Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / sge.c
CommitLineData
c6e0d914
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
70c71606 44#include <linux/prefetch.h>
c6e0d914
CL
45
46#include "t4vf_common.h"
47#include "t4vf_defs.h"
48
49#include "../cxgb4/t4_regs.h"
f612b815 50#include "../cxgb4/t4_values.h"
c6e0d914
CL
51#include "../cxgb4/t4fw_api.h"
52#include "../cxgb4/t4_msg.h"
53
c6e0d914
CL
54/*
55 * Constants ...
56 */
57enum {
58 /*
59 * Egress Queue sizes, producer and consumer indices are all in units
60 * of Egress Context Units bytes. Note that as far as the hardware is
61 * concerned, the free list is an Egress Queue (the host produces free
62 * buffers which the hardware consumes) and free list entries are
63 * 64-bit PCI DMA addresses.
64 */
65 EQ_UNIT = SGE_EQ_IDXSIZE,
66 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68
69 /*
70 * Max number of TX descriptors we clean up at a time. Should be
71 * modest as freeing skbs isn't cheap and it happens while holding
72 * locks. We just need to free packets faster than they arrive, we
73 * eventually catch up and keep the amortized cost reasonable.
74 */
75 MAX_TX_RECLAIM = 16,
76
77 /*
78 * Max number of Rx buffers we replenish at a time. Again keep this
79 * modest, allocating buffers isn't cheap either.
80 */
81 MAX_RX_REFILL = 16,
82
83 /*
84 * Period of the Rx queue check timer. This timer is infrequent as it
85 * has something to do only when the system experiences severe memory
86 * shortage.
87 */
88 RX_QCHECK_PERIOD = (HZ / 2),
89
90 /*
91 * Period of the TX queue check timer and the maximum number of TX
92 * descriptors to be reclaimed by the TX timer.
93 */
94 TX_QCHECK_PERIOD = (HZ / 2),
95 MAX_TIMER_TX_RECLAIM = 100,
96
c6e0d914
CL
97 /*
98 * Suspend an Ethernet TX queue with fewer available descriptors than
99 * this. We always want to have room for a maximum sized packet:
100 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102 * (see that function and its helpers for a description of the
103 * calculation).
104 */
105 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107 ((ETHTXQ_MAX_FRAGS-1) & 1) +
108 2),
109 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110 sizeof(struct cpl_tx_pkt_lso_core) +
111 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113
114 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115
116 /*
117 * Max TX descriptor space we allow for an Ethernet packet to be
118 * inlined into a WR. This is limited by the maximum value which
119 * we can specify for immediate data in the firmware Ethernet TX
120 * Work Request.
121 */
e2ac9628 122 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
c6e0d914
CL
123
124 /*
125 * Max size of a WR sent through a control TX queue.
126 */
127 MAX_CTRL_WR_LEN = 256,
128
129 /*
130 * Maximum amount of data which we'll ever need to inline into a
131 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132 */
133 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134 ? MAX_IMM_TX_PKT_LEN
135 : MAX_CTRL_WR_LEN),
136
137 /*
138 * For incoming packets less than RX_COPY_THRES, we copy the data into
139 * an skb rather than referencing the data. We allocate enough
140 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141 * of the data (header).
142 */
143 RX_COPY_THRES = 256,
144 RX_PULL_LEN = 128,
c6e0d914 145
eb6c503d
CL
146 /*
147 * Main body length for sk_buffs used for RX Ethernet packets with
148 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
149 * pskb_may_pull() some room.
150 */
151 RX_SKB_LEN = 512,
152};
c6e0d914
CL
153
154/*
155 * Software state per TX descriptor.
156 */
157struct tx_sw_desc {
158 struct sk_buff *skb; /* socket buffer of TX data source */
159 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
160};
161
162/*
163 * Software state per RX Free List descriptor. We keep track of the allocated
164 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
165 * page size and its PCI DMA mapped state are stored in the low bits of the
166 * PCI DMA address as per below.
167 */
168struct rx_sw_desc {
169 struct page *page; /* Free List page buffer */
170 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
171 /* and flags (see below) */
172};
173
174/*
175 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
176 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
181 * maintained in an inverse sense so the hardware never sees that bit high.
182 */
183enum {
184 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
185 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
186};
187
188/**
189 * get_buf_addr - return DMA buffer address of software descriptor
190 * @sdesc: pointer to the software buffer descriptor
191 *
192 * Return the DMA buffer address of a software descriptor (stripping out
193 * our low-order flag bits).
194 */
195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196{
197 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198}
199
200/**
201 * is_buf_mapped - is buffer mapped for DMA?
202 * @sdesc: pointer to the software buffer descriptor
203 *
204 * Determine whether the buffer associated with a software descriptor in
205 * mapped for DMA or not.
206 */
207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208{
209 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210}
211
212/**
213 * need_skb_unmap - does the platform need unmapping of sk_buffs?
214 *
25985edc
LDM
215 * Returns true if the platform needs sk_buff unmapping. The compiler
216 * optimizes away unnecessary code if this returns true.
c6e0d914
CL
217 */
218static inline int need_skb_unmap(void)
219{
57b2eaf7
FT
220#ifdef CONFIG_NEED_DMA_MAP_STATE
221 return 1;
222#else
223 return 0;
224#endif
c6e0d914
CL
225}
226
227/**
228 * txq_avail - return the number of available slots in a TX queue
229 * @tq: the TX queue
230 *
231 * Returns the number of available descriptors in a TX queue.
232 */
233static inline unsigned int txq_avail(const struct sge_txq *tq)
234{
235 return tq->size - 1 - tq->in_use;
236}
237
238/**
239 * fl_cap - return the capacity of a Free List
240 * @fl: the Free List
241 *
242 * Returns the capacity of a Free List. The capacity is less than the
243 * size because an Egress Queue Index Unit worth of descriptors needs to
244 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
245 * and CIDX will match and the hardware will think the FL is empty.
246 */
247static inline unsigned int fl_cap(const struct sge_fl *fl)
248{
249 return fl->size - FL_PER_EQ_UNIT;
250}
251
252/**
253 * fl_starving - return whether a Free List is starving.
65f6ecc9 254 * @adapter: pointer to the adapter
c6e0d914
CL
255 * @fl: the Free List
256 *
257 * Tests specified Free List to see whether the number of buffers
258 * available to the hardware has falled below our "starvation"
25985edc 259 * threshold.
c6e0d914 260 */
65f6ecc9
HS
261static inline bool fl_starving(const struct adapter *adapter,
262 const struct sge_fl *fl)
c6e0d914 263{
65f6ecc9
HS
264 const struct sge *s = &adapter->sge;
265
266 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
c6e0d914
CL
267}
268
269/**
270 * map_skb - map an skb for DMA to the device
271 * @dev: the egress net device
272 * @skb: the packet to map
273 * @addr: a pointer to the base of the DMA mapping array
274 *
275 * Map an skb for DMA to the device and return an array of DMA addresses.
276 */
277static int map_skb(struct device *dev, const struct sk_buff *skb,
278 dma_addr_t *addr)
279{
280 const skb_frag_t *fp, *end;
281 const struct skb_shared_info *si;
282
283 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284 if (dma_mapping_error(dev, *addr))
285 goto out_err;
286
287 si = skb_shinfo(skb);
288 end = &si->frags[si->nr_frags];
289 for (fp = si->frags; fp < end; fp++) {
a0006a86
IC
290 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291 DMA_TO_DEVICE);
c6e0d914
CL
292 if (dma_mapping_error(dev, *addr))
293 goto unwind;
294 }
295 return 0;
296
297unwind:
298 while (fp-- > si->frags)
9e903e08 299 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
c6e0d914
CL
300 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301
302out_err:
303 return -ENOMEM;
304}
305
306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308{
309 const struct ulptx_sge_pair *p;
310 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311
312 if (likely(skb_headlen(skb)))
313 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315 else {
316 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318 nfrags--;
319 }
320
321 /*
322 * the complexity below is because of the possibility of a wrap-around
323 * in the middle of an SGL
324 */
325 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327unmap:
328 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332 p++;
333 } else if ((u8 *)p == (u8 *)tq->stat) {
334 p = (const struct ulptx_sge_pair *)tq->desc;
335 goto unmap;
336 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337 const __be64 *addr = (const __be64 *)tq->desc;
338
339 dma_unmap_page(dev, be64_to_cpu(addr[0]),
340 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341 dma_unmap_page(dev, be64_to_cpu(addr[1]),
342 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343 p = (const struct ulptx_sge_pair *)&addr[2];
344 } else {
345 const __be64 *addr = (const __be64 *)tq->desc;
346
347 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 dma_unmap_page(dev, be64_to_cpu(addr[0]),
350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 p = (const struct ulptx_sge_pair *)&addr[1];
352 }
353 }
354 if (nfrags) {
355 __be64 addr;
356
357 if ((u8 *)p == (u8 *)tq->stat)
358 p = (const struct ulptx_sge_pair *)tq->desc;
359 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360 ? p->addr[0]
361 : *(const __be64 *)tq->desc);
362 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363 DMA_TO_DEVICE);
364 }
365}
366
367/**
368 * free_tx_desc - reclaims TX descriptors and their buffers
369 * @adapter: the adapter
370 * @tq: the TX queue to reclaim descriptors from
371 * @n: the number of descriptors to reclaim
372 * @unmap: whether the buffers should be unmapped for DMA
373 *
374 * Reclaims TX descriptors from an SGE TX queue and frees the associated
375 * TX buffers. Called with the TX queue lock held.
376 */
377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378 unsigned int n, bool unmap)
379{
380 struct tx_sw_desc *sdesc;
381 unsigned int cidx = tq->cidx;
382 struct device *dev = adapter->pdev_dev;
383
384 const int need_unmap = need_skb_unmap() && unmap;
385
386 sdesc = &tq->sdesc[cidx];
387 while (n--) {
388 /*
389 * If we kept a reference to the original TX skb, we need to
390 * unmap it from PCI DMA space (if required) and free it.
391 */
392 if (sdesc->skb) {
393 if (need_unmap)
394 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
42ffda5f 395 dev_consume_skb_any(sdesc->skb);
c6e0d914
CL
396 sdesc->skb = NULL;
397 }
398
399 sdesc++;
400 if (++cidx == tq->size) {
401 cidx = 0;
402 sdesc = tq->sdesc;
403 }
404 }
405 tq->cidx = cidx;
406}
407
408/*
409 * Return the number of reclaimable descriptors in a TX queue.
410 */
411static inline int reclaimable(const struct sge_txq *tq)
412{
413 int hw_cidx = be16_to_cpu(tq->stat->cidx);
414 int reclaimable = hw_cidx - tq->cidx;
415 if (reclaimable < 0)
416 reclaimable += tq->size;
417 return reclaimable;
418}
419
420/**
421 * reclaim_completed_tx - reclaims completed TX descriptors
422 * @adapter: the adapter
423 * @tq: the TX queue to reclaim completed descriptors from
424 * @unmap: whether the buffers should be unmapped for DMA
425 *
426 * Reclaims TX descriptors that the SGE has indicated it has processed,
427 * and frees the associated buffers if possible. Called with the TX
428 * queue locked.
429 */
430static inline void reclaim_completed_tx(struct adapter *adapter,
431 struct sge_txq *tq,
432 bool unmap)
433{
434 int avail = reclaimable(tq);
435
436 if (avail) {
437 /*
438 * Limit the amount of clean up work we do at a time to keep
439 * the TX lock hold time O(1).
440 */
441 if (avail > MAX_TX_RECLAIM)
442 avail = MAX_TX_RECLAIM;
443
444 free_tx_desc(adapter, tq, avail, unmap);
445 tq->in_use -= avail;
446 }
447}
448
449/**
450 * get_buf_size - return the size of an RX Free List buffer.
65f6ecc9 451 * @adapter: pointer to the associated adapter
c6e0d914
CL
452 * @sdesc: pointer to the software buffer descriptor
453 */
65f6ecc9
HS
454static inline int get_buf_size(const struct adapter *adapter,
455 const struct rx_sw_desc *sdesc)
c6e0d914 456{
65f6ecc9
HS
457 const struct sge *s = &adapter->sge;
458
459 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
c6e0d914
CL
461}
462
463/**
464 * free_rx_bufs - free RX buffers on an SGE Free List
465 * @adapter: the adapter
466 * @fl: the SGE Free List to free buffers from
467 * @n: how many buffers to free
468 *
469 * Release the next @n buffers on an SGE Free List RX queue. The
470 * buffers must be made inaccessible to hardware before calling this
471 * function.
472 */
473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474{
475 while (n--) {
476 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477
478 if (is_buf_mapped(sdesc))
479 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
65f6ecc9
HS
480 get_buf_size(adapter, sdesc),
481 PCI_DMA_FROMDEVICE);
c6e0d914
CL
482 put_page(sdesc->page);
483 sdesc->page = NULL;
484 if (++fl->cidx == fl->size)
485 fl->cidx = 0;
486 fl->avail--;
487 }
488}
489
490/**
491 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492 * @adapter: the adapter
493 * @fl: the SGE Free List
494 *
495 * Unmap the current buffer on an SGE Free List RX queue. The
496 * buffer must be made inaccessible to HW before calling this function.
497 *
498 * This is similar to @free_rx_bufs above but does not free the buffer.
499 * Do note that the FL still loses any further access to the buffer.
500 * This is used predominantly to "transfer ownership" of an FL buffer
501 * to another entity (typically an skb's fragment list).
502 */
503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504{
505 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506
507 if (is_buf_mapped(sdesc))
508 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
65f6ecc9
HS
509 get_buf_size(adapter, sdesc),
510 PCI_DMA_FROMDEVICE);
c6e0d914
CL
511 sdesc->page = NULL;
512 if (++fl->cidx == fl->size)
513 fl->cidx = 0;
514 fl->avail--;
515}
516
517/**
518 * ring_fl_db - righ doorbell on free list
519 * @adapter: the adapter
520 * @fl: the Free List whose doorbell should be rung ...
521 *
522 * Tell the Scatter Gather Engine that there are new free list entries
523 * available.
524 */
525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526{
622c62b5
SR
527 u32 val;
528
df64e4d3 529 /* The SGE keeps track of its Producer and Consumer Indices in terms
c6e0d914
CL
530 * of Egress Queue Units so we can only tell it about integral numbers
531 * of multiples of Free List Entries per Egress Queue Units ...
532 */
533 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
df64e4d3 534 if (is_t4(adapter->params.chip))
f612b815 535 val = PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
df64e4d3 536 else
f612b815
HS
537 val = PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT) |
538 DBTYPE_F;
539 val |= DBPRIO_F;
df64e4d3
HS
540
541 /* Make sure all memory writes to the Free List queue are
542 * committed before we tell the hardware about them.
543 */
c6e0d914 544 wmb();
df64e4d3
HS
545
546 /* If we don't have access to the new User Doorbell (T5+), use
547 * the old doorbell mechanism; otherwise use the new BAR2
548 * mechanism.
549 */
550 if (unlikely(fl->bar2_addr == NULL)) {
551 t4_write_reg(adapter,
552 T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
f612b815 553 QID_V(fl->cntxt_id) | val);
df64e4d3 554 } else {
f612b815 555 writel(val | QID_V(fl->bar2_qid),
df64e4d3
HS
556 fl->bar2_addr + SGE_UDB_KDOORBELL);
557
558 /* This Write memory Barrier will force the write to
559 * the User Doorbell area to be flushed.
560 */
561 wmb();
562 }
c6e0d914
CL
563 fl->pend_cred %= FL_PER_EQ_UNIT;
564 }
565}
566
567/**
568 * set_rx_sw_desc - initialize software RX buffer descriptor
569 * @sdesc: pointer to the softwore RX buffer descriptor
570 * @page: pointer to the page data structure backing the RX buffer
571 * @dma_addr: PCI DMA address (possibly with low-bit flags)
572 */
573static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
574 dma_addr_t dma_addr)
575{
576 sdesc->page = page;
577 sdesc->dma_addr = dma_addr;
578}
579
580/*
581 * Support for poisoning RX buffers ...
582 */
583#define POISON_BUF_VAL -1
584
585static inline void poison_buf(struct page *page, size_t sz)
586{
587#if POISON_BUF_VAL >= 0
588 memset(page_address(page), POISON_BUF_VAL, sz);
589#endif
590}
591
592/**
593 * refill_fl - refill an SGE RX buffer ring
594 * @adapter: the adapter
595 * @fl: the Free List ring to refill
596 * @n: the number of new buffers to allocate
597 * @gfp: the gfp flags for the allocations
598 *
599 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
600 * allocated with the supplied gfp flags. The caller must assure that
601 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
602 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
603 * of buffers allocated. If afterwards the queue is found critically low,
604 * mark it as starving in the bitmap of starving FLs.
605 */
606static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
607 int n, gfp_t gfp)
608{
65f6ecc9 609 struct sge *s = &adapter->sge;
c6e0d914
CL
610 struct page *page;
611 dma_addr_t dma_addr;
612 unsigned int cred = fl->avail;
613 __be64 *d = &fl->desc[fl->pidx];
614 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
615
616 /*
617 * Sanity: ensure that the result of adding n Free List buffers
618 * won't result in wrapping the SGE's Producer Index around to
619 * it's Consumer Index thereby indicating an empty Free List ...
620 */
621 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
622
aa9cd31c
AD
623 gfp |= __GFP_NOWARN;
624
c6e0d914
CL
625 /*
626 * If we support large pages, prefer large buffers and fail over to
627 * small pages if we can't allocate large pages to satisfy the refill.
628 * If we don't support large pages, drop directly into the small page
629 * allocation code.
630 */
65f6ecc9 631 if (s->fl_pg_order == 0)
c6e0d914
CL
632 goto alloc_small_pages;
633
634 while (n) {
076ce448 635 page = __dev_alloc_pages(gfp, s->fl_pg_order);
c6e0d914
CL
636 if (unlikely(!page)) {
637 /*
638 * We've failed inour attempt to allocate a "large
639 * page". Fail over to the "small page" allocation
640 * below.
641 */
642 fl->large_alloc_failed++;
643 break;
644 }
65f6ecc9 645 poison_buf(page, PAGE_SIZE << s->fl_pg_order);
c6e0d914
CL
646
647 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
65f6ecc9 648 PAGE_SIZE << s->fl_pg_order,
c6e0d914
CL
649 PCI_DMA_FROMDEVICE);
650 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
651 /*
652 * We've run out of DMA mapping space. Free up the
653 * buffer and return with what we've managed to put
654 * into the free list. We don't want to fail over to
655 * the small page allocation below in this case
656 * because DMA mapping resources are typically
657 * critical resources once they become scarse.
658 */
65f6ecc9 659 __free_pages(page, s->fl_pg_order);
c6e0d914
CL
660 goto out;
661 }
662 dma_addr |= RX_LARGE_BUF;
663 *d++ = cpu_to_be64(dma_addr);
664
665 set_rx_sw_desc(sdesc, page, dma_addr);
666 sdesc++;
667
668 fl->avail++;
669 if (++fl->pidx == fl->size) {
670 fl->pidx = 0;
671 sdesc = fl->sdesc;
672 d = fl->desc;
673 }
674 n--;
675 }
676
677alloc_small_pages:
678 while (n--) {
aa9cd31c 679 page = __dev_alloc_page(gfp);
c6e0d914
CL
680 if (unlikely(!page)) {
681 fl->alloc_failed++;
682 break;
683 }
684 poison_buf(page, PAGE_SIZE);
685
686 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
687 PCI_DMA_FROMDEVICE);
688 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
1f2149c1 689 put_page(page);
c6e0d914
CL
690 break;
691 }
692 *d++ = cpu_to_be64(dma_addr);
693
694 set_rx_sw_desc(sdesc, page, dma_addr);
695 sdesc++;
696
697 fl->avail++;
698 if (++fl->pidx == fl->size) {
699 fl->pidx = 0;
700 sdesc = fl->sdesc;
701 d = fl->desc;
702 }
703 }
704
705out:
706 /*
707 * Update our accounting state to incorporate the new Free List
708 * buffers, tell the hardware about them and return the number of
90802ed9 709 * buffers which we were able to allocate.
c6e0d914
CL
710 */
711 cred = fl->avail - cred;
712 fl->pend_cred += cred;
713 ring_fl_db(adapter, fl);
714
65f6ecc9 715 if (unlikely(fl_starving(adapter, fl))) {
c6e0d914
CL
716 smp_wmb();
717 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
718 }
719
720 return cred;
721}
722
723/*
724 * Refill a Free List to its capacity or the Maximum Refill Increment,
725 * whichever is smaller ...
726 */
727static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
728{
729 refill_fl(adapter, fl,
730 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
731 GFP_ATOMIC);
732}
733
734/**
735 * alloc_ring - allocate resources for an SGE descriptor ring
736 * @dev: the PCI device's core device
737 * @nelem: the number of descriptors
738 * @hwsize: the size of each hardware descriptor
739 * @swsize: the size of each software descriptor
740 * @busaddrp: the physical PCI bus address of the allocated ring
741 * @swringp: return address pointer for software ring
742 * @stat_size: extra space in hardware ring for status information
743 *
744 * Allocates resources for an SGE descriptor ring, such as TX queues,
745 * free buffer lists, response queues, etc. Each SGE ring requires
746 * space for its hardware descriptors plus, optionally, space for software
747 * state associated with each hardware entry (the metadata). The function
748 * returns three values: the virtual address for the hardware ring (the
749 * return value of the function), the PCI bus address of the hardware
750 * ring (in *busaddrp), and the address of the software ring (in swringp).
751 * Both the hardware and software rings are returned zeroed out.
752 */
753static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
754 size_t swsize, dma_addr_t *busaddrp, void *swringp,
755 size_t stat_size)
756{
757 /*
758 * Allocate the hardware ring and PCI DMA bus address space for said.
759 */
760 size_t hwlen = nelem * hwsize + stat_size;
761 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
762
763 if (!hwring)
764 return NULL;
765
766 /*
767 * If the caller wants a software ring, allocate it and return a
768 * pointer to it in *swringp.
769 */
770 BUG_ON((swsize != 0) != (swringp != NULL));
771 if (swsize) {
772 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
773
774 if (!swring) {
775 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
776 return NULL;
777 }
778 *(void **)swringp = swring;
779 }
780
781 /*
782 * Zero out the hardware ring and return its address as our function
783 * value.
784 */
785 memset(hwring, 0, hwlen);
786 return hwring;
787}
788
789/**
790 * sgl_len - calculates the size of an SGL of the given capacity
791 * @n: the number of SGL entries
792 *
793 * Calculates the number of flits (8-byte units) needed for a Direct
794 * Scatter/Gather List that can hold the given number of entries.
795 */
796static inline unsigned int sgl_len(unsigned int n)
797{
798 /*
799 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
800 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
801 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
802 * repeated sequences of { Length[i], Length[i+1], Address[i],
803 * Address[i+1] } (this ensures that all addresses are on 64-bit
804 * boundaries). If N is even, then Length[N+1] should be set to 0 and
805 * Address[N+1] is omitted.
806 *
807 * The following calculation incorporates all of the above. It's
808 * somewhat hard to follow but, briefly: the "+2" accounts for the
809 * first two flits which include the DSGL header, Length0 and
810 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
811 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
812 * finally the "+((n-1)&1)" adds the one remaining flit needed if
813 * (n-1) is odd ...
814 */
815 n--;
816 return (3 * n) / 2 + (n & 1) + 2;
817}
818
819/**
820 * flits_to_desc - returns the num of TX descriptors for the given flits
821 * @flits: the number of flits
822 *
823 * Returns the number of TX descriptors needed for the supplied number
824 * of flits.
825 */
826static inline unsigned int flits_to_desc(unsigned int flits)
827{
828 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
829 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
830}
831
832/**
833 * is_eth_imm - can an Ethernet packet be sent as immediate data?
834 * @skb: the packet
835 *
836 * Returns whether an Ethernet packet is small enough to fit completely as
837 * immediate data.
838 */
839static inline int is_eth_imm(const struct sk_buff *skb)
840{
841 /*
842 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
843 * which does not accommodate immediate data. We could dike out all
844 * of the support code for immediate data but that would tie our hands
845 * too much if we ever want to enhace the firmware. It would also
846 * create more differences between the PF and VF Drivers.
847 */
848 return false;
849}
850
851/**
852 * calc_tx_flits - calculate the number of flits for a packet TX WR
853 * @skb: the packet
854 *
855 * Returns the number of flits needed for a TX Work Request for the
856 * given Ethernet packet, including the needed WR and CPL headers.
857 */
858static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
859{
860 unsigned int flits;
861
862 /*
863 * If the skb is small enough, we can pump it out as a work request
864 * with only immediate data. In that case we just have to have the
865 * TX Packet header plus the skb data in the Work Request.
866 */
867 if (is_eth_imm(skb))
868 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
869 sizeof(__be64));
870
871 /*
872 * Otherwise, we're going to have to construct a Scatter gather list
873 * of the skb body and fragments. We also include the flits necessary
874 * for the TX Packet Work Request and CPL. We always have a firmware
875 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
876 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
877 * message or, if we're doing a Large Send Offload, an LSO CPL message
878 * with an embeded TX Packet Write CPL message.
879 */
880 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
881 if (skb_shinfo(skb)->gso_size)
882 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
883 sizeof(struct cpl_tx_pkt_lso_core) +
884 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
885 else
886 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
887 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
888 return flits;
889}
890
891/**
892 * write_sgl - populate a Scatter/Gather List for a packet
893 * @skb: the packet
894 * @tq: the TX queue we are writing into
895 * @sgl: starting location for writing the SGL
896 * @end: points right after the end of the SGL
897 * @start: start offset into skb main-body data to include in the SGL
898 * @addr: the list of DMA bus addresses for the SGL elements
899 *
900 * Generates a Scatter/Gather List for the buffers that make up a packet.
901 * The caller must provide adequate space for the SGL that will be written.
902 * The SGL includes all of the packet's page fragments and the data in its
903 * main body except for the first @start bytes. @pos must be 16-byte
904 * aligned and within a TX descriptor with available space. @end points
905 * write after the end of the SGL but does not account for any potential
906 * wrap around, i.e., @end > @tq->stat.
907 */
908static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
909 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
910 const dma_addr_t *addr)
911{
912 unsigned int i, len;
913 struct ulptx_sge_pair *to;
914 const struct skb_shared_info *si = skb_shinfo(skb);
915 unsigned int nfrags = si->nr_frags;
916 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
917
918 len = skb_headlen(skb) - start;
919 if (likely(len)) {
920 sgl->len0 = htonl(len);
921 sgl->addr0 = cpu_to_be64(addr[0] + start);
922 nfrags++;
923 } else {
9e903e08 924 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
c6e0d914
CL
925 sgl->addr0 = cpu_to_be64(addr[1]);
926 }
927
d7990b0c 928 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
bdc590b9 929 ULPTX_NSGE_V(nfrags));
c6e0d914
CL
930 if (likely(--nfrags == 0))
931 return;
932 /*
933 * Most of the complexity below deals with the possibility we hit the
934 * end of the queue in the middle of writing the SGL. For this case
935 * only we create the SGL in a temporary buffer and then copy it.
936 */
937 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
938
939 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
940 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
941 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
c6e0d914
CL
942 to->addr[0] = cpu_to_be64(addr[i]);
943 to->addr[1] = cpu_to_be64(addr[++i]);
944 }
945 if (nfrags) {
9e903e08 946 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
c6e0d914
CL
947 to->len[1] = cpu_to_be32(0);
948 to->addr[0] = cpu_to_be64(addr[i + 1]);
949 }
950 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
951 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
952
953 if (likely(part0))
954 memcpy(sgl->sge, buf, part0);
955 part1 = (u8 *)end - (u8 *)tq->stat;
956 memcpy(tq->desc, (u8 *)buf + part0, part1);
957 end = (void *)tq->desc + part1;
958 }
959 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 960 *end = 0;
c6e0d914
CL
961}
962
963/**
964 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
965 * @adapter: the adapter
966 * @tq: the TX queue
967 * @n: number of new descriptors to give to HW
968 *
969 * Ring the doorbel for a TX queue.
970 */
971static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
972 int n)
973{
df64e4d3
HS
974 /* Make sure that all writes to the TX Descriptors are committed
975 * before we tell the hardware about them.
c6e0d914 976 */
c6e0d914 977 wmb();
df64e4d3
HS
978
979 /* If we don't have access to the new User Doorbell (T5+), use the old
980 * doorbell mechanism; otherwise use the new BAR2 mechanism.
981 */
982 if (unlikely(tq->bar2_addr == NULL)) {
f612b815 983 u32 val = PIDX_V(n);
df64e4d3
HS
984
985 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
f612b815 986 QID_V(tq->cntxt_id) | val);
df64e4d3 987 } else {
f612b815 988 u32 val = PIDX_T5_V(n);
df64e4d3
HS
989
990 /* T4 and later chips share the same PIDX field offset within
991 * the doorbell, but T5 and later shrank the field in order to
992 * gain a bit for Doorbell Priority. The field was absurdly
993 * large in the first place (14 bits) so we just use the T5
994 * and later limits and warn if a Queue ID is too large.
995 */
f612b815 996 WARN_ON(val & DBPRIO_F);
df64e4d3
HS
997
998 /* If we're only writing a single Egress Unit and the BAR2
999 * Queue ID is 0, we can use the Write Combining Doorbell
1000 * Gather Buffer; otherwise we use the simple doorbell.
1001 */
1002 if (n == 1 && tq->bar2_qid == 0) {
1003 unsigned int index = (tq->pidx
1004 ? (tq->pidx - 1)
1005 : (tq->size - 1));
1006 __be64 *src = (__be64 *)&tq->desc[index];
2ff2acf1 1007 __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
df64e4d3
HS
1008 SGE_UDB_WCDOORBELL);
1009 unsigned int count = EQ_UNIT / sizeof(__be64);
1010
1011 /* Copy the TX Descriptor in a tight loop in order to
1012 * try to get it to the adapter in a single Write
1013 * Combined transfer on the PCI-E Bus. If the Write
1014 * Combine fails (say because of an interrupt, etc.)
1015 * the hardware will simply take the last write as a
1016 * simple doorbell write with a PIDX Increment of 1
1017 * and will fetch the TX Descriptor from memory via
1018 * DMA.
1019 */
1020 while (count) {
2ff2acf1
HS
1021 /* the (__force u64) is because the compiler
1022 * doesn't understand the endian swizzling
1023 * going on
1024 */
1025 writeq((__force u64)*src, dst);
df64e4d3
HS
1026 src++;
1027 dst++;
1028 count--;
1029 }
1030 } else
f612b815 1031 writel(val | QID_V(tq->bar2_qid),
df64e4d3
HS
1032 tq->bar2_addr + SGE_UDB_KDOORBELL);
1033
1034 /* This Write Memory Barrier will force the write to the User
1035 * Doorbell area to be flushed. This is needed to prevent
1036 * writes on different CPUs for the same queue from hitting
1037 * the adapter out of order. This is required when some Work
1038 * Requests take the Write Combine Gather Buffer path (user
1039 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1040 * take the traditional path where we simply increment the
1041 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1042 * hardware DMA read the actual Work Request.
1043 */
1044 wmb();
1045 }
c6e0d914
CL
1046}
1047
1048/**
1049 * inline_tx_skb - inline a packet's data into TX descriptors
1050 * @skb: the packet
1051 * @tq: the TX queue where the packet will be inlined
1052 * @pos: starting position in the TX queue to inline the packet
1053 *
1054 * Inline a packet's contents directly into TX descriptors, starting at
1055 * the given position within the TX DMA ring.
1056 * Most of the complexity of this operation is dealing with wrap arounds
1057 * in the middle of the packet we want to inline.
1058 */
1059static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1060 void *pos)
1061{
1062 u64 *p;
1063 int left = (void *)tq->stat - pos;
1064
1065 if (likely(skb->len <= left)) {
1066 if (likely(!skb->data_len))
1067 skb_copy_from_linear_data(skb, pos, skb->len);
1068 else
1069 skb_copy_bits(skb, 0, pos, skb->len);
1070 pos += skb->len;
1071 } else {
1072 skb_copy_bits(skb, 0, pos, left);
1073 skb_copy_bits(skb, left, tq->desc, skb->len - left);
1074 pos = (void *)tq->desc + (skb->len - left);
1075 }
1076
1077 /* 0-pad to multiple of 16 */
1078 p = PTR_ALIGN(pos, 8);
1079 if ((uintptr_t)p & 8)
1080 *p = 0;
1081}
1082
1083/*
1084 * Figure out what HW csum a packet wants and return the appropriate control
1085 * bits.
1086 */
1087static u64 hwcsum(const struct sk_buff *skb)
1088{
1089 int csum_type;
1090 const struct iphdr *iph = ip_hdr(skb);
1091
1092 if (iph->version == 4) {
1093 if (iph->protocol == IPPROTO_TCP)
1094 csum_type = TX_CSUM_TCPIP;
1095 else if (iph->protocol == IPPROTO_UDP)
1096 csum_type = TX_CSUM_UDPIP;
1097 else {
1098nocsum:
1099 /*
1100 * unknown protocol, disable HW csum
1101 * and hope a bad packet is detected
1102 */
1103 return TXPKT_L4CSUM_DIS;
1104 }
1105 } else {
1106 /*
1107 * this doesn't work with extension headers
1108 */
1109 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1110
1111 if (ip6h->nexthdr == IPPROTO_TCP)
1112 csum_type = TX_CSUM_TCPIP6;
1113 else if (ip6h->nexthdr == IPPROTO_UDP)
1114 csum_type = TX_CSUM_UDPIP6;
1115 else
1116 goto nocsum;
1117 }
1118
1119 if (likely(csum_type >= TX_CSUM_TCPIP))
1120 return TXPKT_CSUM_TYPE(csum_type) |
1121 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1122 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1123 else {
1124 int start = skb_transport_offset(skb);
1125
1126 return TXPKT_CSUM_TYPE(csum_type) |
1127 TXPKT_CSUM_START(start) |
1128 TXPKT_CSUM_LOC(start + skb->csum_offset);
1129 }
1130}
1131
1132/*
1133 * Stop an Ethernet TX queue and record that state change.
1134 */
1135static void txq_stop(struct sge_eth_txq *txq)
1136{
1137 netif_tx_stop_queue(txq->txq);
1138 txq->q.stops++;
1139}
1140
1141/*
1142 * Advance our software state for a TX queue by adding n in use descriptors.
1143 */
1144static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1145{
1146 tq->in_use += n;
1147 tq->pidx += n;
1148 if (tq->pidx >= tq->size)
1149 tq->pidx -= tq->size;
1150}
1151
1152/**
1153 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1154 * @skb: the packet
1155 * @dev: the egress net device
1156 *
1157 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1158 */
1159int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1160{
7f9dd2fa 1161 u32 wr_mid;
c6e0d914
CL
1162 u64 cntrl, *end;
1163 int qidx, credits;
1164 unsigned int flits, ndesc;
1165 struct adapter *adapter;
1166 struct sge_eth_txq *txq;
1167 const struct port_info *pi;
1168 struct fw_eth_tx_pkt_vm_wr *wr;
1169 struct cpl_tx_pkt_core *cpl;
1170 const struct skb_shared_info *ssi;
1171 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1172 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1173 sizeof(wr->ethmacsrc) +
1174 sizeof(wr->ethtype) +
1175 sizeof(wr->vlantci));
1176
1177 /*
1178 * The chip minimum packet length is 10 octets but the firmware
1179 * command that we are using requires that we copy the Ethernet header
1180 * (including the VLAN tag) into the header so we reject anything
1181 * smaller than that ...
1182 */
1183 if (unlikely(skb->len < fw_hdr_copy_len))
1184 goto out_free;
1185
1186 /*
1187 * Figure out which TX Queue we're going to use.
1188 */
1189 pi = netdev_priv(dev);
1190 adapter = pi->adapter;
1191 qidx = skb_get_queue_mapping(skb);
1192 BUG_ON(qidx >= pi->nqsets);
1193 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1194
1195 /*
1196 * Take this opportunity to reclaim any TX Descriptors whose DMA
1197 * transfers have completed.
1198 */
1199 reclaim_completed_tx(adapter, &txq->q, true);
1200
1201 /*
1202 * Calculate the number of flits and TX Descriptors we're going to
1203 * need along with how many TX Descriptors will be left over after
1204 * we inject our Work Request.
1205 */
1206 flits = calc_tx_flits(skb);
1207 ndesc = flits_to_desc(flits);
1208 credits = txq_avail(&txq->q) - ndesc;
1209
1210 if (unlikely(credits < 0)) {
1211 /*
1212 * Not enough room for this packet's Work Request. Stop the
1213 * TX Queue and return a "busy" condition. The queue will get
1214 * started later on when the firmware informs us that space
1215 * has opened up.
1216 */
1217 txq_stop(txq);
1218 dev_err(adapter->pdev_dev,
1219 "%s: TX ring %u full while queue awake!\n",
1220 dev->name, qidx);
1221 return NETDEV_TX_BUSY;
1222 }
1223
1224 if (!is_eth_imm(skb) &&
1225 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1226 /*
1227 * We need to map the skb into PCI DMA space (because it can't
1228 * be in-lined directly into the Work Request) and the mapping
1229 * operation failed. Record the error and drop the packet.
1230 */
1231 txq->mapping_err++;
1232 goto out_free;
1233 }
1234
e2ac9628 1235 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
c6e0d914
CL
1236 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1237 /*
1238 * After we're done injecting the Work Request for this
25985edc 1239 * packet, we'll be below our "stop threshold" so stop the TX
7f9dd2fa
CL
1240 * Queue now and schedule a request for an SGE Egress Queue
1241 * Update message. The queue will get started later on when
1242 * the firmware processes this Work Request and sends us an
1243 * Egress Queue Status Update message indicating that space
1244 * has opened up.
c6e0d914
CL
1245 */
1246 txq_stop(txq);
e2ac9628 1247 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
c6e0d914
CL
1248 }
1249
1250 /*
1251 * Start filling in our Work Request. Note that we do _not_ handle
1252 * the WR Header wrapping around the TX Descriptor Ring. If our
1253 * maximum header size ever exceeds one TX Descriptor, we'll need to
1254 * do something else here.
1255 */
1256 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1257 wr = (void *)&txq->q.desc[txq->q.pidx];
7f9dd2fa 1258 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
2ff2acf1
HS
1259 wr->r3[0] = cpu_to_be32(0);
1260 wr->r3[1] = cpu_to_be32(0);
c6e0d914
CL
1261 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1262 end = (u64 *)wr + flits;
1263
1264 /*
1265 * If this is a Large Send Offload packet we'll put in an LSO CPL
1266 * message with an encapsulated TX Packet CPL message. Otherwise we
1267 * just use a TX Packet CPL message.
1268 */
1269 ssi = skb_shinfo(skb);
1270 if (ssi->gso_size) {
1271 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1272 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1273 int l3hdr_len = skb_network_header_len(skb);
1274 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1275
1276 wr->op_immdlen =
e2ac9628
HS
1277 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1278 FW_WR_IMMDLEN_V(sizeof(*lso) +
1279 sizeof(*cpl)));
c6e0d914
CL
1280 /*
1281 * Fill in the LSO CPL message.
1282 */
1283 lso->lso_ctrl =
1284 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1285 LSO_FIRST_SLICE |
1286 LSO_LAST_SLICE |
1287 LSO_IPV6(v6) |
1288 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1289 LSO_IPHDR_LEN(l3hdr_len/4) |
1290 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1291 lso->ipid_ofst = cpu_to_be16(0);
1292 lso->mss = cpu_to_be16(ssi->gso_size);
1293 lso->seqno_offset = cpu_to_be32(0);
7207c0d1
HS
1294 if (is_t4(adapter->params.chip))
1295 lso->len = cpu_to_be32(skb->len);
1296 else
1297 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
c6e0d914
CL
1298
1299 /*
1300 * Set up TX Packet CPL pointer, control word and perform
1301 * accounting.
1302 */
1303 cpl = (void *)(lso + 1);
1304 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1305 TXPKT_IPHDR_LEN(l3hdr_len) |
1306 TXPKT_ETHHDR_LEN(eth_xtra_len));
1307 txq->tso++;
1308 txq->tx_cso += ssi->gso_segs;
1309 } else {
1310 int len;
1311
1312 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1313 wr->op_immdlen =
e2ac9628
HS
1314 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1315 FW_WR_IMMDLEN_V(len));
c6e0d914
CL
1316
1317 /*
1318 * Set up TX Packet CPL pointer, control word and perform
1319 * accounting.
1320 */
1321 cpl = (void *)(wr + 1);
1322 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1323 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1324 txq->tx_cso++;
1325 } else
1326 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1327 }
1328
1329 /*
1330 * If there's a VLAN tag present, add that to the list of things to
1331 * do in this Work Request.
1332 */
df8a39de 1333 if (skb_vlan_tag_present(skb)) {
c6e0d914 1334 txq->vlan_ins++;
df8a39de 1335 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
c6e0d914
CL
1336 }
1337
1338 /*
1339 * Fill in the TX Packet CPL message header.
1340 */
1341 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1342 TXPKT_INTF(pi->port_id) |
1343 TXPKT_PF(0));
1344 cpl->pack = cpu_to_be16(0);
1345 cpl->len = cpu_to_be16(skb->len);
1346 cpl->ctrl1 = cpu_to_be64(cntrl);
1347
1348#ifdef T4_TRACE
1349 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1350 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1351 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1352#endif
1353
1354 /*
1355 * Fill in the body of the TX Packet CPL message with either in-lined
1356 * data or a Scatter/Gather List.
1357 */
1358 if (is_eth_imm(skb)) {
1359 /*
1360 * In-line the packet's data and free the skb since we don't
1361 * need it any longer.
1362 */
1363 inline_tx_skb(skb, &txq->q, cpl + 1);
42ffda5f 1364 dev_consume_skb_any(skb);
c6e0d914
CL
1365 } else {
1366 /*
1367 * Write the skb's Scatter/Gather list into the TX Packet CPL
1368 * message and retain a pointer to the skb so we can free it
1369 * later when its DMA completes. (We store the skb pointer
1370 * in the Software Descriptor corresponding to the last TX
1371 * Descriptor used by the Work Request.)
1372 *
1373 * The retained skb will be freed when the corresponding TX
1374 * Descriptors are reclaimed after their DMAs complete.
1375 * However, this could take quite a while since, in general,
1376 * the hardware is set up to be lazy about sending DMA
1377 * completion notifications to us and we mostly perform TX
1378 * reclaims in the transmit routine.
1379 *
1380 * This is good for performamce but means that we rely on new
1381 * TX packets arriving to run the destructors of completed
1382 * packets, which open up space in their sockets' send queues.
1383 * Sometimes we do not get such new packets causing TX to
1384 * stall. A single UDP transmitter is a good example of this
1385 * situation. We have a clean up timer that periodically
1386 * reclaims completed packets but it doesn't run often enough
1387 * (nor do we want it to) to prevent lengthy stalls. A
1388 * solution to this problem is to run the destructor early,
1389 * after the packet is queued but before it's DMAd. A con is
1390 * that we lie to socket memory accounting, but the amount of
1391 * extra memory is reasonable (limited by the number of TX
1392 * descriptors), the packets do actually get freed quickly by
1393 * new packets almost always, and for protocols like TCP that
1394 * wait for acks to really free up the data the extra memory
1395 * is even less. On the positive side we run the destructors
1396 * on the sending CPU rather than on a potentially different
64bb336c 1397 * completing CPU, usually a good thing.
c6e0d914
CL
1398 *
1399 * Run the destructor before telling the DMA engine about the
1400 * packet to make sure it doesn't complete and get freed
1401 * prematurely.
1402 */
1403 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1404 struct sge_txq *tq = &txq->q;
1405 int last_desc;
1406
1407 /*
1408 * If the Work Request header was an exact multiple of our TX
1409 * Descriptor length, then it's possible that the starting SGL
1410 * pointer lines up exactly with the end of our TX Descriptor
1411 * ring. If that's the case, wrap around to the beginning
1412 * here ...
1413 */
1414 if (unlikely((void *)sgl == (void *)tq->stat)) {
1415 sgl = (void *)tq->desc;
64699336 1416 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
c6e0d914
CL
1417 }
1418
1419 write_sgl(skb, tq, sgl, end, 0, addr);
1420 skb_orphan(skb);
1421
1422 last_desc = tq->pidx + ndesc - 1;
1423 if (last_desc >= tq->size)
1424 last_desc -= tq->size;
1425 tq->sdesc[last_desc].skb = skb;
1426 tq->sdesc[last_desc].sgl = sgl;
1427 }
1428
1429 /*
1430 * Advance our internal TX Queue state, tell the hardware about
1431 * the new TX descriptors and return success.
1432 */
1433 txq_advance(&txq->q, ndesc);
1434 dev->trans_start = jiffies;
1435 ring_tx_db(adapter, &txq->q, ndesc);
1436 return NETDEV_TX_OK;
1437
1438out_free:
1439 /*
1440 * An error of some sort happened. Free the TX skb and tell the
1441 * OS that we've "dealt" with the packet ...
1442 */
42ffda5f 1443 dev_kfree_skb_any(skb);
c6e0d914
CL
1444 return NETDEV_TX_OK;
1445}
1446
a0006a86
IC
1447/**
1448 * copy_frags - copy fragments from gather list into skb_shared_info
1449 * @skb: destination skb
1450 * @gl: source internal packet gather list
1451 * @offset: packet start offset in first page
1452 *
1453 * Copy an internal packet gather list into a Linux skb_shared_info
1454 * structure.
1455 */
1456static inline void copy_frags(struct sk_buff *skb,
1457 const struct pkt_gl *gl,
1458 unsigned int offset)
1459{
1460 int i;
1461
1462 /* usually there's just one frag */
1463 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1464 gl->frags[0].offset + offset,
1465 gl->frags[0].size - offset);
1466 skb_shinfo(skb)->nr_frags = gl->nfrags;
1467 for (i = 1; i < gl->nfrags; i++)
1468 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1469 gl->frags[i].offset,
1470 gl->frags[i].size);
1471
1472 /* get a reference to the last page, we don't own it */
1473 get_page(gl->frags[gl->nfrags - 1].page);
1474}
1475
eb6c503d
CL
1476/**
1477 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1478 * @gl: the gather list
1479 * @skb_len: size of sk_buff main body if it carries fragments
1480 * @pull_len: amount of data to move to the sk_buff's main body
1481 *
1482 * Builds an sk_buff from the given packet gather list. Returns the
1483 * sk_buff or %NULL if sk_buff allocation failed.
1484 */
8a67d1c6
SK
1485static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1486 unsigned int skb_len,
1487 unsigned int pull_len)
eb6c503d
CL
1488{
1489 struct sk_buff *skb;
eb6c503d
CL
1490
1491 /*
1492 * If the ingress packet is small enough, allocate an skb large enough
1493 * for all of the data and copy it inline. Otherwise, allocate an skb
1494 * with enough room to pull in the header and reference the rest of
1495 * the data via the skb fragment list.
1496 *
1497 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1498 * buff! size, which is expected since buffers are at least
1499 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1500 * fragment.
1501 */
1502 if (gl->tot_len <= RX_COPY_THRES) {
1503 /* small packets have only one fragment */
1504 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1505 if (unlikely(!skb))
1506 goto out;
1507 __skb_put(skb, gl->tot_len);
1508 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1509 } else {
1510 skb = alloc_skb(skb_len, GFP_ATOMIC);
1511 if (unlikely(!skb))
1512 goto out;
1513 __skb_put(skb, pull_len);
1514 skb_copy_to_linear_data(skb, gl->va, pull_len);
1515
a0006a86 1516 copy_frags(skb, gl, pull_len);
eb6c503d
CL
1517 skb->len = gl->tot_len;
1518 skb->data_len = skb->len - pull_len;
1519 skb->truesize += skb->data_len;
eb6c503d
CL
1520 }
1521
1522out:
1523 return skb;
1524}
1525
c6e0d914
CL
1526/**
1527 * t4vf_pktgl_free - free a packet gather list
1528 * @gl: the gather list
1529 *
1530 * Releases the pages of a packet gather list. We do not own the last
1531 * page on the list and do not free it.
1532 */
8a67d1c6 1533static void t4vf_pktgl_free(const struct pkt_gl *gl)
c6e0d914
CL
1534{
1535 int frag;
1536
1537 frag = gl->nfrags - 1;
1538 while (frag--)
1539 put_page(gl->frags[frag].page);
1540}
1541
c6e0d914
CL
1542/**
1543 * do_gro - perform Generic Receive Offload ingress packet processing
1544 * @rxq: ingress RX Ethernet Queue
1545 * @gl: gather list for ingress packet
1546 * @pkt: CPL header for last packet fragment
1547 *
1548 * Perform Generic Receive Offload (GRO) ingress packet processing.
1549 * We use the standard Linux GRO interfaces for this.
1550 */
1551static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1552 const struct cpl_rx_pkt *pkt)
1553{
65f6ecc9
HS
1554 struct adapter *adapter = rxq->rspq.adapter;
1555 struct sge *s = &adapter->sge;
c6e0d914
CL
1556 int ret;
1557 struct sk_buff *skb;
1558
1559 skb = napi_get_frags(&rxq->rspq.napi);
1560 if (unlikely(!skb)) {
1561 t4vf_pktgl_free(gl);
1562 rxq->stats.rx_drops++;
1563 return;
1564 }
1565
65f6ecc9
HS
1566 copy_frags(skb, gl, s->pktshift);
1567 skb->len = gl->tot_len - s->pktshift;
c6e0d914
CL
1568 skb->data_len = skb->len;
1569 skb->truesize += skb->data_len;
1570 skb->ip_summed = CHECKSUM_UNNECESSARY;
1571 skb_record_rx_queue(skb, rxq->rspq.idx);
1572
af32de0e 1573 if (pkt->vlan_ex) {
86a9bad3
PM
1574 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1575 be16_to_cpu(pkt->vlan));
af32de0e
VP
1576 rxq->stats.vlan_ex++;
1577 }
c6e0d914
CL
1578 ret = napi_gro_frags(&rxq->rspq.napi);
1579
c6e0d914
CL
1580 if (ret == GRO_HELD)
1581 rxq->stats.lro_pkts++;
1582 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1583 rxq->stats.lro_merged++;
1584 rxq->stats.pkts++;
1585 rxq->stats.rx_cso++;
1586}
1587
1588/**
1589 * t4vf_ethrx_handler - process an ingress ethernet packet
1590 * @rspq: the response queue that received the packet
1591 * @rsp: the response queue descriptor holding the RX_PKT message
1592 * @gl: the gather list of packet fragments
1593 *
1594 * Process an ingress ethernet packet and deliver it to the stack.
1595 */
1596int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1597 const struct pkt_gl *gl)
1598{
1599 struct sk_buff *skb;
8b9a4d56 1600 const struct cpl_rx_pkt *pkt = (void *)rsp;
c3136f55
HS
1601 bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1602 (rspq->netdev->features & NETIF_F_RXCSUM);
c6e0d914 1603 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
65f6ecc9
HS
1604 struct adapter *adapter = rspq->adapter;
1605 struct sge *s = &adapter->sge;
c6e0d914
CL
1606
1607 /*
1608 * If this is a good TCP packet and we have Generic Receive Offload
1609 * enabled, handle the packet in the GRO path.
1610 */
bdc590b9 1611 if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
c6e0d914
CL
1612 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1613 !pkt->ip_frag) {
1614 do_gro(rxq, gl, pkt);
1615 return 0;
1616 }
1617
1618 /*
eb6c503d 1619 * Convert the Packet Gather List into an skb.
c6e0d914 1620 */
eb6c503d
CL
1621 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1622 if (unlikely(!skb)) {
1623 t4vf_pktgl_free(gl);
1624 rxq->stats.rx_drops++;
1625 return 0;
c6e0d914 1626 }
65f6ecc9 1627 __skb_pull(skb, s->pktshift);
c6e0d914
CL
1628 skb->protocol = eth_type_trans(skb, rspq->netdev);
1629 skb_record_rx_queue(skb, rspq->idx);
c6e0d914
CL
1630 rxq->stats.pkts++;
1631
c3136f55 1632 if (csum_ok && !pkt->err_vec &&
bdc590b9 1633 (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
c6e0d914
CL
1634 if (!pkt->ip_frag)
1635 skb->ip_summed = CHECKSUM_UNNECESSARY;
1636 else {
1637 __sum16 c = (__force __sum16)pkt->csum;
1638 skb->csum = csum_unfold(c);
1639 skb->ip_summed = CHECKSUM_COMPLETE;
1640 }
1641 rxq->stats.rx_cso++;
1642 } else
bc8acf2c 1643 skb_checksum_none_assert(skb);
c6e0d914 1644
87737663 1645 if (pkt->vlan_ex) {
c6e0d914 1646 rxq->stats.vlan_ex++;
86a9bad3 1647 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
87737663
JP
1648 }
1649
1650 netif_receive_skb(skb);
c6e0d914
CL
1651
1652 return 0;
c6e0d914
CL
1653}
1654
1655/**
1656 * is_new_response - check if a response is newly written
1657 * @rc: the response control descriptor
1658 * @rspq: the response queue
1659 *
1660 * Returns true if a response descriptor contains a yet unprocessed
1661 * response.
1662 */
1663static inline bool is_new_response(const struct rsp_ctrl *rc,
1664 const struct sge_rspq *rspq)
1665{
1666 return RSPD_GEN(rc->type_gen) == rspq->gen;
1667}
1668
1669/**
1670 * restore_rx_bufs - put back a packet's RX buffers
1671 * @gl: the packet gather list
1672 * @fl: the SGE Free List
1673 * @nfrags: how many fragments in @si
1674 *
1675 * Called when we find out that the current packet, @si, can't be
1676 * processed right away for some reason. This is a very rare event and
1677 * there's no effort to make this suspension/resumption process
1678 * particularly efficient.
1679 *
1680 * We implement the suspension by putting all of the RX buffers associated
1681 * with the current packet back on the original Free List. The buffers
1682 * have already been unmapped and are left unmapped, we mark them as
1683 * unmapped in order to prevent further unmapping attempts. (Effectively
1684 * this function undoes the series of @unmap_rx_buf calls which were done
1685 * to create the current packet's gather list.) This leaves us ready to
1686 * restart processing of the packet the next time we start processing the
1687 * RX Queue ...
1688 */
1689static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1690 int frags)
1691{
1692 struct rx_sw_desc *sdesc;
1693
1694 while (frags--) {
1695 if (fl->cidx == 0)
1696 fl->cidx = fl->size - 1;
1697 else
1698 fl->cidx--;
1699 sdesc = &fl->sdesc[fl->cidx];
1700 sdesc->page = gl->frags[frags].page;
1701 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1702 fl->avail++;
1703 }
1704}
1705
1706/**
1707 * rspq_next - advance to the next entry in a response queue
1708 * @rspq: the queue
1709 *
1710 * Updates the state of a response queue to advance it to the next entry.
1711 */
1712static inline void rspq_next(struct sge_rspq *rspq)
1713{
1714 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1715 if (unlikely(++rspq->cidx == rspq->size)) {
1716 rspq->cidx = 0;
1717 rspq->gen ^= 1;
1718 rspq->cur_desc = rspq->desc;
1719 }
1720}
1721
1722/**
1723 * process_responses - process responses from an SGE response queue
1724 * @rspq: the ingress response queue to process
1725 * @budget: how many responses can be processed in this round
1726 *
1727 * Process responses from a Scatter Gather Engine response queue up to
1728 * the supplied budget. Responses include received packets as well as
1729 * control messages from firmware or hardware.
1730 *
1731 * Additionally choose the interrupt holdoff time for the next interrupt
1732 * on this queue. If the system is under memory shortage use a fairly
1733 * long delay to help recovery.
1734 */
8a67d1c6 1735static int process_responses(struct sge_rspq *rspq, int budget)
c6e0d914
CL
1736{
1737 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
65f6ecc9
HS
1738 struct adapter *adapter = rspq->adapter;
1739 struct sge *s = &adapter->sge;
c6e0d914
CL
1740 int budget_left = budget;
1741
1742 while (likely(budget_left)) {
1743 int ret, rsp_type;
1744 const struct rsp_ctrl *rc;
1745
1746 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1747 if (!is_new_response(rc, rspq))
1748 break;
1749
1750 /*
1751 * Figure out what kind of response we've received from the
1752 * SGE.
1753 */
1754 rmb();
1755 rsp_type = RSPD_TYPE(rc->type_gen);
1756 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
a0006a86 1757 struct page_frag *fp;
c6e0d914
CL
1758 struct pkt_gl gl;
1759 const struct rx_sw_desc *sdesc;
1760 u32 bufsz, frag;
1761 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1762
1763 /*
1764 * If we get a "new buffer" message from the SGE we
1765 * need to move on to the next Free List buffer.
1766 */
1767 if (len & RSPD_NEWBUF) {
1768 /*
1769 * We get one "new buffer" message when we
1770 * first start up a queue so we need to ignore
1771 * it when our offset into the buffer is 0.
1772 */
1773 if (likely(rspq->offset > 0)) {
1774 free_rx_bufs(rspq->adapter, &rxq->fl,
1775 1);
1776 rspq->offset = 0;
1777 }
1778 len = RSPD_LEN(len);
1779 }
b94e72e2 1780 gl.tot_len = len;
c6e0d914
CL
1781
1782 /*
1783 * Gather packet fragments.
1784 */
1785 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1786 BUG_ON(frag >= MAX_SKB_FRAGS);
1787 BUG_ON(rxq->fl.avail == 0);
1788 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
65f6ecc9 1789 bufsz = get_buf_size(adapter, sdesc);
c6e0d914 1790 fp->page = sdesc->page;
a0006a86
IC
1791 fp->offset = rspq->offset;
1792 fp->size = min(bufsz, len);
1793 len -= fp->size;
c6e0d914
CL
1794 if (!len)
1795 break;
1796 unmap_rx_buf(rspq->adapter, &rxq->fl);
1797 }
1798 gl.nfrags = frag+1;
1799
1800 /*
1801 * Last buffer remains mapped so explicitly make it
1802 * coherent for CPU access and start preloading first
1803 * cache line ...
1804 */
1805 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1806 get_buf_addr(sdesc),
a0006a86 1807 fp->size, DMA_FROM_DEVICE);
c6e0d914 1808 gl.va = (page_address(gl.frags[0].page) +
a0006a86 1809 gl.frags[0].offset);
c6e0d914
CL
1810 prefetch(gl.va);
1811
1812 /*
1813 * Hand the new ingress packet to the handler for
1814 * this Response Queue.
1815 */
1816 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1817 if (likely(ret == 0))
65f6ecc9 1818 rspq->offset += ALIGN(fp->size, s->fl_align);
c6e0d914
CL
1819 else
1820 restore_rx_bufs(&gl, &rxq->fl, frag);
1821 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1822 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1823 } else {
1824 WARN_ON(rsp_type > RSP_TYPE_CPL);
1825 ret = 0;
1826 }
1827
1828 if (unlikely(ret)) {
1829 /*
1830 * Couldn't process descriptor, back off for recovery.
1831 * We use the SGE's last timer which has the longest
1832 * interrupt coalescing value ...
1833 */
1834 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1835 rspq->next_intr_params =
1836 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1837 break;
1838 }
1839
1840 rspq_next(rspq);
1841 budget_left--;
1842 }
1843
1844 /*
1845 * If this is a Response Queue with an associated Free List and
1846 * at least two Egress Queue units available in the Free List
1847 * for new buffer pointers, refill the Free List.
1848 */
1849 if (rspq->offset >= 0 &&
1850 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1851 __refill_fl(rspq->adapter, &rxq->fl);
1852 return budget - budget_left;
1853}
1854
1855/**
1856 * napi_rx_handler - the NAPI handler for RX processing
1857 * @napi: the napi instance
1858 * @budget: how many packets we can process in this round
1859 *
1860 * Handler for new data events when using NAPI. This does not need any
1861 * locking or protection from interrupts as data interrupts are off at
1862 * this point and other adapter interrupts do not interfere (the latter
1863 * in not a concern at all with MSI-X as non-data interrupts then have
1864 * a separate handler).
1865 */
1866static int napi_rx_handler(struct napi_struct *napi, int budget)
1867{
1868 unsigned int intr_params;
1869 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1870 int work_done = process_responses(rspq, budget);
df64e4d3 1871 u32 val;
c6e0d914
CL
1872
1873 if (likely(work_done < budget)) {
1874 napi_complete(napi);
1875 intr_params = rspq->next_intr_params;
1876 rspq->next_intr_params = rspq->intr_params;
1877 } else
1878 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1879
68dc9d36
CL
1880 if (unlikely(work_done == 0))
1881 rspq->unhandled_irqs++;
1882
f612b815 1883 val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
df64e4d3
HS
1884 if (is_t4(rspq->adapter->params.chip)) {
1885 t4_write_reg(rspq->adapter,
1886 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
f612b815 1887 val | INGRESSQID_V((u32)rspq->cntxt_id));
df64e4d3 1888 } else {
f612b815 1889 writel(val | INGRESSQID_V(rspq->bar2_qid),
df64e4d3
HS
1890 rspq->bar2_addr + SGE_UDB_GTS);
1891 wmb();
1892 }
c6e0d914
CL
1893 return work_done;
1894}
1895
1896/*
1897 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1898 * (i.e., response queue serviced by NAPI polling).
1899 */
1900irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1901{
1902 struct sge_rspq *rspq = cookie;
1903
1904 napi_schedule(&rspq->napi);
1905 return IRQ_HANDLED;
1906}
1907
1908/*
1909 * Process the indirect interrupt entries in the interrupt queue and kick off
1910 * NAPI for each queue that has generated an entry.
1911 */
1912static unsigned int process_intrq(struct adapter *adapter)
1913{
1914 struct sge *s = &adapter->sge;
1915 struct sge_rspq *intrq = &s->intrq;
1916 unsigned int work_done;
df64e4d3 1917 u32 val;
c6e0d914
CL
1918
1919 spin_lock(&adapter->sge.intrq_lock);
1920 for (work_done = 0; ; work_done++) {
1921 const struct rsp_ctrl *rc;
1922 unsigned int qid, iq_idx;
1923 struct sge_rspq *rspq;
1924
1925 /*
1926 * Grab the next response from the interrupt queue and bail
1927 * out if it's not a new response.
1928 */
1929 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1930 if (!is_new_response(rc, intrq))
1931 break;
1932
1933 /*
1934 * If the response isn't a forwarded interrupt message issue a
1935 * error and go on to the next response message. This should
1936 * never happen ...
1937 */
1938 rmb();
1939 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1940 dev_err(adapter->pdev_dev,
1941 "Unexpected INTRQ response type %d\n",
1942 RSPD_TYPE(rc->type_gen));
1943 continue;
1944 }
1945
1946 /*
1947 * Extract the Queue ID from the interrupt message and perform
1948 * sanity checking to make sure it really refers to one of our
1949 * Ingress Queues which is active and matches the queue's ID.
1950 * None of these error conditions should ever happen so we may
1951 * want to either make them fatal and/or conditionalized under
1952 * DEBUG.
1953 */
1954 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1955 iq_idx = IQ_IDX(s, qid);
1956 if (unlikely(iq_idx >= MAX_INGQ)) {
1957 dev_err(adapter->pdev_dev,
1958 "Ingress QID %d out of range\n", qid);
1959 continue;
1960 }
1961 rspq = s->ingr_map[iq_idx];
1962 if (unlikely(rspq == NULL)) {
1963 dev_err(adapter->pdev_dev,
1964 "Ingress QID %d RSPQ=NULL\n", qid);
1965 continue;
1966 }
1967 if (unlikely(rspq->abs_id != qid)) {
1968 dev_err(adapter->pdev_dev,
1969 "Ingress QID %d refers to RSPQ %d\n",
1970 qid, rspq->abs_id);
1971 continue;
1972 }
1973
1974 /*
1975 * Schedule NAPI processing on the indicated Response Queue
1976 * and move on to the next entry in the Forwarded Interrupt
1977 * Queue.
1978 */
1979 napi_schedule(&rspq->napi);
1980 rspq_next(intrq);
1981 }
1982
f612b815 1983 val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
df64e4d3
HS
1984 if (is_t4(adapter->params.chip))
1985 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
f612b815 1986 val | INGRESSQID_V(intrq->cntxt_id));
df64e4d3 1987 else {
f612b815 1988 writel(val | INGRESSQID_V(intrq->bar2_qid),
df64e4d3
HS
1989 intrq->bar2_addr + SGE_UDB_GTS);
1990 wmb();
1991 }
c6e0d914
CL
1992
1993 spin_unlock(&adapter->sge.intrq_lock);
1994
1995 return work_done;
1996}
1997
1998/*
1999 * The MSI interrupt handler handles data events from SGE response queues as
2000 * well as error and other async events as they all use the same MSI vector.
2001 */
8a67d1c6 2002static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
c6e0d914
CL
2003{
2004 struct adapter *adapter = cookie;
2005
2006 process_intrq(adapter);
2007 return IRQ_HANDLED;
2008}
2009
2010/**
2011 * t4vf_intr_handler - select the top-level interrupt handler
2012 * @adapter: the adapter
2013 *
2014 * Selects the top-level interrupt handler based on the type of interrupts
2015 * (MSI-X or MSI).
2016 */
2017irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2018{
2019 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2020 if (adapter->flags & USING_MSIX)
2021 return t4vf_sge_intr_msix;
2022 else
2023 return t4vf_intr_msi;
2024}
2025
2026/**
2027 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2028 * @data: the adapter
2029 *
2030 * Runs periodically from a timer to perform maintenance of SGE RX queues.
2031 *
2032 * a) Replenishes RX queues that have run out due to memory shortage.
2033 * Normally new RX buffers are added when existing ones are consumed but
2034 * when out of memory a queue can become empty. We schedule NAPI to do
2035 * the actual refill.
2036 */
2037static void sge_rx_timer_cb(unsigned long data)
2038{
2039 struct adapter *adapter = (struct adapter *)data;
2040 struct sge *s = &adapter->sge;
2041 unsigned int i;
2042
2043 /*
2044 * Scan the "Starving Free Lists" flag array looking for any Free
2045 * Lists in need of more free buffers. If we find one and it's not
2046 * being actively polled, then bump its "starving" counter and attempt
2047 * to refill it. If we're successful in adding enough buffers to push
2048 * the Free List over the starving threshold, then we can clear its
2049 * "starving" status.
2050 */
2051 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2052 unsigned long m;
2053
2054 for (m = s->starving_fl[i]; m; m &= m - 1) {
2055 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2056 struct sge_fl *fl = s->egr_map[id];
2057
2058 clear_bit(id, s->starving_fl);
4e857c58 2059 smp_mb__after_atomic();
c6e0d914
CL
2060
2061 /*
2062 * Since we are accessing fl without a lock there's a
2063 * small probability of a false positive where we
2064 * schedule napi but the FL is no longer starving.
2065 * No biggie.
2066 */
65f6ecc9 2067 if (fl_starving(adapter, fl)) {
c6e0d914
CL
2068 struct sge_eth_rxq *rxq;
2069
2070 rxq = container_of(fl, struct sge_eth_rxq, fl);
2071 if (napi_reschedule(&rxq->rspq.napi))
2072 fl->starving++;
2073 else
2074 set_bit(id, s->starving_fl);
2075 }
2076 }
2077 }
2078
2079 /*
2080 * Reschedule the next scan for starving Free Lists ...
2081 */
2082 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2083}
2084
2085/**
2086 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2087 * @data: the adapter
2088 *
2089 * Runs periodically from a timer to perform maintenance of SGE TX queues.
2090 *
2091 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2092 * packets are cleaned up by new Tx packets, this timer cleans up packets
2093 * when no new packets are being submitted. This is essential for pktgen,
2094 * at least.
2095 */
2096static void sge_tx_timer_cb(unsigned long data)
2097{
2098 struct adapter *adapter = (struct adapter *)data;
2099 struct sge *s = &adapter->sge;
2100 unsigned int i, budget;
2101
2102 budget = MAX_TIMER_TX_RECLAIM;
2103 i = s->ethtxq_rover;
2104 do {
2105 struct sge_eth_txq *txq = &s->ethtxq[i];
2106
2107 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2108 int avail = reclaimable(&txq->q);
2109
2110 if (avail > budget)
2111 avail = budget;
2112
2113 free_tx_desc(adapter, &txq->q, avail, true);
2114 txq->q.in_use -= avail;
2115 __netif_tx_unlock(txq->txq);
2116
2117 budget -= avail;
2118 if (!budget)
2119 break;
2120 }
2121
2122 i++;
2123 if (i >= s->ethqsets)
2124 i = 0;
2125 } while (i != s->ethtxq_rover);
2126 s->ethtxq_rover = i;
2127
2128 /*
2129 * If we found too many reclaimable packets schedule a timer in the
2130 * near future to continue where we left off. Otherwise the next timer
2131 * will be at its normal interval.
2132 */
2133 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2134}
2135
df64e4d3
HS
2136/**
2137 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2138 * @adapter: the adapter
2139 * @qid: the SGE Queue ID
2140 * @qtype: the SGE Queue Type (Egress or Ingress)
2141 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2142 *
2143 * Returns the BAR2 address for the SGE Queue Registers associated with
2144 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2145 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2146 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2147 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2148 */
2149static void __iomem *bar2_address(struct adapter *adapter,
2150 unsigned int qid,
2151 enum t4_bar2_qtype qtype,
2152 unsigned int *pbar2_qid)
2153{
2154 u64 bar2_qoffset;
2155 int ret;
2156
2157 ret = t4_bar2_sge_qregs(adapter, qid, qtype,
2158 &bar2_qoffset, pbar2_qid);
2159 if (ret)
2160 return NULL;
2161
2162 return adapter->bar2 + bar2_qoffset;
2163}
2164
c6e0d914
CL
2165/**
2166 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2167 * @adapter: the adapter
2168 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2169 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2170 * @dev: the network device associated with the new rspq
2171 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2172 * @fl: pointer to the new rxq's Free List to be filled in
2173 * @hnd: the interrupt handler to invoke for the rspq
2174 */
2175int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2176 bool iqasynch, struct net_device *dev,
2177 int intr_dest,
2178 struct sge_fl *fl, rspq_handler_t hnd)
2179{
65f6ecc9 2180 struct sge *s = &adapter->sge;
c6e0d914
CL
2181 struct port_info *pi = netdev_priv(dev);
2182 struct fw_iq_cmd cmd, rpl;
2183 int ret, iqandst, flsz = 0;
2184
2185 /*
2186 * If we're using MSI interrupts and we're not initializing the
2187 * Forwarded Interrupt Queue itself, then set up this queue for
2188 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2189 * the Forwarded Interrupt Queue must be set up before any other
2190 * ingress queue ...
2191 */
2192 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2193 iqandst = SGE_INTRDST_IQ;
2194 intr_dest = adapter->sge.intrq.abs_id;
2195 } else
2196 iqandst = SGE_INTRDST_PCI;
2197
2198 /*
2199 * Allocate the hardware ring for the Response Queue. The size needs
2200 * to be a multiple of 16 which includes the mandatory status entry
2201 * (regardless of whether the Status Page capabilities are enabled or
2202 * not).
2203 */
2204 rspq->size = roundup(rspq->size, 16);
2205 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2206 0, &rspq->phys_addr, NULL, 0);
2207 if (!rspq->desc)
2208 return -ENOMEM;
2209
2210 /*
2211 * Fill in the Ingress Queue Command. Note: Ideally this code would
2212 * be in t4vf_hw.c but there are so many parameters and dependencies
2213 * on our Linux SGE state that we would end up having to pass tons of
2214 * parameters. We'll have to think about how this might be migrated
2215 * into OS-independent common code ...
2216 */
2217 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
2218 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2219 FW_CMD_REQUEST_F |
2220 FW_CMD_WRITE_F |
2221 FW_CMD_EXEC_F);
6e4b51a6
HS
2222 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2223 FW_IQ_CMD_IQSTART_F |
c6e0d914
CL
2224 FW_LEN16(cmd));
2225 cmd.type_to_iqandstindex =
6e4b51a6
HS
2226 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2227 FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2228 FW_IQ_CMD_VIID_V(pi->viid) |
2229 FW_IQ_CMD_IQANDST_V(iqandst) |
2230 FW_IQ_CMD_IQANUS_V(1) |
2231 FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2232 FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
c6e0d914 2233 cmd.iqdroprss_to_iqesize =
6e4b51a6
HS
2234 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2235 FW_IQ_CMD_IQGTSMODE_F |
2236 FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2237 FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
c6e0d914
CL
2238 cmd.iqsize = cpu_to_be16(rspq->size);
2239 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2240
2241 if (fl) {
2242 /*
2243 * Allocate the ring for the hardware free list (with space
2244 * for its status page) along with the associated software
2245 * descriptor ring. The free list size needs to be a multiple
2246 * of the Egress Queue Unit.
2247 */
2248 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2249 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2250 sizeof(__be64), sizeof(struct rx_sw_desc),
65f6ecc9 2251 &fl->addr, &fl->sdesc, s->stat_len);
c6e0d914
CL
2252 if (!fl->desc) {
2253 ret = -ENOMEM;
2254 goto err;
2255 }
2256
2257 /*
2258 * Calculate the size of the hardware free list ring plus
caedda35 2259 * Status Page (which the SGE will place after the end of the
c6e0d914
CL
2260 * free list ring) in Egress Queue Units.
2261 */
2262 flsz = (fl->size / FL_PER_EQ_UNIT +
65f6ecc9 2263 s->stat_len / EQ_UNIT);
c6e0d914
CL
2264
2265 /*
2266 * Fill in all the relevant firmware Ingress Queue Command
2267 * fields for the free list.
2268 */
2269 cmd.iqns_to_fl0congen =
2270 cpu_to_be32(
6e4b51a6
HS
2271 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2272 FW_IQ_CMD_FL0PACKEN_F |
2273 FW_IQ_CMD_FL0PADEN_F);
c6e0d914
CL
2274 cmd.fl0dcaen_to_fl0cidxfthresh =
2275 cpu_to_be16(
6e4b51a6
HS
2276 FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2277 FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B));
c6e0d914
CL
2278 cmd.fl0size = cpu_to_be16(flsz);
2279 cmd.fl0addr = cpu_to_be64(fl->addr);
2280 }
2281
2282 /*
2283 * Issue the firmware Ingress Queue Command and extract the results if
2284 * it completes successfully.
2285 */
2286 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2287 if (ret)
2288 goto err;
2289
2290 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2291 rspq->cur_desc = rspq->desc;
2292 rspq->cidx = 0;
2293 rspq->gen = 1;
2294 rspq->next_intr_params = rspq->intr_params;
2295 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
df64e4d3
HS
2296 rspq->bar2_addr = bar2_address(adapter,
2297 rspq->cntxt_id,
2298 T4_BAR2_QTYPE_INGRESS,
2299 &rspq->bar2_qid);
c6e0d914
CL
2300 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2301 rspq->size--; /* subtract status entry */
2302 rspq->adapter = adapter;
2303 rspq->netdev = dev;
2304 rspq->handler = hnd;
2305
2306 /* set offset to -1 to distinguish ingress queues without FL */
2307 rspq->offset = fl ? 0 : -1;
2308
2309 if (fl) {
2310 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2311 fl->avail = 0;
2312 fl->pend_cred = 0;
2313 fl->pidx = 0;
2314 fl->cidx = 0;
2315 fl->alloc_failed = 0;
2316 fl->large_alloc_failed = 0;
2317 fl->starving = 0;
df64e4d3
HS
2318
2319 /* Note, we must initialize the BAR2 Free List User Doorbell
2320 * information before refilling the Free List!
2321 */
2322 fl->bar2_addr = bar2_address(adapter,
2323 fl->cntxt_id,
2324 T4_BAR2_QTYPE_EGRESS,
2325 &fl->bar2_qid);
2326
c6e0d914
CL
2327 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2328 }
2329
2330 return 0;
2331
2332err:
2333 /*
2334 * An error occurred. Clean up our partial allocation state and
2335 * return the error.
2336 */
2337 if (rspq->desc) {
2338 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2339 rspq->desc, rspq->phys_addr);
2340 rspq->desc = NULL;
2341 }
2342 if (fl && fl->desc) {
2343 kfree(fl->sdesc);
2344 fl->sdesc = NULL;
2345 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2346 fl->desc, fl->addr);
2347 fl->desc = NULL;
2348 }
2349 return ret;
2350}
2351
2352/**
2353 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2354 * @adapter: the adapter
2355 * @txq: pointer to the new txq to be filled in
2356 * @devq: the network TX queue associated with the new txq
2357 * @iqid: the relative ingress queue ID to which events relating to
2358 * the new txq should be directed
2359 */
2360int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2361 struct net_device *dev, struct netdev_queue *devq,
2362 unsigned int iqid)
2363{
65f6ecc9 2364 struct sge *s = &adapter->sge;
c6e0d914
CL
2365 int ret, nentries;
2366 struct fw_eq_eth_cmd cmd, rpl;
2367 struct port_info *pi = netdev_priv(dev);
2368
2369 /*
caedda35
CL
2370 * Calculate the size of the hardware TX Queue (including the Status
2371 * Page on the end of the TX Queue) in units of TX Descriptors.
c6e0d914 2372 */
65f6ecc9 2373 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
c6e0d914
CL
2374
2375 /*
2376 * Allocate the hardware ring for the TX ring (with space for its
2377 * status page) along with the associated software descriptor ring.
2378 */
2379 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2380 sizeof(struct tx_desc),
2381 sizeof(struct tx_sw_desc),
65f6ecc9 2382 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
c6e0d914
CL
2383 if (!txq->q.desc)
2384 return -ENOMEM;
2385
2386 /*
2387 * Fill in the Egress Queue Command. Note: As with the direct use of
2388 * the firmware Ingress Queue COmmand above in our RXQ allocation
2389 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2390 * have to see if there's some reasonable way to parameterize it
2391 * into the common code ...
2392 */
2393 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
2394 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2395 FW_CMD_REQUEST_F |
2396 FW_CMD_WRITE_F |
2397 FW_CMD_EXEC_F);
6e4b51a6
HS
2398 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2399 FW_EQ_ETH_CMD_EQSTART_F |
c6e0d914 2400 FW_LEN16(cmd));
6e4b51a6
HS
2401 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2402 FW_EQ_ETH_CMD_VIID_V(pi->viid));
c6e0d914 2403 cmd.fetchszm_to_iqid =
6e4b51a6
HS
2404 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2405 FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2406 FW_EQ_ETH_CMD_IQID_V(iqid));
c6e0d914 2407 cmd.dcaen_to_eqsize =
6e4b51a6
HS
2408 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2409 FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2410 FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2411 SGE_CIDXFLUSHTHRESH_32) |
2412 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
c6e0d914
CL
2413 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2414
2415 /*
2416 * Issue the firmware Egress Queue Command and extract the results if
2417 * it completes successfully.
2418 */
2419 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2420 if (ret) {
2421 /*
2422 * The girmware Ingress Queue Command failed for some reason.
2423 * Free up our partial allocation state and return the error.
2424 */
2425 kfree(txq->q.sdesc);
2426 txq->q.sdesc = NULL;
2427 dma_free_coherent(adapter->pdev_dev,
2428 nentries * sizeof(struct tx_desc),
2429 txq->q.desc, txq->q.phys_addr);
2430 txq->q.desc = NULL;
2431 return ret;
2432 }
2433
2434 txq->q.in_use = 0;
2435 txq->q.cidx = 0;
2436 txq->q.pidx = 0;
2437 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
6e4b51a6 2438 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
df64e4d3
HS
2439 txq->q.bar2_addr = bar2_address(adapter,
2440 txq->q.cntxt_id,
2441 T4_BAR2_QTYPE_EGRESS,
2442 &txq->q.bar2_qid);
c6e0d914 2443 txq->q.abs_id =
6e4b51a6 2444 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
c6e0d914
CL
2445 txq->txq = devq;
2446 txq->tso = 0;
2447 txq->tx_cso = 0;
2448 txq->vlan_ins = 0;
2449 txq->q.stops = 0;
2450 txq->q.restarts = 0;
2451 txq->mapping_err = 0;
2452 return 0;
2453}
2454
2455/*
2456 * Free the DMA map resources associated with a TX queue.
2457 */
2458static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2459{
65f6ecc9
HS
2460 struct sge *s = &adapter->sge;
2461
c6e0d914 2462 dma_free_coherent(adapter->pdev_dev,
65f6ecc9 2463 tq->size * sizeof(*tq->desc) + s->stat_len,
c6e0d914
CL
2464 tq->desc, tq->phys_addr);
2465 tq->cntxt_id = 0;
2466 tq->sdesc = NULL;
2467 tq->desc = NULL;
2468}
2469
2470/*
2471 * Free the resources associated with a response queue (possibly including a
2472 * free list).
2473 */
2474static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2475 struct sge_fl *fl)
2476{
65f6ecc9 2477 struct sge *s = &adapter->sge;
c6e0d914
CL
2478 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2479
2480 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2481 rspq->cntxt_id, flid, 0xffff);
2482 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2483 rspq->desc, rspq->phys_addr);
2484 netif_napi_del(&rspq->napi);
2485 rspq->netdev = NULL;
2486 rspq->cntxt_id = 0;
2487 rspq->abs_id = 0;
2488 rspq->desc = NULL;
2489
2490 if (fl) {
2491 free_rx_bufs(adapter, fl, fl->avail);
2492 dma_free_coherent(adapter->pdev_dev,
65f6ecc9 2493 fl->size * sizeof(*fl->desc) + s->stat_len,
c6e0d914
CL
2494 fl->desc, fl->addr);
2495 kfree(fl->sdesc);
2496 fl->sdesc = NULL;
2497 fl->cntxt_id = 0;
2498 fl->desc = NULL;
2499 }
2500}
2501
2502/**
2503 * t4vf_free_sge_resources - free SGE resources
2504 * @adapter: the adapter
2505 *
2506 * Frees resources used by the SGE queue sets.
2507 */
2508void t4vf_free_sge_resources(struct adapter *adapter)
2509{
2510 struct sge *s = &adapter->sge;
2511 struct sge_eth_rxq *rxq = s->ethrxq;
2512 struct sge_eth_txq *txq = s->ethtxq;
2513 struct sge_rspq *evtq = &s->fw_evtq;
2514 struct sge_rspq *intrq = &s->intrq;
2515 int qs;
2516
b97d13a5 2517 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
c6e0d914
CL
2518 if (rxq->rspq.desc)
2519 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2520 if (txq->q.desc) {
2521 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2522 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2523 kfree(txq->q.sdesc);
2524 free_txq(adapter, &txq->q);
2525 }
2526 }
2527 if (evtq->desc)
2528 free_rspq_fl(adapter, evtq, NULL);
2529 if (intrq->desc)
2530 free_rspq_fl(adapter, intrq, NULL);
2531}
2532
2533/**
2534 * t4vf_sge_start - enable SGE operation
2535 * @adapter: the adapter
2536 *
2537 * Start tasklets and timers associated with the DMA engine.
2538 */
2539void t4vf_sge_start(struct adapter *adapter)
2540{
2541 adapter->sge.ethtxq_rover = 0;
2542 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2543 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2544}
2545
2546/**
2547 * t4vf_sge_stop - disable SGE operation
2548 * @adapter: the adapter
2549 *
2550 * Stop tasklets and timers associated with the DMA engine. Note that
2551 * this is effective only if measures have been taken to disable any HW
2552 * events that may restart them.
2553 */
2554void t4vf_sge_stop(struct adapter *adapter)
2555{
2556 struct sge *s = &adapter->sge;
2557
2558 if (s->rx_timer.function)
2559 del_timer_sync(&s->rx_timer);
2560 if (s->tx_timer.function)
2561 del_timer_sync(&s->tx_timer);
2562}
2563
2564/**
2565 * t4vf_sge_init - initialize SGE
2566 * @adapter: the adapter
2567 *
2568 * Performs SGE initialization needed every time after a chip reset.
2569 * We do not initialize any of the queue sets here, instead the driver
2570 * top-level must request those individually. We also do not enable DMA
2571 * here, that should be done after the queues have been set up.
2572 */
2573int t4vf_sge_init(struct adapter *adapter)
2574{
2575 struct sge_params *sge_params = &adapter->params.sge;
2576 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2577 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2578 struct sge *s = &adapter->sge;
ce8f407a 2579 unsigned int ingpadboundary, ingpackboundary;
c6e0d914
CL
2580
2581 /*
2582 * Start by vetting the basic SGE parameters which have been set up by
2583 * the Physical Function Driver. Ideally we should be able to deal
2584 * with _any_ configuration. Practice is different ...
2585 */
2586 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2587 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2588 fl0, fl1);
2589 return -EINVAL;
2590 }
f612b815 2591 if ((sge_params->sge_control & RXPKTCPLMODE_F) == 0) {
c6e0d914
CL
2592 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2593 return -EINVAL;
2594 }
2595
2596 /*
2597 * Now translate the adapter parameters into our internal forms.
2598 */
2599 if (fl1)
65f6ecc9 2600 s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
f612b815 2601 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
65f6ecc9 2602 ? 128 : 64);
f612b815 2603 s->pktshift = PKTSHIFT_G(sge_params->sge_control);
ce8f407a
HS
2604
2605 /* T4 uses a single control field to specify both the PCIe Padding and
2606 * Packing Boundary. T5 introduced the ability to specify these
2607 * separately. The actual Ingress Packet Data alignment boundary
2608 * within Packed Buffer Mode is the maximum of these two
2609 * specifications. (Note that it makes no real practical sense to
2610 * have the Pading Boudary be larger than the Packing Boundary but you
2611 * could set the chip up that way and, in fact, legacy T4 code would
2612 * end doing this because it would initialize the Padding Boundary and
2613 * leave the Packing Boundary initialized to 0 (16 bytes).)
2614 */
f612b815
HS
2615 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_params->sge_control) +
2616 INGPADBOUNDARY_SHIFT_X);
ce8f407a
HS
2617 if (is_t4(adapter->params.chip)) {
2618 s->fl_align = ingpadboundary;
2619 } else {
2620 /* T5 has a different interpretation of one of the PCIe Packing
2621 * Boundary values.
2622 */
2623 ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2624 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2625 ingpackboundary = 16;
2626 else
2627 ingpackboundary = 1 << (ingpackboundary +
2628 INGPACKBOUNDARY_SHIFT_X);
2629
2630 s->fl_align = max(ingpadboundary, ingpackboundary);
2631 }
c6e0d914 2632
50d21a66
HS
2633 /* A FL with <= fl_starve_thres buffers is starving and a periodic
2634 * timer will attempt to refill it. This needs to be larger than the
2635 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2636 * stuck waiting for new packets while the SGE is waiting for us to
2637 * give it more Free List entries. (Note that the SGE's Egress
2638 * Congestion Threshold is in units of 2 Free List pointers.)
2639 */
2640 s->fl_starve_thres
f612b815 2641 = EGRTHRESHOLD_G(sge_params->sge_congestion_control)*2 + 1;
c6e0d914
CL
2642
2643 /*
2644 * Set up tasklet timers.
2645 */
2646 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2647 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2648
2649 /*
2650 * Initialize Forwarded Interrupt Queue lock.
2651 */
2652 spin_lock_init(&s->intrq_lock);
2653
2654 return 0;
2655}
This page took 0.535453 seconds and 5 git commands to generate.