net/phy: micrel: Add clock support for KSZ8021/KSZ8031
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
31#define DRV_VERSION "0.12.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
6d2ce900
AD
44/**
45 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
46 *
47 * fm10k_init_module is the first routine called when the driver is
48 * loaded. All it does is register with the PCI subsystem.
49 **/
50static int __init fm10k_init_module(void)
51{
52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 pr_info("%s\n", fm10k_copyright);
54
7461fd91
AD
55 fm10k_dbg_init();
56
b3890e30
AD
57 return fm10k_register_pci_driver();
58}
59module_init(fm10k_init_module);
60
61/**
62 * fm10k_exit_module - Driver Exit Cleanup Routine
63 *
64 * fm10k_exit_module is called just before the driver is removed
65 * from memory.
66 **/
67static void __exit fm10k_exit_module(void)
68{
69 fm10k_unregister_pci_driver();
7461fd91
AD
70
71 fm10k_dbg_exit();
b3890e30
AD
72}
73module_exit(fm10k_exit_module);
18283cad 74
b101c962
AD
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 struct fm10k_rx_buffer *bi)
77{
78 struct page *page = bi->page;
79 dma_addr_t dma;
80
81 /* Only page will be NULL if buffer was consumed */
82 if (likely(page))
83 return true;
84
85 /* alloc new page for storage */
86 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
87 if (unlikely(!page)) {
88 rx_ring->rx_stats.alloc_failed++;
89 return false;
90 }
91
92 /* map page for use */
93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95 /* if mapping failed free memory back to system since
96 * there isn't much point in holding memory we can't use
97 */
98 if (dma_mapping_error(rx_ring->dev, dma)) {
99 __free_page(page);
100 bi->page = NULL;
101
102 rx_ring->rx_stats.alloc_failed++;
103 return false;
104 }
105
106 bi->dma = dma;
107 bi->page = page;
108 bi->page_offset = 0;
109
110 return true;
111}
112
113/**
114 * fm10k_alloc_rx_buffers - Replace used receive buffers
115 * @rx_ring: ring to place buffers on
116 * @cleaned_count: number of buffers to replace
117 **/
118void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
119{
120 union fm10k_rx_desc *rx_desc;
121 struct fm10k_rx_buffer *bi;
122 u16 i = rx_ring->next_to_use;
123
124 /* nothing to do */
125 if (!cleaned_count)
126 return;
127
128 rx_desc = FM10K_RX_DESC(rx_ring, i);
129 bi = &rx_ring->rx_buffer[i];
130 i -= rx_ring->count;
131
132 do {
133 if (!fm10k_alloc_mapped_page(rx_ring, bi))
134 break;
135
136 /* Refresh the desc even if buffer_addrs didn't change
137 * because each write-back erases this info.
138 */
139 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
140
141 rx_desc++;
142 bi++;
143 i++;
144 if (unlikely(!i)) {
145 rx_desc = FM10K_RX_DESC(rx_ring, 0);
146 bi = rx_ring->rx_buffer;
147 i -= rx_ring->count;
148 }
149
150 /* clear the hdr_addr for the next_to_use descriptor */
151 rx_desc->q.hdr_addr = 0;
152
153 cleaned_count--;
154 } while (cleaned_count);
155
156 i += rx_ring->count;
157
158 if (rx_ring->next_to_use != i) {
159 /* record the next descriptor to use */
160 rx_ring->next_to_use = i;
161
162 /* update next to alloc since we have filled the ring */
163 rx_ring->next_to_alloc = i;
164
165 /* Force memory writes to complete before letting h/w
166 * know there are new descriptors to fetch. (Only
167 * applicable for weak-ordered memory model archs,
168 * such as IA-64).
169 */
170 wmb();
171
172 /* notify hardware of new descriptors */
173 writel(i, rx_ring->tail);
174 }
175}
176
177/**
178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
179 * @rx_ring: rx descriptor ring to store buffers on
180 * @old_buff: donor buffer to have page reused
181 *
182 * Synchronizes page for reuse by the interface
183 **/
184static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
185 struct fm10k_rx_buffer *old_buff)
186{
187 struct fm10k_rx_buffer *new_buff;
188 u16 nta = rx_ring->next_to_alloc;
189
190 new_buff = &rx_ring->rx_buffer[nta];
191
192 /* update, and store next to alloc */
193 nta++;
194 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
195
196 /* transfer page from old buffer to new buffer */
197 memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
198
199 /* sync the buffer for use by the device */
200 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
201 old_buff->page_offset,
202 FM10K_RX_BUFSZ,
203 DMA_FROM_DEVICE);
204}
205
206static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
207 struct page *page,
208 unsigned int truesize)
209{
210 /* avoid re-using remote pages */
211 if (unlikely(page_to_nid(page) != numa_mem_id()))
212 return false;
213
214#if (PAGE_SIZE < 8192)
215 /* if we are only owner of page we can reuse it */
216 if (unlikely(page_count(page) != 1))
217 return false;
218
219 /* flip page offset to other buffer */
220 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
221
222 /* since we are the only owner of the page and we need to
223 * increment it, just set the value to 2 in order to avoid
224 * an unnecessary locked operation
225 */
226 atomic_set(&page->_count, 2);
227#else
228 /* move offset up to the next cache line */
229 rx_buffer->page_offset += truesize;
230
231 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
232 return false;
233
234 /* bump ref count on page before it is given to the stack */
235 get_page(page);
236#endif
237
238 return true;
239}
240
241/**
242 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
243 * @rx_ring: rx descriptor ring to transact packets on
244 * @rx_buffer: buffer containing page to add
245 * @rx_desc: descriptor containing length of buffer written by hardware
246 * @skb: sk_buff to place the data into
247 *
248 * This function will add the data contained in rx_buffer->page to the skb.
249 * This is done either through a direct copy if the data in the buffer is
250 * less than the skb header size, otherwise it will just attach the page as
251 * a frag to the skb.
252 *
253 * The function will then update the page offset if necessary and return
254 * true if the buffer can be reused by the interface.
255 **/
256static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
257 struct fm10k_rx_buffer *rx_buffer,
258 union fm10k_rx_desc *rx_desc,
259 struct sk_buff *skb)
260{
261 struct page *page = rx_buffer->page;
262 unsigned int size = le16_to_cpu(rx_desc->w.length);
263#if (PAGE_SIZE < 8192)
264 unsigned int truesize = FM10K_RX_BUFSZ;
265#else
266 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
267#endif
268
269 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
270 unsigned char *va = page_address(page) + rx_buffer->page_offset;
271
272 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
273
274 /* we can reuse buffer as-is, just make sure it is local */
275 if (likely(page_to_nid(page) == numa_mem_id()))
276 return true;
277
278 /* this page cannot be reused so discard it */
279 put_page(page);
280 return false;
281 }
282
283 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
284 rx_buffer->page_offset, size, truesize);
285
286 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
287}
288
289static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
290 union fm10k_rx_desc *rx_desc,
291 struct sk_buff *skb)
292{
293 struct fm10k_rx_buffer *rx_buffer;
294 struct page *page;
295
296 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
297
298 page = rx_buffer->page;
299 prefetchw(page);
300
301 if (likely(!skb)) {
302 void *page_addr = page_address(page) +
303 rx_buffer->page_offset;
304
305 /* prefetch first cache line of first page */
306 prefetch(page_addr);
307#if L1_CACHE_BYTES < 128
308 prefetch(page_addr + L1_CACHE_BYTES);
309#endif
310
311 /* allocate a skb to store the frags */
312 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
313 FM10K_RX_HDR_LEN);
314 if (unlikely(!skb)) {
315 rx_ring->rx_stats.alloc_failed++;
316 return NULL;
317 }
318
319 /* we will be copying header into skb->data in
320 * pskb_may_pull so it is in our interest to prefetch
321 * it now to avoid a possible cache miss
322 */
323 prefetchw(skb->data);
324 }
325
326 /* we are reusing so sync this buffer for CPU use */
327 dma_sync_single_range_for_cpu(rx_ring->dev,
328 rx_buffer->dma,
329 rx_buffer->page_offset,
330 FM10K_RX_BUFSZ,
331 DMA_FROM_DEVICE);
332
333 /* pull page into skb */
334 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
335 /* hand second half of page back to the ring */
336 fm10k_reuse_rx_page(rx_ring, rx_buffer);
337 } else {
338 /* we are not reusing the buffer so unmap it */
339 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
340 PAGE_SIZE, DMA_FROM_DEVICE);
341 }
342
343 /* clear contents of rx_buffer */
344 rx_buffer->page = NULL;
345
346 return skb;
347}
348
76a540d4
AD
349static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
350 union fm10k_rx_desc *rx_desc,
351 struct sk_buff *skb)
352{
353 skb_checksum_none_assert(skb);
354
355 /* Rx checksum disabled via ethtool */
356 if (!(ring->netdev->features & NETIF_F_RXCSUM))
357 return;
358
359 /* TCP/UDP checksum error bit is set */
360 if (fm10k_test_staterr(rx_desc,
361 FM10K_RXD_STATUS_L4E |
362 FM10K_RXD_STATUS_L4E2 |
363 FM10K_RXD_STATUS_IPE |
364 FM10K_RXD_STATUS_IPE2)) {
365 ring->rx_stats.csum_err++;
366 return;
367 }
368
369 /* It must be a TCP or UDP packet with a valid checksum */
370 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
371 skb->encapsulation = true;
372 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
373 return;
374
375 skb->ip_summed = CHECKSUM_UNNECESSARY;
376}
377
378#define FM10K_RSS_L4_TYPES_MASK \
379 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
380 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
381 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
382 (1ul << FM10K_RSSTYPE_IPV6_UDP))
383
384static inline void fm10k_rx_hash(struct fm10k_ring *ring,
385 union fm10k_rx_desc *rx_desc,
386 struct sk_buff *skb)
387{
388 u16 rss_type;
389
390 if (!(ring->netdev->features & NETIF_F_RXHASH))
391 return;
392
393 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
394 if (!rss_type)
395 return;
396
397 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
398 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
399 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
400}
401
a211e013
AD
402static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
403 union fm10k_rx_desc *rx_desc,
404 struct sk_buff *skb)
405{
406 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
407
408 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
409
410 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
411 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
412 le64_to_cpu(rx_desc->q.timestamp));
413}
414
5cd5e2e9
AD
415static void fm10k_type_trans(struct fm10k_ring *rx_ring,
416 union fm10k_rx_desc *rx_desc,
417 struct sk_buff *skb)
418{
419 struct net_device *dev = rx_ring->netdev;
420 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
421
422 /* check to see if DGLORT belongs to a MACVLAN */
423 if (l2_accel) {
424 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
425
426 idx -= l2_accel->dglort;
427 if (idx < l2_accel->size && l2_accel->macvlan[idx])
428 dev = l2_accel->macvlan[idx];
429 else
430 l2_accel = NULL;
431 }
432
433 skb->protocol = eth_type_trans(skb, dev);
434
435 if (!l2_accel)
436 return;
437
438 /* update MACVLAN statistics */
439 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
440 !!(rx_desc->w.hdr_info &
441 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
442}
443
b101c962
AD
444/**
445 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
446 * @rx_ring: rx descriptor ring packet is being transacted on
447 * @rx_desc: pointer to the EOP Rx descriptor
448 * @skb: pointer to current skb being populated
449 *
450 * This function checks the ring, descriptor, and packet information in
451 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
452 * other fields within the skb.
453 **/
454static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
455 union fm10k_rx_desc *rx_desc,
456 struct sk_buff *skb)
457{
458 unsigned int len = skb->len;
459
76a540d4
AD
460 fm10k_rx_hash(rx_ring, rx_desc, skb);
461
462 fm10k_rx_checksum(rx_ring, rx_desc, skb);
463
a211e013
AD
464 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
465
b101c962
AD
466 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
467
468 skb_record_rx_queue(skb, rx_ring->queue_index);
469
470 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
471
472 if (rx_desc->w.vlan) {
473 u16 vid = le16_to_cpu(rx_desc->w.vlan);
474
475 if (vid != rx_ring->vid)
476 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
477 }
478
5cd5e2e9 479 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
480
481 return len;
482}
483
484/**
485 * fm10k_is_non_eop - process handling of non-EOP buffers
486 * @rx_ring: Rx ring being processed
487 * @rx_desc: Rx descriptor for current buffer
488 *
489 * This function updates next to clean. If the buffer is an EOP buffer
490 * this function exits returning false, otherwise it will place the
491 * sk_buff in the next buffer to be chained and return true indicating
492 * that this is in fact a non-EOP buffer.
493 **/
494static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
495 union fm10k_rx_desc *rx_desc)
496{
497 u32 ntc = rx_ring->next_to_clean + 1;
498
499 /* fetch, update, and store next to clean */
500 ntc = (ntc < rx_ring->count) ? ntc : 0;
501 rx_ring->next_to_clean = ntc;
502
503 prefetch(FM10K_RX_DESC(rx_ring, ntc));
504
505 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
506 return false;
507
508 return true;
509}
510
511/**
512 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
513 * @rx_ring: rx descriptor ring packet is being transacted on
514 * @rx_desc: pointer to the EOP Rx descriptor
515 * @skb: pointer to current skb being adjusted
516 *
517 * This function is an fm10k specific version of __pskb_pull_tail. The
518 * main difference between this version and the original function is that
519 * this function can make several assumptions about the state of things
520 * that allow for significant optimizations versus the standard function.
521 * As a result we can do things like drop a frag and maintain an accurate
522 * truesize for the skb.
523 */
524static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
525 union fm10k_rx_desc *rx_desc,
526 struct sk_buff *skb)
527{
528 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
529 unsigned char *va;
530 unsigned int pull_len;
531
532 /* it is valid to use page_address instead of kmap since we are
533 * working with pages allocated out of the lomem pool per
534 * alloc_page(GFP_ATOMIC)
535 */
536 va = skb_frag_address(frag);
537
538 /* we need the header to contain the greater of either ETH_HLEN or
539 * 60 bytes if the skb->len is less than 60 for skb_pad.
540 */
541 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
542
543 /* align pull length to size of long to optimize memcpy performance */
544 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
545
546 /* update all of the pointers */
547 skb_frag_size_sub(frag, pull_len);
548 frag->page_offset += pull_len;
549 skb->data_len -= pull_len;
550 skb->tail += pull_len;
551}
552
553/**
554 * fm10k_cleanup_headers - Correct corrupted or empty headers
555 * @rx_ring: rx descriptor ring packet is being transacted on
556 * @rx_desc: pointer to the EOP Rx descriptor
557 * @skb: pointer to current skb being fixed
558 *
559 * Address the case where we are pulling data in on pages only
560 * and as such no data is present in the skb header.
561 *
562 * In addition if skb is not at least 60 bytes we need to pad it so that
563 * it is large enough to qualify as a valid Ethernet frame.
564 *
565 * Returns true if an error was encountered and skb was freed.
566 **/
567static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
568 union fm10k_rx_desc *rx_desc,
569 struct sk_buff *skb)
570{
571 if (unlikely((fm10k_test_staterr(rx_desc,
572 FM10K_RXD_STATUS_RXE)))) {
573 dev_kfree_skb_any(skb);
574 rx_ring->rx_stats.errors++;
575 return true;
576 }
577
578 /* place header in linear portion of buffer */
579 if (skb_is_nonlinear(skb))
580 fm10k_pull_tail(rx_ring, rx_desc, skb);
581
582 /* if skb_pad returns an error the skb was freed */
583 if (unlikely(skb->len < 60)) {
584 int pad_len = 60 - skb->len;
585
586 if (skb_pad(skb, pad_len))
587 return true;
588 __skb_put(skb, pad_len);
589 }
590
591 return false;
592}
593
594/**
595 * fm10k_receive_skb - helper function to handle rx indications
596 * @q_vector: structure containing interrupt and ring information
597 * @skb: packet to send up
598 **/
599static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
600 struct sk_buff *skb)
601{
602 napi_gro_receive(&q_vector->napi, skb);
603}
604
605static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
606 struct fm10k_ring *rx_ring,
607 int budget)
608{
609 struct sk_buff *skb = rx_ring->skb;
610 unsigned int total_bytes = 0, total_packets = 0;
611 u16 cleaned_count = fm10k_desc_unused(rx_ring);
612
613 do {
614 union fm10k_rx_desc *rx_desc;
615
616 /* return some buffers to hardware, one at a time is too slow */
617 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
618 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
619 cleaned_count = 0;
620 }
621
622 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
623
624 if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD))
625 break;
626
627 /* This memory barrier is needed to keep us from reading
628 * any other fields out of the rx_desc until we know the
629 * RXD_STATUS_DD bit is set
630 */
631 rmb();
632
633 /* retrieve a buffer from the ring */
634 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
635
636 /* exit if we failed to retrieve a buffer */
637 if (!skb)
638 break;
639
640 cleaned_count++;
641
642 /* fetch next buffer in frame if non-eop */
643 if (fm10k_is_non_eop(rx_ring, rx_desc))
644 continue;
645
646 /* verify the packet layout is correct */
647 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
648 skb = NULL;
649 continue;
650 }
651
652 /* populate checksum, timestamp, VLAN, and protocol */
653 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
654
655 fm10k_receive_skb(q_vector, skb);
656
657 /* reset skb pointer */
658 skb = NULL;
659
660 /* update budget accounting */
661 total_packets++;
662 } while (likely(total_packets < budget));
663
664 /* place incomplete frames back on ring for completion */
665 rx_ring->skb = skb;
666
667 u64_stats_update_begin(&rx_ring->syncp);
668 rx_ring->stats.packets += total_packets;
669 rx_ring->stats.bytes += total_bytes;
670 u64_stats_update_end(&rx_ring->syncp);
671 q_vector->rx.total_packets += total_packets;
672 q_vector->rx.total_bytes += total_bytes;
673
674 return total_packets < budget;
675}
676
76a540d4
AD
677#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
678static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
679{
680 struct fm10k_intfc *interface = netdev_priv(skb->dev);
681 struct fm10k_vxlan_port *vxlan_port;
682
683 /* we can only offload a vxlan if we recognize it as such */
684 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
685 struct fm10k_vxlan_port, list);
686
687 if (!vxlan_port)
688 return NULL;
689 if (vxlan_port->port != udp_hdr(skb)->dest)
690 return NULL;
691
692 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
693 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
694}
695
696#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
697#define NVGRE_TNI htons(0x2000)
698struct fm10k_nvgre_hdr {
699 __be16 flags;
700 __be16 proto;
701 __be32 tni;
702};
703
704static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
705{
706 struct fm10k_nvgre_hdr *nvgre_hdr;
707 int hlen = ip_hdrlen(skb);
708
709 /* currently only IPv4 is supported due to hlen above */
710 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
711 return NULL;
712
713 /* our transport header should be NVGRE */
714 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
715
716 /* verify all reserved flags are 0 */
717 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
718 return NULL;
719
720 /* verify protocol is transparent Ethernet bridging */
721 if (nvgre_hdr->proto != htons(ETH_P_TEB))
722 return NULL;
723
724 /* report start of ethernet header */
725 if (nvgre_hdr->flags & NVGRE_TNI)
726 return (struct ethhdr *)(nvgre_hdr + 1);
727
728 return (struct ethhdr *)(&nvgre_hdr->tni);
729}
730
731static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
732{
733 struct ethhdr *eth_hdr;
734 u8 l4_hdr = 0;
735
736 switch (vlan_get_protocol(skb)) {
737 case htons(ETH_P_IP):
738 l4_hdr = ip_hdr(skb)->protocol;
739 break;
740 case htons(ETH_P_IPV6):
741 l4_hdr = ipv6_hdr(skb)->nexthdr;
742 break;
743 default:
744 return 0;
745 }
746
747 switch (l4_hdr) {
748 case IPPROTO_UDP:
749 eth_hdr = fm10k_port_is_vxlan(skb);
750 break;
751 case IPPROTO_GRE:
752 eth_hdr = fm10k_gre_is_nvgre(skb);
753 break;
754 default:
755 return 0;
756 }
757
758 if (!eth_hdr)
759 return 0;
760
761 switch (eth_hdr->h_proto) {
762 case htons(ETH_P_IP):
763 case htons(ETH_P_IPV6):
764 break;
765 default:
766 return 0;
767 }
768
769 return eth_hdr->h_proto;
770}
771
772static int fm10k_tso(struct fm10k_ring *tx_ring,
773 struct fm10k_tx_buffer *first)
774{
775 struct sk_buff *skb = first->skb;
776 struct fm10k_tx_desc *tx_desc;
777 unsigned char *th;
778 u8 hdrlen;
779
780 if (skb->ip_summed != CHECKSUM_PARTIAL)
781 return 0;
782
783 if (!skb_is_gso(skb))
784 return 0;
785
786 /* compute header lengths */
787 if (skb->encapsulation) {
788 if (!fm10k_tx_encap_offload(skb))
789 goto err_vxlan;
790 th = skb_inner_transport_header(skb);
791 } else {
792 th = skb_transport_header(skb);
793 }
794
795 /* compute offset from SOF to transport header and add header len */
796 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
797
798 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
799
800 /* update gso size and bytecount with header size */
801 first->gso_segs = skb_shinfo(skb)->gso_segs;
802 first->bytecount += (first->gso_segs - 1) * hdrlen;
803
804 /* populate Tx descriptor header size and mss */
805 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
806 tx_desc->hdrlen = hdrlen;
807 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
808
809 return 1;
810err_vxlan:
811 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
812 if (!net_ratelimit())
813 netdev_err(tx_ring->netdev,
814 "TSO requested for unsupported tunnel, disabling offload\n");
815 return -1;
816}
817
818static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
819 struct fm10k_tx_buffer *first)
820{
821 struct sk_buff *skb = first->skb;
822 struct fm10k_tx_desc *tx_desc;
823 union {
824 struct iphdr *ipv4;
825 struct ipv6hdr *ipv6;
826 u8 *raw;
827 } network_hdr;
828 __be16 protocol;
829 u8 l4_hdr = 0;
830
831 if (skb->ip_summed != CHECKSUM_PARTIAL)
832 goto no_csum;
833
834 if (skb->encapsulation) {
835 protocol = fm10k_tx_encap_offload(skb);
836 if (!protocol) {
837 if (skb_checksum_help(skb)) {
838 dev_warn(tx_ring->dev,
839 "failed to offload encap csum!\n");
840 tx_ring->tx_stats.csum_err++;
841 }
842 goto no_csum;
843 }
844 network_hdr.raw = skb_inner_network_header(skb);
845 } else {
846 protocol = vlan_get_protocol(skb);
847 network_hdr.raw = skb_network_header(skb);
848 }
849
850 switch (protocol) {
851 case htons(ETH_P_IP):
852 l4_hdr = network_hdr.ipv4->protocol;
853 break;
854 case htons(ETH_P_IPV6):
855 l4_hdr = network_hdr.ipv6->nexthdr;
856 break;
857 default:
858 if (unlikely(net_ratelimit())) {
859 dev_warn(tx_ring->dev,
860 "partial checksum but ip version=%x!\n",
861 protocol);
862 }
863 tx_ring->tx_stats.csum_err++;
864 goto no_csum;
865 }
866
867 switch (l4_hdr) {
868 case IPPROTO_TCP:
869 case IPPROTO_UDP:
870 break;
871 case IPPROTO_GRE:
872 if (skb->encapsulation)
873 break;
874 default:
875 if (unlikely(net_ratelimit())) {
876 dev_warn(tx_ring->dev,
877 "partial checksum but l4 proto=%x!\n",
878 l4_hdr);
879 }
880 tx_ring->tx_stats.csum_err++;
881 goto no_csum;
882 }
883
884 /* update TX checksum flag */
885 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
886
887no_csum:
888 /* populate Tx descriptor header size and mss */
889 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
890 tx_desc->hdrlen = 0;
891 tx_desc->mss = 0;
892}
893
894#define FM10K_SET_FLAG(_input, _flag, _result) \
895 ((_flag <= _result) ? \
896 ((u32)(_input & _flag) * (_result / _flag)) : \
897 ((u32)(_input & _flag) / (_flag / _result)))
898
899static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
900{
901 /* set type for advanced descriptor with frame checksum insertion */
902 u32 desc_flags = 0;
903
a211e013
AD
904 /* set timestamping bits */
905 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
906 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
907 desc_flags |= FM10K_TXD_FLAG_TIME;
908
76a540d4
AD
909 /* set checksum offload bits */
910 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
911 FM10K_TXD_FLAG_CSUM);
912
913 return desc_flags;
914}
915
b101c962
AD
916static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
917 struct fm10k_tx_desc *tx_desc, u16 i,
918 dma_addr_t dma, unsigned int size, u8 desc_flags)
919{
920 /* set RS and INT for last frame in a cache line */
921 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
922 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
923
924 /* record values to descriptor */
925 tx_desc->buffer_addr = cpu_to_le64(dma);
926 tx_desc->flags = desc_flags;
927 tx_desc->buflen = cpu_to_le16(size);
928
929 /* return true if we just wrapped the ring */
930 return i == tx_ring->count;
931}
932
933static void fm10k_tx_map(struct fm10k_ring *tx_ring,
934 struct fm10k_tx_buffer *first)
935{
936 struct sk_buff *skb = first->skb;
937 struct fm10k_tx_buffer *tx_buffer;
938 struct fm10k_tx_desc *tx_desc;
939 struct skb_frag_struct *frag;
940 unsigned char *data;
941 dma_addr_t dma;
942 unsigned int data_len, size;
76a540d4 943 u32 tx_flags = first->tx_flags;
b101c962 944 u16 i = tx_ring->next_to_use;
76a540d4 945 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
946
947 tx_desc = FM10K_TX_DESC(tx_ring, i);
948
949 /* add HW VLAN tag */
950 if (vlan_tx_tag_present(skb))
951 tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
952 else
953 tx_desc->vlan = 0;
954
955 size = skb_headlen(skb);
956 data = skb->data;
957
958 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
959
960 data_len = skb->data_len;
961 tx_buffer = first;
962
963 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
964 if (dma_mapping_error(tx_ring->dev, dma))
965 goto dma_error;
966
967 /* record length, and DMA address */
968 dma_unmap_len_set(tx_buffer, len, size);
969 dma_unmap_addr_set(tx_buffer, dma, dma);
970
971 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
972 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
973 FM10K_MAX_DATA_PER_TXD, flags)) {
974 tx_desc = FM10K_TX_DESC(tx_ring, 0);
975 i = 0;
976 }
977
978 dma += FM10K_MAX_DATA_PER_TXD;
979 size -= FM10K_MAX_DATA_PER_TXD;
980 }
981
982 if (likely(!data_len))
983 break;
984
985 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
986 dma, size, flags)) {
987 tx_desc = FM10K_TX_DESC(tx_ring, 0);
988 i = 0;
989 }
990
991 size = skb_frag_size(frag);
992 data_len -= size;
993
994 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
995 DMA_TO_DEVICE);
996
997 tx_buffer = &tx_ring->tx_buffer[i];
998 }
999
1000 /* write last descriptor with LAST bit set */
1001 flags |= FM10K_TXD_FLAG_LAST;
1002
1003 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1004 i = 0;
1005
1006 /* record bytecount for BQL */
1007 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1008
1009 /* record SW timestamp if HW timestamp is not available */
1010 skb_tx_timestamp(first->skb);
1011
1012 /* Force memory writes to complete before letting h/w know there
1013 * are new descriptors to fetch. (Only applicable for weak-ordered
1014 * memory model archs, such as IA-64).
1015 *
1016 * We also need this memory barrier to make certain all of the
1017 * status bits have been updated before next_to_watch is written.
1018 */
1019 wmb();
1020
1021 /* set next_to_watch value indicating a packet is present */
1022 first->next_to_watch = tx_desc;
1023
1024 tx_ring->next_to_use = i;
1025
1026 /* notify HW of packet */
1027 writel(i, tx_ring->tail);
1028
1029 /* we need this if more than one processor can write to our tail
1030 * at a time, it synchronizes IO on IA64/Altix systems
1031 */
1032 mmiowb();
1033
1034 return;
1035dma_error:
1036 dev_err(tx_ring->dev, "TX DMA map failed\n");
1037
1038 /* clear dma mappings for failed tx_buffer map */
1039 for (;;) {
1040 tx_buffer = &tx_ring->tx_buffer[i];
1041 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1042 if (tx_buffer == first)
1043 break;
1044 if (i == 0)
1045 i = tx_ring->count;
1046 i--;
1047 }
1048
1049 tx_ring->next_to_use = i;
1050}
1051
1052static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
1053{
1054 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1055
1056 smp_mb();
1057
1058 /* We need to check again in a case another CPU has just
1059 * made room available. */
1060 if (likely(fm10k_desc_unused(tx_ring) < size))
1061 return -EBUSY;
1062
1063 /* A reprieve! - use start_queue because it doesn't call schedule */
1064 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1065 ++tx_ring->tx_stats.restart_queue;
1066 return 0;
1067}
1068
1069static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
1070{
1071 if (likely(fm10k_desc_unused(tx_ring) >= size))
1072 return 0;
1073 return __fm10k_maybe_stop_tx(tx_ring, size);
1074}
1075
1076netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1077 struct fm10k_ring *tx_ring)
1078{
1079 struct fm10k_tx_buffer *first;
76a540d4 1080 int tso;
b101c962
AD
1081 u32 tx_flags = 0;
1082#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1083 unsigned short f;
1084#endif
1085 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1086
1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 * + 2 desc gap to keep tail from touching head
1090 * otherwise try next time
1091 */
1092#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1093 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1094 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1095#else
1096 count += skb_shinfo(skb)->nr_frags;
1097#endif
1098 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1099 tx_ring->tx_stats.tx_busy++;
1100 return NETDEV_TX_BUSY;
1101 }
1102
1103 /* record the location of the first descriptor for this packet */
1104 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1105 first->skb = skb;
1106 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1107 first->gso_segs = 1;
1108
1109 /* record initial flags and protocol */
1110 first->tx_flags = tx_flags;
1111
76a540d4
AD
1112 tso = fm10k_tso(tx_ring, first);
1113 if (tso < 0)
1114 goto out_drop;
1115 else if (!tso)
1116 fm10k_tx_csum(tx_ring, first);
1117
b101c962
AD
1118 fm10k_tx_map(tx_ring, first);
1119
1120 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1121
76a540d4
AD
1122 return NETDEV_TX_OK;
1123
1124out_drop:
1125 dev_kfree_skb_any(first->skb);
1126 first->skb = NULL;
1127
b101c962
AD
1128 return NETDEV_TX_OK;
1129}
1130
1131static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1132{
1133 return ring->stats.packets;
1134}
1135
1136static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1137{
1138 /* use SW head and tail until we have real hardware */
1139 u32 head = ring->next_to_clean;
1140 u32 tail = ring->next_to_use;
1141
1142 return ((head <= tail) ? tail : tail + ring->count) - head;
1143}
1144
1145bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1146{
1147 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1148 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1149 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1150
1151 clear_check_for_tx_hang(tx_ring);
1152
1153 /* Check for a hung queue, but be thorough. This verifies
1154 * that a transmit has been completed since the previous
1155 * check AND there is at least one packet pending. By
1156 * requiring this to fail twice we avoid races with
1157 * clearing the ARMED bit and conditions where we
1158 * run the check_tx_hang logic with a transmit completion
1159 * pending but without time to complete it yet.
1160 */
1161 if (!tx_pending || (tx_done_old != tx_done)) {
1162 /* update completed stats and continue */
1163 tx_ring->tx_stats.tx_done_old = tx_done;
1164 /* reset the countdown */
1165 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1166
1167 return false;
1168 }
1169
1170 /* make sure it is true for two checks in a row */
1171 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1172}
1173
1174/**
1175 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1176 * @interface: driver private struct
1177 **/
1178void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1179{
1180 /* Do the reset outside of interrupt context */
1181 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1182 netdev_err(interface->netdev, "Reset interface\n");
1183 interface->tx_timeout_count++;
1184 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1185 fm10k_service_event_schedule(interface);
1186 }
1187}
1188
1189/**
1190 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1191 * @q_vector: structure containing interrupt and ring information
1192 * @tx_ring: tx ring to clean
1193 **/
1194static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1195 struct fm10k_ring *tx_ring)
1196{
1197 struct fm10k_intfc *interface = q_vector->interface;
1198 struct fm10k_tx_buffer *tx_buffer;
1199 struct fm10k_tx_desc *tx_desc;
1200 unsigned int total_bytes = 0, total_packets = 0;
1201 unsigned int budget = q_vector->tx.work_limit;
1202 unsigned int i = tx_ring->next_to_clean;
1203
1204 if (test_bit(__FM10K_DOWN, &interface->state))
1205 return true;
1206
1207 tx_buffer = &tx_ring->tx_buffer[i];
1208 tx_desc = FM10K_TX_DESC(tx_ring, i);
1209 i -= tx_ring->count;
1210
1211 do {
1212 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1213
1214 /* if next_to_watch is not set then there is no work pending */
1215 if (!eop_desc)
1216 break;
1217
1218 /* prevent any other reads prior to eop_desc */
1219 read_barrier_depends();
1220
1221 /* if DD is not set pending work has not been completed */
1222 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1223 break;
1224
1225 /* clear next_to_watch to prevent false hangs */
1226 tx_buffer->next_to_watch = NULL;
1227
1228 /* update the statistics for this packet */
1229 total_bytes += tx_buffer->bytecount;
1230 total_packets += tx_buffer->gso_segs;
1231
1232 /* free the skb */
1233 dev_consume_skb_any(tx_buffer->skb);
1234
1235 /* unmap skb header data */
1236 dma_unmap_single(tx_ring->dev,
1237 dma_unmap_addr(tx_buffer, dma),
1238 dma_unmap_len(tx_buffer, len),
1239 DMA_TO_DEVICE);
1240
1241 /* clear tx_buffer data */
1242 tx_buffer->skb = NULL;
1243 dma_unmap_len_set(tx_buffer, len, 0);
1244
1245 /* unmap remaining buffers */
1246 while (tx_desc != eop_desc) {
1247 tx_buffer++;
1248 tx_desc++;
1249 i++;
1250 if (unlikely(!i)) {
1251 i -= tx_ring->count;
1252 tx_buffer = tx_ring->tx_buffer;
1253 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1254 }
1255
1256 /* unmap any remaining paged data */
1257 if (dma_unmap_len(tx_buffer, len)) {
1258 dma_unmap_page(tx_ring->dev,
1259 dma_unmap_addr(tx_buffer, dma),
1260 dma_unmap_len(tx_buffer, len),
1261 DMA_TO_DEVICE);
1262 dma_unmap_len_set(tx_buffer, len, 0);
1263 }
1264 }
1265
1266 /* move us one more past the eop_desc for start of next pkt */
1267 tx_buffer++;
1268 tx_desc++;
1269 i++;
1270 if (unlikely(!i)) {
1271 i -= tx_ring->count;
1272 tx_buffer = tx_ring->tx_buffer;
1273 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1274 }
1275
1276 /* issue prefetch for next Tx descriptor */
1277 prefetch(tx_desc);
1278
1279 /* update budget accounting */
1280 budget--;
1281 } while (likely(budget));
1282
1283 i += tx_ring->count;
1284 tx_ring->next_to_clean = i;
1285 u64_stats_update_begin(&tx_ring->syncp);
1286 tx_ring->stats.bytes += total_bytes;
1287 tx_ring->stats.packets += total_packets;
1288 u64_stats_update_end(&tx_ring->syncp);
1289 q_vector->tx.total_bytes += total_bytes;
1290 q_vector->tx.total_packets += total_packets;
1291
1292 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1293 /* schedule immediate reset if we believe we hung */
1294 struct fm10k_hw *hw = &interface->hw;
1295
1296 netif_err(interface, drv, tx_ring->netdev,
1297 "Detected Tx Unit Hang\n"
1298 " Tx Queue <%d>\n"
1299 " TDH, TDT <%x>, <%x>\n"
1300 " next_to_use <%x>\n"
1301 " next_to_clean <%x>\n",
1302 tx_ring->queue_index,
1303 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1304 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1305 tx_ring->next_to_use, i);
1306
1307 netif_stop_subqueue(tx_ring->netdev,
1308 tx_ring->queue_index);
1309
1310 netif_info(interface, probe, tx_ring->netdev,
1311 "tx hang %d detected on queue %d, resetting interface\n",
1312 interface->tx_timeout_count + 1,
1313 tx_ring->queue_index);
1314
1315 fm10k_tx_timeout_reset(interface);
1316
1317 /* the netdev is about to reset, no point in enabling stuff */
1318 return true;
1319 }
1320
1321 /* notify netdev of completed buffers */
1322 netdev_tx_completed_queue(txring_txq(tx_ring),
1323 total_packets, total_bytes);
1324
1325#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1326 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1327 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1328 /* Make sure that anybody stopping the queue after this
1329 * sees the new next_to_clean.
1330 */
1331 smp_mb();
1332 if (__netif_subqueue_stopped(tx_ring->netdev,
1333 tx_ring->queue_index) &&
1334 !test_bit(__FM10K_DOWN, &interface->state)) {
1335 netif_wake_subqueue(tx_ring->netdev,
1336 tx_ring->queue_index);
1337 ++tx_ring->tx_stats.restart_queue;
1338 }
1339 }
1340
1341 return !!budget;
1342}
1343
18283cad
AD
1344/**
1345 * fm10k_update_itr - update the dynamic ITR value based on packet size
1346 *
1347 * Stores a new ITR value based on strictly on packet size. The
1348 * divisors and thresholds used by this function were determined based
1349 * on theoretical maximum wire speed and testing data, in order to
1350 * minimize response time while increasing bulk throughput.
1351 *
1352 * @ring_container: Container for rings to have ITR updated
1353 **/
1354static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1355{
1356 unsigned int avg_wire_size, packets;
1357
1358 /* Only update ITR if we are using adaptive setting */
1359 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1360 goto clear_counts;
1361
1362 packets = ring_container->total_packets;
1363 if (!packets)
1364 goto clear_counts;
1365
1366 avg_wire_size = ring_container->total_bytes / packets;
1367
1368 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1369 avg_wire_size += 24;
1370
1371 /* Don't starve jumbo frames */
1372 if (avg_wire_size > 3000)
1373 avg_wire_size = 3000;
1374
1375 /* Give a little boost to mid-size frames */
1376 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1377 avg_wire_size /= 3;
1378 else
1379 avg_wire_size /= 2;
1380
1381 /* write back value and retain adaptive flag */
1382 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1383
1384clear_counts:
1385 ring_container->total_bytes = 0;
1386 ring_container->total_packets = 0;
1387}
1388
1389static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1390{
1391 /* Enable auto-mask and clear the current mask */
1392 u32 itr = FM10K_ITR_ENABLE;
1393
1394 /* Update Tx ITR */
1395 fm10k_update_itr(&q_vector->tx);
1396
1397 /* Update Rx ITR */
1398 fm10k_update_itr(&q_vector->rx);
1399
1400 /* Store Tx itr in timer slot 0 */
1401 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1402
1403 /* Shift Rx itr to timer slot 1 */
1404 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1405
1406 /* Write the final value to the ITR register */
1407 writel(itr, q_vector->itr);
1408}
1409
1410static int fm10k_poll(struct napi_struct *napi, int budget)
1411{
1412 struct fm10k_q_vector *q_vector =
1413 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1414 struct fm10k_ring *ring;
1415 int per_ring_budget;
1416 bool clean_complete = true;
1417
1418 fm10k_for_each_ring(ring, q_vector->tx)
1419 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1420
1421 /* attempt to distribute budget to each queue fairly, but don't
1422 * allow the budget to go below 1 because we'll exit polling
1423 */
1424 if (q_vector->rx.count > 1)
1425 per_ring_budget = max(budget/q_vector->rx.count, 1);
1426 else
1427 per_ring_budget = budget;
1428
1429 fm10k_for_each_ring(ring, q_vector->rx)
1430 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1431 per_ring_budget);
1432
1433 /* If all work not completed, return budget and keep polling */
1434 if (!clean_complete)
1435 return budget;
18283cad
AD
1436
1437 /* all work done, exit the polling mode */
1438 napi_complete(napi);
1439
1440 /* re-enable the q_vector */
1441 fm10k_qv_enable(q_vector);
1442
1443 return 0;
1444}
1445
aa3ac822
AD
1446/**
1447 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1448 * @interface: board private structure to initialize
1449 *
1450 * When QoS (Quality of Service) is enabled, allocate queues for
1451 * each traffic class. If multiqueue isn't available,then abort QoS
1452 * initialization.
1453 *
1454 * This function handles all combinations of Qos and RSS.
1455 *
1456 **/
1457static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1458{
1459 struct net_device *dev = interface->netdev;
1460 struct fm10k_ring_feature *f;
1461 int rss_i, i;
1462 int pcs;
1463
1464 /* Map queue offset and counts onto allocated tx queues */
1465 pcs = netdev_get_num_tc(dev);
1466
1467 if (pcs <= 1)
1468 return false;
1469
1470 /* set QoS mask and indices */
1471 f = &interface->ring_feature[RING_F_QOS];
1472 f->indices = pcs;
1473 f->mask = (1 << fls(pcs - 1)) - 1;
1474
1475 /* determine the upper limit for our current DCB mode */
1476 rss_i = interface->hw.mac.max_queues / pcs;
1477 rss_i = 1 << (fls(rss_i) - 1);
1478
1479 /* set RSS mask and indices */
1480 f = &interface->ring_feature[RING_F_RSS];
1481 rss_i = min_t(u16, rss_i, f->limit);
1482 f->indices = rss_i;
1483 f->mask = (1 << fls(rss_i - 1)) - 1;
1484
1485 /* configure pause class to queue mapping */
1486 for (i = 0; i < pcs; i++)
1487 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1488
1489 interface->num_rx_queues = rss_i * pcs;
1490 interface->num_tx_queues = rss_i * pcs;
1491
1492 return true;
1493}
1494
1495/**
1496 * fm10k_set_rss_queues: Allocate queues for RSS
1497 * @interface: board private structure to initialize
1498 *
1499 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1500 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1501 *
1502 **/
1503static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1504{
1505 struct fm10k_ring_feature *f;
1506 u16 rss_i;
1507
1508 f = &interface->ring_feature[RING_F_RSS];
1509 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1510
1511 /* record indices and power of 2 mask for RSS */
1512 f->indices = rss_i;
1513 f->mask = (1 << fls(rss_i - 1)) - 1;
1514
1515 interface->num_rx_queues = rss_i;
1516 interface->num_tx_queues = rss_i;
1517
1518 return true;
1519}
1520
18283cad
AD
1521/**
1522 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1523 * @interface: board private structure to initialize
1524 *
1525 * This is the top level queue allocation routine. The order here is very
1526 * important, starting with the "most" number of features turned on at once,
1527 * and ending with the smallest set of features. This way large combinations
1528 * can be allocated if they're turned on, and smaller combinations are the
1529 * fallthrough conditions.
1530 *
1531 **/
1532static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1533{
1534 /* Start with base case */
1535 interface->num_rx_queues = 1;
1536 interface->num_tx_queues = 1;
aa3ac822
AD
1537
1538 if (fm10k_set_qos_queues(interface))
1539 return;
1540
1541 fm10k_set_rss_queues(interface);
18283cad
AD
1542}
1543
1544/**
1545 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1546 * @interface: board private structure to initialize
1547 * @v_count: q_vectors allocated on interface, used for ring interleaving
1548 * @v_idx: index of vector in interface struct
1549 * @txr_count: total number of Tx rings to allocate
1550 * @txr_idx: index of first Tx ring to allocate
1551 * @rxr_count: total number of Rx rings to allocate
1552 * @rxr_idx: index of first Rx ring to allocate
1553 *
1554 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1555 **/
1556static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1557 unsigned int v_count, unsigned int v_idx,
1558 unsigned int txr_count, unsigned int txr_idx,
1559 unsigned int rxr_count, unsigned int rxr_idx)
1560{
1561 struct fm10k_q_vector *q_vector;
e27ef599 1562 struct fm10k_ring *ring;
18283cad
AD
1563 int ring_count, size;
1564
1565 ring_count = txr_count + rxr_count;
e27ef599
AD
1566 size = sizeof(struct fm10k_q_vector) +
1567 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1568
1569 /* allocate q_vector and rings */
1570 q_vector = kzalloc(size, GFP_KERNEL);
1571 if (!q_vector)
1572 return -ENOMEM;
1573
1574 /* initialize NAPI */
1575 netif_napi_add(interface->netdev, &q_vector->napi,
1576 fm10k_poll, NAPI_POLL_WEIGHT);
1577
1578 /* tie q_vector and interface together */
1579 interface->q_vector[v_idx] = q_vector;
1580 q_vector->interface = interface;
1581 q_vector->v_idx = v_idx;
1582
e27ef599
AD
1583 /* initialize pointer to rings */
1584 ring = q_vector->ring;
1585
18283cad 1586 /* save Tx ring container info */
e27ef599
AD
1587 q_vector->tx.ring = ring;
1588 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1589 q_vector->tx.itr = interface->tx_itr;
1590 q_vector->tx.count = txr_count;
1591
e27ef599
AD
1592 while (txr_count) {
1593 /* assign generic ring traits */
1594 ring->dev = &interface->pdev->dev;
1595 ring->netdev = interface->netdev;
1596
1597 /* configure backlink on ring */
1598 ring->q_vector = q_vector;
1599
1600 /* apply Tx specific ring traits */
1601 ring->count = interface->tx_ring_count;
1602 ring->queue_index = txr_idx;
1603
1604 /* assign ring to interface */
1605 interface->tx_ring[txr_idx] = ring;
1606
1607 /* update count and index */
1608 txr_count--;
1609 txr_idx += v_count;
1610
1611 /* push pointer to next ring */
1612 ring++;
1613 }
1614
18283cad 1615 /* save Rx ring container info */
e27ef599 1616 q_vector->rx.ring = ring;
18283cad
AD
1617 q_vector->rx.itr = interface->rx_itr;
1618 q_vector->rx.count = rxr_count;
1619
e27ef599
AD
1620 while (rxr_count) {
1621 /* assign generic ring traits */
1622 ring->dev = &interface->pdev->dev;
1623 ring->netdev = interface->netdev;
5cd5e2e9 1624 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1625
1626 /* configure backlink on ring */
1627 ring->q_vector = q_vector;
1628
1629 /* apply Rx specific ring traits */
1630 ring->count = interface->rx_ring_count;
1631 ring->queue_index = rxr_idx;
1632
1633 /* assign ring to interface */
1634 interface->rx_ring[rxr_idx] = ring;
1635
1636 /* update count and index */
1637 rxr_count--;
1638 rxr_idx += v_count;
1639
1640 /* push pointer to next ring */
1641 ring++;
1642 }
1643
7461fd91
AD
1644 fm10k_dbg_q_vector_init(q_vector);
1645
18283cad
AD
1646 return 0;
1647}
1648
1649/**
1650 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1651 * @interface: board private structure to initialize
1652 * @v_idx: Index of vector to be freed
1653 *
1654 * This function frees the memory allocated to the q_vector. In addition if
1655 * NAPI is enabled it will delete any references to the NAPI struct prior
1656 * to freeing the q_vector.
1657 **/
1658static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1659{
1660 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1661 struct fm10k_ring *ring;
1662
7461fd91
AD
1663 fm10k_dbg_q_vector_exit(q_vector);
1664
e27ef599
AD
1665 fm10k_for_each_ring(ring, q_vector->tx)
1666 interface->tx_ring[ring->queue_index] = NULL;
1667
1668 fm10k_for_each_ring(ring, q_vector->rx)
1669 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1670
1671 interface->q_vector[v_idx] = NULL;
1672 netif_napi_del(&q_vector->napi);
1673 kfree_rcu(q_vector, rcu);
1674}
1675
1676/**
1677 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1678 * @interface: board private structure to initialize
1679 *
1680 * We allocate one q_vector per queue interrupt. If allocation fails we
1681 * return -ENOMEM.
1682 **/
1683static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1684{
1685 unsigned int q_vectors = interface->num_q_vectors;
1686 unsigned int rxr_remaining = interface->num_rx_queues;
1687 unsigned int txr_remaining = interface->num_tx_queues;
1688 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1689 int err;
1690
1691 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1692 for (; rxr_remaining; v_idx++) {
1693 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1694 0, 0, 1, rxr_idx);
1695 if (err)
1696 goto err_out;
1697
1698 /* update counts and index */
1699 rxr_remaining--;
1700 rxr_idx++;
1701 }
1702 }
1703
1704 for (; v_idx < q_vectors; v_idx++) {
1705 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1706 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1707
1708 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1709 tqpv, txr_idx,
1710 rqpv, rxr_idx);
1711
1712 if (err)
1713 goto err_out;
1714
1715 /* update counts and index */
1716 rxr_remaining -= rqpv;
1717 txr_remaining -= tqpv;
1718 rxr_idx++;
1719 txr_idx++;
1720 }
1721
1722 return 0;
1723
1724err_out:
1725 interface->num_tx_queues = 0;
1726 interface->num_rx_queues = 0;
1727 interface->num_q_vectors = 0;
1728
1729 while (v_idx--)
1730 fm10k_free_q_vector(interface, v_idx);
1731
1732 return -ENOMEM;
1733}
1734
1735/**
1736 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1737 * @interface: board private structure to initialize
1738 *
1739 * This function frees the memory allocated to the q_vectors. In addition if
1740 * NAPI is enabled it will delete any references to the NAPI struct prior
1741 * to freeing the q_vector.
1742 **/
1743static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1744{
1745 int v_idx = interface->num_q_vectors;
1746
1747 interface->num_tx_queues = 0;
1748 interface->num_rx_queues = 0;
1749 interface->num_q_vectors = 0;
1750
1751 while (v_idx--)
1752 fm10k_free_q_vector(interface, v_idx);
1753}
1754
1755/**
1756 * f10k_reset_msix_capability - reset MSI-X capability
1757 * @interface: board private structure to initialize
1758 *
1759 * Reset the MSI-X capability back to its starting state
1760 **/
1761static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1762{
1763 pci_disable_msix(interface->pdev);
1764 kfree(interface->msix_entries);
1765 interface->msix_entries = NULL;
1766}
1767
1768/**
1769 * f10k_init_msix_capability - configure MSI-X capability
1770 * @interface: board private structure to initialize
1771 *
1772 * Attempt to configure the interrupts using the best available
1773 * capabilities of the hardware and the kernel.
1774 **/
1775static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1776{
1777 struct fm10k_hw *hw = &interface->hw;
1778 int v_budget, vector;
1779
1780 /* It's easy to be greedy for MSI-X vectors, but it really
1781 * doesn't do us much good if we have a lot more vectors
1782 * than CPU's. So let's be conservative and only ask for
1783 * (roughly) the same number of vectors as there are CPU's.
1784 * the default is to use pairs of vectors
1785 */
1786 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1787 v_budget = min_t(u16, v_budget, num_online_cpus());
1788
1789 /* account for vectors not related to queues */
1790 v_budget += NON_Q_VECTORS(hw);
1791
1792 /* At the same time, hardware can only support a maximum of
1793 * hw.mac->max_msix_vectors vectors. With features
1794 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1795 * descriptor queues supported by our device. Thus, we cap it off in
1796 * those rare cases where the cpu count also exceeds our vector limit.
1797 */
1798 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1799
1800 /* A failure in MSI-X entry allocation is fatal. */
1801 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1802 GFP_KERNEL);
1803 if (!interface->msix_entries)
1804 return -ENOMEM;
1805
1806 /* populate entry values */
1807 for (vector = 0; vector < v_budget; vector++)
1808 interface->msix_entries[vector].entry = vector;
1809
1810 /* Attempt to enable MSI-X with requested value */
1811 v_budget = pci_enable_msix_range(interface->pdev,
1812 interface->msix_entries,
1813 MIN_MSIX_COUNT(hw),
1814 v_budget);
1815 if (v_budget < 0) {
1816 kfree(interface->msix_entries);
1817 interface->msix_entries = NULL;
1818 return -ENOMEM;
1819 }
1820
1821 /* record the number of queues available for q_vectors */
1822 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1823
1824 return 0;
1825}
1826
aa3ac822
AD
1827/**
1828 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1829 * @interface: Interface structure continaining rings and devices
1830 *
1831 * Cache the descriptor ring offsets for Qos
1832 **/
1833static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1834{
1835 struct net_device *dev = interface->netdev;
1836 int pc, offset, rss_i, i, q_idx;
1837 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1838 u8 num_pcs = netdev_get_num_tc(dev);
1839
1840 if (num_pcs <= 1)
1841 return false;
1842
1843 rss_i = interface->ring_feature[RING_F_RSS].indices;
1844
1845 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1846 q_idx = pc;
1847 for (i = 0; i < rss_i; i++) {
1848 interface->tx_ring[offset + i]->reg_idx = q_idx;
1849 interface->tx_ring[offset + i]->qos_pc = pc;
1850 interface->rx_ring[offset + i]->reg_idx = q_idx;
1851 interface->rx_ring[offset + i]->qos_pc = pc;
1852 q_idx += pc_stride;
1853 }
1854 }
1855
1856 return true;
1857}
1858
1859/**
1860 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1861 * @interface: Interface structure continaining rings and devices
1862 *
1863 * Cache the descriptor ring offsets for RSS
1864 **/
1865static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1866{
1867 int i;
1868
1869 for (i = 0; i < interface->num_rx_queues; i++)
1870 interface->rx_ring[i]->reg_idx = i;
1871
1872 for (i = 0; i < interface->num_tx_queues; i++)
1873 interface->tx_ring[i]->reg_idx = i;
1874}
1875
1876/**
1877 * fm10k_assign_rings - Map rings to network devices
1878 * @interface: Interface structure containing rings and devices
1879 *
1880 * This function is meant to go though and configure both the network
1881 * devices so that they contain rings, and configure the rings so that
1882 * they function with their network devices.
1883 **/
1884static void fm10k_assign_rings(struct fm10k_intfc *interface)
1885{
1886 if (fm10k_cache_ring_qos(interface))
1887 return;
1888
1889 fm10k_cache_ring_rss(interface);
1890}
1891
18283cad
AD
1892static void fm10k_init_reta(struct fm10k_intfc *interface)
1893{
1894 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1895 u32 reta, base;
1896
1897 /* If the netdev is initialized we have to maintain table if possible */
1898 if (interface->netdev->reg_state) {
1899 for (i = FM10K_RETA_SIZE; i--;) {
1900 reta = interface->reta[i];
1901 if ((((reta << 24) >> 24) < rss_i) &&
1902 (((reta << 16) >> 24) < rss_i) &&
1903 (((reta << 8) >> 24) < rss_i) &&
1904 (((reta) >> 24) < rss_i))
1905 continue;
1906 goto repopulate_reta;
1907 }
1908
1909 /* do nothing if all of the elements are in bounds */
1910 return;
1911 }
1912
1913repopulate_reta:
1914 /* Populate the redirection table 4 entries at a time. To do this
1915 * we are generating the results for n and n+2 and then interleaving
1916 * those with the results with n+1 and n+3.
1917 */
1918 for (i = FM10K_RETA_SIZE; i--;) {
1919 /* first pass generates n and n+2 */
1920 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1921 reta = (base & 0x3F803F80) >> 7;
1922
1923 /* second pass generates n+1 and n+3 */
1924 base += 0x00010001 * rss_i;
1925 reta |= (base & 0x3F803F80) << 1;
1926
1927 interface->reta[i] = reta;
1928 }
1929}
1930
1931/**
1932 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1933 * @interface: board private structure to initialize
1934 *
1935 * We determine which queueing scheme to use based on...
1936 * - Hardware queue count (num_*_queues)
1937 * - defined by miscellaneous hardware support/features (RSS, etc.)
1938 **/
1939int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1940{
1941 int err;
1942
1943 /* Number of supported queues */
1944 fm10k_set_num_queues(interface);
1945
1946 /* Configure MSI-X capability */
1947 err = fm10k_init_msix_capability(interface);
1948 if (err) {
1949 dev_err(&interface->pdev->dev,
1950 "Unable to initialize MSI-X capability\n");
1951 return err;
1952 }
1953
1954 /* Allocate memory for queues */
1955 err = fm10k_alloc_q_vectors(interface);
1956 if (err)
1957 return err;
1958
aa3ac822
AD
1959 /* Map rings to devices, and map devices to physical queues */
1960 fm10k_assign_rings(interface);
1961
18283cad
AD
1962 /* Initialize RSS redirection table */
1963 fm10k_init_reta(interface);
1964
1965 return 0;
1966}
1967
1968/**
1969 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1970 * @interface: board private structure to clear queueing scheme on
1971 *
1972 * We go through and clear queueing specific resources and reset the structure
1973 * to pre-load conditions
1974 **/
1975void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1976{
1977 fm10k_free_q_vectors(interface);
1978 fm10k_reset_msix_capability(interface);
1979}
This page took 0.114109 seconds and 5 git commands to generate.