e1000e: cleanup checkpatch braces checks
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
bf67044b 4 Copyright(c) 1999 - 2013 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
e921eb1a 29/* 82571EB Gigabit Ethernet Controller
1605927f 30 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 31 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
4662e82b 41 * 82574L Gigabit Network Connection
8c81c9c3 42 * 82583V Gigabit Network Connection
bc7f75fa
AK
43 */
44
bc7f75fa
AK
45#include "e1000.h"
46
bc7f75fa
AK
47static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 50static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
51static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52 u16 words, u16 *data);
53static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
bc7f75fa 55static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
56static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 58static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 59static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
60static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77996d1d
BA
63static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
bc7f75fa
AK
65
66/**
67 * e1000_init_phy_params_82571 - Init PHY func ptrs.
68 * @hw: pointer to the HW structure
bc7f75fa
AK
69 **/
70static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71{
72 struct e1000_phy_info *phy = &hw->phy;
73 s32 ret_val;
74
318a94d6 75 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
76 phy->type = e1000_phy_none;
77 return 0;
78 }
79
80 phy->addr = 1;
81 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 phy->reset_delay_us = 100;
83
17f208de
BA
84 phy->ops.power_up = e1000_power_up_phy_copper;
85 phy->ops.power_down = e1000_power_down_phy_copper_82571;
86
bc7f75fa
AK
87 switch (hw->mac.type) {
88 case e1000_82571:
89 case e1000_82572:
90 phy->type = e1000_phy_igp_2;
91 break;
92 case e1000_82573:
93 phy->type = e1000_phy_m88;
94 break;
4662e82b 95 case e1000_82574:
8c81c9c3 96 case e1000_82583:
4662e82b 97 phy->type = e1000_phy_bm;
1b98c2bb
BA
98 phy->ops.acquire = e1000_get_hw_semaphore_82574;
99 phy->ops.release = e1000_put_hw_semaphore_82574;
77996d1d
BA
100 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
4662e82b 102 break;
bc7f75fa
AK
103 default:
104 return -E1000_ERR_PHY;
105 break;
106 }
107
108 /* This can only be done after all function pointers are setup. */
109 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
110 if (ret_val) {
111 e_dbg("Error getting PHY ID\n");
112 return ret_val;
113 }
bc7f75fa
AK
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 120 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 124 ret_val = -E1000_ERR_PHY;
bc7f75fa 125 break;
4662e82b 126 case e1000_82574:
8c81c9c3 127 case e1000_82583:
4662e82b 128 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 129 ret_val = -E1000_ERR_PHY;
4662e82b 130 break;
bc7f75fa 131 default:
dd93f95e 132 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
133 break;
134 }
135
dd93f95e
BA
136 if (ret_val)
137 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138
139 return ret_val;
bc7f75fa
AK
140}
141
142/**
143 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
144 * @hw: pointer to the HW structure
bc7f75fa
AK
145 **/
146static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147{
148 struct e1000_nvm_info *nvm = &hw->nvm;
149 u32 eecd = er32(EECD);
150 u16 size;
151
152 nvm->opcode_bits = 8;
153 nvm->delay_usec = 1;
154 switch (nvm->override) {
155 case e1000_nvm_override_spi_large:
156 nvm->page_size = 32;
157 nvm->address_bits = 16;
158 break;
159 case e1000_nvm_override_spi_small:
160 nvm->page_size = 8;
161 nvm->address_bits = 8;
162 break;
163 default:
164 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166 break;
167 }
168
169 switch (hw->mac.type) {
170 case e1000_82573:
4662e82b 171 case e1000_82574:
8c81c9c3 172 case e1000_82583:
bc7f75fa
AK
173 if (((eecd >> 15) & 0x3) == 0x3) {
174 nvm->type = e1000_nvm_flash_hw;
175 nvm->word_size = 2048;
e921eb1a 176 /* Autonomous Flash update bit must be cleared due
bc7f75fa
AK
177 * to Flash update issue.
178 */
179 eecd &= ~E1000_EECD_AUPDEN;
180 ew32(EECD, eecd);
181 break;
182 }
183 /* Fall Through */
184 default:
ad68076e 185 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
186 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187 E1000_EECD_SIZE_EX_SHIFT);
e921eb1a 188 /* Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
189 * for setting word_size.
190 */
191 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
192
193 /* EEPROM access above 16k is unsupported */
194 if (size > 14)
195 size = 14;
bc7f75fa
AK
196 nvm->word_size = 1 << size;
197 break;
198 }
199
1b98c2bb
BA
200 /* Function Pointers */
201 switch (hw->mac.type) {
202 case e1000_82574:
203 case e1000_82583:
204 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205 nvm->ops.release = e1000_put_hw_semaphore_82574;
206 break;
207 default:
208 break;
209 }
210
bc7f75fa
AK
211 return 0;
212}
213
214/**
215 * e1000_init_mac_params_82571 - Init MAC func ptrs.
216 * @hw: pointer to the HW structure
bc7f75fa 217 **/
ec34c170 218static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
bc7f75fa 219{
bc7f75fa 220 struct e1000_mac_info *mac = &hw->mac;
23a2d1b2
DG
221 u32 swsm = 0;
222 u32 swsm2 = 0;
223 bool force_clear_smbi = false;
bc7f75fa 224
66092f59 225 /* Set media type and media-dependent function pointers */
ec34c170 226 switch (hw->adapter->pdev->device) {
bc7f75fa
AK
227 case E1000_DEV_ID_82571EB_FIBER:
228 case E1000_DEV_ID_82572EI_FIBER:
229 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 230 hw->phy.media_type = e1000_media_type_fiber;
66092f59
BA
231 mac->ops.setup_physical_interface =
232 e1000_setup_fiber_serdes_link_82571;
233 mac->ops.check_for_link = e1000e_check_for_fiber_link;
234 mac->ops.get_link_up_info =
235 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
236 break;
237 case E1000_DEV_ID_82571EB_SERDES:
040babf9
AK
238 case E1000_DEV_ID_82571EB_SERDES_DUAL:
239 case E1000_DEV_ID_82571EB_SERDES_QUAD:
66092f59 240 case E1000_DEV_ID_82572EI_SERDES:
318a94d6 241 hw->phy.media_type = e1000_media_type_internal_serdes;
66092f59
BA
242 mac->ops.setup_physical_interface =
243 e1000_setup_fiber_serdes_link_82571;
244 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245 mac->ops.get_link_up_info =
246 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
247 break;
248 default:
318a94d6 249 hw->phy.media_type = e1000_media_type_copper;
66092f59
BA
250 mac->ops.setup_physical_interface =
251 e1000_setup_copper_link_82571;
252 mac->ops.check_for_link = e1000e_check_for_copper_link;
253 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
bc7f75fa
AK
254 break;
255 }
256
257 /* Set mta register count */
258 mac->mta_reg_count = 128;
259 /* Set rar entry count */
260 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
261 /* Adaptive IFS supported */
262 mac->adaptive_ifs = true;
bc7f75fa 263
66092f59 264 /* MAC-specific function pointers */
4662e82b 265 switch (hw->mac.type) {
f4d2dd4c 266 case e1000_82573:
66092f59
BA
267 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269 mac->ops.led_on = e1000e_led_on_generic;
270 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
271
272 /* FWSM register */
273 mac->has_fwsm = true;
e921eb1a 274 /* ARC supported; valid only if manageability features are
a65a4a0d
BA
275 * enabled.
276 */
04499ec4
BA
277 mac->arc_subsystem_valid = !!(er32(FWSM) &
278 E1000_FWSM_MODE_MASK);
f4d2dd4c 279 break;
4662e82b 280 case e1000_82574:
8c81c9c3 281 case e1000_82583:
66092f59
BA
282 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284 mac->ops.led_on = e1000_led_on_82574;
4662e82b
BA
285 break;
286 default:
66092f59
BA
287 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288 mac->ops.led_on = e1000e_led_on_generic;
289 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
290
291 /* FWSM register */
292 mac->has_fwsm = true;
4662e82b
BA
293 break;
294 }
295
e921eb1a 296 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
b595076a 297 * first NVM or PHY access. This should be done for single-port
23a2d1b2
DG
298 * devices, and for one port only on dual-port devices so that
299 * for those devices we can still use the SMBI lock to synchronize
300 * inter-port accesses to the PHY & NVM.
301 */
302 switch (hw->mac.type) {
303 case e1000_82571:
304 case e1000_82572:
305 swsm2 = er32(SWSM2);
306
307 if (!(swsm2 & E1000_SWSM2_LOCK)) {
308 /* Only do this for the first interface on this card */
66092f59 309 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
23a2d1b2 310 force_clear_smbi = true;
66092f59 311 } else {
23a2d1b2 312 force_clear_smbi = false;
66092f59 313 }
23a2d1b2
DG
314 break;
315 default:
316 force_clear_smbi = true;
317 break;
318 }
319
320 if (force_clear_smbi) {
321 /* Make sure SWSM.SMBI is clear */
322 swsm = er32(SWSM);
323 if (swsm & E1000_SWSM_SMBI) {
324 /* This bit should not be set on a first interface, and
325 * indicates that the bootagent or EFI code has
326 * improperly left this bit enabled
327 */
3bb99fe2 328 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
329 }
330 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331 }
332
e921eb1a
BA
333 /* Initialize device specific counter of SMBI acquisition timeouts. */
334 hw->dev_spec.e82571.smb_counter = 0;
23a2d1b2 335
bc7f75fa
AK
336 return 0;
337}
338
69e3fd8c 339static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
340{
341 struct e1000_hw *hw = &adapter->hw;
342 static int global_quad_port_a; /* global port a indication */
343 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
344 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345 s32 rc;
346
ec34c170 347 rc = e1000_init_mac_params_82571(hw);
bc7f75fa
AK
348 if (rc)
349 return rc;
350
351 rc = e1000_init_nvm_params_82571(hw);
352 if (rc)
353 return rc;
354
355 rc = e1000_init_phy_params_82571(hw);
356 if (rc)
357 return rc;
358
359 /* tag quad port adapters first, it's used below */
360 switch (pdev->device) {
361 case E1000_DEV_ID_82571EB_QUAD_COPPER:
362 case E1000_DEV_ID_82571EB_QUAD_FIBER:
363 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 364 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
365 adapter->flags |= FLAG_IS_QUAD_PORT;
366 /* mark the first port */
367 if (global_quad_port_a == 0)
368 adapter->flags |= FLAG_IS_QUAD_PORT_A;
369 /* Reset for multiple quad port adapters */
370 global_quad_port_a++;
371 if (global_quad_port_a == 4)
372 global_quad_port_a = 0;
373 break;
374 default:
375 break;
376 }
377
378 switch (adapter->hw.mac.type) {
379 case e1000_82571:
380 /* these dual ports don't have WoL on port B at all */
381 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384 (is_port_b))
385 adapter->flags &= ~FLAG_HAS_WOL;
386 /* quad ports only support WoL on port A */
387 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 388 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 389 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
390 /* Does not support WoL on any port */
391 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 393 break;
bc7f75fa
AK
394 case e1000_82573:
395 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
396 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
398 }
399 break;
400 default:
401 break;
402 }
403
404 return 0;
405}
406
407/**
408 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409 * @hw: pointer to the HW structure
410 *
411 * Reads the PHY registers and stores the PHY ID and possibly the PHY
412 * revision in the hardware structure.
413 **/
414static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415{
416 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
417 s32 ret_val;
418 u16 phy_id = 0;
bc7f75fa
AK
419
420 switch (hw->mac.type) {
421 case e1000_82571:
422 case e1000_82572:
e921eb1a 423 /* The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
424 * In this case, we cannot access the PHY until the
425 * configuration is done. So we explicitly set the
ad68076e
BA
426 * PHY ID.
427 */
bc7f75fa
AK
428 phy->id = IGP01E1000_I_PHY_ID;
429 break;
430 case e1000_82573:
431 return e1000e_get_phy_id(hw);
432 break;
4662e82b 433 case e1000_82574:
8c81c9c3 434 case e1000_82583:
c2ade1a4 435 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
4662e82b
BA
436 if (ret_val)
437 return ret_val;
438
439 phy->id = (u32)(phy_id << 16);
440 udelay(20);
c2ade1a4 441 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
4662e82b
BA
442 if (ret_val)
443 return ret_val;
444
445 phy->id |= (u32)(phy_id);
446 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447 break;
bc7f75fa
AK
448 default:
449 return -E1000_ERR_PHY;
450 break;
451 }
452
453 return 0;
454}
455
456/**
457 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458 * @hw: pointer to the HW structure
459 *
460 * Acquire the HW semaphore to access the PHY or NVM
461 **/
462static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463{
464 u32 swsm;
23a2d1b2
DG
465 s32 sw_timeout = hw->nvm.word_size + 1;
466 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
467 s32 i = 0;
468
e921eb1a 469 /* If we have timedout 3 times on trying to acquire
23a2d1b2
DG
470 * the inter-port SMBI semaphore, there is old code
471 * operating on the other port, and it is not
472 * releasing SMBI. Modify the number of times that
473 * we try for the semaphore to interwork with this
474 * older code.
475 */
476 if (hw->dev_spec.e82571.smb_counter > 2)
477 sw_timeout = 1;
478
479 /* Get the SW semaphore */
480 while (i < sw_timeout) {
481 swsm = er32(SWSM);
482 if (!(swsm & E1000_SWSM_SMBI))
483 break;
484
485 udelay(50);
486 i++;
487 }
488
489 if (i == sw_timeout) {
3bb99fe2 490 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
491 hw->dev_spec.e82571.smb_counter++;
492 }
bc7f75fa 493 /* Get the FW semaphore. */
23a2d1b2 494 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
495 swsm = er32(SWSM);
496 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497
498 /* Semaphore acquired if bit latched */
499 if (er32(SWSM) & E1000_SWSM_SWESMBI)
500 break;
501
502 udelay(50);
503 }
504
23a2d1b2 505 if (i == fw_timeout) {
bc7f75fa 506 /* Release semaphores */
23a2d1b2 507 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 508 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
509 return -E1000_ERR_NVM;
510 }
511
512 return 0;
513}
514
515/**
516 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
517 * @hw: pointer to the HW structure
518 *
519 * Release hardware semaphore used to access the PHY or NVM
520 **/
521static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522{
523 u32 swsm;
524
525 swsm = er32(SWSM);
23a2d1b2 526 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
527 ew32(SWSM, swsm);
528}
1b98c2bb
BA
529/**
530 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
531 * @hw: pointer to the HW structure
532 *
533 * Acquire the HW semaphore during reset.
534 *
535 **/
536static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
537{
538 u32 extcnf_ctrl;
1b98c2bb
BA
539 s32 i = 0;
540
541 extcnf_ctrl = er32(EXTCNF_CTRL);
1b98c2bb 542 do {
7dbbe5d5 543 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
1b98c2bb
BA
544 ew32(EXTCNF_CTRL, extcnf_ctrl);
545 extcnf_ctrl = er32(EXTCNF_CTRL);
546
547 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
548 break;
549
1bba4386 550 usleep_range(2000, 4000);
1b98c2bb
BA
551 i++;
552 } while (i < MDIO_OWNERSHIP_TIMEOUT);
553
554 if (i == MDIO_OWNERSHIP_TIMEOUT) {
555 /* Release semaphores */
556 e1000_put_hw_semaphore_82573(hw);
557 e_dbg("Driver can't access the PHY\n");
5015e53a 558 return -E1000_ERR_PHY;
1b98c2bb
BA
559 }
560
5015e53a 561 return 0;
1b98c2bb
BA
562}
563
564/**
565 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
566 * @hw: pointer to the HW structure
567 *
568 * Release hardware semaphore used during reset.
569 *
570 **/
571static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
572{
573 u32 extcnf_ctrl;
574
575 extcnf_ctrl = er32(EXTCNF_CTRL);
576 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
577 ew32(EXTCNF_CTRL, extcnf_ctrl);
578}
579
580static DEFINE_MUTEX(swflag_mutex);
581
582/**
583 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
584 * @hw: pointer to the HW structure
585 *
586 * Acquire the HW semaphore to access the PHY or NVM.
587 *
588 **/
589static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
590{
591 s32 ret_val;
592
593 mutex_lock(&swflag_mutex);
594 ret_val = e1000_get_hw_semaphore_82573(hw);
595 if (ret_val)
596 mutex_unlock(&swflag_mutex);
597 return ret_val;
598}
599
600/**
601 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
602 * @hw: pointer to the HW structure
603 *
604 * Release hardware semaphore used to access the PHY or NVM
605 *
606 **/
607static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
608{
609 e1000_put_hw_semaphore_82573(hw);
610 mutex_unlock(&swflag_mutex);
611}
bc7f75fa 612
77996d1d
BA
613/**
614 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
615 * @hw: pointer to the HW structure
616 * @active: true to enable LPLU, false to disable
617 *
618 * Sets the LPLU D0 state according to the active flag.
619 * LPLU will not be activated unless the
620 * device autonegotiation advertisement meets standards of
621 * either 10 or 10/100 or 10/100/1000 at all duplexes.
622 * This is a function pointer entry point only called by
623 * PHY setup routines.
624 **/
625static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
626{
efc38d2a 627 u32 data = er32(POEMB);
77996d1d
BA
628
629 if (active)
630 data |= E1000_PHY_CTRL_D0A_LPLU;
631 else
632 data &= ~E1000_PHY_CTRL_D0A_LPLU;
633
634 ew32(POEMB, data);
635 return 0;
636}
637
638/**
639 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
640 * @hw: pointer to the HW structure
641 * @active: boolean used to enable/disable lplu
642 *
643 * The low power link up (lplu) state is set to the power management level D3
644 * when active is true, else clear lplu for D3. LPLU
645 * is used during Dx states where the power conservation is most important.
646 * During driver activity, SmartSpeed should be enabled so performance is
647 * maintained.
648 **/
649static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
650{
efc38d2a 651 u32 data = er32(POEMB);
77996d1d
BA
652
653 if (!active) {
654 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
655 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
656 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
657 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
658 data |= E1000_PHY_CTRL_NOND0A_LPLU;
659 }
660
661 ew32(POEMB, data);
662 return 0;
663}
664
bc7f75fa
AK
665/**
666 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
667 * @hw: pointer to the HW structure
668 *
669 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
670 * Then for non-82573 hardware, set the EEPROM access request bit and wait
671 * for EEPROM access grant bit. If the access grant bit is not set, release
672 * hardware semaphore.
673 **/
674static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
675{
676 s32 ret_val;
677
678 ret_val = e1000_get_hw_semaphore_82571(hw);
679 if (ret_val)
680 return ret_val;
681
8c81c9c3
AD
682 switch (hw->mac.type) {
683 case e1000_82573:
8c81c9c3
AD
684 break;
685 default:
bc7f75fa 686 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
687 break;
688 }
bc7f75fa
AK
689
690 if (ret_val)
691 e1000_put_hw_semaphore_82571(hw);
692
693 return ret_val;
694}
695
696/**
697 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
698 * @hw: pointer to the HW structure
699 *
700 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
701 **/
702static void e1000_release_nvm_82571(struct e1000_hw *hw)
703{
704 e1000e_release_nvm(hw);
705 e1000_put_hw_semaphore_82571(hw);
706}
707
708/**
709 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
710 * @hw: pointer to the HW structure
711 * @offset: offset within the EEPROM to be written to
712 * @words: number of words to write
713 * @data: 16 bit word(s) to be written to the EEPROM
714 *
715 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
716 *
717 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 718 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
719 **/
720static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
721 u16 *data)
722{
723 s32 ret_val;
724
725 switch (hw->mac.type) {
726 case e1000_82573:
4662e82b 727 case e1000_82574:
8c81c9c3 728 case e1000_82583:
bc7f75fa
AK
729 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
730 break;
731 case e1000_82571:
732 case e1000_82572:
733 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
734 break;
735 default:
736 ret_val = -E1000_ERR_NVM;
737 break;
738 }
739
740 return ret_val;
741}
742
743/**
744 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
745 * @hw: pointer to the HW structure
746 *
747 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
748 * up to the checksum. Then calculates the EEPROM checksum and writes the
749 * value to the EEPROM.
750 **/
751static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
752{
753 u32 eecd;
754 s32 ret_val;
755 u16 i;
756
757 ret_val = e1000e_update_nvm_checksum_generic(hw);
758 if (ret_val)
759 return ret_val;
760
e921eb1a 761 /* If our nvm is an EEPROM, then we're done
ad68076e
BA
762 * otherwise, commit the checksum to the flash NVM.
763 */
bc7f75fa 764 if (hw->nvm.type != e1000_nvm_flash_hw)
82607255 765 return 0;
bc7f75fa
AK
766
767 /* Check for pending operations. */
768 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 769 usleep_range(1000, 2000);
04499ec4 770 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
771 break;
772 }
773
774 if (i == E1000_FLASH_UPDATES)
775 return -E1000_ERR_NVM;
776
777 /* Reset the firmware if using STM opcode. */
778 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
e921eb1a 779 /* The enabling of and the actual reset must be done
bc7f75fa
AK
780 * in two write cycles.
781 */
782 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
783 e1e_flush();
784 ew32(HICR, E1000_HICR_FW_RESET);
785 }
786
787 /* Commit the write to flash */
788 eecd = er32(EECD) | E1000_EECD_FLUPD;
789 ew32(EECD, eecd);
790
791 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 792 usleep_range(1000, 2000);
04499ec4 793 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
794 break;
795 }
796
797 if (i == E1000_FLASH_UPDATES)
798 return -E1000_ERR_NVM;
799
800 return 0;
801}
802
803/**
804 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
805 * @hw: pointer to the HW structure
806 *
807 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
808 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
809 **/
810static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
811{
812 if (hw->nvm.type == e1000_nvm_flash_hw)
813 e1000_fix_nvm_checksum_82571(hw);
814
815 return e1000e_validate_nvm_checksum_generic(hw);
816}
817
818/**
819 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
820 * @hw: pointer to the HW structure
821 * @offset: offset within the EEPROM to be written to
822 * @words: number of words to write
823 * @data: 16 bit word(s) to be written to the EEPROM
824 *
825 * After checking for invalid values, poll the EEPROM to ensure the previous
826 * command has completed before trying to write the next word. After write
827 * poll for completion.
828 *
829 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 830 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
831 **/
832static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
833 u16 words, u16 *data)
834{
835 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 836 u32 i, eewr = 0;
bc7f75fa
AK
837 s32 ret_val = 0;
838
e921eb1a 839 /* A check for invalid values: offset too large, too many words,
ad68076e
BA
840 * and not enough words.
841 */
bc7f75fa
AK
842 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
843 (words == 0)) {
3bb99fe2 844 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
845 return -E1000_ERR_NVM;
846 }
847
848 for (i = 0; i < words; i++) {
849 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
850 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
851 E1000_NVM_RW_REG_START;
852
853 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854 if (ret_val)
855 break;
856
857 ew32(EEWR, eewr);
858
859 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
860 if (ret_val)
861 break;
862 }
863
864 return ret_val;
865}
866
867/**
868 * e1000_get_cfg_done_82571 - Poll for configuration done
869 * @hw: pointer to the HW structure
870 *
871 * Reads the management control register for the config done bit to be set.
872 **/
873static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
874{
875 s32 timeout = PHY_CFG_TIMEOUT;
876
877 while (timeout) {
878 if (er32(EEMNGCTL) &
879 E1000_NVM_CFG_DONE_PORT_0)
880 break;
1bba4386 881 usleep_range(1000, 2000);
bc7f75fa
AK
882 timeout--;
883 }
884 if (!timeout) {
3bb99fe2 885 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
886 return -E1000_ERR_RESET;
887 }
888
889 return 0;
890}
891
892/**
893 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894 * @hw: pointer to the HW structure
564ea9bb 895 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
896 *
897 * Sets the LPLU D0 state according to the active flag. When activating LPLU
898 * this function also disables smart speed and vice versa. LPLU will not be
899 * activated unless the device autonegotiation advertisement meets standards
900 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
901 * pointer entry point only called by PHY setup routines.
902 **/
903static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
904{
905 struct e1000_phy_info *phy = &hw->phy;
906 s32 ret_val;
907 u16 data;
908
909 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
910 if (ret_val)
911 return ret_val;
912
913 if (active) {
914 data |= IGP02E1000_PM_D0_LPLU;
915 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
916 if (ret_val)
917 return ret_val;
918
919 /* When LPLU is enabled, we should disable SmartSpeed */
920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
7dbbe5d5
BA
921 if (ret_val)
922 return ret_val;
bc7f75fa
AK
923 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
925 if (ret_val)
926 return ret_val;
927 } else {
928 data &= ~IGP02E1000_PM_D0_LPLU;
929 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
e921eb1a 930 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
931 * during Dx states where the power conservation is most
932 * important. During driver activity we should enable
ad68076e
BA
933 * SmartSpeed, so performance is maintained.
934 */
bc7f75fa
AK
935 if (phy->smart_speed == e1000_smart_speed_on) {
936 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 937 &data);
bc7f75fa
AK
938 if (ret_val)
939 return ret_val;
940
941 data |= IGP01E1000_PSCFR_SMART_SPEED;
942 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 943 data);
bc7f75fa
AK
944 if (ret_val)
945 return ret_val;
946 } else if (phy->smart_speed == e1000_smart_speed_off) {
947 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 948 &data);
bc7f75fa
AK
949 if (ret_val)
950 return ret_val;
951
952 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 954 data);
bc7f75fa
AK
955 if (ret_val)
956 return ret_val;
957 }
958 }
959
960 return 0;
961}
962
963/**
964 * e1000_reset_hw_82571 - Reset hardware
965 * @hw: pointer to the HW structure
966 *
fe401674 967 * This resets the hardware into a known state.
bc7f75fa
AK
968 **/
969static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
970{
eca90f55 971 u32 ctrl, ctrl_ext, eecd, tctl;
bc7f75fa 972 s32 ret_val;
bc7f75fa 973
e921eb1a 974 /* Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
975 * on the last TLP read/write transaction when MAC is reset.
976 */
977 ret_val = e1000e_disable_pcie_master(hw);
978 if (ret_val)
3bb99fe2 979 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 980
3bb99fe2 981 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
982 ew32(IMC, 0xffffffff);
983
984 ew32(RCTL, 0);
eca90f55
TD
985 tctl = er32(TCTL);
986 tctl &= ~E1000_TCTL_EN;
987 ew32(TCTL, tctl);
bc7f75fa
AK
988 e1e_flush();
989
1bba4386 990 usleep_range(10000, 20000);
bc7f75fa 991
e921eb1a 992 /* Must acquire the MDIO ownership before MAC reset.
ad68076e
BA
993 * Ownership defaults to firmware after a reset.
994 */
8c81c9c3
AD
995 switch (hw->mac.type) {
996 case e1000_82573:
1b98c2bb
BA
997 ret_val = e1000_get_hw_semaphore_82573(hw);
998 break;
8c81c9c3
AD
999 case e1000_82574:
1000 case e1000_82583:
1b98c2bb 1001 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
1002 break;
1003 default:
1004 break;
bc7f75fa 1005 }
1b98c2bb
BA
1006 if (ret_val)
1007 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
1008
1009 ctrl = er32(CTRL);
1010
3bb99fe2 1011 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1012 ew32(CTRL, ctrl | E1000_CTRL_RST);
1013
1b98c2bb
BA
1014 /* Must release MDIO ownership and mutex after MAC reset. */
1015 switch (hw->mac.type) {
1016 case e1000_82574:
1017 case e1000_82583:
1018 e1000_put_hw_semaphore_82574(hw);
1019 break;
1020 default:
1021 break;
1022 }
1023
bc7f75fa
AK
1024 if (hw->nvm.type == e1000_nvm_flash_hw) {
1025 udelay(10);
1026 ctrl_ext = er32(CTRL_EXT);
1027 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1028 ew32(CTRL_EXT, ctrl_ext);
1029 e1e_flush();
1030 }
1031
1032 ret_val = e1000e_get_auto_rd_done(hw);
1033 if (ret_val)
1034 /* We don't want to continue accessing MAC registers. */
1035 return ret_val;
1036
e921eb1a 1037 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1038 * Need to wait for Phy configuration completion before accessing
1039 * NVM and Phy.
1040 */
8c81c9c3
AD
1041
1042 switch (hw->mac.type) {
1f56f45d
RA
1043 case e1000_82571:
1044 case e1000_82572:
e921eb1a 1045 /* REQ and GNT bits need to be cleared when using AUTO_RD
1f56f45d
RA
1046 * to access the EEPROM.
1047 */
1048 eecd = er32(EECD);
1049 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1050 ew32(EECD, eecd);
1051 break;
8c81c9c3
AD
1052 case e1000_82573:
1053 case e1000_82574:
1054 case e1000_82583:
bc7f75fa 1055 msleep(25);
8c81c9c3
AD
1056 break;
1057 default:
1058 break;
1059 }
bc7f75fa
AK
1060
1061 /* Clear any pending interrupt events. */
1062 ew32(IMC, 0xffffffff);
dd93f95e 1063 er32(ICR);
bc7f75fa 1064
1aef70ef
BA
1065 if (hw->mac.type == e1000_82571) {
1066 /* Install any alternate MAC address into RAR0 */
1067 ret_val = e1000_check_alt_mac_addr_generic(hw);
1068 if (ret_val)
1069 return ret_val;
608f8a0d 1070
1aef70ef
BA
1071 e1000e_set_laa_state_82571(hw, true);
1072 }
93ca1610 1073
c9523379 1074 /* Reinitialize the 82571 serdes link state machine */
1075 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1076 hw->mac.serdes_link_state = e1000_serdes_link_down;
1077
bc7f75fa
AK
1078 return 0;
1079}
1080
1081/**
1082 * e1000_init_hw_82571 - Initialize hardware
1083 * @hw: pointer to the HW structure
1084 *
1085 * This inits the hardware readying it for operation.
1086 **/
1087static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1088{
1089 struct e1000_mac_info *mac = &hw->mac;
1090 u32 reg_data;
1091 s32 ret_val;
a708dd88 1092 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1093
1094 e1000_initialize_hw_bits_82571(hw);
1095
1096 /* Initialize identification LED */
d1964eb1 1097 ret_val = mac->ops.id_led_init(hw);
de39b752 1098 if (ret_val)
3bb99fe2 1099 e_dbg("Error initializing identification LED\n");
de39b752 1100 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1101
1102 /* Disabling VLAN filtering */
3bb99fe2 1103 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1104 mac->ops.clear_vfta(hw);
bc7f75fa 1105
e921eb1a 1106 /* Setup the receive address.
ad68076e 1107 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1108 * 82571, we must reserve a RAR for it to work around an issue where
1109 * resetting one port will reload the MAC on the other port.
1110 */
1111 if (e1000e_get_laa_state_82571(hw))
1112 rar_count--;
1113 e1000e_init_rx_addrs(hw, rar_count);
1114
1115 /* Zero out the Multicast HASH table */
3bb99fe2 1116 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1117 for (i = 0; i < mac->mta_reg_count; i++)
1118 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1119
1120 /* Setup link and flow control */
1a46b40f 1121 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
1122
1123 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1124 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1125 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1126 E1000_TXDCTL_FULL_TX_DESC_WB |
1127 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1128 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1129
1130 /* ...for both queues. */
8c81c9c3
AD
1131 switch (mac->type) {
1132 case e1000_82573:
a65a4a0d
BA
1133 e1000e_enable_tx_pkt_filtering(hw);
1134 /* fall through */
8c81c9c3
AD
1135 case e1000_82574:
1136 case e1000_82583:
8c81c9c3
AD
1137 reg_data = er32(GCR);
1138 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1139 ew32(GCR, reg_data);
1140 break;
1141 default:
e9ec2c0f 1142 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1143 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1144 E1000_TXDCTL_FULL_TX_DESC_WB |
1145 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1146 ew32(TXDCTL(1), reg_data);
8c81c9c3 1147 break;
bc7f75fa
AK
1148 }
1149
e921eb1a 1150 /* Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1151 * important that we do this after we have tried to establish link
1152 * because the symbol error count will increment wildly if there
1153 * is no link.
1154 */
1155 e1000_clear_hw_cntrs_82571(hw);
1156
1157 return ret_val;
1158}
1159
1160/**
1161 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1162 * @hw: pointer to the HW structure
1163 *
1164 * Initializes required hardware-dependent bits needed for normal operation.
1165 **/
1166static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1167{
1168 u32 reg;
1169
1170 /* Transmit Descriptor Control 0 */
e9ec2c0f 1171 reg = er32(TXDCTL(0));
bc7f75fa 1172 reg |= (1 << 22);
e9ec2c0f 1173 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1174
1175 /* Transmit Descriptor Control 1 */
e9ec2c0f 1176 reg = er32(TXDCTL(1));
bc7f75fa 1177 reg |= (1 << 22);
e9ec2c0f 1178 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1179
1180 /* Transmit Arbitration Control 0 */
e9ec2c0f 1181 reg = er32(TARC(0));
bc7f75fa
AK
1182 reg &= ~(0xF << 27); /* 30:27 */
1183 switch (hw->mac.type) {
1184 case e1000_82571:
1185 case e1000_82572:
1186 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1187 break;
d6cb17d5
BA
1188 case e1000_82574:
1189 case e1000_82583:
1190 reg |= (1 << 26);
1191 break;
bc7f75fa
AK
1192 default:
1193 break;
1194 }
e9ec2c0f 1195 ew32(TARC(0), reg);
bc7f75fa
AK
1196
1197 /* Transmit Arbitration Control 1 */
e9ec2c0f 1198 reg = er32(TARC(1));
bc7f75fa
AK
1199 switch (hw->mac.type) {
1200 case e1000_82571:
1201 case e1000_82572:
1202 reg &= ~((1 << 29) | (1 << 30));
1203 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1204 if (er32(TCTL) & E1000_TCTL_MULR)
1205 reg &= ~(1 << 28);
1206 else
1207 reg |= (1 << 28);
e9ec2c0f 1208 ew32(TARC(1), reg);
bc7f75fa
AK
1209 break;
1210 default:
1211 break;
1212 }
1213
1214 /* Device Control */
8c81c9c3
AD
1215 switch (hw->mac.type) {
1216 case e1000_82573:
1217 case e1000_82574:
1218 case e1000_82583:
bc7f75fa
AK
1219 reg = er32(CTRL);
1220 reg &= ~(1 << 29);
1221 ew32(CTRL, reg);
8c81c9c3
AD
1222 break;
1223 default:
1224 break;
bc7f75fa
AK
1225 }
1226
1227 /* Extended Device Control */
8c81c9c3
AD
1228 switch (hw->mac.type) {
1229 case e1000_82573:
1230 case e1000_82574:
1231 case e1000_82583:
bc7f75fa
AK
1232 reg = er32(CTRL_EXT);
1233 reg &= ~(1 << 23);
1234 reg |= (1 << 22);
1235 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1236 break;
1237 default:
1238 break;
bc7f75fa 1239 }
4662e82b 1240
6ea7ae1d
AD
1241 if (hw->mac.type == e1000_82571) {
1242 reg = er32(PBA_ECC);
1243 reg |= E1000_PBA_ECC_CORR_EN;
1244 ew32(PBA_ECC, reg);
1245 }
3d3a1676 1246
e921eb1a 1247 /* Workaround for hardware errata.
5df3f0ea 1248 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1249 */
3d3a1676
BA
1250 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1251 reg = er32(CTRL_EXT);
1252 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1253 ew32(CTRL_EXT, reg);
1254 }
6ea7ae1d 1255
e921eb1a 1256 /* Disable IPv6 extension header parsing because some malformed
f6bd5577
MV
1257 * IPv6 headers can hang the Rx.
1258 */
1259 if (hw->mac.type <= e1000_82573) {
1260 reg = er32(RFCTL);
1261 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1262 ew32(RFCTL, reg);
1263 }
1264
78272bba 1265 /* PCI-Ex Control Registers */
8c81c9c3
AD
1266 switch (hw->mac.type) {
1267 case e1000_82574:
1268 case e1000_82583:
4662e82b
BA
1269 reg = er32(GCR);
1270 reg |= (1 << 22);
1271 ew32(GCR, reg);
78272bba 1272
e921eb1a 1273 /* Workaround for hardware errata.
84efb7b9
BA
1274 * apply workaround for hardware errata documented in errata
1275 * docs Fixes issue where some error prone or unreliable PCIe
1276 * completions are occurring, particularly with ASPM enabled.
af667a29 1277 * Without fix, issue can cause Tx timeouts.
84efb7b9 1278 */
78272bba
JB
1279 reg = er32(GCR2);
1280 reg |= 1;
1281 ew32(GCR2, reg);
8c81c9c3
AD
1282 break;
1283 default:
1284 break;
4662e82b 1285 }
bc7f75fa
AK
1286}
1287
1288/**
caaddaf8 1289 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1290 * @hw: pointer to the HW structure
1291 *
1292 * Clears the register array which contains the VLAN filter table by
1293 * setting all the values to 0.
1294 **/
caaddaf8 1295static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1296{
1297 u32 offset;
1298 u32 vfta_value = 0;
1299 u32 vfta_offset = 0;
1300 u32 vfta_bit_in_reg = 0;
1301
8c81c9c3
AD
1302 switch (hw->mac.type) {
1303 case e1000_82573:
1304 case e1000_82574:
1305 case e1000_82583:
bc7f75fa 1306 if (hw->mng_cookie.vlan_id != 0) {
e921eb1a 1307 /* The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1308 * a single VLAN ID. The following operations
1309 * determine which 32b entry (i.e. offset) into the
1310 * array we want to set the VLAN ID (i.e. bit) of
1311 * the manageability unit.
1312 */
1313 vfta_offset = (hw->mng_cookie.vlan_id >>
1314 E1000_VFTA_ENTRY_SHIFT) &
55c5f55e
BA
1315 E1000_VFTA_ENTRY_MASK;
1316 vfta_bit_in_reg =
1317 1 << (hw->mng_cookie.vlan_id &
1318 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
bc7f75fa 1319 }
8c81c9c3
AD
1320 break;
1321 default:
1322 break;
bc7f75fa
AK
1323 }
1324 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
e921eb1a 1325 /* If the offset we want to clear is the same offset of the
bc7f75fa
AK
1326 * manageability VLAN ID, then clear all bits except that of
1327 * the manageability unit.
1328 */
1329 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1330 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1331 e1e_flush();
1332 }
1333}
1334
4662e82b
BA
1335/**
1336 * e1000_check_mng_mode_82574 - Check manageability is enabled
1337 * @hw: pointer to the HW structure
1338 *
1339 * Reads the NVM Initialization Control Word 2 and returns true
1340 * (>0) if any manageability is enabled, else false (0).
1341 **/
1342static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1343{
1344 u16 data;
1345
1346 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1347 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1348}
1349
1350/**
1351 * e1000_led_on_82574 - Turn LED on
1352 * @hw: pointer to the HW structure
1353 *
1354 * Turn LED on.
1355 **/
1356static s32 e1000_led_on_82574(struct e1000_hw *hw)
1357{
1358 u32 ctrl;
1359 u32 i;
1360
1361 ctrl = hw->mac.ledctl_mode2;
1362 if (!(E1000_STATUS_LU & er32(STATUS))) {
e921eb1a 1363 /* If no link, then turn LED on by setting the invert bit
4662e82b
BA
1364 * for each LED that's "on" (0x0E) in ledctl_mode2.
1365 */
1366 for (i = 0; i < 4; i++)
1367 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1368 E1000_LEDCTL_MODE_LED_ON)
1369 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1370 }
1371 ew32(LEDCTL, ctrl);
1372
1373 return 0;
1374}
1375
ff10e13c
CW
1376/**
1377 * e1000_check_phy_82574 - check 82574 phy hung state
1378 * @hw: pointer to the HW structure
1379 *
1380 * Returns whether phy is hung or not
1381 **/
1382bool e1000_check_phy_82574(struct e1000_hw *hw)
1383{
1384 u16 status_1kbt = 0;
1385 u16 receive_errors = 0;
70806a7f 1386 s32 ret_val;
ff10e13c 1387
e921eb1a 1388 /* Read PHY Receive Error counter first, if its is max - all F's then
ff10e13c
CW
1389 * read the Base1000T status register If both are max then PHY is hung.
1390 */
1391 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
ff10e13c 1392 if (ret_val)
5015e53a 1393 return false;
ff10e13c
CW
1394 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1395 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1396 if (ret_val)
5015e53a 1397 return false;
ff10e13c
CW
1398 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1399 E1000_IDLE_ERROR_COUNT_MASK)
5015e53a 1400 return true;
ff10e13c 1401 }
5015e53a
BA
1402
1403 return false;
ff10e13c
CW
1404}
1405
bc7f75fa
AK
1406/**
1407 * e1000_setup_link_82571 - Setup flow control and link settings
1408 * @hw: pointer to the HW structure
1409 *
1410 * Determines which flow control settings to use, then configures flow
1411 * control. Calls the appropriate media-specific link configuration
1412 * function. Assuming the adapter has a valid link partner, a valid link
1413 * should be established. Assumes the hardware has previously been reset
1414 * and the transmitter and receiver are not enabled.
1415 **/
1416static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1417{
e921eb1a 1418 /* 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1419 * the default flow control setting, so we explicitly
1420 * set it to full.
1421 */
8c81c9c3
AD
1422 switch (hw->mac.type) {
1423 case e1000_82573:
1424 case e1000_82574:
1425 case e1000_82583:
1426 if (hw->fc.requested_mode == e1000_fc_default)
1427 hw->fc.requested_mode = e1000_fc_full;
1428 break;
1429 default:
1430 break;
1431 }
bc7f75fa 1432
1a46b40f 1433 return e1000e_setup_link_generic(hw);
bc7f75fa
AK
1434}
1435
1436/**
1437 * e1000_setup_copper_link_82571 - Configure copper link settings
1438 * @hw: pointer to the HW structure
1439 *
1440 * Configures the link for auto-neg or forced speed and duplex. Then we check
1441 * for link, once link is established calls to configure collision distance
1442 * and flow control are called.
1443 **/
1444static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1445{
1446 u32 ctrl;
bc7f75fa
AK
1447 s32 ret_val;
1448
1449 ctrl = er32(CTRL);
1450 ctrl |= E1000_CTRL_SLU;
1451 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1452 ew32(CTRL, ctrl);
1453
1454 switch (hw->phy.type) {
1455 case e1000_phy_m88:
4662e82b 1456 case e1000_phy_bm:
bc7f75fa
AK
1457 ret_val = e1000e_copper_link_setup_m88(hw);
1458 break;
1459 case e1000_phy_igp_2:
1460 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1461 break;
1462 default:
1463 return -E1000_ERR_PHY;
1464 break;
1465 }
1466
1467 if (ret_val)
1468 return ret_val;
1469
7eb61d81 1470 return e1000e_setup_copper_link(hw);
bc7f75fa
AK
1471}
1472
1473/**
1474 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1475 * @hw: pointer to the HW structure
1476 *
1477 * Configures collision distance and flow control for fiber and serdes links.
1478 * Upon successful setup, poll for link.
1479 **/
1480static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1481{
1482 switch (hw->mac.type) {
1483 case e1000_82571:
1484 case e1000_82572:
e921eb1a 1485 /* If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1486 * of reset to take the adapter out of that mode. So we
1487 * have to explicitly take the adapter out of loopback
489815ce 1488 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1489 * if another tool failed to take it out of loopback mode.
1490 */
ad68076e 1491 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1492 break;
1493 default:
1494 break;
1495 }
1496
1497 return e1000e_setup_fiber_serdes_link(hw);
1498}
1499
c9523379 1500/**
1501 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1502 * @hw: pointer to the HW structure
1503 *
1a40d5c1
BA
1504 * Reports the link state as up or down.
1505 *
1506 * If autonegotiation is supported by the link partner, the link state is
1507 * determined by the result of autonegotiation. This is the most likely case.
1508 * If autonegotiation is not supported by the link partner, and the link
1509 * has a valid signal, force the link up.
1510 *
1511 * The link state is represented internally here by 4 states:
1512 *
1513 * 1) down
1514 * 2) autoneg_progress
3ad2f3fb 1515 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1516 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1517 *
c9523379 1518 **/
f6370117 1519static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1520{
1521 struct e1000_mac_info *mac = &hw->mac;
1522 u32 rxcw;
1523 u32 ctrl;
1524 u32 status;
d9c76f99
BA
1525 u32 txcw;
1526 u32 i;
c9523379 1527 s32 ret_val = 0;
1528
1529 ctrl = er32(CTRL);
1530 status = er32(STATUS);
70806a7f 1531 er32(RXCW);
d0efa8f2
TD
1532 /* SYNCH bit and IV bit are sticky */
1533 udelay(10);
1534 rxcw = er32(RXCW);
c9523379 1535
1536 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
c9523379 1537 /* Receiver is synchronized with no invalid bits. */
1538 switch (mac->serdes_link_state) {
1539 case e1000_serdes_link_autoneg_complete:
1540 if (!(status & E1000_STATUS_LU)) {
e921eb1a 1541 /* We have lost link, retry autoneg before
c9523379 1542 * reporting link failure
1543 */
1544 mac->serdes_link_state =
1545 e1000_serdes_link_autoneg_progress;
1a40d5c1 1546 mac->serdes_has_link = false;
3bb99fe2 1547 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1548 } else {
1549 mac->serdes_has_link = true;
c9523379 1550 }
a82a14f4 1551 break;
c9523379 1552
1553 case e1000_serdes_link_forced_up:
e921eb1a 1554 /* If we are receiving /C/ ordered sets, re-enable
c9523379 1555 * auto-negotiation in the TXCW register and disable
1556 * forced link in the Device Control register in an
1557 * attempt to auto-negotiate with our link partner.
1558 */
b7ec70be 1559 if (rxcw & E1000_RXCW_C) {
c9523379 1560 /* Enable autoneg, and unforce link up */
1561 ew32(TXCW, mac->txcw);
1a40d5c1 1562 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1563 mac->serdes_link_state =
1564 e1000_serdes_link_autoneg_progress;
1a40d5c1 1565 mac->serdes_has_link = false;
3bb99fe2 1566 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1567 } else {
1568 mac->serdes_has_link = true;
c9523379 1569 }
1570 break;
1571
1572 case e1000_serdes_link_autoneg_progress:
1a40d5c1 1573 if (rxcw & E1000_RXCW_C) {
e921eb1a 1574 /* We received /C/ ordered sets, meaning the
1a40d5c1
BA
1575 * link partner has autonegotiated, and we can
1576 * trust the Link Up (LU) status bit.
1577 */
1578 if (status & E1000_STATUS_LU) {
1579 mac->serdes_link_state =
1580 e1000_serdes_link_autoneg_complete;
1581 e_dbg("AN_PROG -> AN_UP\n");
1582 mac->serdes_has_link = true;
1583 } else {
1584 /* Autoneg completed, but failed. */
1585 mac->serdes_link_state =
1586 e1000_serdes_link_down;
1587 e_dbg("AN_PROG -> DOWN\n");
1588 }
c9523379 1589 } else {
e921eb1a 1590 /* The link partner did not autoneg.
1a40d5c1
BA
1591 * Force link up and full duplex, and change
1592 * state to forced.
c9523379 1593 */
1a40d5c1 1594 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1595 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1596 ew32(CTRL, ctrl);
1597
1598 /* Configure Flow Control after link up. */
1a40d5c1 1599 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1600 if (ret_val) {
3bb99fe2 1601 e_dbg("Error config flow control\n");
c9523379 1602 break;
1603 }
1604 mac->serdes_link_state =
1605 e1000_serdes_link_forced_up;
1a40d5c1 1606 mac->serdes_has_link = true;
3bb99fe2 1607 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1608 }
c9523379 1609 break;
1610
1611 case e1000_serdes_link_down:
1612 default:
e921eb1a 1613 /* The link was down but the receiver has now gained
c9523379 1614 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1615 * up.
1616 */
c9523379 1617 ew32(TXCW, mac->txcw);
1a40d5c1 1618 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1619 mac->serdes_link_state =
1620 e1000_serdes_link_autoneg_progress;
a82a14f4 1621 mac->serdes_has_link = false;
3bb99fe2 1622 e_dbg("DOWN -> AN_PROG\n");
c9523379 1623 break;
1624 }
1625 } else {
1626 if (!(rxcw & E1000_RXCW_SYNCH)) {
1627 mac->serdes_has_link = false;
1628 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1629 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1630 } else {
e921eb1a 1631 /* Check several times, if SYNCH bit and CONFIG
18115f82
TD
1632 * bit both are consistently 1 then simply ignore
1633 * the IV bit and restart Autoneg
c9523379 1634 */
d9c76f99
BA
1635 for (i = 0; i < AN_RETRY_COUNT; i++) {
1636 udelay(10);
1637 rxcw = er32(RXCW);
18115f82
TD
1638 if ((rxcw & E1000_RXCW_SYNCH) &&
1639 (rxcw & E1000_RXCW_C))
1640 continue;
1641
1642 if (rxcw & E1000_RXCW_IV) {
d9c76f99
BA
1643 mac->serdes_has_link = false;
1644 mac->serdes_link_state =
1645 e1000_serdes_link_down;
1646 e_dbg("ANYSTATE -> DOWN\n");
1647 break;
1648 }
1649 }
1650
1651 if (i == AN_RETRY_COUNT) {
1652 txcw = er32(TXCW);
1653 txcw |= E1000_TXCW_ANE;
1654 ew32(TXCW, txcw);
1655 mac->serdes_link_state =
1656 e1000_serdes_link_autoneg_progress;
c9523379 1657 mac->serdes_has_link = false;
d9c76f99 1658 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1659 }
1660 }
1661 }
1662
1663 return ret_val;
1664}
1665
bc7f75fa
AK
1666/**
1667 * e1000_valid_led_default_82571 - Verify a valid default LED config
1668 * @hw: pointer to the HW structure
1669 * @data: pointer to the NVM (EEPROM)
1670 *
1671 * Read the EEPROM for the current default LED configuration. If the
1672 * LED configuration is not valid, set to a valid LED configuration.
1673 **/
1674static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1675{
1676 s32 ret_val;
1677
1678 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1679 if (ret_val) {
3bb99fe2 1680 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1681 return ret_val;
1682 }
1683
8c81c9c3
AD
1684 switch (hw->mac.type) {
1685 case e1000_82573:
1686 case e1000_82574:
1687 case e1000_82583:
1688 if (*data == ID_LED_RESERVED_F746)
1689 *data = ID_LED_DEFAULT_82573;
1690 break;
1691 default:
1692 if (*data == ID_LED_RESERVED_0000 ||
1693 *data == ID_LED_RESERVED_FFFF)
1694 *data = ID_LED_DEFAULT;
1695 break;
1696 }
bc7f75fa
AK
1697
1698 return 0;
1699}
1700
1701/**
1702 * e1000e_get_laa_state_82571 - Get locally administered address state
1703 * @hw: pointer to the HW structure
1704 *
489815ce 1705 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1706 **/
1707bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1708{
1709 if (hw->mac.type != e1000_82571)
564ea9bb 1710 return false;
bc7f75fa
AK
1711
1712 return hw->dev_spec.e82571.laa_is_present;
1713}
1714
1715/**
1716 * e1000e_set_laa_state_82571 - Set locally administered address state
1717 * @hw: pointer to the HW structure
1718 * @state: enable/disable locally administered address
1719 *
5ff5b664 1720 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1721 **/
1722void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1723{
1724 if (hw->mac.type != e1000_82571)
1725 return;
1726
1727 hw->dev_spec.e82571.laa_is_present = state;
1728
1729 /* If workaround is activated... */
1730 if (state)
e921eb1a 1731 /* Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1732 * between the time RAR[0] gets clobbered and the time it
1733 * gets fixed, the actual LAA is in one of the RARs and no
1734 * incoming packets directed to this port are dropped.
1735 * Eventually the LAA will be in RAR[0] and RAR[14].
1736 */
69e1e019
BA
1737 hw->mac.ops.rar_set(hw, hw->mac.addr,
1738 hw->mac.rar_entry_count - 1);
bc7f75fa
AK
1739}
1740
1741/**
1742 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1743 * @hw: pointer to the HW structure
1744 *
1745 * Verifies that the EEPROM has completed the update. After updating the
1746 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1747 * the checksum fix is not implemented, we need to set the bit and update
1748 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1749 * we need to return bad checksum.
1750 **/
1751static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1752{
1753 struct e1000_nvm_info *nvm = &hw->nvm;
1754 s32 ret_val;
1755 u16 data;
1756
1757 if (nvm->type != e1000_nvm_flash_hw)
1758 return 0;
1759
e921eb1a 1760 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1761 * 10h-12h. Checksum may need to be fixed.
1762 */
1763 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1764 if (ret_val)
1765 return ret_val;
1766
1767 if (!(data & 0x10)) {
e921eb1a 1768 /* Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1769 * when the checksum has already been fixed. If
1770 * the checksum is still wrong and this bit is a
1771 * 1, we need to return bad checksum. Otherwise,
1772 * we need to set this bit to a 1 and update the
1773 * checksum.
1774 */
1775 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1776 if (ret_val)
1777 return ret_val;
1778
1779 if (!(data & 0x8000)) {
1780 data |= 0x8000;
1781 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1782 if (ret_val)
1783 return ret_val;
1784 ret_val = e1000e_update_nvm_checksum(hw);
7dbbe5d5
BA
1785 if (ret_val)
1786 return ret_val;
bc7f75fa
AK
1787 }
1788 }
1789
1790 return 0;
1791}
1792
608f8a0d
BA
1793/**
1794 * e1000_read_mac_addr_82571 - Read device MAC address
1795 * @hw: pointer to the HW structure
1796 **/
1797static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1798{
1aef70ef 1799 if (hw->mac.type == e1000_82571) {
70806a7f 1800 s32 ret_val;
5015e53a 1801
e921eb1a 1802 /* If there's an alternate MAC address place it in RAR0
1aef70ef
BA
1803 * so that it will override the Si installed default perm
1804 * address.
1805 */
1806 ret_val = e1000_check_alt_mac_addr_generic(hw);
1807 if (ret_val)
5015e53a 1808 return ret_val;
1aef70ef 1809 }
608f8a0d 1810
5015e53a 1811 return e1000_read_mac_addr_generic(hw);
608f8a0d
BA
1812}
1813
17f208de
BA
1814/**
1815 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1816 * @hw: pointer to the HW structure
1817 *
1818 * In the case of a PHY power down to save power, or to turn off link during a
1819 * driver unload, or wake on lan is not enabled, remove the link.
1820 **/
1821static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1822{
1823 struct e1000_phy_info *phy = &hw->phy;
1824 struct e1000_mac_info *mac = &hw->mac;
1825
668018d7 1826 if (!phy->ops.check_reset_block)
17f208de
BA
1827 return;
1828
1829 /* If the management interface is not enabled, then power down */
1830 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1831 e1000_power_down_phy_copper(hw);
17f208de
BA
1832}
1833
bc7f75fa
AK
1834/**
1835 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1836 * @hw: pointer to the HW structure
1837 *
1838 * Clears the hardware counters by reading the counter registers.
1839 **/
1840static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1841{
bc7f75fa
AK
1842 e1000e_clear_hw_cntrs_base(hw);
1843
99673d9b
BA
1844 er32(PRC64);
1845 er32(PRC127);
1846 er32(PRC255);
1847 er32(PRC511);
1848 er32(PRC1023);
1849 er32(PRC1522);
1850 er32(PTC64);
1851 er32(PTC127);
1852 er32(PTC255);
1853 er32(PTC511);
1854 er32(PTC1023);
1855 er32(PTC1522);
1856
1857 er32(ALGNERRC);
1858 er32(RXERRC);
1859 er32(TNCRS);
1860 er32(CEXTERR);
1861 er32(TSCTC);
1862 er32(TSCTFC);
1863
1864 er32(MGTPRC);
1865 er32(MGTPDC);
1866 er32(MGTPTC);
1867
1868 er32(IAC);
1869 er32(ICRXOC);
1870
1871 er32(ICRXPTC);
1872 er32(ICRXATC);
1873 er32(ICTXPTC);
1874 er32(ICTXATC);
1875 er32(ICTXQEC);
1876 er32(ICTXQMTC);
1877 er32(ICRXDMTC);
bc7f75fa
AK
1878}
1879
8ce9d6c7 1880static const struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1881 /* .check_mng_mode: mac type dependent */
bc7f75fa 1882 /* .check_for_link: media type dependent */
d1964eb1 1883 .id_led_init = e1000e_id_led_init_generic,
bc7f75fa
AK
1884 .cleanup_led = e1000e_cleanup_led_generic,
1885 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1886 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1887 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1888 /* .get_link_up_info: media type dependent */
4662e82b 1889 /* .led_on: mac type dependent */
bc7f75fa 1890 .led_off = e1000e_led_off_generic,
ab8932f3 1891 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1892 .write_vfta = e1000_write_vfta_generic,
1893 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1894 .reset_hw = e1000_reset_hw_82571,
1895 .init_hw = e1000_init_hw_82571,
1896 .setup_link = e1000_setup_link_82571,
1897 /* .setup_physical_interface: media type dependent */
a4f58f54 1898 .setup_led = e1000e_setup_led_generic,
57cde763 1899 .config_collision_dist = e1000e_config_collision_dist_generic,
608f8a0d 1900 .read_mac_addr = e1000_read_mac_addr_82571,
69e1e019 1901 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
1902};
1903
8ce9d6c7 1904static const struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1905 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1906 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1907 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1908 .commit = NULL,
bc7f75fa
AK
1909 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1910 .get_cfg_done = e1000_get_cfg_done_82571,
1911 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1912 .get_info = e1000e_get_phy_info_igp,
1913 .read_reg = e1000e_read_phy_reg_igp,
1914 .release = e1000_put_hw_semaphore_82571,
1915 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1916 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1917 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1918 .write_reg = e1000e_write_phy_reg_igp,
55c5f55e 1919 .cfg_on_link_up = NULL,
bc7f75fa
AK
1920};
1921
8ce9d6c7 1922static const struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1923 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1924 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1925 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1926 .commit = e1000e_phy_sw_reset,
bc7f75fa 1927 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
fe90849f 1928 .get_cfg_done = e1000e_get_cfg_done_generic,
bc7f75fa 1929 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1930 .get_info = e1000e_get_phy_info_m88,
1931 .read_reg = e1000e_read_phy_reg_m88,
1932 .release = e1000_put_hw_semaphore_82571,
1933 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1934 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1935 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1936 .write_reg = e1000e_write_phy_reg_m88,
55c5f55e 1937 .cfg_on_link_up = NULL,
bc7f75fa
AK
1938};
1939
8ce9d6c7 1940static const struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1941 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1942 .check_polarity = e1000_check_polarity_m88,
4662e82b 1943 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1944 .commit = e1000e_phy_sw_reset,
4662e82b 1945 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
fe90849f 1946 .get_cfg_done = e1000e_get_cfg_done_generic,
4662e82b 1947 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1948 .get_info = e1000e_get_phy_info_m88,
1949 .read_reg = e1000e_read_phy_reg_bm2,
1950 .release = e1000_put_hw_semaphore_82571,
1951 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1952 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1953 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1954 .write_reg = e1000e_write_phy_reg_bm2,
55c5f55e 1955 .cfg_on_link_up = NULL,
4662e82b
BA
1956};
1957
8ce9d6c7 1958static const struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1959 .acquire = e1000_acquire_nvm_82571,
1960 .read = e1000e_read_nvm_eerd,
1961 .release = e1000_release_nvm_82571,
e85e3639 1962 .reload = e1000e_reload_nvm_generic,
94d8186a 1963 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1964 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1965 .validate = e1000_validate_nvm_checksum_82571,
1966 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1967};
1968
8ce9d6c7 1969const struct e1000_info e1000_82571_info = {
bc7f75fa
AK
1970 .mac = e1000_82571,
1971 .flags = FLAG_HAS_HW_VLAN_FILTER
1972 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1973 | FLAG_HAS_WOL
1974 | FLAG_APME_IN_CTRL3
bc7f75fa 1975 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1976 | FLAG_HAS_SMART_POWER_DOWN
1977 | FLAG_RESET_OVERWRITES_LAA /* errata */
1978 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1979 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
1980 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1981 | FLAG2_DMA_BURST,
bc7f75fa 1982 .pba = 38,
2adc55c9 1983 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1984 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1985 .mac_ops = &e82571_mac_ops,
1986 .phy_ops = &e82_phy_ops_igp,
1987 .nvm_ops = &e82571_nvm_ops,
1988};
1989
8ce9d6c7 1990const struct e1000_info e1000_82572_info = {
bc7f75fa
AK
1991 .mac = e1000_82572,
1992 .flags = FLAG_HAS_HW_VLAN_FILTER
1993 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1994 | FLAG_HAS_WOL
1995 | FLAG_APME_IN_CTRL3
bc7f75fa 1996 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 1997 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
1998 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1999 | FLAG2_DMA_BURST,
bc7f75fa 2000 .pba = 38,
2adc55c9 2001 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2002 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2003 .mac_ops = &e82571_mac_ops,
2004 .phy_ops = &e82_phy_ops_igp,
2005 .nvm_ops = &e82571_nvm_ops,
2006};
2007
8ce9d6c7 2008const struct e1000_info e1000_82573_info = {
bc7f75fa
AK
2009 .mac = e1000_82573,
2010 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2011 | FLAG_HAS_WOL
2012 | FLAG_APME_IN_CTRL3
bc7f75fa
AK
2013 | FLAG_HAS_SMART_POWER_DOWN
2014 | FLAG_HAS_AMT
bc7f75fa 2015 | FLAG_HAS_SWSM_ON_LOAD,
78cd29d5
BA
2016 .flags2 = FLAG2_DISABLE_ASPM_L1
2017 | FLAG2_DISABLE_ASPM_L0S,
bc7f75fa 2018 .pba = 20,
2adc55c9 2019 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2020 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2021 .mac_ops = &e82571_mac_ops,
2022 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2023 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2024};
2025
8ce9d6c7 2026const struct e1000_info e1000_82574_info = {
4662e82b
BA
2027 .mac = e1000_82574,
2028 .flags = FLAG_HAS_HW_VLAN_FILTER
2029 | FLAG_HAS_MSIX
2030 | FLAG_HAS_JUMBO_FRAMES
2031 | FLAG_HAS_WOL
b67e1913 2032 | FLAG_HAS_HW_TIMESTAMP
4662e82b 2033 | FLAG_APME_IN_CTRL3
4662e82b
BA
2034 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_AMT
2036 | FLAG_HAS_CTRLEXT_ON_LOAD,
d4a4206e 2037 .flags2 = FLAG2_CHECK_PHY_HANG
7f99ae63 2038 | FLAG2_DISABLE_ASPM_L0S
d4a4206e 2039 | FLAG2_DISABLE_ASPM_L1
2cb7a9cc
MV
2040 | FLAG2_NO_DISABLE_RX
2041 | FLAG2_DMA_BURST,
ed5c2b0b 2042 .pba = 32,
a825e00c 2043 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2044 .get_variants = e1000_get_variants_82571,
2045 .mac_ops = &e82571_mac_ops,
2046 .phy_ops = &e82_phy_ops_bm,
2047 .nvm_ops = &e82571_nvm_ops,
2048};
2049
8ce9d6c7 2050const struct e1000_info e1000_82583_info = {
8c81c9c3
AD
2051 .mac = e1000_82583,
2052 .flags = FLAG_HAS_HW_VLAN_FILTER
2053 | FLAG_HAS_WOL
b67e1913 2054 | FLAG_HAS_HW_TIMESTAMP
8c81c9c3 2055 | FLAG_APME_IN_CTRL3
8c81c9c3
AD
2056 | FLAG_HAS_SMART_POWER_DOWN
2057 | FLAG_HAS_AMT
a3d72d5d 2058 | FLAG_HAS_JUMBO_FRAMES
8c81c9c3 2059 | FLAG_HAS_CTRLEXT_ON_LOAD,
7f99ae63
BA
2060 .flags2 = FLAG2_DISABLE_ASPM_L0S
2061 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2062 .pba = 32,
a3d72d5d 2063 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
2064 .get_variants = e1000_get_variants_82571,
2065 .mac_ops = &e82571_mac_ops,
2066 .phy_ops = &e82_phy_ops_bm,
2067 .nvm_ops = &e82571_nvm_ops,
2068};
2069
This page took 0.756322 seconds and 5 git commands to generate.