sundance: Add netpoll support
[deliverable/linux.git] / drivers / net / ethernet / dlink / sundance.c
CommitLineData
1da177e4
LT
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
03a8c661 19 [link no longer provides useful info -jgarzik]
e714d99c
PDM
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
1da177e4 22
1da177e4
LT
23*/
24
25#define DRV_NAME "sundance"
d5b20697
AG
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
1da177e4
LT
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
f71e1309 35static const int multicast_filter_limit = 32;
1da177e4
LT
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
1da177e4
LT
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <asm/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
0c8a745f 99#include <linux/dma-mapping.h>
1da177e4
LT
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
1da177e4
LT
103
104/* These identify the driver base version and may not be removed. */
64bc40de 105static const char version[] =
3af0fe39
SH
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
1da177e4
LT
108
109MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111MODULE_LICENSE("GPL");
112
113module_param(debug, int, 0);
114module_param(rx_copybreak, int, 0);
115module_param_array(media, charp, NULL, 0);
116module_param(flowctrl, int, 0);
117MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121/*
122 Theory of Operation
123
124I. Board Compatibility
125
126This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128II. Board-specific settings
129
130III. Driver operation
131
132IIIa. Ring buffers
133
134This driver uses two statically allocated fixed-size descriptor lists
135formed into rings by a branch from the final descriptor to the beginning of
136the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137Some chips explicitly use only 2^N sized rings, while others use a
138'next descriptor' pointer that the driver forms into rings.
139
140IIIb/c. Transmit/Receive Structure
141
142This driver uses a zero-copy receive and transmit scheme.
143The driver allocates full frame size skbuffs for the Rx ring buffers at
144open() time and passes the skb->data field to the chip as receive data
145buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146a fresh skbuff is allocated and the frame is copied to the new skbuff.
147When the incoming frame is larger, the skbuff is passed directly up the
148protocol stack. Buffers consumed this way are replaced by newly allocated
149skbuffs in a later phase of receives.
150
151The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152using a full-sized skbuff for small frames vs. the copying costs of larger
153frames. New boards are typically used in generously configured machines
154and the underfilled buffers have negligible impact compared to the benefit of
155a single allocation size, so the default value of zero results in never
156copying packets. When copying is done, the cost is usually mitigated by using
157a combined copy/checksum routine. Copying also preloads the cache, which is
158most useful with small frames.
159
160A subtle aspect of the operation is that the IP header at offset 14 in an
161ethernet frame isn't longword aligned for further processing.
162Unaligned buffers are permitted by the Sundance hardware, so
163frames are received into the skbuff at an offset of "+2", 16-byte aligning
164the IP header.
165
166IIId. Synchronization
167
168The driver runs as two independent, single-threaded flows of control. One
169is the send-packet routine, which enforces single-threaded use by the
170dev->tbusy flag. The other thread is the interrupt handler, which is single
171threaded by the hardware and interrupt handling software.
172
173The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176the 'lp->tx_full' flag.
177
178The interrupt handler has exclusive control over the Rx ring and records stats
179from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181clears both the tx_full and tbusy flags.
182
183IV. Notes
184
185IVb. References
186
187The Sundance ST201 datasheet, preliminary version.
b71b95ef
PDM
188The Kendin KS8723 datasheet, preliminary version.
189The ICplus IP100 datasheet, preliminary version.
190http://www.scyld.com/expert/100mbps.html
191http://www.scyld.com/expert/NWay.html
1da177e4
LT
192
193IVc. Errata
194
195*/
196
197/* Work-around for Kendin chip bugs. */
198#ifndef CONFIG_SUNDANCE_MMIO
199#define USE_IO_OPS 1
200#endif
201
a3aa1884 202static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
46009c8b
JG
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
1da177e4
LT
211};
212MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214enum {
215 netdev_io_size = 128
216};
217
218struct pci_id_info {
219 const char *name;
220};
64bc40de 221static const struct pci_id_info pci_id_tbl[] = {
1da177e4
LT
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
1668b19f 228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
46009c8b 229 { } /* terminate list. */
1da177e4
LT
230};
231
232/* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235/* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242*/
243enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
1da177e4
LT
260 FlashAddr = 0x40,
261 FlashData = 0x44,
f210e87b 262 WakeEvent = 0x45,
1da177e4
LT
263 TxStatus = 0x46,
264 TxFrameId = 0x47,
265 DownCounter = 0x18,
266 IntrClear = 0x4a,
267 IntrEnable = 0x4c,
268 IntrStatus = 0x4e,
269 MACCtrl0 = 0x50,
270 MACCtrl1 = 0x52,
271 StationAddr = 0x54,
272 MaxFrameSize = 0x5A,
273 RxMode = 0x5c,
274 MIICtrl = 0x5e,
275 MulticastFilter0 = 0x60,
276 MulticastFilter1 = 0x64,
277 RxOctetsLow = 0x68,
278 RxOctetsHigh = 0x6a,
279 TxOctetsLow = 0x6c,
280 TxOctetsHigh = 0x6e,
281 TxFramesOK = 0x70,
282 RxFramesOK = 0x72,
283 StatsCarrierError = 0x74,
284 StatsLateColl = 0x75,
285 StatsMultiColl = 0x76,
286 StatsOneColl = 0x77,
287 StatsTxDefer = 0x78,
288 RxMissed = 0x79,
289 StatsTxXSDefer = 0x7a,
290 StatsTxAbort = 0x7b,
291 StatsBcastTx = 0x7c,
292 StatsBcastRx = 0x7d,
293 StatsMcastTx = 0x7e,
294 StatsMcastRx = 0x7f,
295 /* Aliased and bogus values! */
296 RxStatus = 0x0c,
297};
24de5285
DK
298
299#define ASIC_HI_WORD(x) ((x) + 2)
300
1da177e4
LT
301enum ASICCtrl_HiWord_bit {
302 GlobalReset = 0x0001,
303 RxReset = 0x0002,
304 TxReset = 0x0004,
305 DMAReset = 0x0008,
306 FIFOReset = 0x0010,
307 NetworkReset = 0x0020,
308 HostReset = 0x0040,
309 ResetBusy = 0x0400,
310};
311
312/* Bits in the interrupt status/mask registers. */
313enum intr_status_bits {
314 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
315 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
316 IntrDrvRqst=0x0040,
317 StatsMax=0x0080, LinkChange=0x0100,
318 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
319};
320
321/* Bits in the RxMode register. */
322enum rx_mode_bits {
323 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
324 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
325};
326/* Bits in MACCtrl. */
327enum mac_ctrl0_bits {
328 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
329 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
330};
331enum mac_ctrl1_bits {
332 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
333 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
334 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
335};
336
f210e87b
DK
337/* Bits in WakeEvent register. */
338enum wake_event_bits {
339 WakePktEnable = 0x01,
340 MagicPktEnable = 0x02,
341 LinkEventEnable = 0x04,
342 WolEnable = 0x80,
343};
344
1da177e4
LT
345/* The Rx and Tx buffer descriptors. */
346/* Note that using only 32 bit fields simplifies conversion to big-endian
347 architectures. */
348struct netdev_desc {
14c9d9b0
AV
349 __le32 next_desc;
350 __le32 status;
351 struct desc_frag { __le32 addr, length; } frag[1];
1da177e4
LT
352};
353
354/* Bits in netdev_desc.status */
355enum desc_status_bits {
356 DescOwn=0x8000,
357 DescEndPacket=0x4000,
358 DescEndRing=0x2000,
359 LastFrag=0x80000000,
360 DescIntrOnTx=0x8000,
361 DescIntrOnDMADone=0x80000000,
362 DisableAlign = 0x00000001,
363};
364
365#define PRIV_ALIGN 15 /* Required alignment mask */
366/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
367 within the structure. */
368#define MII_CNT 4
369struct netdev_private {
370 /* Descriptor rings first for alignment. */
371 struct netdev_desc *rx_ring;
372 struct netdev_desc *tx_ring;
373 struct sk_buff* rx_skbuff[RX_RING_SIZE];
374 struct sk_buff* tx_skbuff[TX_RING_SIZE];
375 dma_addr_t tx_ring_dma;
376 dma_addr_t rx_ring_dma;
1da177e4 377 struct timer_list timer; /* Media monitoring timer. */
725a4a46
DK
378 /* ethtool extra stats */
379 struct {
380 u64 tx_multiple_collisions;
381 u64 tx_single_collisions;
382 u64 tx_late_collisions;
383 u64 tx_deferred;
384 u64 tx_deferred_excessive;
385 u64 tx_aborted;
386 u64 tx_bcasts;
387 u64 rx_bcasts;
388 u64 tx_mcasts;
389 u64 rx_mcasts;
390 } xstats;
1da177e4
LT
391 /* Frequently used values: keep some adjacent for cache effect. */
392 spinlock_t lock;
1da177e4
LT
393 int msg_enable;
394 int chip_id;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int rx_buf_sz; /* Based on MTU+slack. */
397 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
398 unsigned int cur_tx, dirty_tx;
399 /* These values are keep track of the transceiver/media in use. */
400 unsigned int flowctrl:1;
401 unsigned int default_port:4; /* Last dev->if_port value. */
402 unsigned int an_enable:1;
403 unsigned int speed;
f210e87b 404 unsigned int wol_enabled:1; /* Wake on LAN enabled */
1da177e4
LT
405 struct tasklet_struct rx_tasklet;
406 struct tasklet_struct tx_tasklet;
407 int budget;
408 int cur_task;
409 /* Multicast and receive mode. */
410 spinlock_t mcastlock; /* SMP lock multicast updates. */
411 u16 mcast_filter[4];
412 /* MII transceiver section. */
413 struct mii_if_info mii_if;
414 int mii_preamble_required;
415 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
416 struct pci_dev *pci_dev;
417 void __iomem *base;
7b738b55 418 spinlock_t statlock;
1da177e4
LT
419};
420
421/* The station address location in the EEPROM. */
422#define EEPROM_SA_OFFSET 0x10
423#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
424 IntrDrvRqst | IntrTxDone | StatsMax | \
425 LinkChange)
426
427static int change_mtu(struct net_device *dev, int new_mtu);
428static int eeprom_read(void __iomem *ioaddr, int location);
429static int mdio_read(struct net_device *dev, int phy_id, int location);
430static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
50500155 431static int mdio_wait_link(struct net_device *dev, int wait);
1da177e4
LT
432static int netdev_open(struct net_device *dev);
433static void check_duplex(struct net_device *dev);
434static void netdev_timer(unsigned long data);
435static void tx_timeout(struct net_device *dev);
436static void init_ring(struct net_device *dev);
61357325 437static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
1da177e4 438static int reset_tx (struct net_device *dev);
7d12e780 439static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
440static void rx_poll(unsigned long data);
441static void tx_poll(unsigned long data);
442static void refill_rx (struct net_device *dev);
443static void netdev_error(struct net_device *dev, int intr_status);
444static void netdev_error(struct net_device *dev, int intr_status);
445static void set_rx_mode(struct net_device *dev);
446static int __set_mac_addr(struct net_device *dev);
4b4f5467 447static int sundance_set_mac_addr(struct net_device *dev, void *data);
1da177e4
LT
448static struct net_device_stats *get_stats(struct net_device *dev);
449static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
450static int netdev_close(struct net_device *dev);
7282d491 451static const struct ethtool_ops ethtool_ops;
1da177e4 452
b71b95ef
PDM
453static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
454{
455 struct netdev_private *np = netdev_priv(dev);
456 void __iomem *ioaddr = np->base + ASICCtrl;
457 int countdown;
458
459 /* ST201 documentation states ASICCtrl is a 32bit register */
460 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
461 /* ST201 documentation states reset can take up to 1 ms */
462 countdown = 10 + 1;
463 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
464 if (--countdown == 0) {
465 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
466 break;
467 }
468 udelay(100);
469 }
470}
471
cb74e273
DK
472#ifdef CONFIG_NET_POLL_CONTROLLER
473static void sundance_poll_controller(struct net_device *dev)
474{
475 struct netdev_private *np = netdev_priv(dev);
476
477 disable_irq(np->pci_dev->irq);
478 intr_handler(np->pci_dev->irq, dev);
479 enable_irq(np->pci_dev->irq);
480}
481#endif
482
633a277e
SH
483static const struct net_device_ops netdev_ops = {
484 .ndo_open = netdev_open,
485 .ndo_stop = netdev_close,
486 .ndo_start_xmit = start_tx,
487 .ndo_get_stats = get_stats,
afc4b13d 488 .ndo_set_rx_mode = set_rx_mode,
633a277e
SH
489 .ndo_do_ioctl = netdev_ioctl,
490 .ndo_tx_timeout = tx_timeout,
491 .ndo_change_mtu = change_mtu,
4b4f5467 492 .ndo_set_mac_address = sundance_set_mac_addr,
633a277e 493 .ndo_validate_addr = eth_validate_addr,
cb74e273
DK
494#ifdef CONFIG_NET_POLL_CONTROLLER
495 .ndo_poll_controller = sundance_poll_controller,
496#endif
633a277e
SH
497};
498
64bc40de
BP
499static int sundance_probe1(struct pci_dev *pdev,
500 const struct pci_device_id *ent)
1da177e4
LT
501{
502 struct net_device *dev;
503 struct netdev_private *np;
504 static int card_idx;
505 int chip_idx = ent->driver_data;
506 int irq;
507 int i;
508 void __iomem *ioaddr;
509 u16 mii_ctl;
510 void *ring_space;
511 dma_addr_t ring_dma;
512#ifdef USE_IO_OPS
513 int bar = 0;
514#else
515 int bar = 1;
516#endif
ac1d49f8 517 int phy, phy_end, phy_idx = 0;
1da177e4
LT
518
519/* when built into the kernel, we only print version if device is found */
520#ifndef MODULE
521 static int printed_version;
522 if (!printed_version++)
523 printk(version);
524#endif
525
526 if (pci_enable_device(pdev))
527 return -EIO;
528 pci_set_master(pdev);
529
530 irq = pdev->irq;
531
532 dev = alloc_etherdev(sizeof(*np));
533 if (!dev)
534 return -ENOMEM;
1da177e4
LT
535 SET_NETDEV_DEV(dev, &pdev->dev);
536
537 if (pci_request_regions(pdev, DRV_NAME))
538 goto err_out_netdev;
539
540 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
541 if (!ioaddr)
542 goto err_out_res;
543
544 for (i = 0; i < 3; i++)
14c9d9b0
AV
545 ((__le16 *)dev->dev_addr)[i] =
546 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
1da177e4 547
1da177e4
LT
548 np = netdev_priv(dev);
549 np->base = ioaddr;
550 np->pci_dev = pdev;
551 np->chip_id = chip_idx;
552 np->msg_enable = (1 << debug) - 1;
553 spin_lock_init(&np->lock);
7b738b55 554 spin_lock_init(&np->statlock);
1da177e4
LT
555 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
556 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
557
0c8a745f
DK
558 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
559 &ring_dma, GFP_KERNEL);
1da177e4
LT
560 if (!ring_space)
561 goto err_out_cleardev;
562 np->tx_ring = (struct netdev_desc *)ring_space;
563 np->tx_ring_dma = ring_dma;
564
0c8a745f
DK
565 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
566 &ring_dma, GFP_KERNEL);
1da177e4
LT
567 if (!ring_space)
568 goto err_out_unmap_tx;
569 np->rx_ring = (struct netdev_desc *)ring_space;
570 np->rx_ring_dma = ring_dma;
571
572 np->mii_if.dev = dev;
573 np->mii_if.mdio_read = mdio_read;
574 np->mii_if.mdio_write = mdio_write;
575 np->mii_if.phy_id_mask = 0x1f;
576 np->mii_if.reg_num_mask = 0x1f;
577
578 /* The chip-specific entries in the device structure. */
633a277e 579 dev->netdev_ops = &netdev_ops;
1da177e4 580 SET_ETHTOOL_OPS(dev, &ethtool_ops);
1da177e4 581 dev->watchdog_timeo = TX_TIMEOUT;
633a277e 582
1da177e4
LT
583 pci_set_drvdata(pdev, dev);
584
1da177e4
LT
585 i = register_netdev(dev);
586 if (i)
587 goto err_out_unmap_rx;
588
e174961c 589 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 590 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
e174961c 591 dev->dev_addr, irq);
1da177e4 592
67ec2f80
JL
593 np->phys[0] = 1; /* Default setting */
594 np->mii_preamble_required++;
ac1d49f8 595
0d615ec2
ACM
596 /*
597 * It seems some phys doesn't deal well with address 0 being accessed
ac1d49f8 598 * first
0d615ec2 599 */
ac1d49f8
JG
600 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
601 phy = 0;
602 phy_end = 31;
603 } else {
604 phy = 1;
605 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
606 }
607 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
b06c093e 608 int phyx = phy & 0x1f;
0d615ec2 609 int mii_status = mdio_read(dev, phyx, MII_BMSR);
67ec2f80 610 if (mii_status != 0xffff && mii_status != 0x0000) {
b06c093e
JL
611 np->phys[phy_idx++] = phyx;
612 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
67ec2f80
JL
613 if ((mii_status & 0x0040) == 0)
614 np->mii_preamble_required++;
615 printk(KERN_INFO "%s: MII PHY found at address %d, status "
616 "0x%4.4x advertising %4.4x.\n",
b06c093e 617 dev->name, phyx, mii_status, np->mii_if.advertising);
1da177e4 618 }
67ec2f80
JL
619 }
620 np->mii_preamble_required--;
1da177e4 621
67ec2f80
JL
622 if (phy_idx == 0) {
623 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
624 dev->name, ioread32(ioaddr + ASICCtrl));
625 goto err_out_unregister;
1da177e4
LT
626 }
627
67ec2f80
JL
628 np->mii_if.phy_id = np->phys[0];
629
1da177e4
LT
630 /* Parse override configuration */
631 np->an_enable = 1;
632 if (card_idx < MAX_UNITS) {
633 if (media[card_idx] != NULL) {
634 np->an_enable = 0;
635 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
636 strcmp (media[card_idx], "4") == 0) {
637 np->speed = 100;
638 np->mii_if.full_duplex = 1;
8e95a202
JP
639 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
640 strcmp (media[card_idx], "3") == 0) {
1da177e4
LT
641 np->speed = 100;
642 np->mii_if.full_duplex = 0;
643 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
644 strcmp (media[card_idx], "2") == 0) {
645 np->speed = 10;
646 np->mii_if.full_duplex = 1;
647 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
648 strcmp (media[card_idx], "1") == 0) {
649 np->speed = 10;
650 np->mii_if.full_duplex = 0;
651 } else {
652 np->an_enable = 1;
653 }
654 }
655 if (flowctrl == 1)
656 np->flowctrl = 1;
657 }
658
659 /* Fibre PHY? */
660 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
661 /* Default 100Mbps Full */
662 if (np->an_enable) {
663 np->speed = 100;
664 np->mii_if.full_duplex = 1;
665 np->an_enable = 0;
666 }
667 }
668 /* Reset PHY */
669 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
670 mdelay (300);
671 /* If flow control enabled, we need to advertise it.*/
672 if (np->flowctrl)
673 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
674 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
675 /* Force media type */
676 if (!np->an_enable) {
677 mii_ctl = 0;
678 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
679 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
680 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
681 printk (KERN_INFO "Override speed=%d, %s duplex\n",
682 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
683
684 }
685
686 /* Perhaps move the reset here? */
687 /* Reset the chip to erase previous misconfiguration. */
688 if (netif_msg_hw(np))
689 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
e714d99c 690 sundance_reset(dev, 0x00ff << 16);
1da177e4
LT
691 if (netif_msg_hw(np))
692 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
693
694 card_idx++;
695 return 0;
696
697err_out_unregister:
698 unregister_netdev(dev);
699err_out_unmap_rx:
0c8a745f
DK
700 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
701 np->rx_ring, np->rx_ring_dma);
1da177e4 702err_out_unmap_tx:
0c8a745f
DK
703 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
704 np->tx_ring, np->tx_ring_dma);
1da177e4
LT
705err_out_cleardev:
706 pci_set_drvdata(pdev, NULL);
707 pci_iounmap(pdev, ioaddr);
708err_out_res:
709 pci_release_regions(pdev);
710err_out_netdev:
711 free_netdev (dev);
712 return -ENODEV;
713}
714
715static int change_mtu(struct net_device *dev, int new_mtu)
716{
717 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
718 return -EINVAL;
719 if (netif_running(dev))
720 return -EBUSY;
721 dev->mtu = new_mtu;
722 return 0;
723}
724
725#define eeprom_delay(ee_addr) ioread32(ee_addr)
726/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
64bc40de 727static int eeprom_read(void __iomem *ioaddr, int location)
1da177e4
LT
728{
729 int boguscnt = 10000; /* Typical 1900 ticks. */
730 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
731 do {
732 eeprom_delay(ioaddr + EECtrl);
733 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
734 return ioread16(ioaddr + EEData);
735 }
736 } while (--boguscnt > 0);
737 return 0;
738}
739
740/* MII transceiver control section.
741 Read and write the MII registers using software-generated serial
742 MDIO protocol. See the MII specifications or DP83840A data sheet
743 for details.
744
745 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
746 met by back-to-back 33Mhz PCI cycles. */
747#define mdio_delay() ioread8(mdio_addr)
748
749enum mii_reg_bits {
750 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
751};
752#define MDIO_EnbIn (0)
753#define MDIO_WRITE0 (MDIO_EnbOutput)
754#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
755
756/* Generate the preamble required for initial synchronization and
757 a few older transceivers. */
758static void mdio_sync(void __iomem *mdio_addr)
759{
760 int bits = 32;
761
762 /* Establish sync by sending at least 32 logic ones. */
763 while (--bits >= 0) {
764 iowrite8(MDIO_WRITE1, mdio_addr);
765 mdio_delay();
766 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
767 mdio_delay();
768 }
769}
770
771static int mdio_read(struct net_device *dev, int phy_id, int location)
772{
773 struct netdev_private *np = netdev_priv(dev);
774 void __iomem *mdio_addr = np->base + MIICtrl;
775 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
776 int i, retval = 0;
777
778 if (np->mii_preamble_required)
779 mdio_sync(mdio_addr);
780
781 /* Shift the read command bits out. */
782 for (i = 15; i >= 0; i--) {
783 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
784
785 iowrite8(dataval, mdio_addr);
786 mdio_delay();
787 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
788 mdio_delay();
789 }
790 /* Read the two transition, 16 data, and wire-idle bits. */
791 for (i = 19; i > 0; i--) {
792 iowrite8(MDIO_EnbIn, mdio_addr);
793 mdio_delay();
794 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
795 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
796 mdio_delay();
797 }
798 return (retval>>1) & 0xffff;
799}
800
801static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
802{
803 struct netdev_private *np = netdev_priv(dev);
804 void __iomem *mdio_addr = np->base + MIICtrl;
805 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
806 int i;
807
808 if (np->mii_preamble_required)
809 mdio_sync(mdio_addr);
810
811 /* Shift the command bits out. */
812 for (i = 31; i >= 0; i--) {
813 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
814
815 iowrite8(dataval, mdio_addr);
816 mdio_delay();
817 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
818 mdio_delay();
819 }
820 /* Clear out extra bits. */
821 for (i = 2; i > 0; i--) {
822 iowrite8(MDIO_EnbIn, mdio_addr);
823 mdio_delay();
824 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
825 mdio_delay();
826 }
1da177e4
LT
827}
828
50500155
DN
829static int mdio_wait_link(struct net_device *dev, int wait)
830{
831 int bmsr;
832 int phy_id;
833 struct netdev_private *np;
834
835 np = netdev_priv(dev);
836 phy_id = np->phys[0];
837
838 do {
839 bmsr = mdio_read(dev, phy_id, MII_BMSR);
840 if (bmsr & 0x0004)
841 return 0;
842 mdelay(1);
843 } while (--wait > 0);
844 return -1;
845}
846
1da177e4
LT
847static int netdev_open(struct net_device *dev)
848{
849 struct netdev_private *np = netdev_priv(dev);
850 void __iomem *ioaddr = np->base;
c514f285 851 const int irq = np->pci_dev->irq;
acd70c2b 852 unsigned long flags;
1da177e4
LT
853 int i;
854
f210e87b 855 sundance_reset(dev, 0x00ff << 16);
1da177e4 856
c514f285 857 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
858 if (i)
859 return i;
860
861 if (netif_msg_ifup(np))
c514f285
FR
862 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
863
1da177e4
LT
864 init_ring(dev);
865
866 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
867 /* The Tx list pointer is written as packets are queued. */
868
869 /* Initialize other registers. */
870 __set_mac_addr(dev);
871#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
872 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
873#else
874 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
875#endif
876 if (dev->mtu > 2047)
877 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
878
879 /* Configure the PCI bus bursts and FIFO thresholds. */
880
881 if (dev->if_port == 0)
882 dev->if_port = np->default_port;
883
884 spin_lock_init(&np->mcastlock);
885
886 set_rx_mode(dev);
887 iowrite16(0, ioaddr + IntrEnable);
888 iowrite16(0, ioaddr + DownCounter);
889 /* Set the chip to poll every N*320nsec. */
890 iowrite8(100, ioaddr + RxDMAPollPeriod);
891 iowrite8(127, ioaddr + TxDMAPollPeriod);
892 /* Fix DFE-580TX packet drop issue */
44c10138 893 if (np->pci_dev->revision >= 0x14)
1da177e4
LT
894 iowrite8(0x01, ioaddr + DebugCtrl1);
895 netif_start_queue(dev);
896
acd70c2b
JH
897 spin_lock_irqsave(&np->lock, flags);
898 reset_tx(dev);
899 spin_unlock_irqrestore(&np->lock, flags);
900
1da177e4
LT
901 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
902
f210e87b
DK
903 /* Disable Wol */
904 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
905 np->wol_enabled = 0;
906
1da177e4
LT
907 if (netif_msg_ifup(np))
908 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
909 "MAC Control %x, %4.4x %4.4x.\n",
910 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
911 ioread32(ioaddr + MACCtrl0),
912 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
913
914 /* Set the timer to check for link beat. */
915 init_timer(&np->timer);
916 np->timer.expires = jiffies + 3*HZ;
917 np->timer.data = (unsigned long)dev;
c061b18d 918 np->timer.function = netdev_timer; /* timer handler */
1da177e4
LT
919 add_timer(&np->timer);
920
921 /* Enable interrupts by setting the interrupt mask. */
922 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
923
924 return 0;
925}
926
927static void check_duplex(struct net_device *dev)
928{
929 struct netdev_private *np = netdev_priv(dev);
930 void __iomem *ioaddr = np->base;
931 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
932 int negotiated = mii_lpa & np->mii_if.advertising;
933 int duplex;
934
935 /* Force media */
936 if (!np->an_enable || mii_lpa == 0xffff) {
937 if (np->mii_if.full_duplex)
938 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
939 ioaddr + MACCtrl0);
940 return;
941 }
942
943 /* Autonegotiation */
944 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
945 if (np->mii_if.full_duplex != duplex) {
946 np->mii_if.full_duplex = duplex;
947 if (netif_msg_link(np))
948 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
949 "negotiated capability %4.4x.\n", dev->name,
950 duplex ? "full" : "half", np->phys[0], negotiated);
62660e28 951 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
1da177e4
LT
952 }
953}
954
955static void netdev_timer(unsigned long data)
956{
957 struct net_device *dev = (struct net_device *)data;
958 struct netdev_private *np = netdev_priv(dev);
959 void __iomem *ioaddr = np->base;
960 int next_tick = 10*HZ;
961
962 if (netif_msg_timer(np)) {
963 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
964 "Tx %x Rx %x.\n",
965 dev->name, ioread16(ioaddr + IntrEnable),
966 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
967 }
968 check_duplex(dev);
969 np->timer.expires = jiffies + next_tick;
970 add_timer(&np->timer);
971}
972
973static void tx_timeout(struct net_device *dev)
974{
975 struct netdev_private *np = netdev_priv(dev);
976 void __iomem *ioaddr = np->base;
977 unsigned long flag;
6aa20a22 978
1da177e4
LT
979 netif_stop_queue(dev);
980 tasklet_disable(&np->tx_tasklet);
981 iowrite16(0, ioaddr + IntrEnable);
982 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
983 "TxFrameId %2.2x,"
984 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
985 ioread8(ioaddr + TxFrameId));
986
987 {
988 int i;
989 for (i=0; i<TX_RING_SIZE; i++) {
990 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
991 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
992 le32_to_cpu(np->tx_ring[i].next_desc),
993 le32_to_cpu(np->tx_ring[i].status),
994 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
6aa20a22 995 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
996 le32_to_cpu(np->tx_ring[i].frag[0].length));
997 }
6aa20a22
JG
998 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
999 ioread32(np->base + TxListPtr),
1da177e4 1000 netif_queue_stopped(dev));
6aa20a22 1001 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
1002 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1003 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1004 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1005 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1006 }
1007 spin_lock_irqsave(&np->lock, flag);
1008
1009 /* Stop and restart the chip's Tx processes . */
1010 reset_tx(dev);
1011 spin_unlock_irqrestore(&np->lock, flag);
1012
1013 dev->if_port = 0;
1014
1ae5dc34 1015 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1016 dev->stats.tx_errors++;
1da177e4
LT
1017 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1018 netif_wake_queue(dev);
1019 }
1020 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1021 tasklet_enable(&np->tx_tasklet);
1022}
1023
1024
1025/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1026static void init_ring(struct net_device *dev)
1027{
1028 struct netdev_private *np = netdev_priv(dev);
1029 int i;
1030
1031 np->cur_rx = np->cur_tx = 0;
1032 np->dirty_rx = np->dirty_tx = 0;
1033 np->cur_task = 0;
1034
1035 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1036
1037 /* Initialize all Rx descriptors. */
1038 for (i = 0; i < RX_RING_SIZE; i++) {
1039 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1040 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1041 np->rx_ring[i].status = 0;
1042 np->rx_ring[i].frag[0].length = 0;
1043 np->rx_skbuff[i] = NULL;
1044 }
1045
1046 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1047 for (i = 0; i < RX_RING_SIZE; i++) {
21a4e469
PD
1048 struct sk_buff *skb =
1049 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1da177e4
LT
1050 np->rx_skbuff[i] = skb;
1051 if (skb == NULL)
1052 break;
1da177e4
LT
1053 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1054 np->rx_ring[i].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1055 dma_map_single(&np->pci_dev->dev, skb->data,
1056 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1057 if (dma_mapping_error(&np->pci_dev->dev,
1058 np->rx_ring[i].frag[0].addr)) {
1059 dev_kfree_skb(skb);
1060 np->rx_skbuff[i] = NULL;
1061 break;
1062 }
1da177e4
LT
1063 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1064 }
1065 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1066
1067 for (i = 0; i < TX_RING_SIZE; i++) {
1068 np->tx_skbuff[i] = NULL;
1069 np->tx_ring[i].status = 0;
1070 }
1da177e4
LT
1071}
1072
1073static void tx_poll (unsigned long data)
1074{
1075 struct net_device *dev = (struct net_device *)data;
1076 struct netdev_private *np = netdev_priv(dev);
1077 unsigned head = np->cur_task % TX_RING_SIZE;
6aa20a22 1078 struct netdev_desc *txdesc =
1da177e4 1079 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
6aa20a22 1080
1da177e4
LT
1081 /* Chain the next pointer */
1082 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1083 int entry = np->cur_task % TX_RING_SIZE;
1084 txdesc = &np->tx_ring[entry];
1085 if (np->last_tx) {
1086 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1087 entry*sizeof(struct netdev_desc));
1088 }
1089 np->last_tx = txdesc;
1090 }
1091 /* Indicate the latest descriptor of tx ring */
1092 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1093
1094 if (ioread32 (np->base + TxListPtr) == 0)
1095 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1096 np->base + TxListPtr);
1da177e4
LT
1097}
1098
61357325 1099static netdev_tx_t
1da177e4
LT
1100start_tx (struct sk_buff *skb, struct net_device *dev)
1101{
1102 struct netdev_private *np = netdev_priv(dev);
1103 struct netdev_desc *txdesc;
1104 unsigned entry;
1105
1106 /* Calculate the next Tx descriptor entry. */
1107 entry = np->cur_tx % TX_RING_SIZE;
1108 np->tx_skbuff[entry] = skb;
1109 txdesc = &np->tx_ring[entry];
1110
1111 txdesc->next_desc = 0;
1112 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
0c8a745f
DK
1113 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1114 skb->data, skb->len, DMA_TO_DEVICE));
d91dc279
DK
1115 if (dma_mapping_error(&np->pci_dev->dev,
1116 txdesc->frag[0].addr))
1117 goto drop_frame;
1da177e4
LT
1118 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1119
1120 /* Increment cur_tx before tasklet_schedule() */
1121 np->cur_tx++;
1122 mb();
1123 /* Schedule a tx_poll() task */
1124 tasklet_schedule(&np->tx_tasklet);
1125
1126 /* On some architectures: explicitly flush cache lines here. */
8e95a202
JP
1127 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1128 !netif_queue_stopped(dev)) {
1da177e4
LT
1129 /* do nothing */
1130 } else {
1131 netif_stop_queue (dev);
1132 }
1da177e4
LT
1133 if (netif_msg_tx_queued(np)) {
1134 printk (KERN_DEBUG
1135 "%s: Transmit frame #%d queued in slot %d.\n",
1136 dev->name, np->cur_tx, entry);
1137 }
6ed10654 1138 return NETDEV_TX_OK;
d91dc279
DK
1139
1140drop_frame:
1141 dev_kfree_skb(skb);
1142 np->tx_skbuff[entry] = NULL;
1143 dev->stats.tx_dropped++;
1144 return NETDEV_TX_OK;
1da177e4
LT
1145}
1146
1147/* Reset hardware tx and free all of tx buffers */
1148static int
1149reset_tx (struct net_device *dev)
1150{
1151 struct netdev_private *np = netdev_priv(dev);
1152 void __iomem *ioaddr = np->base;
1153 struct sk_buff *skb;
1154 int i;
6aa20a22 1155
1da177e4
LT
1156 /* Reset tx logic, TxListPtr will be cleaned */
1157 iowrite16 (TxDisable, ioaddr + MACCtrl1);
e714d99c
PDM
1158 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1159
1da177e4
LT
1160 /* free all tx skbuff */
1161 for (i = 0; i < TX_RING_SIZE; i++) {
2109f89f
JH
1162 np->tx_ring[i].next_desc = 0;
1163
1da177e4
LT
1164 skb = np->tx_skbuff[i];
1165 if (skb) {
0c8a745f 1166 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1167 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1168 skb->len, DMA_TO_DEVICE);
a9478e38 1169 dev_kfree_skb_any(skb);
1da177e4 1170 np->tx_skbuff[i] = NULL;
553e2335 1171 dev->stats.tx_dropped++;
1da177e4
LT
1172 }
1173 }
1174 np->cur_tx = np->dirty_tx = 0;
1175 np->cur_task = 0;
2109f89f 1176
bca79eb7 1177 np->last_tx = NULL;
2109f89f
JH
1178 iowrite8(127, ioaddr + TxDMAPollPeriod);
1179
1da177e4
LT
1180 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1181 return 0;
1182}
1183
6aa20a22 1184/* The interrupt handler cleans up after the Tx thread,
1da177e4 1185 and schedule a Rx thread work */
7d12e780 1186static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1187{
1188 struct net_device *dev = (struct net_device *)dev_instance;
1189 struct netdev_private *np = netdev_priv(dev);
1190 void __iomem *ioaddr = np->base;
1191 int hw_frame_id;
1192 int tx_cnt;
1193 int tx_status;
1194 int handled = 0;
e242040d 1195 int i;
1da177e4
LT
1196
1197
1198 do {
1199 int intr_status = ioread16(ioaddr + IntrStatus);
1200 iowrite16(intr_status, ioaddr + IntrStatus);
1201
1202 if (netif_msg_intr(np))
1203 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1204 dev->name, intr_status);
1205
1206 if (!(intr_status & DEFAULT_INTR))
1207 break;
1208
1209 handled = 1;
1210
1211 if (intr_status & (IntrRxDMADone)) {
1212 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1213 ioaddr + IntrEnable);
1214 if (np->budget < 0)
1215 np->budget = RX_BUDGET;
1216 tasklet_schedule(&np->rx_tasklet);
1217 }
1218 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1219 tx_status = ioread16 (ioaddr + TxStatus);
1220 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1221 if (netif_msg_tx_done(np))
1222 printk
1223 ("%s: Transmit status is %2.2x.\n",
1224 dev->name, tx_status);
1225 if (tx_status & 0x1e) {
b71b95ef
PDM
1226 if (netif_msg_tx_err(np))
1227 printk("%s: Transmit error status %4.4x.\n",
1228 dev->name, tx_status);
553e2335 1229 dev->stats.tx_errors++;
1da177e4 1230 if (tx_status & 0x10)
553e2335 1231 dev->stats.tx_fifo_errors++;
1da177e4 1232 if (tx_status & 0x08)
553e2335 1233 dev->stats.collisions++;
b71b95ef 1234 if (tx_status & 0x04)
553e2335 1235 dev->stats.tx_fifo_errors++;
1da177e4 1236 if (tx_status & 0x02)
553e2335 1237 dev->stats.tx_window_errors++;
e242040d 1238
b71b95ef
PDM
1239 /*
1240 ** This reset has been verified on
1241 ** DFE-580TX boards ! phdm@macqel.be.
1242 */
1243 if (tx_status & 0x10) { /* TxUnderrun */
b71b95ef
PDM
1244 /* Restart Tx FIFO and transmitter */
1245 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
b71b95ef 1246 /* No need to reset the Tx pointer here */
1da177e4 1247 }
2109f89f
JH
1248 /* Restart the Tx. Need to make sure tx enabled */
1249 i = 10;
1250 do {
1251 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1252 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1253 break;
1254 mdelay(1);
1255 } while (--i);
1da177e4
LT
1256 }
1257 /* Yup, this is a documentation bug. It cost me *hours*. */
1258 iowrite16 (0, ioaddr + TxStatus);
1259 if (tx_cnt < 0) {
1260 iowrite32(5000, ioaddr + DownCounter);
1261 break;
1262 }
1263 tx_status = ioread16 (ioaddr + TxStatus);
1264 }
1265 hw_frame_id = (tx_status >> 8) & 0xff;
1266 } else {
1267 hw_frame_id = ioread8(ioaddr + TxFrameId);
1268 }
6aa20a22 1269
44c10138 1270 if (np->pci_dev->revision >= 0x14) {
1da177e4
LT
1271 spin_lock(&np->lock);
1272 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1273 int entry = np->dirty_tx % TX_RING_SIZE;
1274 struct sk_buff *skb;
1275 int sw_frame_id;
1276 sw_frame_id = (le32_to_cpu(
1277 np->tx_ring[entry].status) >> 2) & 0xff;
1278 if (sw_frame_id == hw_frame_id &&
1279 !(le32_to_cpu(np->tx_ring[entry].status)
1280 & 0x00010000))
1281 break;
6aa20a22 1282 if (sw_frame_id == (hw_frame_id + 1) %
1da177e4
LT
1283 TX_RING_SIZE)
1284 break;
1285 skb = np->tx_skbuff[entry];
1286 /* Free the original skb. */
0c8a745f 1287 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1288 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1289 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1290 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1291 np->tx_skbuff[entry] = NULL;
1292 np->tx_ring[entry].frag[0].addr = 0;
1293 np->tx_ring[entry].frag[0].length = 0;
1294 }
1295 spin_unlock(&np->lock);
1296 } else {
1297 spin_lock(&np->lock);
1298 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1299 int entry = np->dirty_tx % TX_RING_SIZE;
1300 struct sk_buff *skb;
6aa20a22 1301 if (!(le32_to_cpu(np->tx_ring[entry].status)
1da177e4
LT
1302 & 0x00010000))
1303 break;
1304 skb = np->tx_skbuff[entry];
1305 /* Free the original skb. */
0c8a745f 1306 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1307 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1308 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1309 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1310 np->tx_skbuff[entry] = NULL;
1311 np->tx_ring[entry].frag[0].addr = 0;
1312 np->tx_ring[entry].frag[0].length = 0;
1313 }
1314 spin_unlock(&np->lock);
1315 }
6aa20a22 1316
1da177e4
LT
1317 if (netif_queue_stopped(dev) &&
1318 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1319 /* The ring is no longer full, clear busy flag. */
1320 netif_wake_queue (dev);
1321 }
1322 /* Abnormal error summary/uncommon events handlers. */
1323 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1324 netdev_error(dev, intr_status);
1325 } while (0);
1326 if (netif_msg_intr(np))
1327 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1328 dev->name, ioread16(ioaddr + IntrStatus));
1329 return IRQ_RETVAL(handled);
1330}
1331
1332static void rx_poll(unsigned long data)
1333{
1334 struct net_device *dev = (struct net_device *)data;
1335 struct netdev_private *np = netdev_priv(dev);
1336 int entry = np->cur_rx % RX_RING_SIZE;
1337 int boguscnt = np->budget;
1338 void __iomem *ioaddr = np->base;
1339 int received = 0;
1340
1341 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1342 while (1) {
1343 struct netdev_desc *desc = &(np->rx_ring[entry]);
1344 u32 frame_status = le32_to_cpu(desc->status);
1345 int pkt_len;
1346
1347 if (--boguscnt < 0) {
1348 goto not_done;
1349 }
1350 if (!(frame_status & DescOwn))
1351 break;
1352 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1353 if (netif_msg_rx_status(np))
1354 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1355 frame_status);
1356 if (frame_status & 0x001f4000) {
1357 /* There was a error. */
1358 if (netif_msg_rx_err(np))
1359 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1360 frame_status);
553e2335
ED
1361 dev->stats.rx_errors++;
1362 if (frame_status & 0x00100000)
1363 dev->stats.rx_length_errors++;
1364 if (frame_status & 0x00010000)
1365 dev->stats.rx_fifo_errors++;
1366 if (frame_status & 0x00060000)
1367 dev->stats.rx_frame_errors++;
1368 if (frame_status & 0x00080000)
1369 dev->stats.rx_crc_errors++;
1da177e4
LT
1370 if (frame_status & 0x00100000) {
1371 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1372 " status %8.8x.\n",
1373 dev->name, frame_status);
1374 }
1375 } else {
1376 struct sk_buff *skb;
1377#ifndef final_version
1378 if (netif_msg_rx_status(np))
1379 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1380 ", bogus_cnt %d.\n",
1381 pkt_len, boguscnt);
1382#endif
1383 /* Check if the packet is long enough to accept without copying
1384 to a minimally-sized skbuff. */
8e95a202 1385 if (pkt_len < rx_copybreak &&
21a4e469 1386 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1da177e4 1387 skb_reserve(skb, 2); /* 16 byte align the IP header */
0c8a745f
DK
1388 dma_sync_single_for_cpu(&np->pci_dev->dev,
1389 le32_to_cpu(desc->frag[0].addr),
1390 np->rx_buf_sz, DMA_FROM_DEVICE);
8c7b7faa 1391 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
0c8a745f
DK
1392 dma_sync_single_for_device(&np->pci_dev->dev,
1393 le32_to_cpu(desc->frag[0].addr),
1394 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1395 skb_put(skb, pkt_len);
1396 } else {
0c8a745f 1397 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1398 le32_to_cpu(desc->frag[0].addr),
0c8a745f 1399 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1400 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1401 np->rx_skbuff[entry] = NULL;
1402 }
1403 skb->protocol = eth_type_trans(skb, dev);
1404 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1405 netif_rx(skb);
1da177e4
LT
1406 }
1407 entry = (entry + 1) % RX_RING_SIZE;
1408 received++;
1409 }
1410 np->cur_rx = entry;
1411 refill_rx (dev);
1412 np->budget -= received;
1413 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1414 return;
1415
1416not_done:
1417 np->cur_rx = entry;
1418 refill_rx (dev);
1419 if (!received)
1420 received = 1;
1421 np->budget -= received;
1422 if (np->budget <= 0)
1423 np->budget = RX_BUDGET;
1424 tasklet_schedule(&np->rx_tasklet);
1da177e4
LT
1425}
1426
1427static void refill_rx (struct net_device *dev)
1428{
1429 struct netdev_private *np = netdev_priv(dev);
1430 int entry;
1431 int cnt = 0;
1432
1433 /* Refill the Rx ring buffers. */
1434 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1435 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1436 struct sk_buff *skb;
1437 entry = np->dirty_rx % RX_RING_SIZE;
1438 if (np->rx_skbuff[entry] == NULL) {
21a4e469 1439 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1da177e4
LT
1440 np->rx_skbuff[entry] = skb;
1441 if (skb == NULL)
1442 break; /* Better luck next round. */
1da177e4
LT
1443 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1444 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1445 dma_map_single(&np->pci_dev->dev, skb->data,
1446 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1447 if (dma_mapping_error(&np->pci_dev->dev,
1448 np->rx_ring[entry].frag[0].addr)) {
1449 dev_kfree_skb_irq(skb);
1450 np->rx_skbuff[entry] = NULL;
1451 break;
1452 }
1da177e4
LT
1453 }
1454 /* Perhaps we need not reset this field. */
1455 np->rx_ring[entry].frag[0].length =
1456 cpu_to_le32(np->rx_buf_sz | LastFrag);
1457 np->rx_ring[entry].status = 0;
1458 cnt++;
1459 }
1da177e4
LT
1460}
1461static void netdev_error(struct net_device *dev, int intr_status)
1462{
1463 struct netdev_private *np = netdev_priv(dev);
1464 void __iomem *ioaddr = np->base;
1465 u16 mii_ctl, mii_advertise, mii_lpa;
1466 int speed;
1467
1468 if (intr_status & LinkChange) {
50500155
DN
1469 if (mdio_wait_link(dev, 10) == 0) {
1470 printk(KERN_INFO "%s: Link up\n", dev->name);
1471 if (np->an_enable) {
1472 mii_advertise = mdio_read(dev, np->phys[0],
1473 MII_ADVERTISE);
1474 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1475 mii_advertise &= mii_lpa;
1476 printk(KERN_INFO "%s: Link changed: ",
1477 dev->name);
1478 if (mii_advertise & ADVERTISE_100FULL) {
1479 np->speed = 100;
1480 printk("100Mbps, full duplex\n");
1481 } else if (mii_advertise & ADVERTISE_100HALF) {
1482 np->speed = 100;
1483 printk("100Mbps, half duplex\n");
1484 } else if (mii_advertise & ADVERTISE_10FULL) {
1485 np->speed = 10;
1486 printk("10Mbps, full duplex\n");
1487 } else if (mii_advertise & ADVERTISE_10HALF) {
1488 np->speed = 10;
1489 printk("10Mbps, half duplex\n");
1490 } else
1491 printk("\n");
1da177e4 1492
50500155
DN
1493 } else {
1494 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1495 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1496 np->speed = speed;
1497 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1498 dev->name, speed);
1499 printk("%s duplex.\n",
1500 (mii_ctl & BMCR_FULLDPLX) ?
1501 "full" : "half");
1502 }
1503 check_duplex(dev);
1504 if (np->flowctrl && np->mii_if.full_duplex) {
1505 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1506 ioaddr + MulticastFilter1+2);
1507 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1508 ioaddr + MACCtrl0);
1509 }
1510 netif_carrier_on(dev);
1da177e4 1511 } else {
50500155
DN
1512 printk(KERN_INFO "%s: Link down\n", dev->name);
1513 netif_carrier_off(dev);
1da177e4
LT
1514 }
1515 }
1516 if (intr_status & StatsMax) {
1517 get_stats(dev);
1518 }
1519 if (intr_status & IntrPCIErr) {
1520 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1521 dev->name, intr_status);
1522 /* We must do a global reset of DMA to continue. */
1523 }
1524}
1525
1526static struct net_device_stats *get_stats(struct net_device *dev)
1527{
1528 struct netdev_private *np = netdev_priv(dev);
1529 void __iomem *ioaddr = np->base;
7b738b55 1530 unsigned long flags;
725a4a46 1531 u8 late_coll, single_coll, mult_coll;
1da177e4 1532
7b738b55 1533 spin_lock_irqsave(&np->statlock, flags);
1da177e4 1534 /* The chip only need report frame silently dropped. */
553e2335
ED
1535 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1536 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1537 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
553e2335 1538 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
725a4a46
DK
1539
1540 mult_coll = ioread8(ioaddr + StatsMultiColl);
1541 np->xstats.tx_multiple_collisions += mult_coll;
1542 single_coll = ioread8(ioaddr + StatsOneColl);
1543 np->xstats.tx_single_collisions += single_coll;
1544 late_coll = ioread8(ioaddr + StatsLateColl);
1545 np->xstats.tx_late_collisions += late_coll;
1546 dev->stats.collisions += mult_coll
1547 + single_coll
1548 + late_coll;
1549
1550 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1551 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1552 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1553 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1554 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1555 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1556 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1557
553e2335
ED
1558 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1559 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1560 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1561 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1da177e4 1562
7b738b55
ED
1563 spin_unlock_irqrestore(&np->statlock, flags);
1564
553e2335 1565 return &dev->stats;
1da177e4
LT
1566}
1567
1568static void set_rx_mode(struct net_device *dev)
1569{
1570 struct netdev_private *np = netdev_priv(dev);
1571 void __iomem *ioaddr = np->base;
1572 u16 mc_filter[4]; /* Multicast hash filter */
1573 u32 rx_mode;
1574 int i;
1575
1576 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1577 memset(mc_filter, 0xff, sizeof(mc_filter));
1578 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
4cd24eaf 1579 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1580 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1581 /* Too many to match, or accept all multicasts. */
1582 memset(mc_filter, 0xff, sizeof(mc_filter));
1583 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
4cd24eaf 1584 } else if (!netdev_mc_empty(dev)) {
22bedad3 1585 struct netdev_hw_addr *ha;
1da177e4
LT
1586 int bit;
1587 int index;
1588 int crc;
1589 memset (mc_filter, 0, sizeof (mc_filter));
22bedad3
JP
1590 netdev_for_each_mc_addr(ha, dev) {
1591 crc = ether_crc_le(ETH_ALEN, ha->addr);
1da177e4
LT
1592 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1593 if (crc & 0x80000000) index |= 1 << bit;
1594 mc_filter[index/16] |= (1 << (index % 16));
1595 }
1596 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1597 } else {
1598 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1599 return;
1600 }
1601 if (np->mii_if.full_duplex && np->flowctrl)
1602 mc_filter[3] |= 0x0200;
1603
1604 for (i = 0; i < 4; i++)
1605 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1606 iowrite8(rx_mode, ioaddr + RxMode);
1607}
1608
1609static int __set_mac_addr(struct net_device *dev)
1610{
1611 struct netdev_private *np = netdev_priv(dev);
1612 u16 addr16;
1613
1614 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1615 iowrite16(addr16, np->base + StationAddr);
1616 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1617 iowrite16(addr16, np->base + StationAddr+2);
1618 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1619 iowrite16(addr16, np->base + StationAddr+4);
1620 return 0;
1621}
1622
4b4f5467
DK
1623/* Invoked with rtnl_lock held */
1624static int sundance_set_mac_addr(struct net_device *dev, void *data)
1625{
1626 const struct sockaddr *addr = data;
1627
1628 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 1629 return -EADDRNOTAVAIL;
4b4f5467
DK
1630 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1631 __set_mac_addr(dev);
1632
1633 return 0;
1634}
1635
725a4a46
DK
1636static const struct {
1637 const char name[ETH_GSTRING_LEN];
1638} sundance_stats[] = {
1639 { "tx_multiple_collisions" },
1640 { "tx_single_collisions" },
1641 { "tx_late_collisions" },
1642 { "tx_deferred" },
1643 { "tx_deferred_excessive" },
1644 { "tx_aborted" },
1645 { "tx_bcasts" },
1646 { "rx_bcasts" },
1647 { "tx_mcasts" },
1648 { "rx_mcasts" },
1649};
1650
1da177e4
LT
1651static int check_if_running(struct net_device *dev)
1652{
1653 if (!netif_running(dev))
1654 return -EINVAL;
1655 return 0;
1656}
1657
1658static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1659{
1660 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1661 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1662 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1663 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1664}
1665
1666static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1667{
1668 struct netdev_private *np = netdev_priv(dev);
1669 spin_lock_irq(&np->lock);
1670 mii_ethtool_gset(&np->mii_if, ecmd);
1671 spin_unlock_irq(&np->lock);
1672 return 0;
1673}
1674
1675static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1676{
1677 struct netdev_private *np = netdev_priv(dev);
1678 int res;
1679 spin_lock_irq(&np->lock);
1680 res = mii_ethtool_sset(&np->mii_if, ecmd);
1681 spin_unlock_irq(&np->lock);
1682 return res;
1683}
1684
1685static int nway_reset(struct net_device *dev)
1686{
1687 struct netdev_private *np = netdev_priv(dev);
1688 return mii_nway_restart(&np->mii_if);
1689}
1690
1691static u32 get_link(struct net_device *dev)
1692{
1693 struct netdev_private *np = netdev_priv(dev);
1694 return mii_link_ok(&np->mii_if);
1695}
1696
1697static u32 get_msglevel(struct net_device *dev)
1698{
1699 struct netdev_private *np = netdev_priv(dev);
1700 return np->msg_enable;
1701}
1702
1703static void set_msglevel(struct net_device *dev, u32 val)
1704{
1705 struct netdev_private *np = netdev_priv(dev);
1706 np->msg_enable = val;
1707}
1708
725a4a46
DK
1709static void get_strings(struct net_device *dev, u32 stringset,
1710 u8 *data)
1711{
1712 if (stringset == ETH_SS_STATS)
1713 memcpy(data, sundance_stats, sizeof(sundance_stats));
1714}
1715
1716static int get_sset_count(struct net_device *dev, int sset)
1717{
1718 switch (sset) {
1719 case ETH_SS_STATS:
1720 return ARRAY_SIZE(sundance_stats);
1721 default:
1722 return -EOPNOTSUPP;
1723 }
1724}
1725
1726static void get_ethtool_stats(struct net_device *dev,
1727 struct ethtool_stats *stats, u64 *data)
1728{
1729 struct netdev_private *np = netdev_priv(dev);
1730 int i = 0;
1731
1732 get_stats(dev);
1733 data[i++] = np->xstats.tx_multiple_collisions;
1734 data[i++] = np->xstats.tx_single_collisions;
1735 data[i++] = np->xstats.tx_late_collisions;
1736 data[i++] = np->xstats.tx_deferred;
1737 data[i++] = np->xstats.tx_deferred_excessive;
1738 data[i++] = np->xstats.tx_aborted;
1739 data[i++] = np->xstats.tx_bcasts;
1740 data[i++] = np->xstats.rx_bcasts;
1741 data[i++] = np->xstats.tx_mcasts;
1742 data[i++] = np->xstats.rx_mcasts;
1743}
1744
f210e87b
DK
1745#ifdef CONFIG_PM
1746
1747static void sundance_get_wol(struct net_device *dev,
1748 struct ethtool_wolinfo *wol)
1749{
1750 struct netdev_private *np = netdev_priv(dev);
1751 void __iomem *ioaddr = np->base;
1752 u8 wol_bits;
1753
1754 wol->wolopts = 0;
1755
1756 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1757 if (!np->wol_enabled)
1758 return;
1759
1760 wol_bits = ioread8(ioaddr + WakeEvent);
1761 if (wol_bits & MagicPktEnable)
1762 wol->wolopts |= WAKE_MAGIC;
1763 if (wol_bits & LinkEventEnable)
1764 wol->wolopts |= WAKE_PHY;
1765}
1766
1767static int sundance_set_wol(struct net_device *dev,
1768 struct ethtool_wolinfo *wol)
1769{
1770 struct netdev_private *np = netdev_priv(dev);
1771 void __iomem *ioaddr = np->base;
1772 u8 wol_bits;
1773
1774 if (!device_can_wakeup(&np->pci_dev->dev))
1775 return -EOPNOTSUPP;
1776
1777 np->wol_enabled = !!(wol->wolopts);
1778 wol_bits = ioread8(ioaddr + WakeEvent);
1779 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1780 LinkEventEnable | WolEnable);
1781
1782 if (np->wol_enabled) {
1783 if (wol->wolopts & WAKE_MAGIC)
1784 wol_bits |= (MagicPktEnable | WolEnable);
1785 if (wol->wolopts & WAKE_PHY)
1786 wol_bits |= (LinkEventEnable | WolEnable);
1787 }
1788 iowrite8(wol_bits, ioaddr + WakeEvent);
1789
1790 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1791
1792 return 0;
1793}
1794#else
1795#define sundance_get_wol NULL
1796#define sundance_set_wol NULL
1797#endif /* CONFIG_PM */
1798
7282d491 1799static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1800 .begin = check_if_running,
1801 .get_drvinfo = get_drvinfo,
1802 .get_settings = get_settings,
1803 .set_settings = set_settings,
1804 .nway_reset = nway_reset,
1805 .get_link = get_link,
f210e87b
DK
1806 .get_wol = sundance_get_wol,
1807 .set_wol = sundance_set_wol,
1da177e4
LT
1808 .get_msglevel = get_msglevel,
1809 .set_msglevel = set_msglevel,
725a4a46
DK
1810 .get_strings = get_strings,
1811 .get_sset_count = get_sset_count,
1812 .get_ethtool_stats = get_ethtool_stats,
1da177e4
LT
1813};
1814
1815static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1816{
1817 struct netdev_private *np = netdev_priv(dev);
1da177e4 1818 int rc;
1da177e4
LT
1819
1820 if (!netif_running(dev))
1821 return -EINVAL;
1822
1823 spin_lock_irq(&np->lock);
1824 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1825 spin_unlock_irq(&np->lock);
1da177e4
LT
1826
1827 return rc;
1828}
1829
1830static int netdev_close(struct net_device *dev)
1831{
1832 struct netdev_private *np = netdev_priv(dev);
1833 void __iomem *ioaddr = np->base;
1834 struct sk_buff *skb;
1835 int i;
1836
31f817e9
JH
1837 /* Wait and kill tasklet */
1838 tasklet_kill(&np->rx_tasklet);
1839 tasklet_kill(&np->tx_tasklet);
1840 np->cur_tx = 0;
1841 np->dirty_tx = 0;
1842 np->cur_task = 0;
bca79eb7 1843 np->last_tx = NULL;
31f817e9 1844
1da177e4
LT
1845 netif_stop_queue(dev);
1846
1847 if (netif_msg_ifdown(np)) {
1848 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1849 "Rx %4.4x Int %2.2x.\n",
1850 dev->name, ioread8(ioaddr + TxStatus),
1851 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1852 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1853 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1854 }
1855
1856 /* Disable interrupts by clearing the interrupt mask. */
1857 iowrite16(0x0000, ioaddr + IntrEnable);
1858
acd70c2b
JH
1859 /* Disable Rx and Tx DMA for safely release resource */
1860 iowrite32(0x500, ioaddr + DMACtrl);
1861
1da177e4
LT
1862 /* Stop the chip's Tx and Rx processes. */
1863 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1864
31f817e9
JH
1865 for (i = 2000; i > 0; i--) {
1866 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1867 break;
1868 mdelay(1);
1869 }
1870
1871 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
24de5285 1872 ioaddr + ASIC_HI_WORD(ASICCtrl));
31f817e9
JH
1873
1874 for (i = 2000; i > 0; i--) {
24de5285 1875 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
31f817e9
JH
1876 break;
1877 mdelay(1);
1878 }
1da177e4
LT
1879
1880#ifdef __i386__
1881 if (netif_msg_hw(np)) {
ad361c98 1882 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1da177e4
LT
1883 (int)(np->tx_ring_dma));
1884 for (i = 0; i < TX_RING_SIZE; i++)
ad361c98 1885 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1da177e4
LT
1886 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1887 np->tx_ring[i].frag[0].length);
ad361c98 1888 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1da177e4
LT
1889 (int)(np->rx_ring_dma));
1890 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1891 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1892 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1893 np->rx_ring[i].frag[0].length);
1894 }
1895 }
1896#endif /* __i386__ debugging only */
1897
c514f285 1898 free_irq(np->pci_dev->irq, dev);
1da177e4
LT
1899
1900 del_timer_sync(&np->timer);
1901
1902 /* Free all the skbuffs in the Rx queue. */
1903 for (i = 0; i < RX_RING_SIZE; i++) {
1904 np->rx_ring[i].status = 0;
1da177e4
LT
1905 skb = np->rx_skbuff[i];
1906 if (skb) {
0c8a745f 1907 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1908 le32_to_cpu(np->rx_ring[i].frag[0].addr),
0c8a745f 1909 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1910 dev_kfree_skb(skb);
1911 np->rx_skbuff[i] = NULL;
1912 }
14c9d9b0 1913 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1da177e4
LT
1914 }
1915 for (i = 0; i < TX_RING_SIZE; i++) {
31f817e9 1916 np->tx_ring[i].next_desc = 0;
1da177e4
LT
1917 skb = np->tx_skbuff[i];
1918 if (skb) {
0c8a745f 1919 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1920 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1921 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1922 dev_kfree_skb(skb);
1923 np->tx_skbuff[i] = NULL;
1924 }
1925 }
1926
1927 return 0;
1928}
1929
64bc40de 1930static void sundance_remove1(struct pci_dev *pdev)
1da177e4
LT
1931{
1932 struct net_device *dev = pci_get_drvdata(pdev);
1933
1934 if (dev) {
0c8a745f
DK
1935 struct netdev_private *np = netdev_priv(dev);
1936 unregister_netdev(dev);
1937 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1938 np->rx_ring, np->rx_ring_dma);
1939 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1940 np->tx_ring, np->tx_ring_dma);
1941 pci_iounmap(pdev, np->base);
1942 pci_release_regions(pdev);
1943 free_netdev(dev);
1944 pci_set_drvdata(pdev, NULL);
1da177e4
LT
1945 }
1946}
1947
61a21455
DK
1948#ifdef CONFIG_PM
1949
1950static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1951{
1952 struct net_device *dev = pci_get_drvdata(pci_dev);
f210e87b
DK
1953 struct netdev_private *np = netdev_priv(dev);
1954 void __iomem *ioaddr = np->base;
61a21455
DK
1955
1956 if (!netif_running(dev))
1957 return 0;
1958
1959 netdev_close(dev);
1960 netif_device_detach(dev);
1961
1962 pci_save_state(pci_dev);
f210e87b
DK
1963 if (np->wol_enabled) {
1964 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1965 iowrite16(RxEnable, ioaddr + MACCtrl1);
1966 }
1967 pci_enable_wake(pci_dev, pci_choose_state(pci_dev, state),
1968 np->wol_enabled);
61a21455
DK
1969 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1970
1971 return 0;
1972}
1973
1974static int sundance_resume(struct pci_dev *pci_dev)
1975{
1976 struct net_device *dev = pci_get_drvdata(pci_dev);
1977 int err = 0;
1978
1979 if (!netif_running(dev))
1980 return 0;
1981
1982 pci_set_power_state(pci_dev, PCI_D0);
1983 pci_restore_state(pci_dev);
f210e87b 1984 pci_enable_wake(pci_dev, PCI_D0, 0);
61a21455
DK
1985
1986 err = netdev_open(dev);
1987 if (err) {
1988 printk(KERN_ERR "%s: Can't resume interface!\n",
1989 dev->name);
1990 goto out;
1991 }
1992
1993 netif_device_attach(dev);
1994
1995out:
1996 return err;
1997}
1998
1999#endif /* CONFIG_PM */
2000
1da177e4
LT
2001static struct pci_driver sundance_driver = {
2002 .name = DRV_NAME,
2003 .id_table = sundance_pci_tbl,
2004 .probe = sundance_probe1,
64bc40de 2005 .remove = sundance_remove1,
61a21455
DK
2006#ifdef CONFIG_PM
2007 .suspend = sundance_suspend,
2008 .resume = sundance_resume,
2009#endif /* CONFIG_PM */
1da177e4
LT
2010};
2011
2012static int __init sundance_init(void)
2013{
2014/* when a module, this is printed whether or not devices are found in probe */
2015#ifdef MODULE
2016 printk(version);
2017#endif
29917620 2018 return pci_register_driver(&sundance_driver);
1da177e4
LT
2019}
2020
2021static void __exit sundance_exit(void)
2022{
2023 pci_unregister_driver(&sundance_driver);
2024}
2025
2026module_init(sundance_init);
2027module_exit(sundance_exit);
2028
2029
This page took 1.666675 seconds and 5 git commands to generate.