e1000e: always set transmit descriptor control registers the same
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
0d6057e4 4 Copyright(c) 1999 - 2011 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
d3738bb8
BA
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
bc7f75fa
AK
57 */
58
bc7f75fa
AK
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
4a770358 66#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
831bd2e6
BA
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
bc7f75fa
AK
112#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES 7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
a4f58f54
BA
126#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
53ac5a88
BA
128#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
f523d211
BA
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 132#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
133#define HV_SMB_ADDR_PEC_EN 0x0200
134#define HV_SMB_ADDR_VALID 0x0080
135
d3738bb8
BA
136/* PHY Power Management Control */
137#define HV_PM_CTRL PHY_REG(770, 17)
138
e52997f9 139/* PHY Low Power Idle Control */
0ed013e2
BA
140#define I82579_LPI_CTRL PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
e52997f9 143
1effb45c
BA
144/* EMI Registers */
145#define I82579_EMI_ADDR 0x10
146#define I82579_EMI_DATA 0x11
147#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148
f523d211
BA
149/* Strapping Option Register - RO */
150#define E1000_STRAP 0x0000C
151#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
152#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153
fa2ce13c
BA
154/* OEM Bits Phy Register */
155#define HV_OEM_BITS PHY_REG(768, 25)
156#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 157#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
158#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159
1d5846b9
BA
160#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
162
fddaa1af
BA
163/* KMRN Mode Control */
164#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
165#define HV_KMRN_MDIO_SLOW 0x0400
166
1d2101a7
BA
167/* KMRN FIFO Control and Status */
168#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
169#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
170#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
171
bc7f75fa
AK
172/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173/* Offset 04h HSFSTS */
174union ich8_hws_flash_status {
175 struct ich8_hsfsts {
176 u16 flcdone :1; /* bit 0 Flash Cycle Done */
177 u16 flcerr :1; /* bit 1 Flash Cycle Error */
178 u16 dael :1; /* bit 2 Direct Access error Log */
179 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
180 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
181 u16 reserved1 :2; /* bit 13:6 Reserved */
182 u16 reserved2 :6; /* bit 13:6 Reserved */
183 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
185 } hsf_status;
186 u16 regval;
187};
188
189/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190/* Offset 06h FLCTL */
191union ich8_hws_flash_ctrl {
192 struct ich8_hsflctl {
193 u16 flcgo :1; /* 0 Flash Cycle Go */
194 u16 flcycle :2; /* 2:1 Flash Cycle */
195 u16 reserved :5; /* 7:3 Reserved */
196 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
197 u16 flockdn :6; /* 15:10 Reserved */
198 } hsf_ctrl;
199 u16 regval;
200};
201
202/* ICH Flash Region Access Permissions */
203union ich8_hws_flash_regacc {
204 struct ich8_flracc {
205 u32 grra :8; /* 0:7 GbE region Read Access */
206 u32 grwa :8; /* 8:15 GbE region Write Access */
207 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
208 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
209 } hsf_flregacc;
210 u16 regval;
211};
212
4a770358
BA
213/* ICH Flash Protected Region */
214union ich8_flash_protected_range {
215 struct ich8_pr {
216 u32 base:13; /* 0:12 Protected Range Base */
217 u32 reserved1:2; /* 13:14 Reserved */
218 u32 rpe:1; /* 15 Read Protection Enable */
219 u32 limit:13; /* 16:28 Protected Range Limit */
220 u32 reserved2:2; /* 29:30 Reserved */
221 u32 wpe:1; /* 31 Write Protection Enable */
222 } range;
223 u32 regval;
224};
225
bc7f75fa
AK
226static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
229static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 u32 offset, u8 byte);
f4187b56
BA
232static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 u8 *data);
bc7f75fa
AK
234static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 u16 *data);
236static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 u8 size, u16 *data);
238static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 240static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
241static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 249static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 250static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 251static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 252static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 253static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
254static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
831bd2e6 256static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 257static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
258
259static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260{
261 return readw(hw->flash_address + reg);
262}
263
264static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265{
266 return readl(hw->flash_address + reg);
267}
268
269static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270{
271 writew(val, hw->flash_address + reg);
272}
273
274static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275{
276 writel(val, hw->flash_address + reg);
277}
278
279#define er16flash(reg) __er16flash(hw, (reg))
280#define er32flash(reg) __er32flash(hw, (reg))
281#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
282#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
283
99730e4c
BA
284static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285{
286 u32 ctrl;
287
288 ctrl = er32(CTRL);
289 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 ew32(CTRL, ctrl);
945a5151 292 e1e_flush();
99730e4c
BA
293 udelay(10);
294 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 ew32(CTRL, ctrl);
296}
297
a4f58f54
BA
298/**
299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
301 *
302 * Initialize family-specific PHY parameters and function pointers.
303 **/
304static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305{
306 struct e1000_phy_info *phy = &hw->phy;
99730e4c 307 u32 fwsm;
a4f58f54
BA
308 s32 ret_val = 0;
309
310 phy->addr = 1;
311 phy->reset_delay_us = 100;
312
2b6b168d 313 phy->ops.set_page = e1000_set_page_igp;
94d8186a
BA
314 phy->ops.read_reg = e1000_read_phy_reg_hv;
315 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
2b6b168d 316 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
fa2ce13c
BA
317 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
318 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
319 phy->ops.write_reg = e1000_write_phy_reg_hv;
320 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
2b6b168d 321 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
17f208de
BA
322 phy->ops.power_up = e1000_power_up_phy_copper;
323 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
324 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325
d3738bb8
BA
326 /*
327 * The MAC-PHY interconnect may still be in SMBus mode
328 * after Sx->S0. If the manageability engine (ME) is
329 * disabled, then toggle the LANPHYPC Value bit to force
330 * the interconnect to PCIe mode.
331 */
605c82ba 332 fwsm = er32(FWSM);
6cc7aaed 333 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
99730e4c 334 e1000_toggle_lanphypc_value_ich8lan(hw);
6dfaa769 335 msleep(50);
605c82ba
BA
336
337 /*
338 * Gate automatic PHY configuration by hardware on
339 * non-managed 82579
340 */
341 if (hw->mac.type == e1000_pch2lan)
342 e1000_gate_hw_phy_config_ich8lan(hw, true);
6dfaa769
BA
343 }
344
627c8a04 345 /*
b595076a 346 * Reset the PHY before any access to it. Doing so, ensures that
627c8a04
BA
347 * the PHY is in a known good state before we read/write PHY registers.
348 * The generic reset is sufficient here, because we haven't determined
349 * the PHY type yet.
350 */
351 ret_val = e1000e_phy_hw_reset_generic(hw);
352 if (ret_val)
353 goto out;
354
605c82ba 355 /* Ungate automatic PHY configuration on non-managed 82579 */
6cc7aaed 356 if ((hw->mac.type == e1000_pch2lan) &&
605c82ba 357 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 358 usleep_range(10000, 20000);
605c82ba
BA
359 e1000_gate_hw_phy_config_ich8lan(hw, false);
360 }
361
a4f58f54 362 phy->id = e1000_phy_unknown;
664dc878
BA
363 switch (hw->mac.type) {
364 default:
365 ret_val = e1000e_get_phy_id(hw);
366 if (ret_val)
367 goto out;
368 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 break;
370 /* fall-through */
371 case e1000_pch2lan:
fddaa1af 372 /*
664dc878 373 * In case the PHY needs to be in mdio slow mode,
fddaa1af
BA
374 * set slow mode and try to get the PHY id again.
375 */
376 ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 if (ret_val)
378 goto out;
379 ret_val = e1000e_get_phy_id(hw);
380 if (ret_val)
381 goto out;
664dc878 382 break;
fddaa1af 383 }
a4f58f54
BA
384 phy->type = e1000e_get_phy_type_from_id(phy->id);
385
0be84010
BA
386 switch (phy->type) {
387 case e1000_phy_82577:
d3738bb8 388 case e1000_phy_82579:
a4f58f54
BA
389 phy->ops.check_polarity = e1000_check_polarity_82577;
390 phy->ops.force_speed_duplex =
6cc7aaed 391 e1000_phy_force_speed_duplex_82577;
0be84010 392 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
393 phy->ops.get_info = e1000_get_phy_info_82577;
394 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 395 break;
0be84010
BA
396 case e1000_phy_82578:
397 phy->ops.check_polarity = e1000_check_polarity_m88;
398 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 phy->ops.get_info = e1000e_get_phy_info_m88;
401 break;
402 default:
403 ret_val = -E1000_ERR_PHY;
404 break;
a4f58f54
BA
405 }
406
fddaa1af 407out:
a4f58f54
BA
408 return ret_val;
409}
410
bc7f75fa
AK
411/**
412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413 * @hw: pointer to the HW structure
414 *
415 * Initialize family-specific PHY parameters and function pointers.
416 **/
417static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418{
419 struct e1000_phy_info *phy = &hw->phy;
420 s32 ret_val;
421 u16 i = 0;
422
423 phy->addr = 1;
424 phy->reset_delay_us = 100;
425
17f208de
BA
426 phy->ops.power_up = e1000_power_up_phy_copper;
427 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
428
97ac8cae
BA
429 /*
430 * We may need to do this twice - once for IGP and if that fails,
431 * we'll set BM func pointers and try again
432 */
433 ret_val = e1000e_determine_phy_address(hw);
434 if (ret_val) {
94d8186a
BA
435 phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 437 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
438 if (ret_val) {
439 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 440 return ret_val;
9b71b419 441 }
97ac8cae
BA
442 }
443
bc7f75fa
AK
444 phy->id = 0;
445 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 (i++ < 100)) {
1bba4386 447 usleep_range(1000, 2000);
bc7f75fa
AK
448 ret_val = e1000e_get_phy_id(hw);
449 if (ret_val)
450 return ret_val;
451 }
452
453 /* Verify phy id */
454 switch (phy->id) {
455 case IGP03E1000_E_PHY_ID:
456 phy->type = e1000_phy_igp_3;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
458 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
460 phy->ops.get_info = e1000e_get_phy_info_igp;
461 phy->ops.check_polarity = e1000_check_polarity_igp;
462 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
463 break;
464 case IFE_E_PHY_ID:
465 case IFE_PLUS_E_PHY_ID:
466 case IFE_C_E_PHY_ID:
467 phy->type = e1000_phy_ife;
468 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
469 phy->ops.get_info = e1000_get_phy_info_ife;
470 phy->ops.check_polarity = e1000_check_polarity_ife;
471 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 472 break;
97ac8cae
BA
473 case BME1000_E_PHY_ID:
474 phy->type = e1000_phy_bm;
475 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
476 phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
479 phy->ops.get_info = e1000e_get_phy_info_m88;
480 phy->ops.check_polarity = e1000_check_polarity_m88;
481 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 482 break;
bc7f75fa
AK
483 default:
484 return -E1000_ERR_PHY;
485 break;
486 }
487
488 return 0;
489}
490
491/**
492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493 * @hw: pointer to the HW structure
494 *
495 * Initialize family-specific NVM parameters and function
496 * pointers.
497 **/
498static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499{
500 struct e1000_nvm_info *nvm = &hw->nvm;
501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 502 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
503 u16 i;
504
ad68076e 505 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 506 if (!hw->flash_address) {
3bb99fe2 507 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
508 return -E1000_ERR_CONFIG;
509 }
510
511 nvm->type = e1000_nvm_flash_sw;
512
513 gfpreg = er32flash(ICH_FLASH_GFPREG);
514
ad68076e
BA
515 /*
516 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 517 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
518 * the overall size.
519 */
bc7f75fa
AK
520 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522
523 /* flash_base_addr is byte-aligned */
524 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525
ad68076e
BA
526 /*
527 * find total size of the NVM, then cut in half since the total
528 * size represents two separate NVM banks.
529 */
bc7f75fa
AK
530 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 << FLASH_SECTOR_ADDR_SHIFT;
532 nvm->flash_bank_size /= 2;
533 /* Adjust to word count */
534 nvm->flash_bank_size /= sizeof(u16);
535
536 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537
538 /* Clear shadow ram */
539 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 540 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
541 dev_spec->shadow_ram[i].value = 0xFFFF;
542 }
543
544 return 0;
545}
546
547/**
548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549 * @hw: pointer to the HW structure
550 *
551 * Initialize family-specific MAC parameters and function
552 * pointers.
553 **/
554static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555{
556 struct e1000_hw *hw = &adapter->hw;
557 struct e1000_mac_info *mac = &hw->mac;
558
559 /* Set media type function pointer */
318a94d6 560 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
561
562 /* Set mta register count */
563 mac->mta_reg_count = 32;
564 /* Set rar entry count */
565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 if (mac->type == e1000_ich8lan)
567 mac->rar_entry_count--;
a65a4a0d
BA
568 /* FWSM register */
569 mac->has_fwsm = true;
570 /* ARC subsystem not supported */
571 mac->arc_subsystem_valid = false;
f464ba87
BA
572 /* Adaptive IFS supported */
573 mac->adaptive_ifs = true;
bc7f75fa 574
a4f58f54
BA
575 /* LED operations */
576 switch (mac->type) {
577 case e1000_ich8lan:
578 case e1000_ich9lan:
579 case e1000_ich10lan:
eb7700dc
BA
580 /* check management mode */
581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54
BA
582 /* ID LED init */
583 mac->ops.id_led_init = e1000e_id_led_init;
dbf80dcb
BA
584 /* blink LED */
585 mac->ops.blink_led = e1000e_blink_led_generic;
a4f58f54
BA
586 /* setup LED */
587 mac->ops.setup_led = e1000e_setup_led_generic;
588 /* cleanup LED */
589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 /* turn on/off LED */
591 mac->ops.led_on = e1000_led_on_ich8lan;
592 mac->ops.led_off = e1000_led_off_ich8lan;
593 break;
594 case e1000_pchlan:
d3738bb8 595 case e1000_pch2lan:
eb7700dc
BA
596 /* check management mode */
597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
598 /* ID LED init */
599 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 /* setup LED */
601 mac->ops.setup_led = e1000_setup_led_pchlan;
602 /* cleanup LED */
603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 /* turn on/off LED */
605 mac->ops.led_on = e1000_led_on_pchlan;
606 mac->ops.led_off = e1000_led_off_pchlan;
607 break;
608 default:
609 break;
610 }
611
bc7f75fa
AK
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac->type == e1000_ich8lan)
564ea9bb 614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa 615
605c82ba
BA
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac->type == e1000_pch2lan) &&
618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 e1000_gate_hw_phy_config_ich8lan(hw, true);
d3738bb8 620
bc7f75fa
AK
621 return 0;
622}
623
e52997f9
BA
624/**
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
627 *
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
630 **/
631static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632{
633 s32 ret_val = 0;
634 u16 phy_reg;
635
636 if (hw->phy.type != e1000_phy_82579)
637 goto out;
638
639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 if (ret_val)
641 goto out;
642
643 if (hw->dev_spec.ich8lan.eee_disable)
644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 else
646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649out:
650 return ret_val;
651}
652
7d3cabbc
BA
653/**
654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655 * @hw: pointer to the HW structure
656 *
657 * Checks to see of the link status of the hardware has changed. If a
658 * change in link status has been detected, then we read the PHY registers
659 * to get the current speed/duplex if link exists.
660 **/
661static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662{
663 struct e1000_mac_info *mac = &hw->mac;
664 s32 ret_val;
665 bool link;
1d2101a7 666 u16 phy_reg;
7d3cabbc
BA
667
668 /*
669 * We only want to go out to the PHY registers to see if Auto-Neg
670 * has completed and/or if our link status has changed. The
671 * get_link_status flag is set upon receiving a Link Status
672 * Change or Rx Sequence Error interrupt.
673 */
674 if (!mac->get_link_status) {
675 ret_val = 0;
676 goto out;
677 }
678
7d3cabbc
BA
679 /*
680 * First we want to see if the MII Status Register reports
681 * link. If so, then we want to get the current speed/duplex
682 * of the PHY.
683 */
684 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 if (ret_val)
686 goto out;
687
1d5846b9
BA
688 if (hw->mac.type == e1000_pchlan) {
689 ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 if (ret_val)
691 goto out;
692 }
693
7d3cabbc
BA
694 if (!link)
695 goto out; /* No link detected */
696
697 mac->get_link_status = false;
698
1d2101a7
BA
699 switch (hw->mac.type) {
700 case e1000_pch2lan:
831bd2e6
BA
701 ret_val = e1000_k1_workaround_lv(hw);
702 if (ret_val)
703 goto out;
1d2101a7
BA
704 /* fall-thru */
705 case e1000_pchlan:
706 if (hw->phy.type == e1000_phy_82578) {
707 ret_val = e1000_link_stall_workaround_hv(hw);
708 if (ret_val)
709 goto out;
710 }
711
712 /*
713 * Workaround for PCHx parts in half-duplex:
714 * Set the number of preambles removed from the packet
715 * when it is passed from the PHY to the MAC to prevent
716 * the MAC from misinterpreting the packet type.
717 */
718 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720
721 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723
724 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 break;
726 default:
727 break;
831bd2e6
BA
728 }
729
7d3cabbc
BA
730 /*
731 * Check if there was DownShift, must be checked
732 * immediately after link-up
733 */
734 e1000e_check_downshift(hw);
735
e52997f9
BA
736 /* Enable/Disable EEE after link up */
737 ret_val = e1000_set_eee_pchlan(hw);
738 if (ret_val)
739 goto out;
740
7d3cabbc
BA
741 /*
742 * If we are forcing speed/duplex, then we simply return since
743 * we have already determined whether we have link or not.
744 */
745 if (!mac->autoneg) {
746 ret_val = -E1000_ERR_CONFIG;
747 goto out;
748 }
749
750 /*
751 * Auto-Neg is enabled. Auto Speed Detection takes care
752 * of MAC speed/duplex configuration. So we only need to
753 * configure Collision Distance in the MAC.
754 */
755 e1000e_config_collision_dist(hw);
756
757 /*
758 * Configure Flow Control now that Auto-Neg has completed.
759 * First, we need to restore the desired flow control
760 * settings because we may have had to re-autoneg with a
761 * different link partner.
762 */
763 ret_val = e1000e_config_fc_after_link_up(hw);
764 if (ret_val)
3bb99fe2 765 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
766
767out:
768 return ret_val;
769}
770
69e3fd8c 771static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
772{
773 struct e1000_hw *hw = &adapter->hw;
774 s32 rc;
775
776 rc = e1000_init_mac_params_ich8lan(adapter);
777 if (rc)
778 return rc;
779
780 rc = e1000_init_nvm_params_ich8lan(hw);
781 if (rc)
782 return rc;
783
d3738bb8
BA
784 switch (hw->mac.type) {
785 case e1000_ich8lan:
786 case e1000_ich9lan:
787 case e1000_ich10lan:
a4f58f54 788 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
789 break;
790 case e1000_pchlan:
791 case e1000_pch2lan:
792 rc = e1000_init_phy_params_pchlan(hw);
793 break;
794 default:
795 break;
796 }
bc7f75fa
AK
797 if (rc)
798 return rc;
799
23e4f061
BA
800 /*
801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803 */
804 if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
2adc55c9
BA
807 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
dbf80dcb
BA
809
810 hw->mac.ops.blink_led = NULL;
2adc55c9
BA
811 }
812
bc7f75fa 813 if ((adapter->hw.mac.type == e1000_ich8lan) &&
462d5994 814 (adapter->hw.phy.type != e1000_phy_ife))
bc7f75fa
AK
815 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816
c6e7f51e
BA
817 /* Enable workaround for 82579 w/ ME enabled */
818 if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821
5a86f28f
BA
822 /* Disable EEE by default until IEEE802.3az spec is finalized */
823 if (adapter->flags2 & FLAG2_HAS_EEE)
824 adapter->hw.dev_spec.ich8lan.eee_disable = true;
825
bc7f75fa
AK
826 return 0;
827}
828
717d438d 829static DEFINE_MUTEX(nvm_mutex);
717d438d 830
ca15df58
BA
831/**
832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833 * @hw: pointer to the HW structure
834 *
835 * Acquires the mutex for performing NVM operations.
836 **/
837static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838{
839 mutex_lock(&nvm_mutex);
840
841 return 0;
842}
843
844/**
845 * e1000_release_nvm_ich8lan - Release NVM mutex
846 * @hw: pointer to the HW structure
847 *
848 * Releases the mutex used while performing NVM operations.
849 **/
850static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851{
852 mutex_unlock(&nvm_mutex);
ca15df58
BA
853}
854
bc7f75fa
AK
855/**
856 * e1000_acquire_swflag_ich8lan - Acquire software control flag
857 * @hw: pointer to the HW structure
858 *
ca15df58
BA
859 * Acquires the software control flag for performing PHY and select
860 * MAC CSR accesses.
bc7f75fa
AK
861 **/
862static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
863{
373a88d7
BA
864 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
865 s32 ret_val = 0;
bc7f75fa 866
a90b412c
BA
867 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
868 &hw->adapter->state)) {
34c9ef8b 869 e_dbg("contention for Phy access\n");
a90b412c
BA
870 return -E1000_ERR_PHY;
871 }
717d438d 872
bc7f75fa
AK
873 while (timeout) {
874 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
875 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
876 break;
bc7f75fa 877
373a88d7
BA
878 mdelay(1);
879 timeout--;
880 }
881
882 if (!timeout) {
a90b412c 883 e_dbg("SW has already locked the resource.\n");
373a88d7
BA
884 ret_val = -E1000_ERR_CONFIG;
885 goto out;
886 }
887
53ac5a88 888 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
889
890 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
891 ew32(EXTCNF_CTRL, extcnf_ctrl);
892
893 while (timeout) {
894 extcnf_ctrl = er32(EXTCNF_CTRL);
895 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
896 break;
a4f58f54 897
bc7f75fa
AK
898 mdelay(1);
899 timeout--;
900 }
901
902 if (!timeout) {
a90b412c
BA
903 e_dbg("Failed to acquire the semaphore, FW or HW has it: "
904 "FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
905 er32(FWSM), extcnf_ctrl);
2e2e8d53
BA
906 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
907 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
908 ret_val = -E1000_ERR_CONFIG;
909 goto out;
bc7f75fa
AK
910 }
911
373a88d7
BA
912out:
913 if (ret_val)
a90b412c 914 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
373a88d7
BA
915
916 return ret_val;
bc7f75fa
AK
917}
918
919/**
920 * e1000_release_swflag_ich8lan - Release software control flag
921 * @hw: pointer to the HW structure
922 *
ca15df58
BA
923 * Releases the software control flag for performing PHY and select
924 * MAC CSR accesses.
bc7f75fa
AK
925 **/
926static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
927{
928 u32 extcnf_ctrl;
929
930 extcnf_ctrl = er32(EXTCNF_CTRL);
c5caf482
BA
931
932 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
933 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
934 ew32(EXTCNF_CTRL, extcnf_ctrl);
935 } else {
936 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
937 }
717d438d 938
a90b412c 939 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
bc7f75fa
AK
940}
941
4662e82b
BA
942/**
943 * e1000_check_mng_mode_ich8lan - Checks management mode
944 * @hw: pointer to the HW structure
945 *
eb7700dc 946 * This checks if the adapter has any manageability enabled.
4662e82b
BA
947 * This is a function pointer entry point only called by read/write
948 * routines for the PHY and NVM parts.
949 **/
950static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
951{
a708dd88
BA
952 u32 fwsm;
953
954 fwsm = er32(FWSM);
eb7700dc
BA
955 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
956 ((fwsm & E1000_FWSM_MODE_MASK) ==
957 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
958}
4662e82b 959
eb7700dc
BA
960/**
961 * e1000_check_mng_mode_pchlan - Checks management mode
962 * @hw: pointer to the HW structure
963 *
964 * This checks if the adapter has iAMT enabled.
965 * This is a function pointer entry point only called by read/write
966 * routines for the PHY and NVM parts.
967 **/
968static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
969{
970 u32 fwsm;
971
972 fwsm = er32(FWSM);
973 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
974 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
975}
976
bc7f75fa
AK
977/**
978 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
979 * @hw: pointer to the HW structure
980 *
981 * Checks if firmware is blocking the reset of the PHY.
982 * This is a function pointer entry point only called by
983 * reset routines.
984 **/
985static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
986{
987 u32 fwsm;
988
989 fwsm = er32(FWSM);
990
991 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
992}
993
8395ae83
BA
994/**
995 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
996 * @hw: pointer to the HW structure
997 *
998 * Assumes semaphore already acquired.
999 *
1000 **/
1001static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1002{
1003 u16 phy_data;
1004 u32 strap = er32(STRAP);
1005 s32 ret_val = 0;
1006
1007 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1008
1009 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1010 if (ret_val)
1011 goto out;
1012
1013 phy_data &= ~HV_SMB_ADDR_MASK;
1014 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1015 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1016 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1017
1018out:
1019 return ret_val;
1020}
1021
f523d211
BA
1022/**
1023 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1024 * @hw: pointer to the HW structure
1025 *
1026 * SW should configure the LCD from the NVM extended configuration region
1027 * as a workaround for certain parts.
1028 **/
1029static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1030{
1031 struct e1000_phy_info *phy = &hw->phy;
1032 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 1033 s32 ret_val = 0;
f523d211
BA
1034 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1035
f523d211
BA
1036 /*
1037 * Initialize the PHY from the NVM on ICH platforms. This
1038 * is needed due to an issue where the NVM configuration is
1039 * not properly autoloaded after power transitions.
1040 * Therefore, after each PHY reset, we will load the
1041 * configuration data out of the NVM manually.
1042 */
3f0c16e8
BA
1043 switch (hw->mac.type) {
1044 case e1000_ich8lan:
1045 if (phy->type != e1000_phy_igp_3)
1046 return ret_val;
1047
5f3eed6f
BA
1048 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1049 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
1050 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1051 break;
1052 }
1053 /* Fall-thru */
1054 case e1000_pchlan:
d3738bb8 1055 case e1000_pch2lan:
8b802a7e 1056 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
1057 break;
1058 default:
1059 return ret_val;
1060 }
1061
1062 ret_val = hw->phy.ops.acquire(hw);
1063 if (ret_val)
1064 return ret_val;
8b802a7e
BA
1065
1066 data = er32(FEXTNVM);
1067 if (!(data & sw_cfg_mask))
1068 goto out;
f523d211 1069
8b802a7e
BA
1070 /*
1071 * Make sure HW does not configure LCD from PHY
1072 * extended configuration before SW configuration
1073 */
1074 data = er32(EXTCNF_CTRL);
d3738bb8
BA
1075 if (!(hw->mac.type == e1000_pch2lan)) {
1076 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1077 goto out;
1078 }
8b802a7e
BA
1079
1080 cnf_size = er32(EXTCNF_SIZE);
1081 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1082 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1083 if (!cnf_size)
1084 goto out;
1085
1086 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1087 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1088
87fb7410
BA
1089 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1090 (hw->mac.type == e1000_pchlan)) ||
1091 (hw->mac.type == e1000_pch2lan)) {
f523d211 1092 /*
8b802a7e
BA
1093 * HW configures the SMBus address and LEDs when the
1094 * OEM and LCD Write Enable bits are set in the NVM.
1095 * When both NVM bits are cleared, SW will configure
1096 * them instead.
f523d211 1097 */
8395ae83 1098 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1099 if (ret_val)
f523d211
BA
1100 goto out;
1101
8b802a7e
BA
1102 data = er32(LEDCTL);
1103 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1104 (u16)data);
1105 if (ret_val)
f523d211 1106 goto out;
8b802a7e 1107 }
f523d211 1108
8b802a7e
BA
1109 /* Configure LCD from extended configuration region. */
1110
1111 /* cnf_base_addr is in DWORD */
1112 word_addr = (u16)(cnf_base_addr << 1);
1113
1114 for (i = 0; i < cnf_size; i++) {
1115 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1116 &reg_data);
1117 if (ret_val)
1118 goto out;
1119
1120 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1121 1, &reg_addr);
1122 if (ret_val)
1123 goto out;
1124
1125 /* Save off the PHY page for future writes. */
1126 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1127 phy_page = reg_data;
1128 continue;
f523d211 1129 }
8b802a7e
BA
1130
1131 reg_addr &= PHY_REG_MASK;
1132 reg_addr |= phy_page;
1133
1134 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1135 reg_data);
1136 if (ret_val)
1137 goto out;
f523d211
BA
1138 }
1139
1140out:
94d8186a 1141 hw->phy.ops.release(hw);
f523d211
BA
1142 return ret_val;
1143}
1144
1d5846b9
BA
1145/**
1146 * e1000_k1_gig_workaround_hv - K1 Si workaround
1147 * @hw: pointer to the HW structure
1148 * @link: link up bool flag
1149 *
1150 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1151 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1152 * If link is down, the function will restore the default K1 setting located
1153 * in the NVM.
1154 **/
1155static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1156{
1157 s32 ret_val = 0;
1158 u16 status_reg = 0;
1159 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1160
1161 if (hw->mac.type != e1000_pchlan)
1162 goto out;
1163
1164 /* Wrap the whole flow with the sw flag */
94d8186a 1165 ret_val = hw->phy.ops.acquire(hw);
1d5846b9
BA
1166 if (ret_val)
1167 goto out;
1168
1169 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1170 if (link) {
1171 if (hw->phy.type == e1000_phy_82578) {
94d8186a 1172 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
1173 &status_reg);
1174 if (ret_val)
1175 goto release;
1176
1177 status_reg &= BM_CS_STATUS_LINK_UP |
1178 BM_CS_STATUS_RESOLVED |
1179 BM_CS_STATUS_SPEED_MASK;
1180
1181 if (status_reg == (BM_CS_STATUS_LINK_UP |
1182 BM_CS_STATUS_RESOLVED |
1183 BM_CS_STATUS_SPEED_1000))
1184 k1_enable = false;
1185 }
1186
1187 if (hw->phy.type == e1000_phy_82577) {
94d8186a 1188 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
1189 &status_reg);
1190 if (ret_val)
1191 goto release;
1192
1193 status_reg &= HV_M_STATUS_LINK_UP |
1194 HV_M_STATUS_AUTONEG_COMPLETE |
1195 HV_M_STATUS_SPEED_MASK;
1196
1197 if (status_reg == (HV_M_STATUS_LINK_UP |
1198 HV_M_STATUS_AUTONEG_COMPLETE |
1199 HV_M_STATUS_SPEED_1000))
1200 k1_enable = false;
1201 }
1202
1203 /* Link stall fix for link up */
94d8186a 1204 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1205 0x0100);
1206 if (ret_val)
1207 goto release;
1208
1209 } else {
1210 /* Link stall fix for link down */
94d8186a 1211 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
1212 0x4100);
1213 if (ret_val)
1214 goto release;
1215 }
1216
1217 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1218
1219release:
94d8186a 1220 hw->phy.ops.release(hw);
1d5846b9
BA
1221out:
1222 return ret_val;
1223}
1224
1225/**
1226 * e1000_configure_k1_ich8lan - Configure K1 power state
1227 * @hw: pointer to the HW structure
1228 * @enable: K1 state to configure
1229 *
1230 * Configure the K1 power state based on the provided parameter.
1231 * Assumes semaphore already acquired.
1232 *
1233 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1234 **/
bb436b20 1235s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1236{
1237 s32 ret_val = 0;
1238 u32 ctrl_reg = 0;
1239 u32 ctrl_ext = 0;
1240 u32 reg = 0;
1241 u16 kmrn_reg = 0;
1242
1243 ret_val = e1000e_read_kmrn_reg_locked(hw,
1244 E1000_KMRNCTRLSTA_K1_CONFIG,
1245 &kmrn_reg);
1246 if (ret_val)
1247 goto out;
1248
1249 if (k1_enable)
1250 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1251 else
1252 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1253
1254 ret_val = e1000e_write_kmrn_reg_locked(hw,
1255 E1000_KMRNCTRLSTA_K1_CONFIG,
1256 kmrn_reg);
1257 if (ret_val)
1258 goto out;
1259
1260 udelay(20);
1261 ctrl_ext = er32(CTRL_EXT);
1262 ctrl_reg = er32(CTRL);
1263
1264 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1265 reg |= E1000_CTRL_FRCSPD;
1266 ew32(CTRL, reg);
1267
1268 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
945a5151 1269 e1e_flush();
1d5846b9
BA
1270 udelay(20);
1271 ew32(CTRL, ctrl_reg);
1272 ew32(CTRL_EXT, ctrl_ext);
945a5151 1273 e1e_flush();
1d5846b9
BA
1274 udelay(20);
1275
1276out:
1277 return ret_val;
1278}
1279
f523d211
BA
1280/**
1281 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1282 * @hw: pointer to the HW structure
1283 * @d0_state: boolean if entering d0 or d3 device state
1284 *
1285 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1286 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1287 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1288 **/
1289static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1290{
1291 s32 ret_val = 0;
1292 u32 mac_reg;
1293 u16 oem_reg;
1294
d3738bb8 1295 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
f523d211
BA
1296 return ret_val;
1297
94d8186a 1298 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1299 if (ret_val)
1300 return ret_val;
1301
d3738bb8
BA
1302 if (!(hw->mac.type == e1000_pch2lan)) {
1303 mac_reg = er32(EXTCNF_CTRL);
1304 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1305 goto out;
1306 }
f523d211
BA
1307
1308 mac_reg = er32(FEXTNVM);
1309 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1310 goto out;
1311
1312 mac_reg = er32(PHY_CTRL);
1313
94d8186a 1314 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211
BA
1315 if (ret_val)
1316 goto out;
1317
1318 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1319
1320 if (d0_state) {
1321 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1322 oem_reg |= HV_OEM_BITS_GBE_DIS;
1323
1324 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1325 oem_reg |= HV_OEM_BITS_LPLU;
03299e46
BA
1326
1327 /* Set Restart auto-neg to activate the bits */
1328 if (!e1000_check_reset_block(hw))
1329 oem_reg |= HV_OEM_BITS_RESTART_AN;
f523d211 1330 } else {
03299e46
BA
1331 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1332 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
f523d211
BA
1333 oem_reg |= HV_OEM_BITS_GBE_DIS;
1334
03299e46
BA
1335 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1336 E1000_PHY_CTRL_NOND0A_LPLU))
f523d211
BA
1337 oem_reg |= HV_OEM_BITS_LPLU;
1338 }
03299e46 1339
94d8186a 1340 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211
BA
1341
1342out:
94d8186a 1343 hw->phy.ops.release(hw);
f523d211
BA
1344
1345 return ret_val;
1346}
1347
1348
fddaa1af
BA
1349/**
1350 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1351 * @hw: pointer to the HW structure
1352 **/
1353static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1354{
1355 s32 ret_val;
1356 u16 data;
1357
1358 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1359 if (ret_val)
1360 return ret_val;
1361
1362 data |= HV_KMRN_MDIO_SLOW;
1363
1364 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1365
1366 return ret_val;
1367}
1368
a4f58f54
BA
1369/**
1370 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1371 * done after every PHY reset.
1372 **/
1373static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1374{
1375 s32 ret_val = 0;
baf86c9d 1376 u16 phy_data;
a4f58f54
BA
1377
1378 if (hw->mac.type != e1000_pchlan)
1379 return ret_val;
1380
fddaa1af
BA
1381 /* Set MDIO slow mode before any other MDIO access */
1382 if (hw->phy.type == e1000_phy_82577) {
1383 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1384 if (ret_val)
1385 goto out;
1386 }
1387
a4f58f54
BA
1388 if (((hw->phy.type == e1000_phy_82577) &&
1389 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1390 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1391 /* Disable generation of early preamble */
1392 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1393 if (ret_val)
1394 return ret_val;
1395
1396 /* Preamble tuning for SSC */
1d2101a7 1397 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
a4f58f54
BA
1398 if (ret_val)
1399 return ret_val;
1400 }
1401
1402 if (hw->phy.type == e1000_phy_82578) {
1403 /*
1404 * Return registers to default by doing a soft reset then
1405 * writing 0x3140 to the control register.
1406 */
1407 if (hw->phy.revision < 2) {
1408 e1000e_phy_sw_reset(hw);
1409 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1410 }
1411 }
1412
1413 /* Select page 0 */
94d8186a 1414 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1415 if (ret_val)
1416 return ret_val;
1d5846b9 1417
a4f58f54 1418 hw->phy.addr = 1;
1d5846b9 1419 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1420 hw->phy.ops.release(hw);
1d5846b9
BA
1421 if (ret_val)
1422 goto out;
a4f58f54 1423
1d5846b9
BA
1424 /*
1425 * Configure the K1 Si workaround during phy reset assuming there is
1426 * link so that it disables K1 if link is in 1Gbps.
1427 */
1428 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d
BA
1429 if (ret_val)
1430 goto out;
1d5846b9 1431
baf86c9d
BA
1432 /* Workaround for link disconnects on a busy hub in half duplex */
1433 ret_val = hw->phy.ops.acquire(hw);
1434 if (ret_val)
1435 goto out;
3ebfc7c9 1436 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
baf86c9d
BA
1437 if (ret_val)
1438 goto release;
3ebfc7c9
BA
1439 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1440 phy_data & 0x00FF);
baf86c9d
BA
1441release:
1442 hw->phy.ops.release(hw);
1d5846b9 1443out:
a4f58f54
BA
1444 return ret_val;
1445}
1446
d3738bb8
BA
1447/**
1448 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1449 * @hw: pointer to the HW structure
1450 **/
1451void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1452{
1453 u32 mac_reg;
2b6b168d
BA
1454 u16 i, phy_reg = 0;
1455 s32 ret_val;
1456
1457 ret_val = hw->phy.ops.acquire(hw);
1458 if (ret_val)
1459 return;
1460 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1461 if (ret_val)
1462 goto release;
d3738bb8
BA
1463
1464 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1465 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1466 mac_reg = er32(RAL(i));
2b6b168d
BA
1467 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1468 (u16)(mac_reg & 0xFFFF));
1469 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1470 (u16)((mac_reg >> 16) & 0xFFFF));
1471
d3738bb8 1472 mac_reg = er32(RAH(i));
2b6b168d
BA
1473 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1474 (u16)(mac_reg & 0xFFFF));
1475 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1476 (u16)((mac_reg & E1000_RAH_AV)
1477 >> 16));
d3738bb8 1478 }
2b6b168d
BA
1479
1480 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1481
1482release:
1483 hw->phy.ops.release(hw);
d3738bb8
BA
1484}
1485
d3738bb8
BA
1486/**
1487 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1488 * with 82579 PHY
1489 * @hw: pointer to the HW structure
1490 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1491 **/
1492s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1493{
1494 s32 ret_val = 0;
1495 u16 phy_reg, data;
1496 u32 mac_reg;
1497 u16 i;
1498
1499 if (hw->mac.type != e1000_pch2lan)
1500 goto out;
1501
1502 /* disable Rx path while enabling/disabling workaround */
1503 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1504 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1505 if (ret_val)
1506 goto out;
1507
1508 if (enable) {
1509 /*
1510 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1511 * SHRAL/H) and initial CRC values to the MAC
1512 */
1513 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1514 u8 mac_addr[ETH_ALEN] = {0};
1515 u32 addr_high, addr_low;
1516
1517 addr_high = er32(RAH(i));
1518 if (!(addr_high & E1000_RAH_AV))
1519 continue;
1520 addr_low = er32(RAL(i));
1521 mac_addr[0] = (addr_low & 0xFF);
1522 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1523 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1524 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1525 mac_addr[4] = (addr_high & 0xFF);
1526 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1527
fe46f58f 1528 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
d3738bb8
BA
1529 }
1530
1531 /* Write Rx addresses to the PHY */
1532 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1533
1534 /* Enable jumbo frame workaround in the MAC */
1535 mac_reg = er32(FFLT_DBG);
1536 mac_reg &= ~(1 << 14);
1537 mac_reg |= (7 << 15);
1538 ew32(FFLT_DBG, mac_reg);
1539
1540 mac_reg = er32(RCTL);
1541 mac_reg |= E1000_RCTL_SECRC;
1542 ew32(RCTL, mac_reg);
1543
1544 ret_val = e1000e_read_kmrn_reg(hw,
1545 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1546 &data);
1547 if (ret_val)
1548 goto out;
1549 ret_val = e1000e_write_kmrn_reg(hw,
1550 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1551 data | (1 << 0));
1552 if (ret_val)
1553 goto out;
1554 ret_val = e1000e_read_kmrn_reg(hw,
1555 E1000_KMRNCTRLSTA_HD_CTRL,
1556 &data);
1557 if (ret_val)
1558 goto out;
1559 data &= ~(0xF << 8);
1560 data |= (0xB << 8);
1561 ret_val = e1000e_write_kmrn_reg(hw,
1562 E1000_KMRNCTRLSTA_HD_CTRL,
1563 data);
1564 if (ret_val)
1565 goto out;
1566
1567 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1568 e1e_rphy(hw, PHY_REG(769, 23), &data);
1569 data &= ~(0x7F << 5);
1570 data |= (0x37 << 5);
1571 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1572 if (ret_val)
1573 goto out;
1574 e1e_rphy(hw, PHY_REG(769, 16), &data);
1575 data &= ~(1 << 13);
d3738bb8
BA
1576 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1577 if (ret_val)
1578 goto out;
1579 e1e_rphy(hw, PHY_REG(776, 20), &data);
1580 data &= ~(0x3FF << 2);
1581 data |= (0x1A << 2);
1582 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1583 if (ret_val)
1584 goto out;
b64e9dd5 1585 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
d3738bb8
BA
1586 if (ret_val)
1587 goto out;
1588 e1e_rphy(hw, HV_PM_CTRL, &data);
1589 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1590 if (ret_val)
1591 goto out;
1592 } else {
1593 /* Write MAC register values back to h/w defaults */
1594 mac_reg = er32(FFLT_DBG);
1595 mac_reg &= ~(0xF << 14);
1596 ew32(FFLT_DBG, mac_reg);
1597
1598 mac_reg = er32(RCTL);
1599 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1600 ew32(RCTL, mac_reg);
d3738bb8
BA
1601
1602 ret_val = e1000e_read_kmrn_reg(hw,
1603 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1604 &data);
1605 if (ret_val)
1606 goto out;
1607 ret_val = e1000e_write_kmrn_reg(hw,
1608 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1609 data & ~(1 << 0));
1610 if (ret_val)
1611 goto out;
1612 ret_val = e1000e_read_kmrn_reg(hw,
1613 E1000_KMRNCTRLSTA_HD_CTRL,
1614 &data);
1615 if (ret_val)
1616 goto out;
1617 data &= ~(0xF << 8);
1618 data |= (0xB << 8);
1619 ret_val = e1000e_write_kmrn_reg(hw,
1620 E1000_KMRNCTRLSTA_HD_CTRL,
1621 data);
1622 if (ret_val)
1623 goto out;
1624
1625 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
1626 e1e_rphy(hw, PHY_REG(769, 23), &data);
1627 data &= ~(0x7F << 5);
1628 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1629 if (ret_val)
1630 goto out;
1631 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
1632 data |= (1 << 13);
1633 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1634 if (ret_val)
1635 goto out;
1636 e1e_rphy(hw, PHY_REG(776, 20), &data);
1637 data &= ~(0x3FF << 2);
1638 data |= (0x8 << 2);
1639 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1640 if (ret_val)
1641 goto out;
1642 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1643 if (ret_val)
1644 goto out;
1645 e1e_rphy(hw, HV_PM_CTRL, &data);
1646 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1647 if (ret_val)
1648 goto out;
1649 }
1650
1651 /* re-enable Rx path after enabling/disabling workaround */
1652 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1653
1654out:
1655 return ret_val;
1656}
1657
1658/**
1659 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1660 * done after every PHY reset.
1661 **/
1662static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1663{
1664 s32 ret_val = 0;
1665
1666 if (hw->mac.type != e1000_pch2lan)
1667 goto out;
1668
1669 /* Set MDIO slow mode before any other MDIO access */
1670 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1671
1672out:
1673 return ret_val;
1674}
1675
831bd2e6
BA
1676/**
1677 * e1000_k1_gig_workaround_lv - K1 Si workaround
1678 * @hw: pointer to the HW structure
1679 *
1680 * Workaround to set the K1 beacon duration for 82579 parts
1681 **/
1682static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1683{
1684 s32 ret_val = 0;
1685 u16 status_reg = 0;
1686 u32 mac_reg;
0ed013e2 1687 u16 phy_reg;
831bd2e6
BA
1688
1689 if (hw->mac.type != e1000_pch2lan)
1690 goto out;
1691
1692 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1693 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1694 if (ret_val)
1695 goto out;
1696
1697 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1698 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1699 mac_reg = er32(FEXTNVM4);
1700 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1701
0ed013e2
BA
1702 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1703 if (ret_val)
1704 goto out;
1705
1706 if (status_reg & HV_M_STATUS_SPEED_1000) {
831bd2e6 1707 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
0ed013e2
BA
1708 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1709 } else {
831bd2e6 1710 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
0ed013e2
BA
1711 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1712 }
831bd2e6 1713 ew32(FEXTNVM4, mac_reg);
0ed013e2 1714 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
831bd2e6
BA
1715 }
1716
1717out:
1718 return ret_val;
1719}
1720
605c82ba
BA
1721/**
1722 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1723 * @hw: pointer to the HW structure
1724 * @gate: boolean set to true to gate, false to ungate
1725 *
1726 * Gate/ungate the automatic PHY configuration via hardware; perform
1727 * the configuration via software instead.
1728 **/
1729static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1730{
1731 u32 extcnf_ctrl;
1732
1733 if (hw->mac.type != e1000_pch2lan)
1734 return;
1735
1736 extcnf_ctrl = er32(EXTCNF_CTRL);
1737
1738 if (gate)
1739 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1740 else
1741 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1742
1743 ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 return;
1745}
1746
fc0c7760
BA
1747/**
1748 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1749 * @hw: pointer to the HW structure
1750 *
1751 * Check the appropriate indication the MAC has finished configuring the
1752 * PHY after a software reset.
1753 **/
1754static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1755{
1756 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1757
1758 /* Wait for basic configuration completes before proceeding */
1759 do {
1760 data = er32(STATUS);
1761 data &= E1000_STATUS_LAN_INIT_DONE;
1762 udelay(100);
1763 } while ((!data) && --loop);
1764
1765 /*
1766 * If basic configuration is incomplete before the above loop
1767 * count reaches 0, loading the configuration from NVM will
1768 * leave the PHY in a bad state possibly resulting in no link.
1769 */
1770 if (loop == 0)
3bb99fe2 1771 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1772
1773 /* Clear the Init Done bit for the next init event */
1774 data = er32(STATUS);
1775 data &= ~E1000_STATUS_LAN_INIT_DONE;
1776 ew32(STATUS, data);
1777}
1778
bc7f75fa 1779/**
e98cac44 1780 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 1781 * @hw: pointer to the HW structure
bc7f75fa 1782 **/
e98cac44 1783static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 1784{
f523d211
BA
1785 s32 ret_val = 0;
1786 u16 reg;
bc7f75fa 1787
e98cac44
BA
1788 if (e1000_check_reset_block(hw))
1789 goto out;
fc0c7760 1790
5f3eed6f 1791 /* Allow time for h/w to get to quiescent state after reset */
1bba4386 1792 usleep_range(10000, 20000);
5f3eed6f 1793
fddaa1af 1794 /* Perform any necessary post-reset workarounds */
e98cac44
BA
1795 switch (hw->mac.type) {
1796 case e1000_pchlan:
a4f58f54
BA
1797 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1798 if (ret_val)
e98cac44
BA
1799 goto out;
1800 break;
d3738bb8
BA
1801 case e1000_pch2lan:
1802 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1803 if (ret_val)
1804 goto out;
1805 break;
e98cac44
BA
1806 default:
1807 break;
a4f58f54
BA
1808 }
1809
3ebfc7c9
BA
1810 /* Clear the host wakeup bit after lcd reset */
1811 if (hw->mac.type >= e1000_pchlan) {
1812 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1813 reg &= ~BM_WUC_HOST_WU_BIT;
1814 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1815 }
db2932ec 1816
f523d211
BA
1817 /* Configure the LCD with the extended configuration region in NVM */
1818 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1819 if (ret_val)
1820 goto out;
bc7f75fa 1821
f523d211 1822 /* Configure the LCD with the OEM bits in NVM */
e98cac44 1823 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1824
1effb45c
BA
1825 if (hw->mac.type == e1000_pch2lan) {
1826 /* Ungate automatic PHY configuration on non-managed 82579 */
1827 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 1828 usleep_range(10000, 20000);
1effb45c
BA
1829 e1000_gate_hw_phy_config_ich8lan(hw, false);
1830 }
1831
1832 /* Set EEE LPI Update Timer to 200usec */
1833 ret_val = hw->phy.ops.acquire(hw);
1834 if (ret_val)
1835 goto out;
1836 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1837 I82579_LPI_UPDATE_TIMER);
1838 if (ret_val)
1839 goto release;
1840 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1841 0x1387);
1842release:
1843 hw->phy.ops.release(hw);
605c82ba
BA
1844 }
1845
f523d211 1846out:
e98cac44
BA
1847 return ret_val;
1848}
1849
1850/**
1851 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852 * @hw: pointer to the HW structure
1853 *
1854 * Resets the PHY
1855 * This is a function pointer entry point called by drivers
1856 * or other shared routines.
1857 **/
1858static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1859{
1860 s32 ret_val = 0;
1861
605c82ba
BA
1862 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863 if ((hw->mac.type == e1000_pch2lan) &&
1864 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865 e1000_gate_hw_phy_config_ich8lan(hw, true);
1866
e98cac44
BA
1867 ret_val = e1000e_phy_hw_reset_generic(hw);
1868 if (ret_val)
1869 goto out;
1870
1871 ret_val = e1000_post_phy_reset_ich8lan(hw);
1872
1873out:
1874 return ret_val;
bc7f75fa
AK
1875}
1876
fa2ce13c
BA
1877/**
1878 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1879 * @hw: pointer to the HW structure
1880 * @active: true to enable LPLU, false to disable
1881 *
1882 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1883 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1884 * the phy speed. This function will manually set the LPLU bit and restart
1885 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1886 * since it configures the same bit.
1887 **/
1888static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1889{
1890 s32 ret_val = 0;
1891 u16 oem_reg;
1892
1893 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1894 if (ret_val)
1895 goto out;
1896
1897 if (active)
1898 oem_reg |= HV_OEM_BITS_LPLU;
1899 else
1900 oem_reg &= ~HV_OEM_BITS_LPLU;
1901
1902 oem_reg |= HV_OEM_BITS_RESTART_AN;
1903 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1904
1905out:
1906 return ret_val;
1907}
1908
bc7f75fa
AK
1909/**
1910 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1911 * @hw: pointer to the HW structure
564ea9bb 1912 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1913 *
1914 * Sets the LPLU D0 state according to the active flag. When
1915 * activating LPLU this function also disables smart speed
1916 * and vice versa. LPLU will not be activated unless the
1917 * device autonegotiation advertisement meets standards of
1918 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1919 * This is a function pointer entry point only called by
1920 * PHY setup routines.
1921 **/
1922static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1923{
1924 struct e1000_phy_info *phy = &hw->phy;
1925 u32 phy_ctrl;
1926 s32 ret_val = 0;
1927 u16 data;
1928
97ac8cae 1929 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1930 return ret_val;
1931
1932 phy_ctrl = er32(PHY_CTRL);
1933
1934 if (active) {
1935 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1936 ew32(PHY_CTRL, phy_ctrl);
1937
60f1292f
BA
1938 if (phy->type != e1000_phy_igp_3)
1939 return 0;
1940
ad68076e
BA
1941 /*
1942 * Call gig speed drop workaround on LPLU before accessing
1943 * any PHY registers
1944 */
60f1292f 1945 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1946 e1000e_gig_downshift_workaround_ich8lan(hw);
1947
1948 /* When LPLU is enabled, we should disable SmartSpeed */
1949 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1950 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1951 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1952 if (ret_val)
1953 return ret_val;
1954 } else {
1955 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1956 ew32(PHY_CTRL, phy_ctrl);
1957
60f1292f
BA
1958 if (phy->type != e1000_phy_igp_3)
1959 return 0;
1960
ad68076e
BA
1961 /*
1962 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1963 * during Dx states where the power conservation is most
1964 * important. During driver activity we should enable
ad68076e
BA
1965 * SmartSpeed, so performance is maintained.
1966 */
bc7f75fa
AK
1967 if (phy->smart_speed == e1000_smart_speed_on) {
1968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1969 &data);
bc7f75fa
AK
1970 if (ret_val)
1971 return ret_val;
1972
1973 data |= IGP01E1000_PSCFR_SMART_SPEED;
1974 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1975 data);
bc7f75fa
AK
1976 if (ret_val)
1977 return ret_val;
1978 } else if (phy->smart_speed == e1000_smart_speed_off) {
1979 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1980 &data);
bc7f75fa
AK
1981 if (ret_val)
1982 return ret_val;
1983
1984 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1985 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1986 data);
bc7f75fa
AK
1987 if (ret_val)
1988 return ret_val;
1989 }
1990 }
1991
1992 return 0;
1993}
1994
1995/**
1996 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1997 * @hw: pointer to the HW structure
564ea9bb 1998 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1999 *
2000 * Sets the LPLU D3 state according to the active flag. When
2001 * activating LPLU this function also disables smart speed
2002 * and vice versa. LPLU will not be activated unless the
2003 * device autonegotiation advertisement meets standards of
2004 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2005 * This is a function pointer entry point only called by
2006 * PHY setup routines.
2007 **/
2008static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2009{
2010 struct e1000_phy_info *phy = &hw->phy;
2011 u32 phy_ctrl;
2012 s32 ret_val;
2013 u16 data;
2014
2015 phy_ctrl = er32(PHY_CTRL);
2016
2017 if (!active) {
2018 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2019 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
2020
2021 if (phy->type != e1000_phy_igp_3)
2022 return 0;
2023
ad68076e
BA
2024 /*
2025 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2026 * during Dx states where the power conservation is most
2027 * important. During driver activity we should enable
ad68076e
BA
2028 * SmartSpeed, so performance is maintained.
2029 */
bc7f75fa 2030 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
2031 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2032 &data);
bc7f75fa
AK
2033 if (ret_val)
2034 return ret_val;
2035
2036 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2037 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2038 data);
bc7f75fa
AK
2039 if (ret_val)
2040 return ret_val;
2041 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
2042 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2043 &data);
bc7f75fa
AK
2044 if (ret_val)
2045 return ret_val;
2046
2047 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2048 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2049 data);
bc7f75fa
AK
2050 if (ret_val)
2051 return ret_val;
2052 }
2053 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2054 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2055 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2056 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2057 ew32(PHY_CTRL, phy_ctrl);
2058
60f1292f
BA
2059 if (phy->type != e1000_phy_igp_3)
2060 return 0;
2061
ad68076e
BA
2062 /*
2063 * Call gig speed drop workaround on LPLU before accessing
2064 * any PHY registers
2065 */
60f1292f 2066 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2067 e1000e_gig_downshift_workaround_ich8lan(hw);
2068
2069 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 2070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
2071 if (ret_val)
2072 return ret_val;
2073
2074 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 2075 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
2076 }
2077
2078 return 0;
2079}
2080
f4187b56
BA
2081/**
2082 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2083 * @hw: pointer to the HW structure
2084 * @bank: pointer to the variable that returns the active bank
2085 *
2086 * Reads signature byte from the NVM using the flash access registers.
e243455d 2087 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
2088 **/
2089static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2090{
e243455d 2091 u32 eecd;
f4187b56 2092 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
2093 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2094 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
2095 u8 sig_byte = 0;
2096 s32 ret_val = 0;
f4187b56 2097
e243455d
BA
2098 switch (hw->mac.type) {
2099 case e1000_ich8lan:
2100 case e1000_ich9lan:
2101 eecd = er32(EECD);
2102 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2103 E1000_EECD_SEC1VAL_VALID_MASK) {
2104 if (eecd & E1000_EECD_SEC1VAL)
2105 *bank = 1;
2106 else
2107 *bank = 0;
2108
2109 return 0;
2110 }
3bb99fe2 2111 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
2112 "reading flash signature\n");
2113 /* fall-thru */
2114 default:
2115 /* set bank to 0 in case flash read fails */
2116 *bank = 0;
2117
2118 /* Check bank 0 */
2119 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2120 &sig_byte);
2121 if (ret_val)
2122 return ret_val;
2123 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2124 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2125 *bank = 0;
e243455d
BA
2126 return 0;
2127 }
f4187b56 2128
e243455d
BA
2129 /* Check bank 1 */
2130 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2131 bank1_offset,
2132 &sig_byte);
2133 if (ret_val)
2134 return ret_val;
2135 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2136 E1000_ICH_NVM_SIG_VALUE) {
2137 *bank = 1;
2138 return 0;
f4187b56 2139 }
e243455d 2140
3bb99fe2 2141 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2142 return -E1000_ERR_NVM;
f4187b56
BA
2143 }
2144
2145 return 0;
2146}
2147
bc7f75fa
AK
2148/**
2149 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2150 * @hw: pointer to the HW structure
2151 * @offset: The offset (in bytes) of the word(s) to read.
2152 * @words: Size of data to read in words
2153 * @data: Pointer to the word(s) to read at offset.
2154 *
2155 * Reads a word(s) from the NVM using the flash access registers.
2156 **/
2157static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2158 u16 *data)
2159{
2160 struct e1000_nvm_info *nvm = &hw->nvm;
2161 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2162 u32 act_offset;
148675a7 2163 s32 ret_val = 0;
f4187b56 2164 u32 bank = 0;
bc7f75fa
AK
2165 u16 i, word;
2166
2167 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2168 (words == 0)) {
3bb99fe2 2169 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2170 ret_val = -E1000_ERR_NVM;
2171 goto out;
bc7f75fa
AK
2172 }
2173
94d8186a 2174 nvm->ops.acquire(hw);
bc7f75fa 2175
f4187b56 2176 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2177 if (ret_val) {
3bb99fe2 2178 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2179 bank = 0;
2180 }
f4187b56
BA
2181
2182 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2183 act_offset += offset;
2184
148675a7 2185 ret_val = 0;
bc7f75fa 2186 for (i = 0; i < words; i++) {
b9e06f70 2187 if (dev_spec->shadow_ram[offset+i].modified) {
bc7f75fa
AK
2188 data[i] = dev_spec->shadow_ram[offset+i].value;
2189 } else {
2190 ret_val = e1000_read_flash_word_ich8lan(hw,
2191 act_offset + i,
2192 &word);
2193 if (ret_val)
2194 break;
2195 data[i] = word;
2196 }
2197 }
2198
94d8186a 2199 nvm->ops.release(hw);
bc7f75fa 2200
e243455d
BA
2201out:
2202 if (ret_val)
3bb99fe2 2203 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2204
bc7f75fa
AK
2205 return ret_val;
2206}
2207
2208/**
2209 * e1000_flash_cycle_init_ich8lan - Initialize flash
2210 * @hw: pointer to the HW structure
2211 *
2212 * This function does initial flash setup so that a new read/write/erase cycle
2213 * can be started.
2214 **/
2215static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2216{
2217 union ich8_hws_flash_status hsfsts;
2218 s32 ret_val = -E1000_ERR_NVM;
bc7f75fa
AK
2219
2220 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2221
2222 /* Check if the flash descriptor is valid */
2223 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 2224 e_dbg("Flash descriptor invalid. "
2c73e1fe 2225 "SW Sequencing must be used.\n");
bc7f75fa
AK
2226 return -E1000_ERR_NVM;
2227 }
2228
2229 /* Clear FCERR and DAEL in hw status by writing 1 */
2230 hsfsts.hsf_status.flcerr = 1;
2231 hsfsts.hsf_status.dael = 1;
2232
2233 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2234
ad68076e
BA
2235 /*
2236 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2237 * bit to check against, in order to start a new cycle or
2238 * FDONE bit should be changed in the hardware so that it
489815ce 2239 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2240 * indication whether a cycle is in progress or has been
2241 * completed.
2242 */
2243
2244 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
2245 /*
2246 * There is no cycle running at present,
5ff5b664 2247 * so we can start a cycle.
ad68076e
BA
2248 * Begin by setting Flash Cycle Done.
2249 */
bc7f75fa
AK
2250 hsfsts.hsf_status.flcdone = 1;
2251 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2252 ret_val = 0;
2253 } else {
90da0669
BA
2254 s32 i = 0;
2255
ad68076e 2256 /*
5ff5b664 2257 * Otherwise poll for sometime so the current
ad68076e
BA
2258 * cycle has a chance to end before giving up.
2259 */
bc7f75fa
AK
2260 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2261 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2262 if (hsfsts.hsf_status.flcinprog == 0) {
2263 ret_val = 0;
2264 break;
2265 }
2266 udelay(1);
2267 }
2268 if (ret_val == 0) {
ad68076e
BA
2269 /*
2270 * Successful in waiting for previous cycle to timeout,
2271 * now set the Flash Cycle Done.
2272 */
bc7f75fa
AK
2273 hsfsts.hsf_status.flcdone = 1;
2274 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2275 } else {
2c73e1fe 2276 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2277 }
2278 }
2279
2280 return ret_val;
2281}
2282
2283/**
2284 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2285 * @hw: pointer to the HW structure
2286 * @timeout: maximum time to wait for completion
2287 *
2288 * This function starts a flash cycle and waits for its completion.
2289 **/
2290static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2291{
2292 union ich8_hws_flash_ctrl hsflctl;
2293 union ich8_hws_flash_status hsfsts;
2294 s32 ret_val = -E1000_ERR_NVM;
2295 u32 i = 0;
2296
2297 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2298 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2299 hsflctl.hsf_ctrl.flcgo = 1;
2300 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2301
2302 /* wait till FDONE bit is set to 1 */
2303 do {
2304 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2305 if (hsfsts.hsf_status.flcdone == 1)
2306 break;
2307 udelay(1);
2308 } while (i++ < timeout);
2309
2310 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2311 return 0;
2312
2313 return ret_val;
2314}
2315
2316/**
2317 * e1000_read_flash_word_ich8lan - Read word from flash
2318 * @hw: pointer to the HW structure
2319 * @offset: offset to data location
2320 * @data: pointer to the location for storing the data
2321 *
2322 * Reads the flash word at offset into data. Offset is converted
2323 * to bytes before read.
2324 **/
2325static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2326 u16 *data)
2327{
2328 /* Must convert offset into bytes. */
2329 offset <<= 1;
2330
2331 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2332}
2333
f4187b56
BA
2334/**
2335 * e1000_read_flash_byte_ich8lan - Read byte from flash
2336 * @hw: pointer to the HW structure
2337 * @offset: The offset of the byte to read.
2338 * @data: Pointer to a byte to store the value read.
2339 *
2340 * Reads a single byte from the NVM using the flash access registers.
2341 **/
2342static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2343 u8 *data)
2344{
2345 s32 ret_val;
2346 u16 word = 0;
2347
2348 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2349 if (ret_val)
2350 return ret_val;
2351
2352 *data = (u8)word;
2353
2354 return 0;
2355}
2356
bc7f75fa
AK
2357/**
2358 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2359 * @hw: pointer to the HW structure
2360 * @offset: The offset (in bytes) of the byte or word to read.
2361 * @size: Size of data to read, 1=byte 2=word
2362 * @data: Pointer to the word to store the value read.
2363 *
2364 * Reads a byte or word from the NVM using the flash access registers.
2365 **/
2366static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2367 u8 size, u16 *data)
2368{
2369 union ich8_hws_flash_status hsfsts;
2370 union ich8_hws_flash_ctrl hsflctl;
2371 u32 flash_linear_addr;
2372 u32 flash_data = 0;
2373 s32 ret_val = -E1000_ERR_NVM;
2374 u8 count = 0;
2375
2376 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2377 return -E1000_ERR_NVM;
2378
2379 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2380 hw->nvm.flash_base_addr;
2381
2382 do {
2383 udelay(1);
2384 /* Steps */
2385 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2386 if (ret_val != 0)
2387 break;
2388
2389 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2390 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2391 hsflctl.hsf_ctrl.fldbcount = size - 1;
2392 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2393 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2394
2395 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2396
2397 ret_val = e1000_flash_cycle_ich8lan(hw,
2398 ICH_FLASH_READ_COMMAND_TIMEOUT);
2399
ad68076e
BA
2400 /*
2401 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2402 * and try the whole sequence a few more times, else
2403 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2404 * least significant byte first msb to lsb
2405 */
bc7f75fa
AK
2406 if (ret_val == 0) {
2407 flash_data = er32flash(ICH_FLASH_FDATA0);
b1cdfead 2408 if (size == 1)
bc7f75fa 2409 *data = (u8)(flash_data & 0x000000FF);
b1cdfead 2410 else if (size == 2)
bc7f75fa 2411 *data = (u16)(flash_data & 0x0000FFFF);
bc7f75fa
AK
2412 break;
2413 } else {
ad68076e
BA
2414 /*
2415 * If we've gotten here, then things are probably
bc7f75fa
AK
2416 * completely hosed, but if the error condition is
2417 * detected, it won't hurt to give it another try...
2418 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2419 */
2420 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2421 if (hsfsts.hsf_status.flcerr == 1) {
2422 /* Repeat for some time before giving up. */
2423 continue;
2424 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2425 e_dbg("Timeout error - flash cycle "
2c73e1fe 2426 "did not complete.\n");
bc7f75fa
AK
2427 break;
2428 }
2429 }
2430 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2431
2432 return ret_val;
2433}
2434
2435/**
2436 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2437 * @hw: pointer to the HW structure
2438 * @offset: The offset (in bytes) of the word(s) to write.
2439 * @words: Size of data to write in words
2440 * @data: Pointer to the word(s) to write at offset.
2441 *
2442 * Writes a byte or word to the NVM using the flash access registers.
2443 **/
2444static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2445 u16 *data)
2446{
2447 struct e1000_nvm_info *nvm = &hw->nvm;
2448 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2449 u16 i;
2450
2451 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2452 (words == 0)) {
3bb99fe2 2453 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2454 return -E1000_ERR_NVM;
2455 }
2456
94d8186a 2457 nvm->ops.acquire(hw);
ca15df58 2458
bc7f75fa 2459 for (i = 0; i < words; i++) {
564ea9bb 2460 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2461 dev_spec->shadow_ram[offset+i].value = data[i];
2462 }
2463
94d8186a 2464 nvm->ops.release(hw);
ca15df58 2465
bc7f75fa
AK
2466 return 0;
2467}
2468
2469/**
2470 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2471 * @hw: pointer to the HW structure
2472 *
2473 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2474 * which writes the checksum to the shadow ram. The changes in the shadow
2475 * ram are then committed to the EEPROM by processing each bank at a time
2476 * checking for the modified bit and writing only the pending changes.
489815ce 2477 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2478 * future writes.
2479 **/
2480static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2481{
2482 struct e1000_nvm_info *nvm = &hw->nvm;
2483 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2484 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2485 s32 ret_val;
2486 u16 data;
2487
2488 ret_val = e1000e_update_nvm_checksum_generic(hw);
2489 if (ret_val)
e243455d 2490 goto out;
bc7f75fa
AK
2491
2492 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2493 goto out;
bc7f75fa 2494
94d8186a 2495 nvm->ops.acquire(hw);
bc7f75fa 2496
ad68076e
BA
2497 /*
2498 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2499 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2500 * is going to be written
2501 */
f4187b56 2502 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2503 if (ret_val) {
3bb99fe2 2504 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2505 bank = 0;
e243455d 2506 }
f4187b56
BA
2507
2508 if (bank == 0) {
bc7f75fa
AK
2509 new_bank_offset = nvm->flash_bank_size;
2510 old_bank_offset = 0;
e243455d 2511 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2512 if (ret_val)
2513 goto release;
bc7f75fa
AK
2514 } else {
2515 old_bank_offset = nvm->flash_bank_size;
2516 new_bank_offset = 0;
e243455d 2517 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2518 if (ret_val)
2519 goto release;
bc7f75fa
AK
2520 }
2521
2522 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2523 /*
2524 * Determine whether to write the value stored
bc7f75fa 2525 * in the other NVM bank or a modified value stored
ad68076e
BA
2526 * in the shadow RAM
2527 */
bc7f75fa
AK
2528 if (dev_spec->shadow_ram[i].modified) {
2529 data = dev_spec->shadow_ram[i].value;
2530 } else {
e243455d
BA
2531 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2532 old_bank_offset,
2533 &data);
2534 if (ret_val)
2535 break;
bc7f75fa
AK
2536 }
2537
ad68076e
BA
2538 /*
2539 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2540 * (15:14) are 11b until the commit has completed.
2541 * This will allow us to write 10b which indicates the
2542 * signature is valid. We want to do this after the write
2543 * has completed so that we don't mark the segment valid
ad68076e
BA
2544 * while the write is still in progress
2545 */
bc7f75fa
AK
2546 if (i == E1000_ICH_NVM_SIG_WORD)
2547 data |= E1000_ICH_NVM_SIG_MASK;
2548
2549 /* Convert offset to bytes. */
2550 act_offset = (i + new_bank_offset) << 1;
2551
2552 udelay(100);
2553 /* Write the bytes to the new bank. */
2554 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2555 act_offset,
2556 (u8)data);
2557 if (ret_val)
2558 break;
2559
2560 udelay(100);
2561 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2562 act_offset + 1,
2563 (u8)(data >> 8));
2564 if (ret_val)
2565 break;
2566 }
2567
ad68076e
BA
2568 /*
2569 * Don't bother writing the segment valid bits if sector
2570 * programming failed.
2571 */
bc7f75fa 2572 if (ret_val) {
4a770358 2573 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2574 e_dbg("Flash commit failed.\n");
9c5e209d 2575 goto release;
bc7f75fa
AK
2576 }
2577
ad68076e
BA
2578 /*
2579 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2580 * to 10b in word 0x13 , this can be done without an
2581 * erase as well since these bits are 11 to start with
ad68076e
BA
2582 * and we need to change bit 14 to 0b
2583 */
bc7f75fa 2584 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2585 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2586 if (ret_val)
2587 goto release;
2588
bc7f75fa
AK
2589 data &= 0xBFFF;
2590 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2591 act_offset * 2 + 1,
2592 (u8)(data >> 8));
9c5e209d
BA
2593 if (ret_val)
2594 goto release;
bc7f75fa 2595
ad68076e
BA
2596 /*
2597 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2598 * its signature word (0x13) high_byte to 0b. This can be
2599 * done without an erase because flash erase sets all bits
ad68076e
BA
2600 * to 1's. We can write 1's to 0's without an erase
2601 */
bc7f75fa
AK
2602 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2603 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2604 if (ret_val)
2605 goto release;
bc7f75fa
AK
2606
2607 /* Great! Everything worked, we can now clear the cached entries. */
2608 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2609 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2610 dev_spec->shadow_ram[i].value = 0xFFFF;
2611 }
2612
9c5e209d 2613release:
94d8186a 2614 nvm->ops.release(hw);
bc7f75fa 2615
ad68076e
BA
2616 /*
2617 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2618 * until after the next adapter reset.
2619 */
9c5e209d
BA
2620 if (!ret_val) {
2621 e1000e_reload_nvm(hw);
1bba4386 2622 usleep_range(10000, 20000);
9c5e209d 2623 }
bc7f75fa 2624
e243455d
BA
2625out:
2626 if (ret_val)
3bb99fe2 2627 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2628
bc7f75fa
AK
2629 return ret_val;
2630}
2631
2632/**
2633 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2634 * @hw: pointer to the HW structure
2635 *
2636 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2637 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2638 * calculated, in which case we need to calculate the checksum and set bit 6.
2639 **/
2640static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2641{
2642 s32 ret_val;
2643 u16 data;
2644
ad68076e
BA
2645 /*
2646 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2647 * needs to be fixed. This bit is an indication that the NVM
2648 * was prepared by OEM software and did not calculate the
2649 * checksum...a likely scenario.
2650 */
2651 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2652 if (ret_val)
2653 return ret_val;
2654
2655 if ((data & 0x40) == 0) {
2656 data |= 0x40;
2657 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2658 if (ret_val)
2659 return ret_val;
2660 ret_val = e1000e_update_nvm_checksum(hw);
2661 if (ret_val)
2662 return ret_val;
2663 }
2664
2665 return e1000e_validate_nvm_checksum_generic(hw);
2666}
2667
4a770358
BA
2668/**
2669 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2670 * @hw: pointer to the HW structure
2671 *
2672 * To prevent malicious write/erase of the NVM, set it to be read-only
2673 * so that the hardware ignores all write/erase cycles of the NVM via
2674 * the flash control registers. The shadow-ram copy of the NVM will
2675 * still be updated, however any updates to this copy will not stick
2676 * across driver reloads.
2677 **/
2678void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2679{
ca15df58 2680 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2681 union ich8_flash_protected_range pr0;
2682 union ich8_hws_flash_status hsfsts;
2683 u32 gfpreg;
4a770358 2684
94d8186a 2685 nvm->ops.acquire(hw);
4a770358
BA
2686
2687 gfpreg = er32flash(ICH_FLASH_GFPREG);
2688
2689 /* Write-protect GbE Sector of NVM */
2690 pr0.regval = er32flash(ICH_FLASH_PR0);
2691 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2692 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2693 pr0.range.wpe = true;
2694 ew32flash(ICH_FLASH_PR0, pr0.regval);
2695
2696 /*
2697 * Lock down a subset of GbE Flash Control Registers, e.g.
2698 * PR0 to prevent the write-protection from being lifted.
2699 * Once FLOCKDN is set, the registers protected by it cannot
2700 * be written until FLOCKDN is cleared by a hardware reset.
2701 */
2702 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2703 hsfsts.hsf_status.flockdn = true;
2704 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2705
94d8186a 2706 nvm->ops.release(hw);
4a770358
BA
2707}
2708
bc7f75fa
AK
2709/**
2710 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2711 * @hw: pointer to the HW structure
2712 * @offset: The offset (in bytes) of the byte/word to read.
2713 * @size: Size of data to read, 1=byte 2=word
2714 * @data: The byte(s) to write to the NVM.
2715 *
2716 * Writes one/two bytes to the NVM using the flash access registers.
2717 **/
2718static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2719 u8 size, u16 data)
2720{
2721 union ich8_hws_flash_status hsfsts;
2722 union ich8_hws_flash_ctrl hsflctl;
2723 u32 flash_linear_addr;
2724 u32 flash_data = 0;
2725 s32 ret_val;
2726 u8 count = 0;
2727
2728 if (size < 1 || size > 2 || data > size * 0xff ||
2729 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2730 return -E1000_ERR_NVM;
2731
2732 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2733 hw->nvm.flash_base_addr;
2734
2735 do {
2736 udelay(1);
2737 /* Steps */
2738 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2739 if (ret_val)
2740 break;
2741
2742 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2743 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2744 hsflctl.hsf_ctrl.fldbcount = size -1;
2745 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2746 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2747
2748 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2749
2750 if (size == 1)
2751 flash_data = (u32)data & 0x00FF;
2752 else
2753 flash_data = (u32)data;
2754
2755 ew32flash(ICH_FLASH_FDATA0, flash_data);
2756
ad68076e
BA
2757 /*
2758 * check if FCERR is set to 1 , if set to 1, clear it
2759 * and try the whole sequence a few more times else done
2760 */
bc7f75fa
AK
2761 ret_val = e1000_flash_cycle_ich8lan(hw,
2762 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2763 if (!ret_val)
2764 break;
2765
ad68076e
BA
2766 /*
2767 * If we're here, then things are most likely
bc7f75fa
AK
2768 * completely hosed, but if the error condition
2769 * is detected, it won't hurt to give it another
2770 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2771 */
2772 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2773 if (hsfsts.hsf_status.flcerr == 1)
2774 /* Repeat for some time before giving up. */
2775 continue;
2776 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2777 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2778 "did not complete.");
2779 break;
2780 }
2781 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2782
2783 return ret_val;
2784}
2785
2786/**
2787 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2788 * @hw: pointer to the HW structure
2789 * @offset: The index of the byte to read.
2790 * @data: The byte to write to the NVM.
2791 *
2792 * Writes a single byte to the NVM using the flash access registers.
2793 **/
2794static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2795 u8 data)
2796{
2797 u16 word = (u16)data;
2798
2799 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2800}
2801
2802/**
2803 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2804 * @hw: pointer to the HW structure
2805 * @offset: The offset of the byte to write.
2806 * @byte: The byte to write to the NVM.
2807 *
2808 * Writes a single byte to the NVM using the flash access registers.
2809 * Goes through a retry algorithm before giving up.
2810 **/
2811static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2812 u32 offset, u8 byte)
2813{
2814 s32 ret_val;
2815 u16 program_retries;
2816
2817 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2818 if (!ret_val)
2819 return ret_val;
2820
2821 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2822 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2823 udelay(100);
2824 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2825 if (!ret_val)
2826 break;
2827 }
2828 if (program_retries == 100)
2829 return -E1000_ERR_NVM;
2830
2831 return 0;
2832}
2833
2834/**
2835 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2836 * @hw: pointer to the HW structure
2837 * @bank: 0 for first bank, 1 for second bank, etc.
2838 *
2839 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2840 * bank N is 4096 * N + flash_reg_addr.
2841 **/
2842static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2843{
2844 struct e1000_nvm_info *nvm = &hw->nvm;
2845 union ich8_hws_flash_status hsfsts;
2846 union ich8_hws_flash_ctrl hsflctl;
2847 u32 flash_linear_addr;
2848 /* bank size is in 16bit words - adjust to bytes */
2849 u32 flash_bank_size = nvm->flash_bank_size * 2;
2850 s32 ret_val;
2851 s32 count = 0;
a708dd88 2852 s32 j, iteration, sector_size;
bc7f75fa
AK
2853
2854 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2855
ad68076e
BA
2856 /*
2857 * Determine HW Sector size: Read BERASE bits of hw flash status
2858 * register
2859 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2860 * consecutive sectors. The start index for the nth Hw sector
2861 * can be calculated as = bank * 4096 + n * 256
2862 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2863 * The start index for the nth Hw sector can be calculated
2864 * as = bank * 4096
2865 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2866 * (ich9 only, otherwise error condition)
2867 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2868 */
2869 switch (hsfsts.hsf_status.berasesz) {
2870 case 0:
2871 /* Hw sector size 256 */
2872 sector_size = ICH_FLASH_SEG_SIZE_256;
2873 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2874 break;
2875 case 1:
2876 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2877 iteration = 1;
bc7f75fa
AK
2878 break;
2879 case 2:
148675a7
BA
2880 sector_size = ICH_FLASH_SEG_SIZE_8K;
2881 iteration = 1;
bc7f75fa
AK
2882 break;
2883 case 3:
2884 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2885 iteration = 1;
bc7f75fa
AK
2886 break;
2887 default:
2888 return -E1000_ERR_NVM;
2889 }
2890
2891 /* Start with the base address, then add the sector offset. */
2892 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2893 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2894
2895 for (j = 0; j < iteration ; j++) {
2896 do {
2897 /* Steps */
2898 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2899 if (ret_val)
2900 return ret_val;
2901
ad68076e
BA
2902 /*
2903 * Write a value 11 (block Erase) in Flash
2904 * Cycle field in hw flash control
2905 */
bc7f75fa
AK
2906 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2907 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2908 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2909
ad68076e
BA
2910 /*
2911 * Write the last 24 bits of an index within the
bc7f75fa
AK
2912 * block into Flash Linear address field in Flash
2913 * Address.
2914 */
2915 flash_linear_addr += (j * sector_size);
2916 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2917
2918 ret_val = e1000_flash_cycle_ich8lan(hw,
2919 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2920 if (ret_val == 0)
2921 break;
2922
ad68076e
BA
2923 /*
2924 * Check if FCERR is set to 1. If 1,
bc7f75fa 2925 * clear it and try the whole sequence
ad68076e
BA
2926 * a few more times else Done
2927 */
bc7f75fa
AK
2928 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2929 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2930 /* repeat for some time before giving up */
bc7f75fa
AK
2931 continue;
2932 else if (hsfsts.hsf_status.flcdone == 0)
2933 return ret_val;
2934 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2935 }
2936
2937 return 0;
2938}
2939
2940/**
2941 * e1000_valid_led_default_ich8lan - Set the default LED settings
2942 * @hw: pointer to the HW structure
2943 * @data: Pointer to the LED settings
2944 *
2945 * Reads the LED default settings from the NVM to data. If the NVM LED
2946 * settings is all 0's or F's, set the LED default to a valid LED default
2947 * setting.
2948 **/
2949static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2950{
2951 s32 ret_val;
2952
2953 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2954 if (ret_val) {
3bb99fe2 2955 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2956 return ret_val;
2957 }
2958
2959 if (*data == ID_LED_RESERVED_0000 ||
2960 *data == ID_LED_RESERVED_FFFF)
2961 *data = ID_LED_DEFAULT_ICH8LAN;
2962
2963 return 0;
2964}
2965
a4f58f54
BA
2966/**
2967 * e1000_id_led_init_pchlan - store LED configurations
2968 * @hw: pointer to the HW structure
2969 *
2970 * PCH does not control LEDs via the LEDCTL register, rather it uses
2971 * the PHY LED configuration register.
2972 *
2973 * PCH also does not have an "always on" or "always off" mode which
2974 * complicates the ID feature. Instead of using the "on" mode to indicate
2975 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2976 * use "link_up" mode. The LEDs will still ID on request if there is no
2977 * link based on logic in e1000_led_[on|off]_pchlan().
2978 **/
2979static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2980{
2981 struct e1000_mac_info *mac = &hw->mac;
2982 s32 ret_val;
2983 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2984 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2985 u16 data, i, temp, shift;
2986
2987 /* Get default ID LED modes */
2988 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2989 if (ret_val)
2990 goto out;
2991
2992 mac->ledctl_default = er32(LEDCTL);
2993 mac->ledctl_mode1 = mac->ledctl_default;
2994 mac->ledctl_mode2 = mac->ledctl_default;
2995
2996 for (i = 0; i < 4; i++) {
2997 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2998 shift = (i * 5);
2999 switch (temp) {
3000 case ID_LED_ON1_DEF2:
3001 case ID_LED_ON1_ON2:
3002 case ID_LED_ON1_OFF2:
3003 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3004 mac->ledctl_mode1 |= (ledctl_on << shift);
3005 break;
3006 case ID_LED_OFF1_DEF2:
3007 case ID_LED_OFF1_ON2:
3008 case ID_LED_OFF1_OFF2:
3009 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3010 mac->ledctl_mode1 |= (ledctl_off << shift);
3011 break;
3012 default:
3013 /* Do nothing */
3014 break;
3015 }
3016 switch (temp) {
3017 case ID_LED_DEF1_ON2:
3018 case ID_LED_ON1_ON2:
3019 case ID_LED_OFF1_ON2:
3020 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3021 mac->ledctl_mode2 |= (ledctl_on << shift);
3022 break;
3023 case ID_LED_DEF1_OFF2:
3024 case ID_LED_ON1_OFF2:
3025 case ID_LED_OFF1_OFF2:
3026 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3027 mac->ledctl_mode2 |= (ledctl_off << shift);
3028 break;
3029 default:
3030 /* Do nothing */
3031 break;
3032 }
3033 }
3034
3035out:
3036 return ret_val;
3037}
3038
bc7f75fa
AK
3039/**
3040 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3041 * @hw: pointer to the HW structure
3042 *
3043 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3044 * register, so the the bus width is hard coded.
3045 **/
3046static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3047{
3048 struct e1000_bus_info *bus = &hw->bus;
3049 s32 ret_val;
3050
3051 ret_val = e1000e_get_bus_info_pcie(hw);
3052
ad68076e
BA
3053 /*
3054 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
3055 * a configuration space, but do not contain
3056 * PCI Express Capability registers, so bus width
3057 * must be hardcoded.
3058 */
3059 if (bus->width == e1000_bus_width_unknown)
3060 bus->width = e1000_bus_width_pcie_x1;
3061
3062 return ret_val;
3063}
3064
3065/**
3066 * e1000_reset_hw_ich8lan - Reset the hardware
3067 * @hw: pointer to the HW structure
3068 *
3069 * Does a full reset of the hardware which includes a reset of the PHY and
3070 * MAC.
3071 **/
3072static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3073{
1d5846b9 3074 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 3075 u16 reg;
dd93f95e 3076 u32 ctrl, kab;
bc7f75fa
AK
3077 s32 ret_val;
3078
ad68076e
BA
3079 /*
3080 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
3081 * on the last TLP read/write transaction when MAC is reset.
3082 */
3083 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 3084 if (ret_val)
3bb99fe2 3085 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 3086
3bb99fe2 3087 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
3088 ew32(IMC, 0xffffffff);
3089
ad68076e
BA
3090 /*
3091 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
3092 * any pending transactions to complete before we hit the MAC
3093 * with the global reset.
3094 */
3095 ew32(RCTL, 0);
3096 ew32(TCTL, E1000_TCTL_PSP);
3097 e1e_flush();
3098
1bba4386 3099 usleep_range(10000, 20000);
bc7f75fa
AK
3100
3101 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3102 if (hw->mac.type == e1000_ich8lan) {
3103 /* Set Tx and Rx buffer allocation to 8k apiece. */
3104 ew32(PBA, E1000_PBA_8K);
3105 /* Set Packet Buffer Size to 16k. */
3106 ew32(PBS, E1000_PBS_16K);
3107 }
3108
1d5846b9
BA
3109 if (hw->mac.type == e1000_pchlan) {
3110 /* Save the NVM K1 bit setting*/
3111 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3112 if (ret_val)
3113 return ret_val;
3114
3115 if (reg & E1000_NVM_K1_ENABLE)
3116 dev_spec->nvm_k1_enabled = true;
3117 else
3118 dev_spec->nvm_k1_enabled = false;
3119 }
3120
bc7f75fa
AK
3121 ctrl = er32(CTRL);
3122
3123 if (!e1000_check_reset_block(hw)) {
ad68076e 3124 /*
e98cac44 3125 * Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3126 * time to make sure the interface between MAC and the
3127 * external PHY is reset.
3128 */
3129 ctrl |= E1000_CTRL_PHY_RST;
605c82ba
BA
3130
3131 /*
3132 * Gate automatic PHY configuration by hardware on
3133 * non-managed 82579
3134 */
3135 if ((hw->mac.type == e1000_pch2lan) &&
3136 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3137 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3138 }
3139 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3140 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa 3141 ew32(CTRL, (ctrl | E1000_CTRL_RST));
945a5151 3142 /* cannot issue a flush here because it hangs the hardware */
bc7f75fa
AK
3143 msleep(20);
3144
fc0c7760 3145 if (!ret_val)
a90b412c 3146 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
37f40239 3147
e98cac44 3148 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3149 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44
BA
3150 if (ret_val)
3151 goto out;
fc0c7760 3152
e98cac44 3153 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211
BA
3154 if (ret_val)
3155 goto out;
3156 }
e98cac44 3157
7d3cabbc
BA
3158 /*
3159 * For PCH, this write will make sure that any noise
3160 * will be detected as a CRC error and be dropped rather than show up
3161 * as a bad packet to the DMA engine.
3162 */
3163 if (hw->mac.type == e1000_pchlan)
3164 ew32(CRC_OFFSET, 0x65656565);
3165
bc7f75fa 3166 ew32(IMC, 0xffffffff);
dd93f95e 3167 er32(ICR);
bc7f75fa
AK
3168
3169 kab = er32(KABGTXD);
3170 kab |= E1000_KABGTXD_BGSQLBIAS;
3171 ew32(KABGTXD, kab);
3172
f523d211 3173out:
bc7f75fa
AK
3174 return ret_val;
3175}
3176
3177/**
3178 * e1000_init_hw_ich8lan - Initialize the hardware
3179 * @hw: pointer to the HW structure
3180 *
3181 * Prepares the hardware for transmit and receive by doing the following:
3182 * - initialize hardware bits
3183 * - initialize LED identification
3184 * - setup receive address registers
3185 * - setup flow control
489815ce 3186 * - setup transmit descriptors
bc7f75fa
AK
3187 * - clear statistics
3188 **/
3189static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3190{
3191 struct e1000_mac_info *mac = &hw->mac;
3192 u32 ctrl_ext, txdctl, snoop;
3193 s32 ret_val;
3194 u16 i;
3195
3196 e1000_initialize_hw_bits_ich8lan(hw);
3197
3198 /* Initialize identification LED */
a4f58f54 3199 ret_val = mac->ops.id_led_init(hw);
de39b752 3200 if (ret_val)
3bb99fe2 3201 e_dbg("Error initializing identification LED\n");
de39b752 3202 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3203
3204 /* Setup the receive address. */
3205 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3206
3207 /* Zero out the Multicast HASH table */
3bb99fe2 3208 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3209 for (i = 0; i < mac->mta_reg_count; i++)
3210 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3211
fc0c7760
BA
3212 /*
3213 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3ebfc7c9 3214 * the ME. Disable wakeup by clearing the host wakeup bit.
fc0c7760
BA
3215 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3216 */
3217 if (hw->phy.type == e1000_phy_82578) {
3ebfc7c9
BA
3218 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3219 i &= ~BM_WUC_HOST_WU_BIT;
3220 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
fc0c7760
BA
3221 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3222 if (ret_val)
3223 return ret_val;
3224 }
3225
bc7f75fa
AK
3226 /* Setup link and flow control */
3227 ret_val = e1000_setup_link_ich8lan(hw);
3228
3229 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3230 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3231 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3232 E1000_TXDCTL_FULL_TX_DESC_WB;
3233 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3234 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3235 ew32(TXDCTL(0), txdctl);
3236 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3237 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3238 E1000_TXDCTL_FULL_TX_DESC_WB;
3239 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3240 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3241 ew32(TXDCTL(1), txdctl);
bc7f75fa 3242
ad68076e
BA
3243 /*
3244 * ICH8 has opposite polarity of no_snoop bits.
3245 * By default, we should use snoop behavior.
3246 */
bc7f75fa
AK
3247 if (mac->type == e1000_ich8lan)
3248 snoop = PCIE_ICH8_SNOOP_ALL;
3249 else
3250 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3251 e1000e_set_pcie_no_snoop(hw, snoop);
3252
3253 ctrl_ext = er32(CTRL_EXT);
3254 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3255 ew32(CTRL_EXT, ctrl_ext);
3256
ad68076e
BA
3257 /*
3258 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3259 * important that we do this after we have tried to establish link
3260 * because the symbol error count will increment wildly if there
3261 * is no link.
3262 */
3263 e1000_clear_hw_cntrs_ich8lan(hw);
3264
3265 return 0;
3266}
3267/**
3268 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3269 * @hw: pointer to the HW structure
3270 *
3271 * Sets/Clears required hardware bits necessary for correctly setting up the
3272 * hardware for transmit and receive.
3273 **/
3274static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3275{
3276 u32 reg;
3277
3278 /* Extended Device Control */
3279 reg = er32(CTRL_EXT);
3280 reg |= (1 << 22);
a4f58f54
BA
3281 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3282 if (hw->mac.type >= e1000_pchlan)
3283 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3284 ew32(CTRL_EXT, reg);
3285
3286 /* Transmit Descriptor Control 0 */
e9ec2c0f 3287 reg = er32(TXDCTL(0));
bc7f75fa 3288 reg |= (1 << 22);
e9ec2c0f 3289 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3290
3291 /* Transmit Descriptor Control 1 */
e9ec2c0f 3292 reg = er32(TXDCTL(1));
bc7f75fa 3293 reg |= (1 << 22);
e9ec2c0f 3294 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3295
3296 /* Transmit Arbitration Control 0 */
e9ec2c0f 3297 reg = er32(TARC(0));
bc7f75fa
AK
3298 if (hw->mac.type == e1000_ich8lan)
3299 reg |= (1 << 28) | (1 << 29);
3300 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3301 ew32(TARC(0), reg);
bc7f75fa
AK
3302
3303 /* Transmit Arbitration Control 1 */
e9ec2c0f 3304 reg = er32(TARC(1));
bc7f75fa
AK
3305 if (er32(TCTL) & E1000_TCTL_MULR)
3306 reg &= ~(1 << 28);
3307 else
3308 reg |= (1 << 28);
3309 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3310 ew32(TARC(1), reg);
bc7f75fa
AK
3311
3312 /* Device Status */
3313 if (hw->mac.type == e1000_ich8lan) {
3314 reg = er32(STATUS);
3315 reg &= ~(1 << 31);
3316 ew32(STATUS, reg);
3317 }
a80483d3
JB
3318
3319 /*
3320 * work-around descriptor data corruption issue during nfs v2 udp
3321 * traffic, just disable the nfs filtering capability
3322 */
3323 reg = er32(RFCTL);
3324 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3325 ew32(RFCTL, reg);
bc7f75fa
AK
3326}
3327
3328/**
3329 * e1000_setup_link_ich8lan - Setup flow control and link settings
3330 * @hw: pointer to the HW structure
3331 *
3332 * Determines which flow control settings to use, then configures flow
3333 * control. Calls the appropriate media-specific link configuration
3334 * function. Assuming the adapter has a valid link partner, a valid link
3335 * should be established. Assumes the hardware has previously been reset
3336 * and the transmitter and receiver are not enabled.
3337 **/
3338static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3339{
bc7f75fa
AK
3340 s32 ret_val;
3341
3342 if (e1000_check_reset_block(hw))
3343 return 0;
3344
ad68076e
BA
3345 /*
3346 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3347 * the default flow control setting, so we explicitly
3348 * set it to full.
3349 */
37289d9c
BA
3350 if (hw->fc.requested_mode == e1000_fc_default) {
3351 /* Workaround h/w hang when Tx flow control enabled */
3352 if (hw->mac.type == e1000_pchlan)
3353 hw->fc.requested_mode = e1000_fc_rx_pause;
3354 else
3355 hw->fc.requested_mode = e1000_fc_full;
3356 }
bc7f75fa 3357
5c48ef3e
BA
3358 /*
3359 * Save off the requested flow control mode for use later. Depending
3360 * on the link partner's capabilities, we may or may not use this mode.
3361 */
3362 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3363
3bb99fe2 3364 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3365 hw->fc.current_mode);
bc7f75fa
AK
3366
3367 /* Continue to configure the copper link. */
3368 ret_val = e1000_setup_copper_link_ich8lan(hw);
3369 if (ret_val)
3370 return ret_val;
3371
318a94d6 3372 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3373 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3374 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3375 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3376 ew32(FCRTV_PCH, hw->fc.refresh_time);
3377
482fed85
BA
3378 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3379 hw->fc.pause_time);
a4f58f54
BA
3380 if (ret_val)
3381 return ret_val;
3382 }
bc7f75fa
AK
3383
3384 return e1000e_set_fc_watermarks(hw);
3385}
3386
3387/**
3388 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3389 * @hw: pointer to the HW structure
3390 *
3391 * Configures the kumeran interface to the PHY to wait the appropriate time
3392 * when polling the PHY, then call the generic setup_copper_link to finish
3393 * configuring the copper link.
3394 **/
3395static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3396{
3397 u32 ctrl;
3398 s32 ret_val;
3399 u16 reg_data;
3400
3401 ctrl = er32(CTRL);
3402 ctrl |= E1000_CTRL_SLU;
3403 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3404 ew32(CTRL, ctrl);
3405
ad68076e
BA
3406 /*
3407 * Set the mac to wait the maximum time between each iteration
bc7f75fa 3408 * and increase the max iterations when polling the phy;
ad68076e
BA
3409 * this fixes erroneous timeouts at 10Mbps.
3410 */
07818950 3411 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3412 if (ret_val)
3413 return ret_val;
07818950
BA
3414 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3415 &reg_data);
bc7f75fa
AK
3416 if (ret_val)
3417 return ret_val;
3418 reg_data |= 0x3F;
07818950
BA
3419 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3420 reg_data);
bc7f75fa
AK
3421 if (ret_val)
3422 return ret_val;
3423
a4f58f54
BA
3424 switch (hw->phy.type) {
3425 case e1000_phy_igp_3:
bc7f75fa
AK
3426 ret_val = e1000e_copper_link_setup_igp(hw);
3427 if (ret_val)
3428 return ret_val;
a4f58f54
BA
3429 break;
3430 case e1000_phy_bm:
3431 case e1000_phy_82578:
97ac8cae
BA
3432 ret_val = e1000e_copper_link_setup_m88(hw);
3433 if (ret_val)
3434 return ret_val;
a4f58f54
BA
3435 break;
3436 case e1000_phy_82577:
d3738bb8 3437 case e1000_phy_82579:
a4f58f54
BA
3438 ret_val = e1000_copper_link_setup_82577(hw);
3439 if (ret_val)
3440 return ret_val;
3441 break;
3442 case e1000_phy_ife:
482fed85 3443 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
97ac8cae
BA
3444 if (ret_val)
3445 return ret_val;
3446
3447 reg_data &= ~IFE_PMC_AUTO_MDIX;
3448
3449 switch (hw->phy.mdix) {
3450 case 1:
3451 reg_data &= ~IFE_PMC_FORCE_MDIX;
3452 break;
3453 case 2:
3454 reg_data |= IFE_PMC_FORCE_MDIX;
3455 break;
3456 case 0:
3457 default:
3458 reg_data |= IFE_PMC_AUTO_MDIX;
3459 break;
3460 }
482fed85 3461 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
97ac8cae
BA
3462 if (ret_val)
3463 return ret_val;
a4f58f54
BA
3464 break;
3465 default:
3466 break;
97ac8cae 3467 }
bc7f75fa
AK
3468 return e1000e_setup_copper_link(hw);
3469}
3470
3471/**
3472 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3473 * @hw: pointer to the HW structure
3474 * @speed: pointer to store current link speed
3475 * @duplex: pointer to store the current link duplex
3476 *
ad68076e 3477 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3478 * information and then calls the Kumeran lock loss workaround for links at
3479 * gigabit speeds.
3480 **/
3481static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3482 u16 *duplex)
3483{
3484 s32 ret_val;
3485
3486 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3487 if (ret_val)
3488 return ret_val;
3489
3490 if ((hw->mac.type == e1000_ich8lan) &&
3491 (hw->phy.type == e1000_phy_igp_3) &&
3492 (*speed == SPEED_1000)) {
3493 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3494 }
3495
3496 return ret_val;
3497}
3498
3499/**
3500 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3501 * @hw: pointer to the HW structure
3502 *
3503 * Work-around for 82566 Kumeran PCS lock loss:
3504 * On link status change (i.e. PCI reset, speed change) and link is up and
3505 * speed is gigabit-
3506 * 0) if workaround is optionally disabled do nothing
3507 * 1) wait 1ms for Kumeran link to come up
3508 * 2) check Kumeran Diagnostic register PCS lock loss bit
3509 * 3) if not set the link is locked (all is good), otherwise...
3510 * 4) reset the PHY
3511 * 5) repeat up to 10 times
3512 * Note: this is only called for IGP3 copper when speed is 1gb.
3513 **/
3514static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3515{
3516 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3517 u32 phy_ctrl;
3518 s32 ret_val;
3519 u16 i, data;
3520 bool link;
3521
3522 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3523 return 0;
3524
ad68076e
BA
3525 /*
3526 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3527 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3528 * stability
3529 */
bc7f75fa
AK
3530 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3531 if (!link)
3532 return 0;
3533
3534 for (i = 0; i < 10; i++) {
3535 /* read once to clear */
3536 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3537 if (ret_val)
3538 return ret_val;
3539 /* and again to get new status */
3540 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3541 if (ret_val)
3542 return ret_val;
3543
3544 /* check for PCS lock */
3545 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3546 return 0;
3547
3548 /* Issue PHY reset */
3549 e1000_phy_hw_reset(hw);
3550 mdelay(5);
3551 }
3552 /* Disable GigE link negotiation */
3553 phy_ctrl = er32(PHY_CTRL);
3554 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3555 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3556 ew32(PHY_CTRL, phy_ctrl);
3557
ad68076e
BA
3558 /*
3559 * Call gig speed drop workaround on Gig disable before accessing
3560 * any PHY registers
3561 */
bc7f75fa
AK
3562 e1000e_gig_downshift_workaround_ich8lan(hw);
3563
3564 /* unable to acquire PCS lock */
3565 return -E1000_ERR_PHY;
3566}
3567
3568/**
ad68076e 3569 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3570 * @hw: pointer to the HW structure
489815ce 3571 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3572 *
564ea9bb
BA
3573 * If ICH8, set the current Kumeran workaround state (enabled - true
3574 * /disabled - false).
bc7f75fa
AK
3575 **/
3576void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3577 bool state)
3578{
3579 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580
3581 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3582 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3583 return;
3584 }
3585
3586 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3587}
3588
3589/**
3590 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3591 * @hw: pointer to the HW structure
3592 *
3593 * Workaround for 82566 power-down on D3 entry:
3594 * 1) disable gigabit link
3595 * 2) write VR power-down enable
3596 * 3) read it back
3597 * Continue if successful, else issue LCD reset and repeat
3598 **/
3599void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3600{
3601 u32 reg;
3602 u16 data;
3603 u8 retry = 0;
3604
3605 if (hw->phy.type != e1000_phy_igp_3)
3606 return;
3607
3608 /* Try the workaround twice (if needed) */
3609 do {
3610 /* Disable link */
3611 reg = er32(PHY_CTRL);
3612 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3613 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3614 ew32(PHY_CTRL, reg);
3615
ad68076e
BA
3616 /*
3617 * Call gig speed drop workaround on Gig disable before
3618 * accessing any PHY registers
3619 */
bc7f75fa
AK
3620 if (hw->mac.type == e1000_ich8lan)
3621 e1000e_gig_downshift_workaround_ich8lan(hw);
3622
3623 /* Write VR power-down enable */
3624 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3625 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3626 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3627
3628 /* Read it back and test */
3629 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3630 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3631 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3632 break;
3633
3634 /* Issue PHY reset and repeat at most one more time */
3635 reg = er32(CTRL);
3636 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3637 retry++;
3638 } while (retry);
3639}
3640
3641/**
3642 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3643 * @hw: pointer to the HW structure
3644 *
3645 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3646 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3647 * 1) Set Kumeran Near-end loopback
3648 * 2) Clear Kumeran Near-end loopback
462d5994 3649 * Should only be called for ICH8[m] devices with any 1G Phy.
bc7f75fa
AK
3650 **/
3651void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3652{
3653 s32 ret_val;
3654 u16 reg_data;
3655
462d5994 3656 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
bc7f75fa
AK
3657 return;
3658
3659 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3660 &reg_data);
3661 if (ret_val)
3662 return;
3663 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3664 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3665 reg_data);
3666 if (ret_val)
3667 return;
3668 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3669 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3670 reg_data);
3671}
3672
97ac8cae 3673/**
99730e4c 3674 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
97ac8cae
BA
3675 * @hw: pointer to the HW structure
3676 *
3677 * During S0 to Sx transition, it is possible the link remains at gig
3678 * instead of negotiating to a lower speed. Before going to Sx, set
3679 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
99730e4c
BA
3680 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3681 * (LED, GbE disable and LPLU configurations) also needs to be written.
97ac8cae 3682 **/
99730e4c 3683void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
97ac8cae
BA
3684{
3685 u32 phy_ctrl;
8395ae83 3686 s32 ret_val;
97ac8cae 3687
17f085df
BA
3688 phy_ctrl = er32(PHY_CTRL);
3689 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3690 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3691
462d5994
BA
3692 if (hw->mac.type == e1000_ich8lan)
3693 e1000e_gig_downshift_workaround_ich8lan(hw);
3694
8395ae83 3695 if (hw->mac.type >= e1000_pchlan) {
ce54afd1 3696 e1000_oem_bits_config_ich8lan(hw, false);
03299e46 3697 e1000_phy_hw_reset_ich8lan(hw);
8395ae83
BA
3698 ret_val = hw->phy.ops.acquire(hw);
3699 if (ret_val)
3700 return;
3701 e1000_write_smbus_addr(hw);
3702 hw->phy.ops.release(hw);
3703 }
97ac8cae
BA
3704}
3705
99730e4c
BA
3706/**
3707 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3708 * @hw: pointer to the HW structure
3709 *
3710 * During Sx to S0 transitions on non-managed devices or managed devices
3711 * on which PHY resets are not blocked, if the PHY registers cannot be
3712 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3713 * the PHY.
3714 **/
3715void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3716{
3717 u32 fwsm;
3718
3719 if (hw->mac.type != e1000_pch2lan)
3720 return;
3721
3722 fwsm = er32(FWSM);
3723 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3724 u16 phy_id1, phy_id2;
3725 s32 ret_val;
3726
3727 ret_val = hw->phy.ops.acquire(hw);
3728 if (ret_val) {
3729 e_dbg("Failed to acquire PHY semaphore in resume\n");
3730 return;
3731 }
3732
3733 /* Test access to the PHY registers by reading the ID regs */
3734 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3735 if (ret_val)
3736 goto release;
3737 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3738 if (ret_val)
3739 goto release;
3740
3741 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3742 (u32)(phy_id2 & PHY_REVISION_MASK)))
3743 goto release;
3744
3745 e1000_toggle_lanphypc_value_ich8lan(hw);
3746
3747 hw->phy.ops.release(hw);
3748 msleep(50);
3749 e1000_phy_hw_reset(hw);
3750 msleep(50);
3751 return;
3752 }
3753
3754release:
3755 hw->phy.ops.release(hw);
3756
3757 return;
3758}
3759
bc7f75fa
AK
3760/**
3761 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3762 * @hw: pointer to the HW structure
3763 *
3764 * Return the LED back to the default configuration.
3765 **/
3766static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3767{
3768 if (hw->phy.type == e1000_phy_ife)
3769 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3770
3771 ew32(LEDCTL, hw->mac.ledctl_default);
3772 return 0;
3773}
3774
3775/**
489815ce 3776 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3777 * @hw: pointer to the HW structure
3778 *
489815ce 3779 * Turn on the LEDs.
bc7f75fa
AK
3780 **/
3781static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3782{
3783 if (hw->phy.type == e1000_phy_ife)
3784 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3785 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3786
3787 ew32(LEDCTL, hw->mac.ledctl_mode2);
3788 return 0;
3789}
3790
3791/**
489815ce 3792 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3793 * @hw: pointer to the HW structure
3794 *
489815ce 3795 * Turn off the LEDs.
bc7f75fa
AK
3796 **/
3797static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3798{
3799 if (hw->phy.type == e1000_phy_ife)
3800 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
482fed85
BA
3801 (IFE_PSCL_PROBE_MODE |
3802 IFE_PSCL_PROBE_LEDS_OFF));
bc7f75fa
AK
3803
3804 ew32(LEDCTL, hw->mac.ledctl_mode1);
3805 return 0;
3806}
3807
a4f58f54
BA
3808/**
3809 * e1000_setup_led_pchlan - Configures SW controllable LED
3810 * @hw: pointer to the HW structure
3811 *
3812 * This prepares the SW controllable LED for use.
3813 **/
3814static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3815{
482fed85 3816 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
a4f58f54
BA
3817}
3818
3819/**
3820 * e1000_cleanup_led_pchlan - Restore the default LED operation
3821 * @hw: pointer to the HW structure
3822 *
3823 * Return the LED back to the default configuration.
3824 **/
3825static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3826{
482fed85 3827 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
a4f58f54
BA
3828}
3829
3830/**
3831 * e1000_led_on_pchlan - Turn LEDs on
3832 * @hw: pointer to the HW structure
3833 *
3834 * Turn on the LEDs.
3835 **/
3836static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3837{
3838 u16 data = (u16)hw->mac.ledctl_mode2;
3839 u32 i, led;
3840
3841 /*
3842 * If no link, then turn LED on by setting the invert bit
3843 * for each LED that's mode is "link_up" in ledctl_mode2.
3844 */
3845 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3846 for (i = 0; i < 3; i++) {
3847 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3848 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3849 E1000_LEDCTL_MODE_LINK_UP)
3850 continue;
3851 if (led & E1000_PHY_LED0_IVRT)
3852 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3853 else
3854 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3855 }
3856 }
3857
482fed85 3858 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3859}
3860
3861/**
3862 * e1000_led_off_pchlan - Turn LEDs off
3863 * @hw: pointer to the HW structure
3864 *
3865 * Turn off the LEDs.
3866 **/
3867static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3868{
3869 u16 data = (u16)hw->mac.ledctl_mode1;
3870 u32 i, led;
3871
3872 /*
3873 * If no link, then turn LED off by clearing the invert bit
3874 * for each LED that's mode is "link_up" in ledctl_mode1.
3875 */
3876 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3877 for (i = 0; i < 3; i++) {
3878 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3879 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3880 E1000_LEDCTL_MODE_LINK_UP)
3881 continue;
3882 if (led & E1000_PHY_LED0_IVRT)
3883 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3884 else
3885 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3886 }
3887 }
3888
482fed85 3889 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3890}
3891
f4187b56 3892/**
e98cac44 3893 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
3894 * @hw: pointer to the HW structure
3895 *
e98cac44
BA
3896 * Read appropriate register for the config done bit for completion status
3897 * and configure the PHY through s/w for EEPROM-less parts.
3898 *
3899 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3900 * config done bit, so only an error is logged and continues. If we were
3901 * to return with error, EEPROM-less silicon would not be able to be reset
3902 * or change link.
f4187b56
BA
3903 **/
3904static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3905{
e98cac44 3906 s32 ret_val = 0;
f4187b56 3907 u32 bank = 0;
e98cac44 3908 u32 status;
f4187b56 3909
e98cac44 3910 e1000e_get_cfg_done(hw);
fc0c7760 3911
e98cac44
BA
3912 /* Wait for indication from h/w that it has completed basic config */
3913 if (hw->mac.type >= e1000_ich10lan) {
3914 e1000_lan_init_done_ich8lan(hw);
3915 } else {
3916 ret_val = e1000e_get_auto_rd_done(hw);
3917 if (ret_val) {
3918 /*
3919 * When auto config read does not complete, do not
3920 * return with an error. This can happen in situations
3921 * where there is no eeprom and prevents getting link.
3922 */
3923 e_dbg("Auto Read Done did not complete\n");
3924 ret_val = 0;
3925 }
fc0c7760
BA
3926 }
3927
e98cac44
BA
3928 /* Clear PHY Reset Asserted bit */
3929 status = er32(STATUS);
3930 if (status & E1000_STATUS_PHYRA)
3931 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3932 else
3933 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
3934
3935 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 3936 if (hw->mac.type <= e1000_ich9lan) {
f4187b56
BA
3937 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3938 (hw->phy.type == e1000_phy_igp_3)) {
3939 e1000e_phy_init_script_igp3(hw);
3940 }
3941 } else {
3942 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3943 /* Maybe we should do a basic PHY config */
3bb99fe2 3944 e_dbg("EEPROM not present\n");
e98cac44 3945 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
3946 }
3947 }
3948
e98cac44 3949 return ret_val;
f4187b56
BA
3950}
3951
17f208de
BA
3952/**
3953 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3954 * @hw: pointer to the HW structure
3955 *
3956 * In the case of a PHY power down to save power, or to turn off link during a
3957 * driver unload, or wake on lan is not enabled, remove the link.
3958 **/
3959static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3960{
3961 /* If the management interface is not enabled, then power down */
3962 if (!(hw->mac.ops.check_mng_mode(hw) ||
3963 hw->phy.ops.check_reset_block(hw)))
3964 e1000_power_down_phy_copper(hw);
17f208de
BA
3965}
3966
bc7f75fa
AK
3967/**
3968 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3969 * @hw: pointer to the HW structure
3970 *
3971 * Clears hardware counters specific to the silicon family and calls
3972 * clear_hw_cntrs_generic to clear all general purpose counters.
3973 **/
3974static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3975{
a4f58f54 3976 u16 phy_data;
2b6b168d 3977 s32 ret_val;
bc7f75fa
AK
3978
3979 e1000e_clear_hw_cntrs_base(hw);
3980
99673d9b
BA
3981 er32(ALGNERRC);
3982 er32(RXERRC);
3983 er32(TNCRS);
3984 er32(CEXTERR);
3985 er32(TSCTC);
3986 er32(TSCTFC);
bc7f75fa 3987
99673d9b
BA
3988 er32(MGTPRC);
3989 er32(MGTPDC);
3990 er32(MGTPTC);
bc7f75fa 3991
99673d9b
BA
3992 er32(IAC);
3993 er32(ICRXOC);
bc7f75fa 3994
a4f58f54
BA
3995 /* Clear PHY statistics registers */
3996 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3997 (hw->phy.type == e1000_phy_82579) ||
a4f58f54 3998 (hw->phy.type == e1000_phy_82577)) {
2b6b168d
BA
3999 ret_val = hw->phy.ops.acquire(hw);
4000 if (ret_val)
4001 return;
4002 ret_val = hw->phy.ops.set_page(hw,
4003 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4004 if (ret_val)
4005 goto release;
4006 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4007 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4008 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4009 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4010 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4011 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4012 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4013 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4014 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4015 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4016 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4017 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4018 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4019 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4020release:
4021 hw->phy.ops.release(hw);
a4f58f54 4022 }
bc7f75fa
AK
4023}
4024
8ce9d6c7 4025static const struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 4026 .id_led_init = e1000e_id_led_init,
eb7700dc 4027 /* check_mng_mode dependent on mac type */
7d3cabbc 4028 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 4029 /* cleanup_led dependent on mac type */
bc7f75fa
AK
4030 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4031 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 4032 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 4033 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
4034 /* led_on dependent on mac type */
4035 /* led_off dependent on mac type */
e2de3eb6 4036 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
4037 .reset_hw = e1000_reset_hw_ich8lan,
4038 .init_hw = e1000_init_hw_ich8lan,
4039 .setup_link = e1000_setup_link_ich8lan,
4040 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 4041 /* id_led_init dependent on mac type */
bc7f75fa
AK
4042};
4043
8ce9d6c7 4044static const struct e1000_phy_operations ich8_phy_ops = {
94d8186a 4045 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 4046 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 4047 .commit = NULL,
f4187b56 4048 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 4049 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
4050 .read_reg = e1000e_read_phy_reg_igp,
4051 .release = e1000_release_swflag_ich8lan,
4052 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
4053 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4054 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 4055 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
4056};
4057
8ce9d6c7 4058static const struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
4059 .acquire = e1000_acquire_nvm_ich8lan,
4060 .read = e1000_read_nvm_ich8lan,
4061 .release = e1000_release_nvm_ich8lan,
4062 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 4063 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
4064 .validate = e1000_validate_nvm_checksum_ich8lan,
4065 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
4066};
4067
8ce9d6c7 4068const struct e1000_info e1000_ich8_info = {
bc7f75fa
AK
4069 .mac = e1000_ich8lan,
4070 .flags = FLAG_HAS_WOL
97ac8cae 4071 | FLAG_IS_ICH
bc7f75fa
AK
4072 | FLAG_HAS_CTRLEXT_ON_LOAD
4073 | FLAG_HAS_AMT
4074 | FLAG_HAS_FLASH
4075 | FLAG_APME_IN_WUC,
4076 .pba = 8,
2adc55c9 4077 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 4078 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4079 .mac_ops = &ich8_mac_ops,
4080 .phy_ops = &ich8_phy_ops,
4081 .nvm_ops = &ich8_nvm_ops,
4082};
4083
8ce9d6c7 4084const struct e1000_info e1000_ich9_info = {
bc7f75fa
AK
4085 .mac = e1000_ich9lan,
4086 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 4087 | FLAG_IS_ICH
bc7f75fa 4088 | FLAG_HAS_WOL
bc7f75fa
AK
4089 | FLAG_HAS_CTRLEXT_ON_LOAD
4090 | FLAG_HAS_AMT
4091 | FLAG_HAS_ERT
4092 | FLAG_HAS_FLASH
4093 | FLAG_APME_IN_WUC,
4094 .pba = 10,
2adc55c9 4095 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 4096 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4097 .mac_ops = &ich8_mac_ops,
4098 .phy_ops = &ich8_phy_ops,
4099 .nvm_ops = &ich8_nvm_ops,
4100};
4101
8ce9d6c7 4102const struct e1000_info e1000_ich10_info = {
f4187b56
BA
4103 .mac = e1000_ich10lan,
4104 .flags = FLAG_HAS_JUMBO_FRAMES
4105 | FLAG_IS_ICH
4106 | FLAG_HAS_WOL
f4187b56
BA
4107 | FLAG_HAS_CTRLEXT_ON_LOAD
4108 | FLAG_HAS_AMT
4109 | FLAG_HAS_ERT
4110 | FLAG_HAS_FLASH
4111 | FLAG_APME_IN_WUC,
4112 .pba = 10,
2adc55c9 4113 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
4114 .get_variants = e1000_get_variants_ich8lan,
4115 .mac_ops = &ich8_mac_ops,
4116 .phy_ops = &ich8_phy_ops,
4117 .nvm_ops = &ich8_nvm_ops,
4118};
a4f58f54 4119
8ce9d6c7 4120const struct e1000_info e1000_pch_info = {
a4f58f54
BA
4121 .mac = e1000_pchlan,
4122 .flags = FLAG_IS_ICH
4123 | FLAG_HAS_WOL
a4f58f54
BA
4124 | FLAG_HAS_CTRLEXT_ON_LOAD
4125 | FLAG_HAS_AMT
4126 | FLAG_HAS_FLASH
4127 | FLAG_HAS_JUMBO_FRAMES
38eb394e 4128 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 4129 | FLAG_APME_IN_WUC,
8c7bbb92 4130 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
4131 .pba = 26,
4132 .max_hw_frame_size = 4096,
4133 .get_variants = e1000_get_variants_ich8lan,
4134 .mac_ops = &ich8_mac_ops,
4135 .phy_ops = &ich8_phy_ops,
4136 .nvm_ops = &ich8_nvm_ops,
4137};
d3738bb8 4138
8ce9d6c7 4139const struct e1000_info e1000_pch2_info = {
d3738bb8
BA
4140 .mac = e1000_pch2lan,
4141 .flags = FLAG_IS_ICH
4142 | FLAG_HAS_WOL
d3738bb8
BA
4143 | FLAG_HAS_CTRLEXT_ON_LOAD
4144 | FLAG_HAS_AMT
4145 | FLAG_HAS_FLASH
4146 | FLAG_HAS_JUMBO_FRAMES
4147 | FLAG_APME_IN_WUC,
e52997f9
BA
4148 .flags2 = FLAG2_HAS_PHY_STATS
4149 | FLAG2_HAS_EEE,
828bac87 4150 .pba = 26,
d3738bb8
BA
4151 .max_hw_frame_size = DEFAULT_JUMBO,
4152 .get_variants = e1000_get_variants_ich8lan,
4153 .mac_ops = &ich8_mac_ops,
4154 .phy_ops = &ich8_phy_ops,
4155 .nvm_ops = &ich8_nvm_ops,
4156};
This page took 0.88712 seconds and 5 git commands to generate.