i40evf: Add support for netpoll
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
f4f88c6d 31#define DRV_VERSION "0.15.2-k"
b3890e30
AD
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
b382bb1b
JK
44/* single workqueue for entire fm10k driver */
45struct workqueue_struct *fm10k_workqueue = NULL;
46
6d2ce900
AD
47/**
48 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53static int __init fm10k_init_module(void)
54{
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
b382bb1b
JK
58 /* create driver workqueue */
59 if (!fm10k_workqueue)
60 fm10k_workqueue = create_workqueue("fm10k");
61
7461fd91
AD
62 fm10k_dbg_init();
63
b3890e30
AD
64 return fm10k_register_pci_driver();
65}
66module_init(fm10k_init_module);
67
68/**
69 * fm10k_exit_module - Driver Exit Cleanup Routine
70 *
71 * fm10k_exit_module is called just before the driver is removed
72 * from memory.
73 **/
74static void __exit fm10k_exit_module(void)
75{
76 fm10k_unregister_pci_driver();
7461fd91
AD
77
78 fm10k_dbg_exit();
b382bb1b
JK
79
80 /* destroy driver workqueue */
81 flush_workqueue(fm10k_workqueue);
82 destroy_workqueue(fm10k_workqueue);
83 fm10k_workqueue = NULL;
b3890e30
AD
84}
85module_exit(fm10k_exit_module);
18283cad 86
b101c962
AD
87static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 struct fm10k_rx_buffer *bi)
89{
90 struct page *page = bi->page;
91 dma_addr_t dma;
92
93 /* Only page will be NULL if buffer was consumed */
94 if (likely(page))
95 return true;
96
97 /* alloc new page for storage */
42b17f09 98 page = dev_alloc_page();
b101c962
AD
99 if (unlikely(!page)) {
100 rx_ring->rx_stats.alloc_failed++;
101 return false;
102 }
103
104 /* map page for use */
105 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106
107 /* if mapping failed free memory back to system since
108 * there isn't much point in holding memory we can't use
109 */
110 if (dma_mapping_error(rx_ring->dev, dma)) {
111 __free_page(page);
b101c962
AD
112
113 rx_ring->rx_stats.alloc_failed++;
114 return false;
115 }
116
117 bi->dma = dma;
118 bi->page = page;
119 bi->page_offset = 0;
120
121 return true;
122}
123
124/**
125 * fm10k_alloc_rx_buffers - Replace used receive buffers
126 * @rx_ring: ring to place buffers on
127 * @cleaned_count: number of buffers to replace
128 **/
129void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130{
131 union fm10k_rx_desc *rx_desc;
132 struct fm10k_rx_buffer *bi;
133 u16 i = rx_ring->next_to_use;
134
135 /* nothing to do */
136 if (!cleaned_count)
137 return;
138
139 rx_desc = FM10K_RX_DESC(rx_ring, i);
140 bi = &rx_ring->rx_buffer[i];
141 i -= rx_ring->count;
142
143 do {
144 if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 break;
146
147 /* Refresh the desc even if buffer_addrs didn't change
148 * because each write-back erases this info.
149 */
150 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151
152 rx_desc++;
153 bi++;
154 i++;
155 if (unlikely(!i)) {
156 rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 bi = rx_ring->rx_buffer;
158 i -= rx_ring->count;
159 }
160
ba5b8dcd
AD
161 /* clear the status bits for the next_to_use descriptor */
162 rx_desc->d.staterr = 0;
b101c962
AD
163
164 cleaned_count--;
165 } while (cleaned_count);
166
167 i += rx_ring->count;
168
169 if (rx_ring->next_to_use != i) {
170 /* record the next descriptor to use */
171 rx_ring->next_to_use = i;
172
173 /* update next to alloc since we have filled the ring */
174 rx_ring->next_to_alloc = i;
175
176 /* Force memory writes to complete before letting h/w
177 * know there are new descriptors to fetch. (Only
178 * applicable for weak-ordered memory model archs,
179 * such as IA-64).
180 */
181 wmb();
182
183 /* notify hardware of new descriptors */
184 writel(i, rx_ring->tail);
185 }
186}
187
188/**
189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190 * @rx_ring: rx descriptor ring to store buffers on
191 * @old_buff: donor buffer to have page reused
192 *
193 * Synchronizes page for reuse by the interface
194 **/
195static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 struct fm10k_rx_buffer *old_buff)
197{
198 struct fm10k_rx_buffer *new_buff;
199 u16 nta = rx_ring->next_to_alloc;
200
201 new_buff = &rx_ring->rx_buffer[nta];
202
203 /* update, and store next to alloc */
204 nta++;
205 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206
207 /* transfer page from old buffer to new buffer */
ba5b8dcd 208 *new_buff = *old_buff;
b101c962
AD
209
210 /* sync the buffer for use by the device */
211 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 old_buff->page_offset,
213 FM10K_RX_BUFSZ,
214 DMA_FROM_DEVICE);
215}
216
ba5b8dcd
AD
217static inline bool fm10k_page_is_reserved(struct page *page)
218{
2f064f34 219 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
ba5b8dcd
AD
220}
221
b101c962
AD
222static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 struct page *page,
de445199 224 unsigned int __maybe_unused truesize)
b101c962
AD
225{
226 /* avoid re-using remote pages */
ba5b8dcd 227 if (unlikely(fm10k_page_is_reserved(page)))
b101c962
AD
228 return false;
229
230#if (PAGE_SIZE < 8192)
231 /* if we are only owner of page we can reuse it */
232 if (unlikely(page_count(page) != 1))
233 return false;
234
235 /* flip page offset to other buffer */
236 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
b101c962
AD
237#else
238 /* move offset up to the next cache line */
239 rx_buffer->page_offset += truesize;
240
241 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 return false;
b101c962
AD
243#endif
244
ba5b8dcd
AD
245 /* Even if we own the page, we are not allowed to use atomic_set()
246 * This would break get_page_unless_zero() users.
247 */
248 atomic_inc(&page->_count);
249
b101c962
AD
250 return true;
251}
252
253/**
254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
b101c962
AD
255 * @rx_buffer: buffer containing page to add
256 * @rx_desc: descriptor containing length of buffer written by hardware
257 * @skb: sk_buff to place the data into
258 *
259 * This function will add the data contained in rx_buffer->page to the skb.
260 * This is done either through a direct copy if the data in the buffer is
261 * less than the skb header size, otherwise it will just attach the page as
262 * a frag to the skb.
263 *
264 * The function will then update the page offset if necessary and return
265 * true if the buffer can be reused by the interface.
266 **/
de445199 267static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
b101c962
AD
268 union fm10k_rx_desc *rx_desc,
269 struct sk_buff *skb)
270{
271 struct page *page = rx_buffer->page;
1a8782e5 272 unsigned char *va = page_address(page) + rx_buffer->page_offset;
b101c962
AD
273 unsigned int size = le16_to_cpu(rx_desc->w.length);
274#if (PAGE_SIZE < 8192)
275 unsigned int truesize = FM10K_RX_BUFSZ;
276#else
1a8782e5 277 unsigned int truesize = SKB_DATA_ALIGN(size);
b101c962 278#endif
1a8782e5 279 unsigned int pull_len;
b101c962 280
1a8782e5
AD
281 if (unlikely(skb_is_nonlinear(skb)))
282 goto add_tail_frag;
b101c962 283
1a8782e5 284 if (likely(size <= FM10K_RX_HDR_LEN)) {
b101c962
AD
285 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
286
ba5b8dcd
AD
287 /* page is not reserved, we can reuse buffer as-is */
288 if (likely(!fm10k_page_is_reserved(page)))
b101c962
AD
289 return true;
290
291 /* this page cannot be reused so discard it */
ba5b8dcd 292 __free_page(page);
b101c962
AD
293 return false;
294 }
295
1a8782e5
AD
296 /* we need the header to contain the greater of either ETH_HLEN or
297 * 60 bytes if the skb->len is less than 60 for skb_pad.
298 */
299 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
300
301 /* align pull length to size of long to optimize memcpy performance */
302 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
303
304 /* update all of the pointers */
305 va += pull_len;
306 size -= pull_len;
307
308add_tail_frag:
b101c962 309 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1a8782e5 310 (unsigned long)va & ~PAGE_MASK, size, truesize);
b101c962
AD
311
312 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
313}
314
315static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
316 union fm10k_rx_desc *rx_desc,
317 struct sk_buff *skb)
318{
319 struct fm10k_rx_buffer *rx_buffer;
320 struct page *page;
321
322 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
b101c962
AD
323 page = rx_buffer->page;
324 prefetchw(page);
325
326 if (likely(!skb)) {
327 void *page_addr = page_address(page) +
328 rx_buffer->page_offset;
329
330 /* prefetch first cache line of first page */
331 prefetch(page_addr);
332#if L1_CACHE_BYTES < 128
333 prefetch(page_addr + L1_CACHE_BYTES);
334#endif
335
336 /* allocate a skb to store the frags */
67fd893e
AD
337 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
338 FM10K_RX_HDR_LEN);
b101c962
AD
339 if (unlikely(!skb)) {
340 rx_ring->rx_stats.alloc_failed++;
341 return NULL;
342 }
343
344 /* we will be copying header into skb->data in
345 * pskb_may_pull so it is in our interest to prefetch
346 * it now to avoid a possible cache miss
347 */
348 prefetchw(skb->data);
349 }
350
351 /* we are reusing so sync this buffer for CPU use */
352 dma_sync_single_range_for_cpu(rx_ring->dev,
353 rx_buffer->dma,
354 rx_buffer->page_offset,
355 FM10K_RX_BUFSZ,
356 DMA_FROM_DEVICE);
357
358 /* pull page into skb */
de445199 359 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
b101c962
AD
360 /* hand second half of page back to the ring */
361 fm10k_reuse_rx_page(rx_ring, rx_buffer);
362 } else {
363 /* we are not reusing the buffer so unmap it */
364 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
365 PAGE_SIZE, DMA_FROM_DEVICE);
366 }
367
368 /* clear contents of rx_buffer */
369 rx_buffer->page = NULL;
370
371 return skb;
372}
373
76a540d4
AD
374static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
375 union fm10k_rx_desc *rx_desc,
376 struct sk_buff *skb)
377{
378 skb_checksum_none_assert(skb);
379
380 /* Rx checksum disabled via ethtool */
381 if (!(ring->netdev->features & NETIF_F_RXCSUM))
382 return;
383
384 /* TCP/UDP checksum error bit is set */
385 if (fm10k_test_staterr(rx_desc,
386 FM10K_RXD_STATUS_L4E |
387 FM10K_RXD_STATUS_L4E2 |
388 FM10K_RXD_STATUS_IPE |
389 FM10K_RXD_STATUS_IPE2)) {
390 ring->rx_stats.csum_err++;
391 return;
392 }
393
394 /* It must be a TCP or UDP packet with a valid checksum */
395 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
396 skb->encapsulation = true;
397 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
398 return;
399
400 skb->ip_summed = CHECKSUM_UNNECESSARY;
80043f3b
JK
401
402 ring->rx_stats.csum_good++;
76a540d4
AD
403}
404
405#define FM10K_RSS_L4_TYPES_MASK \
406 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
407 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
408 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
409 (1ul << FM10K_RSSTYPE_IPV6_UDP))
410
411static inline void fm10k_rx_hash(struct fm10k_ring *ring,
412 union fm10k_rx_desc *rx_desc,
413 struct sk_buff *skb)
414{
415 u16 rss_type;
416
417 if (!(ring->netdev->features & NETIF_F_RXHASH))
418 return;
419
420 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
421 if (!rss_type)
422 return;
423
424 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
425 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
426 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
427}
428
a211e013
AD
429static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
430 union fm10k_rx_desc *rx_desc,
431 struct sk_buff *skb)
432{
433 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
434
435 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
436
437 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
438 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
439 le64_to_cpu(rx_desc->q.timestamp));
440}
441
5cd5e2e9 442static void fm10k_type_trans(struct fm10k_ring *rx_ring,
de445199 443 union fm10k_rx_desc __maybe_unused *rx_desc,
5cd5e2e9
AD
444 struct sk_buff *skb)
445{
446 struct net_device *dev = rx_ring->netdev;
447 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
448
449 /* check to see if DGLORT belongs to a MACVLAN */
450 if (l2_accel) {
451 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
452
453 idx -= l2_accel->dglort;
454 if (idx < l2_accel->size && l2_accel->macvlan[idx])
455 dev = l2_accel->macvlan[idx];
456 else
457 l2_accel = NULL;
458 }
459
460 skb->protocol = eth_type_trans(skb, dev);
461
462 if (!l2_accel)
463 return;
464
465 /* update MACVLAN statistics */
466 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
467 !!(rx_desc->w.hdr_info &
468 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
469}
470
b101c962
AD
471/**
472 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
473 * @rx_ring: rx descriptor ring packet is being transacted on
474 * @rx_desc: pointer to the EOP Rx descriptor
475 * @skb: pointer to current skb being populated
476 *
477 * This function checks the ring, descriptor, and packet information in
478 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
479 * other fields within the skb.
480 **/
481static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
482 union fm10k_rx_desc *rx_desc,
483 struct sk_buff *skb)
484{
485 unsigned int len = skb->len;
486
76a540d4
AD
487 fm10k_rx_hash(rx_ring, rx_desc, skb);
488
489 fm10k_rx_checksum(rx_ring, rx_desc, skb);
490
a211e013
AD
491 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
492
b101c962
AD
493 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
494
495 skb_record_rx_queue(skb, rx_ring->queue_index);
496
497 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
498
499 if (rx_desc->w.vlan) {
500 u16 vid = le16_to_cpu(rx_desc->w.vlan);
501
e71c9318 502 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
b101c962 503 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
e71c9318
JK
504 else if (vid & VLAN_PRIO_MASK)
505 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
506 vid & VLAN_PRIO_MASK);
b101c962
AD
507 }
508
5cd5e2e9 509 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
510
511 return len;
512}
513
514/**
515 * fm10k_is_non_eop - process handling of non-EOP buffers
516 * @rx_ring: Rx ring being processed
517 * @rx_desc: Rx descriptor for current buffer
518 *
519 * This function updates next to clean. If the buffer is an EOP buffer
520 * this function exits returning false, otherwise it will place the
521 * sk_buff in the next buffer to be chained and return true indicating
522 * that this is in fact a non-EOP buffer.
523 **/
524static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
525 union fm10k_rx_desc *rx_desc)
526{
527 u32 ntc = rx_ring->next_to_clean + 1;
528
529 /* fetch, update, and store next to clean */
530 ntc = (ntc < rx_ring->count) ? ntc : 0;
531 rx_ring->next_to_clean = ntc;
532
533 prefetch(FM10K_RX_DESC(rx_ring, ntc));
534
535 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
536 return false;
537
538 return true;
539}
540
b101c962
AD
541/**
542 * fm10k_cleanup_headers - Correct corrupted or empty headers
543 * @rx_ring: rx descriptor ring packet is being transacted on
544 * @rx_desc: pointer to the EOP Rx descriptor
545 * @skb: pointer to current skb being fixed
546 *
547 * Address the case where we are pulling data in on pages only
548 * and as such no data is present in the skb header.
549 *
550 * In addition if skb is not at least 60 bytes we need to pad it so that
551 * it is large enough to qualify as a valid Ethernet frame.
552 *
553 * Returns true if an error was encountered and skb was freed.
554 **/
555static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
556 union fm10k_rx_desc *rx_desc,
557 struct sk_buff *skb)
558{
559 if (unlikely((fm10k_test_staterr(rx_desc,
560 FM10K_RXD_STATUS_RXE)))) {
80043f3b
JK
561#define FM10K_TEST_RXD_BIT(rxd, bit) \
562 ((rxd)->w.csum_err & cpu_to_le16(bit))
563 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
564 rx_ring->rx_stats.switch_errors++;
565 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
566 rx_ring->rx_stats.drops++;
567 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
568 rx_ring->rx_stats.pp_errors++;
569 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
570 rx_ring->rx_stats.link_errors++;
571 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
572 rx_ring->rx_stats.length_errors++;
b101c962
AD
573 dev_kfree_skb_any(skb);
574 rx_ring->rx_stats.errors++;
575 return true;
576 }
577
a94d9e22
AD
578 /* if eth_skb_pad returns an error the skb was freed */
579 if (eth_skb_pad(skb))
580 return true;
b101c962
AD
581
582 return false;
583}
584
585/**
586 * fm10k_receive_skb - helper function to handle rx indications
587 * @q_vector: structure containing interrupt and ring information
588 * @skb: packet to send up
589 **/
590static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
591 struct sk_buff *skb)
592{
593 napi_gro_receive(&q_vector->napi, skb);
594}
595
596static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
597 struct fm10k_ring *rx_ring,
598 int budget)
599{
600 struct sk_buff *skb = rx_ring->skb;
601 unsigned int total_bytes = 0, total_packets = 0;
602 u16 cleaned_count = fm10k_desc_unused(rx_ring);
603
59486329 604 while (likely(total_packets < budget)) {
b101c962
AD
605 union fm10k_rx_desc *rx_desc;
606
607 /* return some buffers to hardware, one at a time is too slow */
608 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
609 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
610 cleaned_count = 0;
611 }
612
613 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
614
124b74c1 615 if (!rx_desc->d.staterr)
b101c962
AD
616 break;
617
618 /* This memory barrier is needed to keep us from reading
619 * any other fields out of the rx_desc until we know the
124b74c1 620 * descriptor has been written back
b101c962 621 */
124b74c1 622 dma_rmb();
b101c962
AD
623
624 /* retrieve a buffer from the ring */
625 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
626
627 /* exit if we failed to retrieve a buffer */
628 if (!skb)
629 break;
630
631 cleaned_count++;
632
633 /* fetch next buffer in frame if non-eop */
634 if (fm10k_is_non_eop(rx_ring, rx_desc))
635 continue;
636
637 /* verify the packet layout is correct */
638 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
639 skb = NULL;
640 continue;
641 }
642
643 /* populate checksum, timestamp, VLAN, and protocol */
644 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
645
646 fm10k_receive_skb(q_vector, skb);
647
648 /* reset skb pointer */
649 skb = NULL;
650
651 /* update budget accounting */
652 total_packets++;
59486329 653 }
b101c962
AD
654
655 /* place incomplete frames back on ring for completion */
656 rx_ring->skb = skb;
657
658 u64_stats_update_begin(&rx_ring->syncp);
659 rx_ring->stats.packets += total_packets;
660 rx_ring->stats.bytes += total_bytes;
661 u64_stats_update_end(&rx_ring->syncp);
662 q_vector->rx.total_packets += total_packets;
663 q_vector->rx.total_bytes += total_bytes;
664
665 return total_packets < budget;
666}
667
76a540d4
AD
668#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
669static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
670{
671 struct fm10k_intfc *interface = netdev_priv(skb->dev);
672 struct fm10k_vxlan_port *vxlan_port;
673
674 /* we can only offload a vxlan if we recognize it as such */
675 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
676 struct fm10k_vxlan_port, list);
677
678 if (!vxlan_port)
679 return NULL;
680 if (vxlan_port->port != udp_hdr(skb)->dest)
681 return NULL;
682
683 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
684 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
685}
686
687#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
688#define NVGRE_TNI htons(0x2000)
689struct fm10k_nvgre_hdr {
690 __be16 flags;
691 __be16 proto;
692 __be32 tni;
693};
694
695static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
696{
697 struct fm10k_nvgre_hdr *nvgre_hdr;
698 int hlen = ip_hdrlen(skb);
699
700 /* currently only IPv4 is supported due to hlen above */
701 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
702 return NULL;
703
704 /* our transport header should be NVGRE */
705 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
706
707 /* verify all reserved flags are 0 */
708 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
709 return NULL;
710
76a540d4
AD
711 /* report start of ethernet header */
712 if (nvgre_hdr->flags & NVGRE_TNI)
713 return (struct ethhdr *)(nvgre_hdr + 1);
714
715 return (struct ethhdr *)(&nvgre_hdr->tni);
716}
717
5bf33dc6 718__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
76a540d4 719{
8c1a90aa 720 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
76a540d4 721 struct ethhdr *eth_hdr;
76a540d4 722
8c1a90aa
MV
723 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
724 skb->inner_protocol != htons(ETH_P_TEB))
b66b6d9f
JS
725 return 0;
726
76a540d4
AD
727 switch (vlan_get_protocol(skb)) {
728 case htons(ETH_P_IP):
729 l4_hdr = ip_hdr(skb)->protocol;
730 break;
731 case htons(ETH_P_IPV6):
732 l4_hdr = ipv6_hdr(skb)->nexthdr;
733 break;
734 default:
735 return 0;
736 }
737
738 switch (l4_hdr) {
739 case IPPROTO_UDP:
740 eth_hdr = fm10k_port_is_vxlan(skb);
741 break;
742 case IPPROTO_GRE:
743 eth_hdr = fm10k_gre_is_nvgre(skb);
744 break;
745 default:
746 return 0;
747 }
748
749 if (!eth_hdr)
750 return 0;
751
752 switch (eth_hdr->h_proto) {
753 case htons(ETH_P_IP):
8c1a90aa
MV
754 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
755 break;
76a540d4 756 case htons(ETH_P_IPV6):
8c1a90aa 757 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
76a540d4
AD
758 break;
759 default:
760 return 0;
761 }
762
8c1a90aa
MV
763 switch (inner_l4_hdr) {
764 case IPPROTO_TCP:
765 inner_l4_hlen = inner_tcp_hdrlen(skb);
766 break;
767 case IPPROTO_UDP:
768 inner_l4_hlen = 8;
769 break;
770 default:
771 return 0;
772 }
773
774 /* The hardware allows tunnel offloads only if the combined inner and
775 * outer header is 184 bytes or less
776 */
777 if (skb_inner_transport_header(skb) + inner_l4_hlen -
778 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
779 return 0;
780
76a540d4
AD
781 return eth_hdr->h_proto;
782}
783
784static int fm10k_tso(struct fm10k_ring *tx_ring,
785 struct fm10k_tx_buffer *first)
786{
787 struct sk_buff *skb = first->skb;
788 struct fm10k_tx_desc *tx_desc;
789 unsigned char *th;
790 u8 hdrlen;
791
792 if (skb->ip_summed != CHECKSUM_PARTIAL)
793 return 0;
794
795 if (!skb_is_gso(skb))
796 return 0;
797
798 /* compute header lengths */
799 if (skb->encapsulation) {
800 if (!fm10k_tx_encap_offload(skb))
801 goto err_vxlan;
802 th = skb_inner_transport_header(skb);
803 } else {
804 th = skb_transport_header(skb);
805 }
806
807 /* compute offset from SOF to transport header and add header len */
808 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
809
810 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
811
812 /* update gso size and bytecount with header size */
813 first->gso_segs = skb_shinfo(skb)->gso_segs;
814 first->bytecount += (first->gso_segs - 1) * hdrlen;
815
816 /* populate Tx descriptor header size and mss */
817 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
818 tx_desc->hdrlen = hdrlen;
819 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
820
821 return 1;
822err_vxlan:
823 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
824 if (!net_ratelimit())
825 netdev_err(tx_ring->netdev,
826 "TSO requested for unsupported tunnel, disabling offload\n");
827 return -1;
828}
829
830static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
831 struct fm10k_tx_buffer *first)
832{
833 struct sk_buff *skb = first->skb;
834 struct fm10k_tx_desc *tx_desc;
835 union {
836 struct iphdr *ipv4;
837 struct ipv6hdr *ipv6;
838 u8 *raw;
839 } network_hdr;
840 __be16 protocol;
841 u8 l4_hdr = 0;
842
843 if (skb->ip_summed != CHECKSUM_PARTIAL)
844 goto no_csum;
845
846 if (skb->encapsulation) {
847 protocol = fm10k_tx_encap_offload(skb);
848 if (!protocol) {
849 if (skb_checksum_help(skb)) {
850 dev_warn(tx_ring->dev,
851 "failed to offload encap csum!\n");
852 tx_ring->tx_stats.csum_err++;
853 }
854 goto no_csum;
855 }
856 network_hdr.raw = skb_inner_network_header(skb);
857 } else {
858 protocol = vlan_get_protocol(skb);
859 network_hdr.raw = skb_network_header(skb);
860 }
861
862 switch (protocol) {
863 case htons(ETH_P_IP):
864 l4_hdr = network_hdr.ipv4->protocol;
865 break;
866 case htons(ETH_P_IPV6):
867 l4_hdr = network_hdr.ipv6->nexthdr;
868 break;
869 default:
870 if (unlikely(net_ratelimit())) {
871 dev_warn(tx_ring->dev,
872 "partial checksum but ip version=%x!\n",
873 protocol);
874 }
875 tx_ring->tx_stats.csum_err++;
876 goto no_csum;
877 }
878
879 switch (l4_hdr) {
880 case IPPROTO_TCP:
881 case IPPROTO_UDP:
882 break;
883 case IPPROTO_GRE:
884 if (skb->encapsulation)
885 break;
886 default:
887 if (unlikely(net_ratelimit())) {
888 dev_warn(tx_ring->dev,
889 "partial checksum but l4 proto=%x!\n",
890 l4_hdr);
891 }
892 tx_ring->tx_stats.csum_err++;
893 goto no_csum;
894 }
895
896 /* update TX checksum flag */
897 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
80043f3b 898 tx_ring->tx_stats.csum_good++;
76a540d4
AD
899
900no_csum:
901 /* populate Tx descriptor header size and mss */
902 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
903 tx_desc->hdrlen = 0;
904 tx_desc->mss = 0;
905}
906
907#define FM10K_SET_FLAG(_input, _flag, _result) \
908 ((_flag <= _result) ? \
909 ((u32)(_input & _flag) * (_result / _flag)) : \
910 ((u32)(_input & _flag) / (_flag / _result)))
911
912static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
913{
914 /* set type for advanced descriptor with frame checksum insertion */
915 u32 desc_flags = 0;
916
a211e013
AD
917 /* set timestamping bits */
918 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
919 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
920 desc_flags |= FM10K_TXD_FLAG_TIME;
921
76a540d4
AD
922 /* set checksum offload bits */
923 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
924 FM10K_TXD_FLAG_CSUM);
925
926 return desc_flags;
927}
928
b101c962
AD
929static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
930 struct fm10k_tx_desc *tx_desc, u16 i,
931 dma_addr_t dma, unsigned int size, u8 desc_flags)
932{
933 /* set RS and INT for last frame in a cache line */
934 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
935 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
936
937 /* record values to descriptor */
938 tx_desc->buffer_addr = cpu_to_le64(dma);
939 tx_desc->flags = desc_flags;
940 tx_desc->buflen = cpu_to_le16(size);
941
942 /* return true if we just wrapped the ring */
943 return i == tx_ring->count;
944}
945
2c2b2f0c
AD
946static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
947{
948 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
949
eca32047 950 /* Memory barrier before checking head and tail */
2c2b2f0c
AD
951 smp_mb();
952
eca32047 953 /* Check again in a case another CPU has just made room available */
2c2b2f0c
AD
954 if (likely(fm10k_desc_unused(tx_ring) < size))
955 return -EBUSY;
956
957 /* A reprieve! - use start_queue because it doesn't call schedule */
958 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
959 ++tx_ring->tx_stats.restart_queue;
960 return 0;
961}
962
963static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
964{
965 if (likely(fm10k_desc_unused(tx_ring) >= size))
966 return 0;
967 return __fm10k_maybe_stop_tx(tx_ring, size);
968}
969
b101c962
AD
970static void fm10k_tx_map(struct fm10k_ring *tx_ring,
971 struct fm10k_tx_buffer *first)
972{
973 struct sk_buff *skb = first->skb;
974 struct fm10k_tx_buffer *tx_buffer;
975 struct fm10k_tx_desc *tx_desc;
976 struct skb_frag_struct *frag;
977 unsigned char *data;
978 dma_addr_t dma;
979 unsigned int data_len, size;
76a540d4 980 u32 tx_flags = first->tx_flags;
b101c962 981 u16 i = tx_ring->next_to_use;
76a540d4 982 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
983
984 tx_desc = FM10K_TX_DESC(tx_ring, i);
985
986 /* add HW VLAN tag */
df8a39de
JP
987 if (skb_vlan_tag_present(skb))
988 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
b101c962
AD
989 else
990 tx_desc->vlan = 0;
991
992 size = skb_headlen(skb);
993 data = skb->data;
994
995 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
996
997 data_len = skb->data_len;
998 tx_buffer = first;
999
1000 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1001 if (dma_mapping_error(tx_ring->dev, dma))
1002 goto dma_error;
1003
1004 /* record length, and DMA address */
1005 dma_unmap_len_set(tx_buffer, len, size);
1006 dma_unmap_addr_set(tx_buffer, dma, dma);
1007
1008 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1009 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1010 FM10K_MAX_DATA_PER_TXD, flags)) {
1011 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1012 i = 0;
1013 }
1014
1015 dma += FM10K_MAX_DATA_PER_TXD;
1016 size -= FM10K_MAX_DATA_PER_TXD;
1017 }
1018
1019 if (likely(!data_len))
1020 break;
1021
1022 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1023 dma, size, flags)) {
1024 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1025 i = 0;
1026 }
1027
1028 size = skb_frag_size(frag);
1029 data_len -= size;
1030
1031 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1032 DMA_TO_DEVICE);
1033
1034 tx_buffer = &tx_ring->tx_buffer[i];
1035 }
1036
1037 /* write last descriptor with LAST bit set */
1038 flags |= FM10K_TXD_FLAG_LAST;
1039
1040 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1041 i = 0;
1042
1043 /* record bytecount for BQL */
1044 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1045
1046 /* record SW timestamp if HW timestamp is not available */
1047 skb_tx_timestamp(first->skb);
1048
1049 /* Force memory writes to complete before letting h/w know there
1050 * are new descriptors to fetch. (Only applicable for weak-ordered
1051 * memory model archs, such as IA-64).
1052 *
1053 * We also need this memory barrier to make certain all of the
1054 * status bits have been updated before next_to_watch is written.
1055 */
1056 wmb();
1057
1058 /* set next_to_watch value indicating a packet is present */
1059 first->next_to_watch = tx_desc;
1060
1061 tx_ring->next_to_use = i;
1062
2c2b2f0c
AD
1063 /* Make sure there is space in the ring for the next send. */
1064 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1065
b101c962 1066 /* notify HW of packet */
2c2b2f0c
AD
1067 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1068 writel(i, tx_ring->tail);
b101c962 1069
2c2b2f0c
AD
1070 /* we need this if more than one processor can write to our tail
1071 * at a time, it synchronizes IO on IA64/Altix systems
1072 */
1073 mmiowb();
1074 }
b101c962
AD
1075
1076 return;
1077dma_error:
1078 dev_err(tx_ring->dev, "TX DMA map failed\n");
1079
1080 /* clear dma mappings for failed tx_buffer map */
1081 for (;;) {
1082 tx_buffer = &tx_ring->tx_buffer[i];
1083 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1084 if (tx_buffer == first)
1085 break;
1086 if (i == 0)
1087 i = tx_ring->count;
1088 i--;
1089 }
1090
1091 tx_ring->next_to_use = i;
1092}
1093
b101c962
AD
1094netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1095 struct fm10k_ring *tx_ring)
1096{
1097 struct fm10k_tx_buffer *first;
76a540d4 1098 int tso;
b101c962 1099 u32 tx_flags = 0;
b101c962 1100 unsigned short f;
b101c962
AD
1101 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1102
1103 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1104 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1105 * + 2 desc gap to keep tail from touching head
1106 * otherwise try next time
1107 */
b101c962
AD
1108 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1109 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
aae072e3 1110
b101c962
AD
1111 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1112 tx_ring->tx_stats.tx_busy++;
1113 return NETDEV_TX_BUSY;
1114 }
1115
1116 /* record the location of the first descriptor for this packet */
1117 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1118 first->skb = skb;
1119 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1120 first->gso_segs = 1;
1121
1122 /* record initial flags and protocol */
1123 first->tx_flags = tx_flags;
1124
76a540d4
AD
1125 tso = fm10k_tso(tx_ring, first);
1126 if (tso < 0)
1127 goto out_drop;
1128 else if (!tso)
1129 fm10k_tx_csum(tx_ring, first);
1130
b101c962
AD
1131 fm10k_tx_map(tx_ring, first);
1132
76a540d4
AD
1133 return NETDEV_TX_OK;
1134
1135out_drop:
1136 dev_kfree_skb_any(first->skb);
1137 first->skb = NULL;
1138
b101c962
AD
1139 return NETDEV_TX_OK;
1140}
1141
1142static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1143{
1144 return ring->stats.packets;
1145}
1146
1147static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1148{
1149 /* use SW head and tail until we have real hardware */
1150 u32 head = ring->next_to_clean;
1151 u32 tail = ring->next_to_use;
1152
1153 return ((head <= tail) ? tail : tail + ring->count) - head;
1154}
1155
1156bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1157{
1158 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1159 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1160 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1161
1162 clear_check_for_tx_hang(tx_ring);
1163
1164 /* Check for a hung queue, but be thorough. This verifies
1165 * that a transmit has been completed since the previous
1166 * check AND there is at least one packet pending. By
1167 * requiring this to fail twice we avoid races with
1168 * clearing the ARMED bit and conditions where we
1169 * run the check_tx_hang logic with a transmit completion
1170 * pending but without time to complete it yet.
1171 */
1172 if (!tx_pending || (tx_done_old != tx_done)) {
1173 /* update completed stats and continue */
1174 tx_ring->tx_stats.tx_done_old = tx_done;
1175 /* reset the countdown */
1176 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1177
1178 return false;
1179 }
1180
1181 /* make sure it is true for two checks in a row */
1182 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1183}
1184
1185/**
1186 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1187 * @interface: driver private struct
1188 **/
1189void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1190{
1191 /* Do the reset outside of interrupt context */
1192 if (!test_bit(__FM10K_DOWN, &interface->state)) {
b101c962
AD
1193 interface->tx_timeout_count++;
1194 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1195 fm10k_service_event_schedule(interface);
1196 }
1197}
1198
1199/**
1200 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1201 * @q_vector: structure containing interrupt and ring information
1202 * @tx_ring: tx ring to clean
1203 **/
1204static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1205 struct fm10k_ring *tx_ring)
1206{
1207 struct fm10k_intfc *interface = q_vector->interface;
1208 struct fm10k_tx_buffer *tx_buffer;
1209 struct fm10k_tx_desc *tx_desc;
1210 unsigned int total_bytes = 0, total_packets = 0;
1211 unsigned int budget = q_vector->tx.work_limit;
1212 unsigned int i = tx_ring->next_to_clean;
1213
1214 if (test_bit(__FM10K_DOWN, &interface->state))
1215 return true;
1216
1217 tx_buffer = &tx_ring->tx_buffer[i];
1218 tx_desc = FM10K_TX_DESC(tx_ring, i);
1219 i -= tx_ring->count;
1220
1221 do {
1222 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1223
1224 /* if next_to_watch is not set then there is no work pending */
1225 if (!eop_desc)
1226 break;
1227
1228 /* prevent any other reads prior to eop_desc */
1229 read_barrier_depends();
1230
1231 /* if DD is not set pending work has not been completed */
1232 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1233 break;
1234
1235 /* clear next_to_watch to prevent false hangs */
1236 tx_buffer->next_to_watch = NULL;
1237
1238 /* update the statistics for this packet */
1239 total_bytes += tx_buffer->bytecount;
1240 total_packets += tx_buffer->gso_segs;
1241
1242 /* free the skb */
1243 dev_consume_skb_any(tx_buffer->skb);
1244
1245 /* unmap skb header data */
1246 dma_unmap_single(tx_ring->dev,
1247 dma_unmap_addr(tx_buffer, dma),
1248 dma_unmap_len(tx_buffer, len),
1249 DMA_TO_DEVICE);
1250
1251 /* clear tx_buffer data */
1252 tx_buffer->skb = NULL;
1253 dma_unmap_len_set(tx_buffer, len, 0);
1254
1255 /* unmap remaining buffers */
1256 while (tx_desc != eop_desc) {
1257 tx_buffer++;
1258 tx_desc++;
1259 i++;
1260 if (unlikely(!i)) {
1261 i -= tx_ring->count;
1262 tx_buffer = tx_ring->tx_buffer;
1263 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1264 }
1265
1266 /* unmap any remaining paged data */
1267 if (dma_unmap_len(tx_buffer, len)) {
1268 dma_unmap_page(tx_ring->dev,
1269 dma_unmap_addr(tx_buffer, dma),
1270 dma_unmap_len(tx_buffer, len),
1271 DMA_TO_DEVICE);
1272 dma_unmap_len_set(tx_buffer, len, 0);
1273 }
1274 }
1275
1276 /* move us one more past the eop_desc for start of next pkt */
1277 tx_buffer++;
1278 tx_desc++;
1279 i++;
1280 if (unlikely(!i)) {
1281 i -= tx_ring->count;
1282 tx_buffer = tx_ring->tx_buffer;
1283 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1284 }
1285
1286 /* issue prefetch for next Tx descriptor */
1287 prefetch(tx_desc);
1288
1289 /* update budget accounting */
1290 budget--;
1291 } while (likely(budget));
1292
1293 i += tx_ring->count;
1294 tx_ring->next_to_clean = i;
1295 u64_stats_update_begin(&tx_ring->syncp);
1296 tx_ring->stats.bytes += total_bytes;
1297 tx_ring->stats.packets += total_packets;
1298 u64_stats_update_end(&tx_ring->syncp);
1299 q_vector->tx.total_bytes += total_bytes;
1300 q_vector->tx.total_packets += total_packets;
1301
1302 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1303 /* schedule immediate reset if we believe we hung */
1304 struct fm10k_hw *hw = &interface->hw;
1305
1306 netif_err(interface, drv, tx_ring->netdev,
1307 "Detected Tx Unit Hang\n"
1308 " Tx Queue <%d>\n"
1309 " TDH, TDT <%x>, <%x>\n"
1310 " next_to_use <%x>\n"
1311 " next_to_clean <%x>\n",
1312 tx_ring->queue_index,
1313 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1314 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1315 tx_ring->next_to_use, i);
1316
1317 netif_stop_subqueue(tx_ring->netdev,
1318 tx_ring->queue_index);
1319
1320 netif_info(interface, probe, tx_ring->netdev,
1321 "tx hang %d detected on queue %d, resetting interface\n",
1322 interface->tx_timeout_count + 1,
1323 tx_ring->queue_index);
1324
1325 fm10k_tx_timeout_reset(interface);
1326
1327 /* the netdev is about to reset, no point in enabling stuff */
1328 return true;
1329 }
1330
1331 /* notify netdev of completed buffers */
1332 netdev_tx_completed_queue(txring_txq(tx_ring),
1333 total_packets, total_bytes);
1334
1335#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1336 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1337 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1338 /* Make sure that anybody stopping the queue after this
1339 * sees the new next_to_clean.
1340 */
1341 smp_mb();
1342 if (__netif_subqueue_stopped(tx_ring->netdev,
1343 tx_ring->queue_index) &&
1344 !test_bit(__FM10K_DOWN, &interface->state)) {
1345 netif_wake_subqueue(tx_ring->netdev,
1346 tx_ring->queue_index);
1347 ++tx_ring->tx_stats.restart_queue;
1348 }
1349 }
1350
1351 return !!budget;
1352}
1353
18283cad
AD
1354/**
1355 * fm10k_update_itr - update the dynamic ITR value based on packet size
1356 *
1357 * Stores a new ITR value based on strictly on packet size. The
1358 * divisors and thresholds used by this function were determined based
1359 * on theoretical maximum wire speed and testing data, in order to
1360 * minimize response time while increasing bulk throughput.
1361 *
1362 * @ring_container: Container for rings to have ITR updated
1363 **/
1364static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1365{
1366 unsigned int avg_wire_size, packets;
1367
1368 /* Only update ITR if we are using adaptive setting */
1369 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1370 goto clear_counts;
1371
1372 packets = ring_container->total_packets;
1373 if (!packets)
1374 goto clear_counts;
1375
1376 avg_wire_size = ring_container->total_bytes / packets;
1377
1378 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1379 avg_wire_size += 24;
1380
1381 /* Don't starve jumbo frames */
1382 if (avg_wire_size > 3000)
1383 avg_wire_size = 3000;
1384
1385 /* Give a little boost to mid-size frames */
1386 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1387 avg_wire_size /= 3;
1388 else
1389 avg_wire_size /= 2;
1390
1391 /* write back value and retain adaptive flag */
1392 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1393
1394clear_counts:
1395 ring_container->total_bytes = 0;
1396 ring_container->total_packets = 0;
1397}
1398
1399static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1400{
1401 /* Enable auto-mask and clear the current mask */
1402 u32 itr = FM10K_ITR_ENABLE;
1403
1404 /* Update Tx ITR */
1405 fm10k_update_itr(&q_vector->tx);
1406
1407 /* Update Rx ITR */
1408 fm10k_update_itr(&q_vector->rx);
1409
1410 /* Store Tx itr in timer slot 0 */
1411 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1412
1413 /* Shift Rx itr to timer slot 1 */
1414 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1415
1416 /* Write the final value to the ITR register */
1417 writel(itr, q_vector->itr);
1418}
1419
1420static int fm10k_poll(struct napi_struct *napi, int budget)
1421{
1422 struct fm10k_q_vector *q_vector =
1423 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1424 struct fm10k_ring *ring;
1425 int per_ring_budget;
1426 bool clean_complete = true;
1427
1428 fm10k_for_each_ring(ring, q_vector->tx)
1429 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1430
1431 /* attempt to distribute budget to each queue fairly, but don't
1432 * allow the budget to go below 1 because we'll exit polling
1433 */
1434 if (q_vector->rx.count > 1)
1435 per_ring_budget = max(budget/q_vector->rx.count, 1);
1436 else
1437 per_ring_budget = budget;
1438
1439 fm10k_for_each_ring(ring, q_vector->rx)
1440 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1441 per_ring_budget);
1442
1443 /* If all work not completed, return budget and keep polling */
1444 if (!clean_complete)
1445 return budget;
18283cad
AD
1446
1447 /* all work done, exit the polling mode */
1448 napi_complete(napi);
1449
1450 /* re-enable the q_vector */
1451 fm10k_qv_enable(q_vector);
1452
1453 return 0;
1454}
1455
aa3ac822
AD
1456/**
1457 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1458 * @interface: board private structure to initialize
1459 *
1460 * When QoS (Quality of Service) is enabled, allocate queues for
1461 * each traffic class. If multiqueue isn't available,then abort QoS
1462 * initialization.
1463 *
1464 * This function handles all combinations of Qos and RSS.
1465 *
1466 **/
1467static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1468{
1469 struct net_device *dev = interface->netdev;
1470 struct fm10k_ring_feature *f;
1471 int rss_i, i;
1472 int pcs;
1473
1474 /* Map queue offset and counts onto allocated tx queues */
1475 pcs = netdev_get_num_tc(dev);
1476
1477 if (pcs <= 1)
1478 return false;
1479
1480 /* set QoS mask and indices */
1481 f = &interface->ring_feature[RING_F_QOS];
1482 f->indices = pcs;
1483 f->mask = (1 << fls(pcs - 1)) - 1;
1484
1485 /* determine the upper limit for our current DCB mode */
1486 rss_i = interface->hw.mac.max_queues / pcs;
1487 rss_i = 1 << (fls(rss_i) - 1);
1488
1489 /* set RSS mask and indices */
1490 f = &interface->ring_feature[RING_F_RSS];
1491 rss_i = min_t(u16, rss_i, f->limit);
1492 f->indices = rss_i;
1493 f->mask = (1 << fls(rss_i - 1)) - 1;
1494
1495 /* configure pause class to queue mapping */
1496 for (i = 0; i < pcs; i++)
1497 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1498
1499 interface->num_rx_queues = rss_i * pcs;
1500 interface->num_tx_queues = rss_i * pcs;
1501
1502 return true;
1503}
1504
1505/**
1506 * fm10k_set_rss_queues: Allocate queues for RSS
1507 * @interface: board private structure to initialize
1508 *
1509 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1510 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1511 *
1512 **/
1513static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1514{
1515 struct fm10k_ring_feature *f;
1516 u16 rss_i;
1517
1518 f = &interface->ring_feature[RING_F_RSS];
1519 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1520
1521 /* record indices and power of 2 mask for RSS */
1522 f->indices = rss_i;
1523 f->mask = (1 << fls(rss_i - 1)) - 1;
1524
1525 interface->num_rx_queues = rss_i;
1526 interface->num_tx_queues = rss_i;
1527
1528 return true;
1529}
1530
18283cad
AD
1531/**
1532 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1533 * @interface: board private structure to initialize
1534 *
1535 * This is the top level queue allocation routine. The order here is very
1536 * important, starting with the "most" number of features turned on at once,
1537 * and ending with the smallest set of features. This way large combinations
1538 * can be allocated if they're turned on, and smaller combinations are the
1539 * fallthrough conditions.
1540 *
1541 **/
1542static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1543{
1544 /* Start with base case */
1545 interface->num_rx_queues = 1;
1546 interface->num_tx_queues = 1;
aa3ac822
AD
1547
1548 if (fm10k_set_qos_queues(interface))
1549 return;
1550
1551 fm10k_set_rss_queues(interface);
18283cad
AD
1552}
1553
1554/**
1555 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1556 * @interface: board private structure to initialize
1557 * @v_count: q_vectors allocated on interface, used for ring interleaving
1558 * @v_idx: index of vector in interface struct
1559 * @txr_count: total number of Tx rings to allocate
1560 * @txr_idx: index of first Tx ring to allocate
1561 * @rxr_count: total number of Rx rings to allocate
1562 * @rxr_idx: index of first Rx ring to allocate
1563 *
1564 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1565 **/
1566static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1567 unsigned int v_count, unsigned int v_idx,
1568 unsigned int txr_count, unsigned int txr_idx,
1569 unsigned int rxr_count, unsigned int rxr_idx)
1570{
1571 struct fm10k_q_vector *q_vector;
e27ef599 1572 struct fm10k_ring *ring;
18283cad
AD
1573 int ring_count, size;
1574
1575 ring_count = txr_count + rxr_count;
e27ef599
AD
1576 size = sizeof(struct fm10k_q_vector) +
1577 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1578
1579 /* allocate q_vector and rings */
1580 q_vector = kzalloc(size, GFP_KERNEL);
1581 if (!q_vector)
1582 return -ENOMEM;
1583
1584 /* initialize NAPI */
1585 netif_napi_add(interface->netdev, &q_vector->napi,
1586 fm10k_poll, NAPI_POLL_WEIGHT);
1587
1588 /* tie q_vector and interface together */
1589 interface->q_vector[v_idx] = q_vector;
1590 q_vector->interface = interface;
1591 q_vector->v_idx = v_idx;
1592
e27ef599
AD
1593 /* initialize pointer to rings */
1594 ring = q_vector->ring;
1595
18283cad 1596 /* save Tx ring container info */
e27ef599
AD
1597 q_vector->tx.ring = ring;
1598 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1599 q_vector->tx.itr = interface->tx_itr;
1600 q_vector->tx.count = txr_count;
1601
e27ef599
AD
1602 while (txr_count) {
1603 /* assign generic ring traits */
1604 ring->dev = &interface->pdev->dev;
1605 ring->netdev = interface->netdev;
1606
1607 /* configure backlink on ring */
1608 ring->q_vector = q_vector;
1609
1610 /* apply Tx specific ring traits */
1611 ring->count = interface->tx_ring_count;
1612 ring->queue_index = txr_idx;
1613
1614 /* assign ring to interface */
1615 interface->tx_ring[txr_idx] = ring;
1616
1617 /* update count and index */
1618 txr_count--;
1619 txr_idx += v_count;
1620
1621 /* push pointer to next ring */
1622 ring++;
1623 }
1624
18283cad 1625 /* save Rx ring container info */
e27ef599 1626 q_vector->rx.ring = ring;
18283cad
AD
1627 q_vector->rx.itr = interface->rx_itr;
1628 q_vector->rx.count = rxr_count;
1629
e27ef599
AD
1630 while (rxr_count) {
1631 /* assign generic ring traits */
1632 ring->dev = &interface->pdev->dev;
1633 ring->netdev = interface->netdev;
5cd5e2e9 1634 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1635
1636 /* configure backlink on ring */
1637 ring->q_vector = q_vector;
1638
1639 /* apply Rx specific ring traits */
1640 ring->count = interface->rx_ring_count;
1641 ring->queue_index = rxr_idx;
1642
1643 /* assign ring to interface */
1644 interface->rx_ring[rxr_idx] = ring;
1645
1646 /* update count and index */
1647 rxr_count--;
1648 rxr_idx += v_count;
1649
1650 /* push pointer to next ring */
1651 ring++;
1652 }
1653
7461fd91
AD
1654 fm10k_dbg_q_vector_init(q_vector);
1655
18283cad
AD
1656 return 0;
1657}
1658
1659/**
1660 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1661 * @interface: board private structure to initialize
1662 * @v_idx: Index of vector to be freed
1663 *
1664 * This function frees the memory allocated to the q_vector. In addition if
1665 * NAPI is enabled it will delete any references to the NAPI struct prior
1666 * to freeing the q_vector.
1667 **/
1668static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1669{
1670 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1671 struct fm10k_ring *ring;
1672
7461fd91
AD
1673 fm10k_dbg_q_vector_exit(q_vector);
1674
e27ef599
AD
1675 fm10k_for_each_ring(ring, q_vector->tx)
1676 interface->tx_ring[ring->queue_index] = NULL;
1677
1678 fm10k_for_each_ring(ring, q_vector->rx)
1679 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1680
1681 interface->q_vector[v_idx] = NULL;
1682 netif_napi_del(&q_vector->napi);
1683 kfree_rcu(q_vector, rcu);
1684}
1685
1686/**
1687 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1688 * @interface: board private structure to initialize
1689 *
1690 * We allocate one q_vector per queue interrupt. If allocation fails we
1691 * return -ENOMEM.
1692 **/
1693static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1694{
1695 unsigned int q_vectors = interface->num_q_vectors;
1696 unsigned int rxr_remaining = interface->num_rx_queues;
1697 unsigned int txr_remaining = interface->num_tx_queues;
1698 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1699 int err;
1700
1701 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1702 for (; rxr_remaining; v_idx++) {
1703 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1704 0, 0, 1, rxr_idx);
1705 if (err)
1706 goto err_out;
1707
1708 /* update counts and index */
1709 rxr_remaining--;
1710 rxr_idx++;
1711 }
1712 }
1713
1714 for (; v_idx < q_vectors; v_idx++) {
1715 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1716 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1717
1718 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1719 tqpv, txr_idx,
1720 rqpv, rxr_idx);
1721
1722 if (err)
1723 goto err_out;
1724
1725 /* update counts and index */
1726 rxr_remaining -= rqpv;
1727 txr_remaining -= tqpv;
1728 rxr_idx++;
1729 txr_idx++;
1730 }
1731
1732 return 0;
1733
1734err_out:
1735 interface->num_tx_queues = 0;
1736 interface->num_rx_queues = 0;
1737 interface->num_q_vectors = 0;
1738
1739 while (v_idx--)
1740 fm10k_free_q_vector(interface, v_idx);
1741
1742 return -ENOMEM;
1743}
1744
1745/**
1746 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1747 * @interface: board private structure to initialize
1748 *
1749 * This function frees the memory allocated to the q_vectors. In addition if
1750 * NAPI is enabled it will delete any references to the NAPI struct prior
1751 * to freeing the q_vector.
1752 **/
1753static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1754{
1755 int v_idx = interface->num_q_vectors;
1756
1757 interface->num_tx_queues = 0;
1758 interface->num_rx_queues = 0;
1759 interface->num_q_vectors = 0;
1760
1761 while (v_idx--)
1762 fm10k_free_q_vector(interface, v_idx);
1763}
1764
1765/**
1766 * f10k_reset_msix_capability - reset MSI-X capability
1767 * @interface: board private structure to initialize
1768 *
1769 * Reset the MSI-X capability back to its starting state
1770 **/
1771static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1772{
1773 pci_disable_msix(interface->pdev);
1774 kfree(interface->msix_entries);
1775 interface->msix_entries = NULL;
1776}
1777
1778/**
1779 * f10k_init_msix_capability - configure MSI-X capability
1780 * @interface: board private structure to initialize
1781 *
1782 * Attempt to configure the interrupts using the best available
1783 * capabilities of the hardware and the kernel.
1784 **/
1785static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1786{
1787 struct fm10k_hw *hw = &interface->hw;
1788 int v_budget, vector;
1789
1790 /* It's easy to be greedy for MSI-X vectors, but it really
1791 * doesn't do us much good if we have a lot more vectors
1792 * than CPU's. So let's be conservative and only ask for
1793 * (roughly) the same number of vectors as there are CPU's.
1794 * the default is to use pairs of vectors
1795 */
1796 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1797 v_budget = min_t(u16, v_budget, num_online_cpus());
1798
1799 /* account for vectors not related to queues */
1800 v_budget += NON_Q_VECTORS(hw);
1801
1802 /* At the same time, hardware can only support a maximum of
1803 * hw.mac->max_msix_vectors vectors. With features
1804 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1805 * descriptor queues supported by our device. Thus, we cap it off in
1806 * those rare cases where the cpu count also exceeds our vector limit.
1807 */
1808 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1809
1810 /* A failure in MSI-X entry allocation is fatal. */
1811 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1812 GFP_KERNEL);
1813 if (!interface->msix_entries)
1814 return -ENOMEM;
1815
1816 /* populate entry values */
1817 for (vector = 0; vector < v_budget; vector++)
1818 interface->msix_entries[vector].entry = vector;
1819
1820 /* Attempt to enable MSI-X with requested value */
1821 v_budget = pci_enable_msix_range(interface->pdev,
1822 interface->msix_entries,
1823 MIN_MSIX_COUNT(hw),
1824 v_budget);
1825 if (v_budget < 0) {
1826 kfree(interface->msix_entries);
1827 interface->msix_entries = NULL;
1828 return -ENOMEM;
1829 }
1830
1831 /* record the number of queues available for q_vectors */
1832 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1833
1834 return 0;
1835}
1836
aa3ac822
AD
1837/**
1838 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1839 * @interface: Interface structure continaining rings and devices
1840 *
1841 * Cache the descriptor ring offsets for Qos
1842 **/
1843static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1844{
1845 struct net_device *dev = interface->netdev;
1846 int pc, offset, rss_i, i, q_idx;
1847 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1848 u8 num_pcs = netdev_get_num_tc(dev);
1849
1850 if (num_pcs <= 1)
1851 return false;
1852
1853 rss_i = interface->ring_feature[RING_F_RSS].indices;
1854
1855 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1856 q_idx = pc;
1857 for (i = 0; i < rss_i; i++) {
1858 interface->tx_ring[offset + i]->reg_idx = q_idx;
1859 interface->tx_ring[offset + i]->qos_pc = pc;
1860 interface->rx_ring[offset + i]->reg_idx = q_idx;
1861 interface->rx_ring[offset + i]->qos_pc = pc;
1862 q_idx += pc_stride;
1863 }
1864 }
1865
1866 return true;
1867}
1868
1869/**
1870 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1871 * @interface: Interface structure continaining rings and devices
1872 *
1873 * Cache the descriptor ring offsets for RSS
1874 **/
1875static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1876{
1877 int i;
1878
1879 for (i = 0; i < interface->num_rx_queues; i++)
1880 interface->rx_ring[i]->reg_idx = i;
1881
1882 for (i = 0; i < interface->num_tx_queues; i++)
1883 interface->tx_ring[i]->reg_idx = i;
1884}
1885
1886/**
1887 * fm10k_assign_rings - Map rings to network devices
1888 * @interface: Interface structure containing rings and devices
1889 *
1890 * This function is meant to go though and configure both the network
1891 * devices so that they contain rings, and configure the rings so that
1892 * they function with their network devices.
1893 **/
1894static void fm10k_assign_rings(struct fm10k_intfc *interface)
1895{
1896 if (fm10k_cache_ring_qos(interface))
1897 return;
1898
1899 fm10k_cache_ring_rss(interface);
1900}
1901
18283cad
AD
1902static void fm10k_init_reta(struct fm10k_intfc *interface)
1903{
1904 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1905 u32 reta, base;
1906
1907 /* If the netdev is initialized we have to maintain table if possible */
b4a5127b 1908 if (interface->netdev->reg_state != NETREG_UNINITIALIZED) {
18283cad
AD
1909 for (i = FM10K_RETA_SIZE; i--;) {
1910 reta = interface->reta[i];
1911 if ((((reta << 24) >> 24) < rss_i) &&
1912 (((reta << 16) >> 24) < rss_i) &&
1913 (((reta << 8) >> 24) < rss_i) &&
1914 (((reta) >> 24) < rss_i))
1915 continue;
1916 goto repopulate_reta;
1917 }
1918
1919 /* do nothing if all of the elements are in bounds */
1920 return;
1921 }
1922
1923repopulate_reta:
1924 /* Populate the redirection table 4 entries at a time. To do this
1925 * we are generating the results for n and n+2 and then interleaving
1926 * those with the results with n+1 and n+3.
1927 */
1928 for (i = FM10K_RETA_SIZE; i--;) {
1929 /* first pass generates n and n+2 */
1930 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1931 reta = (base & 0x3F803F80) >> 7;
1932
1933 /* second pass generates n+1 and n+3 */
1934 base += 0x00010001 * rss_i;
1935 reta |= (base & 0x3F803F80) << 1;
1936
1937 interface->reta[i] = reta;
1938 }
1939}
1940
1941/**
1942 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1943 * @interface: board private structure to initialize
1944 *
1945 * We determine which queueing scheme to use based on...
1946 * - Hardware queue count (num_*_queues)
1947 * - defined by miscellaneous hardware support/features (RSS, etc.)
1948 **/
1949int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1950{
1951 int err;
1952
1953 /* Number of supported queues */
1954 fm10k_set_num_queues(interface);
1955
1956 /* Configure MSI-X capability */
1957 err = fm10k_init_msix_capability(interface);
1958 if (err) {
1959 dev_err(&interface->pdev->dev,
1960 "Unable to initialize MSI-X capability\n");
1961 return err;
1962 }
1963
1964 /* Allocate memory for queues */
1965 err = fm10k_alloc_q_vectors(interface);
1966 if (err)
1967 return err;
1968
aa3ac822
AD
1969 /* Map rings to devices, and map devices to physical queues */
1970 fm10k_assign_rings(interface);
1971
18283cad
AD
1972 /* Initialize RSS redirection table */
1973 fm10k_init_reta(interface);
1974
1975 return 0;
1976}
1977
1978/**
1979 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1980 * @interface: board private structure to clear queueing scheme on
1981 *
1982 * We go through and clear queueing specific resources and reset the structure
1983 * to pre-load conditions
1984 **/
1985void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1986{
1987 fm10k_free_q_vectors(interface);
1988 fm10k_reset_msix_capability(interface);
1989}
This page took 0.173933 seconds and 5 git commands to generate.