815
HS
525 if (is_t4(adap->params.chip))
526 val = PIDX_V(q->pend_cred / 8);
527 else
528 val = PIDX_T5_V(q->pend_cred / 8) |
529 DBTYPE_F;
530 val |= DBPRIO_F;
fd3a4790 531 wmb();
d63a6dcf 532
df64e4d3
HS
533 /* If we don't have access to the new User Doorbell (T5+), use
534 * the old doorbell mechanism; otherwise use the new BAR2
535 * mechanism.
d63a6dcf 536 */
df64e4d3 537 if (unlikely(q->bar2_addr == NULL)) {
f612b815
HS
538 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
539 val | QID_V(q->cntxt_id));
d63a6dcf 540 } else {
f612b815 541 writel(val | QID_V(q->bar2_qid),
df64e4d3 542 q->bar2_addr + SGE_UDB_KDOORBELL);
d63a6dcf
HS
543
544 /* This Write memory Barrier will force the write to
545 * the User Doorbell area to be flushed.
546 */
547 wmb();
548 }
fd3a4790
DM
549 q->pend_cred &= 7;
550 }
551}
552
553static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
554 dma_addr_t mapping)
555{
556 sd->page = pg;
557 sd->dma_addr = mapping; /* includes size low bits */
558}
559
560/**
561 * refill_fl - refill an SGE Rx buffer ring
562 * @adap: the adapter
563 * @q: the ring to refill
564 * @n: the number of new buffers to allocate
565 * @gfp: the gfp flags for the allocations
566 *
567 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
568 * allocated with the supplied gfp flags. The caller must assure that
569 * @n does not exceed the queue's capacity. If afterwards the queue is
570 * found critically low mark it as starving in the bitmap of starving FLs.
571 *
572 * Returns the number of buffers allocated.
573 */
574static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
575 gfp_t gfp)
576{
52367a76 577 struct sge *s = &adap->sge;
fd3a4790
DM
578 struct page *pg;
579 dma_addr_t mapping;
580 unsigned int cred = q->avail;
581 __be64 *d = &q->desc[q->pidx];
582 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
583
aa9cd31c 584 gfp |= __GFP_NOWARN;
fd3a4790 585
52367a76
VP
586 if (s->fl_pg_order == 0)
587 goto alloc_small_pages;
588
fd3a4790
DM
589 /*
590 * Prefer large buffers
591 */
592 while (n) {
aa9cd31c 593 pg = __dev_alloc_pages(gfp, s->fl_pg_order);
fd3a4790
DM
594 if (unlikely(!pg)) {
595 q->large_alloc_failed++;
596 break; /* fall back to single pages */
597 }
598
599 mapping = dma_map_page(adap->pdev_dev, pg, 0,
52367a76 600 PAGE_SIZE << s->fl_pg_order,
fd3a4790
DM
601 PCI_DMA_FROMDEVICE);
602 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
52367a76 603 __free_pages(pg, s->fl_pg_order);
fd3a4790
DM
604 goto out; /* do not try small pages for this error */
605 }
52367a76 606 mapping |= RX_LARGE_PG_BUF;
fd3a4790
DM
607 *d++ = cpu_to_be64(mapping);
608
609 set_rx_sw_desc(sd, pg, mapping);
610 sd++;
611
612 q->avail++;
613 if (++q->pidx == q->size) {
614 q->pidx = 0;
615 sd = q->sdesc;
616 d = q->desc;
617 }
618 n--;
619 }
fd3a4790 620
52367a76 621alloc_small_pages:
fd3a4790 622 while (n--) {
aa9cd31c 623 pg = __dev_alloc_page(gfp);
fd3a4790
DM
624 if (unlikely(!pg)) {
625 q->alloc_failed++;
626 break;
627 }
628
629 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
630 PCI_DMA_FROMDEVICE);
631 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
1f2149c1 632 put_page(pg);
fd3a4790
DM
633 goto out;
634 }
635 *d++ = cpu_to_be64(mapping);
636
637 set_rx_sw_desc(sd, pg, mapping);
638 sd++;
639
640 q->avail++;
641 if (++q->pidx == q->size) {
642 q->pidx = 0;
643 sd = q->sdesc;
644 d = q->desc;
645 }
646 }
647
648out: cred = q->avail - cred;
649 q->pend_cred += cred;
650 ring_fl_db(adap, q);
651
652 if (unlikely(fl_starving(q))) {
653 smp_wmb();
e46dab4d
DM
654 set_bit(q->cntxt_id - adap->sge.egr_start,
655 adap->sge.starving_fl);
fd3a4790
DM
656 }
657
658 return cred;
659}
660
661static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
662{
663 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
664 GFP_ATOMIC);
665}
666
667/**
668 * alloc_ring - allocate resources for an SGE descriptor ring
669 * @dev: the PCI device's core device
670 * @nelem: the number of descriptors
671 * @elem_size: the size of each descriptor
672 * @sw_size: the size of the SW state associated with each ring element
673 * @phys: the physical address of the allocated ring
674 * @metadata: address of the array holding the SW state for the ring
675 * @stat_size: extra space in HW ring for status information
ad6bad3e 676 * @node: preferred node for memory allocations
fd3a4790
DM
677 *
678 * Allocates resources for an SGE descriptor ring, such as Tx queues,
679 * free buffer lists, or response queues. Each SGE ring requires
680 * space for its HW descriptors plus, optionally, space for the SW state
681 * associated with each HW entry (the metadata). The function returns
682 * three values: the virtual address for the HW ring (the return value
683 * of the function), the bus address of the HW ring, and the address
684 * of the SW ring.
685 */
686static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
687 size_t sw_size, dma_addr_t *phys, void *metadata,
ad6bad3e 688 size_t stat_size, int node)
fd3a4790
DM
689{
690 size_t len = nelem * elem_size + stat_size;
691 void *s = NULL;
692 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
693
694 if (!p)
695 return NULL;
696 if (sw_size) {
ad6bad3e 697 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
fd3a4790
DM
698
699 if (!s) {
700 dma_free_coherent(dev, len, p, *phys);
701 return NULL;
702 }
703 }
704 if (metadata)
705 *(void **)metadata = s;
706 memset(p, 0, len);
707 return p;
708}
709
710/**
711 * sgl_len - calculates the size of an SGL of the given capacity
712 * @n: the number of SGL entries
713 *
714 * Calculates the number of flits needed for a scatter/gather list that
715 * can hold the given number of entries.
716 */
717static inline unsigned int sgl_len(unsigned int n)
718{
719 n--;
720 return (3 * n) / 2 + (n & 1) + 2;
721}
722
723/**
724 * flits_to_desc - returns the num of Tx descriptors for the given flits
725 * @n: the number of flits
726 *
727 * Returns the number of Tx descriptors needed for the supplied number
728 * of flits.
729 */
730static inline unsigned int flits_to_desc(unsigned int n)
731{
732 BUG_ON(n > SGE_MAX_WR_LEN / 8);
733 return DIV_ROUND_UP(n, 8);
734}
735
736/**
737 * is_eth_imm - can an Ethernet packet be sent as immediate data?
738 * @skb: the packet
739 *
740 * Returns whether an Ethernet packet is small enough to fit as
0034b298 741 * immediate data. Return value corresponds to headroom required.
fd3a4790
DM
742 */
743static inline int is_eth_imm(const struct sk_buff *skb)
744{
0034b298
KS
745 int hdrlen = skb_shinfo(skb)->gso_size ?
746 sizeof(struct cpl_tx_pkt_lso_core) : 0;
747
748 hdrlen += sizeof(struct cpl_tx_pkt);
749 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
750 return hdrlen;
751 return 0;
fd3a4790
DM
752}
753
754/**
755 * calc_tx_flits - calculate the number of flits for a packet Tx WR
756 * @skb: the packet
757 *
758 * Returns the number of flits needed for a Tx WR for the given Ethernet
759 * packet, including the needed WR and CPL headers.
760 */
761static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
762{
763 unsigned int flits;
0034b298 764 int hdrlen = is_eth_imm(skb);
fd3a4790 765
0034b298
KS
766 if (hdrlen)
767 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
fd3a4790
DM
768
769 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
770 if (skb_shinfo(skb)->gso_size)
771 flits += 2;
772 return flits;
773}
774
775/**
776 * calc_tx_descs - calculate the number of Tx descriptors for a packet
777 * @skb: the packet
778 *
779 * Returns the number of Tx descriptors needed for the given Ethernet
780 * packet, including the needed WR and CPL headers.
781 */
782static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
783{
784 return flits_to_desc(calc_tx_flits(skb));
785}
786
787/**
788 * write_sgl - populate a scatter/gather list for a packet
789 * @skb: the packet
790 * @q: the Tx queue we are writing into
791 * @sgl: starting location for writing the SGL
792 * @end: points right after the end of the SGL
793 * @start: start offset into skb main-body data to include in the SGL
794 * @addr: the list of bus addresses for the SGL elements
795 *
796 * Generates a gather list for the buffers that make up a packet.
797 * The caller must provide adequate space for the SGL that will be written.
798 * The SGL includes all of the packet's page fragments and the data in its
799 * main body except for the first @start bytes. @sgl must be 16-byte
800 * aligned and within a Tx descriptor with available space. @end points
801 * right after the end of the SGL but does not account for any potential
802 * wrap around, i.e., @end > @sgl.
803 */
804static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
805 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
806 const dma_addr_t *addr)
807{
808 unsigned int i, len;
809 struct ulptx_sge_pair *to;
810 const struct skb_shared_info *si = skb_shinfo(skb);
811 unsigned int nfrags = si->nr_frags;
812 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
813
814 len = skb_headlen(skb) - start;
815 if (likely(len)) {
816 sgl->len0 = htonl(len);
817 sgl->addr0 = cpu_to_be64(addr[0] + start);
818 nfrags++;
819 } else {
9e903e08 820 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
fd3a4790
DM
821 sgl->addr0 = cpu_to_be64(addr[1]);
822 }
823
d7990b0c 824 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
fd3a4790
DM
825 if (likely(--nfrags == 0))
826 return;
827 /*
828 * Most of the complexity below deals with the possibility we hit the
829 * end of the queue in the middle of writing the SGL. For this case
830 * only we create the SGL in a temporary buffer and then copy it.
831 */
832 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
833
834 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
835 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
836 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
fd3a4790
DM
837 to->addr[0] = cpu_to_be64(addr[i]);
838 to->addr[1] = cpu_to_be64(addr[++i]);
839 }
840 if (nfrags) {
9e903e08 841 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
fd3a4790
DM
842 to->len[1] = cpu_to_be32(0);
843 to->addr[0] = cpu_to_be64(addr[i + 1]);
844 }
845 if (unlikely((u8 *)end > (u8 *)q->stat)) {
846 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
847
848 if (likely(part0))
849 memcpy(sgl->sge, buf, part0);
850 part1 = (u8 *)end - (u8 *)q->stat;
851 memcpy(q->desc, (u8 *)buf + part0, part1);
852 end = (void *)q->desc + part1;
853 }
854 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 855 *end = 0;
fd3a4790
DM
856}
857
df64e4d3
HS
858/* This function copies 64 byte coalesced work request to
859 * memory mapped BAR2 space. For coalesced WR SGE fetches
860 * data from the FIFO instead of from Host.
22adfe0a 861 */
df64e4d3 862static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
22adfe0a 863{
df64e4d3 864 int count = 8;
22adfe0a
SR
865
866 while (count) {
867 writeq(*src, dst);
868 src++;
869 dst++;
870 count--;
871 }
872}
873
fd3a4790
DM
874/**
875 * ring_tx_db - check and potentially ring a Tx queue's doorbell
876 * @adap: the adapter
877 * @q: the Tx queue
878 * @n: number of new descriptors to give to HW
879 *
880 * Ring the doorbel for a Tx queue.
881 */
882static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
883{
884 wmb(); /* write descriptors before telling HW */
d63a6dcf 885
df64e4d3
HS
886 /* If we don't have access to the new User Doorbell (T5+), use the old
887 * doorbell mechanism; otherwise use the new BAR2 mechanism.
888 */
889 if (unlikely(q->bar2_addr == NULL)) {
f612b815 890 u32 val = PIDX_V(n);
d63a6dcf
HS
891 unsigned long flags;
892
893 /* For T4 we need to participate in the Doorbell Recovery
894 * mechanism.
895 */
896 spin_lock_irqsave(&q->db_lock, flags);
897 if (!q->db_disabled)
f612b815
HS
898 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
899 QID_V(q->cntxt_id) | val);
d63a6dcf
HS
900 else
901 q->db_pidx_inc += n;
902 q->db_pidx = q->pidx;
903 spin_unlock_irqrestore(&q->db_lock, flags);
904 } else {
f612b815 905 u32 val = PIDX_T5_V(n);
d63a6dcf
HS
906
907 /* T4 and later chips share the same PIDX field offset within
908 * the doorbell, but T5 and later shrank the field in order to
909 * gain a bit for Doorbell Priority. The field was absurdly
910 * large in the first place (14 bits) so we just use the T5
911 * and later limits and warn if a Queue ID is too large.
912 */
f612b815 913 WARN_ON(val & DBPRIO_F);
d63a6dcf 914
df64e4d3
HS
915 /* If we're only writing a single TX Descriptor and we can use
916 * Inferred QID registers, we can use the Write Combining
917 * Gather Buffer; otherwise we use the simple doorbell.
d63a6dcf 918 */
df64e4d3 919 if (n == 1 && q->bar2_qid == 0) {
d63a6dcf
HS
920 int index = (q->pidx
921 ? (q->pidx - 1)
922 : (q->size - 1));
df64e4d3 923 u64 *wr = (u64 *)&q->desc[index];
d63a6dcf 924
df64e4d3
HS
925 cxgb_pio_copy((u64 __iomem *)
926 (q->bar2_addr + SGE_UDB_WCDOORBELL),
927 wr);
22adfe0a 928 } else {
f612b815 929 writel(val | QID_V(q->bar2_qid),
df64e4d3 930 q->bar2_addr + SGE_UDB_KDOORBELL);
22adfe0a 931 }
d63a6dcf
HS
932
933 /* This Write Memory Barrier will force the write to the User
934 * Doorbell area to be flushed. This is needed to prevent
935 * writes on different CPUs for the same queue from hitting
936 * the adapter out of order. This is required when some Work
937 * Requests take the Write Combine Gather Buffer path (user
938 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
939 * take the traditional path where we simply increment the
940 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
941 * hardware DMA read the actual Work Request.
942 */
943 wmb();
944 }
fd3a4790
DM
945}
946
947/**
948 * inline_tx_skb - inline a packet's data into Tx descriptors
949 * @skb: the packet
950 * @q: the Tx queue where the packet will be inlined
951 * @pos: starting position in the Tx queue where to inline the packet
952 *
953 * Inline a packet's contents directly into Tx descriptors, starting at
954 * the given position within the Tx DMA ring.
955 * Most of the complexity of this operation is dealing with wrap arounds
956 * in the middle of the packet we want to inline.
957 */
958static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
959 void *pos)
960{
961 u64 *p;
962 int left = (void *)q->stat - pos;
963
964 if (likely(skb->len <= left)) {
965 if (likely(!skb->data_len))
966 skb_copy_from_linear_data(skb, pos, skb->len);
967 else
968 skb_copy_bits(skb, 0, pos, skb->len);
969 pos += skb->len;
970 } else {
971 skb_copy_bits(skb, 0, pos, left);
972 skb_copy_bits(skb, left, q->desc, skb->len - left);
973 pos = (void *)q->desc + (skb->len - left);
974 }
975
976 /* 0-pad to multiple of 16 */
977 p = PTR_ALIGN(pos, 8);
978 if ((uintptr_t)p & 8)
979 *p = 0;
980}
981
982/*
983 * Figure out what HW csum a packet wants and return the appropriate control
984 * bits.
985 */
986static u64 hwcsum(const struct sk_buff *skb)
987{
988 int csum_type;
989 const struct iphdr *iph = ip_hdr(skb);
990
991 if (iph->version == 4) {
992 if (iph->protocol == IPPROTO_TCP)
993 csum_type = TX_CSUM_TCPIP;
994 else if (iph->protocol == IPPROTO_UDP)
995 csum_type = TX_CSUM_UDPIP;
996 else {
997nocsum: /*
998 * unknown protocol, disable HW csum
999 * and hope a bad packet is detected
1000 */
1001 return TXPKT_L4CSUM_DIS;
1002 }
1003 } else {
1004 /*
1005 * this doesn't work with extension headers
1006 */
1007 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1008
1009 if (ip6h->nexthdr == IPPROTO_TCP)
1010 csum_type = TX_CSUM_TCPIP6;
1011 else if (ip6h->nexthdr == IPPROTO_UDP)
1012 csum_type = TX_CSUM_UDPIP6;
1013 else
1014 goto nocsum;
1015 }
1016
1017 if (likely(csum_type >= TX_CSUM_TCPIP))
1018 return TXPKT_CSUM_TYPE(csum_type) |
1019 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1020 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1021 else {
1022 int start = skb_transport_offset(skb);
1023
1024 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1025 TXPKT_CSUM_LOC(start + skb->csum_offset);
1026 }
1027}
1028
1029static void eth_txq_stop(struct sge_eth_txq *q)
1030{
1031 netif_tx_stop_queue(q->txq);
1032 q->q.stops++;
1033}
1034
1035static inline void txq_advance(struct sge_txq *q, unsigned int n)
1036{
1037 q->in_use += n;
1038 q->pidx += n;
1039 if (q->pidx >= q->size)
1040 q->pidx -= q->size;
1041}
1042
1043/**
1044 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1045 * @skb: the packet
1046 * @dev: the egress net device
1047 *
1048 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1049 */
1050netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1051{
0034b298 1052 int len;
fd3a4790
DM
1053 u32 wr_mid;
1054 u64 cntrl, *end;
1055 int qidx, credits;
1056 unsigned int flits, ndesc;
1057 struct adapter *adap;
1058 struct sge_eth_txq *q;
1059 const struct port_info *pi;
1060 struct fw_eth_tx_pkt_wr *wr;
1061 struct cpl_tx_pkt_core *cpl;
1062 const struct skb_shared_info *ssi;
1063 dma_addr_t addr[MAX_SKB_FRAGS + 1];
0034b298 1064 bool immediate = false;
fd3a4790
DM
1065
1066 /*
1067 * The chip min packet length is 10 octets but play safe and reject
1068 * anything shorter than an Ethernet header.
1069 */
1070 if (unlikely(skb->len < ETH_HLEN)) {
a7525198 1071out_free: dev_kfree_skb_any(skb);
fd3a4790
DM
1072 return NETDEV_TX_OK;
1073 }
1074
1075 pi = netdev_priv(dev);
1076 adap = pi->adapter;
1077 qidx = skb_get_queue_mapping(skb);
1078 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1079
1080 reclaim_completed_tx(adap, &q->q, true);
1081
1082 flits = calc_tx_flits(skb);
1083 ndesc = flits_to_desc(flits);
1084 credits = txq_avail(&q->q) - ndesc;
1085
1086 if (unlikely(credits < 0)) {
1087 eth_txq_stop(q);
1088 dev_err(adap->pdev_dev,
1089 "%s: Tx ring %u full while queue awake!\n",
1090 dev->name, qidx);
1091 return NETDEV_TX_BUSY;
1092 }
1093
0034b298
KS
1094 if (is_eth_imm(skb))
1095 immediate = true;
1096
1097 if (!immediate &&
fd3a4790
DM
1098 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1099 q->mapping_err++;
1100 goto out_free;
1101 }
1102
e2ac9628 1103 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
fd3a4790
DM
1104 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1105 eth_txq_stop(q);
e2ac9628 1106 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
fd3a4790
DM
1107 }
1108
1109 wr = (void *)&q->q.desc[q->q.pidx];
1110 wr->equiq_to_len16 = htonl(wr_mid);
1111 wr->r3 = cpu_to_be64(0);
1112 end = (u64 *)wr + flits;
1113
0034b298 1114 len = immediate ? skb->len : 0;
fd3a4790
DM
1115 ssi = skb_shinfo(skb);
1116 if (ssi->gso_size) {
625ac6ae 1117 struct cpl_tx_pkt_lso *lso = (void *)wr;
fd3a4790
DM
1118 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1119 int l3hdr_len = skb_network_header_len(skb);
1120 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1121
0034b298 1122 len += sizeof(*lso);
e2ac9628
HS
1123 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1124 FW_WR_IMMDLEN_V(len));
625ac6ae
DM
1125 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1126 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1127 LSO_IPV6(v6) |
1128 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1129 LSO_IPHDR_LEN(l3hdr_len / 4) |
1130 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1131 lso->c.ipid_ofst = htons(0);
1132 lso->c.mss = htons(ssi->gso_size);
1133 lso->c.seqno_offset = htonl(0);
7207c0d1
HS
1134 if (is_t4(adap->params.chip))
1135 lso->c.len = htonl(skb->len);
1136 else
1137 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
fd3a4790
DM
1138 cpl = (void *)(lso + 1);
1139 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1140 TXPKT_IPHDR_LEN(l3hdr_len) |
1141 TXPKT_ETHHDR_LEN(eth_xtra_len);
1142 q->tso++;
1143 q->tx_cso += ssi->gso_segs;
1144 } else {
ca71de6b 1145 len += sizeof(*cpl);
e2ac9628
HS
1146 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1147 FW_WR_IMMDLEN_V(len));
fd3a4790
DM
1148 cpl = (void *)(wr + 1);
1149 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1150 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1151 q->tx_cso++;
1152 } else
1153 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1154 }
1155
1156 if (vlan_tx_tag_present(skb)) {
1157 q->vlan_ins++;
1158 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1159 }
1160
1161 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1707aec9 1162 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
fd3a4790
DM
1163 cpl->pack = htons(0);
1164 cpl->len = htons(skb->len);
1165 cpl->ctrl1 = cpu_to_be64(cntrl);
1166
0034b298 1167 if (immediate) {
fd3a4790 1168 inline_tx_skb(skb, &q->q, cpl + 1);
a7525198 1169 dev_consume_skb_any(skb);
fd3a4790
DM
1170 } else {
1171 int last_desc;
1172
1173 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1174 addr);
1175 skb_orphan(skb);
1176
1177 last_desc = q->q.pidx + ndesc - 1;
1178 if (last_desc >= q->q.size)
1179 last_desc -= q->q.size;
1180 q->q.sdesc[last_desc].skb = skb;
1181 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1182 }
1183
1184 txq_advance(&q->q, ndesc);
1185
1186 ring_tx_db(adap, &q->q, ndesc);
1187 return NETDEV_TX_OK;
1188}
1189
1190/**
1191 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1192 * @q: the SGE control Tx queue
1193 *
1194 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1195 * that send only immediate data (presently just the control queues) and
1196 * thus do not have any sk_buffs to release.
1197 */
1198static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1199{
1200 int hw_cidx = ntohs(q->stat->cidx);
1201 int reclaim = hw_cidx - q->cidx;
1202
1203 if (reclaim < 0)
1204 reclaim += q->size;
1205
1206 q->in_use -= reclaim;
1207 q->cidx = hw_cidx;
1208}
1209
1210/**
1211 * is_imm - check whether a packet can be sent as immediate data
1212 * @skb: the packet
1213 *
1214 * Returns true if a packet can be sent as a WR with immediate data.
1215 */
1216static inline int is_imm(const struct sk_buff *skb)
1217{
1218 return skb->len <= MAX_CTRL_WR_LEN;
1219}
1220
1221/**
1222 * ctrlq_check_stop - check if a control queue is full and should stop
1223 * @q: the queue
1224 * @wr: most recent WR written to the queue
1225 *
1226 * Check if a control queue has become full and should be stopped.
1227 * We clean up control queue descriptors very lazily, only when we are out.
1228 * If the queue is still full after reclaiming any completed descriptors
1229 * we suspend it and have the last WR wake it up.
1230 */
1231static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1232{
1233 reclaim_completed_tx_imm(&q->q);
1234 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
e2ac9628 1235 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
fd3a4790
DM
1236 q->q.stops++;
1237 q->full = 1;
1238 }
1239}
1240
1241/**
1242 * ctrl_xmit - send a packet through an SGE control Tx queue
1243 * @q: the control queue
1244 * @skb: the packet
1245 *
1246 * Send a packet through an SGE control Tx queue. Packets sent through
1247 * a control queue must fit entirely as immediate data.
1248 */
1249static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1250{
1251 unsigned int ndesc;
1252 struct fw_wr_hdr *wr;
1253
1254 if (unlikely(!is_imm(skb))) {
1255 WARN_ON(1);
1256 dev_kfree_skb(skb);
1257 return NET_XMIT_DROP;
1258 }
1259
1260 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1261 spin_lock(&q->sendq.lock);
1262
1263 if (unlikely(q->full)) {
1264 skb->priority = ndesc; /* save for restart */
1265 __skb_queue_tail(&q->sendq, skb);
1266 spin_unlock(&q->sendq.lock);
1267 return NET_XMIT_CN;
1268 }
1269
1270 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1271 inline_tx_skb(skb, &q->q, wr);
1272
1273 txq_advance(&q->q, ndesc);
1274 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1275 ctrlq_check_stop(q, wr);
1276
1277 ring_tx_db(q->adap, &q->q, ndesc);
1278 spin_unlock(&q->sendq.lock);
1279
1280 kfree_skb(skb);
1281 return NET_XMIT_SUCCESS;
1282}
1283
1284/**
1285 * restart_ctrlq - restart a suspended control queue
1286 * @data: the control queue to restart
1287 *
1288 * Resumes transmission on a suspended Tx control queue.
1289 */
1290static void restart_ctrlq(unsigned long data)
1291{
1292 struct sk_buff *skb;
1293 unsigned int written = 0;
1294 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1295
1296 spin_lock(&q->sendq.lock);
1297 reclaim_completed_tx_imm(&q->q);
1298 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1299
1300 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1301 struct fw_wr_hdr *wr;
1302 unsigned int ndesc = skb->priority; /* previously saved */
1303
1304 /*
1305 * Write descriptors and free skbs outside the lock to limit
1306 * wait times. q->full is still set so new skbs will be queued.
1307 */
1308 spin_unlock(&q->sendq.lock);
1309
1310 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1311 inline_tx_skb(skb, &q->q, wr);
1312 kfree_skb(skb);
1313
1314 written += ndesc;
1315 txq_advance(&q->q, ndesc);
1316 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1317 unsigned long old = q->q.stops;
1318
1319 ctrlq_check_stop(q, wr);
1320 if (q->q.stops != old) { /* suspended anew */
1321 spin_lock(&q->sendq.lock);
1322 goto ringdb;
1323 }
1324 }
1325 if (written > 16) {
1326 ring_tx_db(q->adap, &q->q, written);
1327 written = 0;
1328 }
1329 spin_lock(&q->sendq.lock);
1330 }
1331 q->full = 0;
1332ringdb: if (written)
1333 ring_tx_db(q->adap, &q->q, written);
1334 spin_unlock(&q->sendq.lock);
1335}
1336
1337/**
1338 * t4_mgmt_tx - send a management message
1339 * @adap: the adapter
1340 * @skb: the packet containing the management message
1341 *
1342 * Send a management message through control queue 0.
1343 */
1344int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1345{
1346 int ret;
1347
1348 local_bh_disable();
1349 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1350 local_bh_enable();
1351 return ret;
1352}
1353
1354/**
1355 * is_ofld_imm - check whether a packet can be sent as immediate data
1356 * @skb: the packet
1357 *
1358 * Returns true if a packet can be sent as an offload WR with immediate
1359 * data. We currently use the same limit as for Ethernet packets.
1360 */
1361static inline int is_ofld_imm(const struct sk_buff *skb)
1362{
1363 return skb->len <= MAX_IMM_TX_PKT_LEN;
1364}
1365
1366/**
1367 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1368 * @skb: the packet
1369 *
1370 * Returns the number of flits needed for the given offload packet.
1371 * These packets are already fully constructed and no additional headers
1372 * will be added.
1373 */
1374static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1375{
1376 unsigned int flits, cnt;
1377
1378 if (is_ofld_imm(skb))
1379 return DIV_ROUND_UP(skb->len, 8);
1380
1381 flits = skb_transport_offset(skb) / 8U; /* headers */
1382 cnt = skb_shinfo(skb)->nr_frags;
15dd16c2 1383 if (skb_tail_pointer(skb) != skb_transport_header(skb))
fd3a4790
DM
1384 cnt++;
1385 return flits + sgl_len(cnt);
1386}
1387
1388/**
1389 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1390 * @adap: the adapter
1391 * @q: the queue to stop
1392 *
1393 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1394 * inability to map packets. A periodic timer attempts to restart
1395 * queues so marked.
1396 */
1397static void txq_stop_maperr(struct sge_ofld_txq *q)
1398{
1399 q->mapping_err++;
1400 q->q.stops++;
e46dab4d
DM
1401 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1402 q->adap->sge.txq_maperr);
fd3a4790
DM
1403}
1404
1405/**
1406 * ofldtxq_stop - stop an offload Tx queue that has become full
1407 * @q: the queue to stop
1408 * @skb: the packet causing the queue to become full
1409 *
1410 * Stops an offload Tx queue that has become full and modifies the packet
1411 * being written to request a wakeup.
1412 */
1413static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1414{
1415 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1416
e2ac9628 1417 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
fd3a4790
DM
1418 q->q.stops++;
1419 q->full = 1;
1420}
1421
1422/**
1423 * service_ofldq - restart a suspended offload queue
1424 * @q: the offload queue
1425 *
1426 * Services an offload Tx queue by moving packets from its packet queue
1427 * to the HW Tx ring. The function starts and ends with the queue locked.
1428 */
1429static void service_ofldq(struct sge_ofld_txq *q)
1430{
1431 u64 *pos;
1432 int credits;
1433 struct sk_buff *skb;
1434 unsigned int written = 0;
1435 unsigned int flits, ndesc;
1436
1437 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1438 /*
1439 * We drop the lock but leave skb on sendq, thus retaining
1440 * exclusive access to the state of the queue.
1441 */
1442 spin_unlock(&q->sendq.lock);
1443
1444 reclaim_completed_tx(q->adap, &q->q, false);
1445
1446 flits = skb->priority; /* previously saved */
1447 ndesc = flits_to_desc(flits);
1448 credits = txq_avail(&q->q) - ndesc;
1449 BUG_ON(credits < 0);
1450 if (unlikely(credits < TXQ_STOP_THRES))
1451 ofldtxq_stop(q, skb);
1452
1453 pos = (u64 *)&q->q.desc[q->q.pidx];
1454 if (is_ofld_imm(skb))
1455 inline_tx_skb(skb, &q->q, pos);
1456 else if (map_skb(q->adap->pdev_dev, skb,
1457 (dma_addr_t *)skb->head)) {
1458 txq_stop_maperr(q);
1459 spin_lock(&q->sendq.lock);
1460 break;
1461 } else {
1462 int last_desc, hdr_len = skb_transport_offset(skb);
1463
1464 memcpy(pos, skb->data, hdr_len);
1465 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1466 pos + flits, hdr_len,
1467 (dma_addr_t *)skb->head);
1468#ifdef CONFIG_NEED_DMA_MAP_STATE
1469 skb->dev = q->adap->port[0];
1470 skb->destructor = deferred_unmap_destructor;
1471#endif
1472 last_desc = q->q.pidx + ndesc - 1;
1473 if (last_desc >= q->q.size)
1474 last_desc -= q->q.size;
1475 q->q.sdesc[last_desc].skb = skb;
1476 }
1477
1478 txq_advance(&q->q, ndesc);
1479 written += ndesc;
1480 if (unlikely(written > 32)) {
1481 ring_tx_db(q->adap, &q->q, written);
1482 written = 0;
1483 }
1484
1485 spin_lock(&q->sendq.lock);
1486 __skb_unlink(skb, &q->sendq);
1487 if (is_ofld_imm(skb))
1488 kfree_skb(skb);
1489 }
1490 if (likely(written))
1491 ring_tx_db(q->adap, &q->q, written);
1492}
1493
1494/**
1495 * ofld_xmit - send a packet through an offload queue
1496 * @q: the Tx offload queue
1497 * @skb: the packet
1498 *
1499 * Send an offload packet through an SGE offload queue.
1500 */
1501static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1502{
1503 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1504 spin_lock(&q->sendq.lock);
1505 __skb_queue_tail(&q->sendq, skb);
1506 if (q->sendq.qlen == 1)
1507 service_ofldq(q);
1508 spin_unlock(&q->sendq.lock);
1509 return NET_XMIT_SUCCESS;
1510}
1511
1512/**
1513 * restart_ofldq - restart a suspended offload queue
1514 * @data: the offload queue to restart
1515 *
1516 * Resumes transmission on a suspended Tx offload queue.
1517 */
1518static void restart_ofldq(unsigned long data)
1519{
1520 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1521
1522 spin_lock(&q->sendq.lock);
1523 q->full = 0; /* the queue actually is completely empty now */
1524 service_ofldq(q);
1525 spin_unlock(&q->sendq.lock);
1526}
1527
1528/**
1529 * skb_txq - return the Tx queue an offload packet should use
1530 * @skb: the packet
1531 *
1532 * Returns the Tx queue an offload packet should use as indicated by bits
1533 * 1-15 in the packet's queue_mapping.
1534 */
1535static inline unsigned int skb_txq(const struct sk_buff *skb)
1536{
1537 return skb->queue_mapping >> 1;
1538}
1539
1540/**
1541 * is_ctrl_pkt - return whether an offload packet is a control packet
1542 * @skb: the packet
1543 *
1544 * Returns whether an offload packet should use an OFLD or a CTRL
1545 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1546 */
1547static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1548{
1549 return skb->queue_mapping & 1;
1550}
1551
1552static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1553{
1554 unsigned int idx = skb_txq(skb);
1555
4fe44dd7
KS
1556 if (unlikely(is_ctrl_pkt(skb))) {
1557 /* Single ctrl queue is a requirement for LE workaround path */
1558 if (adap->tids.nsftids)
1559 idx = 0;
fd3a4790 1560 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
4fe44dd7 1561 }
fd3a4790
DM
1562 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1563}
1564
1565/**
1566 * t4_ofld_send - send an offload packet
1567 * @adap: the adapter
1568 * @skb: the packet
1569 *
1570 * Sends an offload packet. We use the packet queue_mapping to select the
1571 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1572 * should be sent as regular or control, bits 1-15 select the queue.
1573 */
1574int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1575{
1576 int ret;
1577
1578 local_bh_disable();
1579 ret = ofld_send(adap, skb);
1580 local_bh_enable();
1581 return ret;
1582}
1583
1584/**
1585 * cxgb4_ofld_send - send an offload packet
1586 * @dev: the net device
1587 * @skb: the packet
1588 *
1589 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1590 * intended for ULDs.
1591 */
1592int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1593{
1594 return t4_ofld_send(netdev2adap(dev), skb);
1595}
1596EXPORT_SYMBOL(cxgb4_ofld_send);
1597
e91b0f24 1598static inline void copy_frags(struct sk_buff *skb,
fd3a4790
DM
1599 const struct pkt_gl *gl, unsigned int offset)
1600{
e91b0f24 1601 int i;
fd3a4790
DM
1602
1603 /* usually there's just one frag */
e91b0f24
IC
1604 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1605 gl->frags[0].offset + offset,
1606 gl->frags[0].size - offset);
1607 skb_shinfo(skb)->nr_frags = gl->nfrags;
1608 for (i = 1; i < gl->nfrags; i++)
1609 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1610 gl->frags[i].offset,
1611 gl->frags[i].size);
fd3a4790
DM
1612
1613 /* get a reference to the last page, we don't own it */
e91b0f24 1614 get_page(gl->frags[gl->nfrags - 1].page);
fd3a4790
DM
1615}
1616
1617/**
1618 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1619 * @gl: the gather list
1620 * @skb_len: size of sk_buff main body if it carries fragments
1621 * @pull_len: amount of data to move to the sk_buff's main body
1622 *
1623 * Builds an sk_buff from the given packet gather list. Returns the
1624 * sk_buff or %NULL if sk_buff allocation failed.
1625 */
1626struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1627 unsigned int skb_len, unsigned int pull_len)
1628{
1629 struct sk_buff *skb;
1630
1631 /*
1632 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1633 * size, which is expected since buffers are at least PAGE_SIZEd.
1634 * In this case packets up to RX_COPY_THRES have only one fragment.
1635 */
1636 if (gl->tot_len <= RX_COPY_THRES) {
1637 skb = dev_alloc_skb(gl->tot_len);
1638 if (unlikely(!skb))
1639 goto out;
1640 __skb_put(skb, gl->tot_len);
1641 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1642 } else {
1643 skb = dev_alloc_skb(skb_len);
1644 if (unlikely(!skb))
1645 goto out;
1646 __skb_put(skb, pull_len);
1647 skb_copy_to_linear_data(skb, gl->va, pull_len);
1648
e91b0f24 1649 copy_frags(skb, gl, pull_len);
fd3a4790
DM
1650 skb->len = gl->tot_len;
1651 skb->data_len = skb->len - pull_len;
1652 skb->truesize += skb->data_len;
1653 }
1654out: return skb;
1655}
1656EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1657
1658/**
1659 * t4_pktgl_free - free a packet gather list
1660 * @gl: the gather list
1661 *
1662 * Releases the pages of a packet gather list. We do not own the last
1663 * page on the list and do not free it.
1664 */
de498c89 1665static void t4_pktgl_free(const struct pkt_gl *gl)
fd3a4790
DM
1666{
1667 int n;
e91b0f24 1668 const struct page_frag *p;
fd3a4790
DM
1669
1670 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1671 put_page(p->page);
1672}
1673
1674/*
1675 * Process an MPS trace packet. Give it an unused protocol number so it won't
1676 * be delivered to anyone and send it to the stack for capture.
1677 */
1678static noinline int handle_trace_pkt(struct adapter *adap,
1679 const struct pkt_gl *gl)
1680{
1681 struct sk_buff *skb;
fd3a4790
DM
1682
1683 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1684 if (unlikely(!skb)) {
1685 t4_pktgl_free(gl);
1686 return 0;
1687 }
1688
d14807dd 1689 if (is_t4(adap->params.chip))
0a57a536
SR
1690 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1691 else
1692 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1693
fd3a4790
DM
1694 skb_reset_mac_header(skb);
1695 skb->protocol = htons(0xffff);
1696 skb->dev = adap->port[0];
1697 netif_receive_skb(skb);
1698 return 0;
1699}
1700
1701static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1702 const struct cpl_rx_pkt *pkt)
1703{
52367a76
VP
1704 struct adapter *adapter = rxq->rspq.adap;
1705 struct sge *s = &adapter->sge;
fd3a4790
DM
1706 int ret;
1707 struct sk_buff *skb;
1708
1709 skb = napi_get_frags(&rxq->rspq.napi);
1710 if (unlikely(!skb)) {
1711 t4_pktgl_free(gl);
1712 rxq->stats.rx_drops++;
1713 return;
1714 }
1715
52367a76
VP
1716 copy_frags(skb, gl, s->pktshift);
1717 skb->len = gl->tot_len - s->pktshift;
fd3a4790
DM
1718 skb->data_len = skb->len;
1719 skb->truesize += skb->data_len;
1720 skb->ip_summed = CHECKSUM_UNNECESSARY;
1721 skb_record_rx_queue(skb, rxq->rspq.idx);
87b6cf51 1722 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
8264989c
TH
1723 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1724 PKT_HASH_TYPE_L3);
fd3a4790
DM
1725
1726 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1727 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1728 rxq->stats.vlan_ex++;
fd3a4790
DM
1729 }
1730 ret = napi_gro_frags(&rxq->rspq.napi);
19ecae2c 1731 if (ret == GRO_HELD)
fd3a4790
DM
1732 rxq->stats.lro_pkts++;
1733 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1734 rxq->stats.lro_merged++;
1735 rxq->stats.pkts++;
1736 rxq->stats.rx_cso++;
1737}
1738
1739/**
1740 * t4_ethrx_handler - process an ingress ethernet packet
1741 * @q: the response queue that received the packet
1742 * @rsp: the response queue descriptor holding the RX_PKT message
1743 * @si: the gather list of packet fragments
1744 *
1745 * Process an ingress ethernet packet and deliver it to the stack.
1746 */
1747int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1748 const struct pkt_gl *si)
1749{
1750 bool csum_ok;
1751 struct sk_buff *skb;
fd3a4790
DM
1752 const struct cpl_rx_pkt *pkt;
1753 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76 1754 struct sge *s = &q->adap->sge;
d14807dd 1755 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
0a57a536 1756 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
fd3a4790 1757
0a57a536 1758 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
fd3a4790
DM
1759 return handle_trace_pkt(q->adap, si);
1760
87b6cf51 1761 pkt = (const struct cpl_rx_pkt *)rsp;
cca2822d
HS
1762 csum_ok = pkt->csum_calc && !pkt->err_vec &&
1763 (q->netdev->features & NETIF_F_RXCSUM);
fd3a4790
DM
1764 if ((pkt->l2info & htonl(RXF_TCP)) &&
1765 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1766 do_gro(rxq, si, pkt);
1767 return 0;
1768 }
1769
1770 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1771 if (unlikely(!skb)) {
1772 t4_pktgl_free(si);
1773 rxq->stats.rx_drops++;
1774 return 0;
1775 }
1776
52367a76 1777 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
fd3a4790
DM
1778 skb->protocol = eth_type_trans(skb, q->netdev);
1779 skb_record_rx_queue(skb, q->idx);
87b6cf51 1780 if (skb->dev->features & NETIF_F_RXHASH)
8264989c
TH
1781 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1782 PKT_HASH_TYPE_L3);
87b6cf51 1783
fd3a4790
DM
1784 rxq->stats.pkts++;
1785
cca2822d 1786 if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
ba5d3c66 1787 if (!pkt->ip_frag) {
fd3a4790 1788 skb->ip_summed = CHECKSUM_UNNECESSARY;
ba5d3c66
DM
1789 rxq->stats.rx_cso++;
1790 } else if (pkt->l2info & htonl(RXF_IP)) {
fd3a4790
DM
1791 __sum16 c = (__force __sum16)pkt->csum;
1792 skb->csum = csum_unfold(c);
1793 skb->ip_summed = CHECKSUM_COMPLETE;
ba5d3c66 1794 rxq->stats.rx_cso++;
fd3a4790 1795 }
fd3a4790 1796 } else
bc8acf2c 1797 skb_checksum_none_assert(skb);
fd3a4790
DM
1798
1799 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1800 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1801 rxq->stats.vlan_ex++;
19ecae2c
DM
1802 }
1803 netif_receive_skb(skb);
fd3a4790
DM
1804 return 0;
1805}
1806
1807/**
1808 * restore_rx_bufs - put back a packet's Rx buffers
1809 * @si: the packet gather list
1810 * @q: the SGE free list
1811 * @frags: number of FL buffers to restore
1812 *
1813 * Puts back on an FL the Rx buffers associated with @si. The buffers
1814 * have already been unmapped and are left unmapped, we mark them so to
1815 * prevent further unmapping attempts.
1816 *
1817 * This function undoes a series of @unmap_rx_buf calls when we find out
1818 * that the current packet can't be processed right away afterall and we
1819 * need to come back to it later. This is a very rare event and there's
1820 * no effort to make this particularly efficient.
1821 */
1822static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1823 int frags)
1824{
1825 struct rx_sw_desc *d;
1826
1827 while (frags--) {
1828 if (q->cidx == 0)
1829 q->cidx = q->size - 1;
1830 else
1831 q->cidx--;
1832 d = &q->sdesc[q->cidx];
1833 d->page = si->frags[frags].page;
1834 d->dma_addr |= RX_UNMAPPED_BUF;
1835 q->avail++;
1836 }
1837}
1838
1839/**
1840 * is_new_response - check if a response is newly written
1841 * @r: the response descriptor
1842 * @q: the response queue
1843 *
1844 * Returns true if a response descriptor contains a yet unprocessed
1845 * response.
1846 */
1847static inline bool is_new_response(const struct rsp_ctrl *r,
1848 const struct sge_rspq *q)
1849{
1850 return RSPD_GEN(r->type_gen) == q->gen;
1851}
1852
1853/**
1854 * rspq_next - advance to the next entry in a response queue
1855 * @q: the queue
1856 *
1857 * Updates the state of a response queue to advance it to the next entry.
1858 */
1859static inline void rspq_next(struct sge_rspq *q)
1860{
1861 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1862 if (unlikely(++q->cidx == q->size)) {
1863 q->cidx = 0;
1864 q->gen ^= 1;
1865 q->cur_desc = q->desc;
1866 }
1867}
1868
1869/**
1870 * process_responses - process responses from an SGE response queue
1871 * @q: the ingress queue to process
1872 * @budget: how many responses can be processed in this round
1873 *
1874 * Process responses from an SGE response queue up to the supplied budget.
1875 * Responses include received packets as well as control messages from FW
1876 * or HW.
1877 *
1878 * Additionally choose the interrupt holdoff time for the next interrupt
1879 * on this queue. If the system is under memory shortage use a fairly
1880 * long delay to help recovery.
1881 */
1882static int process_responses(struct sge_rspq *q, int budget)
1883{
1884 int ret, rsp_type;
1885 int budget_left = budget;
1886 const struct rsp_ctrl *rc;
1887 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76
VP
1888 struct adapter *adapter = q->adap;
1889 struct sge *s = &adapter->sge;
fd3a4790
DM
1890
1891 while (likely(budget_left)) {
1892 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1893 if (!is_new_response(rc, q))
1894 break;
1895
1896 rmb();
1897 rsp_type = RSPD_TYPE(rc->type_gen);
1898 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
e91b0f24 1899 struct page_frag *fp;
fd3a4790
DM
1900 struct pkt_gl si;
1901 const struct rx_sw_desc *rsd;
1902 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1903
1904 if (len & RSPD_NEWBUF) {
1905 if (likely(q->offset > 0)) {
1906 free_rx_bufs(q->adap, &rxq->fl, 1);
1907 q->offset = 0;
1908 }
1704d748 1909 len = RSPD_LEN(len);
fd3a4790
DM
1910 }
1911 si.tot_len = len;
1912
1913 /* gather packet fragments */
1914 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1915 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
52367a76 1916 bufsz = get_buf_size(adapter, rsd);
fd3a4790 1917 fp->page = rsd->page;
e91b0f24
IC
1918 fp->offset = q->offset;
1919 fp->size = min(bufsz, len);
1920 len -= fp->size;
fd3a4790
DM
1921 if (!len)
1922 break;
1923 unmap_rx_buf(q->adap, &rxq->fl);
1924 }
1925
1926 /*
1927 * Last buffer remains mapped so explicitly make it
1928 * coherent for CPU access.
1929 */
1930 dma_sync_single_for_cpu(q->adap->pdev_dev,
1931 get_buf_addr(rsd),
e91b0f24 1932 fp->size, DMA_FROM_DEVICE);
fd3a4790
DM
1933
1934 si.va = page_address(si.frags[0].page) +
e91b0f24 1935 si.frags[0].offset;
fd3a4790
DM
1936 prefetch(si.va);
1937
1938 si.nfrags = frags + 1;
1939 ret = q->handler(q, q->cur_desc, &si);
1940 if (likely(ret == 0))
52367a76 1941 q->offset += ALIGN(fp->size, s->fl_align);
fd3a4790
DM
1942 else
1943 restore_rx_bufs(&si, &rxq->fl, frags);
1944 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1945 ret = q->handler(q, q->cur_desc, NULL);
1946 } else {
1947 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1948 }
1949
1950 if (unlikely(ret)) {
1951 /* couldn't process descriptor, back off for recovery */
1952 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1953 break;
1954 }
1955
1956 rspq_next(q);
1957 budget_left--;
1958 }
1959
1960 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1961 __refill_fl(q->adap, &rxq->fl);
1962 return budget - budget_left;
1963}
1964
1965/**
1966 * napi_rx_handler - the NAPI handler for Rx processing
1967 * @napi: the napi instance
1968 * @budget: how many packets we can process in this round
1969 *
1970 * Handler for new data events when using NAPI. This does not need any
1971 * locking or protection from interrupts as data interrupts are off at
1972 * this point and other adapter interrupts do not interfere (the latter
1973 * in not a concern at all with MSI-X as non-data interrupts then have
1974 * a separate handler).
1975 */
1976static int napi_rx_handler(struct napi_struct *napi, int budget)
1977{
1978 unsigned int params;
1979 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1980 int work_done = process_responses(q, budget);
d63a6dcf 1981 u32 val;
fd3a4790
DM
1982
1983 if (likely(work_done < budget)) {
e553ec3f
HS
1984 int timer_index;
1985
fd3a4790 1986 napi_complete(napi);
e553ec3f
HS
1987 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
1988
1989 if (q->adaptive_rx) {
1990 if (work_done > max(timer_pkt_quota[timer_index],
1991 MIN_NAPI_WORK))
1992 timer_index = (timer_index + 1);
1993 else
1994 timer_index = timer_index - 1;
1995
1996 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
1997 q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
1998 V_QINTR_CNT_EN;
1999 params = q->next_intr_params;
2000 } else {
2001 params = q->next_intr_params;
2002 q->next_intr_params = q->intr_params;
2003 }
fd3a4790
DM
2004 } else
2005 params = QINTR_TIMER_IDX(7);
2006
f612b815 2007 val = CIDXINC_V(work_done) | SEINTARM_V(params);
df64e4d3
HS
2008
2009 /* If we don't have access to the new User GTS (T5+), use the old
2010 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2011 */
2012 if (unlikely(q->bar2_addr == NULL)) {
f612b815
HS
2013 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2014 val | INGRESSQID_V((u32)q->cntxt_id));
d63a6dcf 2015 } else {
f612b815 2016 writel(val | INGRESSQID_V(q->bar2_qid),
df64e4d3 2017 q->bar2_addr + SGE_UDB_GTS);
d63a6dcf
HS
2018 wmb();
2019 }
fd3a4790
DM
2020 return work_done;
2021}
2022
2023/*
2024 * The MSI-X interrupt handler for an SGE response queue.
2025 */
2026irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2027{
2028 struct sge_rspq *q = cookie;
2029
2030 napi_schedule(&q->napi);
2031 return IRQ_HANDLED;
2032}
2033
2034/*
2035 * Process the indirect interrupt entries in the interrupt queue and kick off
2036 * NAPI for each queue that has generated an entry.
2037 */
2038static unsigned int process_intrq(struct adapter *adap)
2039{
2040 unsigned int credits;
2041 const struct rsp_ctrl *rc;
2042 struct sge_rspq *q = &adap->sge.intrq;
d63a6dcf 2043 u32 val;
fd3a4790
DM
2044
2045 spin_lock(&adap->sge.intrq_lock);
2046 for (credits = 0; ; credits++) {
2047 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2048 if (!is_new_response(rc, q))
2049 break;
2050
2051 rmb();
2052 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2053 unsigned int qid = ntohl(rc->pldbuflen_qid);
2054
e46dab4d 2055 qid -= adap->sge.ingr_start;
fd3a4790
DM
2056 napi_schedule(&adap->sge.ingr_map[qid]->napi);
2057 }
2058
2059 rspq_next(q);
2060 }
2061
f612b815 2062 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
df64e4d3
HS
2063
2064 /* If we don't have access to the new User GTS (T5+), use the old
2065 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2066 */
2067 if (unlikely(q->bar2_addr == NULL)) {
f612b815
HS
2068 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2069 val | INGRESSQID_V(q->cntxt_id));
d63a6dcf 2070 } else {
f612b815 2071 writel(val | INGRESSQID_V(q->bar2_qid),
df64e4d3 2072 q->bar2_addr + SGE_UDB_GTS);
d63a6dcf
HS
2073 wmb();
2074 }
fd3a4790
DM
2075 spin_unlock(&adap->sge.intrq_lock);
2076 return credits;
2077}
2078
2079/*
2080 * The MSI interrupt handler, which handles data events from SGE response queues
2081 * as well as error and other async events as they all use the same MSI vector.
2082 */
2083static irqreturn_t t4_intr_msi(int irq, void *cookie)
2084{
2085 struct adapter *adap = cookie;
2086
2087 t4_slow_intr_handler(adap);
2088 process_intrq(adap);
2089 return IRQ_HANDLED;
2090}
2091
2092/*
2093 * Interrupt handler for legacy INTx interrupts.
2094 * Handles data events from SGE response queues as well as error and other
2095 * async events as they all use the same interrupt line.
2096 */
2097static irqreturn_t t4_intr_intx(int irq, void *cookie)
2098{
2099 struct adapter *adap = cookie;
2100
2101 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
2102 if (t4_slow_intr_handler(adap) | process_intrq(adap))
2103 return IRQ_HANDLED;
2104 return IRQ_NONE; /* probably shared interrupt */
2105}
2106
2107/**
2108 * t4_intr_handler - select the top-level interrupt handler
2109 * @adap: the adapter
2110 *
2111 * Selects the top-level interrupt handler based on the type of interrupts
2112 * (MSI-X, MSI, or INTx).
2113 */
2114irq_handler_t t4_intr_handler(struct adapter *adap)
2115{
2116 if (adap->flags & USING_MSIX)
2117 return t4_sge_intr_msix;
2118 if (adap->flags & USING_MSI)
2119 return t4_intr_msi;
2120 return t4_intr_intx;
2121}
2122
2123static void sge_rx_timer_cb(unsigned long data)
2124{
2125 unsigned long m;
0f4d201f 2126 unsigned int i, idma_same_state_cnt[2];
fd3a4790
DM
2127 struct adapter *adap = (struct adapter *)data;
2128 struct sge *s = &adap->sge;
2129
2130 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
2131 for (m = s->starving_fl[i]; m; m &= m - 1) {
2132 struct sge_eth_rxq *rxq;
2133 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2134 struct sge_fl *fl = s->egr_map[id];
2135
2136 clear_bit(id, s->starving_fl);
4e857c58 2137 smp_mb__after_atomic();
fd3a4790
DM
2138
2139 if (fl_starving(fl)) {
2140 rxq = container_of(fl, struct sge_eth_rxq, fl);
2141 if (napi_reschedule(&rxq->rspq.napi))
2142 fl->starving++;
2143 else
2144 set_bit(id, s->starving_fl);
2145 }
2146 }
2147
2148 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
0f4d201f
KS
2149 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2150 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2151
2152 for (i = 0; i < 2; i++) {
2153 u32 debug0, debug11;
2154
2155 /* If the Ingress DMA Same State Counter ("timer") is less
2156 * than 1s, then we can reset our synthesized Stall Timer and
2157 * continue. If we have previously emitted warnings about a
2158 * potential stalled Ingress Queue, issue a note indicating
2159 * that the Ingress Queue has resumed forward progress.
2160 */
2161 if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2162 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2163 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2164 i, s->idma_qid[i],
2165 s->idma_stalled[i]/HZ);
2166 s->idma_stalled[i] = 0;
2167 continue;
2168 }
2169
2170 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2171 * domain. The first time we get here it'll be because we
2172 * passed the 1s Threshold; each additional time it'll be
2173 * because the RX Timer Callback is being fired on its regular
2174 * schedule.
2175 *
2176 * If the stall is below our Potential Hung Ingress Queue
2177 * Warning Threshold, continue.
2178 */
2179 if (s->idma_stalled[i] == 0)
2180 s->idma_stalled[i] = HZ;
2181 else
2182 s->idma_stalled[i] += RX_QCHECK_PERIOD;
2183
2184 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2185 continue;
2186
2187 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2188 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2189 continue;
2190
2191 /* Read and save the SGE IDMA State and Queue ID information.
2192 * We do this every time in case it changes across time ...
2193 */
2194 t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
2195 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2196 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2197
2198 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2199 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2200 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2201
2202 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2203 i, s->idma_qid[i], s->idma_state[i],
2204 s->idma_stalled[i]/HZ, debug0, debug11);
2205 t4_sge_decode_idma_state(adap, s->idma_state[i]);
2206 }
fd3a4790
DM
2207
2208 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2209}
2210
2211static void sge_tx_timer_cb(unsigned long data)
2212{
2213 unsigned long m;
2214 unsigned int i, budget;
2215 struct adapter *adap = (struct adapter *)data;
2216 struct sge *s = &adap->sge;
2217
2218 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2219 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2220 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2221 struct sge_ofld_txq *txq = s->egr_map[id];
2222
2223 clear_bit(id, s->txq_maperr);
2224 tasklet_schedule(&txq->qresume_tsk);
2225 }
2226
2227 budget = MAX_TIMER_TX_RECLAIM;
2228 i = s->ethtxq_rover;
2229 do {
2230 struct sge_eth_txq *q = &s->ethtxq[i];
2231
2232 if (q->q.in_use &&
2233 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2234 __netif_tx_trylock(q->txq)) {
2235 int avail = reclaimable(&q->q);
2236
2237 if (avail) {
2238 if (avail > budget)
2239 avail = budget;
2240
2241 free_tx_desc(adap, &q->q, avail, true);
2242 q->q.in_use -= avail;
2243 budget -= avail;
2244 }
2245 __netif_tx_unlock(q->txq);
2246 }
2247
2248 if (++i >= s->ethqsets)
2249 i = 0;
2250 } while (budget && i != s->ethtxq_rover);
2251 s->ethtxq_rover = i;
2252 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2253}
2254
d63a6dcf 2255/**
df64e4d3
HS
2256 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2257 * @adapter: the adapter
2258 * @qid: the SGE Queue ID
2259 * @qtype: the SGE Queue Type (Egress or Ingress)
2260 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
d63a6dcf 2261 *
df64e4d3
HS
2262 * Returns the BAR2 address for the SGE Queue Registers associated with
2263 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2264 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2265 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2266 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2267 */
2268static void __iomem *bar2_address(struct adapter *adapter,
2269 unsigned int qid,
2270 enum t4_bar2_qtype qtype,
2271 unsigned int *pbar2_qid)
2272{
2273 u64 bar2_qoffset;
2274 int ret;
d63a6dcf 2275
dd0bcc0b 2276 ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
df64e4d3
HS
2277 &bar2_qoffset, pbar2_qid);
2278 if (ret)
2279 return NULL;
d63a6dcf 2280
df64e4d3 2281 return adapter->bar2 + bar2_qoffset;
d63a6dcf
HS
2282}
2283
fd3a4790
DM
2284int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2285 struct net_device *dev, int intr_idx,
2286 struct sge_fl *fl, rspq_handler_t hnd)
2287{
2288 int ret, flsz = 0;
2289 struct fw_iq_cmd c;
52367a76 2290 struct sge *s = &adap->sge;
fd3a4790
DM
2291 struct port_info *pi = netdev_priv(dev);
2292
2293 /* Size needs to be multiple of 16, including status entry. */
2294 iq->size = roundup(iq->size, 16);
2295
2296 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
ad6bad3e 2297 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2298 if (!iq->desc)
2299 return -ENOMEM;
2300
2301 memset(&c, 0, sizeof(c));
e2ac9628
HS
2302 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2303 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6e4b51a6
HS
2304 FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
2305 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
fd3a4790 2306 FW_LEN16(c));
6e4b51a6
HS
2307 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2308 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2309 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
2310 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
fd3a4790 2311 -intr_idx - 1));
6e4b51a6
HS
2312 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2313 FW_IQ_CMD_IQGTSMODE_F |
2314 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2315 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
fd3a4790
DM
2316 c.iqsize = htons(iq->size);
2317 c.iqaddr = cpu_to_be64(iq->phys_addr);
2318
2319 if (fl) {
2320 fl->size = roundup(fl->size, 8);
2321 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2322 sizeof(struct rx_sw_desc), &fl->addr,
52367a76 2323 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
fd3a4790
DM
2324 if (!fl->desc)
2325 goto fl_nomem;
2326
52367a76 2327 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
6e4b51a6
HS
2328 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
2329 FW_IQ_CMD_FL0FETCHRO_F |
2330 FW_IQ_CMD_FL0DATARO_F |
2331 FW_IQ_CMD_FL0PADEN_F);
2332 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
2333 FW_IQ_CMD_FL0FBMAX_V(3));
fd3a4790
DM
2334 c.fl0size = htons(flsz);
2335 c.fl0addr = cpu_to_be64(fl->addr);
2336 }
2337
060e0c75 2338 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2339 if (ret)
2340 goto err;
2341
2342 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2343 iq->cur_desc = iq->desc;
2344 iq->cidx = 0;
2345 iq->gen = 1;
2346 iq->next_intr_params = iq->intr_params;
2347 iq->cntxt_id = ntohs(c.iqid);
2348 iq->abs_id = ntohs(c.physiqid);
df64e4d3
HS
2349 iq->bar2_addr = bar2_address(adap,
2350 iq->cntxt_id,
2351 T4_BAR2_QTYPE_INGRESS,
2352 &iq->bar2_qid);
fd3a4790 2353 iq->size--; /* subtract status entry */
fd3a4790
DM
2354 iq->netdev = dev;
2355 iq->handler = hnd;
2356
2357 /* set offset to -1 to distinguish ingress queues without FL */
2358 iq->offset = fl ? 0 : -1;
2359
e46dab4d 2360 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
fd3a4790
DM
2361
2362 if (fl) {
62718b32 2363 fl->cntxt_id = ntohs(c.fl0id);
fd3a4790
DM
2364 fl->avail = fl->pend_cred = 0;
2365 fl->pidx = fl->cidx = 0;
2366 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
e46dab4d 2367 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
d63a6dcf 2368
df64e4d3
HS
2369 /* Note, we must initialize the BAR2 Free List User Doorbell
2370 * information before refilling the Free List!
d63a6dcf 2371 */
df64e4d3
HS
2372 fl->bar2_addr = bar2_address(adap,
2373 fl->cntxt_id,
2374 T4_BAR2_QTYPE_EGRESS,
2375 &fl->bar2_qid);
fd3a4790
DM
2376 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2377 }
2378 return 0;
2379
2380fl_nomem:
2381 ret = -ENOMEM;
2382err:
2383 if (iq->desc) {
2384 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2385 iq->desc, iq->phys_addr);
2386 iq->desc = NULL;
2387 }
2388 if (fl && fl->desc) {
2389 kfree(fl->sdesc);
2390 fl->sdesc = NULL;
2391 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2392 fl->desc, fl->addr);
2393 fl->desc = NULL;
2394 }
2395 return ret;
2396}
2397
2398static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2399{
22adfe0a 2400 q->cntxt_id = id;
df64e4d3
HS
2401 q->bar2_addr = bar2_address(adap,
2402 q->cntxt_id,
2403 T4_BAR2_QTYPE_EGRESS,
2404 &q->bar2_qid);
fd3a4790
DM
2405 q->in_use = 0;
2406 q->cidx = q->pidx = 0;
2407 q->stops = q->restarts = 0;
2408 q->stat = (void *)&q->desc[q->size];
3069ee9b 2409 spin_lock_init(&q->db_lock);
e46dab4d 2410 adap->sge.egr_map[id - adap->sge.egr_start] = q;
fd3a4790
DM
2411}
2412
2413int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2414 struct net_device *dev, struct netdev_queue *netdevq,
2415 unsigned int iqid)
2416{
2417 int ret, nentries;
2418 struct fw_eq_eth_cmd c;
52367a76 2419 struct sge *s = &adap->sge;
fd3a4790
DM
2420 struct port_info *pi = netdev_priv(dev);
2421
2422 /* Add status entries */
52367a76 2423 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2424
2425 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2426 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2427 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2428 netdev_queue_numa_node_read(netdevq));
fd3a4790
DM
2429 if (!txq->q.desc)
2430 return -ENOMEM;
2431
2432 memset(&c, 0, sizeof(c));
e2ac9628
HS
2433 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2434 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6e4b51a6
HS
2435 FW_EQ_ETH_CMD_PFN_V(adap->fn) |
2436 FW_EQ_ETH_CMD_VFN_V(0));
2437 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2438 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2439 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2440 FW_EQ_ETH_CMD_VIID_V(pi->viid));
2441 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
2442 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2443 FW_EQ_ETH_CMD_FETCHRO_V(1) |
2444 FW_EQ_ETH_CMD_IQID_V(iqid));
2445 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
2446 FW_EQ_ETH_CMD_FBMAX_V(3) |
2447 FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
2448 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
fd3a4790
DM
2449 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2450
060e0c75 2451 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2452 if (ret) {
2453 kfree(txq->q.sdesc);
2454 txq->q.sdesc = NULL;
2455 dma_free_coherent(adap->pdev_dev,
2456 nentries * sizeof(struct tx_desc),
2457 txq->q.desc, txq->q.phys_addr);
2458 txq->q.desc = NULL;
2459 return ret;
2460 }
2461
6e4b51a6 2462 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
fd3a4790
DM
2463 txq->txq = netdevq;
2464 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2465 txq->mapping_err = 0;
2466 return 0;
2467}
2468
2469int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2470 struct net_device *dev, unsigned int iqid,
2471 unsigned int cmplqid)
2472{
2473 int ret, nentries;
2474 struct fw_eq_ctrl_cmd c;
52367a76 2475 struct sge *s = &adap->sge;
fd3a4790
DM
2476 struct port_info *pi = netdev_priv(dev);
2477
2478 /* Add status entries */
52367a76 2479 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2480
2481 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2482 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
ad6bad3e 2483 NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2484 if (!txq->q.desc)
2485 return -ENOMEM;
2486
e2ac9628
HS
2487 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2488 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6e4b51a6
HS
2489 FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
2490 FW_EQ_CTRL_CMD_VFN_V(0));
2491 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2492 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2493 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
fd3a4790 2494 c.physeqid_pkd = htonl(0);
6e4b51a6
HS
2495 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
2496 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2497 FW_EQ_CTRL_CMD_FETCHRO_F |
2498 FW_EQ_CTRL_CMD_IQID_V(iqid));
2499 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
2500 FW_EQ_CTRL_CMD_FBMAX_V(3) |
2501 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
2502 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
fd3a4790
DM
2503 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2504
060e0c75 2505 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2506 if (ret) {
2507 dma_free_coherent(adap->pdev_dev,
2508 nentries * sizeof(struct tx_desc),
2509 txq->q.desc, txq->q.phys_addr);
2510 txq->q.desc = NULL;
2511 return ret;
2512 }
2513
6e4b51a6 2514 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
fd3a4790
DM
2515 txq->adap = adap;
2516 skb_queue_head_init(&txq->sendq);
2517 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2518 txq->full = 0;
2519 return 0;
2520}
2521
2522int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2523 struct net_device *dev, unsigned int iqid)
2524{
2525 int ret, nentries;
2526 struct fw_eq_ofld_cmd c;
52367a76 2527 struct sge *s = &adap->sge;
fd3a4790
DM
2528 struct port_info *pi = netdev_priv(dev);
2529
2530 /* Add status entries */
52367a76 2531 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2532
2533 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2534 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2535 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2536 NUMA_NO_NODE);
fd3a4790
DM
2537 if (!txq->q.desc)
2538 return -ENOMEM;
2539
2540 memset(&c, 0, sizeof(c));
e2ac9628
HS
2541 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2542 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6e4b51a6
HS
2543 FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
2544 FW_EQ_OFLD_CMD_VFN_V(0));
2545 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2546 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2547 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
2548 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2549 FW_EQ_OFLD_CMD_FETCHRO_F |
2550 FW_EQ_OFLD_CMD_IQID_V(iqid));
2551 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
2552 FW_EQ_OFLD_CMD_FBMAX_V(3) |
2553 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
2554 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
fd3a4790
DM
2555 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2556
060e0c75 2557 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2558 if (ret) {
2559 kfree(txq->q.sdesc);
2560 txq->q.sdesc = NULL;
2561 dma_free_coherent(adap->pdev_dev,
2562 nentries * sizeof(struct tx_desc),
2563 txq->q.desc, txq->q.phys_addr);
2564 txq->q.desc = NULL;
2565 return ret;
2566 }
2567
6e4b51a6 2568 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
fd3a4790
DM
2569 txq->adap = adap;
2570 skb_queue_head_init(&txq->sendq);
2571 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2572 txq->full = 0;
2573 txq->mapping_err = 0;
2574 return 0;
2575}
2576
2577static void free_txq(struct adapter *adap, struct sge_txq *q)
2578{
52367a76
VP
2579 struct sge *s = &adap->sge;
2580
fd3a4790 2581 dma_free_coherent(adap->pdev_dev,
52367a76 2582 q->size * sizeof(struct tx_desc) + s->stat_len,
fd3a4790
DM
2583 q->desc, q->phys_addr);
2584 q->cntxt_id = 0;
2585 q->sdesc = NULL;
2586 q->desc = NULL;
2587}
2588
2589static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2590 struct sge_fl *fl)
2591{
52367a76 2592 struct sge *s = &adap->sge;
fd3a4790
DM
2593 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2594
e46dab4d 2595 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
060e0c75
DM
2596 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2597 rq->cntxt_id, fl_id, 0xffff);
fd3a4790
DM
2598 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2599 rq->desc, rq->phys_addr);
2600 netif_napi_del(&rq->napi);
2601 rq->netdev = NULL;
2602 rq->cntxt_id = rq->abs_id = 0;
2603 rq->desc = NULL;
2604
2605 if (fl) {
2606 free_rx_bufs(adap, fl, fl->avail);
52367a76 2607 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fd3a4790
DM
2608 fl->desc, fl->addr);
2609 kfree(fl->sdesc);
2610 fl->sdesc = NULL;
2611 fl->cntxt_id = 0;
2612 fl->desc = NULL;
2613 }
2614}
2615
5fa76694
HS
2616/**
2617 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
2618 * @adap: the adapter
2619 * @n: number of queues
2620 * @q: pointer to first queue
2621 *
2622 * Release the resources of a consecutive block of offload Rx queues.
2623 */
2624void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2625{
2626 for ( ; n; n--, q++)
2627 if (q->rspq.desc)
2628 free_rspq_fl(adap, &q->rspq,
2629 q->fl.size ? &q->fl : NULL);
2630}
2631
fd3a4790
DM
2632/**
2633 * t4_free_sge_resources - free SGE resources
2634 * @adap: the adapter
2635 *
2636 * Frees resources used by the SGE queue sets.
2637 */
2638void t4_free_sge_resources(struct adapter *adap)
2639{
2640 int i;
2641 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2642 struct sge_eth_txq *etq = adap->sge.ethtxq;
fd3a4790
DM
2643
2644 /* clean up Ethernet Tx/Rx queues */
2645 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2646 if (eq->rspq.desc)
5fa76694
HS
2647 free_rspq_fl(adap, &eq->rspq,
2648 eq->fl.size ? &eq->fl : NULL);
fd3a4790 2649 if (etq->q.desc) {
060e0c75
DM
2650 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2651 etq->q.cntxt_id);
fd3a4790
DM
2652 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2653 kfree(etq->q.sdesc);
2654 free_txq(adap, &etq->q);
2655 }
2656 }
2657
2658 /* clean up RDMA and iSCSI Rx queues */
5fa76694
HS
2659 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2660 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2661 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
fd3a4790
DM
2662
2663 /* clean up offload Tx queues */
2664 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2665 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2666
2667 if (q->q.desc) {
2668 tasklet_kill(&q->qresume_tsk);
060e0c75
DM
2669 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2670 q->q.cntxt_id);
fd3a4790
DM
2671 free_tx_desc(adap, &q->q, q->q.in_use, false);
2672 kfree(q->q.sdesc);
2673 __skb_queue_purge(&q->sendq);
2674 free_txq(adap, &q->q);
2675 }
2676 }
2677
2678 /* clean up control Tx queues */
2679 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2680 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2681
2682 if (cq->q.desc) {
2683 tasklet_kill(&cq->qresume_tsk);
060e0c75
DM
2684 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2685 cq->q.cntxt_id);
fd3a4790
DM
2686 __skb_queue_purge(&cq->sendq);
2687 free_txq(adap, &cq->q);
2688 }
2689 }
2690
2691 if (adap->sge.fw_evtq.desc)
2692 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2693
2694 if (adap->sge.intrq.desc)
2695 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2696
2697 /* clear the reverse egress queue map */
2698 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2699}
2700
2701void t4_sge_start(struct adapter *adap)
2702{
2703 adap->sge.ethtxq_rover = 0;
2704 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2705 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2706}
2707
2708/**
2709 * t4_sge_stop - disable SGE operation
2710 * @adap: the adapter
2711 *
2712 * Stop tasklets and timers associated with the DMA engine. Note that
2713 * this is effective only if measures have been taken to disable any HW
2714 * events that may restart them.
2715 */
2716void t4_sge_stop(struct adapter *adap)
2717{
2718 int i;
2719 struct sge *s = &adap->sge;
2720
2721 if (in_interrupt()) /* actions below require waiting */
2722 return;
2723
2724 if (s->rx_timer.function)
2725 del_timer_sync(&s->rx_timer);
2726 if (s->tx_timer.function)
2727 del_timer_sync(&s->tx_timer);
2728
2729 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2730 struct sge_ofld_txq *q = &s->ofldtxq[i];
2731
2732 if (q->q.desc)
2733 tasklet_kill(&q->qresume_tsk);
2734 }
2735 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2736 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2737
2738 if (cq->q.desc)
2739 tasklet_kill(&cq->qresume_tsk);
2740 }
2741}
2742
2743/**
2744 * t4_sge_init - initialize SGE
2745 * @adap: the adapter
2746 *
2747 * Performs SGE initialization needed every time after a chip reset.
2748 * We do not initialize any of the queues here, instead the driver
2749 * top-level must request them individually.
52367a76
VP
2750 *
2751 * Called in two different modes:
2752 *
2753 * 1. Perform actual hardware initialization and record hard-coded
2754 * parameters which were used. This gets used when we're the
2755 * Master PF and the Firmware Configuration File support didn't
2756 * work for some reason.
2757 *
2758 * 2. We're not the Master PF or initialization was performed with
2759 * a Firmware Configuration File. In this case we need to grab
2760 * any of the SGE operating parameters that we need to have in
2761 * order to do our job and make sure we can live with them ...
fd3a4790 2762 */
52367a76
VP
2763
2764static int t4_sge_init_soft(struct adapter *adap)
fd3a4790
DM
2765{
2766 struct sge *s = &adap->sge;
52367a76
VP
2767 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2768 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2769 u32 ingress_rx_threshold;
fd3a4790 2770
52367a76
VP
2771 /*
2772 * Verify that CPL messages are going to the Ingress Queue for
2773 * process_responses() and that only packet data is going to the
2774 * Free Lists.
2775 */
f612b815
HS
2776 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2777 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
52367a76
VP
2778 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2779 return -EINVAL;
2780 }
2781
2782 /*
2783 * Validate the Host Buffer Register Array indices that we want to
2784 * use ...
2785 *
2786 * XXX Note that we should really read through the Host Buffer Size
2787 * XXX register array and find the indices of the Buffer Sizes which
2788 * XXX meet our needs!
2789 */
2790 #define READ_FL_BUF(x) \
f612b815 2791 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
52367a76
VP
2792
2793 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2794 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2795 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2796 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2797
92ddcc7b
KS
2798 /* We only bother using the Large Page logic if the Large Page Buffer
2799 * is larger than our Page Size Buffer.
2800 */
2801 if (fl_large_pg <= fl_small_pg)
2802 fl_large_pg = 0;
2803
52367a76
VP
2804 #undef READ_FL_BUF
2805
92ddcc7b
KS
2806 /* The Page Size Buffer must be exactly equal to our Page Size and the
2807 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2808 */
52367a76 2809 if (fl_small_pg != PAGE_SIZE ||
92ddcc7b 2810 (fl_large_pg & (fl_large_pg-1)) != 0) {
52367a76
VP
2811 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2812 fl_small_pg, fl_large_pg);
2813 return -EINVAL;
2814 }
2815 if (fl_large_pg)
2816 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2817
2818 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2819 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2820 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2821 fl_small_mtu, fl_large_mtu);
2822 return -EINVAL;
2823 }
2824
2825 /*
2826 * Retrieve our RX interrupt holdoff timer values and counter
2827 * threshold values from the SGE parameters.
2828 */
2829 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2830 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2831 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2832 s->timer_val[0] = core_ticks_to_us(adap,
2833 TIMERVALUE0_GET(timer_value_0_and_1));
2834 s->timer_val[1] = core_ticks_to_us(adap,
2835 TIMERVALUE1_GET(timer_value_0_and_1));
2836 s->timer_val[2] = core_ticks_to_us(adap,
2837 TIMERVALUE2_GET(timer_value_2_and_3));
2838 s->timer_val[3] = core_ticks_to_us(adap,
2839 TIMERVALUE3_GET(timer_value_2_and_3));
2840 s->timer_val[4] = core_ticks_to_us(adap,
2841 TIMERVALUE4_GET(timer_value_4_and_5));
2842 s->timer_val[5] = core_ticks_to_us(adap,
2843 TIMERVALUE5_GET(timer_value_4_and_5));
2844
f612b815
HS
2845 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
2846 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
2847 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
2848 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
2849 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
52367a76
VP
2850
2851 return 0;
2852}
2853
2854static int t4_sge_init_hard(struct adapter *adap)
2855{
2856 struct sge *s = &adap->sge;
2857
2858 /*
2859 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2860 * Queue and Packet Date to the Free List.
2861 */
f612b815 2862 t4_set_reg_field(adap, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
060e0c75 2863
3069ee9b
VP
2864 /*
2865 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2866 * and generate an interrupt when this occurs so we can recover.
2867 */
d14807dd 2868 if (is_t4(adap->params.chip)) {
0a57a536
SR
2869 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2870 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2871 V_LP_INT_THRESH(M_LP_INT_THRESH),
2872 V_HP_INT_THRESH(dbfifo_int_thresh) |
2873 V_LP_INT_THRESH(dbfifo_int_thresh));
2874 } else {
2875 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2876 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2877 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2878 t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2879 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2880 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2881 }
881806bc
VP
2882 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2883 F_ENABLE_DROP);
2884
52367a76
VP
2885 /*
2886 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2887 * t4_fixup_host_params().
2888 */
2889 s->fl_pg_order = FL_PG_ORDER;
2890 if (s->fl_pg_order)
2891 t4_write_reg(adap,
f612b815 2892 SGE_FL_BUFFER_SIZE0_A+RX_LARGE_PG_BUF*sizeof(u32),
52367a76 2893 PAGE_SIZE << FL_PG_ORDER);
f612b815 2894 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A+RX_SMALL_MTU_BUF*sizeof(u32),
52367a76 2895 FL_MTU_SMALL_BUFSIZE(adap));
f612b815 2896 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A+RX_LARGE_MTU_BUF*sizeof(u32),
52367a76
VP
2897 FL_MTU_LARGE_BUFSIZE(adap));
2898
2899 /*
2900 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2901 * Timer Holdoff values must be supplied by our caller.
2902 */
f612b815
HS
2903 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD_A,
2904 THRESHOLD_0_V(s->counter_val[0]) |
2905 THRESHOLD_1_V(s->counter_val[1]) |
2906 THRESHOLD_2_V(s->counter_val[2]) |
2907 THRESHOLD_3_V(s->counter_val[3]));
fd3a4790
DM
2908 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2909 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2910 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2911 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
52367a76
VP
2912 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2913 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
fd3a4790 2914 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
52367a76
VP
2915 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2916 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2917
2918 return 0;
2919}
2920
2921int t4_sge_init(struct adapter *adap)
2922{
2923 struct sge *s = &adap->sge;
ce8f407a
HS
2924 u32 sge_control, sge_control2, sge_conm_ctrl;
2925 unsigned int ingpadboundary, ingpackboundary;
c2b955e0 2926 int ret, egress_threshold;
52367a76
VP
2927
2928 /*
2929 * Ingress Padding Boundary and Egress Status Page Size are set up by
2930 * t4_fixup_host_params().
2931 */
f612b815
HS
2932 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
2933 s->pktshift = PKTSHIFT_G(sge_control);
2934 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
ce8f407a
HS
2935
2936 /* T4 uses a single control field to specify both the PCIe Padding and
2937 * Packing Boundary. T5 introduced the ability to specify these
2938 * separately. The actual Ingress Packet Data alignment boundary
2939 * within Packed Buffer Mode is the maximum of these two
2940 * specifications.
2941 */
f612b815
HS
2942 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
2943 INGPADBOUNDARY_SHIFT_X);
ce8f407a
HS
2944 if (is_t4(adap->params.chip)) {
2945 s->fl_align = ingpadboundary;
2946 } else {
2947 /* T5 has a different interpretation of one of the PCIe Packing
2948 * Boundary values.
2949 */
2950 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
2951 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
2952 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2953 ingpackboundary = 16;
2954 else
2955 ingpackboundary = 1 << (ingpackboundary +
2956 INGPACKBOUNDARY_SHIFT_X);
2957
2958 s->fl_align = max(ingpadboundary, ingpackboundary);
2959 }
52367a76
VP
2960
2961 if (adap->flags & USING_SOFT_PARAMS)
2962 ret = t4_sge_init_soft(adap);
2963 else
2964 ret = t4_sge_init_hard(adap);
2965 if (ret < 0)
2966 return ret;
2967
2968 /*
2969 * A FL with <= fl_starve_thres buffers is starving and a periodic
2970 * timer will attempt to refill it. This needs to be larger than the
2971 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2972 * stuck waiting for new packets while the SGE is waiting for us to
2973 * give it more Free List entries. (Note that the SGE's Egress
c2b955e0
KS
2974 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2975 * there was only a single field to control this. For T5 there's the
2976 * original field which now only applies to Unpacked Mode Free List
2977 * buffers and a new field which only applies to Packed Mode Free List
2978 * buffers.
52367a76 2979 */
f612b815 2980 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
c2b955e0 2981 if (is_t4(adap->params.chip))
f612b815 2982 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
c2b955e0 2983 else
f612b815 2984 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
c2b955e0 2985 s->fl_starve_thres = 2*egress_threshold + 1;
52367a76 2986
fd3a4790
DM
2987 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2988 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
0f4d201f
KS
2989 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2990 s->idma_stalled[0] = 0;
2991 s->idma_stalled[1] = 0;
fd3a4790 2992 spin_lock_init(&s->intrq_lock);
52367a76
VP
2993
2994 return 0;
fd3a4790 2995}
This page took 0.628069 seconds and 5 git commands to generate.