e1000e: cleanup use of check_mng_mode function pointer
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
d3738bb8
BA
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
bc7f75fa
AK
57 */
58
bc7f75fa
AK
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
4a770358 66#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
831bd2e6
BA
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
bc7f75fa
AK
112#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES 7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
a4f58f54
BA
126#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
53ac5a88
BA
128#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
f523d211
BA
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 132#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
133#define HV_SMB_ADDR_PEC_EN 0x0200
134#define HV_SMB_ADDR_VALID 0x0080
135
d3738bb8
BA
136/* PHY Power Management Control */
137#define HV_PM_CTRL PHY_REG(770, 17)
138
e52997f9 139/* PHY Low Power Idle Control */
0ed013e2
BA
140#define I82579_LPI_CTRL PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
e52997f9 143
1effb45c
BA
144/* EMI Registers */
145#define I82579_EMI_ADDR 0x10
146#define I82579_EMI_DATA 0x11
147#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
4d24136c
BA
148#define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */
149#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
1effb45c 150
f523d211
BA
151/* Strapping Option Register - RO */
152#define E1000_STRAP 0x0000C
153#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
154#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155
fa2ce13c
BA
156/* OEM Bits Phy Register */
157#define HV_OEM_BITS PHY_REG(768, 25)
158#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 159#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
160#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161
1d5846b9
BA
162#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
164
fddaa1af
BA
165/* KMRN Mode Control */
166#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
167#define HV_KMRN_MDIO_SLOW 0x0400
168
1d2101a7
BA
169/* KMRN FIFO Control and Status */
170#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
171#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
172#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
173
bc7f75fa
AK
174/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175/* Offset 04h HSFSTS */
176union ich8_hws_flash_status {
177 struct ich8_hsfsts {
178 u16 flcdone :1; /* bit 0 Flash Cycle Done */
179 u16 flcerr :1; /* bit 1 Flash Cycle Error */
180 u16 dael :1; /* bit 2 Direct Access error Log */
181 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
182 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
183 u16 reserved1 :2; /* bit 13:6 Reserved */
184 u16 reserved2 :6; /* bit 13:6 Reserved */
185 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
187 } hsf_status;
188 u16 regval;
189};
190
191/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192/* Offset 06h FLCTL */
193union ich8_hws_flash_ctrl {
194 struct ich8_hsflctl {
195 u16 flcgo :1; /* 0 Flash Cycle Go */
196 u16 flcycle :2; /* 2:1 Flash Cycle */
197 u16 reserved :5; /* 7:3 Reserved */
198 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
199 u16 flockdn :6; /* 15:10 Reserved */
200 } hsf_ctrl;
201 u16 regval;
202};
203
204/* ICH Flash Region Access Permissions */
205union ich8_hws_flash_regacc {
206 struct ich8_flracc {
207 u32 grra :8; /* 0:7 GbE region Read Access */
208 u32 grwa :8; /* 8:15 GbE region Write Access */
209 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
210 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
211 } hsf_flregacc;
212 u16 regval;
213};
214
4a770358
BA
215/* ICH Flash Protected Region */
216union ich8_flash_protected_range {
217 struct ich8_pr {
218 u32 base:13; /* 0:12 Protected Range Base */
219 u32 reserved1:2; /* 13:14 Reserved */
220 u32 rpe:1; /* 15 Read Protection Enable */
221 u32 limit:13; /* 16:28 Protected Range Limit */
222 u32 reserved2:2; /* 29:30 Reserved */
223 u32 wpe:1; /* 31 Write Protection Enable */
224 } range;
225 u32 regval;
226};
227
bc7f75fa
AK
228static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
231static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233 u32 offset, u8 byte);
f4187b56
BA
234static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235 u8 *data);
bc7f75fa
AK
236static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237 u16 *data);
238static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239 u8 size, u16 *data);
240static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 242static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
243static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 251static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 252static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 253static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 254static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 255static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
256static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
831bd2e6 258static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 259static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
260
261static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262{
263 return readw(hw->flash_address + reg);
264}
265
266static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267{
268 return readl(hw->flash_address + reg);
269}
270
271static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272{
273 writew(val, hw->flash_address + reg);
274}
275
276static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277{
278 writel(val, hw->flash_address + reg);
279}
280
281#define er16flash(reg) __er16flash(hw, (reg))
282#define er32flash(reg) __er32flash(hw, (reg))
0e15df49
BA
283#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
284#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
bc7f75fa 285
99730e4c
BA
286static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287{
288 u32 ctrl;
289
290 ctrl = er32(CTRL);
291 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293 ew32(CTRL, ctrl);
945a5151 294 e1e_flush();
99730e4c
BA
295 udelay(10);
296 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297 ew32(CTRL, ctrl);
298}
299
a4f58f54
BA
300/**
301 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
302 * @hw: pointer to the HW structure
303 *
304 * Initialize family-specific PHY parameters and function pointers.
305 **/
306static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307{
308 struct e1000_phy_info *phy = &hw->phy;
309 s32 ret_val = 0;
310
311 phy->addr = 1;
312 phy->reset_delay_us = 100;
313
2b6b168d 314 phy->ops.set_page = e1000_set_page_igp;
94d8186a
BA
315 phy->ops.read_reg = e1000_read_phy_reg_hv;
316 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
2b6b168d 317 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
fa2ce13c
BA
318 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
319 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
320 phy->ops.write_reg = e1000_write_phy_reg_hv;
321 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
2b6b168d 322 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
17f208de
BA
323 phy->ops.power_up = e1000_power_up_phy_copper;
324 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
325 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326
90b82984
BA
327 if (!e1000_check_reset_block(hw)) {
328 u32 fwsm = er32(FWSM);
329
330 /*
331 * The MAC-PHY interconnect may still be in SMBus mode after
332 * Sx->S0. If resetting the PHY is not blocked, toggle the
333 * LANPHYPC Value bit to force the interconnect to PCIe mode.
334 */
99730e4c 335 e1000_toggle_lanphypc_value_ich8lan(hw);
6dfaa769 336 msleep(50);
605c82ba
BA
337
338 /*
339 * Gate automatic PHY configuration by hardware on
340 * non-managed 82579
341 */
90b82984
BA
342 if ((hw->mac.type == e1000_pch2lan) &&
343 !(fwsm & E1000_ICH_FWSM_FW_VALID))
605c82ba 344 e1000_gate_hw_phy_config_ich8lan(hw, true);
6dfaa769 345
90b82984
BA
346 /*
347 * Reset the PHY before any access to it. Doing so, ensures
348 * that the PHY is in a known good state before we read/write
349 * PHY registers. The generic reset is sufficient here,
350 * because we haven't determined the PHY type yet.
351 */
352 ret_val = e1000e_phy_hw_reset_generic(hw);
353 if (ret_val)
5015e53a 354 return ret_val;
627c8a04 355
90b82984
BA
356 /* Ungate automatic PHY configuration on non-managed 82579 */
357 if ((hw->mac.type == e1000_pch2lan) &&
358 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359 usleep_range(10000, 20000);
360 e1000_gate_hw_phy_config_ich8lan(hw, false);
361 }
605c82ba
BA
362 }
363
a4f58f54 364 phy->id = e1000_phy_unknown;
664dc878
BA
365 switch (hw->mac.type) {
366 default:
367 ret_val = e1000e_get_phy_id(hw);
368 if (ret_val)
5015e53a 369 return ret_val;
664dc878
BA
370 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371 break;
372 /* fall-through */
373 case e1000_pch2lan:
fddaa1af 374 /*
664dc878 375 * In case the PHY needs to be in mdio slow mode,
fddaa1af
BA
376 * set slow mode and try to get the PHY id again.
377 */
378 ret_val = e1000_set_mdio_slow_mode_hv(hw);
379 if (ret_val)
5015e53a 380 return ret_val;
fddaa1af
BA
381 ret_val = e1000e_get_phy_id(hw);
382 if (ret_val)
5015e53a 383 return ret_val;
664dc878 384 break;
fddaa1af 385 }
a4f58f54
BA
386 phy->type = e1000e_get_phy_type_from_id(phy->id);
387
0be84010
BA
388 switch (phy->type) {
389 case e1000_phy_82577:
d3738bb8 390 case e1000_phy_82579:
a4f58f54
BA
391 phy->ops.check_polarity = e1000_check_polarity_82577;
392 phy->ops.force_speed_duplex =
6cc7aaed 393 e1000_phy_force_speed_duplex_82577;
0be84010 394 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
395 phy->ops.get_info = e1000_get_phy_info_82577;
396 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 397 break;
0be84010
BA
398 case e1000_phy_82578:
399 phy->ops.check_polarity = e1000_check_polarity_m88;
400 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402 phy->ops.get_info = e1000e_get_phy_info_m88;
403 break;
404 default:
405 ret_val = -E1000_ERR_PHY;
406 break;
a4f58f54
BA
407 }
408
409 return ret_val;
410}
411
bc7f75fa
AK
412/**
413 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414 * @hw: pointer to the HW structure
415 *
416 * Initialize family-specific PHY parameters and function pointers.
417 **/
418static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419{
420 struct e1000_phy_info *phy = &hw->phy;
421 s32 ret_val;
422 u16 i = 0;
423
424 phy->addr = 1;
425 phy->reset_delay_us = 100;
426
17f208de
BA
427 phy->ops.power_up = e1000_power_up_phy_copper;
428 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
429
97ac8cae
BA
430 /*
431 * We may need to do this twice - once for IGP and if that fails,
432 * we'll set BM func pointers and try again
433 */
434 ret_val = e1000e_determine_phy_address(hw);
435 if (ret_val) {
94d8186a
BA
436 phy->ops.write_reg = e1000e_write_phy_reg_bm;
437 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 438 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
439 if (ret_val) {
440 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 441 return ret_val;
9b71b419 442 }
97ac8cae
BA
443 }
444
bc7f75fa
AK
445 phy->id = 0;
446 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447 (i++ < 100)) {
1bba4386 448 usleep_range(1000, 2000);
bc7f75fa
AK
449 ret_val = e1000e_get_phy_id(hw);
450 if (ret_val)
451 return ret_val;
452 }
453
454 /* Verify phy id */
455 switch (phy->id) {
456 case IGP03E1000_E_PHY_ID:
457 phy->type = e1000_phy_igp_3;
458 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
459 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
461 phy->ops.get_info = e1000e_get_phy_info_igp;
462 phy->ops.check_polarity = e1000_check_polarity_igp;
463 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
464 break;
465 case IFE_E_PHY_ID:
466 case IFE_PLUS_E_PHY_ID:
467 case IFE_C_E_PHY_ID:
468 phy->type = e1000_phy_ife;
469 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
470 phy->ops.get_info = e1000_get_phy_info_ife;
471 phy->ops.check_polarity = e1000_check_polarity_ife;
472 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 473 break;
97ac8cae
BA
474 case BME1000_E_PHY_ID:
475 phy->type = e1000_phy_bm;
476 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
477 phy->ops.read_reg = e1000e_read_phy_reg_bm;
478 phy->ops.write_reg = e1000e_write_phy_reg_bm;
479 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
480 phy->ops.get_info = e1000e_get_phy_info_m88;
481 phy->ops.check_polarity = e1000_check_polarity_m88;
482 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 483 break;
bc7f75fa
AK
484 default:
485 return -E1000_ERR_PHY;
486 break;
487 }
488
489 return 0;
490}
491
492/**
493 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494 * @hw: pointer to the HW structure
495 *
496 * Initialize family-specific NVM parameters and function
497 * pointers.
498 **/
499static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500{
501 struct e1000_nvm_info *nvm = &hw->nvm;
502 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 503 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
504 u16 i;
505
ad68076e 506 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 507 if (!hw->flash_address) {
3bb99fe2 508 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
509 return -E1000_ERR_CONFIG;
510 }
511
512 nvm->type = e1000_nvm_flash_sw;
513
514 gfpreg = er32flash(ICH_FLASH_GFPREG);
515
ad68076e
BA
516 /*
517 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 518 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
519 * the overall size.
520 */
bc7f75fa
AK
521 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523
524 /* flash_base_addr is byte-aligned */
525 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526
ad68076e
BA
527 /*
528 * find total size of the NVM, then cut in half since the total
529 * size represents two separate NVM banks.
530 */
bc7f75fa
AK
531 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532 << FLASH_SECTOR_ADDR_SHIFT;
533 nvm->flash_bank_size /= 2;
534 /* Adjust to word count */
535 nvm->flash_bank_size /= sizeof(u16);
536
537 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538
539 /* Clear shadow ram */
540 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 541 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
542 dev_spec->shadow_ram[i].value = 0xFFFF;
543 }
544
545 return 0;
546}
547
548/**
549 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550 * @hw: pointer to the HW structure
551 *
552 * Initialize family-specific MAC parameters and function
553 * pointers.
554 **/
ec34c170 555static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
bc7f75fa 556{
bc7f75fa
AK
557 struct e1000_mac_info *mac = &hw->mac;
558
559 /* Set media type function pointer */
318a94d6 560 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
561
562 /* Set mta register count */
563 mac->mta_reg_count = 32;
564 /* Set rar entry count */
565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 if (mac->type == e1000_ich8lan)
567 mac->rar_entry_count--;
a65a4a0d
BA
568 /* FWSM register */
569 mac->has_fwsm = true;
570 /* ARC subsystem not supported */
571 mac->arc_subsystem_valid = false;
f464ba87
BA
572 /* Adaptive IFS supported */
573 mac->adaptive_ifs = true;
bc7f75fa 574
a4f58f54
BA
575 /* LED operations */
576 switch (mac->type) {
577 case e1000_ich8lan:
578 case e1000_ich9lan:
579 case e1000_ich10lan:
eb7700dc
BA
580 /* check management mode */
581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54 582 /* ID LED init */
d1964eb1 583 mac->ops.id_led_init = e1000e_id_led_init_generic;
dbf80dcb
BA
584 /* blink LED */
585 mac->ops.blink_led = e1000e_blink_led_generic;
a4f58f54
BA
586 /* setup LED */
587 mac->ops.setup_led = e1000e_setup_led_generic;
588 /* cleanup LED */
589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 /* turn on/off LED */
591 mac->ops.led_on = e1000_led_on_ich8lan;
592 mac->ops.led_off = e1000_led_off_ich8lan;
593 break;
594 case e1000_pchlan:
d3738bb8 595 case e1000_pch2lan:
eb7700dc
BA
596 /* check management mode */
597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
598 /* ID LED init */
599 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 /* setup LED */
601 mac->ops.setup_led = e1000_setup_led_pchlan;
602 /* cleanup LED */
603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 /* turn on/off LED */
605 mac->ops.led_on = e1000_led_on_pchlan;
606 mac->ops.led_off = e1000_led_off_pchlan;
607 break;
608 default:
609 break;
610 }
611
bc7f75fa
AK
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac->type == e1000_ich8lan)
564ea9bb 614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa 615
605c82ba
BA
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac->type == e1000_pch2lan) &&
618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 e1000_gate_hw_phy_config_ich8lan(hw, true);
d3738bb8 620
bc7f75fa
AK
621 return 0;
622}
623
e52997f9
BA
624/**
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
627 *
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
630 **/
631static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632{
633 s32 ret_val = 0;
634 u16 phy_reg;
635
636 if (hw->phy.type != e1000_phy_82579)
5015e53a 637 return 0;
e52997f9
BA
638
639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 if (ret_val)
5015e53a 641 return ret_val;
e52997f9
BA
642
643 if (hw->dev_spec.ich8lan.eee_disable)
644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 else
646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
5015e53a 648 return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
e52997f9
BA
649}
650
7d3cabbc
BA
651/**
652 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653 * @hw: pointer to the HW structure
654 *
655 * Checks to see of the link status of the hardware has changed. If a
656 * change in link status has been detected, then we read the PHY registers
657 * to get the current speed/duplex if link exists.
658 **/
659static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660{
661 struct e1000_mac_info *mac = &hw->mac;
662 s32 ret_val;
663 bool link;
1d2101a7 664 u16 phy_reg;
7d3cabbc
BA
665
666 /*
667 * We only want to go out to the PHY registers to see if Auto-Neg
668 * has completed and/or if our link status has changed. The
669 * get_link_status flag is set upon receiving a Link Status
670 * Change or Rx Sequence Error interrupt.
671 */
5015e53a
BA
672 if (!mac->get_link_status)
673 return 0;
7d3cabbc 674
7d3cabbc
BA
675 /*
676 * First we want to see if the MII Status Register reports
677 * link. If so, then we want to get the current speed/duplex
678 * of the PHY.
679 */
680 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681 if (ret_val)
5015e53a 682 return ret_val;
7d3cabbc 683
1d5846b9
BA
684 if (hw->mac.type == e1000_pchlan) {
685 ret_val = e1000_k1_gig_workaround_hv(hw, link);
686 if (ret_val)
5015e53a 687 return ret_val;
1d5846b9
BA
688 }
689
7d3cabbc 690 if (!link)
5015e53a 691 return 0; /* No link detected */
7d3cabbc
BA
692
693 mac->get_link_status = false;
694
1d2101a7
BA
695 switch (hw->mac.type) {
696 case e1000_pch2lan:
831bd2e6
BA
697 ret_val = e1000_k1_workaround_lv(hw);
698 if (ret_val)
5015e53a 699 return ret_val;
1d2101a7
BA
700 /* fall-thru */
701 case e1000_pchlan:
702 if (hw->phy.type == e1000_phy_82578) {
703 ret_val = e1000_link_stall_workaround_hv(hw);
704 if (ret_val)
5015e53a 705 return ret_val;
1d2101a7
BA
706 }
707
708 /*
709 * Workaround for PCHx parts in half-duplex:
710 * Set the number of preambles removed from the packet
711 * when it is passed from the PHY to the MAC to prevent
712 * the MAC from misinterpreting the packet type.
713 */
714 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716
717 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719
720 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721 break;
722 default:
723 break;
831bd2e6
BA
724 }
725
7d3cabbc
BA
726 /*
727 * Check if there was DownShift, must be checked
728 * immediately after link-up
729 */
730 e1000e_check_downshift(hw);
731
e52997f9
BA
732 /* Enable/Disable EEE after link up */
733 ret_val = e1000_set_eee_pchlan(hw);
734 if (ret_val)
5015e53a 735 return ret_val;
e52997f9 736
7d3cabbc
BA
737 /*
738 * If we are forcing speed/duplex, then we simply return since
739 * we have already determined whether we have link or not.
740 */
5015e53a
BA
741 if (!mac->autoneg)
742 return -E1000_ERR_CONFIG;
7d3cabbc
BA
743
744 /*
745 * Auto-Neg is enabled. Auto Speed Detection takes care
746 * of MAC speed/duplex configuration. So we only need to
747 * configure Collision Distance in the MAC.
748 */
749 e1000e_config_collision_dist(hw);
750
751 /*
752 * Configure Flow Control now that Auto-Neg has completed.
753 * First, we need to restore the desired flow control
754 * settings because we may have had to re-autoneg with a
755 * different link partner.
756 */
757 ret_val = e1000e_config_fc_after_link_up(hw);
758 if (ret_val)
3bb99fe2 759 e_dbg("Error configuring flow control\n");
7d3cabbc 760
7d3cabbc
BA
761 return ret_val;
762}
763
69e3fd8c 764static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
765{
766 struct e1000_hw *hw = &adapter->hw;
767 s32 rc;
768
ec34c170 769 rc = e1000_init_mac_params_ich8lan(hw);
bc7f75fa
AK
770 if (rc)
771 return rc;
772
773 rc = e1000_init_nvm_params_ich8lan(hw);
774 if (rc)
775 return rc;
776
d3738bb8
BA
777 switch (hw->mac.type) {
778 case e1000_ich8lan:
779 case e1000_ich9lan:
780 case e1000_ich10lan:
a4f58f54 781 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
782 break;
783 case e1000_pchlan:
784 case e1000_pch2lan:
785 rc = e1000_init_phy_params_pchlan(hw);
786 break;
787 default:
788 break;
789 }
bc7f75fa
AK
790 if (rc)
791 return rc;
792
23e4f061
BA
793 /*
794 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796 */
797 if ((adapter->hw.phy.type == e1000_phy_ife) ||
798 ((adapter->hw.mac.type >= e1000_pch2lan) &&
799 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
2adc55c9
BA
800 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
dbf80dcb
BA
802
803 hw->mac.ops.blink_led = NULL;
2adc55c9
BA
804 }
805
bc7f75fa 806 if ((adapter->hw.mac.type == e1000_ich8lan) &&
462d5994 807 (adapter->hw.phy.type != e1000_phy_ife))
bc7f75fa
AK
808 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809
c6e7f51e
BA
810 /* Enable workaround for 82579 w/ ME enabled */
811 if ((adapter->hw.mac.type == e1000_pch2lan) &&
812 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814
5a86f28f
BA
815 /* Disable EEE by default until IEEE802.3az spec is finalized */
816 if (adapter->flags2 & FLAG2_HAS_EEE)
817 adapter->hw.dev_spec.ich8lan.eee_disable = true;
818
bc7f75fa
AK
819 return 0;
820}
821
717d438d 822static DEFINE_MUTEX(nvm_mutex);
717d438d 823
ca15df58
BA
824/**
825 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826 * @hw: pointer to the HW structure
827 *
828 * Acquires the mutex for performing NVM operations.
829 **/
830static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831{
832 mutex_lock(&nvm_mutex);
833
834 return 0;
835}
836
837/**
838 * e1000_release_nvm_ich8lan - Release NVM mutex
839 * @hw: pointer to the HW structure
840 *
841 * Releases the mutex used while performing NVM operations.
842 **/
843static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844{
845 mutex_unlock(&nvm_mutex);
ca15df58
BA
846}
847
bc7f75fa
AK
848/**
849 * e1000_acquire_swflag_ich8lan - Acquire software control flag
850 * @hw: pointer to the HW structure
851 *
ca15df58
BA
852 * Acquires the software control flag for performing PHY and select
853 * MAC CSR accesses.
bc7f75fa
AK
854 **/
855static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856{
373a88d7
BA
857 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858 s32 ret_val = 0;
bc7f75fa 859
a90b412c
BA
860 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861 &hw->adapter->state)) {
34c9ef8b 862 e_dbg("contention for Phy access\n");
a90b412c
BA
863 return -E1000_ERR_PHY;
864 }
717d438d 865
bc7f75fa
AK
866 while (timeout) {
867 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
868 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869 break;
bc7f75fa 870
373a88d7
BA
871 mdelay(1);
872 timeout--;
873 }
874
875 if (!timeout) {
a90b412c 876 e_dbg("SW has already locked the resource.\n");
373a88d7
BA
877 ret_val = -E1000_ERR_CONFIG;
878 goto out;
879 }
880
53ac5a88 881 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
882
883 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884 ew32(EXTCNF_CTRL, extcnf_ctrl);
885
886 while (timeout) {
887 extcnf_ctrl = er32(EXTCNF_CTRL);
888 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889 break;
a4f58f54 890
bc7f75fa
AK
891 mdelay(1);
892 timeout--;
893 }
894
895 if (!timeout) {
434f1392 896 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
a90b412c 897 er32(FWSM), extcnf_ctrl);
2e2e8d53
BA
898 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
900 ret_val = -E1000_ERR_CONFIG;
901 goto out;
bc7f75fa
AK
902 }
903
373a88d7
BA
904out:
905 if (ret_val)
a90b412c 906 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
373a88d7
BA
907
908 return ret_val;
bc7f75fa
AK
909}
910
911/**
912 * e1000_release_swflag_ich8lan - Release software control flag
913 * @hw: pointer to the HW structure
914 *
ca15df58
BA
915 * Releases the software control flag for performing PHY and select
916 * MAC CSR accesses.
bc7f75fa
AK
917 **/
918static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919{
920 u32 extcnf_ctrl;
921
922 extcnf_ctrl = er32(EXTCNF_CTRL);
c5caf482
BA
923
924 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926 ew32(EXTCNF_CTRL, extcnf_ctrl);
927 } else {
928 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929 }
717d438d 930
a90b412c 931 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
bc7f75fa
AK
932}
933
4662e82b
BA
934/**
935 * e1000_check_mng_mode_ich8lan - Checks management mode
936 * @hw: pointer to the HW structure
937 *
eb7700dc 938 * This checks if the adapter has any manageability enabled.
4662e82b
BA
939 * This is a function pointer entry point only called by read/write
940 * routines for the PHY and NVM parts.
941 **/
942static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943{
a708dd88
BA
944 u32 fwsm;
945
946 fwsm = er32(FWSM);
eb7700dc
BA
947 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948 ((fwsm & E1000_FWSM_MODE_MASK) ==
949 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950}
4662e82b 951
eb7700dc
BA
952/**
953 * e1000_check_mng_mode_pchlan - Checks management mode
954 * @hw: pointer to the HW structure
955 *
956 * This checks if the adapter has iAMT enabled.
957 * This is a function pointer entry point only called by read/write
958 * routines for the PHY and NVM parts.
959 **/
960static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961{
962 u32 fwsm;
963
964 fwsm = er32(FWSM);
965 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
967}
968
bc7f75fa
AK
969/**
970 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971 * @hw: pointer to the HW structure
972 *
973 * Checks if firmware is blocking the reset of the PHY.
974 * This is a function pointer entry point only called by
975 * reset routines.
976 **/
977static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978{
979 u32 fwsm;
980
981 fwsm = er32(FWSM);
982
983 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984}
985
8395ae83
BA
986/**
987 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988 * @hw: pointer to the HW structure
989 *
990 * Assumes semaphore already acquired.
991 *
992 **/
993static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994{
995 u16 phy_data;
996 u32 strap = er32(STRAP);
997 s32 ret_val = 0;
998
999 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000
1001 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002 if (ret_val)
5015e53a 1003 return ret_val;
8395ae83
BA
1004
1005 phy_data &= ~HV_SMB_ADDR_MASK;
1006 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
8395ae83 1008
5015e53a 1009 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
8395ae83
BA
1010}
1011
f523d211
BA
1012/**
1013 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014 * @hw: pointer to the HW structure
1015 *
1016 * SW should configure the LCD from the NVM extended configuration region
1017 * as a workaround for certain parts.
1018 **/
1019static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020{
1021 struct e1000_phy_info *phy = &hw->phy;
1022 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 1023 s32 ret_val = 0;
f523d211
BA
1024 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025
f523d211
BA
1026 /*
1027 * Initialize the PHY from the NVM on ICH platforms. This
1028 * is needed due to an issue where the NVM configuration is
1029 * not properly autoloaded after power transitions.
1030 * Therefore, after each PHY reset, we will load the
1031 * configuration data out of the NVM manually.
1032 */
3f0c16e8
BA
1033 switch (hw->mac.type) {
1034 case e1000_ich8lan:
1035 if (phy->type != e1000_phy_igp_3)
1036 return ret_val;
1037
5f3eed6f
BA
1038 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
1040 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041 break;
1042 }
1043 /* Fall-thru */
1044 case e1000_pchlan:
d3738bb8 1045 case e1000_pch2lan:
8b802a7e 1046 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
1047 break;
1048 default:
1049 return ret_val;
1050 }
1051
1052 ret_val = hw->phy.ops.acquire(hw);
1053 if (ret_val)
1054 return ret_val;
8b802a7e
BA
1055
1056 data = er32(FEXTNVM);
1057 if (!(data & sw_cfg_mask))
75ce1532 1058 goto release;
f523d211 1059
8b802a7e
BA
1060 /*
1061 * Make sure HW does not configure LCD from PHY
1062 * extended configuration before SW configuration
1063 */
1064 data = er32(EXTCNF_CTRL);
d3738bb8
BA
1065 if (!(hw->mac.type == e1000_pch2lan)) {
1066 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
75ce1532 1067 goto release;
d3738bb8 1068 }
8b802a7e
BA
1069
1070 cnf_size = er32(EXTCNF_SIZE);
1071 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073 if (!cnf_size)
75ce1532 1074 goto release;
8b802a7e
BA
1075
1076 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078
87fb7410
BA
1079 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080 (hw->mac.type == e1000_pchlan)) ||
1081 (hw->mac.type == e1000_pch2lan)) {
f523d211 1082 /*
8b802a7e
BA
1083 * HW configures the SMBus address and LEDs when the
1084 * OEM and LCD Write Enable bits are set in the NVM.
1085 * When both NVM bits are cleared, SW will configure
1086 * them instead.
f523d211 1087 */
8395ae83 1088 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1089 if (ret_val)
75ce1532 1090 goto release;
f523d211 1091
8b802a7e
BA
1092 data = er32(LEDCTL);
1093 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094 (u16)data);
1095 if (ret_val)
75ce1532 1096 goto release;
8b802a7e 1097 }
f523d211 1098
8b802a7e
BA
1099 /* Configure LCD from extended configuration region. */
1100
1101 /* cnf_base_addr is in DWORD */
1102 word_addr = (u16)(cnf_base_addr << 1);
1103
1104 for (i = 0; i < cnf_size; i++) {
1105 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106 &reg_data);
1107 if (ret_val)
75ce1532 1108 goto release;
8b802a7e
BA
1109
1110 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111 1, &reg_addr);
1112 if (ret_val)
75ce1532 1113 goto release;
8b802a7e
BA
1114
1115 /* Save off the PHY page for future writes. */
1116 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117 phy_page = reg_data;
1118 continue;
f523d211 1119 }
8b802a7e
BA
1120
1121 reg_addr &= PHY_REG_MASK;
1122 reg_addr |= phy_page;
1123
1124 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125 reg_data);
1126 if (ret_val)
75ce1532 1127 goto release;
f523d211
BA
1128 }
1129
75ce1532 1130release:
94d8186a 1131 hw->phy.ops.release(hw);
f523d211
BA
1132 return ret_val;
1133}
1134
1d5846b9
BA
1135/**
1136 * e1000_k1_gig_workaround_hv - K1 Si workaround
1137 * @hw: pointer to the HW structure
1138 * @link: link up bool flag
1139 *
1140 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1142 * If link is down, the function will restore the default K1 setting located
1143 * in the NVM.
1144 **/
1145static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146{
1147 s32 ret_val = 0;
1148 u16 status_reg = 0;
1149 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150
1151 if (hw->mac.type != e1000_pchlan)
5015e53a 1152 return 0;
1d5846b9
BA
1153
1154 /* Wrap the whole flow with the sw flag */
94d8186a 1155 ret_val = hw->phy.ops.acquire(hw);
1d5846b9 1156 if (ret_val)
5015e53a 1157 return ret_val;
1d5846b9
BA
1158
1159 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160 if (link) {
1161 if (hw->phy.type == e1000_phy_82578) {
94d8186a 1162 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
1163 &status_reg);
1164 if (ret_val)
1165 goto release;
1166
1167 status_reg &= BM_CS_STATUS_LINK_UP |
1168 BM_CS_STATUS_RESOLVED |
1169 BM_CS_STATUS_SPEED_MASK;
1170
1171 if (status_reg == (BM_CS_STATUS_LINK_UP |
1172 BM_CS_STATUS_RESOLVED |
1173 BM_CS_STATUS_SPEED_1000))
1174 k1_enable = false;
1175 }
1176
1177 if (hw->phy.type == e1000_phy_82577) {
94d8186a 1178 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
1179 &status_reg);
1180 if (ret_val)
1181 goto release;
1182
1183 status_reg &= HV_M_STATUS_LINK_UP |
1184 HV_M_STATUS_AUTONEG_COMPLETE |
1185 HV_M_STATUS_SPEED_MASK;
1186
1187 if (status_reg == (HV_M_STATUS_LINK_UP |
1188 HV_M_STATUS_AUTONEG_COMPLETE |
1189 HV_M_STATUS_SPEED_1000))
1190 k1_enable = false;
1191 }
1192
1193 /* Link stall fix for link up */
94d8186a 1194 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1195 0x0100);
1196 if (ret_val)
1197 goto release;
1198
1199 } else {
1200 /* Link stall fix for link down */
94d8186a 1201 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1202 0x4100);
1203 if (ret_val)
1204 goto release;
1205 }
1206
1207 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208
1209release:
94d8186a 1210 hw->phy.ops.release(hw);
5015e53a 1211
1d5846b9
BA
1212 return ret_val;
1213}
1214
1215/**
1216 * e1000_configure_k1_ich8lan - Configure K1 power state
1217 * @hw: pointer to the HW structure
1218 * @enable: K1 state to configure
1219 *
1220 * Configure the K1 power state based on the provided parameter.
1221 * Assumes semaphore already acquired.
1222 *
1223 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224 **/
bb436b20 1225s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1226{
1227 s32 ret_val = 0;
1228 u32 ctrl_reg = 0;
1229 u32 ctrl_ext = 0;
1230 u32 reg = 0;
1231 u16 kmrn_reg = 0;
1232
1233 ret_val = e1000e_read_kmrn_reg_locked(hw,
1234 E1000_KMRNCTRLSTA_K1_CONFIG,
1235 &kmrn_reg);
1236 if (ret_val)
5015e53a 1237 return ret_val;
1d5846b9
BA
1238
1239 if (k1_enable)
1240 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1241 else
1242 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1243
1244 ret_val = e1000e_write_kmrn_reg_locked(hw,
1245 E1000_KMRNCTRLSTA_K1_CONFIG,
1246 kmrn_reg);
1247 if (ret_val)
5015e53a 1248 return ret_val;
1d5846b9
BA
1249
1250 udelay(20);
1251 ctrl_ext = er32(CTRL_EXT);
1252 ctrl_reg = er32(CTRL);
1253
1254 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1255 reg |= E1000_CTRL_FRCSPD;
1256 ew32(CTRL, reg);
1257
1258 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
945a5151 1259 e1e_flush();
1d5846b9
BA
1260 udelay(20);
1261 ew32(CTRL, ctrl_reg);
1262 ew32(CTRL_EXT, ctrl_ext);
945a5151 1263 e1e_flush();
1d5846b9
BA
1264 udelay(20);
1265
5015e53a 1266 return 0;
1d5846b9
BA
1267}
1268
f523d211
BA
1269/**
1270 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1271 * @hw: pointer to the HW structure
1272 * @d0_state: boolean if entering d0 or d3 device state
1273 *
1274 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1275 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1276 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1277 **/
1278static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1279{
1280 s32 ret_val = 0;
1281 u32 mac_reg;
1282 u16 oem_reg;
1283
d3738bb8 1284 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
f523d211
BA
1285 return ret_val;
1286
94d8186a 1287 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1288 if (ret_val)
1289 return ret_val;
1290
d3738bb8
BA
1291 if (!(hw->mac.type == e1000_pch2lan)) {
1292 mac_reg = er32(EXTCNF_CTRL);
1293 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
75ce1532 1294 goto release;
d3738bb8 1295 }
f523d211
BA
1296
1297 mac_reg = er32(FEXTNVM);
1298 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
75ce1532 1299 goto release;
f523d211
BA
1300
1301 mac_reg = er32(PHY_CTRL);
1302
94d8186a 1303 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211 1304 if (ret_val)
75ce1532 1305 goto release;
f523d211
BA
1306
1307 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1308
1309 if (d0_state) {
1310 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1311 oem_reg |= HV_OEM_BITS_GBE_DIS;
1312
1313 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1314 oem_reg |= HV_OEM_BITS_LPLU;
03299e46
BA
1315
1316 /* Set Restart auto-neg to activate the bits */
1317 if (!e1000_check_reset_block(hw))
1318 oem_reg |= HV_OEM_BITS_RESTART_AN;
f523d211 1319 } else {
03299e46
BA
1320 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1321 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
f523d211
BA
1322 oem_reg |= HV_OEM_BITS_GBE_DIS;
1323
03299e46
BA
1324 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1325 E1000_PHY_CTRL_NOND0A_LPLU))
f523d211
BA
1326 oem_reg |= HV_OEM_BITS_LPLU;
1327 }
03299e46 1328
94d8186a 1329 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211 1330
75ce1532 1331release:
94d8186a 1332 hw->phy.ops.release(hw);
f523d211
BA
1333
1334 return ret_val;
1335}
1336
1337
fddaa1af
BA
1338/**
1339 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1340 * @hw: pointer to the HW structure
1341 **/
1342static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1343{
1344 s32 ret_val;
1345 u16 data;
1346
1347 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1348 if (ret_val)
1349 return ret_val;
1350
1351 data |= HV_KMRN_MDIO_SLOW;
1352
1353 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1354
1355 return ret_val;
1356}
1357
a4f58f54
BA
1358/**
1359 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1360 * done after every PHY reset.
1361 **/
1362static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1363{
1364 s32 ret_val = 0;
baf86c9d 1365 u16 phy_data;
a4f58f54
BA
1366
1367 if (hw->mac.type != e1000_pchlan)
5015e53a 1368 return 0;
a4f58f54 1369
fddaa1af
BA
1370 /* Set MDIO slow mode before any other MDIO access */
1371 if (hw->phy.type == e1000_phy_82577) {
1372 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1373 if (ret_val)
5015e53a 1374 return ret_val;
fddaa1af
BA
1375 }
1376
a4f58f54
BA
1377 if (((hw->phy.type == e1000_phy_82577) &&
1378 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1379 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1380 /* Disable generation of early preamble */
1381 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1382 if (ret_val)
1383 return ret_val;
1384
1385 /* Preamble tuning for SSC */
1d2101a7 1386 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
a4f58f54
BA
1387 if (ret_val)
1388 return ret_val;
1389 }
1390
1391 if (hw->phy.type == e1000_phy_82578) {
1392 /*
1393 * Return registers to default by doing a soft reset then
1394 * writing 0x3140 to the control register.
1395 */
1396 if (hw->phy.revision < 2) {
1397 e1000e_phy_sw_reset(hw);
1398 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1399 }
1400 }
1401
1402 /* Select page 0 */
94d8186a 1403 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1404 if (ret_val)
1405 return ret_val;
1d5846b9 1406
a4f58f54 1407 hw->phy.addr = 1;
1d5846b9 1408 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1409 hw->phy.ops.release(hw);
1d5846b9 1410 if (ret_val)
5015e53a 1411 return ret_val;
a4f58f54 1412
1d5846b9
BA
1413 /*
1414 * Configure the K1 Si workaround during phy reset assuming there is
1415 * link so that it disables K1 if link is in 1Gbps.
1416 */
1417 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d 1418 if (ret_val)
5015e53a 1419 return ret_val;
1d5846b9 1420
baf86c9d
BA
1421 /* Workaround for link disconnects on a busy hub in half duplex */
1422 ret_val = hw->phy.ops.acquire(hw);
1423 if (ret_val)
5015e53a 1424 return ret_val;
3ebfc7c9 1425 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
baf86c9d
BA
1426 if (ret_val)
1427 goto release;
3ebfc7c9
BA
1428 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1429 phy_data & 0x00FF);
baf86c9d
BA
1430release:
1431 hw->phy.ops.release(hw);
5015e53a 1432
a4f58f54
BA
1433 return ret_val;
1434}
1435
d3738bb8
BA
1436/**
1437 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1438 * @hw: pointer to the HW structure
1439 **/
1440void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1441{
1442 u32 mac_reg;
2b6b168d
BA
1443 u16 i, phy_reg = 0;
1444 s32 ret_val;
1445
1446 ret_val = hw->phy.ops.acquire(hw);
1447 if (ret_val)
1448 return;
1449 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1450 if (ret_val)
1451 goto release;
d3738bb8
BA
1452
1453 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1454 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1455 mac_reg = er32(RAL(i));
2b6b168d
BA
1456 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1457 (u16)(mac_reg & 0xFFFF));
1458 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1459 (u16)((mac_reg >> 16) & 0xFFFF));
1460
d3738bb8 1461 mac_reg = er32(RAH(i));
2b6b168d
BA
1462 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1463 (u16)(mac_reg & 0xFFFF));
1464 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1465 (u16)((mac_reg & E1000_RAH_AV)
1466 >> 16));
d3738bb8 1467 }
2b6b168d
BA
1468
1469 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1470
1471release:
1472 hw->phy.ops.release(hw);
d3738bb8
BA
1473}
1474
d3738bb8
BA
1475/**
1476 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1477 * with 82579 PHY
1478 * @hw: pointer to the HW structure
1479 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1480 **/
1481s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1482{
1483 s32 ret_val = 0;
1484 u16 phy_reg, data;
1485 u32 mac_reg;
1486 u16 i;
1487
1488 if (hw->mac.type != e1000_pch2lan)
5015e53a 1489 return 0;
d3738bb8
BA
1490
1491 /* disable Rx path while enabling/disabling workaround */
1492 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1493 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1494 if (ret_val)
5015e53a 1495 return ret_val;
d3738bb8
BA
1496
1497 if (enable) {
1498 /*
1499 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1500 * SHRAL/H) and initial CRC values to the MAC
1501 */
1502 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1503 u8 mac_addr[ETH_ALEN] = {0};
1504 u32 addr_high, addr_low;
1505
1506 addr_high = er32(RAH(i));
1507 if (!(addr_high & E1000_RAH_AV))
1508 continue;
1509 addr_low = er32(RAL(i));
1510 mac_addr[0] = (addr_low & 0xFF);
1511 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1512 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1513 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1514 mac_addr[4] = (addr_high & 0xFF);
1515 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1516
fe46f58f 1517 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
d3738bb8
BA
1518 }
1519
1520 /* Write Rx addresses to the PHY */
1521 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1522
1523 /* Enable jumbo frame workaround in the MAC */
1524 mac_reg = er32(FFLT_DBG);
1525 mac_reg &= ~(1 << 14);
1526 mac_reg |= (7 << 15);
1527 ew32(FFLT_DBG, mac_reg);
1528
1529 mac_reg = er32(RCTL);
1530 mac_reg |= E1000_RCTL_SECRC;
1531 ew32(RCTL, mac_reg);
1532
1533 ret_val = e1000e_read_kmrn_reg(hw,
1534 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1535 &data);
1536 if (ret_val)
5015e53a 1537 return ret_val;
d3738bb8
BA
1538 ret_val = e1000e_write_kmrn_reg(hw,
1539 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1540 data | (1 << 0));
1541 if (ret_val)
5015e53a 1542 return ret_val;
d3738bb8
BA
1543 ret_val = e1000e_read_kmrn_reg(hw,
1544 E1000_KMRNCTRLSTA_HD_CTRL,
1545 &data);
1546 if (ret_val)
5015e53a 1547 return ret_val;
d3738bb8
BA
1548 data &= ~(0xF << 8);
1549 data |= (0xB << 8);
1550 ret_val = e1000e_write_kmrn_reg(hw,
1551 E1000_KMRNCTRLSTA_HD_CTRL,
1552 data);
1553 if (ret_val)
5015e53a 1554 return ret_val;
d3738bb8
BA
1555
1556 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1557 e1e_rphy(hw, PHY_REG(769, 23), &data);
1558 data &= ~(0x7F << 5);
1559 data |= (0x37 << 5);
1560 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1561 if (ret_val)
5015e53a 1562 return ret_val;
d3738bb8
BA
1563 e1e_rphy(hw, PHY_REG(769, 16), &data);
1564 data &= ~(1 << 13);
d3738bb8
BA
1565 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1566 if (ret_val)
5015e53a 1567 return ret_val;
d3738bb8
BA
1568 e1e_rphy(hw, PHY_REG(776, 20), &data);
1569 data &= ~(0x3FF << 2);
1570 data |= (0x1A << 2);
1571 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1572 if (ret_val)
5015e53a 1573 return ret_val;
b64e9dd5 1574 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
d3738bb8 1575 if (ret_val)
5015e53a 1576 return ret_val;
d3738bb8
BA
1577 e1e_rphy(hw, HV_PM_CTRL, &data);
1578 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1579 if (ret_val)
5015e53a 1580 return ret_val;
d3738bb8
BA
1581 } else {
1582 /* Write MAC register values back to h/w defaults */
1583 mac_reg = er32(FFLT_DBG);
1584 mac_reg &= ~(0xF << 14);
1585 ew32(FFLT_DBG, mac_reg);
1586
1587 mac_reg = er32(RCTL);
1588 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1589 ew32(RCTL, mac_reg);
d3738bb8
BA
1590
1591 ret_val = e1000e_read_kmrn_reg(hw,
1592 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1593 &data);
1594 if (ret_val)
5015e53a 1595 return ret_val;
d3738bb8
BA
1596 ret_val = e1000e_write_kmrn_reg(hw,
1597 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1598 data & ~(1 << 0));
1599 if (ret_val)
5015e53a 1600 return ret_val;
d3738bb8
BA
1601 ret_val = e1000e_read_kmrn_reg(hw,
1602 E1000_KMRNCTRLSTA_HD_CTRL,
1603 &data);
1604 if (ret_val)
5015e53a 1605 return ret_val;
d3738bb8
BA
1606 data &= ~(0xF << 8);
1607 data |= (0xB << 8);
1608 ret_val = e1000e_write_kmrn_reg(hw,
1609 E1000_KMRNCTRLSTA_HD_CTRL,
1610 data);
1611 if (ret_val)
5015e53a 1612 return ret_val;
d3738bb8
BA
1613
1614 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
1615 e1e_rphy(hw, PHY_REG(769, 23), &data);
1616 data &= ~(0x7F << 5);
1617 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1618 if (ret_val)
5015e53a 1619 return ret_val;
d3738bb8 1620 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
1621 data |= (1 << 13);
1622 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1623 if (ret_val)
5015e53a 1624 return ret_val;
d3738bb8
BA
1625 e1e_rphy(hw, PHY_REG(776, 20), &data);
1626 data &= ~(0x3FF << 2);
1627 data |= (0x8 << 2);
1628 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1629 if (ret_val)
5015e53a 1630 return ret_val;
d3738bb8
BA
1631 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1632 if (ret_val)
5015e53a 1633 return ret_val;
d3738bb8
BA
1634 e1e_rphy(hw, HV_PM_CTRL, &data);
1635 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1636 if (ret_val)
5015e53a 1637 return ret_val;
d3738bb8
BA
1638 }
1639
1640 /* re-enable Rx path after enabling/disabling workaround */
5015e53a 1641 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
d3738bb8
BA
1642}
1643
1644/**
1645 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1646 * done after every PHY reset.
1647 **/
1648static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1649{
1650 s32 ret_val = 0;
1651
1652 if (hw->mac.type != e1000_pch2lan)
5015e53a 1653 return 0;
d3738bb8
BA
1654
1655 /* Set MDIO slow mode before any other MDIO access */
1656 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1657
4d24136c
BA
1658 ret_val = hw->phy.ops.acquire(hw);
1659 if (ret_val)
5015e53a 1660 return ret_val;
4d24136c
BA
1661 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1662 I82579_MSE_THRESHOLD);
1663 if (ret_val)
1664 goto release;
1665 /* set MSE higher to enable link to stay up when noise is high */
1666 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1667 if (ret_val)
1668 goto release;
1669 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1670 I82579_MSE_LINK_DOWN);
1671 if (ret_val)
1672 goto release;
1673 /* drop link after 5 times MSE threshold was reached */
1674 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1675release:
1676 hw->phy.ops.release(hw);
1677
d3738bb8
BA
1678 return ret_val;
1679}
1680
831bd2e6
BA
1681/**
1682 * e1000_k1_gig_workaround_lv - K1 Si workaround
1683 * @hw: pointer to the HW structure
1684 *
1685 * Workaround to set the K1 beacon duration for 82579 parts
1686 **/
1687static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1688{
1689 s32 ret_val = 0;
1690 u16 status_reg = 0;
1691 u32 mac_reg;
0ed013e2 1692 u16 phy_reg;
831bd2e6
BA
1693
1694 if (hw->mac.type != e1000_pch2lan)
5015e53a 1695 return 0;
831bd2e6
BA
1696
1697 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1698 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1699 if (ret_val)
5015e53a 1700 return ret_val;
831bd2e6
BA
1701
1702 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1703 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1704 mac_reg = er32(FEXTNVM4);
1705 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1706
0ed013e2
BA
1707 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1708 if (ret_val)
5015e53a 1709 return ret_val;
0ed013e2
BA
1710
1711 if (status_reg & HV_M_STATUS_SPEED_1000) {
831bd2e6 1712 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
0ed013e2
BA
1713 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1714 } else {
831bd2e6 1715 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
0ed013e2
BA
1716 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1717 }
831bd2e6 1718 ew32(FEXTNVM4, mac_reg);
0ed013e2 1719 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
831bd2e6
BA
1720 }
1721
831bd2e6
BA
1722 return ret_val;
1723}
1724
605c82ba
BA
1725/**
1726 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1727 * @hw: pointer to the HW structure
1728 * @gate: boolean set to true to gate, false to ungate
1729 *
1730 * Gate/ungate the automatic PHY configuration via hardware; perform
1731 * the configuration via software instead.
1732 **/
1733static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1734{
1735 u32 extcnf_ctrl;
1736
1737 if (hw->mac.type != e1000_pch2lan)
1738 return;
1739
1740 extcnf_ctrl = er32(EXTCNF_CTRL);
1741
1742 if (gate)
1743 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1744 else
1745 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1746
1747 ew32(EXTCNF_CTRL, extcnf_ctrl);
605c82ba
BA
1748}
1749
fc0c7760
BA
1750/**
1751 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1752 * @hw: pointer to the HW structure
1753 *
1754 * Check the appropriate indication the MAC has finished configuring the
1755 * PHY after a software reset.
1756 **/
1757static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1758{
1759 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1760
1761 /* Wait for basic configuration completes before proceeding */
1762 do {
1763 data = er32(STATUS);
1764 data &= E1000_STATUS_LAN_INIT_DONE;
1765 udelay(100);
1766 } while ((!data) && --loop);
1767
1768 /*
1769 * If basic configuration is incomplete before the above loop
1770 * count reaches 0, loading the configuration from NVM will
1771 * leave the PHY in a bad state possibly resulting in no link.
1772 */
1773 if (loop == 0)
3bb99fe2 1774 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1775
1776 /* Clear the Init Done bit for the next init event */
1777 data = er32(STATUS);
1778 data &= ~E1000_STATUS_LAN_INIT_DONE;
1779 ew32(STATUS, data);
1780}
1781
bc7f75fa 1782/**
e98cac44 1783 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 1784 * @hw: pointer to the HW structure
bc7f75fa 1785 **/
e98cac44 1786static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 1787{
f523d211
BA
1788 s32 ret_val = 0;
1789 u16 reg;
bc7f75fa 1790
e98cac44 1791 if (e1000_check_reset_block(hw))
5015e53a 1792 return 0;
fc0c7760 1793
5f3eed6f 1794 /* Allow time for h/w to get to quiescent state after reset */
1bba4386 1795 usleep_range(10000, 20000);
5f3eed6f 1796
fddaa1af 1797 /* Perform any necessary post-reset workarounds */
e98cac44
BA
1798 switch (hw->mac.type) {
1799 case e1000_pchlan:
a4f58f54
BA
1800 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1801 if (ret_val)
5015e53a 1802 return ret_val;
e98cac44 1803 break;
d3738bb8
BA
1804 case e1000_pch2lan:
1805 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1806 if (ret_val)
5015e53a 1807 return ret_val;
d3738bb8 1808 break;
e98cac44
BA
1809 default:
1810 break;
a4f58f54
BA
1811 }
1812
3ebfc7c9
BA
1813 /* Clear the host wakeup bit after lcd reset */
1814 if (hw->mac.type >= e1000_pchlan) {
1815 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1816 reg &= ~BM_WUC_HOST_WU_BIT;
1817 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1818 }
db2932ec 1819
f523d211
BA
1820 /* Configure the LCD with the extended configuration region in NVM */
1821 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1822 if (ret_val)
5015e53a 1823 return ret_val;
bc7f75fa 1824
f523d211 1825 /* Configure the LCD with the OEM bits in NVM */
e98cac44 1826 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1827
1effb45c
BA
1828 if (hw->mac.type == e1000_pch2lan) {
1829 /* Ungate automatic PHY configuration on non-managed 82579 */
1830 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 1831 usleep_range(10000, 20000);
1effb45c
BA
1832 e1000_gate_hw_phy_config_ich8lan(hw, false);
1833 }
1834
1835 /* Set EEE LPI Update Timer to 200usec */
1836 ret_val = hw->phy.ops.acquire(hw);
1837 if (ret_val)
5015e53a 1838 return ret_val;
1effb45c
BA
1839 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1840 I82579_LPI_UPDATE_TIMER);
5015e53a
BA
1841 if (!ret_val)
1842 ret_val = hw->phy.ops.write_reg_locked(hw,
1843 I82579_EMI_DATA,
1844 0x1387);
1effb45c 1845 hw->phy.ops.release(hw);
605c82ba
BA
1846 }
1847
e98cac44
BA
1848 return ret_val;
1849}
1850
1851/**
1852 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1853 * @hw: pointer to the HW structure
1854 *
1855 * Resets the PHY
1856 * This is a function pointer entry point called by drivers
1857 * or other shared routines.
1858 **/
1859static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1860{
1861 s32 ret_val = 0;
1862
605c82ba
BA
1863 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1864 if ((hw->mac.type == e1000_pch2lan) &&
1865 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1866 e1000_gate_hw_phy_config_ich8lan(hw, true);
1867
e98cac44
BA
1868 ret_val = e1000e_phy_hw_reset_generic(hw);
1869 if (ret_val)
5015e53a 1870 return ret_val;
e98cac44 1871
5015e53a 1872 return e1000_post_phy_reset_ich8lan(hw);
bc7f75fa
AK
1873}
1874
fa2ce13c
BA
1875/**
1876 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1877 * @hw: pointer to the HW structure
1878 * @active: true to enable LPLU, false to disable
1879 *
1880 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1881 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1882 * the phy speed. This function will manually set the LPLU bit and restart
1883 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1884 * since it configures the same bit.
1885 **/
1886static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1887{
1888 s32 ret_val = 0;
1889 u16 oem_reg;
1890
1891 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1892 if (ret_val)
5015e53a 1893 return ret_val;
fa2ce13c
BA
1894
1895 if (active)
1896 oem_reg |= HV_OEM_BITS_LPLU;
1897 else
1898 oem_reg &= ~HV_OEM_BITS_LPLU;
1899
464c85e3
BA
1900 if (!e1000_check_reset_block(hw))
1901 oem_reg |= HV_OEM_BITS_RESTART_AN;
1902
5015e53a 1903 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
fa2ce13c
BA
1904}
1905
bc7f75fa
AK
1906/**
1907 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1908 * @hw: pointer to the HW structure
564ea9bb 1909 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1910 *
1911 * Sets the LPLU D0 state according to the active flag. When
1912 * activating LPLU this function also disables smart speed
1913 * and vice versa. LPLU will not be activated unless the
1914 * device autonegotiation advertisement meets standards of
1915 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1916 * This is a function pointer entry point only called by
1917 * PHY setup routines.
1918 **/
1919static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1920{
1921 struct e1000_phy_info *phy = &hw->phy;
1922 u32 phy_ctrl;
1923 s32 ret_val = 0;
1924 u16 data;
1925
97ac8cae 1926 if (phy->type == e1000_phy_ife)
82607255 1927 return 0;
bc7f75fa
AK
1928
1929 phy_ctrl = er32(PHY_CTRL);
1930
1931 if (active) {
1932 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1933 ew32(PHY_CTRL, phy_ctrl);
1934
60f1292f
BA
1935 if (phy->type != e1000_phy_igp_3)
1936 return 0;
1937
ad68076e
BA
1938 /*
1939 * Call gig speed drop workaround on LPLU before accessing
1940 * any PHY registers
1941 */
60f1292f 1942 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1943 e1000e_gig_downshift_workaround_ich8lan(hw);
1944
1945 /* When LPLU is enabled, we should disable SmartSpeed */
1946 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1947 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1948 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1949 if (ret_val)
1950 return ret_val;
1951 } else {
1952 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1953 ew32(PHY_CTRL, phy_ctrl);
1954
60f1292f
BA
1955 if (phy->type != e1000_phy_igp_3)
1956 return 0;
1957
ad68076e
BA
1958 /*
1959 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1960 * during Dx states where the power conservation is most
1961 * important. During driver activity we should enable
ad68076e
BA
1962 * SmartSpeed, so performance is maintained.
1963 */
bc7f75fa
AK
1964 if (phy->smart_speed == e1000_smart_speed_on) {
1965 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1966 &data);
bc7f75fa
AK
1967 if (ret_val)
1968 return ret_val;
1969
1970 data |= IGP01E1000_PSCFR_SMART_SPEED;
1971 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1972 data);
bc7f75fa
AK
1973 if (ret_val)
1974 return ret_val;
1975 } else if (phy->smart_speed == e1000_smart_speed_off) {
1976 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1977 &data);
bc7f75fa
AK
1978 if (ret_val)
1979 return ret_val;
1980
1981 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1982 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1983 data);
bc7f75fa
AK
1984 if (ret_val)
1985 return ret_val;
1986 }
1987 }
1988
1989 return 0;
1990}
1991
1992/**
1993 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1994 * @hw: pointer to the HW structure
564ea9bb 1995 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1996 *
1997 * Sets the LPLU D3 state according to the active flag. When
1998 * activating LPLU this function also disables smart speed
1999 * and vice versa. LPLU will not be activated unless the
2000 * device autonegotiation advertisement meets standards of
2001 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2002 * This is a function pointer entry point only called by
2003 * PHY setup routines.
2004 **/
2005static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2006{
2007 struct e1000_phy_info *phy = &hw->phy;
2008 u32 phy_ctrl;
d7eb3384 2009 s32 ret_val = 0;
bc7f75fa
AK
2010 u16 data;
2011
2012 phy_ctrl = er32(PHY_CTRL);
2013
2014 if (!active) {
2015 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2016 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
2017
2018 if (phy->type != e1000_phy_igp_3)
2019 return 0;
2020
ad68076e
BA
2021 /*
2022 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2023 * during Dx states where the power conservation is most
2024 * important. During driver activity we should enable
ad68076e
BA
2025 * SmartSpeed, so performance is maintained.
2026 */
bc7f75fa 2027 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
2028 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2029 &data);
bc7f75fa
AK
2030 if (ret_val)
2031 return ret_val;
2032
2033 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2034 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2035 data);
bc7f75fa
AK
2036 if (ret_val)
2037 return ret_val;
2038 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
2039 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2040 &data);
bc7f75fa
AK
2041 if (ret_val)
2042 return ret_val;
2043
2044 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2045 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2046 data);
bc7f75fa
AK
2047 if (ret_val)
2048 return ret_val;
2049 }
2050 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2051 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2052 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2053 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2054 ew32(PHY_CTRL, phy_ctrl);
2055
60f1292f
BA
2056 if (phy->type != e1000_phy_igp_3)
2057 return 0;
2058
ad68076e
BA
2059 /*
2060 * Call gig speed drop workaround on LPLU before accessing
2061 * any PHY registers
2062 */
60f1292f 2063 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2064 e1000e_gig_downshift_workaround_ich8lan(hw);
2065
2066 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 2067 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
2068 if (ret_val)
2069 return ret_val;
2070
2071 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 2072 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
2073 }
2074
d7eb3384 2075 return ret_val;
bc7f75fa
AK
2076}
2077
f4187b56
BA
2078/**
2079 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2080 * @hw: pointer to the HW structure
2081 * @bank: pointer to the variable that returns the active bank
2082 *
2083 * Reads signature byte from the NVM using the flash access registers.
e243455d 2084 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
2085 **/
2086static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2087{
e243455d 2088 u32 eecd;
f4187b56 2089 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
2090 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2091 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d 2092 u8 sig_byte = 0;
f71dde6a 2093 s32 ret_val;
f4187b56 2094
e243455d
BA
2095 switch (hw->mac.type) {
2096 case e1000_ich8lan:
2097 case e1000_ich9lan:
2098 eecd = er32(EECD);
2099 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2100 E1000_EECD_SEC1VAL_VALID_MASK) {
2101 if (eecd & E1000_EECD_SEC1VAL)
2102 *bank = 1;
2103 else
2104 *bank = 0;
2105
2106 return 0;
2107 }
434f1392 2108 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
e243455d
BA
2109 /* fall-thru */
2110 default:
2111 /* set bank to 0 in case flash read fails */
2112 *bank = 0;
2113
2114 /* Check bank 0 */
2115 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2116 &sig_byte);
2117 if (ret_val)
2118 return ret_val;
2119 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2120 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2121 *bank = 0;
e243455d
BA
2122 return 0;
2123 }
f4187b56 2124
e243455d
BA
2125 /* Check bank 1 */
2126 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2127 bank1_offset,
2128 &sig_byte);
2129 if (ret_val)
2130 return ret_val;
2131 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2132 E1000_ICH_NVM_SIG_VALUE) {
2133 *bank = 1;
2134 return 0;
f4187b56 2135 }
e243455d 2136
3bb99fe2 2137 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2138 return -E1000_ERR_NVM;
f4187b56 2139 }
f4187b56
BA
2140}
2141
bc7f75fa
AK
2142/**
2143 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2144 * @hw: pointer to the HW structure
2145 * @offset: The offset (in bytes) of the word(s) to read.
2146 * @words: Size of data to read in words
2147 * @data: Pointer to the word(s) to read at offset.
2148 *
2149 * Reads a word(s) from the NVM using the flash access registers.
2150 **/
2151static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2152 u16 *data)
2153{
2154 struct e1000_nvm_info *nvm = &hw->nvm;
2155 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2156 u32 act_offset;
148675a7 2157 s32 ret_val = 0;
f4187b56 2158 u32 bank = 0;
bc7f75fa
AK
2159 u16 i, word;
2160
2161 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2162 (words == 0)) {
3bb99fe2 2163 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2164 ret_val = -E1000_ERR_NVM;
2165 goto out;
bc7f75fa
AK
2166 }
2167
94d8186a 2168 nvm->ops.acquire(hw);
bc7f75fa 2169
f4187b56 2170 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2171 if (ret_val) {
3bb99fe2 2172 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2173 bank = 0;
2174 }
f4187b56
BA
2175
2176 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2177 act_offset += offset;
2178
148675a7 2179 ret_val = 0;
bc7f75fa 2180 for (i = 0; i < words; i++) {
b9e06f70 2181 if (dev_spec->shadow_ram[offset+i].modified) {
bc7f75fa
AK
2182 data[i] = dev_spec->shadow_ram[offset+i].value;
2183 } else {
2184 ret_val = e1000_read_flash_word_ich8lan(hw,
2185 act_offset + i,
2186 &word);
2187 if (ret_val)
2188 break;
2189 data[i] = word;
2190 }
2191 }
2192
94d8186a 2193 nvm->ops.release(hw);
bc7f75fa 2194
e243455d
BA
2195out:
2196 if (ret_val)
3bb99fe2 2197 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2198
bc7f75fa
AK
2199 return ret_val;
2200}
2201
2202/**
2203 * e1000_flash_cycle_init_ich8lan - Initialize flash
2204 * @hw: pointer to the HW structure
2205 *
2206 * This function does initial flash setup so that a new read/write/erase cycle
2207 * can be started.
2208 **/
2209static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2210{
2211 union ich8_hws_flash_status hsfsts;
2212 s32 ret_val = -E1000_ERR_NVM;
bc7f75fa
AK
2213
2214 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2215
2216 /* Check if the flash descriptor is valid */
2217 if (hsfsts.hsf_status.fldesvalid == 0) {
434f1392 2218 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
bc7f75fa
AK
2219 return -E1000_ERR_NVM;
2220 }
2221
2222 /* Clear FCERR and DAEL in hw status by writing 1 */
2223 hsfsts.hsf_status.flcerr = 1;
2224 hsfsts.hsf_status.dael = 1;
2225
2226 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2227
ad68076e
BA
2228 /*
2229 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2230 * bit to check against, in order to start a new cycle or
2231 * FDONE bit should be changed in the hardware so that it
489815ce 2232 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2233 * indication whether a cycle is in progress or has been
2234 * completed.
2235 */
2236
2237 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
2238 /*
2239 * There is no cycle running at present,
5ff5b664 2240 * so we can start a cycle.
ad68076e
BA
2241 * Begin by setting Flash Cycle Done.
2242 */
bc7f75fa
AK
2243 hsfsts.hsf_status.flcdone = 1;
2244 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2245 ret_val = 0;
2246 } else {
f71dde6a 2247 s32 i;
90da0669 2248
ad68076e 2249 /*
5ff5b664 2250 * Otherwise poll for sometime so the current
ad68076e
BA
2251 * cycle has a chance to end before giving up.
2252 */
bc7f75fa 2253 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
c8243ee0 2254 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
bc7f75fa
AK
2255 if (hsfsts.hsf_status.flcinprog == 0) {
2256 ret_val = 0;
2257 break;
2258 }
2259 udelay(1);
2260 }
9e2d7657 2261 if (!ret_val) {
ad68076e
BA
2262 /*
2263 * Successful in waiting for previous cycle to timeout,
2264 * now set the Flash Cycle Done.
2265 */
bc7f75fa
AK
2266 hsfsts.hsf_status.flcdone = 1;
2267 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2268 } else {
2c73e1fe 2269 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2270 }
2271 }
2272
2273 return ret_val;
2274}
2275
2276/**
2277 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2278 * @hw: pointer to the HW structure
2279 * @timeout: maximum time to wait for completion
2280 *
2281 * This function starts a flash cycle and waits for its completion.
2282 **/
2283static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2284{
2285 union ich8_hws_flash_ctrl hsflctl;
2286 union ich8_hws_flash_status hsfsts;
bc7f75fa
AK
2287 u32 i = 0;
2288
2289 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2291 hsflctl.hsf_ctrl.flcgo = 1;
2292 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293
2294 /* wait till FDONE bit is set to 1 */
2295 do {
2296 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2297 if (hsfsts.hsf_status.flcdone == 1)
2298 break;
2299 udelay(1);
2300 } while (i++ < timeout);
2301
2302 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2303 return 0;
2304
55920b5e 2305 return -E1000_ERR_NVM;
bc7f75fa
AK
2306}
2307
2308/**
2309 * e1000_read_flash_word_ich8lan - Read word from flash
2310 * @hw: pointer to the HW structure
2311 * @offset: offset to data location
2312 * @data: pointer to the location for storing the data
2313 *
2314 * Reads the flash word at offset into data. Offset is converted
2315 * to bytes before read.
2316 **/
2317static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2318 u16 *data)
2319{
2320 /* Must convert offset into bytes. */
2321 offset <<= 1;
2322
2323 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2324}
2325
f4187b56
BA
2326/**
2327 * e1000_read_flash_byte_ich8lan - Read byte from flash
2328 * @hw: pointer to the HW structure
2329 * @offset: The offset of the byte to read.
2330 * @data: Pointer to a byte to store the value read.
2331 *
2332 * Reads a single byte from the NVM using the flash access registers.
2333 **/
2334static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2335 u8 *data)
2336{
2337 s32 ret_val;
2338 u16 word = 0;
2339
2340 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2341 if (ret_val)
2342 return ret_val;
2343
2344 *data = (u8)word;
2345
2346 return 0;
2347}
2348
bc7f75fa
AK
2349/**
2350 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351 * @hw: pointer to the HW structure
2352 * @offset: The offset (in bytes) of the byte or word to read.
2353 * @size: Size of data to read, 1=byte 2=word
2354 * @data: Pointer to the word to store the value read.
2355 *
2356 * Reads a byte or word from the NVM using the flash access registers.
2357 **/
2358static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2359 u8 size, u16 *data)
2360{
2361 union ich8_hws_flash_status hsfsts;
2362 union ich8_hws_flash_ctrl hsflctl;
2363 u32 flash_linear_addr;
2364 u32 flash_data = 0;
2365 s32 ret_val = -E1000_ERR_NVM;
2366 u8 count = 0;
2367
2368 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2369 return -E1000_ERR_NVM;
2370
2371 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2372 hw->nvm.flash_base_addr;
2373
2374 do {
2375 udelay(1);
2376 /* Steps */
2377 ret_val = e1000_flash_cycle_init_ich8lan(hw);
9e2d7657 2378 if (ret_val)
bc7f75fa
AK
2379 break;
2380
2381 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2382 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383 hsflctl.hsf_ctrl.fldbcount = size - 1;
2384 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2385 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2386
2387 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2388
2389 ret_val = e1000_flash_cycle_ich8lan(hw,
2390 ICH_FLASH_READ_COMMAND_TIMEOUT);
2391
ad68076e
BA
2392 /*
2393 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2394 * and try the whole sequence a few more times, else
2395 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2396 * least significant byte first msb to lsb
2397 */
9e2d7657 2398 if (!ret_val) {
bc7f75fa 2399 flash_data = er32flash(ICH_FLASH_FDATA0);
b1cdfead 2400 if (size == 1)
bc7f75fa 2401 *data = (u8)(flash_data & 0x000000FF);
b1cdfead 2402 else if (size == 2)
bc7f75fa 2403 *data = (u16)(flash_data & 0x0000FFFF);
bc7f75fa
AK
2404 break;
2405 } else {
ad68076e
BA
2406 /*
2407 * If we've gotten here, then things are probably
bc7f75fa
AK
2408 * completely hosed, but if the error condition is
2409 * detected, it won't hurt to give it another try...
2410 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2411 */
2412 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2413 if (hsfsts.hsf_status.flcerr == 1) {
2414 /* Repeat for some time before giving up. */
2415 continue;
2416 } else if (hsfsts.hsf_status.flcdone == 0) {
434f1392 2417 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
2418 break;
2419 }
2420 }
2421 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2422
2423 return ret_val;
2424}
2425
2426/**
2427 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2428 * @hw: pointer to the HW structure
2429 * @offset: The offset (in bytes) of the word(s) to write.
2430 * @words: Size of data to write in words
2431 * @data: Pointer to the word(s) to write at offset.
2432 *
2433 * Writes a byte or word to the NVM using the flash access registers.
2434 **/
2435static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2436 u16 *data)
2437{
2438 struct e1000_nvm_info *nvm = &hw->nvm;
2439 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2440 u16 i;
2441
2442 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2443 (words == 0)) {
3bb99fe2 2444 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2445 return -E1000_ERR_NVM;
2446 }
2447
94d8186a 2448 nvm->ops.acquire(hw);
ca15df58 2449
bc7f75fa 2450 for (i = 0; i < words; i++) {
564ea9bb 2451 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2452 dev_spec->shadow_ram[offset+i].value = data[i];
2453 }
2454
94d8186a 2455 nvm->ops.release(hw);
ca15df58 2456
bc7f75fa
AK
2457 return 0;
2458}
2459
2460/**
2461 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2462 * @hw: pointer to the HW structure
2463 *
2464 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2465 * which writes the checksum to the shadow ram. The changes in the shadow
2466 * ram are then committed to the EEPROM by processing each bank at a time
2467 * checking for the modified bit and writing only the pending changes.
489815ce 2468 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2469 * future writes.
2470 **/
2471static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2472{
2473 struct e1000_nvm_info *nvm = &hw->nvm;
2474 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2475 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2476 s32 ret_val;
2477 u16 data;
2478
2479 ret_val = e1000e_update_nvm_checksum_generic(hw);
2480 if (ret_val)
e243455d 2481 goto out;
bc7f75fa
AK
2482
2483 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2484 goto out;
bc7f75fa 2485
94d8186a 2486 nvm->ops.acquire(hw);
bc7f75fa 2487
ad68076e
BA
2488 /*
2489 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2490 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2491 * is going to be written
2492 */
f4187b56 2493 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2494 if (ret_val) {
3bb99fe2 2495 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2496 bank = 0;
e243455d 2497 }
f4187b56
BA
2498
2499 if (bank == 0) {
bc7f75fa
AK
2500 new_bank_offset = nvm->flash_bank_size;
2501 old_bank_offset = 0;
e243455d 2502 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2503 if (ret_val)
2504 goto release;
bc7f75fa
AK
2505 } else {
2506 old_bank_offset = nvm->flash_bank_size;
2507 new_bank_offset = 0;
e243455d 2508 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2509 if (ret_val)
2510 goto release;
bc7f75fa
AK
2511 }
2512
2513 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2514 /*
2515 * Determine whether to write the value stored
bc7f75fa 2516 * in the other NVM bank or a modified value stored
ad68076e
BA
2517 * in the shadow RAM
2518 */
bc7f75fa
AK
2519 if (dev_spec->shadow_ram[i].modified) {
2520 data = dev_spec->shadow_ram[i].value;
2521 } else {
e243455d
BA
2522 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2523 old_bank_offset,
2524 &data);
2525 if (ret_val)
2526 break;
bc7f75fa
AK
2527 }
2528
ad68076e
BA
2529 /*
2530 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2531 * (15:14) are 11b until the commit has completed.
2532 * This will allow us to write 10b which indicates the
2533 * signature is valid. We want to do this after the write
2534 * has completed so that we don't mark the segment valid
ad68076e
BA
2535 * while the write is still in progress
2536 */
bc7f75fa
AK
2537 if (i == E1000_ICH_NVM_SIG_WORD)
2538 data |= E1000_ICH_NVM_SIG_MASK;
2539
2540 /* Convert offset to bytes. */
2541 act_offset = (i + new_bank_offset) << 1;
2542
2543 udelay(100);
2544 /* Write the bytes to the new bank. */
2545 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2546 act_offset,
2547 (u8)data);
2548 if (ret_val)
2549 break;
2550
2551 udelay(100);
2552 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2553 act_offset + 1,
2554 (u8)(data >> 8));
2555 if (ret_val)
2556 break;
2557 }
2558
ad68076e
BA
2559 /*
2560 * Don't bother writing the segment valid bits if sector
2561 * programming failed.
2562 */
bc7f75fa 2563 if (ret_val) {
4a770358 2564 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2565 e_dbg("Flash commit failed.\n");
9c5e209d 2566 goto release;
bc7f75fa
AK
2567 }
2568
ad68076e
BA
2569 /*
2570 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2571 * to 10b in word 0x13 , this can be done without an
2572 * erase as well since these bits are 11 to start with
ad68076e
BA
2573 * and we need to change bit 14 to 0b
2574 */
bc7f75fa 2575 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2576 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2577 if (ret_val)
2578 goto release;
2579
bc7f75fa
AK
2580 data &= 0xBFFF;
2581 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2582 act_offset * 2 + 1,
2583 (u8)(data >> 8));
9c5e209d
BA
2584 if (ret_val)
2585 goto release;
bc7f75fa 2586
ad68076e
BA
2587 /*
2588 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2589 * its signature word (0x13) high_byte to 0b. This can be
2590 * done without an erase because flash erase sets all bits
ad68076e
BA
2591 * to 1's. We can write 1's to 0's without an erase
2592 */
bc7f75fa
AK
2593 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2594 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2595 if (ret_val)
2596 goto release;
bc7f75fa
AK
2597
2598 /* Great! Everything worked, we can now clear the cached entries. */
2599 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2600 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2601 dev_spec->shadow_ram[i].value = 0xFFFF;
2602 }
2603
9c5e209d 2604release:
94d8186a 2605 nvm->ops.release(hw);
bc7f75fa 2606
ad68076e
BA
2607 /*
2608 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2609 * until after the next adapter reset.
2610 */
9c5e209d
BA
2611 if (!ret_val) {
2612 e1000e_reload_nvm(hw);
1bba4386 2613 usleep_range(10000, 20000);
9c5e209d 2614 }
bc7f75fa 2615
e243455d
BA
2616out:
2617 if (ret_val)
3bb99fe2 2618 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2619
bc7f75fa
AK
2620 return ret_val;
2621}
2622
2623/**
2624 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2625 * @hw: pointer to the HW structure
2626 *
2627 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2628 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2629 * calculated, in which case we need to calculate the checksum and set bit 6.
2630 **/
2631static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2632{
2633 s32 ret_val;
2634 u16 data;
2635
ad68076e
BA
2636 /*
2637 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2638 * needs to be fixed. This bit is an indication that the NVM
2639 * was prepared by OEM software and did not calculate the
2640 * checksum...a likely scenario.
2641 */
2642 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2643 if (ret_val)
2644 return ret_val;
2645
2646 if ((data & 0x40) == 0) {
2647 data |= 0x40;
2648 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2649 if (ret_val)
2650 return ret_val;
2651 ret_val = e1000e_update_nvm_checksum(hw);
2652 if (ret_val)
2653 return ret_val;
2654 }
2655
2656 return e1000e_validate_nvm_checksum_generic(hw);
2657}
2658
4a770358
BA
2659/**
2660 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2661 * @hw: pointer to the HW structure
2662 *
2663 * To prevent malicious write/erase of the NVM, set it to be read-only
2664 * so that the hardware ignores all write/erase cycles of the NVM via
2665 * the flash control registers. The shadow-ram copy of the NVM will
2666 * still be updated, however any updates to this copy will not stick
2667 * across driver reloads.
2668 **/
2669void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2670{
ca15df58 2671 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2672 union ich8_flash_protected_range pr0;
2673 union ich8_hws_flash_status hsfsts;
2674 u32 gfpreg;
4a770358 2675
94d8186a 2676 nvm->ops.acquire(hw);
4a770358
BA
2677
2678 gfpreg = er32flash(ICH_FLASH_GFPREG);
2679
2680 /* Write-protect GbE Sector of NVM */
2681 pr0.regval = er32flash(ICH_FLASH_PR0);
2682 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2683 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2684 pr0.range.wpe = true;
2685 ew32flash(ICH_FLASH_PR0, pr0.regval);
2686
2687 /*
2688 * Lock down a subset of GbE Flash Control Registers, e.g.
2689 * PR0 to prevent the write-protection from being lifted.
2690 * Once FLOCKDN is set, the registers protected by it cannot
2691 * be written until FLOCKDN is cleared by a hardware reset.
2692 */
2693 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2694 hsfsts.hsf_status.flockdn = true;
2695 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2696
94d8186a 2697 nvm->ops.release(hw);
4a770358
BA
2698}
2699
bc7f75fa
AK
2700/**
2701 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2702 * @hw: pointer to the HW structure
2703 * @offset: The offset (in bytes) of the byte/word to read.
2704 * @size: Size of data to read, 1=byte 2=word
2705 * @data: The byte(s) to write to the NVM.
2706 *
2707 * Writes one/two bytes to the NVM using the flash access registers.
2708 **/
2709static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2710 u8 size, u16 data)
2711{
2712 union ich8_hws_flash_status hsfsts;
2713 union ich8_hws_flash_ctrl hsflctl;
2714 u32 flash_linear_addr;
2715 u32 flash_data = 0;
2716 s32 ret_val;
2717 u8 count = 0;
2718
2719 if (size < 1 || size > 2 || data > size * 0xff ||
2720 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2721 return -E1000_ERR_NVM;
2722
2723 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2724 hw->nvm.flash_base_addr;
2725
2726 do {
2727 udelay(1);
2728 /* Steps */
2729 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2730 if (ret_val)
2731 break;
2732
2733 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2734 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2735 hsflctl.hsf_ctrl.fldbcount = size -1;
2736 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2737 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2738
2739 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2740
2741 if (size == 1)
2742 flash_data = (u32)data & 0x00FF;
2743 else
2744 flash_data = (u32)data;
2745
2746 ew32flash(ICH_FLASH_FDATA0, flash_data);
2747
ad68076e
BA
2748 /*
2749 * check if FCERR is set to 1 , if set to 1, clear it
2750 * and try the whole sequence a few more times else done
2751 */
bc7f75fa
AK
2752 ret_val = e1000_flash_cycle_ich8lan(hw,
2753 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2754 if (!ret_val)
2755 break;
2756
ad68076e
BA
2757 /*
2758 * If we're here, then things are most likely
bc7f75fa
AK
2759 * completely hosed, but if the error condition
2760 * is detected, it won't hurt to give it another
2761 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2762 */
2763 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2764 if (hsfsts.hsf_status.flcerr == 1)
2765 /* Repeat for some time before giving up. */
2766 continue;
2767 if (hsfsts.hsf_status.flcdone == 0) {
434f1392 2768 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
2769 break;
2770 }
2771 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2772
2773 return ret_val;
2774}
2775
2776/**
2777 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2778 * @hw: pointer to the HW structure
2779 * @offset: The index of the byte to read.
2780 * @data: The byte to write to the NVM.
2781 *
2782 * Writes a single byte to the NVM using the flash access registers.
2783 **/
2784static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2785 u8 data)
2786{
2787 u16 word = (u16)data;
2788
2789 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2790}
2791
2792/**
2793 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2794 * @hw: pointer to the HW structure
2795 * @offset: The offset of the byte to write.
2796 * @byte: The byte to write to the NVM.
2797 *
2798 * Writes a single byte to the NVM using the flash access registers.
2799 * Goes through a retry algorithm before giving up.
2800 **/
2801static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2802 u32 offset, u8 byte)
2803{
2804 s32 ret_val;
2805 u16 program_retries;
2806
2807 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2808 if (!ret_val)
2809 return ret_val;
2810
2811 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2812 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2813 udelay(100);
2814 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2815 if (!ret_val)
2816 break;
2817 }
2818 if (program_retries == 100)
2819 return -E1000_ERR_NVM;
2820
2821 return 0;
2822}
2823
2824/**
2825 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2826 * @hw: pointer to the HW structure
2827 * @bank: 0 for first bank, 1 for second bank, etc.
2828 *
2829 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2830 * bank N is 4096 * N + flash_reg_addr.
2831 **/
2832static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2833{
2834 struct e1000_nvm_info *nvm = &hw->nvm;
2835 union ich8_hws_flash_status hsfsts;
2836 union ich8_hws_flash_ctrl hsflctl;
2837 u32 flash_linear_addr;
2838 /* bank size is in 16bit words - adjust to bytes */
2839 u32 flash_bank_size = nvm->flash_bank_size * 2;
2840 s32 ret_val;
2841 s32 count = 0;
a708dd88 2842 s32 j, iteration, sector_size;
bc7f75fa
AK
2843
2844 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2845
ad68076e
BA
2846 /*
2847 * Determine HW Sector size: Read BERASE bits of hw flash status
2848 * register
2849 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2850 * consecutive sectors. The start index for the nth Hw sector
2851 * can be calculated as = bank * 4096 + n * 256
2852 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2853 * The start index for the nth Hw sector can be calculated
2854 * as = bank * 4096
2855 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2856 * (ich9 only, otherwise error condition)
2857 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2858 */
2859 switch (hsfsts.hsf_status.berasesz) {
2860 case 0:
2861 /* Hw sector size 256 */
2862 sector_size = ICH_FLASH_SEG_SIZE_256;
2863 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2864 break;
2865 case 1:
2866 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2867 iteration = 1;
bc7f75fa
AK
2868 break;
2869 case 2:
148675a7
BA
2870 sector_size = ICH_FLASH_SEG_SIZE_8K;
2871 iteration = 1;
bc7f75fa
AK
2872 break;
2873 case 3:
2874 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2875 iteration = 1;
bc7f75fa
AK
2876 break;
2877 default:
2878 return -E1000_ERR_NVM;
2879 }
2880
2881 /* Start with the base address, then add the sector offset. */
2882 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2883 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2884
2885 for (j = 0; j < iteration ; j++) {
2886 do {
2887 /* Steps */
2888 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2889 if (ret_val)
2890 return ret_val;
2891
ad68076e
BA
2892 /*
2893 * Write a value 11 (block Erase) in Flash
2894 * Cycle field in hw flash control
2895 */
bc7f75fa
AK
2896 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2897 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2898 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2899
ad68076e
BA
2900 /*
2901 * Write the last 24 bits of an index within the
bc7f75fa
AK
2902 * block into Flash Linear address field in Flash
2903 * Address.
2904 */
2905 flash_linear_addr += (j * sector_size);
2906 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2907
2908 ret_val = e1000_flash_cycle_ich8lan(hw,
2909 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
9e2d7657 2910 if (!ret_val)
bc7f75fa
AK
2911 break;
2912
ad68076e
BA
2913 /*
2914 * Check if FCERR is set to 1. If 1,
bc7f75fa 2915 * clear it and try the whole sequence
ad68076e
BA
2916 * a few more times else Done
2917 */
bc7f75fa
AK
2918 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2919 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2920 /* repeat for some time before giving up */
bc7f75fa
AK
2921 continue;
2922 else if (hsfsts.hsf_status.flcdone == 0)
2923 return ret_val;
2924 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2925 }
2926
2927 return 0;
2928}
2929
2930/**
2931 * e1000_valid_led_default_ich8lan - Set the default LED settings
2932 * @hw: pointer to the HW structure
2933 * @data: Pointer to the LED settings
2934 *
2935 * Reads the LED default settings from the NVM to data. If the NVM LED
2936 * settings is all 0's or F's, set the LED default to a valid LED default
2937 * setting.
2938 **/
2939static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2940{
2941 s32 ret_val;
2942
2943 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2944 if (ret_val) {
3bb99fe2 2945 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2946 return ret_val;
2947 }
2948
2949 if (*data == ID_LED_RESERVED_0000 ||
2950 *data == ID_LED_RESERVED_FFFF)
2951 *data = ID_LED_DEFAULT_ICH8LAN;
2952
2953 return 0;
2954}
2955
a4f58f54
BA
2956/**
2957 * e1000_id_led_init_pchlan - store LED configurations
2958 * @hw: pointer to the HW structure
2959 *
2960 * PCH does not control LEDs via the LEDCTL register, rather it uses
2961 * the PHY LED configuration register.
2962 *
2963 * PCH also does not have an "always on" or "always off" mode which
2964 * complicates the ID feature. Instead of using the "on" mode to indicate
d1964eb1 2965 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
a4f58f54
BA
2966 * use "link_up" mode. The LEDs will still ID on request if there is no
2967 * link based on logic in e1000_led_[on|off]_pchlan().
2968 **/
2969static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2970{
2971 struct e1000_mac_info *mac = &hw->mac;
2972 s32 ret_val;
2973 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2974 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2975 u16 data, i, temp, shift;
2976
2977 /* Get default ID LED modes */
2978 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2979 if (ret_val)
5015e53a 2980 return ret_val;
a4f58f54
BA
2981
2982 mac->ledctl_default = er32(LEDCTL);
2983 mac->ledctl_mode1 = mac->ledctl_default;
2984 mac->ledctl_mode2 = mac->ledctl_default;
2985
2986 for (i = 0; i < 4; i++) {
2987 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2988 shift = (i * 5);
2989 switch (temp) {
2990 case ID_LED_ON1_DEF2:
2991 case ID_LED_ON1_ON2:
2992 case ID_LED_ON1_OFF2:
2993 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2994 mac->ledctl_mode1 |= (ledctl_on << shift);
2995 break;
2996 case ID_LED_OFF1_DEF2:
2997 case ID_LED_OFF1_ON2:
2998 case ID_LED_OFF1_OFF2:
2999 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3000 mac->ledctl_mode1 |= (ledctl_off << shift);
3001 break;
3002 default:
3003 /* Do nothing */
3004 break;
3005 }
3006 switch (temp) {
3007 case ID_LED_DEF1_ON2:
3008 case ID_LED_ON1_ON2:
3009 case ID_LED_OFF1_ON2:
3010 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3011 mac->ledctl_mode2 |= (ledctl_on << shift);
3012 break;
3013 case ID_LED_DEF1_OFF2:
3014 case ID_LED_ON1_OFF2:
3015 case ID_LED_OFF1_OFF2:
3016 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3017 mac->ledctl_mode2 |= (ledctl_off << shift);
3018 break;
3019 default:
3020 /* Do nothing */
3021 break;
3022 }
3023 }
3024
5015e53a 3025 return 0;
a4f58f54
BA
3026}
3027
bc7f75fa
AK
3028/**
3029 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3030 * @hw: pointer to the HW structure
3031 *
3032 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3033 * register, so the the bus width is hard coded.
3034 **/
3035static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3036{
3037 struct e1000_bus_info *bus = &hw->bus;
3038 s32 ret_val;
3039
3040 ret_val = e1000e_get_bus_info_pcie(hw);
3041
ad68076e
BA
3042 /*
3043 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
3044 * a configuration space, but do not contain
3045 * PCI Express Capability registers, so bus width
3046 * must be hardcoded.
3047 */
3048 if (bus->width == e1000_bus_width_unknown)
3049 bus->width = e1000_bus_width_pcie_x1;
3050
3051 return ret_val;
3052}
3053
3054/**
3055 * e1000_reset_hw_ich8lan - Reset the hardware
3056 * @hw: pointer to the HW structure
3057 *
3058 * Does a full reset of the hardware which includes a reset of the PHY and
3059 * MAC.
3060 **/
3061static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3062{
1d5846b9 3063 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 3064 u16 reg;
dd93f95e 3065 u32 ctrl, kab;
bc7f75fa
AK
3066 s32 ret_val;
3067
ad68076e
BA
3068 /*
3069 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
3070 * on the last TLP read/write transaction when MAC is reset.
3071 */
3072 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 3073 if (ret_val)
3bb99fe2 3074 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 3075
3bb99fe2 3076 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
3077 ew32(IMC, 0xffffffff);
3078
ad68076e
BA
3079 /*
3080 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
3081 * any pending transactions to complete before we hit the MAC
3082 * with the global reset.
3083 */
3084 ew32(RCTL, 0);
3085 ew32(TCTL, E1000_TCTL_PSP);
3086 e1e_flush();
3087
1bba4386 3088 usleep_range(10000, 20000);
bc7f75fa
AK
3089
3090 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3091 if (hw->mac.type == e1000_ich8lan) {
3092 /* Set Tx and Rx buffer allocation to 8k apiece. */
3093 ew32(PBA, E1000_PBA_8K);
3094 /* Set Packet Buffer Size to 16k. */
3095 ew32(PBS, E1000_PBS_16K);
3096 }
3097
1d5846b9
BA
3098 if (hw->mac.type == e1000_pchlan) {
3099 /* Save the NVM K1 bit setting*/
3100 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3101 if (ret_val)
3102 return ret_val;
3103
3104 if (reg & E1000_NVM_K1_ENABLE)
3105 dev_spec->nvm_k1_enabled = true;
3106 else
3107 dev_spec->nvm_k1_enabled = false;
3108 }
3109
bc7f75fa
AK
3110 ctrl = er32(CTRL);
3111
3112 if (!e1000_check_reset_block(hw)) {
ad68076e 3113 /*
e98cac44 3114 * Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3115 * time to make sure the interface between MAC and the
3116 * external PHY is reset.
3117 */
3118 ctrl |= E1000_CTRL_PHY_RST;
605c82ba
BA
3119
3120 /*
3121 * Gate automatic PHY configuration by hardware on
3122 * non-managed 82579
3123 */
3124 if ((hw->mac.type == e1000_pch2lan) &&
3125 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3126 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3127 }
3128 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3129 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa 3130 ew32(CTRL, (ctrl | E1000_CTRL_RST));
945a5151 3131 /* cannot issue a flush here because it hangs the hardware */
bc7f75fa
AK
3132 msleep(20);
3133
fc0c7760 3134 if (!ret_val)
a90b412c 3135 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
37f40239 3136
e98cac44 3137 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3138 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44 3139 if (ret_val)
5015e53a 3140 return ret_val;
fc0c7760 3141
e98cac44 3142 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211 3143 if (ret_val)
5015e53a 3144 return ret_val;
f523d211 3145 }
e98cac44 3146
7d3cabbc
BA
3147 /*
3148 * For PCH, this write will make sure that any noise
3149 * will be detected as a CRC error and be dropped rather than show up
3150 * as a bad packet to the DMA engine.
3151 */
3152 if (hw->mac.type == e1000_pchlan)
3153 ew32(CRC_OFFSET, 0x65656565);
3154
bc7f75fa 3155 ew32(IMC, 0xffffffff);
dd93f95e 3156 er32(ICR);
bc7f75fa
AK
3157
3158 kab = er32(KABGTXD);
3159 kab |= E1000_KABGTXD_BGSQLBIAS;
3160 ew32(KABGTXD, kab);
3161
5015e53a 3162 return 0;
bc7f75fa
AK
3163}
3164
3165/**
3166 * e1000_init_hw_ich8lan - Initialize the hardware
3167 * @hw: pointer to the HW structure
3168 *
3169 * Prepares the hardware for transmit and receive by doing the following:
3170 * - initialize hardware bits
3171 * - initialize LED identification
3172 * - setup receive address registers
3173 * - setup flow control
489815ce 3174 * - setup transmit descriptors
bc7f75fa
AK
3175 * - clear statistics
3176 **/
3177static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3178{
3179 struct e1000_mac_info *mac = &hw->mac;
3180 u32 ctrl_ext, txdctl, snoop;
3181 s32 ret_val;
3182 u16 i;
3183
3184 e1000_initialize_hw_bits_ich8lan(hw);
3185
3186 /* Initialize identification LED */
a4f58f54 3187 ret_val = mac->ops.id_led_init(hw);
de39b752 3188 if (ret_val)
3bb99fe2 3189 e_dbg("Error initializing identification LED\n");
de39b752 3190 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3191
3192 /* Setup the receive address. */
3193 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3194
3195 /* Zero out the Multicast HASH table */
3bb99fe2 3196 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3197 for (i = 0; i < mac->mta_reg_count; i++)
3198 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3199
fc0c7760
BA
3200 /*
3201 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3ebfc7c9 3202 * the ME. Disable wakeup by clearing the host wakeup bit.
fc0c7760
BA
3203 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3204 */
3205 if (hw->phy.type == e1000_phy_82578) {
3ebfc7c9
BA
3206 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3207 i &= ~BM_WUC_HOST_WU_BIT;
3208 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
fc0c7760
BA
3209 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3210 if (ret_val)
3211 return ret_val;
3212 }
3213
bc7f75fa 3214 /* Setup link and flow control */
1a46b40f 3215 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
3216
3217 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3218 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3219 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3220 E1000_TXDCTL_FULL_TX_DESC_WB;
3221 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3222 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3223 ew32(TXDCTL(0), txdctl);
3224 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3225 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3226 E1000_TXDCTL_FULL_TX_DESC_WB;
3227 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3228 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3229 ew32(TXDCTL(1), txdctl);
bc7f75fa 3230
ad68076e
BA
3231 /*
3232 * ICH8 has opposite polarity of no_snoop bits.
3233 * By default, we should use snoop behavior.
3234 */
bc7f75fa
AK
3235 if (mac->type == e1000_ich8lan)
3236 snoop = PCIE_ICH8_SNOOP_ALL;
3237 else
3238 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3239 e1000e_set_pcie_no_snoop(hw, snoop);
3240
3241 ctrl_ext = er32(CTRL_EXT);
3242 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3243 ew32(CTRL_EXT, ctrl_ext);
3244
ad68076e
BA
3245 /*
3246 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3247 * important that we do this after we have tried to establish link
3248 * because the symbol error count will increment wildly if there
3249 * is no link.
3250 */
3251 e1000_clear_hw_cntrs_ich8lan(hw);
3252
e561a705 3253 return ret_val;
bc7f75fa
AK
3254}
3255/**
3256 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3257 * @hw: pointer to the HW structure
3258 *
3259 * Sets/Clears required hardware bits necessary for correctly setting up the
3260 * hardware for transmit and receive.
3261 **/
3262static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3263{
3264 u32 reg;
3265
3266 /* Extended Device Control */
3267 reg = er32(CTRL_EXT);
3268 reg |= (1 << 22);
a4f58f54
BA
3269 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3270 if (hw->mac.type >= e1000_pchlan)
3271 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3272 ew32(CTRL_EXT, reg);
3273
3274 /* Transmit Descriptor Control 0 */
e9ec2c0f 3275 reg = er32(TXDCTL(0));
bc7f75fa 3276 reg |= (1 << 22);
e9ec2c0f 3277 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3278
3279 /* Transmit Descriptor Control 1 */
e9ec2c0f 3280 reg = er32(TXDCTL(1));
bc7f75fa 3281 reg |= (1 << 22);
e9ec2c0f 3282 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3283
3284 /* Transmit Arbitration Control 0 */
e9ec2c0f 3285 reg = er32(TARC(0));
bc7f75fa
AK
3286 if (hw->mac.type == e1000_ich8lan)
3287 reg |= (1 << 28) | (1 << 29);
3288 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3289 ew32(TARC(0), reg);
bc7f75fa
AK
3290
3291 /* Transmit Arbitration Control 1 */
e9ec2c0f 3292 reg = er32(TARC(1));
bc7f75fa
AK
3293 if (er32(TCTL) & E1000_TCTL_MULR)
3294 reg &= ~(1 << 28);
3295 else
3296 reg |= (1 << 28);
3297 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3298 ew32(TARC(1), reg);
bc7f75fa
AK
3299
3300 /* Device Status */
3301 if (hw->mac.type == e1000_ich8lan) {
3302 reg = er32(STATUS);
3303 reg &= ~(1 << 31);
3304 ew32(STATUS, reg);
3305 }
a80483d3
JB
3306
3307 /*
3308 * work-around descriptor data corruption issue during nfs v2 udp
3309 * traffic, just disable the nfs filtering capability
3310 */
3311 reg = er32(RFCTL);
3312 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3313 ew32(RFCTL, reg);
bc7f75fa
AK
3314}
3315
3316/**
3317 * e1000_setup_link_ich8lan - Setup flow control and link settings
3318 * @hw: pointer to the HW structure
3319 *
3320 * Determines which flow control settings to use, then configures flow
3321 * control. Calls the appropriate media-specific link configuration
3322 * function. Assuming the adapter has a valid link partner, a valid link
3323 * should be established. Assumes the hardware has previously been reset
3324 * and the transmitter and receiver are not enabled.
3325 **/
3326static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3327{
bc7f75fa
AK
3328 s32 ret_val;
3329
3330 if (e1000_check_reset_block(hw))
3331 return 0;
3332
ad68076e
BA
3333 /*
3334 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3335 * the default flow control setting, so we explicitly
3336 * set it to full.
3337 */
37289d9c
BA
3338 if (hw->fc.requested_mode == e1000_fc_default) {
3339 /* Workaround h/w hang when Tx flow control enabled */
3340 if (hw->mac.type == e1000_pchlan)
3341 hw->fc.requested_mode = e1000_fc_rx_pause;
3342 else
3343 hw->fc.requested_mode = e1000_fc_full;
3344 }
bc7f75fa 3345
5c48ef3e
BA
3346 /*
3347 * Save off the requested flow control mode for use later. Depending
3348 * on the link partner's capabilities, we may or may not use this mode.
3349 */
3350 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3351
3bb99fe2 3352 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3353 hw->fc.current_mode);
bc7f75fa
AK
3354
3355 /* Continue to configure the copper link. */
3356 ret_val = e1000_setup_copper_link_ich8lan(hw);
3357 if (ret_val)
3358 return ret_val;
3359
318a94d6 3360 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3361 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3362 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3363 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3364 ew32(FCRTV_PCH, hw->fc.refresh_time);
3365
482fed85
BA
3366 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3367 hw->fc.pause_time);
a4f58f54
BA
3368 if (ret_val)
3369 return ret_val;
3370 }
bc7f75fa
AK
3371
3372 return e1000e_set_fc_watermarks(hw);
3373}
3374
3375/**
3376 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3377 * @hw: pointer to the HW structure
3378 *
3379 * Configures the kumeran interface to the PHY to wait the appropriate time
3380 * when polling the PHY, then call the generic setup_copper_link to finish
3381 * configuring the copper link.
3382 **/
3383static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3384{
3385 u32 ctrl;
3386 s32 ret_val;
3387 u16 reg_data;
3388
3389 ctrl = er32(CTRL);
3390 ctrl |= E1000_CTRL_SLU;
3391 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3392 ew32(CTRL, ctrl);
3393
ad68076e
BA
3394 /*
3395 * Set the mac to wait the maximum time between each iteration
bc7f75fa 3396 * and increase the max iterations when polling the phy;
ad68076e
BA
3397 * this fixes erroneous timeouts at 10Mbps.
3398 */
07818950 3399 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3400 if (ret_val)
3401 return ret_val;
07818950
BA
3402 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3403 &reg_data);
bc7f75fa
AK
3404 if (ret_val)
3405 return ret_val;
3406 reg_data |= 0x3F;
07818950
BA
3407 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3408 reg_data);
bc7f75fa
AK
3409 if (ret_val)
3410 return ret_val;
3411
a4f58f54
BA
3412 switch (hw->phy.type) {
3413 case e1000_phy_igp_3:
bc7f75fa
AK
3414 ret_val = e1000e_copper_link_setup_igp(hw);
3415 if (ret_val)
3416 return ret_val;
a4f58f54
BA
3417 break;
3418 case e1000_phy_bm:
3419 case e1000_phy_82578:
97ac8cae
BA
3420 ret_val = e1000e_copper_link_setup_m88(hw);
3421 if (ret_val)
3422 return ret_val;
a4f58f54
BA
3423 break;
3424 case e1000_phy_82577:
d3738bb8 3425 case e1000_phy_82579:
a4f58f54
BA
3426 ret_val = e1000_copper_link_setup_82577(hw);
3427 if (ret_val)
3428 return ret_val;
3429 break;
3430 case e1000_phy_ife:
482fed85 3431 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
97ac8cae
BA
3432 if (ret_val)
3433 return ret_val;
3434
3435 reg_data &= ~IFE_PMC_AUTO_MDIX;
3436
3437 switch (hw->phy.mdix) {
3438 case 1:
3439 reg_data &= ~IFE_PMC_FORCE_MDIX;
3440 break;
3441 case 2:
3442 reg_data |= IFE_PMC_FORCE_MDIX;
3443 break;
3444 case 0:
3445 default:
3446 reg_data |= IFE_PMC_AUTO_MDIX;
3447 break;
3448 }
482fed85 3449 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
97ac8cae
BA
3450 if (ret_val)
3451 return ret_val;
a4f58f54
BA
3452 break;
3453 default:
3454 break;
97ac8cae 3455 }
3fa82936 3456
bc7f75fa
AK
3457 return e1000e_setup_copper_link(hw);
3458}
3459
3460/**
3461 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3462 * @hw: pointer to the HW structure
3463 * @speed: pointer to store current link speed
3464 * @duplex: pointer to store the current link duplex
3465 *
ad68076e 3466 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3467 * information and then calls the Kumeran lock loss workaround for links at
3468 * gigabit speeds.
3469 **/
3470static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3471 u16 *duplex)
3472{
3473 s32 ret_val;
3474
3475 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3476 if (ret_val)
3477 return ret_val;
3478
3479 if ((hw->mac.type == e1000_ich8lan) &&
3480 (hw->phy.type == e1000_phy_igp_3) &&
3481 (*speed == SPEED_1000)) {
3482 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3483 }
3484
3485 return ret_val;
3486}
3487
3488/**
3489 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3490 * @hw: pointer to the HW structure
3491 *
3492 * Work-around for 82566 Kumeran PCS lock loss:
3493 * On link status change (i.e. PCI reset, speed change) and link is up and
3494 * speed is gigabit-
3495 * 0) if workaround is optionally disabled do nothing
3496 * 1) wait 1ms for Kumeran link to come up
3497 * 2) check Kumeran Diagnostic register PCS lock loss bit
3498 * 3) if not set the link is locked (all is good), otherwise...
3499 * 4) reset the PHY
3500 * 5) repeat up to 10 times
3501 * Note: this is only called for IGP3 copper when speed is 1gb.
3502 **/
3503static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3504{
3505 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3506 u32 phy_ctrl;
3507 s32 ret_val;
3508 u16 i, data;
3509 bool link;
3510
3511 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3512 return 0;
3513
ad68076e
BA
3514 /*
3515 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3516 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3517 * stability
3518 */
bc7f75fa
AK
3519 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3520 if (!link)
3521 return 0;
3522
3523 for (i = 0; i < 10; i++) {
3524 /* read once to clear */
3525 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3526 if (ret_val)
3527 return ret_val;
3528 /* and again to get new status */
3529 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3530 if (ret_val)
3531 return ret_val;
3532
3533 /* check for PCS lock */
3534 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3535 return 0;
3536
3537 /* Issue PHY reset */
3538 e1000_phy_hw_reset(hw);
3539 mdelay(5);
3540 }
3541 /* Disable GigE link negotiation */
3542 phy_ctrl = er32(PHY_CTRL);
3543 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3544 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3545 ew32(PHY_CTRL, phy_ctrl);
3546
ad68076e
BA
3547 /*
3548 * Call gig speed drop workaround on Gig disable before accessing
3549 * any PHY registers
3550 */
bc7f75fa
AK
3551 e1000e_gig_downshift_workaround_ich8lan(hw);
3552
3553 /* unable to acquire PCS lock */
3554 return -E1000_ERR_PHY;
3555}
3556
3557/**
ad68076e 3558 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3559 * @hw: pointer to the HW structure
489815ce 3560 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3561 *
564ea9bb
BA
3562 * If ICH8, set the current Kumeran workaround state (enabled - true
3563 * /disabled - false).
bc7f75fa
AK
3564 **/
3565void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3566 bool state)
3567{
3568 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3569
3570 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3571 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3572 return;
3573 }
3574
3575 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3576}
3577
3578/**
3579 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3580 * @hw: pointer to the HW structure
3581 *
3582 * Workaround for 82566 power-down on D3 entry:
3583 * 1) disable gigabit link
3584 * 2) write VR power-down enable
3585 * 3) read it back
3586 * Continue if successful, else issue LCD reset and repeat
3587 **/
3588void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3589{
3590 u32 reg;
3591 u16 data;
3592 u8 retry = 0;
3593
3594 if (hw->phy.type != e1000_phy_igp_3)
3595 return;
3596
3597 /* Try the workaround twice (if needed) */
3598 do {
3599 /* Disable link */
3600 reg = er32(PHY_CTRL);
3601 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3602 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3603 ew32(PHY_CTRL, reg);
3604
ad68076e
BA
3605 /*
3606 * Call gig speed drop workaround on Gig disable before
3607 * accessing any PHY registers
3608 */
bc7f75fa
AK
3609 if (hw->mac.type == e1000_ich8lan)
3610 e1000e_gig_downshift_workaround_ich8lan(hw);
3611
3612 /* Write VR power-down enable */
3613 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3614 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3615 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3616
3617 /* Read it back and test */
3618 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3619 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3620 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3621 break;
3622
3623 /* Issue PHY reset and repeat at most one more time */
3624 reg = er32(CTRL);
3625 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3626 retry++;
3627 } while (retry);
3628}
3629
3630/**
3631 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3632 * @hw: pointer to the HW structure
3633 *
3634 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3635 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3636 * 1) Set Kumeran Near-end loopback
3637 * 2) Clear Kumeran Near-end loopback
462d5994 3638 * Should only be called for ICH8[m] devices with any 1G Phy.
bc7f75fa
AK
3639 **/
3640void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3641{
3642 s32 ret_val;
3643 u16 reg_data;
3644
462d5994 3645 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
bc7f75fa
AK
3646 return;
3647
3648 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3649 &reg_data);
3650 if (ret_val)
3651 return;
3652 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3653 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3654 reg_data);
3655 if (ret_val)
3656 return;
3657 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3658 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3659 reg_data);
3660}
3661
97ac8cae 3662/**
99730e4c 3663 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
97ac8cae
BA
3664 * @hw: pointer to the HW structure
3665 *
3666 * During S0 to Sx transition, it is possible the link remains at gig
3667 * instead of negotiating to a lower speed. Before going to Sx, set
c077a906
BA
3668 * 'Gig Disable' to force link speed negotiation to a lower speed based on
3669 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
3670 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3671 * needs to be written.
97ac8cae 3672 **/
99730e4c 3673void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
97ac8cae
BA
3674{
3675 u32 phy_ctrl;
8395ae83 3676 s32 ret_val;
97ac8cae 3677
17f085df 3678 phy_ctrl = er32(PHY_CTRL);
c077a906 3679 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
17f085df 3680 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3681
462d5994
BA
3682 if (hw->mac.type == e1000_ich8lan)
3683 e1000e_gig_downshift_workaround_ich8lan(hw);
3684
8395ae83 3685 if (hw->mac.type >= e1000_pchlan) {
ce54afd1 3686 e1000_oem_bits_config_ich8lan(hw, false);
03299e46 3687 e1000_phy_hw_reset_ich8lan(hw);
8395ae83
BA
3688 ret_val = hw->phy.ops.acquire(hw);
3689 if (ret_val)
3690 return;
3691 e1000_write_smbus_addr(hw);
3692 hw->phy.ops.release(hw);
3693 }
97ac8cae
BA
3694}
3695
99730e4c
BA
3696/**
3697 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3698 * @hw: pointer to the HW structure
3699 *
3700 * During Sx to S0 transitions on non-managed devices or managed devices
3701 * on which PHY resets are not blocked, if the PHY registers cannot be
3702 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3703 * the PHY.
3704 **/
3705void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3706{
90b82984
BA
3707 u16 phy_id1, phy_id2;
3708 s32 ret_val;
99730e4c 3709
90b82984 3710 if ((hw->mac.type != e1000_pch2lan) || e1000_check_reset_block(hw))
99730e4c
BA
3711 return;
3712
90b82984
BA
3713 ret_val = hw->phy.ops.acquire(hw);
3714 if (ret_val) {
3715 e_dbg("Failed to acquire PHY semaphore in resume\n");
3716 return;
3717 }
99730e4c 3718
90b82984
BA
3719 /* Test access to the PHY registers by reading the ID regs */
3720 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3721 if (ret_val)
3722 goto release;
3723 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3724 if (ret_val)
3725 goto release;
99730e4c 3726
90b82984
BA
3727 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3728 (u32)(phy_id2 & PHY_REVISION_MASK)))
3729 goto release;
99730e4c 3730
90b82984 3731 e1000_toggle_lanphypc_value_ich8lan(hw);
99730e4c 3732
90b82984
BA
3733 hw->phy.ops.release(hw);
3734 msleep(50);
3735 e1000_phy_hw_reset(hw);
3736 msleep(50);
3737 return;
99730e4c
BA
3738
3739release:
3740 hw->phy.ops.release(hw);
99730e4c
BA
3741}
3742
bc7f75fa
AK
3743/**
3744 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3745 * @hw: pointer to the HW structure
3746 *
3747 * Return the LED back to the default configuration.
3748 **/
3749static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3750{
3751 if (hw->phy.type == e1000_phy_ife)
3752 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3753
3754 ew32(LEDCTL, hw->mac.ledctl_default);
3755 return 0;
3756}
3757
3758/**
489815ce 3759 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3760 * @hw: pointer to the HW structure
3761 *
489815ce 3762 * Turn on the LEDs.
bc7f75fa
AK
3763 **/
3764static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3765{
3766 if (hw->phy.type == e1000_phy_ife)
3767 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3768 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3769
3770 ew32(LEDCTL, hw->mac.ledctl_mode2);
3771 return 0;
3772}
3773
3774/**
489815ce 3775 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3776 * @hw: pointer to the HW structure
3777 *
489815ce 3778 * Turn off the LEDs.
bc7f75fa
AK
3779 **/
3780static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3781{
3782 if (hw->phy.type == e1000_phy_ife)
3783 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
482fed85
BA
3784 (IFE_PSCL_PROBE_MODE |
3785 IFE_PSCL_PROBE_LEDS_OFF));
bc7f75fa
AK
3786
3787 ew32(LEDCTL, hw->mac.ledctl_mode1);
3788 return 0;
3789}
3790
a4f58f54
BA
3791/**
3792 * e1000_setup_led_pchlan - Configures SW controllable LED
3793 * @hw: pointer to the HW structure
3794 *
3795 * This prepares the SW controllable LED for use.
3796 **/
3797static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3798{
482fed85 3799 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
a4f58f54
BA
3800}
3801
3802/**
3803 * e1000_cleanup_led_pchlan - Restore the default LED operation
3804 * @hw: pointer to the HW structure
3805 *
3806 * Return the LED back to the default configuration.
3807 **/
3808static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3809{
482fed85 3810 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
a4f58f54
BA
3811}
3812
3813/**
3814 * e1000_led_on_pchlan - Turn LEDs on
3815 * @hw: pointer to the HW structure
3816 *
3817 * Turn on the LEDs.
3818 **/
3819static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3820{
3821 u16 data = (u16)hw->mac.ledctl_mode2;
3822 u32 i, led;
3823
3824 /*
3825 * If no link, then turn LED on by setting the invert bit
3826 * for each LED that's mode is "link_up" in ledctl_mode2.
3827 */
3828 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3829 for (i = 0; i < 3; i++) {
3830 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3831 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3832 E1000_LEDCTL_MODE_LINK_UP)
3833 continue;
3834 if (led & E1000_PHY_LED0_IVRT)
3835 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3836 else
3837 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3838 }
3839 }
3840
482fed85 3841 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3842}
3843
3844/**
3845 * e1000_led_off_pchlan - Turn LEDs off
3846 * @hw: pointer to the HW structure
3847 *
3848 * Turn off the LEDs.
3849 **/
3850static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3851{
3852 u16 data = (u16)hw->mac.ledctl_mode1;
3853 u32 i, led;
3854
3855 /*
3856 * If no link, then turn LED off by clearing the invert bit
3857 * for each LED that's mode is "link_up" in ledctl_mode1.
3858 */
3859 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3860 for (i = 0; i < 3; i++) {
3861 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3862 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3863 E1000_LEDCTL_MODE_LINK_UP)
3864 continue;
3865 if (led & E1000_PHY_LED0_IVRT)
3866 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3867 else
3868 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3869 }
3870 }
3871
482fed85 3872 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3873}
3874
f4187b56 3875/**
e98cac44 3876 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
3877 * @hw: pointer to the HW structure
3878 *
e98cac44
BA
3879 * Read appropriate register for the config done bit for completion status
3880 * and configure the PHY through s/w for EEPROM-less parts.
3881 *
3882 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3883 * config done bit, so only an error is logged and continues. If we were
3884 * to return with error, EEPROM-less silicon would not be able to be reset
3885 * or change link.
f4187b56
BA
3886 **/
3887static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3888{
e98cac44 3889 s32 ret_val = 0;
f4187b56 3890 u32 bank = 0;
e98cac44 3891 u32 status;
f4187b56 3892
e98cac44 3893 e1000e_get_cfg_done(hw);
fc0c7760 3894
e98cac44
BA
3895 /* Wait for indication from h/w that it has completed basic config */
3896 if (hw->mac.type >= e1000_ich10lan) {
3897 e1000_lan_init_done_ich8lan(hw);
3898 } else {
3899 ret_val = e1000e_get_auto_rd_done(hw);
3900 if (ret_val) {
3901 /*
3902 * When auto config read does not complete, do not
3903 * return with an error. This can happen in situations
3904 * where there is no eeprom and prevents getting link.
3905 */
3906 e_dbg("Auto Read Done did not complete\n");
3907 ret_val = 0;
3908 }
fc0c7760
BA
3909 }
3910
e98cac44
BA
3911 /* Clear PHY Reset Asserted bit */
3912 status = er32(STATUS);
3913 if (status & E1000_STATUS_PHYRA)
3914 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3915 else
3916 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
3917
3918 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 3919 if (hw->mac.type <= e1000_ich9lan) {
f4187b56
BA
3920 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3921 (hw->phy.type == e1000_phy_igp_3)) {
3922 e1000e_phy_init_script_igp3(hw);
3923 }
3924 } else {
3925 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3926 /* Maybe we should do a basic PHY config */
3bb99fe2 3927 e_dbg("EEPROM not present\n");
e98cac44 3928 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
3929 }
3930 }
3931
e98cac44 3932 return ret_val;
f4187b56
BA
3933}
3934
17f208de
BA
3935/**
3936 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3937 * @hw: pointer to the HW structure
3938 *
3939 * In the case of a PHY power down to save power, or to turn off link during a
3940 * driver unload, or wake on lan is not enabled, remove the link.
3941 **/
3942static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3943{
3944 /* If the management interface is not enabled, then power down */
3945 if (!(hw->mac.ops.check_mng_mode(hw) ||
3946 hw->phy.ops.check_reset_block(hw)))
3947 e1000_power_down_phy_copper(hw);
17f208de
BA
3948}
3949
bc7f75fa
AK
3950/**
3951 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3952 * @hw: pointer to the HW structure
3953 *
3954 * Clears hardware counters specific to the silicon family and calls
3955 * clear_hw_cntrs_generic to clear all general purpose counters.
3956 **/
3957static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3958{
a4f58f54 3959 u16 phy_data;
2b6b168d 3960 s32 ret_val;
bc7f75fa
AK
3961
3962 e1000e_clear_hw_cntrs_base(hw);
3963
99673d9b
BA
3964 er32(ALGNERRC);
3965 er32(RXERRC);
3966 er32(TNCRS);
3967 er32(CEXTERR);
3968 er32(TSCTC);
3969 er32(TSCTFC);
bc7f75fa 3970
99673d9b
BA
3971 er32(MGTPRC);
3972 er32(MGTPDC);
3973 er32(MGTPTC);
bc7f75fa 3974
99673d9b
BA
3975 er32(IAC);
3976 er32(ICRXOC);
bc7f75fa 3977
a4f58f54
BA
3978 /* Clear PHY statistics registers */
3979 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3980 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3981 (hw->phy.type == e1000_phy_82577)) {
2b6b168d
BA
3982 ret_val = hw->phy.ops.acquire(hw);
3983 if (ret_val)
3984 return;
3985 ret_val = hw->phy.ops.set_page(hw,
3986 HV_STATS_PAGE << IGP_PAGE_SHIFT);
3987 if (ret_val)
3988 goto release;
3989 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3990 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3991 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3992 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3993 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3994 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3995 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3996 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3997 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3998 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3999 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4000 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4001 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4002 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4003release:
4004 hw->phy.ops.release(hw);
a4f58f54 4005 }
bc7f75fa
AK
4006}
4007
8ce9d6c7 4008static const struct e1000_mac_operations ich8_mac_ops = {
eb7700dc 4009 /* check_mng_mode dependent on mac type */
7d3cabbc 4010 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 4011 /* cleanup_led dependent on mac type */
bc7f75fa
AK
4012 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4013 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 4014 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 4015 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
4016 /* led_on dependent on mac type */
4017 /* led_off dependent on mac type */
e2de3eb6 4018 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
4019 .reset_hw = e1000_reset_hw_ich8lan,
4020 .init_hw = e1000_init_hw_ich8lan,
4021 .setup_link = e1000_setup_link_ich8lan,
4022 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 4023 /* id_led_init dependent on mac type */
bc7f75fa
AK
4024};
4025
8ce9d6c7 4026static const struct e1000_phy_operations ich8_phy_ops = {
94d8186a 4027 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 4028 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 4029 .commit = NULL,
f4187b56 4030 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 4031 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
4032 .read_reg = e1000e_read_phy_reg_igp,
4033 .release = e1000_release_swflag_ich8lan,
4034 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
4035 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4036 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 4037 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
4038};
4039
8ce9d6c7 4040static const struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
4041 .acquire = e1000_acquire_nvm_ich8lan,
4042 .read = e1000_read_nvm_ich8lan,
4043 .release = e1000_release_nvm_ich8lan,
4044 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 4045 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
4046 .validate = e1000_validate_nvm_checksum_ich8lan,
4047 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
4048};
4049
8ce9d6c7 4050const struct e1000_info e1000_ich8_info = {
bc7f75fa
AK
4051 .mac = e1000_ich8lan,
4052 .flags = FLAG_HAS_WOL
97ac8cae 4053 | FLAG_IS_ICH
bc7f75fa
AK
4054 | FLAG_HAS_CTRLEXT_ON_LOAD
4055 | FLAG_HAS_AMT
4056 | FLAG_HAS_FLASH
4057 | FLAG_APME_IN_WUC,
4058 .pba = 8,
2adc55c9 4059 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 4060 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4061 .mac_ops = &ich8_mac_ops,
4062 .phy_ops = &ich8_phy_ops,
4063 .nvm_ops = &ich8_nvm_ops,
4064};
4065
8ce9d6c7 4066const struct e1000_info e1000_ich9_info = {
bc7f75fa
AK
4067 .mac = e1000_ich9lan,
4068 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 4069 | FLAG_IS_ICH
bc7f75fa 4070 | FLAG_HAS_WOL
bc7f75fa
AK
4071 | FLAG_HAS_CTRLEXT_ON_LOAD
4072 | FLAG_HAS_AMT
bc7f75fa
AK
4073 | FLAG_HAS_FLASH
4074 | FLAG_APME_IN_WUC,
7f1557e1 4075 .pba = 18,
2adc55c9 4076 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 4077 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4078 .mac_ops = &ich8_mac_ops,
4079 .phy_ops = &ich8_phy_ops,
4080 .nvm_ops = &ich8_nvm_ops,
4081};
4082
8ce9d6c7 4083const struct e1000_info e1000_ich10_info = {
f4187b56
BA
4084 .mac = e1000_ich10lan,
4085 .flags = FLAG_HAS_JUMBO_FRAMES
4086 | FLAG_IS_ICH
4087 | FLAG_HAS_WOL
f4187b56
BA
4088 | FLAG_HAS_CTRLEXT_ON_LOAD
4089 | FLAG_HAS_AMT
f4187b56
BA
4090 | FLAG_HAS_FLASH
4091 | FLAG_APME_IN_WUC,
7f1557e1 4092 .pba = 18,
2adc55c9 4093 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
4094 .get_variants = e1000_get_variants_ich8lan,
4095 .mac_ops = &ich8_mac_ops,
4096 .phy_ops = &ich8_phy_ops,
4097 .nvm_ops = &ich8_nvm_ops,
4098};
a4f58f54 4099
8ce9d6c7 4100const struct e1000_info e1000_pch_info = {
a4f58f54
BA
4101 .mac = e1000_pchlan,
4102 .flags = FLAG_IS_ICH
4103 | FLAG_HAS_WOL
a4f58f54
BA
4104 | FLAG_HAS_CTRLEXT_ON_LOAD
4105 | FLAG_HAS_AMT
4106 | FLAG_HAS_FLASH
4107 | FLAG_HAS_JUMBO_FRAMES
38eb394e 4108 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 4109 | FLAG_APME_IN_WUC,
8c7bbb92 4110 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
4111 .pba = 26,
4112 .max_hw_frame_size = 4096,
4113 .get_variants = e1000_get_variants_ich8lan,
4114 .mac_ops = &ich8_mac_ops,
4115 .phy_ops = &ich8_phy_ops,
4116 .nvm_ops = &ich8_nvm_ops,
4117};
d3738bb8 4118
8ce9d6c7 4119const struct e1000_info e1000_pch2_info = {
d3738bb8
BA
4120 .mac = e1000_pch2lan,
4121 .flags = FLAG_IS_ICH
4122 | FLAG_HAS_WOL
d3738bb8
BA
4123 | FLAG_HAS_CTRLEXT_ON_LOAD
4124 | FLAG_HAS_AMT
4125 | FLAG_HAS_FLASH
4126 | FLAG_HAS_JUMBO_FRAMES
4127 | FLAG_APME_IN_WUC,
e52997f9
BA
4128 .flags2 = FLAG2_HAS_PHY_STATS
4129 | FLAG2_HAS_EEE,
828bac87 4130 .pba = 26,
d3738bb8
BA
4131 .max_hw_frame_size = DEFAULT_JUMBO,
4132 .get_variants = e1000_get_variants_ich8lan,
4133 .mac_ops = &ich8_mac_ops,
4134 .phy_ops = &ich8_phy_ops,
4135 .nvm_ops = &ich8_nvm_ops,
4136};
This page took 1.229352 seconds and 5 git commands to generate.