Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
d9c76f99 55#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
ff10e13c
CW
56#define E1000_BASE1000T_STATUS 10
57#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58#define E1000_RECEIVE_ERROR_COUNTER 21
59#define E1000_RECEIVE_ERROR_MAX 0xFFFF
bc7f75fa 60
4662e82b
BA
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
bc7f75fa
AK
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77996d1d
BA
81static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
bc7f75fa
AK
83
84/**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
bc7f75fa
AK
87 **/
88static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89{
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
318a94d6 93 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
17f208de
BA
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
bc7f75fa
AK
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
4662e82b 113 case e1000_82574:
8c81c9c3 114 case e1000_82583:
4662e82b 115 phy->type = e1000_phy_bm;
1b98c2bb
BA
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
77996d1d
BA
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
4662e82b 120 break;
bc7f75fa
AK
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
bc7f75fa
AK
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 138 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 142 ret_val = -E1000_ERR_PHY;
bc7f75fa 143 break;
4662e82b 144 case e1000_82574:
8c81c9c3 145 case e1000_82583:
4662e82b 146 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 147 ret_val = -E1000_ERR_PHY;
4662e82b 148 break;
bc7f75fa 149 default:
dd93f95e 150 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
151 break;
152 }
153
dd93f95e
BA
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
bc7f75fa
AK
158}
159
160/**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
bc7f75fa
AK
163 **/
164static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165{
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
4662e82b 189 case e1000_82574:
8c81c9c3 190 case e1000_82583:
bc7f75fa
AK
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
ad68076e
BA
194 /*
195 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
ad68076e 204 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
207 /*
208 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
bc7f75fa
AK
216 nvm->word_size = 1 << size;
217 break;
218 }
219
1b98c2bb
BA
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
bc7f75fa
AK
231 return 0;
232}
233
234/**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
bc7f75fa 237 **/
ec34c170 238static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
bc7f75fa 239{
bc7f75fa 240 struct e1000_mac_info *mac = &hw->mac;
23a2d1b2
DG
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
bc7f75fa 244
66092f59 245 /* Set media type and media-dependent function pointers */
ec34c170 246 switch (hw->adapter->pdev->device) {
bc7f75fa
AK
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 250 hw->phy.media_type = e1000_media_type_fiber;
66092f59
BA
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
040babf9
AK
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
66092f59 260 case E1000_DEV_ID_82572EI_SERDES:
318a94d6 261 hw->phy.media_type = e1000_media_type_internal_serdes;
66092f59
BA
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
267 break;
268 default:
318a94d6 269 hw->phy.media_type = e1000_media_type_copper;
66092f59
BA
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
bc7f75fa
AK
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
bc7f75fa 283
66092f59 284 /* MAC-specific function pointers */
4662e82b 285 switch (hw->mac.type) {
f4d2dd4c 286 case e1000_82573:
66092f59
BA
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
04499ec4
BA
298 mac->arc_subsystem_valid = !!(er32(FWSM) &
299 E1000_FWSM_MODE_MASK);
f4d2dd4c 300 break;
4662e82b 301 case e1000_82574:
8c81c9c3 302 case e1000_82583:
66092f59
BA
303 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305 mac->ops.led_on = e1000_led_on_82574;
4662e82b
BA
306 break;
307 default:
66092f59
BA
308 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309 mac->ops.led_on = e1000e_led_on_generic;
310 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
311
312 /* FWSM register */
313 mac->has_fwsm = true;
4662e82b
BA
314 break;
315 }
316
23a2d1b2
DG
317 /*
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
b595076a 319 * first NVM or PHY access. This should be done for single-port
23a2d1b2
DG
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
323 */
324 switch (hw->mac.type) {
325 case e1000_82571:
326 case e1000_82572:
327 swsm2 = er32(SWSM2);
328
329 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 /* Only do this for the first interface on this card */
66092f59 331 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
23a2d1b2 332 force_clear_smbi = true;
66092f59 333 } else {
23a2d1b2 334 force_clear_smbi = false;
66092f59 335 }
23a2d1b2
DG
336 break;
337 default:
338 force_clear_smbi = true;
339 break;
340 }
341
342 if (force_clear_smbi) {
343 /* Make sure SWSM.SMBI is clear */
344 swsm = er32(SWSM);
345 if (swsm & E1000_SWSM_SMBI) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
349 */
3bb99fe2 350 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
351 }
352 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 }
354
355 /*
2c73e1fe 356 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
357 * timeouts.
358 */
359 hw->dev_spec.e82571.smb_counter = 0;
360
bc7f75fa
AK
361 return 0;
362}
363
69e3fd8c 364static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
365{
366 struct e1000_hw *hw = &adapter->hw;
367 static int global_quad_port_a; /* global port a indication */
368 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
369 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 s32 rc;
371
ec34c170 372 rc = e1000_init_mac_params_82571(hw);
bc7f75fa
AK
373 if (rc)
374 return rc;
375
376 rc = e1000_init_nvm_params_82571(hw);
377 if (rc)
378 return rc;
379
380 rc = e1000_init_phy_params_82571(hw);
381 if (rc)
382 return rc;
383
384 /* tag quad port adapters first, it's used below */
385 switch (pdev->device) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 389 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
390 adapter->flags |= FLAG_IS_QUAD_PORT;
391 /* mark the first port */
392 if (global_quad_port_a == 0)
393 adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a++;
396 if (global_quad_port_a == 4)
397 global_quad_port_a = 0;
398 break;
399 default:
400 break;
401 }
402
403 switch (adapter->hw.mac.type) {
404 case e1000_82571:
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 (is_port_b))
410 adapter->flags &= ~FLAG_HAS_WOL;
411 /* quad ports only support WoL on port A */
412 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 413 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 414 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
415 /* Does not support WoL on any port */
416 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 418 break;
bc7f75fa
AK
419 case e1000_82573:
420 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
421 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
423 }
424 break;
425 default:
426 break;
427 }
428
429 return 0;
430}
431
432/**
433 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434 * @hw: pointer to the HW structure
435 *
436 * Reads the PHY registers and stores the PHY ID and possibly the PHY
437 * revision in the hardware structure.
438 **/
439static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440{
441 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
442 s32 ret_val;
443 u16 phy_id = 0;
bc7f75fa
AK
444
445 switch (hw->mac.type) {
446 case e1000_82571:
447 case e1000_82572:
ad68076e
BA
448 /*
449 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
450 * In this case, we cannot access the PHY until the
451 * configuration is done. So we explicitly set the
ad68076e
BA
452 * PHY ID.
453 */
bc7f75fa
AK
454 phy->id = IGP01E1000_I_PHY_ID;
455 break;
456 case e1000_82573:
457 return e1000e_get_phy_id(hw);
458 break;
4662e82b 459 case e1000_82574:
8c81c9c3 460 case e1000_82583:
4662e82b
BA
461 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462 if (ret_val)
463 return ret_val;
464
465 phy->id = (u32)(phy_id << 16);
466 udelay(20);
467 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468 if (ret_val)
469 return ret_val;
470
471 phy->id |= (u32)(phy_id);
472 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473 break;
bc7f75fa
AK
474 default:
475 return -E1000_ERR_PHY;
476 break;
477 }
478
479 return 0;
480}
481
482/**
483 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484 * @hw: pointer to the HW structure
485 *
486 * Acquire the HW semaphore to access the PHY or NVM
487 **/
488static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489{
490 u32 swsm;
23a2d1b2
DG
491 s32 sw_timeout = hw->nvm.word_size + 1;
492 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
493 s32 i = 0;
494
23a2d1b2
DG
495 /*
496 * If we have timedout 3 times on trying to acquire
497 * the inter-port SMBI semaphore, there is old code
498 * operating on the other port, and it is not
499 * releasing SMBI. Modify the number of times that
500 * we try for the semaphore to interwork with this
501 * older code.
502 */
503 if (hw->dev_spec.e82571.smb_counter > 2)
504 sw_timeout = 1;
505
506 /* Get the SW semaphore */
507 while (i < sw_timeout) {
508 swsm = er32(SWSM);
509 if (!(swsm & E1000_SWSM_SMBI))
510 break;
511
512 udelay(50);
513 i++;
514 }
515
516 if (i == sw_timeout) {
3bb99fe2 517 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
518 hw->dev_spec.e82571.smb_counter++;
519 }
bc7f75fa 520 /* Get the FW semaphore. */
23a2d1b2 521 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
522 swsm = er32(SWSM);
523 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525 /* Semaphore acquired if bit latched */
526 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527 break;
528
529 udelay(50);
530 }
531
23a2d1b2 532 if (i == fw_timeout) {
bc7f75fa 533 /* Release semaphores */
23a2d1b2 534 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 535 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
536 return -E1000_ERR_NVM;
537 }
538
539 return 0;
540}
541
542/**
543 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
544 * @hw: pointer to the HW structure
545 *
546 * Release hardware semaphore used to access the PHY or NVM
547 **/
548static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549{
550 u32 swsm;
551
552 swsm = er32(SWSM);
23a2d1b2 553 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
554 ew32(SWSM, swsm);
555}
1b98c2bb
BA
556/**
557 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558 * @hw: pointer to the HW structure
559 *
560 * Acquire the HW semaphore during reset.
561 *
562 **/
563static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564{
565 u32 extcnf_ctrl;
1b98c2bb
BA
566 s32 i = 0;
567
568 extcnf_ctrl = er32(EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570 do {
571 ew32(EXTCNF_CTRL, extcnf_ctrl);
572 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575 break;
576
577 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
1bba4386 579 usleep_range(2000, 4000);
1b98c2bb
BA
580 i++;
581 } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583 if (i == MDIO_OWNERSHIP_TIMEOUT) {
584 /* Release semaphores */
585 e1000_put_hw_semaphore_82573(hw);
586 e_dbg("Driver can't access the PHY\n");
5015e53a 587 return -E1000_ERR_PHY;
1b98c2bb
BA
588 }
589
5015e53a 590 return 0;
1b98c2bb
BA
591}
592
593/**
594 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
595 * @hw: pointer to the HW structure
596 *
597 * Release hardware semaphore used during reset.
598 *
599 **/
600static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601{
602 u32 extcnf_ctrl;
603
604 extcnf_ctrl = er32(EXTCNF_CTRL);
605 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606 ew32(EXTCNF_CTRL, extcnf_ctrl);
607}
608
609static DEFINE_MUTEX(swflag_mutex);
610
611/**
612 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613 * @hw: pointer to the HW structure
614 *
615 * Acquire the HW semaphore to access the PHY or NVM.
616 *
617 **/
618static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619{
620 s32 ret_val;
621
622 mutex_lock(&swflag_mutex);
623 ret_val = e1000_get_hw_semaphore_82573(hw);
624 if (ret_val)
625 mutex_unlock(&swflag_mutex);
626 return ret_val;
627}
628
629/**
630 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
631 * @hw: pointer to the HW structure
632 *
633 * Release hardware semaphore used to access the PHY or NVM
634 *
635 **/
636static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637{
638 e1000_put_hw_semaphore_82573(hw);
639 mutex_unlock(&swflag_mutex);
640}
bc7f75fa 641
77996d1d
BA
642/**
643 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644 * @hw: pointer to the HW structure
645 * @active: true to enable LPLU, false to disable
646 *
647 * Sets the LPLU D0 state according to the active flag.
648 * LPLU will not be activated unless the
649 * device autonegotiation advertisement meets standards of
650 * either 10 or 10/100 or 10/100/1000 at all duplexes.
651 * This is a function pointer entry point only called by
652 * PHY setup routines.
653 **/
654static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655{
656 u16 data = er32(POEMB);
657
658 if (active)
659 data |= E1000_PHY_CTRL_D0A_LPLU;
660 else
661 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663 ew32(POEMB, data);
664 return 0;
665}
666
667/**
668 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669 * @hw: pointer to the HW structure
670 * @active: boolean used to enable/disable lplu
671 *
672 * The low power link up (lplu) state is set to the power management level D3
673 * when active is true, else clear lplu for D3. LPLU
674 * is used during Dx states where the power conservation is most important.
675 * During driver activity, SmartSpeed should be enabled so performance is
676 * maintained.
677 **/
678static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679{
680 u16 data = er32(POEMB);
681
682 if (!active) {
683 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688 }
689
690 ew32(POEMB, data);
691 return 0;
692}
693
bc7f75fa
AK
694/**
695 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
696 * @hw: pointer to the HW structure
697 *
698 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
699 * Then for non-82573 hardware, set the EEPROM access request bit and wait
700 * for EEPROM access grant bit. If the access grant bit is not set, release
701 * hardware semaphore.
702 **/
703static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704{
705 s32 ret_val;
706
707 ret_val = e1000_get_hw_semaphore_82571(hw);
708 if (ret_val)
709 return ret_val;
710
8c81c9c3
AD
711 switch (hw->mac.type) {
712 case e1000_82573:
8c81c9c3
AD
713 break;
714 default:
bc7f75fa 715 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
716 break;
717 }
bc7f75fa
AK
718
719 if (ret_val)
720 e1000_put_hw_semaphore_82571(hw);
721
722 return ret_val;
723}
724
725/**
726 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
727 * @hw: pointer to the HW structure
728 *
729 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
730 **/
731static void e1000_release_nvm_82571(struct e1000_hw *hw)
732{
733 e1000e_release_nvm(hw);
734 e1000_put_hw_semaphore_82571(hw);
735}
736
737/**
738 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739 * @hw: pointer to the HW structure
740 * @offset: offset within the EEPROM to be written to
741 * @words: number of words to write
742 * @data: 16 bit word(s) to be written to the EEPROM
743 *
744 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745 *
746 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 747 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
748 **/
749static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750 u16 *data)
751{
752 s32 ret_val;
753
754 switch (hw->mac.type) {
755 case e1000_82573:
4662e82b 756 case e1000_82574:
8c81c9c3 757 case e1000_82583:
bc7f75fa
AK
758 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759 break;
760 case e1000_82571:
761 case e1000_82572:
762 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763 break;
764 default:
765 ret_val = -E1000_ERR_NVM;
766 break;
767 }
768
769 return ret_val;
770}
771
772/**
773 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774 * @hw: pointer to the HW structure
775 *
776 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
777 * up to the checksum. Then calculates the EEPROM checksum and writes the
778 * value to the EEPROM.
779 **/
780static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781{
782 u32 eecd;
783 s32 ret_val;
784 u16 i;
785
786 ret_val = e1000e_update_nvm_checksum_generic(hw);
787 if (ret_val)
788 return ret_val;
789
ad68076e
BA
790 /*
791 * If our nvm is an EEPROM, then we're done
792 * otherwise, commit the checksum to the flash NVM.
793 */
bc7f75fa 794 if (hw->nvm.type != e1000_nvm_flash_hw)
82607255 795 return 0;
bc7f75fa
AK
796
797 /* Check for pending operations. */
798 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 799 usleep_range(1000, 2000);
04499ec4 800 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
801 break;
802 }
803
804 if (i == E1000_FLASH_UPDATES)
805 return -E1000_ERR_NVM;
806
807 /* Reset the firmware if using STM opcode. */
808 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
809 /*
810 * The enabling of and the actual reset must be done
bc7f75fa
AK
811 * in two write cycles.
812 */
813 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814 e1e_flush();
815 ew32(HICR, E1000_HICR_FW_RESET);
816 }
817
818 /* Commit the write to flash */
819 eecd = er32(EECD) | E1000_EECD_FLUPD;
820 ew32(EECD, eecd);
821
822 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 823 usleep_range(1000, 2000);
04499ec4 824 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
825 break;
826 }
827
828 if (i == E1000_FLASH_UPDATES)
829 return -E1000_ERR_NVM;
830
831 return 0;
832}
833
834/**
835 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836 * @hw: pointer to the HW structure
837 *
838 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
840 **/
841static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842{
843 if (hw->nvm.type == e1000_nvm_flash_hw)
844 e1000_fix_nvm_checksum_82571(hw);
845
846 return e1000e_validate_nvm_checksum_generic(hw);
847}
848
849/**
850 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851 * @hw: pointer to the HW structure
852 * @offset: offset within the EEPROM to be written to
853 * @words: number of words to write
854 * @data: 16 bit word(s) to be written to the EEPROM
855 *
856 * After checking for invalid values, poll the EEPROM to ensure the previous
857 * command has completed before trying to write the next word. After write
858 * poll for completion.
859 *
860 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 861 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
862 **/
863static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864 u16 words, u16 *data)
865{
866 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 867 u32 i, eewr = 0;
bc7f75fa
AK
868 s32 ret_val = 0;
869
ad68076e
BA
870 /*
871 * A check for invalid values: offset too large, too many words,
872 * and not enough words.
873 */
bc7f75fa
AK
874 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875 (words == 0)) {
3bb99fe2 876 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
877 return -E1000_ERR_NVM;
878 }
879
880 for (i = 0; i < words; i++) {
881 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883 E1000_NVM_RW_REG_START;
884
885 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886 if (ret_val)
887 break;
888
889 ew32(EEWR, eewr);
890
891 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892 if (ret_val)
893 break;
894 }
895
896 return ret_val;
897}
898
899/**
900 * e1000_get_cfg_done_82571 - Poll for configuration done
901 * @hw: pointer to the HW structure
902 *
903 * Reads the management control register for the config done bit to be set.
904 **/
905static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906{
907 s32 timeout = PHY_CFG_TIMEOUT;
908
909 while (timeout) {
910 if (er32(EEMNGCTL) &
911 E1000_NVM_CFG_DONE_PORT_0)
912 break;
1bba4386 913 usleep_range(1000, 2000);
bc7f75fa
AK
914 timeout--;
915 }
916 if (!timeout) {
3bb99fe2 917 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
918 return -E1000_ERR_RESET;
919 }
920
921 return 0;
922}
923
924/**
925 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926 * @hw: pointer to the HW structure
564ea9bb 927 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
928 *
929 * Sets the LPLU D0 state according to the active flag. When activating LPLU
930 * this function also disables smart speed and vice versa. LPLU will not be
931 * activated unless the device autonegotiation advertisement meets standards
932 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
933 * pointer entry point only called by PHY setup routines.
934 **/
935static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936{
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 data;
940
941 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 if (ret_val)
943 return ret_val;
944
945 if (active) {
946 data |= IGP02E1000_PM_D0_LPLU;
947 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948 if (ret_val)
949 return ret_val;
950
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955 if (ret_val)
956 return ret_val;
957 } else {
958 data &= ~IGP02E1000_PM_D0_LPLU;
959 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
960 /*
961 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
962 * during Dx states where the power conservation is most
963 * important. During driver activity we should enable
ad68076e
BA
964 * SmartSpeed, so performance is maintained.
965 */
bc7f75fa
AK
966 if (phy->smart_speed == e1000_smart_speed_on) {
967 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 968 &data);
bc7f75fa
AK
969 if (ret_val)
970 return ret_val;
971
972 data |= IGP01E1000_PSCFR_SMART_SPEED;
973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 974 data);
bc7f75fa
AK
975 if (ret_val)
976 return ret_val;
977 } else if (phy->smart_speed == e1000_smart_speed_off) {
978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 979 &data);
bc7f75fa
AK
980 if (ret_val)
981 return ret_val;
982
983 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 985 data);
bc7f75fa
AK
986 if (ret_val)
987 return ret_val;
988 }
989 }
990
991 return 0;
992}
993
994/**
995 * e1000_reset_hw_82571 - Reset hardware
996 * @hw: pointer to the HW structure
997 *
fe401674 998 * This resets the hardware into a known state.
bc7f75fa
AK
999 **/
1000static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001{
1f56f45d 1002 u32 ctrl, ctrl_ext, eecd;
bc7f75fa 1003 s32 ret_val;
bc7f75fa 1004
ad68076e
BA
1005 /*
1006 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
1007 * on the last TLP read/write transaction when MAC is reset.
1008 */
1009 ret_val = e1000e_disable_pcie_master(hw);
1010 if (ret_val)
3bb99fe2 1011 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 1012
3bb99fe2 1013 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
1014 ew32(IMC, 0xffffffff);
1015
1016 ew32(RCTL, 0);
1017 ew32(TCTL, E1000_TCTL_PSP);
1018 e1e_flush();
1019
1bba4386 1020 usleep_range(10000, 20000);
bc7f75fa 1021
ad68076e
BA
1022 /*
1023 * Must acquire the MDIO ownership before MAC reset.
1024 * Ownership defaults to firmware after a reset.
1025 */
8c81c9c3
AD
1026 switch (hw->mac.type) {
1027 case e1000_82573:
1b98c2bb
BA
1028 ret_val = e1000_get_hw_semaphore_82573(hw);
1029 break;
8c81c9c3
AD
1030 case e1000_82574:
1031 case e1000_82583:
1b98c2bb 1032 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
1033 break;
1034 default:
1035 break;
bc7f75fa 1036 }
1b98c2bb
BA
1037 if (ret_val)
1038 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
1039
1040 ctrl = er32(CTRL);
1041
3bb99fe2 1042 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1043 ew32(CTRL, ctrl | E1000_CTRL_RST);
1044
1b98c2bb
BA
1045 /* Must release MDIO ownership and mutex after MAC reset. */
1046 switch (hw->mac.type) {
1047 case e1000_82574:
1048 case e1000_82583:
1049 e1000_put_hw_semaphore_82574(hw);
1050 break;
1051 default:
1052 break;
1053 }
1054
bc7f75fa
AK
1055 if (hw->nvm.type == e1000_nvm_flash_hw) {
1056 udelay(10);
1057 ctrl_ext = er32(CTRL_EXT);
1058 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1059 ew32(CTRL_EXT, ctrl_ext);
1060 e1e_flush();
1061 }
1062
1063 ret_val = e1000e_get_auto_rd_done(hw);
1064 if (ret_val)
1065 /* We don't want to continue accessing MAC registers. */
1066 return ret_val;
1067
ad68076e
BA
1068 /*
1069 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1070 * Need to wait for Phy configuration completion before accessing
1071 * NVM and Phy.
1072 */
8c81c9c3
AD
1073
1074 switch (hw->mac.type) {
1f56f45d
RA
1075 case e1000_82571:
1076 case e1000_82572:
1077 /*
1078 * REQ and GNT bits need to be cleared when using AUTO_RD
1079 * to access the EEPROM.
1080 */
1081 eecd = er32(EECD);
1082 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1083 ew32(EECD, eecd);
1084 break;
8c81c9c3
AD
1085 case e1000_82573:
1086 case e1000_82574:
1087 case e1000_82583:
bc7f75fa 1088 msleep(25);
8c81c9c3
AD
1089 break;
1090 default:
1091 break;
1092 }
bc7f75fa
AK
1093
1094 /* Clear any pending interrupt events. */
1095 ew32(IMC, 0xffffffff);
dd93f95e 1096 er32(ICR);
bc7f75fa 1097
1aef70ef
BA
1098 if (hw->mac.type == e1000_82571) {
1099 /* Install any alternate MAC address into RAR0 */
1100 ret_val = e1000_check_alt_mac_addr_generic(hw);
1101 if (ret_val)
1102 return ret_val;
608f8a0d 1103
1aef70ef
BA
1104 e1000e_set_laa_state_82571(hw, true);
1105 }
93ca1610 1106
c9523379 1107 /* Reinitialize the 82571 serdes link state machine */
1108 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1109 hw->mac.serdes_link_state = e1000_serdes_link_down;
1110
bc7f75fa
AK
1111 return 0;
1112}
1113
1114/**
1115 * e1000_init_hw_82571 - Initialize hardware
1116 * @hw: pointer to the HW structure
1117 *
1118 * This inits the hardware readying it for operation.
1119 **/
1120static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1121{
1122 struct e1000_mac_info *mac = &hw->mac;
1123 u32 reg_data;
1124 s32 ret_val;
a708dd88 1125 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1126
1127 e1000_initialize_hw_bits_82571(hw);
1128
1129 /* Initialize identification LED */
d1964eb1 1130 ret_val = mac->ops.id_led_init(hw);
de39b752 1131 if (ret_val)
3bb99fe2 1132 e_dbg("Error initializing identification LED\n");
de39b752 1133 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1134
1135 /* Disabling VLAN filtering */
3bb99fe2 1136 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1137 mac->ops.clear_vfta(hw);
bc7f75fa
AK
1138
1139 /* Setup the receive address. */
ad68076e
BA
1140 /*
1141 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1142 * 82571, we must reserve a RAR for it to work around an issue where
1143 * resetting one port will reload the MAC on the other port.
1144 */
1145 if (e1000e_get_laa_state_82571(hw))
1146 rar_count--;
1147 e1000e_init_rx_addrs(hw, rar_count);
1148
1149 /* Zero out the Multicast HASH table */
3bb99fe2 1150 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1151 for (i = 0; i < mac->mta_reg_count; i++)
1152 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1153
1154 /* Setup link and flow control */
1a46b40f 1155 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
1156
1157 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1158 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1159 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1160 E1000_TXDCTL_FULL_TX_DESC_WB |
1161 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1162 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1163
1164 /* ...for both queues. */
8c81c9c3
AD
1165 switch (mac->type) {
1166 case e1000_82573:
a65a4a0d
BA
1167 e1000e_enable_tx_pkt_filtering(hw);
1168 /* fall through */
8c81c9c3
AD
1169 case e1000_82574:
1170 case e1000_82583:
8c81c9c3
AD
1171 reg_data = er32(GCR);
1172 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1173 ew32(GCR, reg_data);
1174 break;
1175 default:
e9ec2c0f 1176 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1177 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1178 E1000_TXDCTL_FULL_TX_DESC_WB |
1179 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1180 ew32(TXDCTL(1), reg_data);
8c81c9c3 1181 break;
bc7f75fa
AK
1182 }
1183
ad68076e
BA
1184 /*
1185 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1186 * important that we do this after we have tried to establish link
1187 * because the symbol error count will increment wildly if there
1188 * is no link.
1189 */
1190 e1000_clear_hw_cntrs_82571(hw);
1191
1192 return ret_val;
1193}
1194
1195/**
1196 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1197 * @hw: pointer to the HW structure
1198 *
1199 * Initializes required hardware-dependent bits needed for normal operation.
1200 **/
1201static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1202{
1203 u32 reg;
1204
1205 /* Transmit Descriptor Control 0 */
e9ec2c0f 1206 reg = er32(TXDCTL(0));
bc7f75fa 1207 reg |= (1 << 22);
e9ec2c0f 1208 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1209
1210 /* Transmit Descriptor Control 1 */
e9ec2c0f 1211 reg = er32(TXDCTL(1));
bc7f75fa 1212 reg |= (1 << 22);
e9ec2c0f 1213 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1214
1215 /* Transmit Arbitration Control 0 */
e9ec2c0f 1216 reg = er32(TARC(0));
bc7f75fa
AK
1217 reg &= ~(0xF << 27); /* 30:27 */
1218 switch (hw->mac.type) {
1219 case e1000_82571:
1220 case e1000_82572:
1221 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1222 break;
d6cb17d5
BA
1223 case e1000_82574:
1224 case e1000_82583:
1225 reg |= (1 << 26);
1226 break;
bc7f75fa
AK
1227 default:
1228 break;
1229 }
e9ec2c0f 1230 ew32(TARC(0), reg);
bc7f75fa
AK
1231
1232 /* Transmit Arbitration Control 1 */
e9ec2c0f 1233 reg = er32(TARC(1));
bc7f75fa
AK
1234 switch (hw->mac.type) {
1235 case e1000_82571:
1236 case e1000_82572:
1237 reg &= ~((1 << 29) | (1 << 30));
1238 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1239 if (er32(TCTL) & E1000_TCTL_MULR)
1240 reg &= ~(1 << 28);
1241 else
1242 reg |= (1 << 28);
e9ec2c0f 1243 ew32(TARC(1), reg);
bc7f75fa
AK
1244 break;
1245 default:
1246 break;
1247 }
1248
1249 /* Device Control */
8c81c9c3
AD
1250 switch (hw->mac.type) {
1251 case e1000_82573:
1252 case e1000_82574:
1253 case e1000_82583:
bc7f75fa
AK
1254 reg = er32(CTRL);
1255 reg &= ~(1 << 29);
1256 ew32(CTRL, reg);
8c81c9c3
AD
1257 break;
1258 default:
1259 break;
bc7f75fa
AK
1260 }
1261
1262 /* Extended Device Control */
8c81c9c3
AD
1263 switch (hw->mac.type) {
1264 case e1000_82573:
1265 case e1000_82574:
1266 case e1000_82583:
bc7f75fa
AK
1267 reg = er32(CTRL_EXT);
1268 reg &= ~(1 << 23);
1269 reg |= (1 << 22);
1270 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1271 break;
1272 default:
1273 break;
bc7f75fa 1274 }
4662e82b 1275
6ea7ae1d
AD
1276 if (hw->mac.type == e1000_82571) {
1277 reg = er32(PBA_ECC);
1278 reg |= E1000_PBA_ECC_CORR_EN;
1279 ew32(PBA_ECC, reg);
1280 }
3d3a1676 1281
5df3f0ea 1282 /*
1283 * Workaround for hardware errata.
1284 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1285 */
3d3a1676
BA
1286 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1287 reg = er32(CTRL_EXT);
1288 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1289 ew32(CTRL_EXT, reg);
1290 }
6ea7ae1d 1291
f6bd5577
MV
1292 /*
1293 * Disable IPv6 extension header parsing because some malformed
1294 * IPv6 headers can hang the Rx.
1295 */
1296 if (hw->mac.type <= e1000_82573) {
1297 reg = er32(RFCTL);
1298 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1299 ew32(RFCTL, reg);
1300 }
1301
78272bba 1302 /* PCI-Ex Control Registers */
8c81c9c3
AD
1303 switch (hw->mac.type) {
1304 case e1000_82574:
1305 case e1000_82583:
4662e82b
BA
1306 reg = er32(GCR);
1307 reg |= (1 << 22);
1308 ew32(GCR, reg);
78272bba 1309
84efb7b9
BA
1310 /*
1311 * Workaround for hardware errata.
1312 * apply workaround for hardware errata documented in errata
1313 * docs Fixes issue where some error prone or unreliable PCIe
1314 * completions are occurring, particularly with ASPM enabled.
af667a29 1315 * Without fix, issue can cause Tx timeouts.
84efb7b9 1316 */
78272bba
JB
1317 reg = er32(GCR2);
1318 reg |= 1;
1319 ew32(GCR2, reg);
8c81c9c3
AD
1320 break;
1321 default:
1322 break;
4662e82b 1323 }
bc7f75fa
AK
1324}
1325
1326/**
caaddaf8 1327 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1328 * @hw: pointer to the HW structure
1329 *
1330 * Clears the register array which contains the VLAN filter table by
1331 * setting all the values to 0.
1332 **/
caaddaf8 1333static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1334{
1335 u32 offset;
1336 u32 vfta_value = 0;
1337 u32 vfta_offset = 0;
1338 u32 vfta_bit_in_reg = 0;
1339
8c81c9c3
AD
1340 switch (hw->mac.type) {
1341 case e1000_82573:
1342 case e1000_82574:
1343 case e1000_82583:
bc7f75fa 1344 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1345 /*
1346 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1347 * a single VLAN ID. The following operations
1348 * determine which 32b entry (i.e. offset) into the
1349 * array we want to set the VLAN ID (i.e. bit) of
1350 * the manageability unit.
1351 */
1352 vfta_offset = (hw->mng_cookie.vlan_id >>
1353 E1000_VFTA_ENTRY_SHIFT) &
1354 E1000_VFTA_ENTRY_MASK;
1355 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1356 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1357 }
8c81c9c3
AD
1358 break;
1359 default:
1360 break;
bc7f75fa
AK
1361 }
1362 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1363 /*
1364 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1365 * manageability VLAN ID, then clear all bits except that of
1366 * the manageability unit.
1367 */
1368 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1369 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1370 e1e_flush();
1371 }
1372}
1373
4662e82b
BA
1374/**
1375 * e1000_check_mng_mode_82574 - Check manageability is enabled
1376 * @hw: pointer to the HW structure
1377 *
1378 * Reads the NVM Initialization Control Word 2 and returns true
1379 * (>0) if any manageability is enabled, else false (0).
1380 **/
1381static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1382{
1383 u16 data;
1384
1385 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1386 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1387}
1388
1389/**
1390 * e1000_led_on_82574 - Turn LED on
1391 * @hw: pointer to the HW structure
1392 *
1393 * Turn LED on.
1394 **/
1395static s32 e1000_led_on_82574(struct e1000_hw *hw)
1396{
1397 u32 ctrl;
1398 u32 i;
1399
1400 ctrl = hw->mac.ledctl_mode2;
1401 if (!(E1000_STATUS_LU & er32(STATUS))) {
1402 /*
1403 * If no link, then turn LED on by setting the invert bit
1404 * for each LED that's "on" (0x0E) in ledctl_mode2.
1405 */
1406 for (i = 0; i < 4; i++)
1407 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1408 E1000_LEDCTL_MODE_LED_ON)
1409 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1410 }
1411 ew32(LEDCTL, ctrl);
1412
1413 return 0;
1414}
1415
ff10e13c
CW
1416/**
1417 * e1000_check_phy_82574 - check 82574 phy hung state
1418 * @hw: pointer to the HW structure
1419 *
1420 * Returns whether phy is hung or not
1421 **/
1422bool e1000_check_phy_82574(struct e1000_hw *hw)
1423{
1424 u16 status_1kbt = 0;
1425 u16 receive_errors = 0;
ff10e13c
CW
1426 s32 ret_val = 0;
1427
1428 /*
1429 * Read PHY Receive Error counter first, if its is max - all F's then
1430 * read the Base1000T status register If both are max then PHY is hung.
1431 */
1432 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
ff10e13c 1433 if (ret_val)
5015e53a 1434 return false;
ff10e13c
CW
1435 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1436 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1437 if (ret_val)
5015e53a 1438 return false;
ff10e13c
CW
1439 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1440 E1000_IDLE_ERROR_COUNT_MASK)
5015e53a 1441 return true;
ff10e13c 1442 }
5015e53a
BA
1443
1444 return false;
ff10e13c
CW
1445}
1446
bc7f75fa
AK
1447/**
1448 * e1000_setup_link_82571 - Setup flow control and link settings
1449 * @hw: pointer to the HW structure
1450 *
1451 * Determines which flow control settings to use, then configures flow
1452 * control. Calls the appropriate media-specific link configuration
1453 * function. Assuming the adapter has a valid link partner, a valid link
1454 * should be established. Assumes the hardware has previously been reset
1455 * and the transmitter and receiver are not enabled.
1456 **/
1457static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1458{
ad68076e
BA
1459 /*
1460 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1461 * the default flow control setting, so we explicitly
1462 * set it to full.
1463 */
8c81c9c3
AD
1464 switch (hw->mac.type) {
1465 case e1000_82573:
1466 case e1000_82574:
1467 case e1000_82583:
1468 if (hw->fc.requested_mode == e1000_fc_default)
1469 hw->fc.requested_mode = e1000_fc_full;
1470 break;
1471 default:
1472 break;
1473 }
bc7f75fa 1474
1a46b40f 1475 return e1000e_setup_link_generic(hw);
bc7f75fa
AK
1476}
1477
1478/**
1479 * e1000_setup_copper_link_82571 - Configure copper link settings
1480 * @hw: pointer to the HW structure
1481 *
1482 * Configures the link for auto-neg or forced speed and duplex. Then we check
1483 * for link, once link is established calls to configure collision distance
1484 * and flow control are called.
1485 **/
1486static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487{
1488 u32 ctrl;
bc7f75fa
AK
1489 s32 ret_val;
1490
1491 ctrl = er32(CTRL);
1492 ctrl |= E1000_CTRL_SLU;
1493 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1494 ew32(CTRL, ctrl);
1495
1496 switch (hw->phy.type) {
1497 case e1000_phy_m88:
4662e82b 1498 case e1000_phy_bm:
bc7f75fa
AK
1499 ret_val = e1000e_copper_link_setup_m88(hw);
1500 break;
1501 case e1000_phy_igp_2:
1502 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1503 break;
1504 default:
1505 return -E1000_ERR_PHY;
1506 break;
1507 }
1508
1509 if (ret_val)
1510 return ret_val;
1511
7eb61d81 1512 return e1000e_setup_copper_link(hw);
bc7f75fa
AK
1513}
1514
1515/**
1516 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1517 * @hw: pointer to the HW structure
1518 *
1519 * Configures collision distance and flow control for fiber and serdes links.
1520 * Upon successful setup, poll for link.
1521 **/
1522static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1523{
1524 switch (hw->mac.type) {
1525 case e1000_82571:
1526 case e1000_82572:
ad68076e
BA
1527 /*
1528 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1529 * of reset to take the adapter out of that mode. So we
1530 * have to explicitly take the adapter out of loopback
489815ce 1531 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1532 * if another tool failed to take it out of loopback mode.
1533 */
ad68076e 1534 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1535 break;
1536 default:
1537 break;
1538 }
1539
1540 return e1000e_setup_fiber_serdes_link(hw);
1541}
1542
c9523379 1543/**
1544 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1545 * @hw: pointer to the HW structure
1546 *
1a40d5c1
BA
1547 * Reports the link state as up or down.
1548 *
1549 * If autonegotiation is supported by the link partner, the link state is
1550 * determined by the result of autonegotiation. This is the most likely case.
1551 * If autonegotiation is not supported by the link partner, and the link
1552 * has a valid signal, force the link up.
1553 *
1554 * The link state is represented internally here by 4 states:
1555 *
1556 * 1) down
1557 * 2) autoneg_progress
3ad2f3fb 1558 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1559 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1560 *
c9523379 1561 **/
f6370117 1562static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1563{
1564 struct e1000_mac_info *mac = &hw->mac;
1565 u32 rxcw;
1566 u32 ctrl;
1567 u32 status;
d9c76f99
BA
1568 u32 txcw;
1569 u32 i;
c9523379 1570 s32 ret_val = 0;
1571
1572 ctrl = er32(CTRL);
1573 status = er32(STATUS);
1574 rxcw = er32(RXCW);
d0efa8f2
TD
1575 /* SYNCH bit and IV bit are sticky */
1576 udelay(10);
1577 rxcw = er32(RXCW);
c9523379 1578
1579 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1580
1581 /* Receiver is synchronized with no invalid bits. */
1582 switch (mac->serdes_link_state) {
1583 case e1000_serdes_link_autoneg_complete:
1584 if (!(status & E1000_STATUS_LU)) {
1585 /*
1586 * We have lost link, retry autoneg before
1587 * reporting link failure
1588 */
1589 mac->serdes_link_state =
1590 e1000_serdes_link_autoneg_progress;
1a40d5c1 1591 mac->serdes_has_link = false;
3bb99fe2 1592 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1593 } else {
1594 mac->serdes_has_link = true;
c9523379 1595 }
a82a14f4 1596 break;
c9523379 1597
1598 case e1000_serdes_link_forced_up:
1599 /*
1600 * If we are receiving /C/ ordered sets, re-enable
1601 * auto-negotiation in the TXCW register and disable
1602 * forced link in the Device Control register in an
1603 * attempt to auto-negotiate with our link partner.
d478eb44
BA
1604 * If the partner code word is null, stop forcing
1605 * and restart auto negotiation.
c9523379 1606 */
d478eb44 1607 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
c9523379 1608 /* Enable autoneg, and unforce link up */
1609 ew32(TXCW, mac->txcw);
1a40d5c1 1610 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1611 mac->serdes_link_state =
1612 e1000_serdes_link_autoneg_progress;
1a40d5c1 1613 mac->serdes_has_link = false;
3bb99fe2 1614 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1615 } else {
1616 mac->serdes_has_link = true;
c9523379 1617 }
1618 break;
1619
1620 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1621 if (rxcw & E1000_RXCW_C) {
1622 /*
1623 * We received /C/ ordered sets, meaning the
1624 * link partner has autonegotiated, and we can
1625 * trust the Link Up (LU) status bit.
1626 */
1627 if (status & E1000_STATUS_LU) {
1628 mac->serdes_link_state =
1629 e1000_serdes_link_autoneg_complete;
1630 e_dbg("AN_PROG -> AN_UP\n");
1631 mac->serdes_has_link = true;
1632 } else {
1633 /* Autoneg completed, but failed. */
1634 mac->serdes_link_state =
1635 e1000_serdes_link_down;
1636 e_dbg("AN_PROG -> DOWN\n");
1637 }
c9523379 1638 } else {
1639 /*
1a40d5c1
BA
1640 * The link partner did not autoneg.
1641 * Force link up and full duplex, and change
1642 * state to forced.
c9523379 1643 */
1a40d5c1 1644 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1645 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1646 ew32(CTRL, ctrl);
1647
1648 /* Configure Flow Control after link up. */
1a40d5c1 1649 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1650 if (ret_val) {
3bb99fe2 1651 e_dbg("Error config flow control\n");
c9523379 1652 break;
1653 }
1654 mac->serdes_link_state =
1655 e1000_serdes_link_forced_up;
1a40d5c1 1656 mac->serdes_has_link = true;
3bb99fe2 1657 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1658 }
c9523379 1659 break;
1660
1661 case e1000_serdes_link_down:
1662 default:
1a40d5c1
BA
1663 /*
1664 * The link was down but the receiver has now gained
c9523379 1665 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1666 * up.
1667 */
c9523379 1668 ew32(TXCW, mac->txcw);
1a40d5c1 1669 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1670 mac->serdes_link_state =
1671 e1000_serdes_link_autoneg_progress;
a82a14f4 1672 mac->serdes_has_link = false;
3bb99fe2 1673 e_dbg("DOWN -> AN_PROG\n");
c9523379 1674 break;
1675 }
1676 } else {
1677 if (!(rxcw & E1000_RXCW_SYNCH)) {
1678 mac->serdes_has_link = false;
1679 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1680 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1681 } else {
1682 /*
d9c76f99
BA
1683 * Check several times, if Sync and Config
1684 * both are consistently 1 then simply ignore
1685 * the Invalid bit and restart Autoneg
c9523379 1686 */
d9c76f99
BA
1687 for (i = 0; i < AN_RETRY_COUNT; i++) {
1688 udelay(10);
1689 rxcw = er32(RXCW);
1690 if ((rxcw & E1000_RXCW_IV) &&
1691 !((rxcw & E1000_RXCW_SYNCH) &&
1692 (rxcw & E1000_RXCW_C))) {
1693 mac->serdes_has_link = false;
1694 mac->serdes_link_state =
1695 e1000_serdes_link_down;
1696 e_dbg("ANYSTATE -> DOWN\n");
1697 break;
1698 }
1699 }
1700
1701 if (i == AN_RETRY_COUNT) {
1702 txcw = er32(TXCW);
1703 txcw |= E1000_TXCW_ANE;
1704 ew32(TXCW, txcw);
1705 mac->serdes_link_state =
1706 e1000_serdes_link_autoneg_progress;
c9523379 1707 mac->serdes_has_link = false;
d9c76f99 1708 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1709 }
1710 }
1711 }
1712
1713 return ret_val;
1714}
1715
bc7f75fa
AK
1716/**
1717 * e1000_valid_led_default_82571 - Verify a valid default LED config
1718 * @hw: pointer to the HW structure
1719 * @data: pointer to the NVM (EEPROM)
1720 *
1721 * Read the EEPROM for the current default LED configuration. If the
1722 * LED configuration is not valid, set to a valid LED configuration.
1723 **/
1724static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1725{
1726 s32 ret_val;
1727
1728 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1729 if (ret_val) {
3bb99fe2 1730 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1731 return ret_val;
1732 }
1733
8c81c9c3
AD
1734 switch (hw->mac.type) {
1735 case e1000_82573:
1736 case e1000_82574:
1737 case e1000_82583:
1738 if (*data == ID_LED_RESERVED_F746)
1739 *data = ID_LED_DEFAULT_82573;
1740 break;
1741 default:
1742 if (*data == ID_LED_RESERVED_0000 ||
1743 *data == ID_LED_RESERVED_FFFF)
1744 *data = ID_LED_DEFAULT;
1745 break;
1746 }
bc7f75fa
AK
1747
1748 return 0;
1749}
1750
1751/**
1752 * e1000e_get_laa_state_82571 - Get locally administered address state
1753 * @hw: pointer to the HW structure
1754 *
489815ce 1755 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1756 **/
1757bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1758{
1759 if (hw->mac.type != e1000_82571)
564ea9bb 1760 return false;
bc7f75fa
AK
1761
1762 return hw->dev_spec.e82571.laa_is_present;
1763}
1764
1765/**
1766 * e1000e_set_laa_state_82571 - Set locally administered address state
1767 * @hw: pointer to the HW structure
1768 * @state: enable/disable locally administered address
1769 *
5ff5b664 1770 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1771 **/
1772void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1773{
1774 if (hw->mac.type != e1000_82571)
1775 return;
1776
1777 hw->dev_spec.e82571.laa_is_present = state;
1778
1779 /* If workaround is activated... */
1780 if (state)
ad68076e
BA
1781 /*
1782 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1783 * between the time RAR[0] gets clobbered and the time it
1784 * gets fixed, the actual LAA is in one of the RARs and no
1785 * incoming packets directed to this port are dropped.
1786 * Eventually the LAA will be in RAR[0] and RAR[14].
1787 */
69e1e019
BA
1788 hw->mac.ops.rar_set(hw, hw->mac.addr,
1789 hw->mac.rar_entry_count - 1);
bc7f75fa
AK
1790}
1791
1792/**
1793 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1794 * @hw: pointer to the HW structure
1795 *
1796 * Verifies that the EEPROM has completed the update. After updating the
1797 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1798 * the checksum fix is not implemented, we need to set the bit and update
1799 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1800 * we need to return bad checksum.
1801 **/
1802static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1803{
1804 struct e1000_nvm_info *nvm = &hw->nvm;
1805 s32 ret_val;
1806 u16 data;
1807
1808 if (nvm->type != e1000_nvm_flash_hw)
1809 return 0;
1810
ad68076e
BA
1811 /*
1812 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1813 * 10h-12h. Checksum may need to be fixed.
1814 */
1815 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1816 if (ret_val)
1817 return ret_val;
1818
1819 if (!(data & 0x10)) {
ad68076e
BA
1820 /*
1821 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1822 * when the checksum has already been fixed. If
1823 * the checksum is still wrong and this bit is a
1824 * 1, we need to return bad checksum. Otherwise,
1825 * we need to set this bit to a 1 and update the
1826 * checksum.
1827 */
1828 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1829 if (ret_val)
1830 return ret_val;
1831
1832 if (!(data & 0x8000)) {
1833 data |= 0x8000;
1834 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1835 if (ret_val)
1836 return ret_val;
1837 ret_val = e1000e_update_nvm_checksum(hw);
1838 }
1839 }
1840
1841 return 0;
1842}
1843
608f8a0d
BA
1844/**
1845 * e1000_read_mac_addr_82571 - Read device MAC address
1846 * @hw: pointer to the HW structure
1847 **/
1848static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1849{
1aef70ef 1850 if (hw->mac.type == e1000_82571) {
5015e53a
BA
1851 s32 ret_val = 0;
1852
1aef70ef
BA
1853 /*
1854 * If there's an alternate MAC address place it in RAR0
1855 * so that it will override the Si installed default perm
1856 * address.
1857 */
1858 ret_val = e1000_check_alt_mac_addr_generic(hw);
1859 if (ret_val)
5015e53a 1860 return ret_val;
1aef70ef 1861 }
608f8a0d 1862
5015e53a 1863 return e1000_read_mac_addr_generic(hw);
608f8a0d
BA
1864}
1865
17f208de
BA
1866/**
1867 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1868 * @hw: pointer to the HW structure
1869 *
1870 * In the case of a PHY power down to save power, or to turn off link during a
1871 * driver unload, or wake on lan is not enabled, remove the link.
1872 **/
1873static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1874{
1875 struct e1000_phy_info *phy = &hw->phy;
1876 struct e1000_mac_info *mac = &hw->mac;
1877
668018d7 1878 if (!phy->ops.check_reset_block)
17f208de
BA
1879 return;
1880
1881 /* If the management interface is not enabled, then power down */
1882 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1883 e1000_power_down_phy_copper(hw);
17f208de
BA
1884}
1885
bc7f75fa
AK
1886/**
1887 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1888 * @hw: pointer to the HW structure
1889 *
1890 * Clears the hardware counters by reading the counter registers.
1891 **/
1892static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1893{
bc7f75fa
AK
1894 e1000e_clear_hw_cntrs_base(hw);
1895
99673d9b
BA
1896 er32(PRC64);
1897 er32(PRC127);
1898 er32(PRC255);
1899 er32(PRC511);
1900 er32(PRC1023);
1901 er32(PRC1522);
1902 er32(PTC64);
1903 er32(PTC127);
1904 er32(PTC255);
1905 er32(PTC511);
1906 er32(PTC1023);
1907 er32(PTC1522);
1908
1909 er32(ALGNERRC);
1910 er32(RXERRC);
1911 er32(TNCRS);
1912 er32(CEXTERR);
1913 er32(TSCTC);
1914 er32(TSCTFC);
1915
1916 er32(MGTPRC);
1917 er32(MGTPDC);
1918 er32(MGTPTC);
1919
1920 er32(IAC);
1921 er32(ICRXOC);
1922
1923 er32(ICRXPTC);
1924 er32(ICRXATC);
1925 er32(ICTXPTC);
1926 er32(ICTXATC);
1927 er32(ICTXQEC);
1928 er32(ICTXQMTC);
1929 er32(ICRXDMTC);
bc7f75fa
AK
1930}
1931
8ce9d6c7 1932static const struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1933 /* .check_mng_mode: mac type dependent */
bc7f75fa 1934 /* .check_for_link: media type dependent */
d1964eb1 1935 .id_led_init = e1000e_id_led_init_generic,
bc7f75fa
AK
1936 .cleanup_led = e1000e_cleanup_led_generic,
1937 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1938 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1939 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1940 /* .get_link_up_info: media type dependent */
4662e82b 1941 /* .led_on: mac type dependent */
bc7f75fa 1942 .led_off = e1000e_led_off_generic,
ab8932f3 1943 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1944 .write_vfta = e1000_write_vfta_generic,
1945 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1946 .reset_hw = e1000_reset_hw_82571,
1947 .init_hw = e1000_init_hw_82571,
1948 .setup_link = e1000_setup_link_82571,
1949 /* .setup_physical_interface: media type dependent */
a4f58f54 1950 .setup_led = e1000e_setup_led_generic,
57cde763 1951 .config_collision_dist = e1000e_config_collision_dist_generic,
608f8a0d 1952 .read_mac_addr = e1000_read_mac_addr_82571,
69e1e019 1953 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
1954};
1955
8ce9d6c7 1956static const struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1957 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1958 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1959 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1960 .commit = NULL,
bc7f75fa
AK
1961 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1962 .get_cfg_done = e1000_get_cfg_done_82571,
1963 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1964 .get_info = e1000e_get_phy_info_igp,
1965 .read_reg = e1000e_read_phy_reg_igp,
1966 .release = e1000_put_hw_semaphore_82571,
1967 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1968 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1969 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1970 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1971 .cfg_on_link_up = NULL,
bc7f75fa
AK
1972};
1973
8ce9d6c7 1974static const struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1975 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1976 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1977 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1978 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1979 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1980 .get_cfg_done = e1000e_get_cfg_done,
1981 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1982 .get_info = e1000e_get_phy_info_m88,
1983 .read_reg = e1000e_read_phy_reg_m88,
1984 .release = e1000_put_hw_semaphore_82571,
1985 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1986 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1987 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1988 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1989 .cfg_on_link_up = NULL,
bc7f75fa
AK
1990};
1991
8ce9d6c7 1992static const struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1993 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1994 .check_polarity = e1000_check_polarity_m88,
4662e82b 1995 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1996 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1997 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1998 .get_cfg_done = e1000e_get_cfg_done,
1999 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
2000 .get_info = e1000e_get_phy_info_m88,
2001 .read_reg = e1000e_read_phy_reg_bm2,
2002 .release = e1000_put_hw_semaphore_82571,
2003 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
2004 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
2005 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 2006 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 2007 .cfg_on_link_up = NULL,
4662e82b
BA
2008};
2009
8ce9d6c7 2010static const struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
2011 .acquire = e1000_acquire_nvm_82571,
2012 .read = e1000e_read_nvm_eerd,
2013 .release = e1000_release_nvm_82571,
e85e3639 2014 .reload = e1000e_reload_nvm_generic,
94d8186a 2015 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 2016 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
2017 .validate = e1000_validate_nvm_checksum_82571,
2018 .write = e1000_write_nvm_82571,
bc7f75fa
AK
2019};
2020
8ce9d6c7 2021const struct e1000_info e1000_82571_info = {
bc7f75fa
AK
2022 .mac = e1000_82571,
2023 .flags = FLAG_HAS_HW_VLAN_FILTER
2024 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2025 | FLAG_HAS_WOL
2026 | FLAG_APME_IN_CTRL3
bc7f75fa 2027 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
2028 | FLAG_HAS_SMART_POWER_DOWN
2029 | FLAG_RESET_OVERWRITES_LAA /* errata */
2030 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2031 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
2032 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2033 | FLAG2_DMA_BURST,
bc7f75fa 2034 .pba = 38,
2adc55c9 2035 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2036 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2037 .mac_ops = &e82571_mac_ops,
2038 .phy_ops = &e82_phy_ops_igp,
2039 .nvm_ops = &e82571_nvm_ops,
2040};
2041
8ce9d6c7 2042const struct e1000_info e1000_82572_info = {
bc7f75fa
AK
2043 .mac = e1000_82572,
2044 .flags = FLAG_HAS_HW_VLAN_FILTER
2045 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2046 | FLAG_HAS_WOL
2047 | FLAG_APME_IN_CTRL3
bc7f75fa 2048 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 2049 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
2050 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2051 | FLAG2_DMA_BURST,
bc7f75fa 2052 .pba = 38,
2adc55c9 2053 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2054 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2055 .mac_ops = &e82571_mac_ops,
2056 .phy_ops = &e82_phy_ops_igp,
2057 .nvm_ops = &e82571_nvm_ops,
2058};
2059
8ce9d6c7 2060const struct e1000_info e1000_82573_info = {
bc7f75fa
AK
2061 .mac = e1000_82573,
2062 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2063 | FLAG_HAS_WOL
2064 | FLAG_APME_IN_CTRL3
bc7f75fa
AK
2065 | FLAG_HAS_SMART_POWER_DOWN
2066 | FLAG_HAS_AMT
bc7f75fa 2067 | FLAG_HAS_SWSM_ON_LOAD,
78cd29d5
BA
2068 .flags2 = FLAG2_DISABLE_ASPM_L1
2069 | FLAG2_DISABLE_ASPM_L0S,
bc7f75fa 2070 .pba = 20,
2adc55c9 2071 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2072 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2073 .mac_ops = &e82571_mac_ops,
2074 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2075 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2076};
2077
8ce9d6c7 2078const struct e1000_info e1000_82574_info = {
4662e82b
BA
2079 .mac = e1000_82574,
2080 .flags = FLAG_HAS_HW_VLAN_FILTER
2081 | FLAG_HAS_MSIX
2082 | FLAG_HAS_JUMBO_FRAMES
2083 | FLAG_HAS_WOL
2084 | FLAG_APME_IN_CTRL3
4662e82b
BA
2085 | FLAG_HAS_SMART_POWER_DOWN
2086 | FLAG_HAS_AMT
2087 | FLAG_HAS_CTRLEXT_ON_LOAD,
d4a4206e 2088 .flags2 = FLAG2_CHECK_PHY_HANG
7f99ae63 2089 | FLAG2_DISABLE_ASPM_L0S
d4a4206e 2090 | FLAG2_DISABLE_ASPM_L1
2cb7a9cc
MV
2091 | FLAG2_NO_DISABLE_RX
2092 | FLAG2_DMA_BURST,
ed5c2b0b 2093 .pba = 32,
a825e00c 2094 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2095 .get_variants = e1000_get_variants_82571,
2096 .mac_ops = &e82571_mac_ops,
2097 .phy_ops = &e82_phy_ops_bm,
2098 .nvm_ops = &e82571_nvm_ops,
2099};
2100
8ce9d6c7 2101const struct e1000_info e1000_82583_info = {
8c81c9c3
AD
2102 .mac = e1000_82583,
2103 .flags = FLAG_HAS_HW_VLAN_FILTER
2104 | FLAG_HAS_WOL
2105 | FLAG_APME_IN_CTRL3
8c81c9c3
AD
2106 | FLAG_HAS_SMART_POWER_DOWN
2107 | FLAG_HAS_AMT
a3d72d5d 2108 | FLAG_HAS_JUMBO_FRAMES
8c81c9c3 2109 | FLAG_HAS_CTRLEXT_ON_LOAD,
7f99ae63
BA
2110 .flags2 = FLAG2_DISABLE_ASPM_L0S
2111 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2112 .pba = 32,
a3d72d5d 2113 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
2114 .get_variants = e1000_get_variants_82571,
2115 .mac_ops = &e82571_mac_ops,
2116 .phy_ops = &e82_phy_ops_bm,
2117 .nvm_ops = &e82571_nvm_ops,
2118};
2119
This page took 0.752289 seconds and 5 git commands to generate.