e1000: move e1000_tbi_adjust_stats to where its used
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
0abb6eb1 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
3d41e30a 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
d0bb53e1 30#include <net/ip6_checksum.h>
5377a416 31#include <linux/io.h>
70c71606 32#include <linux/prefetch.h>
5622e404
JP
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
5377a416 35
1da177e4 36char e1000_driver_name[] = "e1000";
3ad2cc67 37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
ab08853f 38#define DRV_VERSION "7.3.21-k8-NAPI"
abec42a4
SH
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
1da177e4
LT
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
9baa3c34 49static const struct pci_device_id e1000_pci_tbl[] = {
1da177e4
LT
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
b7ee49db 84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
b7ee49db 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
5377a416 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
1da177e4
LT
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
35574764
NN
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
35574764
NN
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
3ad2cc67 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
35574764 102 struct e1000_tx_ring *txdr);
3ad2cc67 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
35574764 104 struct e1000_rx_ring *rxdr);
3ad2cc67 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
35574764 106 struct e1000_tx_ring *tx_ring);
3ad2cc67 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
35574764
NN
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
1da177e4
LT
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
9f9a12f8 114static void e1000_remove(struct pci_dev *pdev);
581d708e 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
1da177e4
LT
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
581d708e
MC
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
db0ce50d 128static void e1000_set_rx_mode(struct net_device *netdev);
5cf42fcd 129static void e1000_update_phy_info_task(struct work_struct *work);
a4010afe 130static void e1000_watchdog(struct work_struct *work);
5cf42fcd 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
3b29a56d
SH
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
1da177e4
LT
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
7d12e780 137static irqreturn_t e1000_intr(int irq, void *data);
c3033b01
JP
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
bea3348e 140static int e1000_clean(struct napi_struct *napi, int budget);
c3033b01
JP
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
edbbb3ca
JB
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
581d708e 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
edbbb3ca 148 struct e1000_rx_ring *rx_ring,
72d64a43 149 int cleaned_count);
edbbb3ca
JB
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
1da177e4
LT
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
1da177e4
LT
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
65f27f38 159static void e1000_reset_task(struct work_struct *work);
1da177e4 160static void e1000_smartspeed(struct e1000_adapter *adapter);
e619d523
AK
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
1da177e4 163
5622e404 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
c8f44aff
MM
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
52f5509f
JP
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
80d5c368
PM
169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 __be16 proto, u16 vid);
171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 __be16 proto, u16 vid);
1da177e4
LT
173static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
6fdfef16 175#ifdef CONFIG_PM
b43fcd7d 176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
177static int e1000_resume(struct pci_dev *pdev);
178#endif
c653e635 179static void e1000_shutdown(struct pci_dev *pdev);
1da177e4
LT
180
181#ifdef CONFIG_NET_POLL_CONTROLLER
182/* for netdump / net console */
183static void e1000_netpoll (struct net_device *netdev);
184#endif
185
1f753861
JB
186#define COPYBREAK_DEFAULT 256
187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188module_param(copybreak, uint, 0644);
189MODULE_PARM_DESC(copybreak,
190 "Maximum size of packet that is copied to a new buffer on receive");
191
9026729b
AK
192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195static void e1000_io_resume(struct pci_dev *pdev);
196
3646f0e5 197static const struct pci_error_handlers e1000_err_handler = {
9026729b
AK
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201};
24025e4e 202
1da177e4
LT
203static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
9f9a12f8 207 .remove = e1000_remove,
c4e24f01 208#ifdef CONFIG_PM
25985edc 209 /* Power Management Hooks */
1da177e4 210 .suspend = e1000_suspend,
c653e635 211 .resume = e1000_resume,
1da177e4 212#endif
9026729b
AK
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
1da177e4
LT
215};
216
217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219MODULE_LICENSE("GPL");
220MODULE_VERSION(DRV_VERSION);
221
b3f4d599 222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223static int debug = -1;
1da177e4
LT
224module_param(debug, int, 0);
225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
675ad473
ET
227/**
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
230 *
231 **/
232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233{
234 struct e1000_adapter *adapter = hw->back;
235 return adapter->netdev;
236}
237
1da177e4
LT
238/**
239 * e1000_init_module - Driver Registration Routine
240 *
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
243 **/
64798845 244static int __init e1000_init_module(void)
1da177e4
LT
245{
246 int ret;
675ad473 247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
1da177e4 248
675ad473 249 pr_info("%s\n", e1000_copyright);
1da177e4 250
29917620 251 ret = pci_register_driver(&e1000_driver);
1f753861
JB
252 if (copybreak != COPYBREAK_DEFAULT) {
253 if (copybreak == 0)
675ad473 254 pr_info("copybreak disabled\n");
1f753861 255 else
675ad473
ET
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak);
1f753861 258 }
1da177e4
LT
259 return ret;
260}
261
262module_init(e1000_init_module);
263
264/**
265 * e1000_exit_module - Driver Exit Cleanup Routine
266 *
267 * e1000_exit_module is called just before the driver is removed
268 * from memory.
269 **/
64798845 270static void __exit e1000_exit_module(void)
1da177e4 271{
1da177e4
LT
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
2db10a08
AK
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
3e18826c 280 irq_handler_t handler = e1000_intr;
e94bd23f
AK
281 int irq_flags = IRQF_SHARED;
282 int err;
2db10a08 283
e94bd23f
AK
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
feb8f478 287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
e94bd23f 288 }
2db10a08
AK
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
2db10a08
AK
298}
299
1da177e4
LT
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
64798845 304static void e1000_irq_disable(struct e1000_adapter *adapter)
1da177e4 305{
1dc32918
JP
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
1da177e4
LT
310 synchronize_irq(adapter->pdev->irq);
311}
312
313/**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
64798845 317static void e1000_irq_enable(struct e1000_adapter *adapter)
1da177e4 318{
1dc32918
JP
319 struct e1000_hw *hw = &adapter->hw;
320
321 ew32(IMS, IMS_ENABLE_MASK);
322 E1000_WRITE_FLUSH();
1da177e4 323}
3ad2cc67 324
64798845 325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2d7edb92 326{
1dc32918 327 struct e1000_hw *hw = &adapter->hw;
2d7edb92 328 struct net_device *netdev = adapter->netdev;
1dc32918 329 u16 vid = hw->mng_cookie.vlan_id;
406874a7 330 u16 old_vid = adapter->mng_vlan_id;
96838a40 331
5622e404
JP
332 if (!e1000_vlan_used(adapter))
333 return;
334
335 if (!test_bit(vid, adapter->active_vlans)) {
336 if (hw->mng_cookie.status &
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
80d5c368 338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
c5f226fe 339 adapter->mng_vlan_id = vid;
5622e404
JP
340 } else {
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 }
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 (vid != old_vid) &&
345 !test_bit(old_vid, adapter->active_vlans))
80d5c368
PM
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 old_vid);
5622e404
JP
348 } else {
349 adapter->mng_vlan_id = vid;
2d7edb92
MC
350 }
351}
b55ccb35 352
64798845 353static void e1000_init_manageability(struct e1000_adapter *adapter)
0fccd0e9 354{
1dc32918
JP
355 struct e1000_hw *hw = &adapter->hw;
356
0fccd0e9 357 if (adapter->en_mng_pt) {
1dc32918 358 u32 manc = er32(MANC);
0fccd0e9
JG
359
360 /* disable hardware interception of ARP */
361 manc &= ~(E1000_MANC_ARP_EN);
362
1dc32918 363 ew32(MANC, manc);
0fccd0e9
JG
364 }
365}
366
64798845 367static void e1000_release_manageability(struct e1000_adapter *adapter)
0fccd0e9 368{
1dc32918
JP
369 struct e1000_hw *hw = &adapter->hw;
370
0fccd0e9 371 if (adapter->en_mng_pt) {
1dc32918 372 u32 manc = er32(MANC);
0fccd0e9
JG
373
374 /* re-enable hardware interception of ARP */
375 manc |= E1000_MANC_ARP_EN;
376
1dc32918 377 ew32(MANC, manc);
0fccd0e9
JG
378 }
379}
380
e0aac5a2
AK
381/**
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
384 **/
385static void e1000_configure(struct e1000_adapter *adapter)
1da177e4
LT
386{
387 struct net_device *netdev = adapter->netdev;
2db10a08 388 int i;
1da177e4 389
db0ce50d 390 e1000_set_rx_mode(netdev);
1da177e4
LT
391
392 e1000_restore_vlan(adapter);
0fccd0e9 393 e1000_init_manageability(adapter);
1da177e4
LT
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
72d64a43
JK
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
6cfbd97b
JK
400 * next_to_use != next_to_clean
401 */
f56799ea 402 for (i = 0; i < adapter->num_rx_queues; i++) {
72d64a43 403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
a292ca6e 404 adapter->alloc_rx_buf(adapter, ring,
6cfbd97b 405 E1000_DESC_UNUSED(ring));
f56799ea 406 }
e0aac5a2
AK
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
1dc32918
JP
411 struct e1000_hw *hw = &adapter->hw;
412
e0aac5a2
AK
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
7bfa4816 417
bea3348e 418 napi_enable(&adapter->napi);
c3570acb 419
5de55624
MC
420 e1000_irq_enable(adapter);
421
4cb9be7a
JB
422 netif_wake_queue(adapter->netdev);
423
79f3d399 424 /* fire a link change interrupt to start the watchdog */
1dc32918 425 ew32(ICS, E1000_ICS_LSC);
1da177e4
LT
426 return 0;
427}
428
79f05bf0
AK
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
79f05bf0 436 **/
d658266e 437void e1000_power_up_phy(struct e1000_adapter *adapter)
79f05bf0 438{
1dc32918 439 struct e1000_hw *hw = &adapter->hw;
406874a7 440 u16 mii_reg = 0;
79f05bf0
AK
441
442 /* Just clear the power down bit to wake the phy back up */
1dc32918 443 if (hw->media_type == e1000_media_type_copper) {
79f05bf0 444 /* according to the manual, the phy will retain its
6cfbd97b
JK
445 * settings across a power-down/up cycle
446 */
1dc32918 447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 448 mii_reg &= ~MII_CR_POWER_DOWN;
1dc32918 449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
79f05bf0
AK
450 }
451}
452
453static void e1000_power_down_phy(struct e1000_adapter *adapter)
454{
1dc32918
JP
455 struct e1000_hw *hw = &adapter->hw;
456
61c2505f 457 /* Power down the PHY so no link is implied when interface is down *
c3033b01 458 * The PHY cannot be powered down if any of the following is true *
79f05bf0
AK
459 * (a) WoL is enabled
460 * (b) AMT is active
6cfbd97b
JK
461 * (c) SoL/IDER session is active
462 */
1dc32918
JP
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
406874a7 465 u16 mii_reg = 0;
61c2505f 466
1dc32918 467 switch (hw->mac_type) {
61c2505f
BA
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
5377a416 472 case e1000_ce4100:
61c2505f
BA
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
1dc32918 478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
61c2505f
BA
479 goto out;
480 break;
61c2505f
BA
481 default:
482 goto out;
483 }
1dc32918 484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 485 mii_reg |= MII_CR_POWER_DOWN;
1dc32918 486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
4e0d8f7d 487 msleep(1);
79f05bf0 488 }
61c2505f
BA
489out:
490 return;
79f05bf0
AK
491}
492
a4010afe
JB
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
8ce6909f 496
a4010afe 497 cancel_delayed_work_sync(&adapter->watchdog_task);
74a1b1ea
VD
498
499 /*
500 * Since the watchdog task can reschedule other tasks, we should cancel
501 * it first, otherwise we can run into the situation when a work is
502 * still running after the adapter has been turned down.
503 */
504
a4010afe
JB
505 cancel_delayed_work_sync(&adapter->phy_info_task);
506 cancel_delayed_work_sync(&adapter->fifo_stall_task);
74a1b1ea
VD
507
508 /* Only kill reset task if adapter is not resetting */
509 if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 cancel_work_sync(&adapter->reset_task);
a4010afe
JB
511}
512
64798845 513void e1000_down(struct e1000_adapter *adapter)
1da177e4 514{
a6c42322 515 struct e1000_hw *hw = &adapter->hw;
1da177e4 516 struct net_device *netdev = adapter->netdev;
a6c42322 517 u32 rctl, tctl;
1da177e4 518
1314bbf3 519
a6c42322
JB
520 /* disable receives in the hardware */
521 rctl = er32(RCTL);
522 ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 /* flush and sleep below */
524
51851073 525 netif_tx_disable(netdev);
a6c42322
JB
526
527 /* disable transmits in the hardware */
528 tctl = er32(TCTL);
529 tctl &= ~E1000_TCTL_EN;
530 ew32(TCTL, tctl);
531 /* flush both disables and wait for them to finish */
532 E1000_WRITE_FLUSH();
533 msleep(10);
534
bea3348e 535 napi_disable(&adapter->napi);
c3570acb 536
1da177e4 537 e1000_irq_disable(adapter);
c1605eb3 538
6cfbd97b 539 /* Setting DOWN must be after irq_disable to prevent
ab08853f 540 * a screaming interrupt. Setting DOWN also prevents
a4010afe 541 * tasks from rescheduling.
ab08853f 542 */
a4010afe 543 e1000_down_and_stop(adapter);
1da177e4 544
1da177e4
LT
545 adapter->link_speed = 0;
546 adapter->link_duplex = 0;
547 netif_carrier_off(netdev);
1da177e4
LT
548
549 e1000_reset(adapter);
581d708e
MC
550 e1000_clean_all_tx_rings(adapter);
551 e1000_clean_all_rx_rings(adapter);
1da177e4 552}
1da177e4 553
64798845 554void e1000_reinit_locked(struct e1000_adapter *adapter)
2db10a08
AK
555{
556 WARN_ON(in_interrupt());
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 msleep(1);
559 e1000_down(adapter);
560 e1000_up(adapter);
561 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4
LT
562}
563
64798845 564void e1000_reset(struct e1000_adapter *adapter)
1da177e4 565{
1dc32918 566 struct e1000_hw *hw = &adapter->hw;
406874a7 567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
c3033b01 568 bool legacy_pba_adjust = false;
b7cb8c2c 569 u16 hwm;
1da177e4
LT
570
571 /* Repartition Pba for greater than 9k mtu
572 * To take effect CTRL.RST is required.
573 */
574
1dc32918 575 switch (hw->mac_type) {
018ea44e
BA
576 case e1000_82542_rev2_0:
577 case e1000_82542_rev2_1:
578 case e1000_82543:
579 case e1000_82544:
580 case e1000_82540:
581 case e1000_82541:
582 case e1000_82541_rev_2:
c3033b01 583 legacy_pba_adjust = true;
018ea44e
BA
584 pba = E1000_PBA_48K;
585 break;
586 case e1000_82545:
587 case e1000_82545_rev_3:
588 case e1000_82546:
5377a416 589 case e1000_ce4100:
018ea44e
BA
590 case e1000_82546_rev_3:
591 pba = E1000_PBA_48K;
592 break;
2d7edb92 593 case e1000_82547:
0e6ef3e0 594 case e1000_82547_rev_2:
c3033b01 595 legacy_pba_adjust = true;
2d7edb92
MC
596 pba = E1000_PBA_30K;
597 break;
018ea44e
BA
598 case e1000_undefined:
599 case e1000_num_macs:
2d7edb92
MC
600 break;
601 }
602
c3033b01 603 if (legacy_pba_adjust) {
b7cb8c2c 604 if (hw->max_frame_size > E1000_RXBUFFER_8192)
018ea44e 605 pba -= 8; /* allocate more FIFO for Tx */
2d7edb92 606
1dc32918 607 if (hw->mac_type == e1000_82547) {
018ea44e
BA
608 adapter->tx_fifo_head = 0;
609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 adapter->tx_fifo_size =
611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 atomic_set(&adapter->tx_fifo_stall, 0);
613 }
b7cb8c2c 614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
018ea44e 615 /* adjust PBA for jumbo frames */
1dc32918 616 ew32(PBA, pba);
018ea44e
BA
617
618 /* To maintain wire speed transmits, the Tx FIFO should be
b7cb8c2c 619 * large enough to accommodate two full transmit packets,
018ea44e 620 * rounded up to the next 1KB and expressed in KB. Likewise,
b7cb8c2c 621 * the Rx FIFO should be large enough to accommodate at least
018ea44e 622 * one full receive packet and is similarly rounded up and
6cfbd97b
JK
623 * expressed in KB.
624 */
1dc32918 625 pba = er32(PBA);
018ea44e
BA
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space = pba >> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
629 pba &= 0xffff;
6cfbd97b 630 /* the Tx fifo also stores 16 bytes of information about the Tx
b7cb8c2c
JB
631 * but don't include ethernet FCS because hardware appends it
632 */
633 min_tx_space = (hw->max_frame_size +
634 sizeof(struct e1000_tx_desc) -
635 ETH_FCS_LEN) * 2;
9099cfb9 636 min_tx_space = ALIGN(min_tx_space, 1024);
018ea44e 637 min_tx_space >>= 10;
b7cb8c2c
JB
638 /* software strips receive CRC, so leave room for it */
639 min_rx_space = hw->max_frame_size;
9099cfb9 640 min_rx_space = ALIGN(min_rx_space, 1024);
018ea44e
BA
641 min_rx_space >>= 10;
642
643 /* If current Tx allocation is less than the min Tx FIFO size,
644 * and the min Tx FIFO size is less than the current Rx FIFO
6cfbd97b
JK
645 * allocation, take space away from current Rx allocation
646 */
018ea44e
BA
647 if (tx_space < min_tx_space &&
648 ((min_tx_space - tx_space) < pba)) {
649 pba = pba - (min_tx_space - tx_space);
650
651 /* PCI/PCIx hardware has PBA alignment constraints */
1dc32918 652 switch (hw->mac_type) {
018ea44e
BA
653 case e1000_82545 ... e1000_82546_rev_3:
654 pba &= ~(E1000_PBA_8K - 1);
655 break;
656 default:
657 break;
658 }
659
6cfbd97b
JK
660 /* if short on Rx space, Rx wins and must trump Tx
661 * adjustment or use Early Receive if available
662 */
1532ecea
JB
663 if (pba < min_rx_space)
664 pba = min_rx_space;
018ea44e 665 }
1da177e4 666 }
2d7edb92 667
1dc32918 668 ew32(PBA, pba);
1da177e4 669
6cfbd97b 670 /* flow control settings:
b7cb8c2c
JB
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
678 */
679 hwm = min(((pba << 10) * 9 / 10),
680 ((pba << 10) - hw->max_frame_size));
681
682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
683 hw->fc_low_water = hw->fc_high_water - 8;
edbbb3ca 684 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1dc32918
JP
685 hw->fc_send_xon = 1;
686 hw->fc = hw->original_fc;
1da177e4 687
2d7edb92 688 /* Allow time for pending master requests to run */
1dc32918
JP
689 e1000_reset_hw(hw);
690 if (hw->mac_type >= e1000_82544)
691 ew32(WUC, 0);
09ae3e88 692
1dc32918 693 if (e1000_init_hw(hw))
feb8f478 694 e_dev_err("Hardware Error\n");
2d7edb92 695 e1000_update_mng_vlan(adapter);
3d5460a0
JB
696
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
1dc32918 698 if (hw->mac_type >= e1000_82544 &&
1dc32918
JP
699 hw->autoneg == 1 &&
700 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 u32 ctrl = er32(CTRL);
3d5460a0
JB
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
6cfbd97b
JK
704 * can cause a loss of link at power off or driver unload
705 */
3d5460a0 706 ctrl &= ~E1000_CTRL_SWDPIN3;
1dc32918 707 ew32(CTRL, ctrl);
3d5460a0
JB
708 }
709
1da177e4 710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1dc32918 711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
1da177e4 712
1dc32918
JP
713 e1000_reset_adaptive(hw);
714 e1000_phy_get_info(hw, &adapter->phy_info);
9a53a202 715
0fccd0e9 716 e1000_release_manageability(adapter);
1da177e4
LT
717}
718
1aa8b471 719/* Dump the eeprom for users having checksum issues */
b4ea895d 720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
67b3c27c
AK
721{
722 struct net_device *netdev = adapter->netdev;
723 struct ethtool_eeprom eeprom;
724 const struct ethtool_ops *ops = netdev->ethtool_ops;
725 u8 *data;
726 int i;
727 u16 csum_old, csum_new = 0;
728
729 eeprom.len = ops->get_eeprom_len(netdev);
730 eeprom.offset = 0;
731
732 data = kmalloc(eeprom.len, GFP_KERNEL);
e404decb 733 if (!data)
67b3c27c 734 return;
67b3c27c
AK
735
736 ops->get_eeprom(netdev, &eeprom, data);
737
738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 csum_new += data[i] + (data[i + 1] << 8);
742 csum_new = EEPROM_SUM - csum_new;
743
675ad473
ET
744 pr_err("/*********************/\n");
745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 pr_err("Calculated : 0x%04x\n", csum_new);
67b3c27c 747
675ad473
ET
748 pr_err("Offset Values\n");
749 pr_err("======== ======\n");
67b3c27c
AK
750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
675ad473
ET
752 pr_err("Include this output when contacting your support provider.\n");
753 pr_err("This is not a software error! Something bad happened to\n");
754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 pr_err("result in further problems, possibly loss of data,\n");
756 pr_err("corruption or system hangs!\n");
757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 pr_err("which is invalid and requires you to set the proper MAC\n");
759 pr_err("address manually before continuing to enable this network\n");
760 pr_err("device. Please inspect the EEPROM dump and report the\n");
761 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 pr_err("/*********************/\n");
67b3c27c
AK
763
764 kfree(data);
765}
766
81250297
TI
767/**
768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769 * @pdev: PCI device information struct
770 *
771 * Return true if an adapter needs ioport resources
772 **/
773static int e1000_is_need_ioport(struct pci_dev *pdev)
774{
775 switch (pdev->device) {
776 case E1000_DEV_ID_82540EM:
777 case E1000_DEV_ID_82540EM_LOM:
778 case E1000_DEV_ID_82540EP:
779 case E1000_DEV_ID_82540EP_LOM:
780 case E1000_DEV_ID_82540EP_LP:
781 case E1000_DEV_ID_82541EI:
782 case E1000_DEV_ID_82541EI_MOBILE:
783 case E1000_DEV_ID_82541ER:
784 case E1000_DEV_ID_82541ER_LOM:
785 case E1000_DEV_ID_82541GI:
786 case E1000_DEV_ID_82541GI_LF:
787 case E1000_DEV_ID_82541GI_MOBILE:
788 case E1000_DEV_ID_82544EI_COPPER:
789 case E1000_DEV_ID_82544EI_FIBER:
790 case E1000_DEV_ID_82544GC_COPPER:
791 case E1000_DEV_ID_82544GC_LOM:
792 case E1000_DEV_ID_82545EM_COPPER:
793 case E1000_DEV_ID_82545EM_FIBER:
794 case E1000_DEV_ID_82546EB_COPPER:
795 case E1000_DEV_ID_82546EB_FIBER:
796 case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 return true;
798 default:
799 return false;
800 }
801}
802
c8f44aff
MM
803static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 netdev_features_t features)
5622e404 805{
6cfbd97b
JK
806 /* Since there is no support for separate Rx/Tx vlan accel
807 * enable/disable make sure Tx flag is always in same state as Rx.
5622e404 808 */
f646968f
PM
809 if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 features |= NETIF_F_HW_VLAN_CTAG_TX;
5622e404 811 else
f646968f 812 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5622e404
JP
813
814 return features;
815}
816
c8f44aff
MM
817static int e1000_set_features(struct net_device *netdev,
818 netdev_features_t features)
e97d3207
MM
819{
820 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 821 netdev_features_t changed = features ^ netdev->features;
e97d3207 822
f646968f 823 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5622e404
JP
824 e1000_vlan_mode(netdev, features);
825
e825b731 826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
e97d3207
MM
827 return 0;
828
e825b731 829 netdev->features = features;
e97d3207
MM
830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832 if (netif_running(netdev))
833 e1000_reinit_locked(adapter);
834 else
835 e1000_reset(adapter);
836
837 return 0;
838}
839
0e7614bc
SH
840static const struct net_device_ops e1000_netdev_ops = {
841 .ndo_open = e1000_open,
842 .ndo_stop = e1000_close,
00829823 843 .ndo_start_xmit = e1000_xmit_frame,
0e7614bc
SH
844 .ndo_get_stats = e1000_get_stats,
845 .ndo_set_rx_mode = e1000_set_rx_mode,
846 .ndo_set_mac_address = e1000_set_mac,
5622e404 847 .ndo_tx_timeout = e1000_tx_timeout,
0e7614bc
SH
848 .ndo_change_mtu = e1000_change_mtu,
849 .ndo_do_ioctl = e1000_ioctl,
850 .ndo_validate_addr = eth_validate_addr,
0e7614bc
SH
851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
853#ifdef CONFIG_NET_POLL_CONTROLLER
854 .ndo_poll_controller = e1000_netpoll,
855#endif
5622e404
JP
856 .ndo_fix_features = e1000_fix_features,
857 .ndo_set_features = e1000_set_features,
0e7614bc
SH
858};
859
e508be17
JB
860/**
861 * e1000_init_hw_struct - initialize members of hw struct
862 * @adapter: board private struct
863 * @hw: structure used by e1000_hw.c
864 *
865 * Factors out initialization of the e1000_hw struct to its own function
866 * that can be called very early at init (just after struct allocation).
867 * Fields are initialized based on PCI device information and
868 * OS network device settings (MTU size).
869 * Returns negative error codes if MAC type setup fails.
870 */
871static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 struct e1000_hw *hw)
873{
874 struct pci_dev *pdev = adapter->pdev;
875
876 /* PCI config space info */
877 hw->vendor_id = pdev->vendor;
878 hw->device_id = pdev->device;
879 hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 hw->subsystem_id = pdev->subsystem_device;
881 hw->revision_id = pdev->revision;
882
883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885 hw->max_frame_size = adapter->netdev->mtu +
886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889 /* identify the MAC */
890 if (e1000_set_mac_type(hw)) {
891 e_err(probe, "Unknown MAC Type\n");
892 return -EIO;
893 }
894
895 switch (hw->mac_type) {
896 default:
897 break;
898 case e1000_82541:
899 case e1000_82547:
900 case e1000_82541_rev_2:
901 case e1000_82547_rev_2:
902 hw->phy_init_script = 1;
903 break;
904 }
905
906 e1000_set_media_type(hw);
907 e1000_get_bus_info(hw);
908
909 hw->wait_autoneg_complete = false;
910 hw->tbi_compatibility_en = true;
911 hw->adaptive_ifs = true;
912
913 /* Copper options */
914
915 if (hw->media_type == e1000_media_type_copper) {
916 hw->mdix = AUTO_ALL_MODES;
917 hw->disable_polarity_correction = false;
918 hw->master_slave = E1000_MASTER_SLAVE;
919 }
920
921 return 0;
922}
923
1da177e4
LT
924/**
925 * e1000_probe - Device Initialization Routine
926 * @pdev: PCI device information struct
927 * @ent: entry in e1000_pci_tbl
928 *
929 * Returns 0 on success, negative on failure
930 *
931 * e1000_probe initializes an adapter identified by a pci_dev structure.
932 * The OS initialization, configuring of the adapter private structure,
933 * and a hardware reset occur.
934 **/
1dd06ae8 935static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
936{
937 struct net_device *netdev;
938 struct e1000_adapter *adapter;
1dc32918 939 struct e1000_hw *hw;
2d7edb92 940
1da177e4 941 static int cards_found = 0;
120cd576 942 static int global_quad_port_a = 0; /* global ksp3 port a indication */
2d7edb92 943 int i, err, pci_using_dac;
406874a7 944 u16 eeprom_data = 0;
5377a416 945 u16 tmp = 0;
406874a7 946 u16 eeprom_apme_mask = E1000_EEPROM_APME;
81250297 947 int bars, need_ioport;
0795af57 948
81250297
TI
949 /* do not allocate ioport bars when not needed */
950 need_ioport = e1000_is_need_ioport(pdev);
951 if (need_ioport) {
952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 err = pci_enable_device(pdev);
954 } else {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM);
4d7155b9 956 err = pci_enable_device_mem(pdev);
81250297 957 }
c7be73bc 958 if (err)
1da177e4
LT
959 return err;
960
81250297 961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
c7be73bc 962 if (err)
6dd62ab0 963 goto err_pci_reg;
1da177e4
LT
964
965 pci_set_master(pdev);
dbb5aaeb
NN
966 err = pci_save_state(pdev);
967 if (err)
968 goto err_alloc_etherdev;
1da177e4 969
6dd62ab0 970 err = -ENOMEM;
1da177e4 971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6dd62ab0 972 if (!netdev)
1da177e4 973 goto err_alloc_etherdev;
1da177e4 974
1da177e4
LT
975 SET_NETDEV_DEV(netdev, &pdev->dev);
976
977 pci_set_drvdata(pdev, netdev);
60490fe0 978 adapter = netdev_priv(netdev);
1da177e4
LT
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
b3f4d599 981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
81250297
TI
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
1da177e4 984
1dc32918
JP
985 hw = &adapter->hw;
986 hw->back = adapter;
987
6dd62ab0 988 err = -EIO;
275f165f 989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1dc32918 990 if (!hw->hw_addr)
1da177e4 991 goto err_ioremap;
1da177e4 992
81250297
TI
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1000 }
1da177e4
LT
1001 }
1002 }
1003
e508be17
JB
1004 /* make ready for any if (hw->...) below */
1005 err = e1000_init_hw_struct(adapter, hw);
1006 if (err)
1007 goto err_sw_init;
1008
6cfbd97b 1009 /* there is a workaround being applied below that limits
e508be17
JB
1010 * 64-bit DMA addresses to 64-bit hardware. There are some
1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 */
1013 pci_using_dac = 0;
1014 if ((hw->bus_type == e1000_bus_type_pcix) &&
9931a26e 1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
e508be17 1016 pci_using_dac = 1;
e508be17 1017 } else {
9931a26e 1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
19a0b67a
DN
1019 if (err) {
1020 pr_err("No usable DMA config, aborting\n");
1021 goto err_dma;
1022 }
e508be17
JB
1023 }
1024
0e7614bc 1025 netdev->netdev_ops = &e1000_netdev_ops;
1da177e4 1026 e1000_set_ethtool_ops(netdev);
1da177e4 1027 netdev->watchdog_timeo = 5 * HZ;
bea3348e 1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
0e7614bc 1029
0eb5a34c 1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4 1031
1da177e4
LT
1032 adapter->bd_number = cards_found;
1033
1034 /* setup the private structure */
1035
c7be73bc
JP
1036 err = e1000_sw_init(adapter);
1037 if (err)
1da177e4
LT
1038 goto err_sw_init;
1039
6dd62ab0 1040 err = -EIO;
5377a416 1041 if (hw->mac_type == e1000_ce4100) {
13acde8f
FF
1042 hw->ce4100_gbe_mdio_base_virt =
1043 ioremap(pci_resource_start(pdev, BAR_1),
5377a416
DB
1044 pci_resource_len(pdev, BAR_1));
1045
13acde8f 1046 if (!hw->ce4100_gbe_mdio_base_virt)
5377a416
DB
1047 goto err_mdio_ioremap;
1048 }
2d7edb92 1049
1dc32918 1050 if (hw->mac_type >= e1000_82543) {
e97d3207 1051 netdev->hw_features = NETIF_F_SG |
5622e404 1052 NETIF_F_HW_CSUM |
f646968f
PM
1053 NETIF_F_HW_VLAN_CTAG_RX;
1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 NETIF_F_HW_VLAN_CTAG_FILTER;
1da177e4
LT
1056 }
1057
1dc32918
JP
1058 if ((hw->mac_type >= e1000_82544) &&
1059 (hw->mac_type != e1000_82547))
e97d3207
MM
1060 netdev->hw_features |= NETIF_F_TSO;
1061
11a78dcf
BG
1062 netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
e97d3207 1064 netdev->features |= netdev->hw_features;
7500673b
TD
1065 netdev->hw_features |= (NETIF_F_RXCSUM |
1066 NETIF_F_RXALL |
1067 NETIF_F_RXFCS);
2d7edb92 1068
7b872a55 1069 if (pci_using_dac) {
1da177e4 1070 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1071 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 }
1da177e4 1073
7500673b
TD
1074 netdev->vlan_features |= (NETIF_F_TSO |
1075 NETIF_F_HW_CSUM |
1076 NETIF_F_SG);
20501a69 1077
01789349
JP
1078 netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1dc32918 1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2d7edb92 1081
cd94dd0b 1082 /* initialize eeprom parameters */
1dc32918 1083 if (e1000_init_eeprom_params(hw)) {
feb8f478 1084 e_err(probe, "EEPROM initialization failed\n");
6dd62ab0 1085 goto err_eeprom;
cd94dd0b
AK
1086 }
1087
96838a40 1088 /* before reading the EEPROM, reset the controller to
6cfbd97b
JK
1089 * put the device in a known good starting state
1090 */
96838a40 1091
1dc32918 1092 e1000_reset_hw(hw);
1da177e4
LT
1093
1094 /* make sure the EEPROM is good */
1dc32918 1095 if (e1000_validate_eeprom_checksum(hw) < 0) {
feb8f478 1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
67b3c27c 1097 e1000_dump_eeprom(adapter);
6cfbd97b 1098 /* set MAC address to all zeroes to invalidate and temporary
67b3c27c
AK
1099 * disable this device for the user. This blocks regular
1100 * traffic while still permitting ethtool ioctls from reaching
1101 * the hardware as well as allowing the user to run the
1102 * interface after manually setting a hw addr using
1103 * `ip set address`
1104 */
1dc32918 1105 memset(hw->mac_addr, 0, netdev->addr_len);
67b3c27c
AK
1106 } else {
1107 /* copy the MAC address out of the EEPROM */
1dc32918 1108 if (e1000_read_mac_addr(hw))
feb8f478 1109 e_err(probe, "EEPROM Read Error\n");
1da177e4 1110 }
67b3c27c 1111 /* don't block initalization here due to bad MAC address */
1dc32918 1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1da177e4 1113
aaeb6cdf 1114 if (!is_valid_ether_addr(netdev->dev_addr))
feb8f478 1115 e_err(probe, "Invalid MAC Address\n");
1da177e4 1116
1da177e4 1117
a4010afe
JB
1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 e1000_82547_tx_fifo_stall_task);
1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
65f27f38 1122 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1da177e4 1123
1da177e4
LT
1124 e1000_check_options(adapter);
1125
1126 /* Initial Wake on LAN setting
1127 * If APM wake is enabled in the EEPROM,
1128 * enable the ACPI Magic Packet filter
1129 */
1130
1dc32918 1131 switch (hw->mac_type) {
1da177e4
LT
1132 case e1000_82542_rev2_0:
1133 case e1000_82542_rev2_1:
1134 case e1000_82543:
1135 break;
1136 case e1000_82544:
1dc32918 1137 e1000_read_eeprom(hw,
1da177e4
LT
1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 break;
1141 case e1000_82546:
1142 case e1000_82546_rev_3:
1dc32918
JP
1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 e1000_read_eeprom(hw,
1da177e4
LT
1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 break;
1147 }
1148 /* Fall Through */
1149 default:
1dc32918 1150 e1000_read_eeprom(hw,
1da177e4
LT
1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 break;
1153 }
96838a40 1154 if (eeprom_data & eeprom_apme_mask)
120cd576
JB
1155 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157 /* now that we have the eeprom settings, apply the special cases
1158 * where the eeprom may be wrong or the board simply won't support
6cfbd97b
JK
1159 * wake on lan on a particular port
1160 */
120cd576
JB
1161 switch (pdev->device) {
1162 case E1000_DEV_ID_82546GB_PCIE:
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546EB_FIBER:
1166 case E1000_DEV_ID_82546GB_FIBER:
120cd576 1167 /* Wake events only supported on port A for dual fiber
6cfbd97b
JK
1168 * regardless of eeprom setting
1169 */
1dc32918 1170 if (er32(STATUS) & E1000_STATUS_FUNC_1)
120cd576
JB
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 /* if quad port adapter, disable WoL on all but port A */
1175 if (global_quad_port_a != 0)
1176 adapter->eeprom_wol = 0;
1177 else
3db1cd5c 1178 adapter->quad_port_a = true;
120cd576
JB
1179 /* Reset for multiple quad port adapters */
1180 if (++global_quad_port_a == 4)
1181 global_quad_port_a = 0;
1182 break;
1183 }
1184
1185 /* initialize the wol settings based on the eeprom settings */
1186 adapter->wol = adapter->eeprom_wol;
de126489 1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1da177e4 1188
5377a416
DB
1189 /* Auto detect PHY address */
1190 if (hw->mac_type == e1000_ce4100) {
1191 for (i = 0; i < 32; i++) {
1192 hw->phy_addr = i;
1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 if (tmp == 0 || tmp == 0xFF) {
1195 if (i == 31)
1196 goto err_eeprom;
1197 continue;
1198 } else
1199 break;
1200 }
1201 }
1202
675ad473
ET
1203 /* reset the hardware with the new settings */
1204 e1000_reset(adapter);
1205
1206 strcpy(netdev->name, "eth%d");
1207 err = register_netdev(netdev);
1208 if (err)
1209 goto err_register;
1210
52f5509f 1211 e1000_vlan_filter_on_off(adapter, false);
5622e404 1212
fb3d47d4 1213 /* print bus type/speed/width info */
feb8f478 1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
7837e58c
JP
1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 netdev->dev_addr);
1314bbf3 1222
eb62efd2
JB
1223 /* carrier off reporting is important to ethtool even BEFORE open */
1224 netif_carrier_off(netdev);
1225
feb8f478 1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1da177e4
LT
1227
1228 cards_found++;
1229 return 0;
1230
1231err_register:
6dd62ab0 1232err_eeprom:
1532ecea 1233 e1000_phy_hw_reset(hw);
6dd62ab0 1234
1dc32918
JP
1235 if (hw->flash_address)
1236 iounmap(hw->flash_address);
6dd62ab0
VA
1237 kfree(adapter->tx_ring);
1238 kfree(adapter->rx_ring);
e508be17 1239err_dma:
1da177e4 1240err_sw_init:
5377a416 1241err_mdio_ioremap:
13acde8f 1242 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918 1243 iounmap(hw->hw_addr);
1da177e4
LT
1244err_ioremap:
1245 free_netdev(netdev);
1246err_alloc_etherdev:
81250297 1247 pci_release_selected_regions(pdev, bars);
6dd62ab0 1248err_pci_reg:
6dd62ab0 1249 pci_disable_device(pdev);
1da177e4
LT
1250 return err;
1251}
1252
1253/**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device. The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
9f9a12f8 1262static void e1000_remove(struct pci_dev *pdev)
1da177e4
LT
1263{
1264 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 1265 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1266 struct e1000_hw *hw = &adapter->hw;
1da177e4 1267
a4010afe 1268 e1000_down_and_stop(adapter);
0fccd0e9 1269 e1000_release_manageability(adapter);
1da177e4 1270
bea3348e
SH
1271 unregister_netdev(netdev);
1272
1532ecea 1273 e1000_phy_hw_reset(hw);
1da177e4 1274
24025e4e
MC
1275 kfree(adapter->tx_ring);
1276 kfree(adapter->rx_ring);
24025e4e 1277
1c26750c 1278 if (hw->mac_type == e1000_ce4100)
13acde8f 1279 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918
JP
1280 iounmap(hw->hw_addr);
1281 if (hw->flash_address)
1282 iounmap(hw->flash_address);
81250297 1283 pci_release_selected_regions(pdev, adapter->bars);
1da177e4
LT
1284
1285 free_netdev(netdev);
1286
1287 pci_disable_device(pdev);
1288}
1289
1290/**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
e508be17 1295 * e1000_init_hw_struct MUST be called before this function
1da177e4 1296 **/
9f9a12f8 1297static int e1000_sw_init(struct e1000_adapter *adapter)
1da177e4 1298{
eb0f8054 1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1da177e4 1300
f56799ea
JK
1301 adapter->num_tx_queues = 1;
1302 adapter->num_rx_queues = 1;
581d708e
MC
1303
1304 if (e1000_alloc_queues(adapter)) {
feb8f478 1305 e_err(probe, "Unable to allocate memory for queues\n");
581d708e
MC
1306 return -ENOMEM;
1307 }
1308
47313054 1309 /* Explicitly disable IRQ since the NIC can be in any state. */
47313054
HX
1310 e1000_irq_disable(adapter);
1311
1da177e4 1312 spin_lock_init(&adapter->stats_lock);
1da177e4 1313
1314bbf3
AK
1314 set_bit(__E1000_DOWN, &adapter->flags);
1315
1da177e4
LT
1316 return 0;
1317}
1318
581d708e
MC
1319/**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
3e1d7cd2 1324 * number of queues at compile-time.
581d708e 1325 **/
9f9a12f8 1326static int e1000_alloc_queues(struct e1000_adapter *adapter)
581d708e 1327{
1c7e5b12
YB
1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 sizeof(struct e1000_tx_ring), GFP_KERNEL);
581d708e
MC
1330 if (!adapter->tx_ring)
1331 return -ENOMEM;
581d708e 1332
1c7e5b12
YB
1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 sizeof(struct e1000_rx_ring), GFP_KERNEL);
581d708e
MC
1335 if (!adapter->rx_ring) {
1336 kfree(adapter->tx_ring);
1337 return -ENOMEM;
1338 }
581d708e 1339
581d708e
MC
1340 return E1000_SUCCESS;
1341}
1342
1da177e4
LT
1343/**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP). At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
a4010afe 1352 * handler is registered with the OS, the watchdog task is started,
1da177e4
LT
1353 * and the stack is notified that the interface is ready.
1354 **/
64798845 1355static int e1000_open(struct net_device *netdev)
1da177e4 1356{
60490fe0 1357 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1358 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1359 int err;
1360
2db10a08 1361 /* disallow open during test */
1314bbf3 1362 if (test_bit(__E1000_TESTING, &adapter->flags))
2db10a08
AK
1363 return -EBUSY;
1364
eb62efd2
JB
1365 netif_carrier_off(netdev);
1366
1da177e4 1367 /* allocate transmit descriptors */
e0aac5a2
AK
1368 err = e1000_setup_all_tx_resources(adapter);
1369 if (err)
1da177e4
LT
1370 goto err_setup_tx;
1371
1372 /* allocate receive descriptors */
e0aac5a2 1373 err = e1000_setup_all_rx_resources(adapter);
b5bf28cd 1374 if (err)
e0aac5a2 1375 goto err_setup_rx;
b5bf28cd 1376
79f05bf0
AK
1377 e1000_power_up_phy(adapter);
1378
2d7edb92 1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1dc32918 1380 if ((hw->mng_cookie.status &
2d7edb92
MC
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 e1000_update_mng_vlan(adapter);
1383 }
1da177e4 1384
e0aac5a2
AK
1385 /* before we allocate an interrupt, we must be ready to handle it.
1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 * as soon as we call pci_request_irq, so we have to setup our
6cfbd97b
JK
1388 * clean_rx handler before we do so.
1389 */
e0aac5a2
AK
1390 e1000_configure(adapter);
1391
1392 err = e1000_request_irq(adapter);
1393 if (err)
1394 goto err_req_irq;
1395
1396 /* From here on the code is the same as e1000_up() */
1397 clear_bit(__E1000_DOWN, &adapter->flags);
1398
bea3348e 1399 napi_enable(&adapter->napi);
47313054 1400
e0aac5a2
AK
1401 e1000_irq_enable(adapter);
1402
076152d5
BH
1403 netif_start_queue(netdev);
1404
e0aac5a2 1405 /* fire a link status change interrupt to start the watchdog */
1dc32918 1406 ew32(ICS, E1000_ICS_LSC);
e0aac5a2 1407
1da177e4
LT
1408 return E1000_SUCCESS;
1409
b5bf28cd 1410err_req_irq:
e0aac5a2 1411 e1000_power_down_phy(adapter);
581d708e 1412 e1000_free_all_rx_resources(adapter);
1da177e4 1413err_setup_rx:
581d708e 1414 e1000_free_all_tx_resources(adapter);
1da177e4
LT
1415err_setup_tx:
1416 e1000_reset(adapter);
1417
1418 return err;
1419}
1420
1421/**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS. The hardware is still under the drivers control, but
1429 * needs to be disabled. A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
64798845 1432static int e1000_close(struct net_device *netdev)
1da177e4 1433{
60490fe0 1434 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1435 struct e1000_hw *hw = &adapter->hw;
6a7d64e3 1436 int count = E1000_CHECK_RESET_COUNT;
1437
1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 usleep_range(10000, 20000);
1da177e4 1440
2db10a08 1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 1442 e1000_down(adapter);
79f05bf0 1443 e1000_power_down_phy(adapter);
2db10a08 1444 e1000_free_irq(adapter);
1da177e4 1445
581d708e
MC
1446 e1000_free_all_tx_resources(adapter);
1447 e1000_free_all_rx_resources(adapter);
1da177e4 1448
4666560a 1449 /* kill manageability vlan ID if supported, but not if a vlan with
6cfbd97b
JK
1450 * the same ID is registered on the host OS (let 8021q kill it)
1451 */
1dc32918 1452 if ((hw->mng_cookie.status &
6cfbd97b
JK
1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
80d5c368
PM
1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 adapter->mng_vlan_id);
2d7edb92 1457 }
b55ccb35 1458
1da177e4
LT
1459 return 0;
1460}
1461
1462/**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
2d7edb92
MC
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1da177e4 1467 **/
64798845
JP
1468static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 unsigned long len)
1da177e4 1470{
1dc32918 1471 struct e1000_hw *hw = &adapter->hw;
e982f17c 1472 unsigned long begin = (unsigned long)start;
1da177e4
LT
1473 unsigned long end = begin + len;
1474
2648345f 1475 /* First rev 82545 and 82546 need to not allow any memory
6cfbd97b
JK
1476 * write location to cross 64k boundary due to errata 23
1477 */
1dc32918 1478 if (hw->mac_type == e1000_82545 ||
5377a416 1479 hw->mac_type == e1000_ce4100 ||
1dc32918 1480 hw->mac_type == e1000_82546) {
c3033b01 1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1da177e4
LT
1482 }
1483
c3033b01 1484 return true;
1da177e4
LT
1485}
1486
1487/**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
581d708e 1490 * @txdr: tx descriptor ring (for a specific queue) to setup
1da177e4
LT
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
64798845
JP
1494static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 struct e1000_tx_ring *txdr)
1da177e4 1496{
1da177e4
LT
1497 struct pci_dev *pdev = adapter->pdev;
1498 int size;
1499
1500 size = sizeof(struct e1000_buffer) * txdr->count;
89bf67f1 1501 txdr->buffer_info = vzalloc(size);
14f8dc49 1502 if (!txdr->buffer_info)
1da177e4 1503 return -ENOMEM;
1da177e4
LT
1504
1505 /* round up to nearest 4K */
1506
1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
9099cfb9 1508 txdr->size = ALIGN(txdr->size, 4096);
1da177e4 1509
b16f53be
NN
1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 GFP_KERNEL);
96838a40 1512 if (!txdr->desc) {
1da177e4 1513setup_tx_desc_die:
1da177e4
LT
1514 vfree(txdr->buffer_info);
1515 return -ENOMEM;
1516 }
1517
2648345f 1518 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 void *olddesc = txdr->desc;
1521 dma_addr_t olddma = txdr->dma;
feb8f478 1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
675ad473 1523 txdr->size, txdr->desc);
2648345f 1524 /* Try again, without freeing the previous */
b16f53be
NN
1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 &txdr->dma, GFP_KERNEL);
2648345f 1527 /* Failed allocation, critical failure */
96838a40 1528 if (!txdr->desc) {
b16f53be
NN
1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 olddma);
1da177e4
LT
1531 goto setup_tx_desc_die;
1532 }
1533
1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 /* give up */
b16f53be
NN
1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 txdr->dma);
1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 olddma);
feb8f478 1540 e_err(probe, "Unable to allocate aligned memory "
675ad473 1541 "for the transmit descriptor ring\n");
1da177e4
LT
1542 vfree(txdr->buffer_info);
1543 return -ENOMEM;
1544 } else {
2648345f 1545 /* Free old allocation, new allocation was successful */
b16f53be
NN
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1da177e4
LT
1548 }
1549 }
1550 memset(txdr->desc, 0, txdr->size);
1551
1552 txdr->next_to_use = 0;
1553 txdr->next_to_clean = 0;
1554
1555 return 0;
1556}
1557
581d708e
MC
1558/**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
581d708e
MC
1563 * Return 0 on success, negative on failure
1564 **/
64798845 1565int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1566{
1567 int i, err = 0;
1568
f56799ea 1569 for (i = 0; i < adapter->num_tx_queues; i++) {
581d708e
MC
1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 if (err) {
feb8f478 1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
3fbbc72e
VA
1573 for (i-- ; i >= 0; i--)
1574 e1000_free_tx_resources(adapter,
1575 &adapter->tx_ring[i]);
581d708e
MC
1576 break;
1577 }
1578 }
1579
1580 return err;
1581}
1582
1da177e4
LT
1583/**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
64798845 1589static void e1000_configure_tx(struct e1000_adapter *adapter)
1da177e4 1590{
406874a7 1591 u64 tdba;
581d708e 1592 struct e1000_hw *hw = &adapter->hw;
1532ecea 1593 u32 tdlen, tctl, tipg;
406874a7 1594 u32 ipgr1, ipgr2;
1da177e4
LT
1595
1596 /* Setup the HW Tx Head and Tail descriptor pointers */
1597
f56799ea 1598 switch (adapter->num_tx_queues) {
24025e4e
MC
1599 case 1:
1600 default:
581d708e
MC
1601 tdba = adapter->tx_ring[0].dma;
1602 tdlen = adapter->tx_ring[0].count *
1603 sizeof(struct e1000_tx_desc);
1dc32918
JP
1604 ew32(TDLEN, tdlen);
1605 ew32(TDBAH, (tdba >> 32));
1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 ew32(TDT, 0);
1608 ew32(TDH, 0);
6cfbd97b
JK
1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 E1000_TDH : E1000_82542_TDH);
1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 E1000_TDT : E1000_82542_TDT);
24025e4e
MC
1613 break;
1614 }
1da177e4
LT
1615
1616 /* Set the default values for the Tx Inter Packet Gap timer */
1532ecea 1617 if ((hw->media_type == e1000_media_type_fiber ||
d89b6c67 1618 hw->media_type == e1000_media_type_internal_serdes))
0fadb059
JK
1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 else
1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
581d708e 1623 switch (hw->mac_type) {
1da177e4
LT
1624 case e1000_82542_rev2_0:
1625 case e1000_82542_rev2_1:
1626 tipg = DEFAULT_82542_TIPG_IPGT;
0fadb059
JK
1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1da177e4
LT
1629 break;
1630 default:
0fadb059
JK
1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 break;
1da177e4 1634 }
0fadb059
JK
1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1dc32918 1637 ew32(TIPG, tipg);
1da177e4
LT
1638
1639 /* Set the Tx Interrupt Delay register */
1640
1dc32918 1641 ew32(TIDV, adapter->tx_int_delay);
581d708e 1642 if (hw->mac_type >= e1000_82540)
1dc32918 1643 ew32(TADV, adapter->tx_abs_int_delay);
1da177e4
LT
1644
1645 /* Program the Transmit Control Register */
1646
1dc32918 1647 tctl = er32(TCTL);
1da177e4 1648 tctl &= ~E1000_TCTL_CT;
7e6c9861 1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1da177e4
LT
1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
581d708e 1652 e1000_config_collision_dist(hw);
1da177e4
LT
1653
1654 /* Setup Transmit Descriptor Settings for eop descriptor */
6a042dab
JB
1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657 /* only set IDE if we are delaying interrupts using the timers */
1658 if (adapter->tx_int_delay)
1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1da177e4 1660
581d708e 1661 if (hw->mac_type < e1000_82543)
1da177e4
LT
1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 else
1664 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666 /* Cache if we're 82544 running in PCI-X because we'll
6cfbd97b
JK
1667 * need this to apply a workaround later in the send path.
1668 */
581d708e
MC
1669 if (hw->mac_type == e1000_82544 &&
1670 hw->bus_type == e1000_bus_type_pcix)
3db1cd5c 1671 adapter->pcix_82544 = true;
7e6c9861 1672
1dc32918 1673 ew32(TCTL, tctl);
7e6c9861 1674
1da177e4
LT
1675}
1676
1677/**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
581d708e 1680 * @rxdr: rx descriptor ring (for a specific queue) to setup
1da177e4
LT
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
64798845
JP
1684static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 struct e1000_rx_ring *rxdr)
1da177e4 1686{
1da177e4 1687 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1688 int size, desc_len;
1da177e4
LT
1689
1690 size = sizeof(struct e1000_buffer) * rxdr->count;
89bf67f1 1691 rxdr->buffer_info = vzalloc(size);
14f8dc49 1692 if (!rxdr->buffer_info)
1da177e4 1693 return -ENOMEM;
1da177e4 1694
1532ecea 1695 desc_len = sizeof(struct e1000_rx_desc);
2d7edb92 1696
1da177e4
LT
1697 /* Round up to nearest 4K */
1698
2d7edb92 1699 rxdr->size = rxdr->count * desc_len;
9099cfb9 1700 rxdr->size = ALIGN(rxdr->size, 4096);
1da177e4 1701
b16f53be
NN
1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 GFP_KERNEL);
581d708e 1704 if (!rxdr->desc) {
1da177e4 1705setup_rx_desc_die:
1da177e4
LT
1706 vfree(rxdr->buffer_info);
1707 return -ENOMEM;
1708 }
1709
2648345f 1710 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 void *olddesc = rxdr->desc;
1713 dma_addr_t olddma = rxdr->dma;
feb8f478 1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
675ad473 1715 rxdr->size, rxdr->desc);
2648345f 1716 /* Try again, without freeing the previous */
b16f53be
NN
1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 &rxdr->dma, GFP_KERNEL);
2648345f 1719 /* Failed allocation, critical failure */
581d708e 1720 if (!rxdr->desc) {
b16f53be
NN
1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 olddma);
1da177e4
LT
1723 goto setup_rx_desc_die;
1724 }
1725
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 /* give up */
b16f53be
NN
1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 rxdr->dma);
1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 olddma);
feb8f478
ET
1732 e_err(probe, "Unable to allocate aligned memory for "
1733 "the Rx descriptor ring\n");
581d708e 1734 goto setup_rx_desc_die;
1da177e4 1735 } else {
2648345f 1736 /* Free old allocation, new allocation was successful */
b16f53be
NN
1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 olddma);
1da177e4
LT
1739 }
1740 }
1741 memset(rxdr->desc, 0, rxdr->size);
1742
1743 rxdr->next_to_clean = 0;
1744 rxdr->next_to_use = 0;
edbbb3ca 1745 rxdr->rx_skb_top = NULL;
1da177e4
LT
1746
1747 return 0;
1748}
1749
581d708e
MC
1750/**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
581d708e
MC
1755 * Return 0 on success, negative on failure
1756 **/
64798845 1757int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
1758{
1759 int i, err = 0;
1760
f56799ea 1761 for (i = 0; i < adapter->num_rx_queues; i++) {
581d708e
MC
1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 if (err) {
feb8f478 1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
3fbbc72e
VA
1765 for (i-- ; i >= 0; i--)
1766 e1000_free_rx_resources(adapter,
1767 &adapter->rx_ring[i]);
581d708e
MC
1768 break;
1769 }
1770 }
1771
1772 return err;
1773}
1774
1da177e4 1775/**
2648345f 1776 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1777 * @adapter: Board private structure
1778 **/
64798845 1779static void e1000_setup_rctl(struct e1000_adapter *adapter)
1da177e4 1780{
1dc32918 1781 struct e1000_hw *hw = &adapter->hw;
630b25cd 1782 u32 rctl;
1da177e4 1783
1dc32918 1784 rctl = er32(RCTL);
1da177e4
LT
1785
1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
d5bc77a2
DN
1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 E1000_RCTL_RDMTS_HALF |
1dc32918 1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1da177e4 1791
1dc32918 1792 if (hw->tbi_compatibility_on == 1)
1da177e4
LT
1793 rctl |= E1000_RCTL_SBP;
1794 else
1795 rctl &= ~E1000_RCTL_SBP;
1796
2d7edb92
MC
1797 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 rctl &= ~E1000_RCTL_LPE;
1799 else
1800 rctl |= E1000_RCTL_LPE;
1801
1da177e4 1802 /* Setup buffer sizes */
9e2feace
AK
1803 rctl &= ~E1000_RCTL_SZ_4096;
1804 rctl |= E1000_RCTL_BSEX;
1805 switch (adapter->rx_buffer_len) {
a1415ee6
JK
1806 case E1000_RXBUFFER_2048:
1807 default:
1808 rctl |= E1000_RCTL_SZ_2048;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case E1000_RXBUFFER_4096:
1812 rctl |= E1000_RCTL_SZ_4096;
1813 break;
1814 case E1000_RXBUFFER_8192:
1815 rctl |= E1000_RCTL_SZ_8192;
1816 break;
1817 case E1000_RXBUFFER_16384:
1818 rctl |= E1000_RCTL_SZ_16384;
1819 break;
2d7edb92
MC
1820 }
1821
e825b731
BG
1822 /* This is useful for sniffing bad packets. */
1823 if (adapter->netdev->features & NETIF_F_RXALL) {
1824 /* UPE and MPE will be handled by normal PROMISC logic
6cfbd97b
JK
1825 * in e1000e_set_rx_mode
1826 */
e825b731
BG
1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 E1000_RCTL_DPF | /* Allow filtered pause */
1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 * and that breaks VLANs.
1836 */
1837 }
1838
1dc32918 1839 ew32(RCTL, rctl);
1da177e4
LT
1840}
1841
1842/**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
64798845 1848static void e1000_configure_rx(struct e1000_adapter *adapter)
1da177e4 1849{
406874a7 1850 u64 rdba;
581d708e 1851 struct e1000_hw *hw = &adapter->hw;
1532ecea 1852 u32 rdlen, rctl, rxcsum;
2d7edb92 1853
edbbb3ca
JB
1854 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 rdlen = adapter->rx_ring[0].count *
1856 sizeof(struct e1000_rx_desc);
1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 } else {
1860 rdlen = adapter->rx_ring[0].count *
1861 sizeof(struct e1000_rx_desc);
1862 adapter->clean_rx = e1000_clean_rx_irq;
1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 }
1da177e4
LT
1865
1866 /* disable receives while setting up the descriptors */
1dc32918
JP
1867 rctl = er32(RCTL);
1868 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1da177e4
LT
1869
1870 /* set the Receive Delay Timer Register */
1dc32918 1871 ew32(RDTR, adapter->rx_int_delay);
1da177e4 1872
581d708e 1873 if (hw->mac_type >= e1000_82540) {
1dc32918 1874 ew32(RADV, adapter->rx_abs_int_delay);
835bb129 1875 if (adapter->itr_setting != 0)
1dc32918 1876 ew32(ITR, 1000000000 / (adapter->itr * 256));
1da177e4
LT
1877 }
1878
581d708e 1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and
6cfbd97b
JK
1880 * the Base and Length of the Rx Descriptor Ring
1881 */
f56799ea 1882 switch (adapter->num_rx_queues) {
24025e4e
MC
1883 case 1:
1884 default:
581d708e 1885 rdba = adapter->rx_ring[0].dma;
1dc32918
JP
1886 ew32(RDLEN, rdlen);
1887 ew32(RDBAH, (rdba >> 32));
1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 ew32(RDT, 0);
1890 ew32(RDH, 0);
6cfbd97b
JK
1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 E1000_RDH : E1000_82542_RDH);
1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 E1000_RDT : E1000_82542_RDT);
581d708e 1895 break;
24025e4e
MC
1896 }
1897
1da177e4 1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
581d708e 1899 if (hw->mac_type >= e1000_82543) {
1dc32918 1900 rxcsum = er32(RXCSUM);
630b25cd 1901 if (adapter->rx_csum)
2d7edb92 1902 rxcsum |= E1000_RXCSUM_TUOFL;
630b25cd 1903 else
2d7edb92 1904 /* don't need to clear IPPCSE as it defaults to 0 */
630b25cd 1905 rxcsum &= ~E1000_RXCSUM_TUOFL;
1dc32918 1906 ew32(RXCSUM, rxcsum);
1da177e4
LT
1907 }
1908
1909 /* Enable Receives */
d5bc77a2 1910 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4
LT
1911}
1912
1913/**
581d708e 1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1da177e4 1915 * @adapter: board private structure
581d708e 1916 * @tx_ring: Tx descriptor ring for a specific queue
1da177e4
LT
1917 *
1918 * Free all transmit software resources
1919 **/
64798845
JP
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 struct e1000_tx_ring *tx_ring)
1da177e4
LT
1922{
1923 struct pci_dev *pdev = adapter->pdev;
1924
581d708e 1925 e1000_clean_tx_ring(adapter, tx_ring);
1da177e4 1926
581d708e
MC
1927 vfree(tx_ring->buffer_info);
1928 tx_ring->buffer_info = NULL;
1da177e4 1929
b16f53be
NN
1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 tx_ring->dma);
1da177e4 1932
581d708e
MC
1933 tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
64798845 1942void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1943{
1944 int i;
1945
f56799ea 1946 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1948}
1949
64798845
JP
1950static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 struct e1000_buffer *buffer_info)
1da177e4 1952{
602c0554
AD
1953 if (buffer_info->dma) {
1954 if (buffer_info->mapped_as_page)
b16f53be
NN
1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 buffer_info->length, DMA_TO_DEVICE);
602c0554 1957 else
b16f53be 1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
602c0554 1959 buffer_info->length,
b16f53be 1960 DMA_TO_DEVICE);
602c0554
AD
1961 buffer_info->dma = 0;
1962 }
a9ebadd6 1963 if (buffer_info->skb) {
1da177e4 1964 dev_kfree_skb_any(buffer_info->skb);
a9ebadd6
JB
1965 buffer_info->skb = NULL;
1966 }
37e73df8 1967 buffer_info->time_stamp = 0;
a9ebadd6 1968 /* buffer_info must be completely set up in the transmit path */
1da177e4
LT
1969}
1970
1971/**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
581d708e 1974 * @tx_ring: ring to be cleaned
1da177e4 1975 **/
64798845
JP
1976static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 struct e1000_tx_ring *tx_ring)
1da177e4 1978{
1dc32918 1979 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1980 struct e1000_buffer *buffer_info;
1981 unsigned long size;
1982 unsigned int i;
1983
1984 /* Free all the Tx ring sk_buffs */
1985
96838a40 1986 for (i = 0; i < tx_ring->count; i++) {
1da177e4
LT
1987 buffer_info = &tx_ring->buffer_info[i];
1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 }
1990
2f66fd36 1991 netdev_reset_queue(adapter->netdev);
1da177e4
LT
1992 size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 memset(tx_ring->buffer_info, 0, size);
1994
1995 /* Zero out the descriptor ring */
1996
1997 memset(tx_ring->desc, 0, tx_ring->size);
1998
1999 tx_ring->next_to_use = 0;
2000 tx_ring->next_to_clean = 0;
3db1cd5c 2001 tx_ring->last_tx_tso = false;
1da177e4 2002
1dc32918
JP
2003 writel(0, hw->hw_addr + tx_ring->tdh);
2004 writel(0, hw->hw_addr + tx_ring->tdt);
581d708e
MC
2005}
2006
2007/**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
64798845 2011static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
581d708e
MC
2012{
2013 int i;
2014
f56799ea 2015 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1da177e4
LT
2017}
2018
2019/**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
581d708e 2022 * @rx_ring: ring to clean the resources from
1da177e4
LT
2023 *
2024 * Free all receive software resources
2025 **/
64798845
JP
2026static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 struct e1000_rx_ring *rx_ring)
1da177e4 2028{
1da177e4
LT
2029 struct pci_dev *pdev = adapter->pdev;
2030
581d708e 2031 e1000_clean_rx_ring(adapter, rx_ring);
1da177e4
LT
2032
2033 vfree(rx_ring->buffer_info);
2034 rx_ring->buffer_info = NULL;
2035
b16f53be
NN
2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 rx_ring->dma);
1da177e4
LT
2038
2039 rx_ring->desc = NULL;
2040}
2041
2042/**
581d708e 2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1da177e4 2044 * @adapter: board private structure
581d708e
MC
2045 *
2046 * Free all receive software resources
2047 **/
64798845 2048void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
2049{
2050 int i;
2051
f56799ea 2052 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e
MC
2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054}
2055
2056/**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
1da177e4 2060 **/
64798845
JP
2061static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 struct e1000_rx_ring *rx_ring)
1da177e4 2063{
1dc32918 2064 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2065 struct e1000_buffer *buffer_info;
2066 struct pci_dev *pdev = adapter->pdev;
2067 unsigned long size;
630b25cd 2068 unsigned int i;
1da177e4
LT
2069
2070 /* Free all the Rx ring sk_buffs */
96838a40 2071 for (i = 0; i < rx_ring->count; i++) {
1da177e4 2072 buffer_info = &rx_ring->buffer_info[i];
edbbb3ca
JB
2073 if (buffer_info->dma &&
2074 adapter->clean_rx == e1000_clean_rx_irq) {
b16f53be 2075 dma_unmap_single(&pdev->dev, buffer_info->dma,
edbbb3ca 2076 buffer_info->length,
b16f53be 2077 DMA_FROM_DEVICE);
edbbb3ca
JB
2078 } else if (buffer_info->dma &&
2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
b16f53be
NN
2080 dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 buffer_info->length,
2082 DMA_FROM_DEVICE);
679be3ba 2083 }
1da177e4 2084
679be3ba 2085 buffer_info->dma = 0;
edbbb3ca
JB
2086 if (buffer_info->page) {
2087 put_page(buffer_info->page);
2088 buffer_info->page = NULL;
2089 }
679be3ba 2090 if (buffer_info->skb) {
1da177e4
LT
2091 dev_kfree_skb(buffer_info->skb);
2092 buffer_info->skb = NULL;
997f5cbd 2093 }
1da177e4
LT
2094 }
2095
edbbb3ca
JB
2096 /* there also may be some cached data from a chained receive */
2097 if (rx_ring->rx_skb_top) {
2098 dev_kfree_skb(rx_ring->rx_skb_top);
2099 rx_ring->rx_skb_top = NULL;
2100 }
2101
1da177e4
LT
2102 size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 memset(rx_ring->buffer_info, 0, size);
2104
2105 /* Zero out the descriptor ring */
1da177e4
LT
2106 memset(rx_ring->desc, 0, rx_ring->size);
2107
2108 rx_ring->next_to_clean = 0;
2109 rx_ring->next_to_use = 0;
2110
1dc32918
JP
2111 writel(0, hw->hw_addr + rx_ring->rdh);
2112 writel(0, hw->hw_addr + rx_ring->rdt);
581d708e
MC
2113}
2114
2115/**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
64798845 2119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
581d708e
MC
2120{
2121 int i;
2122
f56799ea 2123 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e 2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1da177e4
LT
2125}
2126
2127/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
64798845 2130static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
1da177e4 2131{
1dc32918 2132 struct e1000_hw *hw = &adapter->hw;
1da177e4 2133 struct net_device *netdev = adapter->netdev;
406874a7 2134 u32 rctl;
1da177e4 2135
1dc32918 2136 e1000_pci_clear_mwi(hw);
1da177e4 2137
1dc32918 2138 rctl = er32(RCTL);
1da177e4 2139 rctl |= E1000_RCTL_RST;
1dc32918
JP
2140 ew32(RCTL, rctl);
2141 E1000_WRITE_FLUSH();
1da177e4
LT
2142 mdelay(5);
2143
96838a40 2144 if (netif_running(netdev))
581d708e 2145 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
2146}
2147
64798845 2148static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
1da177e4 2149{
1dc32918 2150 struct e1000_hw *hw = &adapter->hw;
1da177e4 2151 struct net_device *netdev = adapter->netdev;
406874a7 2152 u32 rctl;
1da177e4 2153
1dc32918 2154 rctl = er32(RCTL);
1da177e4 2155 rctl &= ~E1000_RCTL_RST;
1dc32918
JP
2156 ew32(RCTL, rctl);
2157 E1000_WRITE_FLUSH();
1da177e4
LT
2158 mdelay(5);
2159
1dc32918
JP
2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 e1000_pci_set_mwi(hw);
1da177e4 2162
96838a40 2163 if (netif_running(netdev)) {
72d64a43
JK
2164 /* No need to loop, because 82542 supports only 1 queue */
2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
7c4d3367 2166 e1000_configure_rx(adapter);
72d64a43 2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
1da177e4
LT
2168 }
2169}
2170
2171/**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
64798845 2178static int e1000_set_mac(struct net_device *netdev, void *p)
1da177e4 2179{
60490fe0 2180 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 2181 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2182 struct sockaddr *addr = p;
2183
96838a40 2184 if (!is_valid_ether_addr(addr->sa_data))
1da177e4
LT
2185 return -EADDRNOTAVAIL;
2186
2187 /* 82542 2.0 needs to be in reset to write receive address registers */
2188
1dc32918 2189 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2190 e1000_enter_82542_rst(adapter);
2191
2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1dc32918 2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
1da177e4 2194
1dc32918 2195 e1000_rar_set(hw, hw->mac_addr, 0);
1da177e4 2196
1dc32918 2197 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2198 e1000_leave_82542_rst(adapter);
2199
2200 return 0;
2201}
2202
2203/**
db0ce50d 2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
1da177e4
LT
2205 * @netdev: network interface device structure
2206 *
db0ce50d
PM
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
1da177e4
LT
2210 * promiscuous mode, and all-multi behavior.
2211 **/
64798845 2212static void e1000_set_rx_mode(struct net_device *netdev)
1da177e4 2213{
60490fe0 2214 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 2215 struct e1000_hw *hw = &adapter->hw;
ccffad25
JP
2216 struct netdev_hw_addr *ha;
2217 bool use_uc = false;
406874a7
JP
2218 u32 rctl;
2219 u32 hash_value;
868d5309 2220 int i, rar_entries = E1000_RAR_ENTRIES;
1532ecea 2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
81c52285
JB
2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
14f8dc49 2224 if (!mcarray)
81c52285 2225 return;
cd94dd0b 2226
2648345f
MC
2227 /* Check for Promiscuous and All Multicast modes */
2228
1dc32918 2229 rctl = er32(RCTL);
1da177e4 2230
96838a40 2231 if (netdev->flags & IFF_PROMISC) {
1da177e4 2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2233 rctl &= ~E1000_RCTL_VFE;
1da177e4 2234 } else {
1532ecea 2235 if (netdev->flags & IFF_ALLMULTI)
746b9f02 2236 rctl |= E1000_RCTL_MPE;
1532ecea 2237 else
746b9f02 2238 rctl &= ~E1000_RCTL_MPE;
1532ecea 2239 /* Enable VLAN filter if there is a VLAN */
5622e404 2240 if (e1000_vlan_used(adapter))
1532ecea 2241 rctl |= E1000_RCTL_VFE;
db0ce50d
PM
2242 }
2243
32e7bfc4 2244 if (netdev_uc_count(netdev) > rar_entries - 1) {
db0ce50d
PM
2245 rctl |= E1000_RCTL_UPE;
2246 } else if (!(netdev->flags & IFF_PROMISC)) {
2247 rctl &= ~E1000_RCTL_UPE;
ccffad25 2248 use_uc = true;
1da177e4
LT
2249 }
2250
1dc32918 2251 ew32(RCTL, rctl);
1da177e4
LT
2252
2253 /* 82542 2.0 needs to be in reset to write receive address registers */
2254
96838a40 2255 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2256 e1000_enter_82542_rst(adapter);
2257
db0ce50d
PM
2258 /* load the first 14 addresses into the exact filters 1-14. Unicast
2259 * addresses take precedence to avoid disabling unicast filtering
2260 * when possible.
2261 *
b595076a 2262 * RAR 0 is used for the station MAC address
1da177e4
LT
2263 * if there are not 14 addresses, go ahead and clear the filters
2264 */
ccffad25
JP
2265 i = 1;
2266 if (use_uc)
32e7bfc4 2267 netdev_for_each_uc_addr(ha, netdev) {
ccffad25
JP
2268 if (i == rar_entries)
2269 break;
2270 e1000_rar_set(hw, ha->addr, i++);
2271 }
2272
22bedad3 2273 netdev_for_each_mc_addr(ha, netdev) {
7a81e9f3
JP
2274 if (i == rar_entries) {
2275 /* load any remaining addresses into the hash table */
2276 u32 hash_reg, hash_bit, mta;
22bedad3 2277 hash_value = e1000_hash_mc_addr(hw, ha->addr);
7a81e9f3
JP
2278 hash_reg = (hash_value >> 5) & 0x7F;
2279 hash_bit = hash_value & 0x1F;
2280 mta = (1 << hash_bit);
2281 mcarray[hash_reg] |= mta;
10886af5 2282 } else {
22bedad3 2283 e1000_rar_set(hw, ha->addr, i++);
1da177e4
LT
2284 }
2285 }
2286
7a81e9f3
JP
2287 for (; i < rar_entries; i++) {
2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 E1000_WRITE_FLUSH();
2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 E1000_WRITE_FLUSH();
1da177e4
LT
2292 }
2293
81c52285 2294 /* write the hash table completely, write from bottom to avoid
6cfbd97b
JK
2295 * both stupid write combining chipsets, and flushing each write
2296 */
81c52285 2297 for (i = mta_reg_count - 1; i >= 0 ; i--) {
6cfbd97b 2298 /* If we are on an 82544 has an errata where writing odd
81c52285
JB
2299 * offsets overwrites the previous even offset, but writing
2300 * backwards over the range solves the issue by always
2301 * writing the odd offset first
2302 */
2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 }
2305 E1000_WRITE_FLUSH();
2306
96838a40 2307 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4 2308 e1000_leave_82542_rst(adapter);
81c52285
JB
2309
2310 kfree(mcarray);
1da177e4
LT
2311}
2312
a4010afe
JB
2313/**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
5cf42fcd
JB
2320static void e1000_update_phy_info_task(struct work_struct *work)
2321{
2322 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2323 struct e1000_adapter,
2324 phy_info_task.work);
b2f963bf 2325
a4010afe 2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1da177e4
LT
2327}
2328
5cf42fcd
JB
2329/**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334{
2335 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2336 struct e1000_adapter,
2337 fifo_stall_task.work);
1dc32918 2338 struct e1000_hw *hw = &adapter->hw;
1da177e4 2339 struct net_device *netdev = adapter->netdev;
406874a7 2340 u32 tctl;
1da177e4 2341
96838a40 2342 if (atomic_read(&adapter->tx_fifo_stall)) {
1dc32918
JP
2343 if ((er32(TDT) == er32(TDH)) &&
2344 (er32(TDFT) == er32(TDFH)) &&
2345 (er32(TDFTS) == er32(TDFHS))) {
2346 tctl = er32(TCTL);
2347 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 ew32(TDFT, adapter->tx_head_addr);
2349 ew32(TDFH, adapter->tx_head_addr);
2350 ew32(TDFTS, adapter->tx_head_addr);
2351 ew32(TDFHS, adapter->tx_head_addr);
2352 ew32(TCTL, tctl);
2353 E1000_WRITE_FLUSH();
1da177e4
LT
2354
2355 adapter->tx_fifo_head = 0;
2356 atomic_set(&adapter->tx_fifo_stall, 0);
2357 netif_wake_queue(netdev);
baa34745 2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
a4010afe 2359 schedule_delayed_work(&adapter->fifo_stall_task, 1);
1da177e4
LT
2360 }
2361 }
2362}
2363
b548192a 2364bool e1000_has_link(struct e1000_adapter *adapter)
be0f0719
JB
2365{
2366 struct e1000_hw *hw = &adapter->hw;
2367 bool link_active = false;
be0f0719 2368
6d9e5130
NS
2369 /* get_link_status is set on LSC (link status) interrupt or rx
2370 * sequence error interrupt (except on intel ce4100).
2371 * get_link_status will stay false until the
2372 * e1000_check_for_link establishes link for copper adapters
2373 * ONLY
be0f0719
JB
2374 */
2375 switch (hw->media_type) {
2376 case e1000_media_type_copper:
6d9e5130
NS
2377 if (hw->mac_type == e1000_ce4100)
2378 hw->get_link_status = 1;
be0f0719 2379 if (hw->get_link_status) {
120a5d0d 2380 e1000_check_for_link(hw);
be0f0719
JB
2381 link_active = !hw->get_link_status;
2382 } else {
2383 link_active = true;
2384 }
2385 break;
2386 case e1000_media_type_fiber:
120a5d0d 2387 e1000_check_for_link(hw);
be0f0719
JB
2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 break;
2390 case e1000_media_type_internal_serdes:
120a5d0d 2391 e1000_check_for_link(hw);
be0f0719
JB
2392 link_active = hw->serdes_has_link;
2393 break;
2394 default:
2395 break;
2396 }
2397
2398 return link_active;
2399}
2400
1da177e4 2401/**
a4010afe
JB
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
1da177e4 2404 **/
a4010afe 2405static void e1000_watchdog(struct work_struct *work)
1da177e4 2406{
a4010afe
JB
2407 struct e1000_adapter *adapter = container_of(work,
2408 struct e1000_adapter,
2409 watchdog_task.work);
1dc32918 2410 struct e1000_hw *hw = &adapter->hw;
1da177e4 2411 struct net_device *netdev = adapter->netdev;
545c67c0 2412 struct e1000_tx_ring *txdr = adapter->tx_ring;
406874a7 2413 u32 link, tctl;
90fb5135 2414
be0f0719
JB
2415 link = e1000_has_link(adapter);
2416 if ((netif_carrier_ok(netdev)) && link)
2417 goto link_up;
1da177e4 2418
96838a40
JB
2419 if (link) {
2420 if (!netif_carrier_ok(netdev)) {
406874a7 2421 u32 ctrl;
c3033b01 2422 bool txb2b = true;
be0f0719 2423 /* update snapshot of PHY registers on LSC */
1dc32918 2424 e1000_get_speed_and_duplex(hw,
6cfbd97b
JK
2425 &adapter->link_speed,
2426 &adapter->link_duplex);
1da177e4 2427
1dc32918 2428 ctrl = er32(CTRL);
675ad473
ET
2429 pr_info("%s NIC Link is Up %d Mbps %s, "
2430 "Flow Control: %s\n",
2431 netdev->name,
2432 adapter->link_speed,
2433 adapter->link_duplex == FULL_DUPLEX ?
2434 "Full Duplex" : "Half Duplex",
2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 E1000_CTRL_TFCE) ? "TX" : "None")));
1da177e4 2439
39ca5f03 2440 /* adjust timeout factor according to speed/duplex */
66a2b0a3 2441 adapter->tx_timeout_factor = 1;
7e6c9861
JK
2442 switch (adapter->link_speed) {
2443 case SPEED_10:
c3033b01 2444 txb2b = false;
be0f0719 2445 adapter->tx_timeout_factor = 16;
7e6c9861
JK
2446 break;
2447 case SPEED_100:
c3033b01 2448 txb2b = false;
7e6c9861
JK
2449 /* maybe add some timeout factor ? */
2450 break;
2451 }
2452
1532ecea 2453 /* enable transmits in the hardware */
1dc32918 2454 tctl = er32(TCTL);
7e6c9861 2455 tctl |= E1000_TCTL_EN;
1dc32918 2456 ew32(TCTL, tctl);
66a2b0a3 2457
1da177e4 2458 netif_carrier_on(netdev);
baa34745 2459 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2460 schedule_delayed_work(&adapter->phy_info_task,
2461 2 * HZ);
1da177e4
LT
2462 adapter->smartspeed = 0;
2463 }
2464 } else {
96838a40 2465 if (netif_carrier_ok(netdev)) {
1da177e4
LT
2466 adapter->link_speed = 0;
2467 adapter->link_duplex = 0;
675ad473
ET
2468 pr_info("%s NIC Link is Down\n",
2469 netdev->name);
1da177e4 2470 netif_carrier_off(netdev);
baa34745
JB
2471
2472 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2473 schedule_delayed_work(&adapter->phy_info_task,
2474 2 * HZ);
1da177e4
LT
2475 }
2476
2477 e1000_smartspeed(adapter);
2478 }
2479
be0f0719 2480link_up:
1da177e4
LT
2481 e1000_update_stats(adapter);
2482
1dc32918 2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1da177e4 2484 adapter->tpt_old = adapter->stats.tpt;
1dc32918 2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
1da177e4
LT
2486 adapter->colc_old = adapter->stats.colc;
2487
2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 adapter->gorcl_old = adapter->stats.gorcl;
2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 adapter->gotcl_old = adapter->stats.gotcl;
2492
1dc32918 2493 e1000_update_adaptive(hw);
1da177e4 2494
f56799ea 2495 if (!netif_carrier_ok(netdev)) {
581d708e 2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1da177e4
LT
2497 /* We've lost link, so the controller stops DMA,
2498 * but we've got queued Tx work that's never going
2499 * to get done, so reset controller to flush Tx.
6cfbd97b
JK
2500 * (Do the reset outside of interrupt context).
2501 */
87041639
JK
2502 adapter->tx_timeout_count++;
2503 schedule_work(&adapter->reset_task);
0ef4eedc 2504 /* exit immediately since reset is imminent */
b2f963bf 2505 return;
1da177e4
LT
2506 }
2507 }
2508
eab2abf5
JB
2509 /* Simple mode for Interrupt Throttle Rate (ITR) */
2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
6cfbd97b 2511 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
2512 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 * everyone else is between 2000-8000.
2514 */
2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 adapter->gotcl - adapter->gorcl :
2518 adapter->gorcl - adapter->gotcl) / 10000;
2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521 ew32(ITR, 1000000000 / (itr * 256));
2522 }
2523
1da177e4 2524 /* Cause software interrupt to ensure rx ring is cleaned */
1dc32918 2525 ew32(ICS, E1000_ICS_RXDMT0);
1da177e4 2526
2648345f 2527 /* Force detection of hung controller every watchdog period */
c3033b01 2528 adapter->detect_tx_hung = true;
1da177e4 2529
a4010afe 2530 /* Reschedule the task */
baa34745 2531 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
1da177e4
LT
2533}
2534
835bb129
JB
2535enum latency_range {
2536 lowest_latency = 0,
2537 low_latency = 1,
2538 bulk_latency = 2,
2539 latency_invalid = 255
2540};
2541
2542/**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
8fce4731
JB
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
835bb129
JB
2549 * Stores a new ITR value based on packets and byte
2550 * counts during the last interrupt. The advantage of per interrupt
2551 * computation is faster updates and more accurate ITR for the current
2552 * traffic pattern. Constants in this function were computed
2553 * based on theoretical maximum wire speed and thresholds were set based
2554 * on testing data as well as attempting to minimize response time
2555 * while increasing bulk throughput.
2556 * this functionality is controlled by the InterruptThrottleRate module
2557 * parameter (see e1000_param.c)
835bb129
JB
2558 **/
2559static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
64798845 2560 u16 itr_setting, int packets, int bytes)
835bb129
JB
2561{
2562 unsigned int retval = itr_setting;
2563 struct e1000_hw *hw = &adapter->hw;
2564
2565 if (unlikely(hw->mac_type < e1000_82540))
2566 goto update_itr_done;
2567
2568 if (packets == 0)
2569 goto update_itr_done;
2570
835bb129
JB
2571 switch (itr_setting) {
2572 case lowest_latency:
2b65326e
JB
2573 /* jumbo frames get bulk treatment*/
2574 if (bytes/packets > 8000)
2575 retval = bulk_latency;
2576 else if ((packets < 5) && (bytes > 512))
835bb129
JB
2577 retval = low_latency;
2578 break;
2579 case low_latency: /* 50 usec aka 20000 ints/s */
2580 if (bytes > 10000) {
2b65326e
JB
2581 /* jumbo frames need bulk latency setting */
2582 if (bytes/packets > 8000)
2583 retval = bulk_latency;
2584 else if ((packets < 10) || ((bytes/packets) > 1200))
835bb129
JB
2585 retval = bulk_latency;
2586 else if ((packets > 35))
2587 retval = lowest_latency;
2b65326e
JB
2588 } else if (bytes/packets > 2000)
2589 retval = bulk_latency;
2590 else if (packets <= 2 && bytes < 512)
835bb129
JB
2591 retval = lowest_latency;
2592 break;
2593 case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 if (bytes > 25000) {
2595 if (packets > 35)
2596 retval = low_latency;
2b65326e
JB
2597 } else if (bytes < 6000) {
2598 retval = low_latency;
835bb129
JB
2599 }
2600 break;
2601 }
2602
2603update_itr_done:
2604 return retval;
2605}
2606
2607static void e1000_set_itr(struct e1000_adapter *adapter)
2608{
2609 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
2610 u16 current_itr;
2611 u32 new_itr = adapter->itr;
835bb129
JB
2612
2613 if (unlikely(hw->mac_type < e1000_82540))
2614 return;
2615
2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 current_itr = 0;
2619 new_itr = 4000;
2620 goto set_itr_now;
2621 }
2622
6cfbd97b
JK
2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 adapter->total_tx_packets,
2625 adapter->total_tx_bytes);
2b65326e
JB
2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 adapter->tx_itr = low_latency;
2629
6cfbd97b
JK
2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 adapter->total_rx_packets,
2632 adapter->total_rx_bytes);
2b65326e
JB
2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 adapter->rx_itr = low_latency;
835bb129
JB
2636
2637 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
835bb129
JB
2639 switch (current_itr) {
2640 /* counts and packets in update_itr are dependent on these numbers */
2641 case lowest_latency:
2642 new_itr = 70000;
2643 break;
2644 case low_latency:
2645 new_itr = 20000; /* aka hwitr = ~200 */
2646 break;
2647 case bulk_latency:
2648 new_itr = 4000;
2649 break;
2650 default:
2651 break;
2652 }
2653
2654set_itr_now:
2655 if (new_itr != adapter->itr) {
2656 /* this attempts to bias the interrupt rate towards Bulk
2657 * by adding intermediate steps when interrupt rate is
6cfbd97b
JK
2658 * increasing
2659 */
835bb129 2660 new_itr = new_itr > adapter->itr ?
6cfbd97b
JK
2661 min(adapter->itr + (new_itr >> 2), new_itr) :
2662 new_itr;
835bb129 2663 adapter->itr = new_itr;
1dc32918 2664 ew32(ITR, 1000000000 / (new_itr * 256));
835bb129 2665 }
835bb129
JB
2666}
2667
1da177e4
LT
2668#define E1000_TX_FLAGS_CSUM 0x00000001
2669#define E1000_TX_FLAGS_VLAN 0x00000002
2670#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 2671#define E1000_TX_FLAGS_IPV4 0x00000008
11a78dcf 2672#define E1000_TX_FLAGS_NO_FCS 0x00000010
1da177e4
LT
2673#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2674#define E1000_TX_FLAGS_VLAN_SHIFT 16
2675
64798845 2676static int e1000_tso(struct e1000_adapter *adapter,
06f4d033
VY
2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2678 __be16 protocol)
1da177e4 2679{
1da177e4 2680 struct e1000_context_desc *context_desc;
545c67c0 2681 struct e1000_buffer *buffer_info;
1da177e4 2682 unsigned int i;
406874a7
JP
2683 u32 cmd_length = 0;
2684 u16 ipcse = 0, tucse, mss;
2685 u8 ipcss, ipcso, tucss, tucso, hdr_len;
1da177e4 2686
89114afd 2687 if (skb_is_gso(skb)) {
4a54b1e5
FR
2688 int err;
2689
2690 err = skb_cow_head(skb, 0);
2691 if (err < 0)
2692 return err;
1da177e4 2693
ab6a5bb6 2694 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
7967168c 2695 mss = skb_shinfo(skb)->gso_size;
06f4d033 2696 if (protocol == htons(ETH_P_IP)) {
eddc9ec5
ACM
2697 struct iphdr *iph = ip_hdr(skb);
2698 iph->tot_len = 0;
2699 iph->check = 0;
aa8223c7
ACM
2700 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701 iph->daddr, 0,
2702 IPPROTO_TCP,
2703 0);
2d7edb92 2704 cmd_length = E1000_TXD_CMD_IP;
ea2ae17d 2705 ipcse = skb_transport_offset(skb) - 1;
06f4d033 2706 } else if (skb_is_gso_v6(skb)) {
0660e03f 2707 ipv6_hdr(skb)->payload_len = 0;
aa8223c7 2708 tcp_hdr(skb)->check =
0660e03f
ACM
2709 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2710 &ipv6_hdr(skb)->daddr,
2711 0, IPPROTO_TCP, 0);
2d7edb92 2712 ipcse = 0;
2d7edb92 2713 }
bbe735e4 2714 ipcss = skb_network_offset(skb);
eddc9ec5 2715 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
ea2ae17d 2716 tucss = skb_transport_offset(skb);
aa8223c7 2717 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
1da177e4
LT
2718 tucse = 0;
2719
2720 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 2721 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4 2722
581d708e
MC
2723 i = tx_ring->next_to_use;
2724 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2725 buffer_info = &tx_ring->buffer_info[i];
1da177e4
LT
2726
2727 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2728 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2729 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2730 context_desc->upper_setup.tcp_fields.tucss = tucss;
2731 context_desc->upper_setup.tcp_fields.tucso = tucso;
2732 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2733 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2734 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2735 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2736
545c67c0 2737 buffer_info->time_stamp = jiffies;
a9ebadd6 2738 buffer_info->next_to_watch = i;
545c67c0 2739
581d708e
MC
2740 if (++i == tx_ring->count) i = 0;
2741 tx_ring->next_to_use = i;
1da177e4 2742
c3033b01 2743 return true;
1da177e4 2744 }
c3033b01 2745 return false;
1da177e4
LT
2746}
2747
64798845 2748static bool e1000_tx_csum(struct e1000_adapter *adapter,
06f4d033
VY
2749 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2750 __be16 protocol)
1da177e4
LT
2751{
2752 struct e1000_context_desc *context_desc;
545c67c0 2753 struct e1000_buffer *buffer_info;
1da177e4 2754 unsigned int i;
406874a7 2755 u8 css;
3ed30676 2756 u32 cmd_len = E1000_TXD_CMD_DEXT;
1da177e4 2757
3ed30676
DG
2758 if (skb->ip_summed != CHECKSUM_PARTIAL)
2759 return false;
1da177e4 2760
06f4d033 2761 switch (protocol) {
09640e63 2762 case cpu_to_be16(ETH_P_IP):
3ed30676
DG
2763 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2764 cmd_len |= E1000_TXD_CMD_TCP;
2765 break;
09640e63 2766 case cpu_to_be16(ETH_P_IPV6):
3ed30676
DG
2767 /* XXX not handling all IPV6 headers */
2768 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2769 cmd_len |= E1000_TXD_CMD_TCP;
2770 break;
2771 default:
2772 if (unlikely(net_ratelimit()))
feb8f478
ET
2773 e_warn(drv, "checksum_partial proto=%x!\n",
2774 skb->protocol);
3ed30676
DG
2775 break;
2776 }
1da177e4 2777
0d0b1672 2778 css = skb_checksum_start_offset(skb);
1da177e4 2779
3ed30676
DG
2780 i = tx_ring->next_to_use;
2781 buffer_info = &tx_ring->buffer_info[i];
2782 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2783
3ed30676
DG
2784 context_desc->lower_setup.ip_config = 0;
2785 context_desc->upper_setup.tcp_fields.tucss = css;
2786 context_desc->upper_setup.tcp_fields.tucso =
2787 css + skb->csum_offset;
2788 context_desc->upper_setup.tcp_fields.tucse = 0;
2789 context_desc->tcp_seg_setup.data = 0;
2790 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
1da177e4 2791
3ed30676
DG
2792 buffer_info->time_stamp = jiffies;
2793 buffer_info->next_to_watch = i;
1da177e4 2794
3ed30676
DG
2795 if (unlikely(++i == tx_ring->count)) i = 0;
2796 tx_ring->next_to_use = i;
2797
2798 return true;
1da177e4
LT
2799}
2800
2801#define E1000_MAX_TXD_PWR 12
2802#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2803
64798845
JP
2804static int e1000_tx_map(struct e1000_adapter *adapter,
2805 struct e1000_tx_ring *tx_ring,
2806 struct sk_buff *skb, unsigned int first,
2807 unsigned int max_per_txd, unsigned int nr_frags,
2808 unsigned int mss)
1da177e4 2809{
1dc32918 2810 struct e1000_hw *hw = &adapter->hw;
602c0554 2811 struct pci_dev *pdev = adapter->pdev;
37e73df8 2812 struct e1000_buffer *buffer_info;
d20b606c 2813 unsigned int len = skb_headlen(skb);
602c0554 2814 unsigned int offset = 0, size, count = 0, i;
31c15a2f 2815 unsigned int f, bytecount, segs;
1da177e4
LT
2816
2817 i = tx_ring->next_to_use;
2818
96838a40 2819 while (len) {
37e73df8 2820 buffer_info = &tx_ring->buffer_info[i];
1da177e4 2821 size = min(len, max_per_txd);
fd803241
JK
2822 /* Workaround for Controller erratum --
2823 * descriptor for non-tso packet in a linear SKB that follows a
2824 * tso gets written back prematurely before the data is fully
6cfbd97b
JK
2825 * DMA'd to the controller
2826 */
fd803241 2827 if (!skb->data_len && tx_ring->last_tx_tso &&
89114afd 2828 !skb_is_gso(skb)) {
3db1cd5c 2829 tx_ring->last_tx_tso = false;
fd803241
JK
2830 size -= 4;
2831 }
2832
1da177e4 2833 /* Workaround for premature desc write-backs
6cfbd97b
JK
2834 * in TSO mode. Append 4-byte sentinel desc
2835 */
96838a40 2836 if (unlikely(mss && !nr_frags && size == len && size > 8))
1da177e4 2837 size -= 4;
97338bde
MC
2838 /* work-around for errata 10 and it applies
2839 * to all controllers in PCI-X mode
2840 * The fix is to make sure that the first descriptor of a
2841 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2842 */
1dc32918 2843 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
2844 (size > 2015) && count == 0))
2845 size = 2015;
96838a40 2846
1da177e4 2847 /* Workaround for potential 82544 hang in PCI-X. Avoid
6cfbd97b
JK
2848 * terminating buffers within evenly-aligned dwords.
2849 */
96838a40 2850 if (unlikely(adapter->pcix_82544 &&
1da177e4
LT
2851 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2852 size > 4))
2853 size -= 4;
2854
2855 buffer_info->length = size;
cdd7549e 2856 /* set time_stamp *before* dma to help avoid a possible race */
1da177e4 2857 buffer_info->time_stamp = jiffies;
602c0554 2858 buffer_info->mapped_as_page = false;
b16f53be
NN
2859 buffer_info->dma = dma_map_single(&pdev->dev,
2860 skb->data + offset,
6cfbd97b 2861 size, DMA_TO_DEVICE);
b16f53be 2862 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2863 goto dma_error;
a9ebadd6 2864 buffer_info->next_to_watch = i;
1da177e4
LT
2865
2866 len -= size;
2867 offset += size;
2868 count++;
37e73df8
AD
2869 if (len) {
2870 i++;
2871 if (unlikely(i == tx_ring->count))
2872 i = 0;
2873 }
1da177e4
LT
2874 }
2875
96838a40 2876 for (f = 0; f < nr_frags; f++) {
9e903e08 2877 const struct skb_frag_struct *frag;
1da177e4
LT
2878
2879 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2880 len = skb_frag_size(frag);
877749bf 2881 offset = 0;
1da177e4 2882
96838a40 2883 while (len) {
877749bf 2884 unsigned long bufend;
37e73df8
AD
2885 i++;
2886 if (unlikely(i == tx_ring->count))
2887 i = 0;
2888
1da177e4
LT
2889 buffer_info = &tx_ring->buffer_info[i];
2890 size = min(len, max_per_txd);
1da177e4 2891 /* Workaround for premature desc write-backs
6cfbd97b
JK
2892 * in TSO mode. Append 4-byte sentinel desc
2893 */
2894 if (unlikely(mss && f == (nr_frags-1) &&
2895 size == len && size > 8))
1da177e4 2896 size -= 4;
1da177e4
LT
2897 /* Workaround for potential 82544 hang in PCI-X.
2898 * Avoid terminating buffers within evenly-aligned
6cfbd97b
JK
2899 * dwords.
2900 */
877749bf
IC
2901 bufend = (unsigned long)
2902 page_to_phys(skb_frag_page(frag));
2903 bufend += offset + size - 1;
96838a40 2904 if (unlikely(adapter->pcix_82544 &&
877749bf
IC
2905 !(bufend & 4) &&
2906 size > 4))
1da177e4
LT
2907 size -= 4;
2908
2909 buffer_info->length = size;
1da177e4 2910 buffer_info->time_stamp = jiffies;
602c0554 2911 buffer_info->mapped_as_page = true;
877749bf
IC
2912 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2913 offset, size, DMA_TO_DEVICE);
b16f53be 2914 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2915 goto dma_error;
a9ebadd6 2916 buffer_info->next_to_watch = i;
1da177e4
LT
2917
2918 len -= size;
2919 offset += size;
2920 count++;
1da177e4
LT
2921 }
2922 }
2923
31c15a2f
DN
2924 segs = skb_shinfo(skb)->gso_segs ?: 1;
2925 /* multiply data chunks by size of headers */
2926 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2927
1da177e4 2928 tx_ring->buffer_info[i].skb = skb;
31c15a2f
DN
2929 tx_ring->buffer_info[i].segs = segs;
2930 tx_ring->buffer_info[i].bytecount = bytecount;
1da177e4
LT
2931 tx_ring->buffer_info[first].next_to_watch = i;
2932
2933 return count;
602c0554
AD
2934
2935dma_error:
2936 dev_err(&pdev->dev, "TX DMA map failed\n");
2937 buffer_info->dma = 0;
c1fa347f 2938 if (count)
602c0554 2939 count--;
c1fa347f
RK
2940
2941 while (count--) {
2942 if (i==0)
602c0554 2943 i += tx_ring->count;
c1fa347f 2944 i--;
602c0554
AD
2945 buffer_info = &tx_ring->buffer_info[i];
2946 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2947 }
2948
2949 return 0;
1da177e4
LT
2950}
2951
64798845
JP
2952static void e1000_tx_queue(struct e1000_adapter *adapter,
2953 struct e1000_tx_ring *tx_ring, int tx_flags,
2954 int count)
1da177e4 2955{
1dc32918 2956 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2957 struct e1000_tx_desc *tx_desc = NULL;
2958 struct e1000_buffer *buffer_info;
406874a7 2959 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1da177e4
LT
2960 unsigned int i;
2961
96838a40 2962 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1da177e4 2963 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
6cfbd97b 2964 E1000_TXD_CMD_TSE;
2d7edb92
MC
2965 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2966
96838a40 2967 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2d7edb92 2968 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2969 }
2970
96838a40 2971 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1da177e4
LT
2972 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2973 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2974 }
2975
96838a40 2976 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1da177e4
LT
2977 txd_lower |= E1000_TXD_CMD_VLE;
2978 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2979 }
2980
11a78dcf
BG
2981 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2982 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2983
1da177e4
LT
2984 i = tx_ring->next_to_use;
2985
96838a40 2986 while (count--) {
1da177e4
LT
2987 buffer_info = &tx_ring->buffer_info[i];
2988 tx_desc = E1000_TX_DESC(*tx_ring, i);
2989 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2990 tx_desc->lower.data =
2991 cpu_to_le32(txd_lower | buffer_info->length);
2992 tx_desc->upper.data = cpu_to_le32(txd_upper);
96838a40 2993 if (unlikely(++i == tx_ring->count)) i = 0;
1da177e4
LT
2994 }
2995
2996 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2997
11a78dcf
BG
2998 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2999 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3000 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3001
1da177e4
LT
3002 /* Force memory writes to complete before letting h/w
3003 * know there are new descriptors to fetch. (Only
3004 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
3005 * such as IA-64).
3006 */
1da177e4
LT
3007 wmb();
3008
3009 tx_ring->next_to_use = i;
1dc32918 3010 writel(i, hw->hw_addr + tx_ring->tdt);
2ce9047f 3011 /* we need this if more than one processor can write to our tail
6cfbd97b
JK
3012 * at a time, it synchronizes IO on IA64/Altix systems
3013 */
2ce9047f 3014 mmiowb();
1da177e4
LT
3015}
3016
1aa8b471 3017/* 82547 workaround to avoid controller hang in half-duplex environment.
1da177e4
LT
3018 * The workaround is to avoid queuing a large packet that would span
3019 * the internal Tx FIFO ring boundary by notifying the stack to resend
3020 * the packet at a later time. This gives the Tx FIFO an opportunity to
3021 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3022 * to the beginning of the Tx FIFO.
1aa8b471 3023 */
1da177e4
LT
3024
3025#define E1000_FIFO_HDR 0x10
3026#define E1000_82547_PAD_LEN 0x3E0
3027
64798845
JP
3028static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3029 struct sk_buff *skb)
1da177e4 3030{
406874a7
JP
3031 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3032 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
1da177e4 3033
9099cfb9 3034 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
1da177e4 3035
96838a40 3036 if (adapter->link_duplex != HALF_DUPLEX)
1da177e4
LT
3037 goto no_fifo_stall_required;
3038
96838a40 3039 if (atomic_read(&adapter->tx_fifo_stall))
1da177e4
LT
3040 return 1;
3041
96838a40 3042 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1da177e4
LT
3043 atomic_set(&adapter->tx_fifo_stall, 1);
3044 return 1;
3045 }
3046
3047no_fifo_stall_required:
3048 adapter->tx_fifo_head += skb_fifo_len;
96838a40 3049 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1da177e4
LT
3050 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3051 return 0;
3052}
3053
65c7973f
JB
3054static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3055{
3056 struct e1000_adapter *adapter = netdev_priv(netdev);
3057 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3058
3059 netif_stop_queue(netdev);
3060 /* Herbert's original patch had:
3061 * smp_mb__after_netif_stop_queue();
6cfbd97b
JK
3062 * but since that doesn't exist yet, just open code it.
3063 */
65c7973f
JB
3064 smp_mb();
3065
3066 /* We need to check again in a case another CPU has just
6cfbd97b
JK
3067 * made room available.
3068 */
65c7973f
JB
3069 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3070 return -EBUSY;
3071
3072 /* A reprieve! */
3073 netif_start_queue(netdev);
fcfb1224 3074 ++adapter->restart_queue;
65c7973f
JB
3075 return 0;
3076}
3077
3078static int e1000_maybe_stop_tx(struct net_device *netdev,
6cfbd97b 3079 struct e1000_tx_ring *tx_ring, int size)
65c7973f
JB
3080{
3081 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3082 return 0;
3083 return __e1000_maybe_stop_tx(netdev, size);
3084}
3085
1da177e4 3086#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3b29a56d
SH
3087static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3088 struct net_device *netdev)
1da177e4 3089{
60490fe0 3090 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3091 struct e1000_hw *hw = &adapter->hw;
581d708e 3092 struct e1000_tx_ring *tx_ring;
1da177e4
LT
3093 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3094 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3095 unsigned int tx_flags = 0;
e743d313 3096 unsigned int len = skb_headlen(skb);
6d1e3aa7
KK
3097 unsigned int nr_frags;
3098 unsigned int mss;
1da177e4 3099 int count = 0;
76c224bc 3100 int tso;
1da177e4 3101 unsigned int f;
06f4d033 3102 __be16 protocol = vlan_get_protocol(skb);
1da177e4 3103
6cfbd97b 3104 /* This goes back to the question of how to logically map a Tx queue
65c7973f 3105 * to a flow. Right now, performance is impacted slightly negatively
6cfbd97b
JK
3106 * if using multiple Tx queues. If the stack breaks away from a
3107 * single qdisc implementation, we can look at this again.
3108 */
581d708e 3109 tx_ring = adapter->tx_ring;
24025e4e 3110
59d86c76
TD
3111 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3112 * packets may get corrupted during padding by HW.
3113 * To WA this issue, pad all small packets manually.
3114 */
3115 if (skb->len < ETH_ZLEN) {
3116 if (skb_pad(skb, ETH_ZLEN - skb->len))
3117 return NETDEV_TX_OK;
3118 skb->len = ETH_ZLEN;
3119 skb_set_tail_pointer(skb, ETH_ZLEN);
3120 }
3121
7967168c 3122 mss = skb_shinfo(skb)->gso_size;
76c224bc 3123 /* The controller does a simple calculation to
1da177e4
LT
3124 * make sure there is enough room in the FIFO before
3125 * initiating the DMA for each buffer. The calc is:
3126 * 4 = ceil(buffer len/mss). To make sure we don't
3127 * overrun the FIFO, adjust the max buffer len if mss
6cfbd97b
JK
3128 * drops.
3129 */
96838a40 3130 if (mss) {
406874a7 3131 u8 hdr_len;
1da177e4
LT
3132 max_per_txd = min(mss << 2, max_per_txd);
3133 max_txd_pwr = fls(max_per_txd) - 1;
9a3056da 3134
ab6a5bb6 3135 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
6d1e3aa7 3136 if (skb->data_len && hdr_len == len) {
1dc32918 3137 switch (hw->mac_type) {
9f687888 3138 unsigned int pull_size;
683a2aa3
HX
3139 case e1000_82544:
3140 /* Make sure we have room to chop off 4 bytes,
3141 * and that the end alignment will work out to
3142 * this hardware's requirements
3143 * NOTE: this is a TSO only workaround
3144 * if end byte alignment not correct move us
6cfbd97b
JK
3145 * into the next dword
3146 */
3147 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3148 & 4)
683a2aa3
HX
3149 break;
3150 /* fall through */
9f687888
JK
3151 pull_size = min((unsigned int)4, skb->data_len);
3152 if (!__pskb_pull_tail(skb, pull_size)) {
feb8f478
ET
3153 e_err(drv, "__pskb_pull_tail "
3154 "failed.\n");
9f687888 3155 dev_kfree_skb_any(skb);
749dfc70 3156 return NETDEV_TX_OK;
9f687888 3157 }
e743d313 3158 len = skb_headlen(skb);
9f687888
JK
3159 break;
3160 default:
3161 /* do nothing */
3162 break;
d74bbd3b 3163 }
9a3056da 3164 }
1da177e4
LT
3165 }
3166
9a3056da 3167 /* reserve a descriptor for the offload context */
84fa7933 3168 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
1da177e4 3169 count++;
2648345f 3170 count++;
fd803241 3171
fd803241 3172 /* Controller Erratum workaround */
89114afd 3173 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
fd803241 3174 count++;
fd803241 3175
1da177e4
LT
3176 count += TXD_USE_COUNT(len, max_txd_pwr);
3177
96838a40 3178 if (adapter->pcix_82544)
1da177e4
LT
3179 count++;
3180
96838a40 3181 /* work-around for errata 10 and it applies to all controllers
97338bde
MC
3182 * in PCI-X mode, so add one more descriptor to the count
3183 */
1dc32918 3184 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
3185 (len > 2015)))
3186 count++;
3187
1da177e4 3188 nr_frags = skb_shinfo(skb)->nr_frags;
96838a40 3189 for (f = 0; f < nr_frags; f++)
9e903e08 3190 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
1da177e4 3191 max_txd_pwr);
96838a40 3192 if (adapter->pcix_82544)
1da177e4
LT
3193 count += nr_frags;
3194
1da177e4 3195 /* need: count + 2 desc gap to keep tail from touching
6cfbd97b
JK
3196 * head, otherwise try next time
3197 */
8017943e 3198 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
1da177e4 3199 return NETDEV_TX_BUSY;
1da177e4 3200
a4010afe
JB
3201 if (unlikely((hw->mac_type == e1000_82547) &&
3202 (e1000_82547_fifo_workaround(adapter, skb)))) {
3203 netif_stop_queue(netdev);
3204 if (!test_bit(__E1000_DOWN, &adapter->flags))
3205 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3206 return NETDEV_TX_BUSY;
1da177e4
LT
3207 }
3208
5622e404 3209 if (vlan_tx_tag_present(skb)) {
1da177e4
LT
3210 tx_flags |= E1000_TX_FLAGS_VLAN;
3211 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212 }
3213
581d708e 3214 first = tx_ring->next_to_use;
96838a40 3215
06f4d033 3216 tso = e1000_tso(adapter, tx_ring, skb, protocol);
1da177e4
LT
3217 if (tso < 0) {
3218 dev_kfree_skb_any(skb);
3219 return NETDEV_TX_OK;
3220 }
3221
fd803241 3222 if (likely(tso)) {
8fce4731 3223 if (likely(hw->mac_type != e1000_82544))
3db1cd5c 3224 tx_ring->last_tx_tso = true;
1da177e4 3225 tx_flags |= E1000_TX_FLAGS_TSO;
06f4d033 3226 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
1da177e4
LT
3227 tx_flags |= E1000_TX_FLAGS_CSUM;
3228
06f4d033 3229 if (protocol == htons(ETH_P_IP))
2d7edb92
MC
3230 tx_flags |= E1000_TX_FLAGS_IPV4;
3231
11a78dcf
BG
3232 if (unlikely(skb->no_fcs))
3233 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3234
37e73df8 3235 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
6cfbd97b 3236 nr_frags, mss);
1da177e4 3237
37e73df8 3238 if (count) {
2f66fd36 3239 netdev_sent_queue(netdev, skb->len);
eab467f5
WB
3240 skb_tx_timestamp(skb);
3241
37e73df8 3242 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
37e73df8
AD
3243 /* Make sure there is space in the ring for the next send. */
3244 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
1da177e4 3245
37e73df8
AD
3246 } else {
3247 dev_kfree_skb_any(skb);
3248 tx_ring->buffer_info[first].time_stamp = 0;
3249 tx_ring->next_to_use = first;
3250 }
1da177e4 3251
1da177e4
LT
3252 return NETDEV_TX_OK;
3253}
3254
b04e36ba
TD
3255#define NUM_REGS 38 /* 1 based count */
3256static void e1000_regdump(struct e1000_adapter *adapter)
3257{
3258 struct e1000_hw *hw = &adapter->hw;
3259 u32 regs[NUM_REGS];
3260 u32 *regs_buff = regs;
3261 int i = 0;
3262
e29b5d8f
TD
3263 static const char * const reg_name[] = {
3264 "CTRL", "STATUS",
3265 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3266 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3267 "TIDV", "TXDCTL", "TADV", "TARC0",
3268 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3269 "TXDCTL1", "TARC1",
3270 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3271 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3272 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
b04e36ba
TD
3273 };
3274
3275 regs_buff[0] = er32(CTRL);
3276 regs_buff[1] = er32(STATUS);
3277
3278 regs_buff[2] = er32(RCTL);
3279 regs_buff[3] = er32(RDLEN);
3280 regs_buff[4] = er32(RDH);
3281 regs_buff[5] = er32(RDT);
3282 regs_buff[6] = er32(RDTR);
3283
3284 regs_buff[7] = er32(TCTL);
3285 regs_buff[8] = er32(TDBAL);
3286 regs_buff[9] = er32(TDBAH);
3287 regs_buff[10] = er32(TDLEN);
3288 regs_buff[11] = er32(TDH);
3289 regs_buff[12] = er32(TDT);
3290 regs_buff[13] = er32(TIDV);
3291 regs_buff[14] = er32(TXDCTL);
3292 regs_buff[15] = er32(TADV);
3293 regs_buff[16] = er32(TARC0);
3294
3295 regs_buff[17] = er32(TDBAL1);
3296 regs_buff[18] = er32(TDBAH1);
3297 regs_buff[19] = er32(TDLEN1);
3298 regs_buff[20] = er32(TDH1);
3299 regs_buff[21] = er32(TDT1);
3300 regs_buff[22] = er32(TXDCTL1);
3301 regs_buff[23] = er32(TARC1);
3302 regs_buff[24] = er32(CTRL_EXT);
3303 regs_buff[25] = er32(ERT);
3304 regs_buff[26] = er32(RDBAL0);
3305 regs_buff[27] = er32(RDBAH0);
3306 regs_buff[28] = er32(TDFH);
3307 regs_buff[29] = er32(TDFT);
3308 regs_buff[30] = er32(TDFHS);
3309 regs_buff[31] = er32(TDFTS);
3310 regs_buff[32] = er32(TDFPC);
3311 regs_buff[33] = er32(RDFH);
3312 regs_buff[34] = er32(RDFT);
3313 regs_buff[35] = er32(RDFHS);
3314 regs_buff[36] = er32(RDFTS);
3315 regs_buff[37] = er32(RDFPC);
3316
3317 pr_info("Register dump\n");
e29b5d8f
TD
3318 for (i = 0; i < NUM_REGS; i++)
3319 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
b04e36ba
TD
3320}
3321
3322/*
3323 * e1000_dump: Print registers, tx ring and rx ring
3324 */
3325static void e1000_dump(struct e1000_adapter *adapter)
3326{
3327 /* this code doesn't handle multiple rings */
3328 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3329 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3330 int i;
3331
3332 if (!netif_msg_hw(adapter))
3333 return;
3334
3335 /* Print Registers */
3336 e1000_regdump(adapter);
3337
6cfbd97b 3338 /* transmit dump */
b04e36ba
TD
3339 pr_info("TX Desc ring0 dump\n");
3340
3341 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3342 *
3343 * Legacy Transmit Descriptor
3344 * +--------------------------------------------------------------+
3345 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3346 * +--------------------------------------------------------------+
3347 * 8 | Special | CSS | Status | CMD | CSO | Length |
3348 * +--------------------------------------------------------------+
3349 * 63 48 47 36 35 32 31 24 23 16 15 0
3350 *
3351 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3352 * 63 48 47 40 39 32 31 16 15 8 7 0
3353 * +----------------------------------------------------------------+
3354 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3355 * +----------------------------------------------------------------+
3356 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3357 * +----------------------------------------------------------------+
3358 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3359 *
3360 * Extended Data Descriptor (DTYP=0x1)
3361 * +----------------------------------------------------------------+
3362 * 0 | Buffer Address [63:0] |
3363 * +----------------------------------------------------------------+
3364 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3365 * +----------------------------------------------------------------+
3366 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3367 */
e29b5d8f
TD
3368 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3369 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
b04e36ba
TD
3370
3371 if (!netif_msg_tx_done(adapter))
3372 goto rx_ring_summary;
3373
3374 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3375 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3376 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
dd7f5c9e 3377 struct my_u { __le64 a; __le64 b; };
b04e36ba 3378 struct my_u *u = (struct my_u *)tx_desc;
e29b5d8f
TD
3379 const char *type;
3380
b04e36ba 3381 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
e29b5d8f 3382 type = "NTC/U";
b04e36ba 3383 else if (i == tx_ring->next_to_use)
e29b5d8f 3384 type = "NTU";
b04e36ba 3385 else if (i == tx_ring->next_to_clean)
e29b5d8f 3386 type = "NTC";
b04e36ba 3387 else
e29b5d8f 3388 type = "";
b04e36ba 3389
e29b5d8f
TD
3390 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3391 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3392 le64_to_cpu(u->a), le64_to_cpu(u->b),
3393 (u64)buffer_info->dma, buffer_info->length,
3394 buffer_info->next_to_watch,
3395 (u64)buffer_info->time_stamp, buffer_info->skb, type);
b04e36ba
TD
3396 }
3397
3398rx_ring_summary:
6cfbd97b 3399 /* receive dump */
b04e36ba
TD
3400 pr_info("\nRX Desc ring dump\n");
3401
3402 /* Legacy Receive Descriptor Format
3403 *
3404 * +-----------------------------------------------------+
3405 * | Buffer Address [63:0] |
3406 * +-----------------------------------------------------+
3407 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3408 * +-----------------------------------------------------+
3409 * 63 48 47 40 39 32 31 16 15 0
3410 */
e29b5d8f 3411 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
b04e36ba
TD
3412
3413 if (!netif_msg_rx_status(adapter))
3414 goto exit;
3415
3416 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3417 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3418 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
dd7f5c9e 3419 struct my_u { __le64 a; __le64 b; };
b04e36ba 3420 struct my_u *u = (struct my_u *)rx_desc;
e29b5d8f
TD
3421 const char *type;
3422
b04e36ba 3423 if (i == rx_ring->next_to_use)
e29b5d8f 3424 type = "NTU";
b04e36ba 3425 else if (i == rx_ring->next_to_clean)
e29b5d8f 3426 type = "NTC";
b04e36ba 3427 else
e29b5d8f 3428 type = "";
b04e36ba 3429
e29b5d8f
TD
3430 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3431 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3432 (u64)buffer_info->dma, buffer_info->skb, type);
b04e36ba
TD
3433 } /* for */
3434
3435 /* dump the descriptor caches */
3436 /* rx */
e29b5d8f 3437 pr_info("Rx descriptor cache in 64bit format\n");
b04e36ba 3438 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
e29b5d8f
TD
3439 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3440 i,
3441 readl(adapter->hw.hw_addr + i+4),
3442 readl(adapter->hw.hw_addr + i),
3443 readl(adapter->hw.hw_addr + i+12),
3444 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3445 }
3446 /* tx */
e29b5d8f 3447 pr_info("Tx descriptor cache in 64bit format\n");
b04e36ba 3448 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
e29b5d8f
TD
3449 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3450 i,
3451 readl(adapter->hw.hw_addr + i+4),
3452 readl(adapter->hw.hw_addr + i),
3453 readl(adapter->hw.hw_addr + i+12),
3454 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3455 }
3456exit:
3457 return;
3458}
3459
1da177e4
LT
3460/**
3461 * e1000_tx_timeout - Respond to a Tx Hang
3462 * @netdev: network interface device structure
3463 **/
64798845 3464static void e1000_tx_timeout(struct net_device *netdev)
1da177e4 3465{
60490fe0 3466 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3467
3468 /* Do the reset outside of interrupt context */
87041639
JK
3469 adapter->tx_timeout_count++;
3470 schedule_work(&adapter->reset_task);
1da177e4
LT
3471}
3472
64798845 3473static void e1000_reset_task(struct work_struct *work)
1da177e4 3474{
65f27f38
DH
3475 struct e1000_adapter *adapter =
3476 container_of(work, struct e1000_adapter, reset_task);
1da177e4 3477
b04e36ba 3478 e_err(drv, "Reset adapter\n");
b2f963bf 3479 e1000_reinit_locked(adapter);
1da177e4
LT
3480}
3481
3482/**
3483 * e1000_get_stats - Get System Network Statistics
3484 * @netdev: network interface device structure
3485 *
3486 * Returns the address of the device statistics structure.
a4010afe 3487 * The statistics are actually updated from the watchdog.
1da177e4 3488 **/
64798845 3489static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
1da177e4 3490{
6b7660cd 3491 /* only return the current stats */
5fe31def 3492 return &netdev->stats;
1da177e4
LT
3493}
3494
3495/**
3496 * e1000_change_mtu - Change the Maximum Transfer Unit
3497 * @netdev: network interface device structure
3498 * @new_mtu: new value for maximum frame size
3499 *
3500 * Returns 0 on success, negative on failure
3501 **/
64798845 3502static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
1da177e4 3503{
60490fe0 3504 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3505 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3506 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3507
96838a40
JB
3508 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
feb8f478 3510 e_err(probe, "Invalid MTU setting\n");
1da177e4 3511 return -EINVAL;
2d7edb92 3512 }
1da177e4 3513
997f5cbd 3514 /* Adapter-specific max frame size limits. */
1dc32918 3515 switch (hw->mac_type) {
9e2feace 3516 case e1000_undefined ... e1000_82542_rev2_1:
b7cb8c2c 3517 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
feb8f478 3518 e_err(probe, "Jumbo Frames not supported.\n");
2d7edb92 3519 return -EINVAL;
2d7edb92 3520 }
997f5cbd 3521 break;
997f5cbd
JK
3522 default:
3523 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3524 break;
1da177e4
LT
3525 }
3526
3d6114e7
JB
3527 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3528 msleep(1);
3529 /* e1000_down has a dependency on max_frame_size */
3530 hw->max_frame_size = max_frame;
3531 if (netif_running(netdev))
3532 e1000_down(adapter);
3533
87f5032e 3534 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
9e2feace 3535 * means we reserve 2 more, this pushes us to allocate from the next
edbbb3ca
JB
3536 * larger slab size.
3537 * i.e. RXBUFFER_2048 --> size-4096 slab
6cfbd97b
JK
3538 * however with the new *_jumbo_rx* routines, jumbo receives will use
3539 * fragmented skbs
3540 */
9e2feace 3541
9926146b 3542 if (max_frame <= E1000_RXBUFFER_2048)
9e2feace 3543 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
edbbb3ca
JB
3544 else
3545#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
9e2feace 3546 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
edbbb3ca
JB
3547#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3548 adapter->rx_buffer_len = PAGE_SIZE;
3549#endif
9e2feace
AK
3550
3551 /* adjust allocation if LPE protects us, and we aren't using SBP */
1dc32918 3552 if (!hw->tbi_compatibility_on &&
b7cb8c2c 3553 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
9e2feace
AK
3554 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3555 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
997f5cbd 3556
675ad473
ET
3557 pr_info("%s changing MTU from %d to %d\n",
3558 netdev->name, netdev->mtu, new_mtu);
2d7edb92
MC
3559 netdev->mtu = new_mtu;
3560
2db10a08 3561 if (netif_running(netdev))
3d6114e7
JB
3562 e1000_up(adapter);
3563 else
3564 e1000_reset(adapter);
3565
3566 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4 3567
1da177e4
LT
3568 return 0;
3569}
3570
3571/**
3572 * e1000_update_stats - Update the board statistics counters
3573 * @adapter: board private structure
3574 **/
64798845 3575void e1000_update_stats(struct e1000_adapter *adapter)
1da177e4 3576{
5fe31def 3577 struct net_device *netdev = adapter->netdev;
1da177e4 3578 struct e1000_hw *hw = &adapter->hw;
282f33c9 3579 struct pci_dev *pdev = adapter->pdev;
1da177e4 3580 unsigned long flags;
406874a7 3581 u16 phy_tmp;
1da177e4
LT
3582
3583#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3584
6cfbd97b 3585 /* Prevent stats update while adapter is being reset, or if the pci
282f33c9
LV
3586 * connection is down.
3587 */
9026729b 3588 if (adapter->link_speed == 0)
282f33c9 3589 return;
81b1955e 3590 if (pci_channel_offline(pdev))
9026729b
AK
3591 return;
3592
1da177e4
LT
3593 spin_lock_irqsave(&adapter->stats_lock, flags);
3594
828d055f 3595 /* these counters are modified from e1000_tbi_adjust_stats,
1da177e4
LT
3596 * called from the interrupt context, so they must only
3597 * be written while holding adapter->stats_lock
3598 */
3599
1dc32918
JP
3600 adapter->stats.crcerrs += er32(CRCERRS);
3601 adapter->stats.gprc += er32(GPRC);
3602 adapter->stats.gorcl += er32(GORCL);
3603 adapter->stats.gorch += er32(GORCH);
3604 adapter->stats.bprc += er32(BPRC);
3605 adapter->stats.mprc += er32(MPRC);
3606 adapter->stats.roc += er32(ROC);
3607
1532ecea
JB
3608 adapter->stats.prc64 += er32(PRC64);
3609 adapter->stats.prc127 += er32(PRC127);
3610 adapter->stats.prc255 += er32(PRC255);
3611 adapter->stats.prc511 += er32(PRC511);
3612 adapter->stats.prc1023 += er32(PRC1023);
3613 adapter->stats.prc1522 += er32(PRC1522);
1dc32918
JP
3614
3615 adapter->stats.symerrs += er32(SYMERRS);
3616 adapter->stats.mpc += er32(MPC);
3617 adapter->stats.scc += er32(SCC);
3618 adapter->stats.ecol += er32(ECOL);
3619 adapter->stats.mcc += er32(MCC);
3620 adapter->stats.latecol += er32(LATECOL);
3621 adapter->stats.dc += er32(DC);
3622 adapter->stats.sec += er32(SEC);
3623 adapter->stats.rlec += er32(RLEC);
3624 adapter->stats.xonrxc += er32(XONRXC);
3625 adapter->stats.xontxc += er32(XONTXC);
3626 adapter->stats.xoffrxc += er32(XOFFRXC);
3627 adapter->stats.xofftxc += er32(XOFFTXC);
3628 adapter->stats.fcruc += er32(FCRUC);
3629 adapter->stats.gptc += er32(GPTC);
3630 adapter->stats.gotcl += er32(GOTCL);
3631 adapter->stats.gotch += er32(GOTCH);
3632 adapter->stats.rnbc += er32(RNBC);
3633 adapter->stats.ruc += er32(RUC);
3634 adapter->stats.rfc += er32(RFC);
3635 adapter->stats.rjc += er32(RJC);
3636 adapter->stats.torl += er32(TORL);
3637 adapter->stats.torh += er32(TORH);
3638 adapter->stats.totl += er32(TOTL);
3639 adapter->stats.toth += er32(TOTH);
3640 adapter->stats.tpr += er32(TPR);
3641
1532ecea
JB
3642 adapter->stats.ptc64 += er32(PTC64);
3643 adapter->stats.ptc127 += er32(PTC127);
3644 adapter->stats.ptc255 += er32(PTC255);
3645 adapter->stats.ptc511 += er32(PTC511);
3646 adapter->stats.ptc1023 += er32(PTC1023);
3647 adapter->stats.ptc1522 += er32(PTC1522);
1dc32918
JP
3648
3649 adapter->stats.mptc += er32(MPTC);
3650 adapter->stats.bptc += er32(BPTC);
1da177e4
LT
3651
3652 /* used for adaptive IFS */
3653
1dc32918 3654 hw->tx_packet_delta = er32(TPT);
1da177e4 3655 adapter->stats.tpt += hw->tx_packet_delta;
1dc32918 3656 hw->collision_delta = er32(COLC);
1da177e4
LT
3657 adapter->stats.colc += hw->collision_delta;
3658
96838a40 3659 if (hw->mac_type >= e1000_82543) {
1dc32918
JP
3660 adapter->stats.algnerrc += er32(ALGNERRC);
3661 adapter->stats.rxerrc += er32(RXERRC);
3662 adapter->stats.tncrs += er32(TNCRS);
3663 adapter->stats.cexterr += er32(CEXTERR);
3664 adapter->stats.tsctc += er32(TSCTC);
3665 adapter->stats.tsctfc += er32(TSCTFC);
1da177e4
LT
3666 }
3667
3668 /* Fill out the OS statistics structure */
5fe31def
AK
3669 netdev->stats.multicast = adapter->stats.mprc;
3670 netdev->stats.collisions = adapter->stats.colc;
1da177e4
LT
3671
3672 /* Rx Errors */
3673
87041639 3674 /* RLEC on some newer hardware can be incorrect so build
6cfbd97b
JK
3675 * our own version based on RUC and ROC
3676 */
5fe31def 3677 netdev->stats.rx_errors = adapter->stats.rxerrc +
1da177e4 3678 adapter->stats.crcerrs + adapter->stats.algnerrc +
87041639
JK
3679 adapter->stats.ruc + adapter->stats.roc +
3680 adapter->stats.cexterr;
49559854 3681 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
5fe31def
AK
3682 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3683 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3684 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3685 netdev->stats.rx_missed_errors = adapter->stats.mpc;
1da177e4
LT
3686
3687 /* Tx Errors */
49559854 3688 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
5fe31def
AK
3689 netdev->stats.tx_errors = adapter->stats.txerrc;
3690 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3691 netdev->stats.tx_window_errors = adapter->stats.latecol;
3692 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
1dc32918 3693 if (hw->bad_tx_carr_stats_fd &&
167fb284 3694 adapter->link_duplex == FULL_DUPLEX) {
5fe31def 3695 netdev->stats.tx_carrier_errors = 0;
167fb284
JG
3696 adapter->stats.tncrs = 0;
3697 }
1da177e4
LT
3698
3699 /* Tx Dropped needs to be maintained elsewhere */
3700
3701 /* Phy Stats */
96838a40
JB
3702 if (hw->media_type == e1000_media_type_copper) {
3703 if ((adapter->link_speed == SPEED_1000) &&
1da177e4
LT
3704 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3705 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3706 adapter->phy_stats.idle_errors += phy_tmp;
3707 }
3708
96838a40 3709 if ((hw->mac_type <= e1000_82546) &&
1da177e4
LT
3710 (hw->phy_type == e1000_phy_m88) &&
3711 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3712 adapter->phy_stats.receive_errors += phy_tmp;
3713 }
3714
15e376b4 3715 /* Management Stats */
1dc32918
JP
3716 if (hw->has_smbus) {
3717 adapter->stats.mgptc += er32(MGTPTC);
3718 adapter->stats.mgprc += er32(MGTPRC);
3719 adapter->stats.mgpdc += er32(MGTPDC);
15e376b4
JG
3720 }
3721
1da177e4
LT
3722 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3723}
9ac98284 3724
1da177e4
LT
3725/**
3726 * e1000_intr - Interrupt Handler
3727 * @irq: interrupt number
3728 * @data: pointer to a network interface device structure
1da177e4 3729 **/
64798845 3730static irqreturn_t e1000_intr(int irq, void *data)
1da177e4
LT
3731{
3732 struct net_device *netdev = data;
60490fe0 3733 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 3734 struct e1000_hw *hw = &adapter->hw;
1532ecea 3735 u32 icr = er32(ICR);
c3570acb 3736
4c11b8ad 3737 if (unlikely((!icr)))
835bb129
JB
3738 return IRQ_NONE; /* Not our interrupt */
3739
6cfbd97b 3740 /* we might have caused the interrupt, but the above
4c11b8ad
JB
3741 * read cleared it, and just in case the driver is
3742 * down there is nothing to do so return handled
3743 */
3744 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3745 return IRQ_HANDLED;
3746
96838a40 3747 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
1da177e4 3748 hw->get_link_status = 1;
1314bbf3
AK
3749 /* guard against interrupt when we're going down */
3750 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 3751 schedule_delayed_work(&adapter->watchdog_task, 1);
1da177e4
LT
3752 }
3753
1532ecea
JB
3754 /* disable interrupts, without the synchronize_irq bit */
3755 ew32(IMC, ~0);
3756 E1000_WRITE_FLUSH();
3757
288379f0 3758 if (likely(napi_schedule_prep(&adapter->napi))) {
835bb129
JB
3759 adapter->total_tx_bytes = 0;
3760 adapter->total_tx_packets = 0;
3761 adapter->total_rx_bytes = 0;
3762 adapter->total_rx_packets = 0;
288379f0 3763 __napi_schedule(&adapter->napi);
a6c42322 3764 } else {
90fb5135 3765 /* this really should not happen! if it does it is basically a
6cfbd97b
JK
3766 * bug, but not a hard error, so enable ints and continue
3767 */
a6c42322
JB
3768 if (!test_bit(__E1000_DOWN, &adapter->flags))
3769 e1000_irq_enable(adapter);
3770 }
1da177e4 3771
1da177e4
LT
3772 return IRQ_HANDLED;
3773}
3774
1da177e4
LT
3775/**
3776 * e1000_clean - NAPI Rx polling callback
3777 * @adapter: board private structure
3778 **/
64798845 3779static int e1000_clean(struct napi_struct *napi, int budget)
1da177e4 3780{
6cfbd97b
JK
3781 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3782 napi);
650b5a5c 3783 int tx_clean_complete = 0, work_done = 0;
581d708e 3784
650b5a5c 3785 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
581d708e 3786
650b5a5c 3787 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
581d708e 3788
650b5a5c 3789 if (!tx_clean_complete)
d2c7ddd6
DM
3790 work_done = budget;
3791
53e52c72
DM
3792 /* If budget not fully consumed, exit the polling mode */
3793 if (work_done < budget) {
835bb129
JB
3794 if (likely(adapter->itr_setting & 3))
3795 e1000_set_itr(adapter);
288379f0 3796 napi_complete(napi);
a6c42322
JB
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 e1000_irq_enable(adapter);
1da177e4
LT
3799 }
3800
bea3348e 3801 return work_done;
1da177e4
LT
3802}
3803
1da177e4
LT
3804/**
3805 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3806 * @adapter: board private structure
3807 **/
64798845
JP
3808static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3809 struct e1000_tx_ring *tx_ring)
1da177e4 3810{
1dc32918 3811 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3812 struct net_device *netdev = adapter->netdev;
3813 struct e1000_tx_desc *tx_desc, *eop_desc;
3814 struct e1000_buffer *buffer_info;
3815 unsigned int i, eop;
2a1af5d7 3816 unsigned int count = 0;
835bb129 3817 unsigned int total_tx_bytes=0, total_tx_packets=0;
2f66fd36 3818 unsigned int bytes_compl = 0, pkts_compl = 0;
1da177e4
LT
3819
3820 i = tx_ring->next_to_clean;
3821 eop = tx_ring->buffer_info[i].next_to_watch;
3822 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3823
ccfb342c
AD
3824 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3825 (count < tx_ring->count)) {
843f4267 3826 bool cleaned = false;
2d0bb1c1 3827 rmb(); /* read buffer_info after eop_desc */
843f4267 3828 for ( ; !cleaned; count++) {
1da177e4
LT
3829 tx_desc = E1000_TX_DESC(*tx_ring, i);
3830 buffer_info = &tx_ring->buffer_info[i];
3831 cleaned = (i == eop);
3832
835bb129 3833 if (cleaned) {
31c15a2f
DN
3834 total_tx_packets += buffer_info->segs;
3835 total_tx_bytes += buffer_info->bytecount;
2f66fd36
OESC
3836 if (buffer_info->skb) {
3837 bytes_compl += buffer_info->skb->len;
3838 pkts_compl++;
3839 }
3840
835bb129 3841 }
fd803241 3842 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
a9ebadd6 3843 tx_desc->upper.data = 0;
1da177e4 3844
96838a40 3845 if (unlikely(++i == tx_ring->count)) i = 0;
1da177e4 3846 }
581d708e 3847
1da177e4
LT
3848 eop = tx_ring->buffer_info[i].next_to_watch;
3849 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850 }
3851
3852 tx_ring->next_to_clean = i;
3853
2f66fd36
OESC
3854 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3855
77b2aad5 3856#define TX_WAKE_THRESHOLD 32
843f4267 3857 if (unlikely(count && netif_carrier_ok(netdev) &&
65c7973f
JB
3858 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3859 /* Make sure that anybody stopping the queue after this
3860 * sees the new next_to_clean.
3861 */
3862 smp_mb();
cdd7549e
JB
3863
3864 if (netif_queue_stopped(netdev) &&
3865 !(test_bit(__E1000_DOWN, &adapter->flags))) {
77b2aad5 3866 netif_wake_queue(netdev);
fcfb1224
JB
3867 ++adapter->restart_queue;
3868 }
77b2aad5 3869 }
2648345f 3870
581d708e 3871 if (adapter->detect_tx_hung) {
2648345f 3872 /* Detect a transmit hang in hardware, this serializes the
6cfbd97b
JK
3873 * check with the clearing of time_stamp and movement of i
3874 */
c3033b01 3875 adapter->detect_tx_hung = false;
cdd7549e
JB
3876 if (tx_ring->buffer_info[eop].time_stamp &&
3877 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
6cfbd97b 3878 (adapter->tx_timeout_factor * HZ)) &&
8e95a202 3879 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
70b8f1e1
MC
3880
3881 /* detected Tx unit hang */
feb8f478 3882 e_err(drv, "Detected Tx Unit Hang\n"
675ad473
ET
3883 " Tx Queue <%lu>\n"
3884 " TDH <%x>\n"
3885 " TDT <%x>\n"
3886 " next_to_use <%x>\n"
3887 " next_to_clean <%x>\n"
3888 "buffer_info[next_to_clean]\n"
3889 " time_stamp <%lx>\n"
3890 " next_to_watch <%x>\n"
3891 " jiffies <%lx>\n"
3892 " next_to_watch.status <%x>\n",
49a45a06 3893 (unsigned long)(tx_ring - adapter->tx_ring),
1dc32918
JP
3894 readl(hw->hw_addr + tx_ring->tdh),
3895 readl(hw->hw_addr + tx_ring->tdt),
70b8f1e1 3896 tx_ring->next_to_use,
392137fa 3897 tx_ring->next_to_clean,
cdd7549e 3898 tx_ring->buffer_info[eop].time_stamp,
70b8f1e1
MC
3899 eop,
3900 jiffies,
3901 eop_desc->upper.fields.status);
b04e36ba 3902 e1000_dump(adapter);
1da177e4 3903 netif_stop_queue(netdev);
70b8f1e1 3904 }
1da177e4 3905 }
835bb129
JB
3906 adapter->total_tx_bytes += total_tx_bytes;
3907 adapter->total_tx_packets += total_tx_packets;
5fe31def
AK
3908 netdev->stats.tx_bytes += total_tx_bytes;
3909 netdev->stats.tx_packets += total_tx_packets;
807540ba 3910 return count < tx_ring->count;
1da177e4
LT
3911}
3912
3913/**
3914 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
3915 * @adapter: board private structure
3916 * @status_err: receive descriptor status and error fields
3917 * @csum: receive descriptor csum field
3918 * @sk_buff: socket buffer with received data
1da177e4 3919 **/
64798845
JP
3920static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3921 u32 csum, struct sk_buff *skb)
1da177e4 3922{
1dc32918 3923 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
3924 u16 status = (u16)status_err;
3925 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
3926
3927 skb_checksum_none_assert(skb);
2d7edb92 3928
1da177e4 3929 /* 82543 or newer only */
1dc32918 3930 if (unlikely(hw->mac_type < e1000_82543)) return;
1da177e4 3931 /* Ignore Checksum bit is set */
96838a40 3932 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
2d7edb92 3933 /* TCP/UDP checksum error bit is set */
96838a40 3934 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 3935 /* let the stack verify checksum errors */
1da177e4 3936 adapter->hw_csum_err++;
2d7edb92
MC
3937 return;
3938 }
3939 /* TCP/UDP Checksum has not been calculated */
1532ecea
JB
3940 if (!(status & E1000_RXD_STAT_TCPCS))
3941 return;
3942
2d7edb92
MC
3943 /* It must be a TCP or UDP packet with a valid checksum */
3944 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
3945 /* TCP checksum is good */
3946 skb->ip_summed = CHECKSUM_UNNECESSARY;
1da177e4 3947 }
2d7edb92 3948 adapter->hw_csum_good++;
1da177e4
LT
3949}
3950
edbbb3ca
JB
3951/**
3952 * e1000_consume_page - helper function
3953 **/
3954static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
6cfbd97b 3955 u16 length)
edbbb3ca
JB
3956{
3957 bi->page = NULL;
3958 skb->len += length;
3959 skb->data_len += length;
ed64b3cc 3960 skb->truesize += PAGE_SIZE;
edbbb3ca
JB
3961}
3962
3963/**
3964 * e1000_receive_skb - helper function to handle rx indications
3965 * @adapter: board private structure
3966 * @status: descriptor status field as written by hardware
3967 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3968 * @skb: pointer to sk_buff to be indicated to stack
3969 */
3970static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3971 __le16 vlan, struct sk_buff *skb)
3972{
6a08d194
JB
3973 skb->protocol = eth_type_trans(skb, adapter->netdev);
3974
5622e404
JP
3975 if (status & E1000_RXD_STAT_VP) {
3976 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3977
86a9bad3 3978 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
5622e404
JP
3979 }
3980 napi_gro_receive(&adapter->napi, skb);
edbbb3ca
JB
3981}
3982
4f0aeb1e
FW
3983/**
3984 * e1000_tbi_adjust_stats
3985 * @hw: Struct containing variables accessed by shared code
3986 * @frame_len: The length of the frame in question
3987 * @mac_addr: The Ethernet destination address of the frame in question
3988 *
3989 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
3990 */
3991static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
3992 struct e1000_hw_stats *stats,
3993 u32 frame_len, const u8 *mac_addr)
3994{
3995 u64 carry_bit;
3996
3997 /* First adjust the frame length. */
3998 frame_len--;
3999 /* We need to adjust the statistics counters, since the hardware
4000 * counters overcount this packet as a CRC error and undercount
4001 * the packet as a good packet
4002 */
4003 /* This packet should not be counted as a CRC error. */
4004 stats->crcerrs--;
4005 /* This packet does count as a Good Packet Received. */
4006 stats->gprc++;
4007
4008 /* Adjust the Good Octets received counters */
4009 carry_bit = 0x80000000 & stats->gorcl;
4010 stats->gorcl += frame_len;
4011 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4012 * Received Count) was one before the addition,
4013 * AND it is zero after, then we lost the carry out,
4014 * need to add one to Gorch (Good Octets Received Count High).
4015 * This could be simplified if all environments supported
4016 * 64-bit integers.
4017 */
4018 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4019 stats->gorch++;
4020 /* Is this a broadcast or multicast? Check broadcast first,
4021 * since the test for a multicast frame will test positive on
4022 * a broadcast frame.
4023 */
4024 if (is_broadcast_ether_addr(mac_addr))
4025 stats->bprc++;
4026 else if (is_multicast_ether_addr(mac_addr))
4027 stats->mprc++;
4028
4029 if (frame_len == hw->max_frame_size) {
4030 /* In this case, the hardware has overcounted the number of
4031 * oversize frames.
4032 */
4033 if (stats->roc > 0)
4034 stats->roc--;
4035 }
4036
4037 /* Adjust the bin counters when the extra byte put the frame in the
4038 * wrong bin. Remember that the frame_len was adjusted above.
4039 */
4040 if (frame_len == 64) {
4041 stats->prc64++;
4042 stats->prc127--;
4043 } else if (frame_len == 127) {
4044 stats->prc127++;
4045 stats->prc255--;
4046 } else if (frame_len == 255) {
4047 stats->prc255++;
4048 stats->prc511--;
4049 } else if (frame_len == 511) {
4050 stats->prc511++;
4051 stats->prc1023--;
4052 } else if (frame_len == 1023) {
4053 stats->prc1023++;
4054 stats->prc1522--;
4055 } else if (frame_len == 1522) {
4056 stats->prc1522++;
4057 }
4058}
4059
edbbb3ca
JB
4060/**
4061 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4062 * @adapter: board private structure
4063 * @rx_ring: ring to clean
4064 * @work_done: amount of napi work completed this call
4065 * @work_to_do: max amount of work allowed for this call to do
4066 *
4067 * the return value indicates whether actual cleaning was done, there
4068 * is no guarantee that everything was cleaned
4069 */
4070static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4071 struct e1000_rx_ring *rx_ring,
4072 int *work_done, int work_to_do)
4073{
4074 struct e1000_hw *hw = &adapter->hw;
4075 struct net_device *netdev = adapter->netdev;
4076 struct pci_dev *pdev = adapter->pdev;
4077 struct e1000_rx_desc *rx_desc, *next_rxd;
4078 struct e1000_buffer *buffer_info, *next_buffer;
4079 unsigned long irq_flags;
4080 u32 length;
4081 unsigned int i;
4082 int cleaned_count = 0;
4083 bool cleaned = false;
4084 unsigned int total_rx_bytes=0, total_rx_packets=0;
4085
4086 i = rx_ring->next_to_clean;
4087 rx_desc = E1000_RX_DESC(*rx_ring, i);
4088 buffer_info = &rx_ring->buffer_info[i];
4089
4090 while (rx_desc->status & E1000_RXD_STAT_DD) {
4091 struct sk_buff *skb;
4092 u8 status;
4093
4094 if (*work_done >= work_to_do)
4095 break;
4096 (*work_done)++;
2d0bb1c1 4097 rmb(); /* read descriptor and rx_buffer_info after status DD */
edbbb3ca
JB
4098
4099 status = rx_desc->status;
4100 skb = buffer_info->skb;
4101 buffer_info->skb = NULL;
4102
4103 if (++i == rx_ring->count) i = 0;
4104 next_rxd = E1000_RX_DESC(*rx_ring, i);
4105 prefetch(next_rxd);
4106
4107 next_buffer = &rx_ring->buffer_info[i];
4108
4109 cleaned = true;
4110 cleaned_count++;
b16f53be
NN
4111 dma_unmap_page(&pdev->dev, buffer_info->dma,
4112 buffer_info->length, DMA_FROM_DEVICE);
edbbb3ca
JB
4113 buffer_info->dma = 0;
4114
4115 length = le16_to_cpu(rx_desc->length);
4116
4117 /* errors is only valid for DD + EOP descriptors */
4118 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4119 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
a3060858
SAS
4120 u8 *mapped;
4121 u8 last_byte;
4122
4123 mapped = page_address(buffer_info->page);
4124 last_byte = *(mapped + length - 1);
edbbb3ca
JB
4125 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4126 last_byte)) {
4127 spin_lock_irqsave(&adapter->stats_lock,
6cfbd97b 4128 irq_flags);
edbbb3ca 4129 e1000_tbi_adjust_stats(hw, &adapter->stats,
281a8f24 4130 length, mapped);
edbbb3ca 4131 spin_unlock_irqrestore(&adapter->stats_lock,
6cfbd97b 4132 irq_flags);
edbbb3ca
JB
4133 length--;
4134 } else {
e825b731
BG
4135 if (netdev->features & NETIF_F_RXALL)
4136 goto process_skb;
edbbb3ca
JB
4137 /* recycle both page and skb */
4138 buffer_info->skb = skb;
4139 /* an error means any chain goes out the window
6cfbd97b
JK
4140 * too
4141 */
edbbb3ca
JB
4142 if (rx_ring->rx_skb_top)
4143 dev_kfree_skb(rx_ring->rx_skb_top);
4144 rx_ring->rx_skb_top = NULL;
4145 goto next_desc;
4146 }
4147 }
4148
4149#define rxtop rx_ring->rx_skb_top
e825b731 4150process_skb:
edbbb3ca
JB
4151 if (!(status & E1000_RXD_STAT_EOP)) {
4152 /* this descriptor is only the beginning (or middle) */
4153 if (!rxtop) {
4154 /* this is the beginning of a chain */
4155 rxtop = skb;
4156 skb_fill_page_desc(rxtop, 0, buffer_info->page,
6cfbd97b 4157 0, length);
edbbb3ca
JB
4158 } else {
4159 /* this is the middle of a chain */
4160 skb_fill_page_desc(rxtop,
4161 skb_shinfo(rxtop)->nr_frags,
4162 buffer_info->page, 0, length);
4163 /* re-use the skb, only consumed the page */
4164 buffer_info->skb = skb;
4165 }
4166 e1000_consume_page(buffer_info, rxtop, length);
4167 goto next_desc;
4168 } else {
4169 if (rxtop) {
4170 /* end of the chain */
4171 skb_fill_page_desc(rxtop,
4172 skb_shinfo(rxtop)->nr_frags,
4173 buffer_info->page, 0, length);
4174 /* re-use the current skb, we only consumed the
6cfbd97b
JK
4175 * page
4176 */
edbbb3ca
JB
4177 buffer_info->skb = skb;
4178 skb = rxtop;
4179 rxtop = NULL;
4180 e1000_consume_page(buffer_info, skb, length);
4181 } else {
4182 /* no chain, got EOP, this buf is the packet
6cfbd97b
JK
4183 * copybreak to save the put_page/alloc_page
4184 */
edbbb3ca
JB
4185 if (length <= copybreak &&
4186 skb_tailroom(skb) >= length) {
4187 u8 *vaddr;
4679026d 4188 vaddr = kmap_atomic(buffer_info->page);
6cfbd97b
JK
4189 memcpy(skb_tail_pointer(skb), vaddr,
4190 length);
4679026d 4191 kunmap_atomic(vaddr);
edbbb3ca 4192 /* re-use the page, so don't erase
6cfbd97b
JK
4193 * buffer_info->page
4194 */
edbbb3ca
JB
4195 skb_put(skb, length);
4196 } else {
4197 skb_fill_page_desc(skb, 0,
6cfbd97b
JK
4198 buffer_info->page, 0,
4199 length);
edbbb3ca 4200 e1000_consume_page(buffer_info, skb,
6cfbd97b 4201 length);
edbbb3ca
JB
4202 }
4203 }
4204 }
4205
4206 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4207 e1000_rx_checksum(adapter,
6cfbd97b
JK
4208 (u32)(status) |
4209 ((u32)(rx_desc->errors) << 24),
4210 le16_to_cpu(rx_desc->csum), skb);
edbbb3ca 4211
b0d1562c
BG
4212 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4213 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4214 pskb_trim(skb, skb->len - 4);
edbbb3ca
JB
4215 total_rx_packets++;
4216
4217 /* eth type trans needs skb->data to point to something */
4218 if (!pskb_may_pull(skb, ETH_HLEN)) {
feb8f478 4219 e_err(drv, "pskb_may_pull failed.\n");
edbbb3ca
JB
4220 dev_kfree_skb(skb);
4221 goto next_desc;
4222 }
4223
edbbb3ca
JB
4224 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4225
4226next_desc:
4227 rx_desc->status = 0;
4228
4229 /* return some buffers to hardware, one at a time is too slow */
4230 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4231 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4232 cleaned_count = 0;
4233 }
4234
4235 /* use prefetched values */
4236 rx_desc = next_rxd;
4237 buffer_info = next_buffer;
4238 }
4239 rx_ring->next_to_clean = i;
4240
4241 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4242 if (cleaned_count)
4243 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4244
4245 adapter->total_rx_packets += total_rx_packets;
4246 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4247 netdev->stats.rx_bytes += total_rx_bytes;
4248 netdev->stats.rx_packets += total_rx_packets;
edbbb3ca
JB
4249 return cleaned;
4250}
4251
6cfbd97b 4252/* this should improve performance for small packets with large amounts
57bf6eef
JP
4253 * of reassembly being done in the stack
4254 */
4255static void e1000_check_copybreak(struct net_device *netdev,
4256 struct e1000_buffer *buffer_info,
4257 u32 length, struct sk_buff **skb)
4258{
4259 struct sk_buff *new_skb;
4260
4261 if (length > copybreak)
4262 return;
4263
4264 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4265 if (!new_skb)
4266 return;
4267
4268 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4269 (*skb)->data - NET_IP_ALIGN,
4270 length + NET_IP_ALIGN);
4271 /* save the skb in buffer_info as good */
4272 buffer_info->skb = *skb;
4273 *skb = new_skb;
4274}
4275
1da177e4 4276/**
2d7edb92 4277 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4 4278 * @adapter: board private structure
edbbb3ca
JB
4279 * @rx_ring: ring to clean
4280 * @work_done: amount of napi work completed this call
4281 * @work_to_do: max amount of work allowed for this call to do
4282 */
64798845
JP
4283static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4284 struct e1000_rx_ring *rx_ring,
4285 int *work_done, int work_to_do)
1da177e4 4286{
1dc32918 4287 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4288 struct net_device *netdev = adapter->netdev;
4289 struct pci_dev *pdev = adapter->pdev;
86c3d59f
JB
4290 struct e1000_rx_desc *rx_desc, *next_rxd;
4291 struct e1000_buffer *buffer_info, *next_buffer;
1da177e4 4292 unsigned long flags;
406874a7 4293 u32 length;
1da177e4 4294 unsigned int i;
72d64a43 4295 int cleaned_count = 0;
c3033b01 4296 bool cleaned = false;
835bb129 4297 unsigned int total_rx_bytes=0, total_rx_packets=0;
1da177e4
LT
4298
4299 i = rx_ring->next_to_clean;
4300 rx_desc = E1000_RX_DESC(*rx_ring, i);
b92ff8ee 4301 buffer_info = &rx_ring->buffer_info[i];
1da177e4 4302
b92ff8ee 4303 while (rx_desc->status & E1000_RXD_STAT_DD) {
24f476ee 4304 struct sk_buff *skb;
a292ca6e 4305 u8 status;
90fb5135 4306
96838a40 4307 if (*work_done >= work_to_do)
1da177e4
LT
4308 break;
4309 (*work_done)++;
2d0bb1c1 4310 rmb(); /* read descriptor and rx_buffer_info after status DD */
c3570acb 4311
a292ca6e 4312 status = rx_desc->status;
b92ff8ee 4313 skb = buffer_info->skb;
86c3d59f
JB
4314 buffer_info->skb = NULL;
4315
30320be8
JK
4316 prefetch(skb->data - NET_IP_ALIGN);
4317
86c3d59f
JB
4318 if (++i == rx_ring->count) i = 0;
4319 next_rxd = E1000_RX_DESC(*rx_ring, i);
30320be8
JK
4320 prefetch(next_rxd);
4321
86c3d59f 4322 next_buffer = &rx_ring->buffer_info[i];
86c3d59f 4323
c3033b01 4324 cleaned = true;
72d64a43 4325 cleaned_count++;
b16f53be
NN
4326 dma_unmap_single(&pdev->dev, buffer_info->dma,
4327 buffer_info->length, DMA_FROM_DEVICE);
679be3ba 4328 buffer_info->dma = 0;
1da177e4 4329
1da177e4 4330 length = le16_to_cpu(rx_desc->length);
ea30e119 4331 /* !EOP means multiple descriptors were used to store a single
40a14dea
JB
4332 * packet, if thats the case we need to toss it. In fact, we
4333 * to toss every packet with the EOP bit clear and the next
4334 * frame that _does_ have the EOP bit set, as it is by
4335 * definition only a frame fragment
4336 */
4337 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4338 adapter->discarding = true;
4339
4340 if (adapter->discarding) {
a1415ee6 4341 /* All receives must fit into a single buffer */
feb8f478 4342 e_dbg("Receive packet consumed multiple buffers\n");
864c4e45 4343 /* recycle */
8fc897b0 4344 buffer_info->skb = skb;
40a14dea
JB
4345 if (status & E1000_RXD_STAT_EOP)
4346 adapter->discarding = false;
1da177e4
LT
4347 goto next_desc;
4348 }
4349
96838a40 4350 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
edbbb3ca 4351 u8 last_byte = *(skb->data + length - 1);
1dc32918
JP
4352 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4353 last_byte)) {
1da177e4 4354 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4355 e1000_tbi_adjust_stats(hw, &adapter->stats,
6cfbd97b 4356 length, skb->data);
1da177e4 4357 spin_unlock_irqrestore(&adapter->stats_lock,
6cfbd97b 4358 flags);
1da177e4
LT
4359 length--;
4360 } else {
e825b731
BG
4361 if (netdev->features & NETIF_F_RXALL)
4362 goto process_skb;
9e2feace
AK
4363 /* recycle */
4364 buffer_info->skb = skb;
1da177e4
LT
4365 goto next_desc;
4366 }
1cb5821f 4367 }
1da177e4 4368
e825b731 4369process_skb:
b0d1562c 4370 total_rx_bytes += (length - 4); /* don't count FCS */
835bb129
JB
4371 total_rx_packets++;
4372
b0d1562c
BG
4373 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4374 /* adjust length to remove Ethernet CRC, this must be
4375 * done after the TBI_ACCEPT workaround above
4376 */
4377 length -= 4;
4378
57bf6eef
JP
4379 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4380
996695de 4381 skb_put(skb, length);
1da177e4
LT
4382
4383 /* Receive Checksum Offload */
a292ca6e 4384 e1000_rx_checksum(adapter,
406874a7
JP
4385 (u32)(status) |
4386 ((u32)(rx_desc->errors) << 24),
c3d7a3a4 4387 le16_to_cpu(rx_desc->csum), skb);
96838a40 4388
edbbb3ca 4389 e1000_receive_skb(adapter, status, rx_desc->special, skb);
c3570acb 4390
1da177e4
LT
4391next_desc:
4392 rx_desc->status = 0;
1da177e4 4393
72d64a43
JK
4394 /* return some buffers to hardware, one at a time is too slow */
4395 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4396 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4397 cleaned_count = 0;
4398 }
4399
30320be8 4400 /* use prefetched values */
86c3d59f
JB
4401 rx_desc = next_rxd;
4402 buffer_info = next_buffer;
1da177e4 4403 }
1da177e4 4404 rx_ring->next_to_clean = i;
72d64a43
JK
4405
4406 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4407 if (cleaned_count)
4408 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
2d7edb92 4409
835bb129
JB
4410 adapter->total_rx_packets += total_rx_packets;
4411 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4412 netdev->stats.rx_bytes += total_rx_bytes;
4413 netdev->stats.rx_packets += total_rx_packets;
2d7edb92
MC
4414 return cleaned;
4415}
4416
edbbb3ca
JB
4417/**
4418 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4419 * @adapter: address of board private structure
4420 * @rx_ring: pointer to receive ring structure
4421 * @cleaned_count: number of buffers to allocate this pass
4422 **/
edbbb3ca
JB
4423static void
4424e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
6cfbd97b 4425 struct e1000_rx_ring *rx_ring, int cleaned_count)
edbbb3ca
JB
4426{
4427 struct net_device *netdev = adapter->netdev;
4428 struct pci_dev *pdev = adapter->pdev;
4429 struct e1000_rx_desc *rx_desc;
4430 struct e1000_buffer *buffer_info;
4431 struct sk_buff *skb;
4432 unsigned int i;
89d71a66 4433 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
edbbb3ca
JB
4434
4435 i = rx_ring->next_to_use;
4436 buffer_info = &rx_ring->buffer_info[i];
4437
4438 while (cleaned_count--) {
4439 skb = buffer_info->skb;
4440 if (skb) {
4441 skb_trim(skb, 0);
4442 goto check_page;
4443 }
4444
89d71a66 4445 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
edbbb3ca
JB
4446 if (unlikely(!skb)) {
4447 /* Better luck next round */
4448 adapter->alloc_rx_buff_failed++;
4449 break;
4450 }
4451
edbbb3ca
JB
4452 buffer_info->skb = skb;
4453 buffer_info->length = adapter->rx_buffer_len;
4454check_page:
4455 /* allocate a new page if necessary */
4456 if (!buffer_info->page) {
4457 buffer_info->page = alloc_page(GFP_ATOMIC);
4458 if (unlikely(!buffer_info->page)) {
4459 adapter->alloc_rx_buff_failed++;
4460 break;
4461 }
4462 }
4463
b5abb028 4464 if (!buffer_info->dma) {
b16f53be 4465 buffer_info->dma = dma_map_page(&pdev->dev,
6cfbd97b 4466 buffer_info->page, 0,
b16f53be
NN
4467 buffer_info->length,
4468 DMA_FROM_DEVICE);
4469 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
b5abb028
AB
4470 put_page(buffer_info->page);
4471 dev_kfree_skb(skb);
4472 buffer_info->page = NULL;
4473 buffer_info->skb = NULL;
4474 buffer_info->dma = 0;
4475 adapter->alloc_rx_buff_failed++;
4476 break; /* while !buffer_info->skb */
4477 }
4478 }
edbbb3ca
JB
4479
4480 rx_desc = E1000_RX_DESC(*rx_ring, i);
4481 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4482
4483 if (unlikely(++i == rx_ring->count))
4484 i = 0;
4485 buffer_info = &rx_ring->buffer_info[i];
4486 }
4487
4488 if (likely(rx_ring->next_to_use != i)) {
4489 rx_ring->next_to_use = i;
4490 if (unlikely(i-- == 0))
4491 i = (rx_ring->count - 1);
4492
4493 /* Force memory writes to complete before letting h/w
4494 * know there are new descriptors to fetch. (Only
4495 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4496 * such as IA-64).
4497 */
edbbb3ca
JB
4498 wmb();
4499 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4500 }
4501}
4502
1da177e4 4503/**
2d7edb92 4504 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
4505 * @adapter: address of board private structure
4506 **/
64798845
JP
4507static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4508 struct e1000_rx_ring *rx_ring,
4509 int cleaned_count)
1da177e4 4510{
1dc32918 4511 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4512 struct net_device *netdev = adapter->netdev;
4513 struct pci_dev *pdev = adapter->pdev;
4514 struct e1000_rx_desc *rx_desc;
4515 struct e1000_buffer *buffer_info;
4516 struct sk_buff *skb;
2648345f 4517 unsigned int i;
89d71a66 4518 unsigned int bufsz = adapter->rx_buffer_len;
1da177e4
LT
4519
4520 i = rx_ring->next_to_use;
4521 buffer_info = &rx_ring->buffer_info[i];
4522
a292ca6e 4523 while (cleaned_count--) {
ca6f7224
CH
4524 skb = buffer_info->skb;
4525 if (skb) {
a292ca6e
JK
4526 skb_trim(skb, 0);
4527 goto map_skb;
4528 }
4529
89d71a66 4530 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
96838a40 4531 if (unlikely(!skb)) {
1da177e4 4532 /* Better luck next round */
72d64a43 4533 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4534 break;
4535 }
4536
2648345f 4537 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
4538 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4539 struct sk_buff *oldskb = skb;
feb8f478
ET
4540 e_err(rx_err, "skb align check failed: %u bytes at "
4541 "%p\n", bufsz, skb->data);
2648345f 4542 /* Try again, without freeing the previous */
89d71a66 4543 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
2648345f 4544 /* Failed allocation, critical failure */
1da177e4
LT
4545 if (!skb) {
4546 dev_kfree_skb(oldskb);
edbbb3ca 4547 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4548 break;
4549 }
2648345f 4550
1da177e4
LT
4551 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4552 /* give up */
4553 dev_kfree_skb(skb);
4554 dev_kfree_skb(oldskb);
edbbb3ca 4555 adapter->alloc_rx_buff_failed++;
1da177e4 4556 break; /* while !buffer_info->skb */
1da177e4 4557 }
ca6f7224
CH
4558
4559 /* Use new allocation */
4560 dev_kfree_skb(oldskb);
1da177e4 4561 }
1da177e4
LT
4562 buffer_info->skb = skb;
4563 buffer_info->length = adapter->rx_buffer_len;
a292ca6e 4564map_skb:
b16f53be 4565 buffer_info->dma = dma_map_single(&pdev->dev,
1da177e4 4566 skb->data,
edbbb3ca 4567 buffer_info->length,
b16f53be
NN
4568 DMA_FROM_DEVICE);
4569 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
b5abb028
AB
4570 dev_kfree_skb(skb);
4571 buffer_info->skb = NULL;
4572 buffer_info->dma = 0;
4573 adapter->alloc_rx_buff_failed++;
4574 break; /* while !buffer_info->skb */
4575 }
1da177e4 4576
6cfbd97b 4577 /* XXX if it was allocated cleanly it will never map to a
edbbb3ca
JB
4578 * boundary crossing
4579 */
4580
2648345f
MC
4581 /* Fix for errata 23, can't cross 64kB boundary */
4582 if (!e1000_check_64k_bound(adapter,
4583 (void *)(unsigned long)buffer_info->dma,
4584 adapter->rx_buffer_len)) {
feb8f478
ET
4585 e_err(rx_err, "dma align check failed: %u bytes at "
4586 "%p\n", adapter->rx_buffer_len,
675ad473 4587 (void *)(unsigned long)buffer_info->dma);
1da177e4
LT
4588 dev_kfree_skb(skb);
4589 buffer_info->skb = NULL;
4590
b16f53be 4591 dma_unmap_single(&pdev->dev, buffer_info->dma,
1da177e4 4592 adapter->rx_buffer_len,
b16f53be 4593 DMA_FROM_DEVICE);
679be3ba 4594 buffer_info->dma = 0;
1da177e4 4595
edbbb3ca 4596 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4597 break; /* while !buffer_info->skb */
4598 }
1da177e4
LT
4599 rx_desc = E1000_RX_DESC(*rx_ring, i);
4600 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4601
96838a40
JB
4602 if (unlikely(++i == rx_ring->count))
4603 i = 0;
1da177e4
LT
4604 buffer_info = &rx_ring->buffer_info[i];
4605 }
4606
b92ff8ee
JB
4607 if (likely(rx_ring->next_to_use != i)) {
4608 rx_ring->next_to_use = i;
4609 if (unlikely(i-- == 0))
4610 i = (rx_ring->count - 1);
4611
4612 /* Force memory writes to complete before letting h/w
4613 * know there are new descriptors to fetch. (Only
4614 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4615 * such as IA-64).
4616 */
b92ff8ee 4617 wmb();
1dc32918 4618 writel(i, hw->hw_addr + rx_ring->rdt);
b92ff8ee 4619 }
1da177e4
LT
4620}
4621
4622/**
4623 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4624 * @adapter:
4625 **/
64798845 4626static void e1000_smartspeed(struct e1000_adapter *adapter)
1da177e4 4627{
1dc32918 4628 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
4629 u16 phy_status;
4630 u16 phy_ctrl;
1da177e4 4631
1dc32918
JP
4632 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4633 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
1da177e4
LT
4634 return;
4635
96838a40 4636 if (adapter->smartspeed == 0) {
1da177e4 4637 /* If Master/Slave config fault is asserted twice,
6cfbd97b
JK
4638 * we assume back-to-back
4639 */
1dc32918 4640 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
96838a40 4641 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
1dc32918 4642 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
96838a40 4643 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
1dc32918 4644 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
96838a40 4645 if (phy_ctrl & CR_1000T_MS_ENABLE) {
1da177e4 4646 phy_ctrl &= ~CR_1000T_MS_ENABLE;
1dc32918 4647 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1da177e4
LT
4648 phy_ctrl);
4649 adapter->smartspeed++;
1dc32918
JP
4650 if (!e1000_phy_setup_autoneg(hw) &&
4651 !e1000_read_phy_reg(hw, PHY_CTRL,
6cfbd97b 4652 &phy_ctrl)) {
1da177e4
LT
4653 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4654 MII_CR_RESTART_AUTO_NEG);
1dc32918 4655 e1000_write_phy_reg(hw, PHY_CTRL,
1da177e4
LT
4656 phy_ctrl);
4657 }
4658 }
4659 return;
96838a40 4660 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
1da177e4 4661 /* If still no link, perhaps using 2/3 pair cable */
1dc32918 4662 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
1da177e4 4663 phy_ctrl |= CR_1000T_MS_ENABLE;
1dc32918
JP
4664 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4665 if (!e1000_phy_setup_autoneg(hw) &&
4666 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
1da177e4
LT
4667 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4668 MII_CR_RESTART_AUTO_NEG);
1dc32918 4669 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
1da177e4
LT
4670 }
4671 }
4672 /* Restart process after E1000_SMARTSPEED_MAX iterations */
96838a40 4673 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
1da177e4
LT
4674 adapter->smartspeed = 0;
4675}
4676
4677/**
4678 * e1000_ioctl -
4679 * @netdev:
4680 * @ifreq:
4681 * @cmd:
4682 **/
64798845 4683static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1da177e4
LT
4684{
4685 switch (cmd) {
4686 case SIOCGMIIPHY:
4687 case SIOCGMIIREG:
4688 case SIOCSMIIREG:
4689 return e1000_mii_ioctl(netdev, ifr, cmd);
4690 default:
4691 return -EOPNOTSUPP;
4692 }
4693}
4694
4695/**
4696 * e1000_mii_ioctl -
4697 * @netdev:
4698 * @ifreq:
4699 * @cmd:
4700 **/
64798845
JP
4701static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4702 int cmd)
1da177e4 4703{
60490fe0 4704 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4705 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4706 struct mii_ioctl_data *data = if_mii(ifr);
4707 int retval;
406874a7 4708 u16 mii_reg;
97876fc6 4709 unsigned long flags;
1da177e4 4710
1dc32918 4711 if (hw->media_type != e1000_media_type_copper)
1da177e4
LT
4712 return -EOPNOTSUPP;
4713
4714 switch (cmd) {
4715 case SIOCGMIIPHY:
1dc32918 4716 data->phy_id = hw->phy_addr;
1da177e4
LT
4717 break;
4718 case SIOCGMIIREG:
97876fc6 4719 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4720 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
97876fc6
MC
4721 &data->val_out)) {
4722 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4723 return -EIO;
97876fc6
MC
4724 }
4725 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
4726 break;
4727 case SIOCSMIIREG:
96838a40 4728 if (data->reg_num & ~(0x1F))
1da177e4
LT
4729 return -EFAULT;
4730 mii_reg = data->val_in;
97876fc6 4731 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4732 if (e1000_write_phy_reg(hw, data->reg_num,
97876fc6
MC
4733 mii_reg)) {
4734 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4735 return -EIO;
97876fc6 4736 }
f0163ac4 4737 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1dc32918 4738 if (hw->media_type == e1000_media_type_copper) {
1da177e4
LT
4739 switch (data->reg_num) {
4740 case PHY_CTRL:
96838a40 4741 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4742 break;
96838a40 4743 if (mii_reg & MII_CR_AUTO_NEG_EN) {
1dc32918
JP
4744 hw->autoneg = 1;
4745 hw->autoneg_advertised = 0x2F;
1da177e4 4746 } else {
14ad2513 4747 u32 speed;
1da177e4 4748 if (mii_reg & 0x40)
14ad2513 4749 speed = SPEED_1000;
1da177e4 4750 else if (mii_reg & 0x2000)
14ad2513 4751 speed = SPEED_100;
1da177e4 4752 else
14ad2513
DD
4753 speed = SPEED_10;
4754 retval = e1000_set_spd_dplx(
4755 adapter, speed,
4756 ((mii_reg & 0x100)
4757 ? DUPLEX_FULL :
4758 DUPLEX_HALF));
f0163ac4 4759 if (retval)
1da177e4
LT
4760 return retval;
4761 }
2db10a08
AK
4762 if (netif_running(adapter->netdev))
4763 e1000_reinit_locked(adapter);
4764 else
1da177e4
LT
4765 e1000_reset(adapter);
4766 break;
4767 case M88E1000_PHY_SPEC_CTRL:
4768 case M88E1000_EXT_PHY_SPEC_CTRL:
1dc32918 4769 if (e1000_phy_reset(hw))
1da177e4
LT
4770 return -EIO;
4771 break;
4772 }
4773 } else {
4774 switch (data->reg_num) {
4775 case PHY_CTRL:
96838a40 4776 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4777 break;
2db10a08
AK
4778 if (netif_running(adapter->netdev))
4779 e1000_reinit_locked(adapter);
4780 else
1da177e4
LT
4781 e1000_reset(adapter);
4782 break;
4783 }
4784 }
4785 break;
4786 default:
4787 return -EOPNOTSUPP;
4788 }
4789 return E1000_SUCCESS;
4790}
4791
64798845 4792void e1000_pci_set_mwi(struct e1000_hw *hw)
1da177e4
LT
4793{
4794 struct e1000_adapter *adapter = hw->back;
2648345f 4795 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 4796
96838a40 4797 if (ret_val)
feb8f478 4798 e_err(probe, "Error in setting MWI\n");
1da177e4
LT
4799}
4800
64798845 4801void e1000_pci_clear_mwi(struct e1000_hw *hw)
1da177e4
LT
4802{
4803 struct e1000_adapter *adapter = hw->back;
4804
4805 pci_clear_mwi(adapter->pdev);
4806}
4807
64798845 4808int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
007755eb
PO
4809{
4810 struct e1000_adapter *adapter = hw->back;
4811 return pcix_get_mmrbc(adapter->pdev);
4812}
4813
64798845 4814void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
007755eb
PO
4815{
4816 struct e1000_adapter *adapter = hw->back;
4817 pcix_set_mmrbc(adapter->pdev, mmrbc);
4818}
4819
64798845 4820void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
1da177e4
LT
4821{
4822 outl(value, port);
4823}
4824
5622e404
JP
4825static bool e1000_vlan_used(struct e1000_adapter *adapter)
4826{
4827 u16 vid;
4828
4829 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4830 return true;
4831 return false;
4832}
4833
52f5509f
JP
4834static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4835 netdev_features_t features)
4836{
4837 struct e1000_hw *hw = &adapter->hw;
4838 u32 ctrl;
4839
4840 ctrl = er32(CTRL);
f646968f 4841 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
52f5509f
JP
4842 /* enable VLAN tag insert/strip */
4843 ctrl |= E1000_CTRL_VME;
4844 } else {
4845 /* disable VLAN tag insert/strip */
4846 ctrl &= ~E1000_CTRL_VME;
4847 }
4848 ew32(CTRL, ctrl);
4849}
5622e404
JP
4850static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4851 bool filter_on)
1da177e4 4852{
1dc32918 4853 struct e1000_hw *hw = &adapter->hw;
5622e404 4854 u32 rctl;
1da177e4 4855
9150b76a
JB
4856 if (!test_bit(__E1000_DOWN, &adapter->flags))
4857 e1000_irq_disable(adapter);
1da177e4 4858
52f5509f 4859 __e1000_vlan_mode(adapter, adapter->netdev->features);
5622e404 4860 if (filter_on) {
1532ecea
JB
4861 /* enable VLAN receive filtering */
4862 rctl = er32(RCTL);
4863 rctl &= ~E1000_RCTL_CFIEN;
5622e404 4864 if (!(adapter->netdev->flags & IFF_PROMISC))
1532ecea
JB
4865 rctl |= E1000_RCTL_VFE;
4866 ew32(RCTL, rctl);
4867 e1000_update_mng_vlan(adapter);
1da177e4 4868 } else {
1532ecea
JB
4869 /* disable VLAN receive filtering */
4870 rctl = er32(RCTL);
4871 rctl &= ~E1000_RCTL_VFE;
4872 ew32(RCTL, rctl);
5622e404 4873 }
fd38d7a0 4874
5622e404
JP
4875 if (!test_bit(__E1000_DOWN, &adapter->flags))
4876 e1000_irq_enable(adapter);
4877}
4878
c8f44aff 4879static void e1000_vlan_mode(struct net_device *netdev,
52f5509f 4880 netdev_features_t features)
5622e404
JP
4881{
4882 struct e1000_adapter *adapter = netdev_priv(netdev);
5622e404
JP
4883
4884 if (!test_bit(__E1000_DOWN, &adapter->flags))
4885 e1000_irq_disable(adapter);
4886
52f5509f 4887 __e1000_vlan_mode(adapter, features);
1da177e4 4888
9150b76a
JB
4889 if (!test_bit(__E1000_DOWN, &adapter->flags))
4890 e1000_irq_enable(adapter);
1da177e4
LT
4891}
4892
80d5c368
PM
4893static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4894 __be16 proto, u16 vid)
1da177e4 4895{
60490fe0 4896 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4897 struct e1000_hw *hw = &adapter->hw;
406874a7 4898 u32 vfta, index;
96838a40 4899
1dc32918 4900 if ((hw->mng_cookie.status &
96838a40
JB
4901 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4902 (vid == adapter->mng_vlan_id))
8e586137 4903 return 0;
5622e404
JP
4904
4905 if (!e1000_vlan_used(adapter))
4906 e1000_vlan_filter_on_off(adapter, true);
4907
1da177e4
LT
4908 /* add VID to filter table */
4909 index = (vid >> 5) & 0x7F;
1dc32918 4910 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4911 vfta |= (1 << (vid & 0x1F));
1dc32918 4912 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4913
4914 set_bit(vid, adapter->active_vlans);
8e586137
JP
4915
4916 return 0;
1da177e4
LT
4917}
4918
80d5c368
PM
4919static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4920 __be16 proto, u16 vid)
1da177e4 4921{
60490fe0 4922 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4923 struct e1000_hw *hw = &adapter->hw;
406874a7 4924 u32 vfta, index;
1da177e4 4925
9150b76a
JB
4926 if (!test_bit(__E1000_DOWN, &adapter->flags))
4927 e1000_irq_disable(adapter);
9150b76a
JB
4928 if (!test_bit(__E1000_DOWN, &adapter->flags))
4929 e1000_irq_enable(adapter);
1da177e4
LT
4930
4931 /* remove VID from filter table */
4932 index = (vid >> 5) & 0x7F;
1dc32918 4933 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4934 vfta &= ~(1 << (vid & 0x1F));
1dc32918 4935 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4936
4937 clear_bit(vid, adapter->active_vlans);
4938
4939 if (!e1000_vlan_used(adapter))
4940 e1000_vlan_filter_on_off(adapter, false);
8e586137
JP
4941
4942 return 0;
1da177e4
LT
4943}
4944
64798845 4945static void e1000_restore_vlan(struct e1000_adapter *adapter)
1da177e4 4946{
5622e404 4947 u16 vid;
1da177e4 4948
5622e404
JP
4949 if (!e1000_vlan_used(adapter))
4950 return;
4951
4952 e1000_vlan_filter_on_off(adapter, true);
4953 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 4954 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1da177e4
LT
4955}
4956
14ad2513 4957int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
1da177e4 4958{
1dc32918
JP
4959 struct e1000_hw *hw = &adapter->hw;
4960
4961 hw->autoneg = 0;
1da177e4 4962
14ad2513 4963 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6cfbd97b
JK
4964 * for the switch() below to work
4965 */
14ad2513
DD
4966 if ((spd & 1) || (dplx & ~1))
4967 goto err_inval;
4968
6921368f 4969 /* Fiber NICs only allow 1000 gbps Full duplex */
1dc32918 4970 if ((hw->media_type == e1000_media_type_fiber) &&
14ad2513
DD
4971 spd != SPEED_1000 &&
4972 dplx != DUPLEX_FULL)
4973 goto err_inval;
6921368f 4974
14ad2513 4975 switch (spd + dplx) {
1da177e4 4976 case SPEED_10 + DUPLEX_HALF:
1dc32918 4977 hw->forced_speed_duplex = e1000_10_half;
1da177e4
LT
4978 break;
4979 case SPEED_10 + DUPLEX_FULL:
1dc32918 4980 hw->forced_speed_duplex = e1000_10_full;
1da177e4
LT
4981 break;
4982 case SPEED_100 + DUPLEX_HALF:
1dc32918 4983 hw->forced_speed_duplex = e1000_100_half;
1da177e4
LT
4984 break;
4985 case SPEED_100 + DUPLEX_FULL:
1dc32918 4986 hw->forced_speed_duplex = e1000_100_full;
1da177e4
LT
4987 break;
4988 case SPEED_1000 + DUPLEX_FULL:
1dc32918
JP
4989 hw->autoneg = 1;
4990 hw->autoneg_advertised = ADVERTISE_1000_FULL;
1da177e4
LT
4991 break;
4992 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4993 default:
14ad2513 4994 goto err_inval;
1da177e4 4995 }
c819bbd5
JB
4996
4997 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4998 hw->mdix = AUTO_ALL_MODES;
4999
1da177e4 5000 return 0;
14ad2513
DD
5001
5002err_inval:
5003 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5004 return -EINVAL;
1da177e4
LT
5005}
5006
b43fcd7d 5007static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
5008{
5009 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5010 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5011 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
5012 u32 ctrl, ctrl_ext, rctl, status;
5013 u32 wufc = adapter->wol;
6fdfef16 5014#ifdef CONFIG_PM
240b1710 5015 int retval = 0;
6fdfef16 5016#endif
1da177e4
LT
5017
5018 netif_device_detach(netdev);
5019
2db10a08 5020 if (netif_running(netdev)) {
6a7d64e3 5021 int count = E1000_CHECK_RESET_COUNT;
5022
5023 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5024 usleep_range(10000, 20000);
5025
2db10a08 5026 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 5027 e1000_down(adapter);
2db10a08 5028 }
1da177e4 5029
2f82665f 5030#ifdef CONFIG_PM
1d33e9c6 5031 retval = pci_save_state(pdev);
3a3847e0 5032 if (retval)
2f82665f
JB
5033 return retval;
5034#endif
5035
1dc32918 5036 status = er32(STATUS);
96838a40 5037 if (status & E1000_STATUS_LU)
1da177e4
LT
5038 wufc &= ~E1000_WUFC_LNKC;
5039
96838a40 5040 if (wufc) {
1da177e4 5041 e1000_setup_rctl(adapter);
db0ce50d 5042 e1000_set_rx_mode(netdev);
1da177e4 5043
b868179c
DN
5044 rctl = er32(RCTL);
5045
1da177e4 5046 /* turn on all-multi mode if wake on multicast is enabled */
b868179c 5047 if (wufc & E1000_WUFC_MC)
1da177e4 5048 rctl |= E1000_RCTL_MPE;
b868179c
DN
5049
5050 /* enable receives in the hardware */
5051 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4 5052
1dc32918
JP
5053 if (hw->mac_type >= e1000_82540) {
5054 ctrl = er32(CTRL);
1da177e4
LT
5055 /* advertise wake from D3Cold */
5056 #define E1000_CTRL_ADVD3WUC 0x00100000
5057 /* phy power management enable */
5058 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5059 ctrl |= E1000_CTRL_ADVD3WUC |
5060 E1000_CTRL_EN_PHY_PWR_MGMT;
1dc32918 5061 ew32(CTRL, ctrl);
1da177e4
LT
5062 }
5063
1dc32918 5064 if (hw->media_type == e1000_media_type_fiber ||
1532ecea 5065 hw->media_type == e1000_media_type_internal_serdes) {
1da177e4 5066 /* keep the laser running in D3 */
1dc32918 5067 ctrl_ext = er32(CTRL_EXT);
1da177e4 5068 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
1dc32918 5069 ew32(CTRL_EXT, ctrl_ext);
1da177e4
LT
5070 }
5071
1dc32918
JP
5072 ew32(WUC, E1000_WUC_PME_EN);
5073 ew32(WUFC, wufc);
1da177e4 5074 } else {
1dc32918
JP
5075 ew32(WUC, 0);
5076 ew32(WUFC, 0);
1da177e4
LT
5077 }
5078
0fccd0e9
JG
5079 e1000_release_manageability(adapter);
5080
b43fcd7d
RW
5081 *enable_wake = !!wufc;
5082
0fccd0e9 5083 /* make sure adapter isn't asleep if manageability is enabled */
b43fcd7d
RW
5084 if (adapter->en_mng_pt)
5085 *enable_wake = true;
1da177e4 5086
edd106fc
AK
5087 if (netif_running(netdev))
5088 e1000_free_irq(adapter);
5089
1da177e4 5090 pci_disable_device(pdev);
240b1710 5091
1da177e4
LT
5092 return 0;
5093}
5094
2f82665f 5095#ifdef CONFIG_PM
b43fcd7d
RW
5096static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5097{
5098 int retval;
5099 bool wake;
5100
5101 retval = __e1000_shutdown(pdev, &wake);
5102 if (retval)
5103 return retval;
5104
5105 if (wake) {
5106 pci_prepare_to_sleep(pdev);
5107 } else {
5108 pci_wake_from_d3(pdev, false);
5109 pci_set_power_state(pdev, PCI_D3hot);
5110 }
5111
5112 return 0;
5113}
5114
64798845 5115static int e1000_resume(struct pci_dev *pdev)
1da177e4
LT
5116{
5117 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5118 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5119 struct e1000_hw *hw = &adapter->hw;
406874a7 5120 u32 err;
1da177e4 5121
d0e027db 5122 pci_set_power_state(pdev, PCI_D0);
1d33e9c6 5123 pci_restore_state(pdev);
dbb5aaeb 5124 pci_save_state(pdev);
81250297
TI
5125
5126 if (adapter->need_ioport)
5127 err = pci_enable_device(pdev);
5128 else
5129 err = pci_enable_device_mem(pdev);
c7be73bc 5130 if (err) {
675ad473 5131 pr_err("Cannot enable PCI device from suspend\n");
3d1dd8cb
AK
5132 return err;
5133 }
a4cb847d 5134 pci_set_master(pdev);
1da177e4 5135
d0e027db
AK
5136 pci_enable_wake(pdev, PCI_D3hot, 0);
5137 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4 5138
c7be73bc
JP
5139 if (netif_running(netdev)) {
5140 err = e1000_request_irq(adapter);
5141 if (err)
5142 return err;
5143 }
edd106fc
AK
5144
5145 e1000_power_up_phy(adapter);
1da177e4 5146 e1000_reset(adapter);
1dc32918 5147 ew32(WUS, ~0);
1da177e4 5148
0fccd0e9
JG
5149 e1000_init_manageability(adapter);
5150
96838a40 5151 if (netif_running(netdev))
1da177e4
LT
5152 e1000_up(adapter);
5153
5154 netif_device_attach(netdev);
5155
1da177e4
LT
5156 return 0;
5157}
5158#endif
c653e635
AK
5159
5160static void e1000_shutdown(struct pci_dev *pdev)
5161{
b43fcd7d
RW
5162 bool wake;
5163
5164 __e1000_shutdown(pdev, &wake);
5165
5166 if (system_state == SYSTEM_POWER_OFF) {
5167 pci_wake_from_d3(pdev, wake);
5168 pci_set_power_state(pdev, PCI_D3hot);
5169 }
c653e635
AK
5170}
5171
1da177e4 5172#ifdef CONFIG_NET_POLL_CONTROLLER
6cfbd97b 5173/* Polling 'interrupt' - used by things like netconsole to send skbs
1da177e4
LT
5174 * without having to re-enable interrupts. It's not called while
5175 * the interrupt routine is executing.
5176 */
64798845 5177static void e1000_netpoll(struct net_device *netdev)
1da177e4 5178{
60490fe0 5179 struct e1000_adapter *adapter = netdev_priv(netdev);
d3d9e484 5180
1da177e4 5181 disable_irq(adapter->pdev->irq);
7d12e780 5182 e1000_intr(adapter->pdev->irq, netdev);
1da177e4
LT
5183 enable_irq(adapter->pdev->irq);
5184}
5185#endif
5186
9026729b
AK
5187/**
5188 * e1000_io_error_detected - called when PCI error is detected
5189 * @pdev: Pointer to PCI device
120a5d0d 5190 * @state: The current pci connection state
9026729b
AK
5191 *
5192 * This function is called after a PCI bus error affecting
5193 * this device has been detected.
5194 */
64798845
JP
5195static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5196 pci_channel_state_t state)
9026729b
AK
5197{
5198 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5199 struct e1000_adapter *adapter = netdev_priv(netdev);
9026729b
AK
5200
5201 netif_device_detach(netdev);
5202
eab63302
AD
5203 if (state == pci_channel_io_perm_failure)
5204 return PCI_ERS_RESULT_DISCONNECT;
5205
9026729b
AK
5206 if (netif_running(netdev))
5207 e1000_down(adapter);
72e8d6bb 5208 pci_disable_device(pdev);
9026729b
AK
5209
5210 /* Request a slot slot reset. */
5211 return PCI_ERS_RESULT_NEED_RESET;
5212}
5213
5214/**
5215 * e1000_io_slot_reset - called after the pci bus has been reset.
5216 * @pdev: Pointer to PCI device
5217 *
5218 * Restart the card from scratch, as if from a cold-boot. Implementation
5219 * resembles the first-half of the e1000_resume routine.
5220 */
5221static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5222{
5223 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5224 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5225 struct e1000_hw *hw = &adapter->hw;
81250297 5226 int err;
9026729b 5227
81250297
TI
5228 if (adapter->need_ioport)
5229 err = pci_enable_device(pdev);
5230 else
5231 err = pci_enable_device_mem(pdev);
5232 if (err) {
675ad473 5233 pr_err("Cannot re-enable PCI device after reset.\n");
9026729b
AK
5234 return PCI_ERS_RESULT_DISCONNECT;
5235 }
5236 pci_set_master(pdev);
5237
dbf38c94
LV
5238 pci_enable_wake(pdev, PCI_D3hot, 0);
5239 pci_enable_wake(pdev, PCI_D3cold, 0);
9026729b 5240
9026729b 5241 e1000_reset(adapter);
1dc32918 5242 ew32(WUS, ~0);
9026729b
AK
5243
5244 return PCI_ERS_RESULT_RECOVERED;
5245}
5246
5247/**
5248 * e1000_io_resume - called when traffic can start flowing again.
5249 * @pdev: Pointer to PCI device
5250 *
5251 * This callback is called when the error recovery driver tells us that
5252 * its OK to resume normal operation. Implementation resembles the
5253 * second-half of the e1000_resume routine.
5254 */
5255static void e1000_io_resume(struct pci_dev *pdev)
5256{
5257 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5258 struct e1000_adapter *adapter = netdev_priv(netdev);
0fccd0e9
JG
5259
5260 e1000_init_manageability(adapter);
9026729b
AK
5261
5262 if (netif_running(netdev)) {
5263 if (e1000_up(adapter)) {
675ad473 5264 pr_info("can't bring device back up after reset\n");
9026729b
AK
5265 return;
5266 }
5267 }
5268
5269 netif_device_attach(netdev);
9026729b
AK
5270}
5271
1da177e4 5272/* e1000_main.c */
This page took 1.637339 seconds and 5 git commands to generate.