phonet: Replace calls to __skb_alloc_page with __dev_alloc_page
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
31#define DRV_VERSION "0.12.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
6d2ce900
AD
44/**
45 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
46 *
47 * fm10k_init_module is the first routine called when the driver is
48 * loaded. All it does is register with the PCI subsystem.
49 **/
50static int __init fm10k_init_module(void)
51{
52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 pr_info("%s\n", fm10k_copyright);
54
7461fd91
AD
55 fm10k_dbg_init();
56
b3890e30
AD
57 return fm10k_register_pci_driver();
58}
59module_init(fm10k_init_module);
60
61/**
62 * fm10k_exit_module - Driver Exit Cleanup Routine
63 *
64 * fm10k_exit_module is called just before the driver is removed
65 * from memory.
66 **/
67static void __exit fm10k_exit_module(void)
68{
69 fm10k_unregister_pci_driver();
7461fd91
AD
70
71 fm10k_dbg_exit();
b3890e30
AD
72}
73module_exit(fm10k_exit_module);
18283cad 74
b101c962
AD
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 struct fm10k_rx_buffer *bi)
77{
78 struct page *page = bi->page;
79 dma_addr_t dma;
80
81 /* Only page will be NULL if buffer was consumed */
82 if (likely(page))
83 return true;
84
85 /* alloc new page for storage */
86 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
87 if (unlikely(!page)) {
88 rx_ring->rx_stats.alloc_failed++;
89 return false;
90 }
91
92 /* map page for use */
93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95 /* if mapping failed free memory back to system since
96 * there isn't much point in holding memory we can't use
97 */
98 if (dma_mapping_error(rx_ring->dev, dma)) {
99 __free_page(page);
100 bi->page = NULL;
101
102 rx_ring->rx_stats.alloc_failed++;
103 return false;
104 }
105
106 bi->dma = dma;
107 bi->page = page;
108 bi->page_offset = 0;
109
110 return true;
111}
112
113/**
114 * fm10k_alloc_rx_buffers - Replace used receive buffers
115 * @rx_ring: ring to place buffers on
116 * @cleaned_count: number of buffers to replace
117 **/
118void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
119{
120 union fm10k_rx_desc *rx_desc;
121 struct fm10k_rx_buffer *bi;
122 u16 i = rx_ring->next_to_use;
123
124 /* nothing to do */
125 if (!cleaned_count)
126 return;
127
128 rx_desc = FM10K_RX_DESC(rx_ring, i);
129 bi = &rx_ring->rx_buffer[i];
130 i -= rx_ring->count;
131
132 do {
133 if (!fm10k_alloc_mapped_page(rx_ring, bi))
134 break;
135
136 /* Refresh the desc even if buffer_addrs didn't change
137 * because each write-back erases this info.
138 */
139 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
140
141 rx_desc++;
142 bi++;
143 i++;
144 if (unlikely(!i)) {
145 rx_desc = FM10K_RX_DESC(rx_ring, 0);
146 bi = rx_ring->rx_buffer;
147 i -= rx_ring->count;
148 }
149
150 /* clear the hdr_addr for the next_to_use descriptor */
151 rx_desc->q.hdr_addr = 0;
152
153 cleaned_count--;
154 } while (cleaned_count);
155
156 i += rx_ring->count;
157
158 if (rx_ring->next_to_use != i) {
159 /* record the next descriptor to use */
160 rx_ring->next_to_use = i;
161
162 /* update next to alloc since we have filled the ring */
163 rx_ring->next_to_alloc = i;
164
165 /* Force memory writes to complete before letting h/w
166 * know there are new descriptors to fetch. (Only
167 * applicable for weak-ordered memory model archs,
168 * such as IA-64).
169 */
170 wmb();
171
172 /* notify hardware of new descriptors */
173 writel(i, rx_ring->tail);
174 }
175}
176
177/**
178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
179 * @rx_ring: rx descriptor ring to store buffers on
180 * @old_buff: donor buffer to have page reused
181 *
182 * Synchronizes page for reuse by the interface
183 **/
184static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
185 struct fm10k_rx_buffer *old_buff)
186{
187 struct fm10k_rx_buffer *new_buff;
188 u16 nta = rx_ring->next_to_alloc;
189
190 new_buff = &rx_ring->rx_buffer[nta];
191
192 /* update, and store next to alloc */
193 nta++;
194 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
195
196 /* transfer page from old buffer to new buffer */
197 memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
198
199 /* sync the buffer for use by the device */
200 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
201 old_buff->page_offset,
202 FM10K_RX_BUFSZ,
203 DMA_FROM_DEVICE);
204}
205
206static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
207 struct page *page,
208 unsigned int truesize)
209{
210 /* avoid re-using remote pages */
211 if (unlikely(page_to_nid(page) != numa_mem_id()))
212 return false;
213
214#if (PAGE_SIZE < 8192)
215 /* if we are only owner of page we can reuse it */
216 if (unlikely(page_count(page) != 1))
217 return false;
218
219 /* flip page offset to other buffer */
220 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
221
42b0270b
ED
222 /* Even if we own the page, we are not allowed to use atomic_set()
223 * This would break get_page_unless_zero() users.
b101c962 224 */
42b0270b 225 atomic_inc(&page->_count);
b101c962
AD
226#else
227 /* move offset up to the next cache line */
228 rx_buffer->page_offset += truesize;
229
230 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
231 return false;
232
233 /* bump ref count on page before it is given to the stack */
234 get_page(page);
235#endif
236
237 return true;
238}
239
240/**
241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
242 * @rx_ring: rx descriptor ring to transact packets on
243 * @rx_buffer: buffer containing page to add
244 * @rx_desc: descriptor containing length of buffer written by hardware
245 * @skb: sk_buff to place the data into
246 *
247 * This function will add the data contained in rx_buffer->page to the skb.
248 * This is done either through a direct copy if the data in the buffer is
249 * less than the skb header size, otherwise it will just attach the page as
250 * a frag to the skb.
251 *
252 * The function will then update the page offset if necessary and return
253 * true if the buffer can be reused by the interface.
254 **/
255static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
256 struct fm10k_rx_buffer *rx_buffer,
257 union fm10k_rx_desc *rx_desc,
258 struct sk_buff *skb)
259{
260 struct page *page = rx_buffer->page;
261 unsigned int size = le16_to_cpu(rx_desc->w.length);
262#if (PAGE_SIZE < 8192)
263 unsigned int truesize = FM10K_RX_BUFSZ;
264#else
265 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
266#endif
267
268 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
269 unsigned char *va = page_address(page) + rx_buffer->page_offset;
270
271 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
272
273 /* we can reuse buffer as-is, just make sure it is local */
274 if (likely(page_to_nid(page) == numa_mem_id()))
275 return true;
276
277 /* this page cannot be reused so discard it */
278 put_page(page);
279 return false;
280 }
281
282 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
283 rx_buffer->page_offset, size, truesize);
284
285 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
286}
287
288static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
289 union fm10k_rx_desc *rx_desc,
290 struct sk_buff *skb)
291{
292 struct fm10k_rx_buffer *rx_buffer;
293 struct page *page;
294
295 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
296
297 page = rx_buffer->page;
298 prefetchw(page);
299
300 if (likely(!skb)) {
301 void *page_addr = page_address(page) +
302 rx_buffer->page_offset;
303
304 /* prefetch first cache line of first page */
305 prefetch(page_addr);
306#if L1_CACHE_BYTES < 128
307 prefetch(page_addr + L1_CACHE_BYTES);
308#endif
309
310 /* allocate a skb to store the frags */
311 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
312 FM10K_RX_HDR_LEN);
313 if (unlikely(!skb)) {
314 rx_ring->rx_stats.alloc_failed++;
315 return NULL;
316 }
317
318 /* we will be copying header into skb->data in
319 * pskb_may_pull so it is in our interest to prefetch
320 * it now to avoid a possible cache miss
321 */
322 prefetchw(skb->data);
323 }
324
325 /* we are reusing so sync this buffer for CPU use */
326 dma_sync_single_range_for_cpu(rx_ring->dev,
327 rx_buffer->dma,
328 rx_buffer->page_offset,
329 FM10K_RX_BUFSZ,
330 DMA_FROM_DEVICE);
331
332 /* pull page into skb */
333 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334 /* hand second half of page back to the ring */
335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 } else {
337 /* we are not reusing the buffer so unmap it */
338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 PAGE_SIZE, DMA_FROM_DEVICE);
340 }
341
342 /* clear contents of rx_buffer */
343 rx_buffer->page = NULL;
344
345 return skb;
346}
347
76a540d4
AD
348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 union fm10k_rx_desc *rx_desc,
350 struct sk_buff *skb)
351{
352 skb_checksum_none_assert(skb);
353
354 /* Rx checksum disabled via ethtool */
355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 return;
357
358 /* TCP/UDP checksum error bit is set */
359 if (fm10k_test_staterr(rx_desc,
360 FM10K_RXD_STATUS_L4E |
361 FM10K_RXD_STATUS_L4E2 |
362 FM10K_RXD_STATUS_IPE |
363 FM10K_RXD_STATUS_IPE2)) {
364 ring->rx_stats.csum_err++;
365 return;
366 }
367
368 /* It must be a TCP or UDP packet with a valid checksum */
369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 skb->encapsulation = true;
371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 return;
373
374 skb->ip_summed = CHECKSUM_UNNECESSARY;
375}
376
377#define FM10K_RSS_L4_TYPES_MASK \
378 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382
383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384 union fm10k_rx_desc *rx_desc,
385 struct sk_buff *skb)
386{
387 u16 rss_type;
388
389 if (!(ring->netdev->features & NETIF_F_RXHASH))
390 return;
391
392 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393 if (!rss_type)
394 return;
395
396 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399}
400
a211e013
AD
401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402 union fm10k_rx_desc *rx_desc,
403 struct sk_buff *skb)
404{
405 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406
407 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408
409 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411 le64_to_cpu(rx_desc->q.timestamp));
412}
413
5cd5e2e9
AD
414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 union fm10k_rx_desc *rx_desc,
416 struct sk_buff *skb)
417{
418 struct net_device *dev = rx_ring->netdev;
419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420
421 /* check to see if DGLORT belongs to a MACVLAN */
422 if (l2_accel) {
423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424
425 idx -= l2_accel->dglort;
426 if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 dev = l2_accel->macvlan[idx];
428 else
429 l2_accel = NULL;
430 }
431
432 skb->protocol = eth_type_trans(skb, dev);
433
434 if (!l2_accel)
435 return;
436
437 /* update MACVLAN statistics */
438 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439 !!(rx_desc->w.hdr_info &
440 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441}
442
b101c962
AD
443/**
444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445 * @rx_ring: rx descriptor ring packet is being transacted on
446 * @rx_desc: pointer to the EOP Rx descriptor
447 * @skb: pointer to current skb being populated
448 *
449 * This function checks the ring, descriptor, and packet information in
450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451 * other fields within the skb.
452 **/
453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454 union fm10k_rx_desc *rx_desc,
455 struct sk_buff *skb)
456{
457 unsigned int len = skb->len;
458
76a540d4
AD
459 fm10k_rx_hash(rx_ring, rx_desc, skb);
460
461 fm10k_rx_checksum(rx_ring, rx_desc, skb);
462
a211e013
AD
463 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464
b101c962
AD
465 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466
467 skb_record_rx_queue(skb, rx_ring->queue_index);
468
469 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470
471 if (rx_desc->w.vlan) {
472 u16 vid = le16_to_cpu(rx_desc->w.vlan);
473
474 if (vid != rx_ring->vid)
475 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476 }
477
5cd5e2e9 478 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
479
480 return len;
481}
482
483/**
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
487 *
488 * This function updates next to clean. If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
492 **/
493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 union fm10k_rx_desc *rx_desc)
495{
496 u32 ntc = rx_ring->next_to_clean + 1;
497
498 /* fetch, update, and store next to clean */
499 ntc = (ntc < rx_ring->count) ? ntc : 0;
500 rx_ring->next_to_clean = ntc;
501
502 prefetch(FM10K_RX_DESC(rx_ring, ntc));
503
504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 return false;
506
507 return true;
508}
509
510/**
511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being adjusted
515 *
516 * This function is an fm10k specific version of __pskb_pull_tail. The
517 * main difference between this version and the original function is that
518 * this function can make several assumptions about the state of things
519 * that allow for significant optimizations versus the standard function.
520 * As a result we can do things like drop a frag and maintain an accurate
521 * truesize for the skb.
522 */
523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524 union fm10k_rx_desc *rx_desc,
525 struct sk_buff *skb)
526{
527 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528 unsigned char *va;
529 unsigned int pull_len;
530
531 /* it is valid to use page_address instead of kmap since we are
532 * working with pages allocated out of the lomem pool per
533 * alloc_page(GFP_ATOMIC)
534 */
535 va = skb_frag_address(frag);
536
537 /* we need the header to contain the greater of either ETH_HLEN or
538 * 60 bytes if the skb->len is less than 60 for skb_pad.
539 */
540 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541
542 /* align pull length to size of long to optimize memcpy performance */
543 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544
545 /* update all of the pointers */
546 skb_frag_size_sub(frag, pull_len);
547 frag->page_offset += pull_len;
548 skb->data_len -= pull_len;
549 skb->tail += pull_len;
550}
551
552/**
553 * fm10k_cleanup_headers - Correct corrupted or empty headers
554 * @rx_ring: rx descriptor ring packet is being transacted on
555 * @rx_desc: pointer to the EOP Rx descriptor
556 * @skb: pointer to current skb being fixed
557 *
558 * Address the case where we are pulling data in on pages only
559 * and as such no data is present in the skb header.
560 *
561 * In addition if skb is not at least 60 bytes we need to pad it so that
562 * it is large enough to qualify as a valid Ethernet frame.
563 *
564 * Returns true if an error was encountered and skb was freed.
565 **/
566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567 union fm10k_rx_desc *rx_desc,
568 struct sk_buff *skb)
569{
570 if (unlikely((fm10k_test_staterr(rx_desc,
571 FM10K_RXD_STATUS_RXE)))) {
572 dev_kfree_skb_any(skb);
573 rx_ring->rx_stats.errors++;
574 return true;
575 }
576
577 /* place header in linear portion of buffer */
578 if (skb_is_nonlinear(skb))
579 fm10k_pull_tail(rx_ring, rx_desc, skb);
580
581 /* if skb_pad returns an error the skb was freed */
582 if (unlikely(skb->len < 60)) {
583 int pad_len = 60 - skb->len;
584
585 if (skb_pad(skb, pad_len))
586 return true;
587 __skb_put(skb, pad_len);
588 }
589
590 return false;
591}
592
593/**
594 * fm10k_receive_skb - helper function to handle rx indications
595 * @q_vector: structure containing interrupt and ring information
596 * @skb: packet to send up
597 **/
598static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
599 struct sk_buff *skb)
600{
601 napi_gro_receive(&q_vector->napi, skb);
602}
603
604static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
605 struct fm10k_ring *rx_ring,
606 int budget)
607{
608 struct sk_buff *skb = rx_ring->skb;
609 unsigned int total_bytes = 0, total_packets = 0;
610 u16 cleaned_count = fm10k_desc_unused(rx_ring);
611
612 do {
613 union fm10k_rx_desc *rx_desc;
614
615 /* return some buffers to hardware, one at a time is too slow */
616 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
617 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
618 cleaned_count = 0;
619 }
620
621 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
622
623 if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD))
624 break;
625
626 /* This memory barrier is needed to keep us from reading
627 * any other fields out of the rx_desc until we know the
628 * RXD_STATUS_DD bit is set
629 */
630 rmb();
631
632 /* retrieve a buffer from the ring */
633 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
634
635 /* exit if we failed to retrieve a buffer */
636 if (!skb)
637 break;
638
639 cleaned_count++;
640
641 /* fetch next buffer in frame if non-eop */
642 if (fm10k_is_non_eop(rx_ring, rx_desc))
643 continue;
644
645 /* verify the packet layout is correct */
646 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
647 skb = NULL;
648 continue;
649 }
650
651 /* populate checksum, timestamp, VLAN, and protocol */
652 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
653
654 fm10k_receive_skb(q_vector, skb);
655
656 /* reset skb pointer */
657 skb = NULL;
658
659 /* update budget accounting */
660 total_packets++;
661 } while (likely(total_packets < budget));
662
663 /* place incomplete frames back on ring for completion */
664 rx_ring->skb = skb;
665
666 u64_stats_update_begin(&rx_ring->syncp);
667 rx_ring->stats.packets += total_packets;
668 rx_ring->stats.bytes += total_bytes;
669 u64_stats_update_end(&rx_ring->syncp);
670 q_vector->rx.total_packets += total_packets;
671 q_vector->rx.total_bytes += total_bytes;
672
673 return total_packets < budget;
674}
675
76a540d4
AD
676#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
677static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
678{
679 struct fm10k_intfc *interface = netdev_priv(skb->dev);
680 struct fm10k_vxlan_port *vxlan_port;
681
682 /* we can only offload a vxlan if we recognize it as such */
683 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
684 struct fm10k_vxlan_port, list);
685
686 if (!vxlan_port)
687 return NULL;
688 if (vxlan_port->port != udp_hdr(skb)->dest)
689 return NULL;
690
691 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
692 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
693}
694
695#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
696#define NVGRE_TNI htons(0x2000)
697struct fm10k_nvgre_hdr {
698 __be16 flags;
699 __be16 proto;
700 __be32 tni;
701};
702
703static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
704{
705 struct fm10k_nvgre_hdr *nvgre_hdr;
706 int hlen = ip_hdrlen(skb);
707
708 /* currently only IPv4 is supported due to hlen above */
709 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
710 return NULL;
711
712 /* our transport header should be NVGRE */
713 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
714
715 /* verify all reserved flags are 0 */
716 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
717 return NULL;
718
719 /* verify protocol is transparent Ethernet bridging */
720 if (nvgre_hdr->proto != htons(ETH_P_TEB))
721 return NULL;
722
723 /* report start of ethernet header */
724 if (nvgre_hdr->flags & NVGRE_TNI)
725 return (struct ethhdr *)(nvgre_hdr + 1);
726
727 return (struct ethhdr *)(&nvgre_hdr->tni);
728}
729
730static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
731{
732 struct ethhdr *eth_hdr;
733 u8 l4_hdr = 0;
734
735 switch (vlan_get_protocol(skb)) {
736 case htons(ETH_P_IP):
737 l4_hdr = ip_hdr(skb)->protocol;
738 break;
739 case htons(ETH_P_IPV6):
740 l4_hdr = ipv6_hdr(skb)->nexthdr;
741 break;
742 default:
743 return 0;
744 }
745
746 switch (l4_hdr) {
747 case IPPROTO_UDP:
748 eth_hdr = fm10k_port_is_vxlan(skb);
749 break;
750 case IPPROTO_GRE:
751 eth_hdr = fm10k_gre_is_nvgre(skb);
752 break;
753 default:
754 return 0;
755 }
756
757 if (!eth_hdr)
758 return 0;
759
760 switch (eth_hdr->h_proto) {
761 case htons(ETH_P_IP):
762 case htons(ETH_P_IPV6):
763 break;
764 default:
765 return 0;
766 }
767
768 return eth_hdr->h_proto;
769}
770
771static int fm10k_tso(struct fm10k_ring *tx_ring,
772 struct fm10k_tx_buffer *first)
773{
774 struct sk_buff *skb = first->skb;
775 struct fm10k_tx_desc *tx_desc;
776 unsigned char *th;
777 u8 hdrlen;
778
779 if (skb->ip_summed != CHECKSUM_PARTIAL)
780 return 0;
781
782 if (!skb_is_gso(skb))
783 return 0;
784
785 /* compute header lengths */
786 if (skb->encapsulation) {
787 if (!fm10k_tx_encap_offload(skb))
788 goto err_vxlan;
789 th = skb_inner_transport_header(skb);
790 } else {
791 th = skb_transport_header(skb);
792 }
793
794 /* compute offset from SOF to transport header and add header len */
795 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
796
797 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
798
799 /* update gso size and bytecount with header size */
800 first->gso_segs = skb_shinfo(skb)->gso_segs;
801 first->bytecount += (first->gso_segs - 1) * hdrlen;
802
803 /* populate Tx descriptor header size and mss */
804 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
805 tx_desc->hdrlen = hdrlen;
806 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
807
808 return 1;
809err_vxlan:
810 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
811 if (!net_ratelimit())
812 netdev_err(tx_ring->netdev,
813 "TSO requested for unsupported tunnel, disabling offload\n");
814 return -1;
815}
816
817static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
818 struct fm10k_tx_buffer *first)
819{
820 struct sk_buff *skb = first->skb;
821 struct fm10k_tx_desc *tx_desc;
822 union {
823 struct iphdr *ipv4;
824 struct ipv6hdr *ipv6;
825 u8 *raw;
826 } network_hdr;
827 __be16 protocol;
828 u8 l4_hdr = 0;
829
830 if (skb->ip_summed != CHECKSUM_PARTIAL)
831 goto no_csum;
832
833 if (skb->encapsulation) {
834 protocol = fm10k_tx_encap_offload(skb);
835 if (!protocol) {
836 if (skb_checksum_help(skb)) {
837 dev_warn(tx_ring->dev,
838 "failed to offload encap csum!\n");
839 tx_ring->tx_stats.csum_err++;
840 }
841 goto no_csum;
842 }
843 network_hdr.raw = skb_inner_network_header(skb);
844 } else {
845 protocol = vlan_get_protocol(skb);
846 network_hdr.raw = skb_network_header(skb);
847 }
848
849 switch (protocol) {
850 case htons(ETH_P_IP):
851 l4_hdr = network_hdr.ipv4->protocol;
852 break;
853 case htons(ETH_P_IPV6):
854 l4_hdr = network_hdr.ipv6->nexthdr;
855 break;
856 default:
857 if (unlikely(net_ratelimit())) {
858 dev_warn(tx_ring->dev,
859 "partial checksum but ip version=%x!\n",
860 protocol);
861 }
862 tx_ring->tx_stats.csum_err++;
863 goto no_csum;
864 }
865
866 switch (l4_hdr) {
867 case IPPROTO_TCP:
868 case IPPROTO_UDP:
869 break;
870 case IPPROTO_GRE:
871 if (skb->encapsulation)
872 break;
873 default:
874 if (unlikely(net_ratelimit())) {
875 dev_warn(tx_ring->dev,
876 "partial checksum but l4 proto=%x!\n",
877 l4_hdr);
878 }
879 tx_ring->tx_stats.csum_err++;
880 goto no_csum;
881 }
882
883 /* update TX checksum flag */
884 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
885
886no_csum:
887 /* populate Tx descriptor header size and mss */
888 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
889 tx_desc->hdrlen = 0;
890 tx_desc->mss = 0;
891}
892
893#define FM10K_SET_FLAG(_input, _flag, _result) \
894 ((_flag <= _result) ? \
895 ((u32)(_input & _flag) * (_result / _flag)) : \
896 ((u32)(_input & _flag) / (_flag / _result)))
897
898static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
899{
900 /* set type for advanced descriptor with frame checksum insertion */
901 u32 desc_flags = 0;
902
a211e013
AD
903 /* set timestamping bits */
904 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
905 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
906 desc_flags |= FM10K_TXD_FLAG_TIME;
907
76a540d4
AD
908 /* set checksum offload bits */
909 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
910 FM10K_TXD_FLAG_CSUM);
911
912 return desc_flags;
913}
914
b101c962
AD
915static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
916 struct fm10k_tx_desc *tx_desc, u16 i,
917 dma_addr_t dma, unsigned int size, u8 desc_flags)
918{
919 /* set RS and INT for last frame in a cache line */
920 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
921 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
922
923 /* record values to descriptor */
924 tx_desc->buffer_addr = cpu_to_le64(dma);
925 tx_desc->flags = desc_flags;
926 tx_desc->buflen = cpu_to_le16(size);
927
928 /* return true if we just wrapped the ring */
929 return i == tx_ring->count;
930}
931
2c2b2f0c
AD
932static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
933{
934 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
935
936 smp_mb();
937
938 /* We need to check again in a case another CPU has just
939 * made room available. */
940 if (likely(fm10k_desc_unused(tx_ring) < size))
941 return -EBUSY;
942
943 /* A reprieve! - use start_queue because it doesn't call schedule */
944 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
945 ++tx_ring->tx_stats.restart_queue;
946 return 0;
947}
948
949static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
950{
951 if (likely(fm10k_desc_unused(tx_ring) >= size))
952 return 0;
953 return __fm10k_maybe_stop_tx(tx_ring, size);
954}
955
b101c962
AD
956static void fm10k_tx_map(struct fm10k_ring *tx_ring,
957 struct fm10k_tx_buffer *first)
958{
959 struct sk_buff *skb = first->skb;
960 struct fm10k_tx_buffer *tx_buffer;
961 struct fm10k_tx_desc *tx_desc;
962 struct skb_frag_struct *frag;
963 unsigned char *data;
964 dma_addr_t dma;
965 unsigned int data_len, size;
76a540d4 966 u32 tx_flags = first->tx_flags;
b101c962 967 u16 i = tx_ring->next_to_use;
76a540d4 968 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
969
970 tx_desc = FM10K_TX_DESC(tx_ring, i);
971
972 /* add HW VLAN tag */
973 if (vlan_tx_tag_present(skb))
974 tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
975 else
976 tx_desc->vlan = 0;
977
978 size = skb_headlen(skb);
979 data = skb->data;
980
981 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
982
983 data_len = skb->data_len;
984 tx_buffer = first;
985
986 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
987 if (dma_mapping_error(tx_ring->dev, dma))
988 goto dma_error;
989
990 /* record length, and DMA address */
991 dma_unmap_len_set(tx_buffer, len, size);
992 dma_unmap_addr_set(tx_buffer, dma, dma);
993
994 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
995 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
996 FM10K_MAX_DATA_PER_TXD, flags)) {
997 tx_desc = FM10K_TX_DESC(tx_ring, 0);
998 i = 0;
999 }
1000
1001 dma += FM10K_MAX_DATA_PER_TXD;
1002 size -= FM10K_MAX_DATA_PER_TXD;
1003 }
1004
1005 if (likely(!data_len))
1006 break;
1007
1008 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1009 dma, size, flags)) {
1010 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1011 i = 0;
1012 }
1013
1014 size = skb_frag_size(frag);
1015 data_len -= size;
1016
1017 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1018 DMA_TO_DEVICE);
1019
1020 tx_buffer = &tx_ring->tx_buffer[i];
1021 }
1022
1023 /* write last descriptor with LAST bit set */
1024 flags |= FM10K_TXD_FLAG_LAST;
1025
1026 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1027 i = 0;
1028
1029 /* record bytecount for BQL */
1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032 /* record SW timestamp if HW timestamp is not available */
1033 skb_tx_timestamp(first->skb);
1034
1035 /* Force memory writes to complete before letting h/w know there
1036 * are new descriptors to fetch. (Only applicable for weak-ordered
1037 * memory model archs, such as IA-64).
1038 *
1039 * We also need this memory barrier to make certain all of the
1040 * status bits have been updated before next_to_watch is written.
1041 */
1042 wmb();
1043
1044 /* set next_to_watch value indicating a packet is present */
1045 first->next_to_watch = tx_desc;
1046
1047 tx_ring->next_to_use = i;
1048
2c2b2f0c
AD
1049 /* Make sure there is space in the ring for the next send. */
1050 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1051
b101c962 1052 /* notify HW of packet */
2c2b2f0c
AD
1053 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1054 writel(i, tx_ring->tail);
b101c962 1055
2c2b2f0c
AD
1056 /* we need this if more than one processor can write to our tail
1057 * at a time, it synchronizes IO on IA64/Altix systems
1058 */
1059 mmiowb();
1060 }
b101c962
AD
1061
1062 return;
1063dma_error:
1064 dev_err(tx_ring->dev, "TX DMA map failed\n");
1065
1066 /* clear dma mappings for failed tx_buffer map */
1067 for (;;) {
1068 tx_buffer = &tx_ring->tx_buffer[i];
1069 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1070 if (tx_buffer == first)
1071 break;
1072 if (i == 0)
1073 i = tx_ring->count;
1074 i--;
1075 }
1076
1077 tx_ring->next_to_use = i;
1078}
1079
b101c962
AD
1080netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1081 struct fm10k_ring *tx_ring)
1082{
1083 struct fm10k_tx_buffer *first;
76a540d4 1084 int tso;
b101c962
AD
1085 u32 tx_flags = 0;
1086#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1087 unsigned short f;
1088#endif
1089 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1090
1091 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1092 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1093 * + 2 desc gap to keep tail from touching head
1094 * otherwise try next time
1095 */
1096#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1097 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1098 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1099#else
1100 count += skb_shinfo(skb)->nr_frags;
1101#endif
1102 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1103 tx_ring->tx_stats.tx_busy++;
1104 return NETDEV_TX_BUSY;
1105 }
1106
1107 /* record the location of the first descriptor for this packet */
1108 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1109 first->skb = skb;
1110 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1111 first->gso_segs = 1;
1112
1113 /* record initial flags and protocol */
1114 first->tx_flags = tx_flags;
1115
76a540d4
AD
1116 tso = fm10k_tso(tx_ring, first);
1117 if (tso < 0)
1118 goto out_drop;
1119 else if (!tso)
1120 fm10k_tx_csum(tx_ring, first);
1121
b101c962
AD
1122 fm10k_tx_map(tx_ring, first);
1123
76a540d4
AD
1124 return NETDEV_TX_OK;
1125
1126out_drop:
1127 dev_kfree_skb_any(first->skb);
1128 first->skb = NULL;
1129
b101c962
AD
1130 return NETDEV_TX_OK;
1131}
1132
1133static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1134{
1135 return ring->stats.packets;
1136}
1137
1138static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1139{
1140 /* use SW head and tail until we have real hardware */
1141 u32 head = ring->next_to_clean;
1142 u32 tail = ring->next_to_use;
1143
1144 return ((head <= tail) ? tail : tail + ring->count) - head;
1145}
1146
1147bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1148{
1149 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1150 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1151 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1152
1153 clear_check_for_tx_hang(tx_ring);
1154
1155 /* Check for a hung queue, but be thorough. This verifies
1156 * that a transmit has been completed since the previous
1157 * check AND there is at least one packet pending. By
1158 * requiring this to fail twice we avoid races with
1159 * clearing the ARMED bit and conditions where we
1160 * run the check_tx_hang logic with a transmit completion
1161 * pending but without time to complete it yet.
1162 */
1163 if (!tx_pending || (tx_done_old != tx_done)) {
1164 /* update completed stats and continue */
1165 tx_ring->tx_stats.tx_done_old = tx_done;
1166 /* reset the countdown */
1167 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1168
1169 return false;
1170 }
1171
1172 /* make sure it is true for two checks in a row */
1173 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1174}
1175
1176/**
1177 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1178 * @interface: driver private struct
1179 **/
1180void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1181{
1182 /* Do the reset outside of interrupt context */
1183 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1184 netdev_err(interface->netdev, "Reset interface\n");
1185 interface->tx_timeout_count++;
1186 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1187 fm10k_service_event_schedule(interface);
1188 }
1189}
1190
1191/**
1192 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1193 * @q_vector: structure containing interrupt and ring information
1194 * @tx_ring: tx ring to clean
1195 **/
1196static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1197 struct fm10k_ring *tx_ring)
1198{
1199 struct fm10k_intfc *interface = q_vector->interface;
1200 struct fm10k_tx_buffer *tx_buffer;
1201 struct fm10k_tx_desc *tx_desc;
1202 unsigned int total_bytes = 0, total_packets = 0;
1203 unsigned int budget = q_vector->tx.work_limit;
1204 unsigned int i = tx_ring->next_to_clean;
1205
1206 if (test_bit(__FM10K_DOWN, &interface->state))
1207 return true;
1208
1209 tx_buffer = &tx_ring->tx_buffer[i];
1210 tx_desc = FM10K_TX_DESC(tx_ring, i);
1211 i -= tx_ring->count;
1212
1213 do {
1214 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1215
1216 /* if next_to_watch is not set then there is no work pending */
1217 if (!eop_desc)
1218 break;
1219
1220 /* prevent any other reads prior to eop_desc */
1221 read_barrier_depends();
1222
1223 /* if DD is not set pending work has not been completed */
1224 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1225 break;
1226
1227 /* clear next_to_watch to prevent false hangs */
1228 tx_buffer->next_to_watch = NULL;
1229
1230 /* update the statistics for this packet */
1231 total_bytes += tx_buffer->bytecount;
1232 total_packets += tx_buffer->gso_segs;
1233
1234 /* free the skb */
1235 dev_consume_skb_any(tx_buffer->skb);
1236
1237 /* unmap skb header data */
1238 dma_unmap_single(tx_ring->dev,
1239 dma_unmap_addr(tx_buffer, dma),
1240 dma_unmap_len(tx_buffer, len),
1241 DMA_TO_DEVICE);
1242
1243 /* clear tx_buffer data */
1244 tx_buffer->skb = NULL;
1245 dma_unmap_len_set(tx_buffer, len, 0);
1246
1247 /* unmap remaining buffers */
1248 while (tx_desc != eop_desc) {
1249 tx_buffer++;
1250 tx_desc++;
1251 i++;
1252 if (unlikely(!i)) {
1253 i -= tx_ring->count;
1254 tx_buffer = tx_ring->tx_buffer;
1255 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1256 }
1257
1258 /* unmap any remaining paged data */
1259 if (dma_unmap_len(tx_buffer, len)) {
1260 dma_unmap_page(tx_ring->dev,
1261 dma_unmap_addr(tx_buffer, dma),
1262 dma_unmap_len(tx_buffer, len),
1263 DMA_TO_DEVICE);
1264 dma_unmap_len_set(tx_buffer, len, 0);
1265 }
1266 }
1267
1268 /* move us one more past the eop_desc for start of next pkt */
1269 tx_buffer++;
1270 tx_desc++;
1271 i++;
1272 if (unlikely(!i)) {
1273 i -= tx_ring->count;
1274 tx_buffer = tx_ring->tx_buffer;
1275 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1276 }
1277
1278 /* issue prefetch for next Tx descriptor */
1279 prefetch(tx_desc);
1280
1281 /* update budget accounting */
1282 budget--;
1283 } while (likely(budget));
1284
1285 i += tx_ring->count;
1286 tx_ring->next_to_clean = i;
1287 u64_stats_update_begin(&tx_ring->syncp);
1288 tx_ring->stats.bytes += total_bytes;
1289 tx_ring->stats.packets += total_packets;
1290 u64_stats_update_end(&tx_ring->syncp);
1291 q_vector->tx.total_bytes += total_bytes;
1292 q_vector->tx.total_packets += total_packets;
1293
1294 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1295 /* schedule immediate reset if we believe we hung */
1296 struct fm10k_hw *hw = &interface->hw;
1297
1298 netif_err(interface, drv, tx_ring->netdev,
1299 "Detected Tx Unit Hang\n"
1300 " Tx Queue <%d>\n"
1301 " TDH, TDT <%x>, <%x>\n"
1302 " next_to_use <%x>\n"
1303 " next_to_clean <%x>\n",
1304 tx_ring->queue_index,
1305 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1306 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1307 tx_ring->next_to_use, i);
1308
1309 netif_stop_subqueue(tx_ring->netdev,
1310 tx_ring->queue_index);
1311
1312 netif_info(interface, probe, tx_ring->netdev,
1313 "tx hang %d detected on queue %d, resetting interface\n",
1314 interface->tx_timeout_count + 1,
1315 tx_ring->queue_index);
1316
1317 fm10k_tx_timeout_reset(interface);
1318
1319 /* the netdev is about to reset, no point in enabling stuff */
1320 return true;
1321 }
1322
1323 /* notify netdev of completed buffers */
1324 netdev_tx_completed_queue(txring_txq(tx_ring),
1325 total_packets, total_bytes);
1326
1327#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1328 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1329 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1330 /* Make sure that anybody stopping the queue after this
1331 * sees the new next_to_clean.
1332 */
1333 smp_mb();
1334 if (__netif_subqueue_stopped(tx_ring->netdev,
1335 tx_ring->queue_index) &&
1336 !test_bit(__FM10K_DOWN, &interface->state)) {
1337 netif_wake_subqueue(tx_ring->netdev,
1338 tx_ring->queue_index);
1339 ++tx_ring->tx_stats.restart_queue;
1340 }
1341 }
1342
1343 return !!budget;
1344}
1345
18283cad
AD
1346/**
1347 * fm10k_update_itr - update the dynamic ITR value based on packet size
1348 *
1349 * Stores a new ITR value based on strictly on packet size. The
1350 * divisors and thresholds used by this function were determined based
1351 * on theoretical maximum wire speed and testing data, in order to
1352 * minimize response time while increasing bulk throughput.
1353 *
1354 * @ring_container: Container for rings to have ITR updated
1355 **/
1356static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1357{
1358 unsigned int avg_wire_size, packets;
1359
1360 /* Only update ITR if we are using adaptive setting */
1361 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1362 goto clear_counts;
1363
1364 packets = ring_container->total_packets;
1365 if (!packets)
1366 goto clear_counts;
1367
1368 avg_wire_size = ring_container->total_bytes / packets;
1369
1370 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1371 avg_wire_size += 24;
1372
1373 /* Don't starve jumbo frames */
1374 if (avg_wire_size > 3000)
1375 avg_wire_size = 3000;
1376
1377 /* Give a little boost to mid-size frames */
1378 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1379 avg_wire_size /= 3;
1380 else
1381 avg_wire_size /= 2;
1382
1383 /* write back value and retain adaptive flag */
1384 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1385
1386clear_counts:
1387 ring_container->total_bytes = 0;
1388 ring_container->total_packets = 0;
1389}
1390
1391static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1392{
1393 /* Enable auto-mask and clear the current mask */
1394 u32 itr = FM10K_ITR_ENABLE;
1395
1396 /* Update Tx ITR */
1397 fm10k_update_itr(&q_vector->tx);
1398
1399 /* Update Rx ITR */
1400 fm10k_update_itr(&q_vector->rx);
1401
1402 /* Store Tx itr in timer slot 0 */
1403 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1404
1405 /* Shift Rx itr to timer slot 1 */
1406 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1407
1408 /* Write the final value to the ITR register */
1409 writel(itr, q_vector->itr);
1410}
1411
1412static int fm10k_poll(struct napi_struct *napi, int budget)
1413{
1414 struct fm10k_q_vector *q_vector =
1415 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1416 struct fm10k_ring *ring;
1417 int per_ring_budget;
1418 bool clean_complete = true;
1419
1420 fm10k_for_each_ring(ring, q_vector->tx)
1421 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1422
1423 /* attempt to distribute budget to each queue fairly, but don't
1424 * allow the budget to go below 1 because we'll exit polling
1425 */
1426 if (q_vector->rx.count > 1)
1427 per_ring_budget = max(budget/q_vector->rx.count, 1);
1428 else
1429 per_ring_budget = budget;
1430
1431 fm10k_for_each_ring(ring, q_vector->rx)
1432 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1433 per_ring_budget);
1434
1435 /* If all work not completed, return budget and keep polling */
1436 if (!clean_complete)
1437 return budget;
18283cad
AD
1438
1439 /* all work done, exit the polling mode */
1440 napi_complete(napi);
1441
1442 /* re-enable the q_vector */
1443 fm10k_qv_enable(q_vector);
1444
1445 return 0;
1446}
1447
aa3ac822
AD
1448/**
1449 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1450 * @interface: board private structure to initialize
1451 *
1452 * When QoS (Quality of Service) is enabled, allocate queues for
1453 * each traffic class. If multiqueue isn't available,then abort QoS
1454 * initialization.
1455 *
1456 * This function handles all combinations of Qos and RSS.
1457 *
1458 **/
1459static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1460{
1461 struct net_device *dev = interface->netdev;
1462 struct fm10k_ring_feature *f;
1463 int rss_i, i;
1464 int pcs;
1465
1466 /* Map queue offset and counts onto allocated tx queues */
1467 pcs = netdev_get_num_tc(dev);
1468
1469 if (pcs <= 1)
1470 return false;
1471
1472 /* set QoS mask and indices */
1473 f = &interface->ring_feature[RING_F_QOS];
1474 f->indices = pcs;
1475 f->mask = (1 << fls(pcs - 1)) - 1;
1476
1477 /* determine the upper limit for our current DCB mode */
1478 rss_i = interface->hw.mac.max_queues / pcs;
1479 rss_i = 1 << (fls(rss_i) - 1);
1480
1481 /* set RSS mask and indices */
1482 f = &interface->ring_feature[RING_F_RSS];
1483 rss_i = min_t(u16, rss_i, f->limit);
1484 f->indices = rss_i;
1485 f->mask = (1 << fls(rss_i - 1)) - 1;
1486
1487 /* configure pause class to queue mapping */
1488 for (i = 0; i < pcs; i++)
1489 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1490
1491 interface->num_rx_queues = rss_i * pcs;
1492 interface->num_tx_queues = rss_i * pcs;
1493
1494 return true;
1495}
1496
1497/**
1498 * fm10k_set_rss_queues: Allocate queues for RSS
1499 * @interface: board private structure to initialize
1500 *
1501 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1502 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1503 *
1504 **/
1505static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1506{
1507 struct fm10k_ring_feature *f;
1508 u16 rss_i;
1509
1510 f = &interface->ring_feature[RING_F_RSS];
1511 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1512
1513 /* record indices and power of 2 mask for RSS */
1514 f->indices = rss_i;
1515 f->mask = (1 << fls(rss_i - 1)) - 1;
1516
1517 interface->num_rx_queues = rss_i;
1518 interface->num_tx_queues = rss_i;
1519
1520 return true;
1521}
1522
18283cad
AD
1523/**
1524 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1525 * @interface: board private structure to initialize
1526 *
1527 * This is the top level queue allocation routine. The order here is very
1528 * important, starting with the "most" number of features turned on at once,
1529 * and ending with the smallest set of features. This way large combinations
1530 * can be allocated if they're turned on, and smaller combinations are the
1531 * fallthrough conditions.
1532 *
1533 **/
1534static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1535{
1536 /* Start with base case */
1537 interface->num_rx_queues = 1;
1538 interface->num_tx_queues = 1;
aa3ac822
AD
1539
1540 if (fm10k_set_qos_queues(interface))
1541 return;
1542
1543 fm10k_set_rss_queues(interface);
18283cad
AD
1544}
1545
1546/**
1547 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1548 * @interface: board private structure to initialize
1549 * @v_count: q_vectors allocated on interface, used for ring interleaving
1550 * @v_idx: index of vector in interface struct
1551 * @txr_count: total number of Tx rings to allocate
1552 * @txr_idx: index of first Tx ring to allocate
1553 * @rxr_count: total number of Rx rings to allocate
1554 * @rxr_idx: index of first Rx ring to allocate
1555 *
1556 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1557 **/
1558static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1559 unsigned int v_count, unsigned int v_idx,
1560 unsigned int txr_count, unsigned int txr_idx,
1561 unsigned int rxr_count, unsigned int rxr_idx)
1562{
1563 struct fm10k_q_vector *q_vector;
e27ef599 1564 struct fm10k_ring *ring;
18283cad
AD
1565 int ring_count, size;
1566
1567 ring_count = txr_count + rxr_count;
e27ef599
AD
1568 size = sizeof(struct fm10k_q_vector) +
1569 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1570
1571 /* allocate q_vector and rings */
1572 q_vector = kzalloc(size, GFP_KERNEL);
1573 if (!q_vector)
1574 return -ENOMEM;
1575
1576 /* initialize NAPI */
1577 netif_napi_add(interface->netdev, &q_vector->napi,
1578 fm10k_poll, NAPI_POLL_WEIGHT);
1579
1580 /* tie q_vector and interface together */
1581 interface->q_vector[v_idx] = q_vector;
1582 q_vector->interface = interface;
1583 q_vector->v_idx = v_idx;
1584
e27ef599
AD
1585 /* initialize pointer to rings */
1586 ring = q_vector->ring;
1587
18283cad 1588 /* save Tx ring container info */
e27ef599
AD
1589 q_vector->tx.ring = ring;
1590 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1591 q_vector->tx.itr = interface->tx_itr;
1592 q_vector->tx.count = txr_count;
1593
e27ef599
AD
1594 while (txr_count) {
1595 /* assign generic ring traits */
1596 ring->dev = &interface->pdev->dev;
1597 ring->netdev = interface->netdev;
1598
1599 /* configure backlink on ring */
1600 ring->q_vector = q_vector;
1601
1602 /* apply Tx specific ring traits */
1603 ring->count = interface->tx_ring_count;
1604 ring->queue_index = txr_idx;
1605
1606 /* assign ring to interface */
1607 interface->tx_ring[txr_idx] = ring;
1608
1609 /* update count and index */
1610 txr_count--;
1611 txr_idx += v_count;
1612
1613 /* push pointer to next ring */
1614 ring++;
1615 }
1616
18283cad 1617 /* save Rx ring container info */
e27ef599 1618 q_vector->rx.ring = ring;
18283cad
AD
1619 q_vector->rx.itr = interface->rx_itr;
1620 q_vector->rx.count = rxr_count;
1621
e27ef599
AD
1622 while (rxr_count) {
1623 /* assign generic ring traits */
1624 ring->dev = &interface->pdev->dev;
1625 ring->netdev = interface->netdev;
5cd5e2e9 1626 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1627
1628 /* configure backlink on ring */
1629 ring->q_vector = q_vector;
1630
1631 /* apply Rx specific ring traits */
1632 ring->count = interface->rx_ring_count;
1633 ring->queue_index = rxr_idx;
1634
1635 /* assign ring to interface */
1636 interface->rx_ring[rxr_idx] = ring;
1637
1638 /* update count and index */
1639 rxr_count--;
1640 rxr_idx += v_count;
1641
1642 /* push pointer to next ring */
1643 ring++;
1644 }
1645
7461fd91
AD
1646 fm10k_dbg_q_vector_init(q_vector);
1647
18283cad
AD
1648 return 0;
1649}
1650
1651/**
1652 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1653 * @interface: board private structure to initialize
1654 * @v_idx: Index of vector to be freed
1655 *
1656 * This function frees the memory allocated to the q_vector. In addition if
1657 * NAPI is enabled it will delete any references to the NAPI struct prior
1658 * to freeing the q_vector.
1659 **/
1660static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1661{
1662 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1663 struct fm10k_ring *ring;
1664
7461fd91
AD
1665 fm10k_dbg_q_vector_exit(q_vector);
1666
e27ef599
AD
1667 fm10k_for_each_ring(ring, q_vector->tx)
1668 interface->tx_ring[ring->queue_index] = NULL;
1669
1670 fm10k_for_each_ring(ring, q_vector->rx)
1671 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1672
1673 interface->q_vector[v_idx] = NULL;
1674 netif_napi_del(&q_vector->napi);
1675 kfree_rcu(q_vector, rcu);
1676}
1677
1678/**
1679 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1680 * @interface: board private structure to initialize
1681 *
1682 * We allocate one q_vector per queue interrupt. If allocation fails we
1683 * return -ENOMEM.
1684 **/
1685static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1686{
1687 unsigned int q_vectors = interface->num_q_vectors;
1688 unsigned int rxr_remaining = interface->num_rx_queues;
1689 unsigned int txr_remaining = interface->num_tx_queues;
1690 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1691 int err;
1692
1693 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1694 for (; rxr_remaining; v_idx++) {
1695 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1696 0, 0, 1, rxr_idx);
1697 if (err)
1698 goto err_out;
1699
1700 /* update counts and index */
1701 rxr_remaining--;
1702 rxr_idx++;
1703 }
1704 }
1705
1706 for (; v_idx < q_vectors; v_idx++) {
1707 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1708 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1709
1710 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1711 tqpv, txr_idx,
1712 rqpv, rxr_idx);
1713
1714 if (err)
1715 goto err_out;
1716
1717 /* update counts and index */
1718 rxr_remaining -= rqpv;
1719 txr_remaining -= tqpv;
1720 rxr_idx++;
1721 txr_idx++;
1722 }
1723
1724 return 0;
1725
1726err_out:
1727 interface->num_tx_queues = 0;
1728 interface->num_rx_queues = 0;
1729 interface->num_q_vectors = 0;
1730
1731 while (v_idx--)
1732 fm10k_free_q_vector(interface, v_idx);
1733
1734 return -ENOMEM;
1735}
1736
1737/**
1738 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1739 * @interface: board private structure to initialize
1740 *
1741 * This function frees the memory allocated to the q_vectors. In addition if
1742 * NAPI is enabled it will delete any references to the NAPI struct prior
1743 * to freeing the q_vector.
1744 **/
1745static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1746{
1747 int v_idx = interface->num_q_vectors;
1748
1749 interface->num_tx_queues = 0;
1750 interface->num_rx_queues = 0;
1751 interface->num_q_vectors = 0;
1752
1753 while (v_idx--)
1754 fm10k_free_q_vector(interface, v_idx);
1755}
1756
1757/**
1758 * f10k_reset_msix_capability - reset MSI-X capability
1759 * @interface: board private structure to initialize
1760 *
1761 * Reset the MSI-X capability back to its starting state
1762 **/
1763static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1764{
1765 pci_disable_msix(interface->pdev);
1766 kfree(interface->msix_entries);
1767 interface->msix_entries = NULL;
1768}
1769
1770/**
1771 * f10k_init_msix_capability - configure MSI-X capability
1772 * @interface: board private structure to initialize
1773 *
1774 * Attempt to configure the interrupts using the best available
1775 * capabilities of the hardware and the kernel.
1776 **/
1777static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1778{
1779 struct fm10k_hw *hw = &interface->hw;
1780 int v_budget, vector;
1781
1782 /* It's easy to be greedy for MSI-X vectors, but it really
1783 * doesn't do us much good if we have a lot more vectors
1784 * than CPU's. So let's be conservative and only ask for
1785 * (roughly) the same number of vectors as there are CPU's.
1786 * the default is to use pairs of vectors
1787 */
1788 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1789 v_budget = min_t(u16, v_budget, num_online_cpus());
1790
1791 /* account for vectors not related to queues */
1792 v_budget += NON_Q_VECTORS(hw);
1793
1794 /* At the same time, hardware can only support a maximum of
1795 * hw.mac->max_msix_vectors vectors. With features
1796 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1797 * descriptor queues supported by our device. Thus, we cap it off in
1798 * those rare cases where the cpu count also exceeds our vector limit.
1799 */
1800 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1801
1802 /* A failure in MSI-X entry allocation is fatal. */
1803 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1804 GFP_KERNEL);
1805 if (!interface->msix_entries)
1806 return -ENOMEM;
1807
1808 /* populate entry values */
1809 for (vector = 0; vector < v_budget; vector++)
1810 interface->msix_entries[vector].entry = vector;
1811
1812 /* Attempt to enable MSI-X with requested value */
1813 v_budget = pci_enable_msix_range(interface->pdev,
1814 interface->msix_entries,
1815 MIN_MSIX_COUNT(hw),
1816 v_budget);
1817 if (v_budget < 0) {
1818 kfree(interface->msix_entries);
1819 interface->msix_entries = NULL;
1820 return -ENOMEM;
1821 }
1822
1823 /* record the number of queues available for q_vectors */
1824 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1825
1826 return 0;
1827}
1828
aa3ac822
AD
1829/**
1830 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1831 * @interface: Interface structure continaining rings and devices
1832 *
1833 * Cache the descriptor ring offsets for Qos
1834 **/
1835static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1836{
1837 struct net_device *dev = interface->netdev;
1838 int pc, offset, rss_i, i, q_idx;
1839 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1840 u8 num_pcs = netdev_get_num_tc(dev);
1841
1842 if (num_pcs <= 1)
1843 return false;
1844
1845 rss_i = interface->ring_feature[RING_F_RSS].indices;
1846
1847 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1848 q_idx = pc;
1849 for (i = 0; i < rss_i; i++) {
1850 interface->tx_ring[offset + i]->reg_idx = q_idx;
1851 interface->tx_ring[offset + i]->qos_pc = pc;
1852 interface->rx_ring[offset + i]->reg_idx = q_idx;
1853 interface->rx_ring[offset + i]->qos_pc = pc;
1854 q_idx += pc_stride;
1855 }
1856 }
1857
1858 return true;
1859}
1860
1861/**
1862 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1863 * @interface: Interface structure continaining rings and devices
1864 *
1865 * Cache the descriptor ring offsets for RSS
1866 **/
1867static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1868{
1869 int i;
1870
1871 for (i = 0; i < interface->num_rx_queues; i++)
1872 interface->rx_ring[i]->reg_idx = i;
1873
1874 for (i = 0; i < interface->num_tx_queues; i++)
1875 interface->tx_ring[i]->reg_idx = i;
1876}
1877
1878/**
1879 * fm10k_assign_rings - Map rings to network devices
1880 * @interface: Interface structure containing rings and devices
1881 *
1882 * This function is meant to go though and configure both the network
1883 * devices so that they contain rings, and configure the rings so that
1884 * they function with their network devices.
1885 **/
1886static void fm10k_assign_rings(struct fm10k_intfc *interface)
1887{
1888 if (fm10k_cache_ring_qos(interface))
1889 return;
1890
1891 fm10k_cache_ring_rss(interface);
1892}
1893
18283cad
AD
1894static void fm10k_init_reta(struct fm10k_intfc *interface)
1895{
1896 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1897 u32 reta, base;
1898
1899 /* If the netdev is initialized we have to maintain table if possible */
1900 if (interface->netdev->reg_state) {
1901 for (i = FM10K_RETA_SIZE; i--;) {
1902 reta = interface->reta[i];
1903 if ((((reta << 24) >> 24) < rss_i) &&
1904 (((reta << 16) >> 24) < rss_i) &&
1905 (((reta << 8) >> 24) < rss_i) &&
1906 (((reta) >> 24) < rss_i))
1907 continue;
1908 goto repopulate_reta;
1909 }
1910
1911 /* do nothing if all of the elements are in bounds */
1912 return;
1913 }
1914
1915repopulate_reta:
1916 /* Populate the redirection table 4 entries at a time. To do this
1917 * we are generating the results for n and n+2 and then interleaving
1918 * those with the results with n+1 and n+3.
1919 */
1920 for (i = FM10K_RETA_SIZE; i--;) {
1921 /* first pass generates n and n+2 */
1922 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1923 reta = (base & 0x3F803F80) >> 7;
1924
1925 /* second pass generates n+1 and n+3 */
1926 base += 0x00010001 * rss_i;
1927 reta |= (base & 0x3F803F80) << 1;
1928
1929 interface->reta[i] = reta;
1930 }
1931}
1932
1933/**
1934 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1935 * @interface: board private structure to initialize
1936 *
1937 * We determine which queueing scheme to use based on...
1938 * - Hardware queue count (num_*_queues)
1939 * - defined by miscellaneous hardware support/features (RSS, etc.)
1940 **/
1941int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1942{
1943 int err;
1944
1945 /* Number of supported queues */
1946 fm10k_set_num_queues(interface);
1947
1948 /* Configure MSI-X capability */
1949 err = fm10k_init_msix_capability(interface);
1950 if (err) {
1951 dev_err(&interface->pdev->dev,
1952 "Unable to initialize MSI-X capability\n");
1953 return err;
1954 }
1955
1956 /* Allocate memory for queues */
1957 err = fm10k_alloc_q_vectors(interface);
1958 if (err)
1959 return err;
1960
aa3ac822
AD
1961 /* Map rings to devices, and map devices to physical queues */
1962 fm10k_assign_rings(interface);
1963
18283cad
AD
1964 /* Initialize RSS redirection table */
1965 fm10k_init_reta(interface);
1966
1967 return 0;
1968}
1969
1970/**
1971 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1972 * @interface: board private structure to clear queueing scheme on
1973 *
1974 * We go through and clear queueing specific resources and reset the structure
1975 * to pre-load conditions
1976 **/
1977void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1978{
1979 fm10k_free_q_vectors(interface);
1980 fm10k_reset_msix_capability(interface);
1981}
This page took 0.120404 seconds and 5 git commands to generate.