fm10k/igb/ixgbe: Use dma_rmb on Rx descriptor reads
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
31#define DRV_VERSION "0.12.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
6d2ce900
AD
44/**
45 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
46 *
47 * fm10k_init_module is the first routine called when the driver is
48 * loaded. All it does is register with the PCI subsystem.
49 **/
50static int __init fm10k_init_module(void)
51{
52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 pr_info("%s\n", fm10k_copyright);
54
7461fd91
AD
55 fm10k_dbg_init();
56
b3890e30
AD
57 return fm10k_register_pci_driver();
58}
59module_init(fm10k_init_module);
60
61/**
62 * fm10k_exit_module - Driver Exit Cleanup Routine
63 *
64 * fm10k_exit_module is called just before the driver is removed
65 * from memory.
66 **/
67static void __exit fm10k_exit_module(void)
68{
69 fm10k_unregister_pci_driver();
7461fd91
AD
70
71 fm10k_dbg_exit();
b3890e30
AD
72}
73module_exit(fm10k_exit_module);
18283cad 74
b101c962
AD
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 struct fm10k_rx_buffer *bi)
77{
78 struct page *page = bi->page;
79 dma_addr_t dma;
80
81 /* Only page will be NULL if buffer was consumed */
82 if (likely(page))
83 return true;
84
85 /* alloc new page for storage */
42b17f09 86 page = dev_alloc_page();
b101c962
AD
87 if (unlikely(!page)) {
88 rx_ring->rx_stats.alloc_failed++;
89 return false;
90 }
91
92 /* map page for use */
93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95 /* if mapping failed free memory back to system since
96 * there isn't much point in holding memory we can't use
97 */
98 if (dma_mapping_error(rx_ring->dev, dma)) {
99 __free_page(page);
100 bi->page = NULL;
101
102 rx_ring->rx_stats.alloc_failed++;
103 return false;
104 }
105
106 bi->dma = dma;
107 bi->page = page;
108 bi->page_offset = 0;
109
110 return true;
111}
112
113/**
114 * fm10k_alloc_rx_buffers - Replace used receive buffers
115 * @rx_ring: ring to place buffers on
116 * @cleaned_count: number of buffers to replace
117 **/
118void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
119{
120 union fm10k_rx_desc *rx_desc;
121 struct fm10k_rx_buffer *bi;
122 u16 i = rx_ring->next_to_use;
123
124 /* nothing to do */
125 if (!cleaned_count)
126 return;
127
128 rx_desc = FM10K_RX_DESC(rx_ring, i);
129 bi = &rx_ring->rx_buffer[i];
130 i -= rx_ring->count;
131
132 do {
133 if (!fm10k_alloc_mapped_page(rx_ring, bi))
134 break;
135
136 /* Refresh the desc even if buffer_addrs didn't change
137 * because each write-back erases this info.
138 */
139 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
140
141 rx_desc++;
142 bi++;
143 i++;
144 if (unlikely(!i)) {
145 rx_desc = FM10K_RX_DESC(rx_ring, 0);
146 bi = rx_ring->rx_buffer;
147 i -= rx_ring->count;
148 }
149
150 /* clear the hdr_addr for the next_to_use descriptor */
151 rx_desc->q.hdr_addr = 0;
152
153 cleaned_count--;
154 } while (cleaned_count);
155
156 i += rx_ring->count;
157
158 if (rx_ring->next_to_use != i) {
159 /* record the next descriptor to use */
160 rx_ring->next_to_use = i;
161
162 /* update next to alloc since we have filled the ring */
163 rx_ring->next_to_alloc = i;
164
165 /* Force memory writes to complete before letting h/w
166 * know there are new descriptors to fetch. (Only
167 * applicable for weak-ordered memory model archs,
168 * such as IA-64).
169 */
170 wmb();
171
172 /* notify hardware of new descriptors */
173 writel(i, rx_ring->tail);
174 }
175}
176
177/**
178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
179 * @rx_ring: rx descriptor ring to store buffers on
180 * @old_buff: donor buffer to have page reused
181 *
182 * Synchronizes page for reuse by the interface
183 **/
184static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
185 struct fm10k_rx_buffer *old_buff)
186{
187 struct fm10k_rx_buffer *new_buff;
188 u16 nta = rx_ring->next_to_alloc;
189
190 new_buff = &rx_ring->rx_buffer[nta];
191
192 /* update, and store next to alloc */
193 nta++;
194 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
195
196 /* transfer page from old buffer to new buffer */
197 memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
198
199 /* sync the buffer for use by the device */
200 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
201 old_buff->page_offset,
202 FM10K_RX_BUFSZ,
203 DMA_FROM_DEVICE);
204}
205
206static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
207 struct page *page,
208 unsigned int truesize)
209{
210 /* avoid re-using remote pages */
211 if (unlikely(page_to_nid(page) != numa_mem_id()))
212 return false;
213
214#if (PAGE_SIZE < 8192)
215 /* if we are only owner of page we can reuse it */
216 if (unlikely(page_count(page) != 1))
217 return false;
218
219 /* flip page offset to other buffer */
220 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
221
42b0270b
ED
222 /* Even if we own the page, we are not allowed to use atomic_set()
223 * This would break get_page_unless_zero() users.
b101c962 224 */
42b0270b 225 atomic_inc(&page->_count);
b101c962
AD
226#else
227 /* move offset up to the next cache line */
228 rx_buffer->page_offset += truesize;
229
230 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
231 return false;
232
233 /* bump ref count on page before it is given to the stack */
234 get_page(page);
235#endif
236
237 return true;
238}
239
240/**
241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
242 * @rx_ring: rx descriptor ring to transact packets on
243 * @rx_buffer: buffer containing page to add
244 * @rx_desc: descriptor containing length of buffer written by hardware
245 * @skb: sk_buff to place the data into
246 *
247 * This function will add the data contained in rx_buffer->page to the skb.
248 * This is done either through a direct copy if the data in the buffer is
249 * less than the skb header size, otherwise it will just attach the page as
250 * a frag to the skb.
251 *
252 * The function will then update the page offset if necessary and return
253 * true if the buffer can be reused by the interface.
254 **/
255static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
256 struct fm10k_rx_buffer *rx_buffer,
257 union fm10k_rx_desc *rx_desc,
258 struct sk_buff *skb)
259{
260 struct page *page = rx_buffer->page;
261 unsigned int size = le16_to_cpu(rx_desc->w.length);
262#if (PAGE_SIZE < 8192)
263 unsigned int truesize = FM10K_RX_BUFSZ;
264#else
265 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
266#endif
267
268 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
269 unsigned char *va = page_address(page) + rx_buffer->page_offset;
270
271 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
272
273 /* we can reuse buffer as-is, just make sure it is local */
274 if (likely(page_to_nid(page) == numa_mem_id()))
275 return true;
276
277 /* this page cannot be reused so discard it */
278 put_page(page);
279 return false;
280 }
281
282 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
283 rx_buffer->page_offset, size, truesize);
284
285 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
286}
287
288static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
289 union fm10k_rx_desc *rx_desc,
290 struct sk_buff *skb)
291{
292 struct fm10k_rx_buffer *rx_buffer;
293 struct page *page;
294
295 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
296
297 page = rx_buffer->page;
298 prefetchw(page);
299
300 if (likely(!skb)) {
301 void *page_addr = page_address(page) +
302 rx_buffer->page_offset;
303
304 /* prefetch first cache line of first page */
305 prefetch(page_addr);
306#if L1_CACHE_BYTES < 128
307 prefetch(page_addr + L1_CACHE_BYTES);
308#endif
309
310 /* allocate a skb to store the frags */
67fd893e
AD
311 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
312 FM10K_RX_HDR_LEN);
b101c962
AD
313 if (unlikely(!skb)) {
314 rx_ring->rx_stats.alloc_failed++;
315 return NULL;
316 }
317
318 /* we will be copying header into skb->data in
319 * pskb_may_pull so it is in our interest to prefetch
320 * it now to avoid a possible cache miss
321 */
322 prefetchw(skb->data);
323 }
324
325 /* we are reusing so sync this buffer for CPU use */
326 dma_sync_single_range_for_cpu(rx_ring->dev,
327 rx_buffer->dma,
328 rx_buffer->page_offset,
329 FM10K_RX_BUFSZ,
330 DMA_FROM_DEVICE);
331
332 /* pull page into skb */
333 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334 /* hand second half of page back to the ring */
335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 } else {
337 /* we are not reusing the buffer so unmap it */
338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 PAGE_SIZE, DMA_FROM_DEVICE);
340 }
341
342 /* clear contents of rx_buffer */
343 rx_buffer->page = NULL;
344
345 return skb;
346}
347
76a540d4
AD
348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 union fm10k_rx_desc *rx_desc,
350 struct sk_buff *skb)
351{
352 skb_checksum_none_assert(skb);
353
354 /* Rx checksum disabled via ethtool */
355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 return;
357
358 /* TCP/UDP checksum error bit is set */
359 if (fm10k_test_staterr(rx_desc,
360 FM10K_RXD_STATUS_L4E |
361 FM10K_RXD_STATUS_L4E2 |
362 FM10K_RXD_STATUS_IPE |
363 FM10K_RXD_STATUS_IPE2)) {
364 ring->rx_stats.csum_err++;
365 return;
366 }
367
368 /* It must be a TCP or UDP packet with a valid checksum */
369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 skb->encapsulation = true;
371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 return;
373
374 skb->ip_summed = CHECKSUM_UNNECESSARY;
375}
376
377#define FM10K_RSS_L4_TYPES_MASK \
378 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382
383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384 union fm10k_rx_desc *rx_desc,
385 struct sk_buff *skb)
386{
387 u16 rss_type;
388
389 if (!(ring->netdev->features & NETIF_F_RXHASH))
390 return;
391
392 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393 if (!rss_type)
394 return;
395
396 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399}
400
a211e013
AD
401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402 union fm10k_rx_desc *rx_desc,
403 struct sk_buff *skb)
404{
405 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406
407 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408
409 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411 le64_to_cpu(rx_desc->q.timestamp));
412}
413
5cd5e2e9
AD
414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 union fm10k_rx_desc *rx_desc,
416 struct sk_buff *skb)
417{
418 struct net_device *dev = rx_ring->netdev;
419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420
421 /* check to see if DGLORT belongs to a MACVLAN */
422 if (l2_accel) {
423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424
425 idx -= l2_accel->dglort;
426 if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 dev = l2_accel->macvlan[idx];
428 else
429 l2_accel = NULL;
430 }
431
432 skb->protocol = eth_type_trans(skb, dev);
433
434 if (!l2_accel)
435 return;
436
437 /* update MACVLAN statistics */
438 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439 !!(rx_desc->w.hdr_info &
440 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441}
442
b101c962
AD
443/**
444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445 * @rx_ring: rx descriptor ring packet is being transacted on
446 * @rx_desc: pointer to the EOP Rx descriptor
447 * @skb: pointer to current skb being populated
448 *
449 * This function checks the ring, descriptor, and packet information in
450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451 * other fields within the skb.
452 **/
453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454 union fm10k_rx_desc *rx_desc,
455 struct sk_buff *skb)
456{
457 unsigned int len = skb->len;
458
76a540d4
AD
459 fm10k_rx_hash(rx_ring, rx_desc, skb);
460
461 fm10k_rx_checksum(rx_ring, rx_desc, skb);
462
a211e013
AD
463 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464
b101c962
AD
465 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466
467 skb_record_rx_queue(skb, rx_ring->queue_index);
468
469 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470
471 if (rx_desc->w.vlan) {
472 u16 vid = le16_to_cpu(rx_desc->w.vlan);
473
474 if (vid != rx_ring->vid)
475 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476 }
477
5cd5e2e9 478 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
479
480 return len;
481}
482
483/**
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
487 *
488 * This function updates next to clean. If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
492 **/
493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 union fm10k_rx_desc *rx_desc)
495{
496 u32 ntc = rx_ring->next_to_clean + 1;
497
498 /* fetch, update, and store next to clean */
499 ntc = (ntc < rx_ring->count) ? ntc : 0;
500 rx_ring->next_to_clean = ntc;
501
502 prefetch(FM10K_RX_DESC(rx_ring, ntc));
503
504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 return false;
506
507 return true;
508}
509
510/**
511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being adjusted
515 *
516 * This function is an fm10k specific version of __pskb_pull_tail. The
517 * main difference between this version and the original function is that
518 * this function can make several assumptions about the state of things
519 * that allow for significant optimizations versus the standard function.
520 * As a result we can do things like drop a frag and maintain an accurate
521 * truesize for the skb.
522 */
523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524 union fm10k_rx_desc *rx_desc,
525 struct sk_buff *skb)
526{
527 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528 unsigned char *va;
529 unsigned int pull_len;
530
531 /* it is valid to use page_address instead of kmap since we are
532 * working with pages allocated out of the lomem pool per
533 * alloc_page(GFP_ATOMIC)
534 */
535 va = skb_frag_address(frag);
536
537 /* we need the header to contain the greater of either ETH_HLEN or
538 * 60 bytes if the skb->len is less than 60 for skb_pad.
539 */
540 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541
542 /* align pull length to size of long to optimize memcpy performance */
543 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544
545 /* update all of the pointers */
546 skb_frag_size_sub(frag, pull_len);
547 frag->page_offset += pull_len;
548 skb->data_len -= pull_len;
549 skb->tail += pull_len;
550}
551
552/**
553 * fm10k_cleanup_headers - Correct corrupted or empty headers
554 * @rx_ring: rx descriptor ring packet is being transacted on
555 * @rx_desc: pointer to the EOP Rx descriptor
556 * @skb: pointer to current skb being fixed
557 *
558 * Address the case where we are pulling data in on pages only
559 * and as such no data is present in the skb header.
560 *
561 * In addition if skb is not at least 60 bytes we need to pad it so that
562 * it is large enough to qualify as a valid Ethernet frame.
563 *
564 * Returns true if an error was encountered and skb was freed.
565 **/
566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567 union fm10k_rx_desc *rx_desc,
568 struct sk_buff *skb)
569{
570 if (unlikely((fm10k_test_staterr(rx_desc,
571 FM10K_RXD_STATUS_RXE)))) {
572 dev_kfree_skb_any(skb);
573 rx_ring->rx_stats.errors++;
574 return true;
575 }
576
577 /* place header in linear portion of buffer */
578 if (skb_is_nonlinear(skb))
579 fm10k_pull_tail(rx_ring, rx_desc, skb);
580
a94d9e22
AD
581 /* if eth_skb_pad returns an error the skb was freed */
582 if (eth_skb_pad(skb))
583 return true;
b101c962
AD
584
585 return false;
586}
587
588/**
589 * fm10k_receive_skb - helper function to handle rx indications
590 * @q_vector: structure containing interrupt and ring information
591 * @skb: packet to send up
592 **/
593static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
594 struct sk_buff *skb)
595{
596 napi_gro_receive(&q_vector->napi, skb);
597}
598
599static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
600 struct fm10k_ring *rx_ring,
601 int budget)
602{
603 struct sk_buff *skb = rx_ring->skb;
604 unsigned int total_bytes = 0, total_packets = 0;
605 u16 cleaned_count = fm10k_desc_unused(rx_ring);
606
607 do {
608 union fm10k_rx_desc *rx_desc;
609
610 /* return some buffers to hardware, one at a time is too slow */
611 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
612 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
613 cleaned_count = 0;
614 }
615
616 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
617
124b74c1 618 if (!rx_desc->d.staterr)
b101c962
AD
619 break;
620
621 /* This memory barrier is needed to keep us from reading
622 * any other fields out of the rx_desc until we know the
124b74c1 623 * descriptor has been written back
b101c962 624 */
124b74c1 625 dma_rmb();
b101c962
AD
626
627 /* retrieve a buffer from the ring */
628 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
629
630 /* exit if we failed to retrieve a buffer */
631 if (!skb)
632 break;
633
634 cleaned_count++;
635
636 /* fetch next buffer in frame if non-eop */
637 if (fm10k_is_non_eop(rx_ring, rx_desc))
638 continue;
639
640 /* verify the packet layout is correct */
641 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
642 skb = NULL;
643 continue;
644 }
645
646 /* populate checksum, timestamp, VLAN, and protocol */
647 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
648
649 fm10k_receive_skb(q_vector, skb);
650
651 /* reset skb pointer */
652 skb = NULL;
653
654 /* update budget accounting */
655 total_packets++;
656 } while (likely(total_packets < budget));
657
658 /* place incomplete frames back on ring for completion */
659 rx_ring->skb = skb;
660
661 u64_stats_update_begin(&rx_ring->syncp);
662 rx_ring->stats.packets += total_packets;
663 rx_ring->stats.bytes += total_bytes;
664 u64_stats_update_end(&rx_ring->syncp);
665 q_vector->rx.total_packets += total_packets;
666 q_vector->rx.total_bytes += total_bytes;
667
668 return total_packets < budget;
669}
670
76a540d4
AD
671#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
672static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
673{
674 struct fm10k_intfc *interface = netdev_priv(skb->dev);
675 struct fm10k_vxlan_port *vxlan_port;
676
677 /* we can only offload a vxlan if we recognize it as such */
678 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
679 struct fm10k_vxlan_port, list);
680
681 if (!vxlan_port)
682 return NULL;
683 if (vxlan_port->port != udp_hdr(skb)->dest)
684 return NULL;
685
686 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
687 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
688}
689
690#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
691#define NVGRE_TNI htons(0x2000)
692struct fm10k_nvgre_hdr {
693 __be16 flags;
694 __be16 proto;
695 __be32 tni;
696};
697
698static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
699{
700 struct fm10k_nvgre_hdr *nvgre_hdr;
701 int hlen = ip_hdrlen(skb);
702
703 /* currently only IPv4 is supported due to hlen above */
704 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
705 return NULL;
706
707 /* our transport header should be NVGRE */
708 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
709
710 /* verify all reserved flags are 0 */
711 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
712 return NULL;
713
714 /* verify protocol is transparent Ethernet bridging */
715 if (nvgre_hdr->proto != htons(ETH_P_TEB))
716 return NULL;
717
718 /* report start of ethernet header */
719 if (nvgre_hdr->flags & NVGRE_TNI)
720 return (struct ethhdr *)(nvgre_hdr + 1);
721
722 return (struct ethhdr *)(&nvgre_hdr->tni);
723}
724
725static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
726{
727 struct ethhdr *eth_hdr;
728 u8 l4_hdr = 0;
729
730 switch (vlan_get_protocol(skb)) {
731 case htons(ETH_P_IP):
732 l4_hdr = ip_hdr(skb)->protocol;
733 break;
734 case htons(ETH_P_IPV6):
735 l4_hdr = ipv6_hdr(skb)->nexthdr;
736 break;
737 default:
738 return 0;
739 }
740
741 switch (l4_hdr) {
742 case IPPROTO_UDP:
743 eth_hdr = fm10k_port_is_vxlan(skb);
744 break;
745 case IPPROTO_GRE:
746 eth_hdr = fm10k_gre_is_nvgre(skb);
747 break;
748 default:
749 return 0;
750 }
751
752 if (!eth_hdr)
753 return 0;
754
755 switch (eth_hdr->h_proto) {
756 case htons(ETH_P_IP):
757 case htons(ETH_P_IPV6):
758 break;
759 default:
760 return 0;
761 }
762
763 return eth_hdr->h_proto;
764}
765
766static int fm10k_tso(struct fm10k_ring *tx_ring,
767 struct fm10k_tx_buffer *first)
768{
769 struct sk_buff *skb = first->skb;
770 struct fm10k_tx_desc *tx_desc;
771 unsigned char *th;
772 u8 hdrlen;
773
774 if (skb->ip_summed != CHECKSUM_PARTIAL)
775 return 0;
776
777 if (!skb_is_gso(skb))
778 return 0;
779
780 /* compute header lengths */
781 if (skb->encapsulation) {
782 if (!fm10k_tx_encap_offload(skb))
783 goto err_vxlan;
784 th = skb_inner_transport_header(skb);
785 } else {
786 th = skb_transport_header(skb);
787 }
788
789 /* compute offset from SOF to transport header and add header len */
790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791
792 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793
794 /* update gso size and bytecount with header size */
795 first->gso_segs = skb_shinfo(skb)->gso_segs;
796 first->bytecount += (first->gso_segs - 1) * hdrlen;
797
798 /* populate Tx descriptor header size and mss */
799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 tx_desc->hdrlen = hdrlen;
801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802
803 return 1;
804err_vxlan:
805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 if (!net_ratelimit())
807 netdev_err(tx_ring->netdev,
808 "TSO requested for unsupported tunnel, disabling offload\n");
809 return -1;
810}
811
812static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 struct fm10k_tx_buffer *first)
814{
815 struct sk_buff *skb = first->skb;
816 struct fm10k_tx_desc *tx_desc;
817 union {
818 struct iphdr *ipv4;
819 struct ipv6hdr *ipv6;
820 u8 *raw;
821 } network_hdr;
822 __be16 protocol;
823 u8 l4_hdr = 0;
824
825 if (skb->ip_summed != CHECKSUM_PARTIAL)
826 goto no_csum;
827
828 if (skb->encapsulation) {
829 protocol = fm10k_tx_encap_offload(skb);
830 if (!protocol) {
831 if (skb_checksum_help(skb)) {
832 dev_warn(tx_ring->dev,
833 "failed to offload encap csum!\n");
834 tx_ring->tx_stats.csum_err++;
835 }
836 goto no_csum;
837 }
838 network_hdr.raw = skb_inner_network_header(skb);
839 } else {
840 protocol = vlan_get_protocol(skb);
841 network_hdr.raw = skb_network_header(skb);
842 }
843
844 switch (protocol) {
845 case htons(ETH_P_IP):
846 l4_hdr = network_hdr.ipv4->protocol;
847 break;
848 case htons(ETH_P_IPV6):
849 l4_hdr = network_hdr.ipv6->nexthdr;
850 break;
851 default:
852 if (unlikely(net_ratelimit())) {
853 dev_warn(tx_ring->dev,
854 "partial checksum but ip version=%x!\n",
855 protocol);
856 }
857 tx_ring->tx_stats.csum_err++;
858 goto no_csum;
859 }
860
861 switch (l4_hdr) {
862 case IPPROTO_TCP:
863 case IPPROTO_UDP:
864 break;
865 case IPPROTO_GRE:
866 if (skb->encapsulation)
867 break;
868 default:
869 if (unlikely(net_ratelimit())) {
870 dev_warn(tx_ring->dev,
871 "partial checksum but l4 proto=%x!\n",
872 l4_hdr);
873 }
874 tx_ring->tx_stats.csum_err++;
875 goto no_csum;
876 }
877
878 /* update TX checksum flag */
879 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
880
881no_csum:
882 /* populate Tx descriptor header size and mss */
883 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
884 tx_desc->hdrlen = 0;
885 tx_desc->mss = 0;
886}
887
888#define FM10K_SET_FLAG(_input, _flag, _result) \
889 ((_flag <= _result) ? \
890 ((u32)(_input & _flag) * (_result / _flag)) : \
891 ((u32)(_input & _flag) / (_flag / _result)))
892
893static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
894{
895 /* set type for advanced descriptor with frame checksum insertion */
896 u32 desc_flags = 0;
897
a211e013
AD
898 /* set timestamping bits */
899 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
900 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
901 desc_flags |= FM10K_TXD_FLAG_TIME;
902
76a540d4
AD
903 /* set checksum offload bits */
904 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
905 FM10K_TXD_FLAG_CSUM);
906
907 return desc_flags;
908}
909
b101c962
AD
910static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
911 struct fm10k_tx_desc *tx_desc, u16 i,
912 dma_addr_t dma, unsigned int size, u8 desc_flags)
913{
914 /* set RS and INT for last frame in a cache line */
915 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
916 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
917
918 /* record values to descriptor */
919 tx_desc->buffer_addr = cpu_to_le64(dma);
920 tx_desc->flags = desc_flags;
921 tx_desc->buflen = cpu_to_le16(size);
922
923 /* return true if we just wrapped the ring */
924 return i == tx_ring->count;
925}
926
2c2b2f0c
AD
927static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
928{
929 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
930
931 smp_mb();
932
933 /* We need to check again in a case another CPU has just
934 * made room available. */
935 if (likely(fm10k_desc_unused(tx_ring) < size))
936 return -EBUSY;
937
938 /* A reprieve! - use start_queue because it doesn't call schedule */
939 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
940 ++tx_ring->tx_stats.restart_queue;
941 return 0;
942}
943
944static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
945{
946 if (likely(fm10k_desc_unused(tx_ring) >= size))
947 return 0;
948 return __fm10k_maybe_stop_tx(tx_ring, size);
949}
950
b101c962
AD
951static void fm10k_tx_map(struct fm10k_ring *tx_ring,
952 struct fm10k_tx_buffer *first)
953{
954 struct sk_buff *skb = first->skb;
955 struct fm10k_tx_buffer *tx_buffer;
956 struct fm10k_tx_desc *tx_desc;
957 struct skb_frag_struct *frag;
958 unsigned char *data;
959 dma_addr_t dma;
960 unsigned int data_len, size;
76a540d4 961 u32 tx_flags = first->tx_flags;
b101c962 962 u16 i = tx_ring->next_to_use;
76a540d4 963 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
964
965 tx_desc = FM10K_TX_DESC(tx_ring, i);
966
967 /* add HW VLAN tag */
968 if (vlan_tx_tag_present(skb))
969 tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
970 else
971 tx_desc->vlan = 0;
972
973 size = skb_headlen(skb);
974 data = skb->data;
975
976 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
977
978 data_len = skb->data_len;
979 tx_buffer = first;
980
981 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
982 if (dma_mapping_error(tx_ring->dev, dma))
983 goto dma_error;
984
985 /* record length, and DMA address */
986 dma_unmap_len_set(tx_buffer, len, size);
987 dma_unmap_addr_set(tx_buffer, dma, dma);
988
989 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
990 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
991 FM10K_MAX_DATA_PER_TXD, flags)) {
992 tx_desc = FM10K_TX_DESC(tx_ring, 0);
993 i = 0;
994 }
995
996 dma += FM10K_MAX_DATA_PER_TXD;
997 size -= FM10K_MAX_DATA_PER_TXD;
998 }
999
1000 if (likely(!data_len))
1001 break;
1002
1003 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1004 dma, size, flags)) {
1005 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1006 i = 0;
1007 }
1008
1009 size = skb_frag_size(frag);
1010 data_len -= size;
1011
1012 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1013 DMA_TO_DEVICE);
1014
1015 tx_buffer = &tx_ring->tx_buffer[i];
1016 }
1017
1018 /* write last descriptor with LAST bit set */
1019 flags |= FM10K_TXD_FLAG_LAST;
1020
1021 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1022 i = 0;
1023
1024 /* record bytecount for BQL */
1025 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1026
1027 /* record SW timestamp if HW timestamp is not available */
1028 skb_tx_timestamp(first->skb);
1029
1030 /* Force memory writes to complete before letting h/w know there
1031 * are new descriptors to fetch. (Only applicable for weak-ordered
1032 * memory model archs, such as IA-64).
1033 *
1034 * We also need this memory barrier to make certain all of the
1035 * status bits have been updated before next_to_watch is written.
1036 */
1037 wmb();
1038
1039 /* set next_to_watch value indicating a packet is present */
1040 first->next_to_watch = tx_desc;
1041
1042 tx_ring->next_to_use = i;
1043
2c2b2f0c
AD
1044 /* Make sure there is space in the ring for the next send. */
1045 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1046
b101c962 1047 /* notify HW of packet */
2c2b2f0c
AD
1048 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1049 writel(i, tx_ring->tail);
b101c962 1050
2c2b2f0c
AD
1051 /* we need this if more than one processor can write to our tail
1052 * at a time, it synchronizes IO on IA64/Altix systems
1053 */
1054 mmiowb();
1055 }
b101c962
AD
1056
1057 return;
1058dma_error:
1059 dev_err(tx_ring->dev, "TX DMA map failed\n");
1060
1061 /* clear dma mappings for failed tx_buffer map */
1062 for (;;) {
1063 tx_buffer = &tx_ring->tx_buffer[i];
1064 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1065 if (tx_buffer == first)
1066 break;
1067 if (i == 0)
1068 i = tx_ring->count;
1069 i--;
1070 }
1071
1072 tx_ring->next_to_use = i;
1073}
1074
b101c962
AD
1075netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1076 struct fm10k_ring *tx_ring)
1077{
1078 struct fm10k_tx_buffer *first;
76a540d4 1079 int tso;
b101c962
AD
1080 u32 tx_flags = 0;
1081#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1082 unsigned short f;
1083#endif
1084 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1085
1086 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1087 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1088 * + 2 desc gap to keep tail from touching head
1089 * otherwise try next time
1090 */
1091#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1094#else
1095 count += skb_shinfo(skb)->nr_frags;
1096#endif
1097 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1098 tx_ring->tx_stats.tx_busy++;
1099 return NETDEV_TX_BUSY;
1100 }
1101
1102 /* record the location of the first descriptor for this packet */
1103 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1104 first->skb = skb;
1105 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1106 first->gso_segs = 1;
1107
1108 /* record initial flags and protocol */
1109 first->tx_flags = tx_flags;
1110
76a540d4
AD
1111 tso = fm10k_tso(tx_ring, first);
1112 if (tso < 0)
1113 goto out_drop;
1114 else if (!tso)
1115 fm10k_tx_csum(tx_ring, first);
1116
b101c962
AD
1117 fm10k_tx_map(tx_ring, first);
1118
76a540d4
AD
1119 return NETDEV_TX_OK;
1120
1121out_drop:
1122 dev_kfree_skb_any(first->skb);
1123 first->skb = NULL;
1124
b101c962
AD
1125 return NETDEV_TX_OK;
1126}
1127
1128static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1129{
1130 return ring->stats.packets;
1131}
1132
1133static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1134{
1135 /* use SW head and tail until we have real hardware */
1136 u32 head = ring->next_to_clean;
1137 u32 tail = ring->next_to_use;
1138
1139 return ((head <= tail) ? tail : tail + ring->count) - head;
1140}
1141
1142bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1143{
1144 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1147
1148 clear_check_for_tx_hang(tx_ring);
1149
1150 /* Check for a hung queue, but be thorough. This verifies
1151 * that a transmit has been completed since the previous
1152 * check AND there is at least one packet pending. By
1153 * requiring this to fail twice we avoid races with
1154 * clearing the ARMED bit and conditions where we
1155 * run the check_tx_hang logic with a transmit completion
1156 * pending but without time to complete it yet.
1157 */
1158 if (!tx_pending || (tx_done_old != tx_done)) {
1159 /* update completed stats and continue */
1160 tx_ring->tx_stats.tx_done_old = tx_done;
1161 /* reset the countdown */
1162 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1163
1164 return false;
1165 }
1166
1167 /* make sure it is true for two checks in a row */
1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1169}
1170
1171/**
1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1173 * @interface: driver private struct
1174 **/
1175void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1176{
1177 /* Do the reset outside of interrupt context */
1178 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1179 netdev_err(interface->netdev, "Reset interface\n");
1180 interface->tx_timeout_count++;
1181 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1182 fm10k_service_event_schedule(interface);
1183 }
1184}
1185
1186/**
1187 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1188 * @q_vector: structure containing interrupt and ring information
1189 * @tx_ring: tx ring to clean
1190 **/
1191static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 struct fm10k_ring *tx_ring)
1193{
1194 struct fm10k_intfc *interface = q_vector->interface;
1195 struct fm10k_tx_buffer *tx_buffer;
1196 struct fm10k_tx_desc *tx_desc;
1197 unsigned int total_bytes = 0, total_packets = 0;
1198 unsigned int budget = q_vector->tx.work_limit;
1199 unsigned int i = tx_ring->next_to_clean;
1200
1201 if (test_bit(__FM10K_DOWN, &interface->state))
1202 return true;
1203
1204 tx_buffer = &tx_ring->tx_buffer[i];
1205 tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 i -= tx_ring->count;
1207
1208 do {
1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1210
1211 /* if next_to_watch is not set then there is no work pending */
1212 if (!eop_desc)
1213 break;
1214
1215 /* prevent any other reads prior to eop_desc */
1216 read_barrier_depends();
1217
1218 /* if DD is not set pending work has not been completed */
1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 break;
1221
1222 /* clear next_to_watch to prevent false hangs */
1223 tx_buffer->next_to_watch = NULL;
1224
1225 /* update the statistics for this packet */
1226 total_bytes += tx_buffer->bytecount;
1227 total_packets += tx_buffer->gso_segs;
1228
1229 /* free the skb */
1230 dev_consume_skb_any(tx_buffer->skb);
1231
1232 /* unmap skb header data */
1233 dma_unmap_single(tx_ring->dev,
1234 dma_unmap_addr(tx_buffer, dma),
1235 dma_unmap_len(tx_buffer, len),
1236 DMA_TO_DEVICE);
1237
1238 /* clear tx_buffer data */
1239 tx_buffer->skb = NULL;
1240 dma_unmap_len_set(tx_buffer, len, 0);
1241
1242 /* unmap remaining buffers */
1243 while (tx_desc != eop_desc) {
1244 tx_buffer++;
1245 tx_desc++;
1246 i++;
1247 if (unlikely(!i)) {
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 }
1252
1253 /* unmap any remaining paged data */
1254 if (dma_unmap_len(tx_buffer, len)) {
1255 dma_unmap_page(tx_ring->dev,
1256 dma_unmap_addr(tx_buffer, dma),
1257 dma_unmap_len(tx_buffer, len),
1258 DMA_TO_DEVICE);
1259 dma_unmap_len_set(tx_buffer, len, 0);
1260 }
1261 }
1262
1263 /* move us one more past the eop_desc for start of next pkt */
1264 tx_buffer++;
1265 tx_desc++;
1266 i++;
1267 if (unlikely(!i)) {
1268 i -= tx_ring->count;
1269 tx_buffer = tx_ring->tx_buffer;
1270 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1271 }
1272
1273 /* issue prefetch for next Tx descriptor */
1274 prefetch(tx_desc);
1275
1276 /* update budget accounting */
1277 budget--;
1278 } while (likely(budget));
1279
1280 i += tx_ring->count;
1281 tx_ring->next_to_clean = i;
1282 u64_stats_update_begin(&tx_ring->syncp);
1283 tx_ring->stats.bytes += total_bytes;
1284 tx_ring->stats.packets += total_packets;
1285 u64_stats_update_end(&tx_ring->syncp);
1286 q_vector->tx.total_bytes += total_bytes;
1287 q_vector->tx.total_packets += total_packets;
1288
1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 /* schedule immediate reset if we believe we hung */
1291 struct fm10k_hw *hw = &interface->hw;
1292
1293 netif_err(interface, drv, tx_ring->netdev,
1294 "Detected Tx Unit Hang\n"
1295 " Tx Queue <%d>\n"
1296 " TDH, TDT <%x>, <%x>\n"
1297 " next_to_use <%x>\n"
1298 " next_to_clean <%x>\n",
1299 tx_ring->queue_index,
1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 tx_ring->next_to_use, i);
1303
1304 netif_stop_subqueue(tx_ring->netdev,
1305 tx_ring->queue_index);
1306
1307 netif_info(interface, probe, tx_ring->netdev,
1308 "tx hang %d detected on queue %d, resetting interface\n",
1309 interface->tx_timeout_count + 1,
1310 tx_ring->queue_index);
1311
1312 fm10k_tx_timeout_reset(interface);
1313
1314 /* the netdev is about to reset, no point in enabling stuff */
1315 return true;
1316 }
1317
1318 /* notify netdev of completed buffers */
1319 netdev_tx_completed_queue(txring_txq(tx_ring),
1320 total_packets, total_bytes);
1321
1322#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 /* Make sure that anybody stopping the queue after this
1326 * sees the new next_to_clean.
1327 */
1328 smp_mb();
1329 if (__netif_subqueue_stopped(tx_ring->netdev,
1330 tx_ring->queue_index) &&
1331 !test_bit(__FM10K_DOWN, &interface->state)) {
1332 netif_wake_subqueue(tx_ring->netdev,
1333 tx_ring->queue_index);
1334 ++tx_ring->tx_stats.restart_queue;
1335 }
1336 }
1337
1338 return !!budget;
1339}
1340
18283cad
AD
1341/**
1342 * fm10k_update_itr - update the dynamic ITR value based on packet size
1343 *
1344 * Stores a new ITR value based on strictly on packet size. The
1345 * divisors and thresholds used by this function were determined based
1346 * on theoretical maximum wire speed and testing data, in order to
1347 * minimize response time while increasing bulk throughput.
1348 *
1349 * @ring_container: Container for rings to have ITR updated
1350 **/
1351static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1352{
1353 unsigned int avg_wire_size, packets;
1354
1355 /* Only update ITR if we are using adaptive setting */
1356 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1357 goto clear_counts;
1358
1359 packets = ring_container->total_packets;
1360 if (!packets)
1361 goto clear_counts;
1362
1363 avg_wire_size = ring_container->total_bytes / packets;
1364
1365 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1366 avg_wire_size += 24;
1367
1368 /* Don't starve jumbo frames */
1369 if (avg_wire_size > 3000)
1370 avg_wire_size = 3000;
1371
1372 /* Give a little boost to mid-size frames */
1373 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1374 avg_wire_size /= 3;
1375 else
1376 avg_wire_size /= 2;
1377
1378 /* write back value and retain adaptive flag */
1379 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1380
1381clear_counts:
1382 ring_container->total_bytes = 0;
1383 ring_container->total_packets = 0;
1384}
1385
1386static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1387{
1388 /* Enable auto-mask and clear the current mask */
1389 u32 itr = FM10K_ITR_ENABLE;
1390
1391 /* Update Tx ITR */
1392 fm10k_update_itr(&q_vector->tx);
1393
1394 /* Update Rx ITR */
1395 fm10k_update_itr(&q_vector->rx);
1396
1397 /* Store Tx itr in timer slot 0 */
1398 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1399
1400 /* Shift Rx itr to timer slot 1 */
1401 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1402
1403 /* Write the final value to the ITR register */
1404 writel(itr, q_vector->itr);
1405}
1406
1407static int fm10k_poll(struct napi_struct *napi, int budget)
1408{
1409 struct fm10k_q_vector *q_vector =
1410 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1411 struct fm10k_ring *ring;
1412 int per_ring_budget;
1413 bool clean_complete = true;
1414
1415 fm10k_for_each_ring(ring, q_vector->tx)
1416 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1417
1418 /* attempt to distribute budget to each queue fairly, but don't
1419 * allow the budget to go below 1 because we'll exit polling
1420 */
1421 if (q_vector->rx.count > 1)
1422 per_ring_budget = max(budget/q_vector->rx.count, 1);
1423 else
1424 per_ring_budget = budget;
1425
1426 fm10k_for_each_ring(ring, q_vector->rx)
1427 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1428 per_ring_budget);
1429
1430 /* If all work not completed, return budget and keep polling */
1431 if (!clean_complete)
1432 return budget;
18283cad
AD
1433
1434 /* all work done, exit the polling mode */
1435 napi_complete(napi);
1436
1437 /* re-enable the q_vector */
1438 fm10k_qv_enable(q_vector);
1439
1440 return 0;
1441}
1442
aa3ac822
AD
1443/**
1444 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1445 * @interface: board private structure to initialize
1446 *
1447 * When QoS (Quality of Service) is enabled, allocate queues for
1448 * each traffic class. If multiqueue isn't available,then abort QoS
1449 * initialization.
1450 *
1451 * This function handles all combinations of Qos and RSS.
1452 *
1453 **/
1454static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1455{
1456 struct net_device *dev = interface->netdev;
1457 struct fm10k_ring_feature *f;
1458 int rss_i, i;
1459 int pcs;
1460
1461 /* Map queue offset and counts onto allocated tx queues */
1462 pcs = netdev_get_num_tc(dev);
1463
1464 if (pcs <= 1)
1465 return false;
1466
1467 /* set QoS mask and indices */
1468 f = &interface->ring_feature[RING_F_QOS];
1469 f->indices = pcs;
1470 f->mask = (1 << fls(pcs - 1)) - 1;
1471
1472 /* determine the upper limit for our current DCB mode */
1473 rss_i = interface->hw.mac.max_queues / pcs;
1474 rss_i = 1 << (fls(rss_i) - 1);
1475
1476 /* set RSS mask and indices */
1477 f = &interface->ring_feature[RING_F_RSS];
1478 rss_i = min_t(u16, rss_i, f->limit);
1479 f->indices = rss_i;
1480 f->mask = (1 << fls(rss_i - 1)) - 1;
1481
1482 /* configure pause class to queue mapping */
1483 for (i = 0; i < pcs; i++)
1484 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1485
1486 interface->num_rx_queues = rss_i * pcs;
1487 interface->num_tx_queues = rss_i * pcs;
1488
1489 return true;
1490}
1491
1492/**
1493 * fm10k_set_rss_queues: Allocate queues for RSS
1494 * @interface: board private structure to initialize
1495 *
1496 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1497 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1498 *
1499 **/
1500static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1501{
1502 struct fm10k_ring_feature *f;
1503 u16 rss_i;
1504
1505 f = &interface->ring_feature[RING_F_RSS];
1506 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1507
1508 /* record indices and power of 2 mask for RSS */
1509 f->indices = rss_i;
1510 f->mask = (1 << fls(rss_i - 1)) - 1;
1511
1512 interface->num_rx_queues = rss_i;
1513 interface->num_tx_queues = rss_i;
1514
1515 return true;
1516}
1517
18283cad
AD
1518/**
1519 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1520 * @interface: board private structure to initialize
1521 *
1522 * This is the top level queue allocation routine. The order here is very
1523 * important, starting with the "most" number of features turned on at once,
1524 * and ending with the smallest set of features. This way large combinations
1525 * can be allocated if they're turned on, and smaller combinations are the
1526 * fallthrough conditions.
1527 *
1528 **/
1529static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1530{
1531 /* Start with base case */
1532 interface->num_rx_queues = 1;
1533 interface->num_tx_queues = 1;
aa3ac822
AD
1534
1535 if (fm10k_set_qos_queues(interface))
1536 return;
1537
1538 fm10k_set_rss_queues(interface);
18283cad
AD
1539}
1540
1541/**
1542 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1543 * @interface: board private structure to initialize
1544 * @v_count: q_vectors allocated on interface, used for ring interleaving
1545 * @v_idx: index of vector in interface struct
1546 * @txr_count: total number of Tx rings to allocate
1547 * @txr_idx: index of first Tx ring to allocate
1548 * @rxr_count: total number of Rx rings to allocate
1549 * @rxr_idx: index of first Rx ring to allocate
1550 *
1551 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1552 **/
1553static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1554 unsigned int v_count, unsigned int v_idx,
1555 unsigned int txr_count, unsigned int txr_idx,
1556 unsigned int rxr_count, unsigned int rxr_idx)
1557{
1558 struct fm10k_q_vector *q_vector;
e27ef599 1559 struct fm10k_ring *ring;
18283cad
AD
1560 int ring_count, size;
1561
1562 ring_count = txr_count + rxr_count;
e27ef599
AD
1563 size = sizeof(struct fm10k_q_vector) +
1564 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1565
1566 /* allocate q_vector and rings */
1567 q_vector = kzalloc(size, GFP_KERNEL);
1568 if (!q_vector)
1569 return -ENOMEM;
1570
1571 /* initialize NAPI */
1572 netif_napi_add(interface->netdev, &q_vector->napi,
1573 fm10k_poll, NAPI_POLL_WEIGHT);
1574
1575 /* tie q_vector and interface together */
1576 interface->q_vector[v_idx] = q_vector;
1577 q_vector->interface = interface;
1578 q_vector->v_idx = v_idx;
1579
e27ef599
AD
1580 /* initialize pointer to rings */
1581 ring = q_vector->ring;
1582
18283cad 1583 /* save Tx ring container info */
e27ef599
AD
1584 q_vector->tx.ring = ring;
1585 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1586 q_vector->tx.itr = interface->tx_itr;
1587 q_vector->tx.count = txr_count;
1588
e27ef599
AD
1589 while (txr_count) {
1590 /* assign generic ring traits */
1591 ring->dev = &interface->pdev->dev;
1592 ring->netdev = interface->netdev;
1593
1594 /* configure backlink on ring */
1595 ring->q_vector = q_vector;
1596
1597 /* apply Tx specific ring traits */
1598 ring->count = interface->tx_ring_count;
1599 ring->queue_index = txr_idx;
1600
1601 /* assign ring to interface */
1602 interface->tx_ring[txr_idx] = ring;
1603
1604 /* update count and index */
1605 txr_count--;
1606 txr_idx += v_count;
1607
1608 /* push pointer to next ring */
1609 ring++;
1610 }
1611
18283cad 1612 /* save Rx ring container info */
e27ef599 1613 q_vector->rx.ring = ring;
18283cad
AD
1614 q_vector->rx.itr = interface->rx_itr;
1615 q_vector->rx.count = rxr_count;
1616
e27ef599
AD
1617 while (rxr_count) {
1618 /* assign generic ring traits */
1619 ring->dev = &interface->pdev->dev;
1620 ring->netdev = interface->netdev;
5cd5e2e9 1621 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1622
1623 /* configure backlink on ring */
1624 ring->q_vector = q_vector;
1625
1626 /* apply Rx specific ring traits */
1627 ring->count = interface->rx_ring_count;
1628 ring->queue_index = rxr_idx;
1629
1630 /* assign ring to interface */
1631 interface->rx_ring[rxr_idx] = ring;
1632
1633 /* update count and index */
1634 rxr_count--;
1635 rxr_idx += v_count;
1636
1637 /* push pointer to next ring */
1638 ring++;
1639 }
1640
7461fd91
AD
1641 fm10k_dbg_q_vector_init(q_vector);
1642
18283cad
AD
1643 return 0;
1644}
1645
1646/**
1647 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1648 * @interface: board private structure to initialize
1649 * @v_idx: Index of vector to be freed
1650 *
1651 * This function frees the memory allocated to the q_vector. In addition if
1652 * NAPI is enabled it will delete any references to the NAPI struct prior
1653 * to freeing the q_vector.
1654 **/
1655static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1656{
1657 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1658 struct fm10k_ring *ring;
1659
7461fd91
AD
1660 fm10k_dbg_q_vector_exit(q_vector);
1661
e27ef599
AD
1662 fm10k_for_each_ring(ring, q_vector->tx)
1663 interface->tx_ring[ring->queue_index] = NULL;
1664
1665 fm10k_for_each_ring(ring, q_vector->rx)
1666 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1667
1668 interface->q_vector[v_idx] = NULL;
1669 netif_napi_del(&q_vector->napi);
1670 kfree_rcu(q_vector, rcu);
1671}
1672
1673/**
1674 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1675 * @interface: board private structure to initialize
1676 *
1677 * We allocate one q_vector per queue interrupt. If allocation fails we
1678 * return -ENOMEM.
1679 **/
1680static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1681{
1682 unsigned int q_vectors = interface->num_q_vectors;
1683 unsigned int rxr_remaining = interface->num_rx_queues;
1684 unsigned int txr_remaining = interface->num_tx_queues;
1685 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1686 int err;
1687
1688 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1689 for (; rxr_remaining; v_idx++) {
1690 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1691 0, 0, 1, rxr_idx);
1692 if (err)
1693 goto err_out;
1694
1695 /* update counts and index */
1696 rxr_remaining--;
1697 rxr_idx++;
1698 }
1699 }
1700
1701 for (; v_idx < q_vectors; v_idx++) {
1702 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1703 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1704
1705 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1706 tqpv, txr_idx,
1707 rqpv, rxr_idx);
1708
1709 if (err)
1710 goto err_out;
1711
1712 /* update counts and index */
1713 rxr_remaining -= rqpv;
1714 txr_remaining -= tqpv;
1715 rxr_idx++;
1716 txr_idx++;
1717 }
1718
1719 return 0;
1720
1721err_out:
1722 interface->num_tx_queues = 0;
1723 interface->num_rx_queues = 0;
1724 interface->num_q_vectors = 0;
1725
1726 while (v_idx--)
1727 fm10k_free_q_vector(interface, v_idx);
1728
1729 return -ENOMEM;
1730}
1731
1732/**
1733 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1734 * @interface: board private structure to initialize
1735 *
1736 * This function frees the memory allocated to the q_vectors. In addition if
1737 * NAPI is enabled it will delete any references to the NAPI struct prior
1738 * to freeing the q_vector.
1739 **/
1740static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1741{
1742 int v_idx = interface->num_q_vectors;
1743
1744 interface->num_tx_queues = 0;
1745 interface->num_rx_queues = 0;
1746 interface->num_q_vectors = 0;
1747
1748 while (v_idx--)
1749 fm10k_free_q_vector(interface, v_idx);
1750}
1751
1752/**
1753 * f10k_reset_msix_capability - reset MSI-X capability
1754 * @interface: board private structure to initialize
1755 *
1756 * Reset the MSI-X capability back to its starting state
1757 **/
1758static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1759{
1760 pci_disable_msix(interface->pdev);
1761 kfree(interface->msix_entries);
1762 interface->msix_entries = NULL;
1763}
1764
1765/**
1766 * f10k_init_msix_capability - configure MSI-X capability
1767 * @interface: board private structure to initialize
1768 *
1769 * Attempt to configure the interrupts using the best available
1770 * capabilities of the hardware and the kernel.
1771 **/
1772static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1773{
1774 struct fm10k_hw *hw = &interface->hw;
1775 int v_budget, vector;
1776
1777 /* It's easy to be greedy for MSI-X vectors, but it really
1778 * doesn't do us much good if we have a lot more vectors
1779 * than CPU's. So let's be conservative and only ask for
1780 * (roughly) the same number of vectors as there are CPU's.
1781 * the default is to use pairs of vectors
1782 */
1783 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1784 v_budget = min_t(u16, v_budget, num_online_cpus());
1785
1786 /* account for vectors not related to queues */
1787 v_budget += NON_Q_VECTORS(hw);
1788
1789 /* At the same time, hardware can only support a maximum of
1790 * hw.mac->max_msix_vectors vectors. With features
1791 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1792 * descriptor queues supported by our device. Thus, we cap it off in
1793 * those rare cases where the cpu count also exceeds our vector limit.
1794 */
1795 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1796
1797 /* A failure in MSI-X entry allocation is fatal. */
1798 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1799 GFP_KERNEL);
1800 if (!interface->msix_entries)
1801 return -ENOMEM;
1802
1803 /* populate entry values */
1804 for (vector = 0; vector < v_budget; vector++)
1805 interface->msix_entries[vector].entry = vector;
1806
1807 /* Attempt to enable MSI-X with requested value */
1808 v_budget = pci_enable_msix_range(interface->pdev,
1809 interface->msix_entries,
1810 MIN_MSIX_COUNT(hw),
1811 v_budget);
1812 if (v_budget < 0) {
1813 kfree(interface->msix_entries);
1814 interface->msix_entries = NULL;
1815 return -ENOMEM;
1816 }
1817
1818 /* record the number of queues available for q_vectors */
1819 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1820
1821 return 0;
1822}
1823
aa3ac822
AD
1824/**
1825 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1826 * @interface: Interface structure continaining rings and devices
1827 *
1828 * Cache the descriptor ring offsets for Qos
1829 **/
1830static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1831{
1832 struct net_device *dev = interface->netdev;
1833 int pc, offset, rss_i, i, q_idx;
1834 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1835 u8 num_pcs = netdev_get_num_tc(dev);
1836
1837 if (num_pcs <= 1)
1838 return false;
1839
1840 rss_i = interface->ring_feature[RING_F_RSS].indices;
1841
1842 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1843 q_idx = pc;
1844 for (i = 0; i < rss_i; i++) {
1845 interface->tx_ring[offset + i]->reg_idx = q_idx;
1846 interface->tx_ring[offset + i]->qos_pc = pc;
1847 interface->rx_ring[offset + i]->reg_idx = q_idx;
1848 interface->rx_ring[offset + i]->qos_pc = pc;
1849 q_idx += pc_stride;
1850 }
1851 }
1852
1853 return true;
1854}
1855
1856/**
1857 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1858 * @interface: Interface structure continaining rings and devices
1859 *
1860 * Cache the descriptor ring offsets for RSS
1861 **/
1862static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1863{
1864 int i;
1865
1866 for (i = 0; i < interface->num_rx_queues; i++)
1867 interface->rx_ring[i]->reg_idx = i;
1868
1869 for (i = 0; i < interface->num_tx_queues; i++)
1870 interface->tx_ring[i]->reg_idx = i;
1871}
1872
1873/**
1874 * fm10k_assign_rings - Map rings to network devices
1875 * @interface: Interface structure containing rings and devices
1876 *
1877 * This function is meant to go though and configure both the network
1878 * devices so that they contain rings, and configure the rings so that
1879 * they function with their network devices.
1880 **/
1881static void fm10k_assign_rings(struct fm10k_intfc *interface)
1882{
1883 if (fm10k_cache_ring_qos(interface))
1884 return;
1885
1886 fm10k_cache_ring_rss(interface);
1887}
1888
18283cad
AD
1889static void fm10k_init_reta(struct fm10k_intfc *interface)
1890{
1891 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1892 u32 reta, base;
1893
1894 /* If the netdev is initialized we have to maintain table if possible */
1895 if (interface->netdev->reg_state) {
1896 for (i = FM10K_RETA_SIZE; i--;) {
1897 reta = interface->reta[i];
1898 if ((((reta << 24) >> 24) < rss_i) &&
1899 (((reta << 16) >> 24) < rss_i) &&
1900 (((reta << 8) >> 24) < rss_i) &&
1901 (((reta) >> 24) < rss_i))
1902 continue;
1903 goto repopulate_reta;
1904 }
1905
1906 /* do nothing if all of the elements are in bounds */
1907 return;
1908 }
1909
1910repopulate_reta:
1911 /* Populate the redirection table 4 entries at a time. To do this
1912 * we are generating the results for n and n+2 and then interleaving
1913 * those with the results with n+1 and n+3.
1914 */
1915 for (i = FM10K_RETA_SIZE; i--;) {
1916 /* first pass generates n and n+2 */
1917 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1918 reta = (base & 0x3F803F80) >> 7;
1919
1920 /* second pass generates n+1 and n+3 */
1921 base += 0x00010001 * rss_i;
1922 reta |= (base & 0x3F803F80) << 1;
1923
1924 interface->reta[i] = reta;
1925 }
1926}
1927
1928/**
1929 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1930 * @interface: board private structure to initialize
1931 *
1932 * We determine which queueing scheme to use based on...
1933 * - Hardware queue count (num_*_queues)
1934 * - defined by miscellaneous hardware support/features (RSS, etc.)
1935 **/
1936int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1937{
1938 int err;
1939
1940 /* Number of supported queues */
1941 fm10k_set_num_queues(interface);
1942
1943 /* Configure MSI-X capability */
1944 err = fm10k_init_msix_capability(interface);
1945 if (err) {
1946 dev_err(&interface->pdev->dev,
1947 "Unable to initialize MSI-X capability\n");
1948 return err;
1949 }
1950
1951 /* Allocate memory for queues */
1952 err = fm10k_alloc_q_vectors(interface);
1953 if (err)
1954 return err;
1955
aa3ac822
AD
1956 /* Map rings to devices, and map devices to physical queues */
1957 fm10k_assign_rings(interface);
1958
18283cad
AD
1959 /* Initialize RSS redirection table */
1960 fm10k_init_reta(interface);
1961
1962 return 0;
1963}
1964
1965/**
1966 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1967 * @interface: board private structure to clear queueing scheme on
1968 *
1969 * We go through and clear queueing specific resources and reset the structure
1970 * to pre-load conditions
1971 **/
1972void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1973{
1974 fm10k_free_q_vectors(interface);
1975 fm10k_reset_msix_capability(interface);
1976}
This page took 0.142493 seconds and 5 git commands to generate.