bpf: disallow bpf tc programs access current->pid,uid
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
f4f88c6d 31#define DRV_VERSION "0.15.2-k"
b3890e30
AD
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
b382bb1b
JK
44/* single workqueue for entire fm10k driver */
45struct workqueue_struct *fm10k_workqueue = NULL;
46
6d2ce900
AD
47/**
48 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53static int __init fm10k_init_module(void)
54{
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
b382bb1b
JK
58 /* create driver workqueue */
59 if (!fm10k_workqueue)
60 fm10k_workqueue = create_workqueue("fm10k");
61
7461fd91
AD
62 fm10k_dbg_init();
63
b3890e30
AD
64 return fm10k_register_pci_driver();
65}
66module_init(fm10k_init_module);
67
68/**
69 * fm10k_exit_module - Driver Exit Cleanup Routine
70 *
71 * fm10k_exit_module is called just before the driver is removed
72 * from memory.
73 **/
74static void __exit fm10k_exit_module(void)
75{
76 fm10k_unregister_pci_driver();
7461fd91
AD
77
78 fm10k_dbg_exit();
b382bb1b
JK
79
80 /* destroy driver workqueue */
81 flush_workqueue(fm10k_workqueue);
82 destroy_workqueue(fm10k_workqueue);
83 fm10k_workqueue = NULL;
b3890e30
AD
84}
85module_exit(fm10k_exit_module);
18283cad 86
b101c962
AD
87static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 struct fm10k_rx_buffer *bi)
89{
90 struct page *page = bi->page;
91 dma_addr_t dma;
92
93 /* Only page will be NULL if buffer was consumed */
94 if (likely(page))
95 return true;
96
97 /* alloc new page for storage */
42b17f09 98 page = dev_alloc_page();
b101c962
AD
99 if (unlikely(!page)) {
100 rx_ring->rx_stats.alloc_failed++;
101 return false;
102 }
103
104 /* map page for use */
105 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106
107 /* if mapping failed free memory back to system since
108 * there isn't much point in holding memory we can't use
109 */
110 if (dma_mapping_error(rx_ring->dev, dma)) {
111 __free_page(page);
b101c962
AD
112
113 rx_ring->rx_stats.alloc_failed++;
114 return false;
115 }
116
117 bi->dma = dma;
118 bi->page = page;
119 bi->page_offset = 0;
120
121 return true;
122}
123
124/**
125 * fm10k_alloc_rx_buffers - Replace used receive buffers
126 * @rx_ring: ring to place buffers on
127 * @cleaned_count: number of buffers to replace
128 **/
129void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130{
131 union fm10k_rx_desc *rx_desc;
132 struct fm10k_rx_buffer *bi;
133 u16 i = rx_ring->next_to_use;
134
135 /* nothing to do */
136 if (!cleaned_count)
137 return;
138
139 rx_desc = FM10K_RX_DESC(rx_ring, i);
140 bi = &rx_ring->rx_buffer[i];
141 i -= rx_ring->count;
142
143 do {
144 if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 break;
146
147 /* Refresh the desc even if buffer_addrs didn't change
148 * because each write-back erases this info.
149 */
150 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151
152 rx_desc++;
153 bi++;
154 i++;
155 if (unlikely(!i)) {
156 rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 bi = rx_ring->rx_buffer;
158 i -= rx_ring->count;
159 }
160
ba5b8dcd
AD
161 /* clear the status bits for the next_to_use descriptor */
162 rx_desc->d.staterr = 0;
b101c962
AD
163
164 cleaned_count--;
165 } while (cleaned_count);
166
167 i += rx_ring->count;
168
169 if (rx_ring->next_to_use != i) {
170 /* record the next descriptor to use */
171 rx_ring->next_to_use = i;
172
173 /* update next to alloc since we have filled the ring */
174 rx_ring->next_to_alloc = i;
175
176 /* Force memory writes to complete before letting h/w
177 * know there are new descriptors to fetch. (Only
178 * applicable for weak-ordered memory model archs,
179 * such as IA-64).
180 */
181 wmb();
182
183 /* notify hardware of new descriptors */
184 writel(i, rx_ring->tail);
185 }
186}
187
188/**
189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190 * @rx_ring: rx descriptor ring to store buffers on
191 * @old_buff: donor buffer to have page reused
192 *
193 * Synchronizes page for reuse by the interface
194 **/
195static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 struct fm10k_rx_buffer *old_buff)
197{
198 struct fm10k_rx_buffer *new_buff;
199 u16 nta = rx_ring->next_to_alloc;
200
201 new_buff = &rx_ring->rx_buffer[nta];
202
203 /* update, and store next to alloc */
204 nta++;
205 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206
207 /* transfer page from old buffer to new buffer */
ba5b8dcd 208 *new_buff = *old_buff;
b101c962
AD
209
210 /* sync the buffer for use by the device */
211 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 old_buff->page_offset,
213 FM10K_RX_BUFSZ,
214 DMA_FROM_DEVICE);
215}
216
ba5b8dcd
AD
217static inline bool fm10k_page_is_reserved(struct page *page)
218{
219 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
220}
221
b101c962
AD
222static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 struct page *page,
de445199 224 unsigned int __maybe_unused truesize)
b101c962
AD
225{
226 /* avoid re-using remote pages */
ba5b8dcd 227 if (unlikely(fm10k_page_is_reserved(page)))
b101c962
AD
228 return false;
229
230#if (PAGE_SIZE < 8192)
231 /* if we are only owner of page we can reuse it */
232 if (unlikely(page_count(page) != 1))
233 return false;
234
235 /* flip page offset to other buffer */
236 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
b101c962
AD
237#else
238 /* move offset up to the next cache line */
239 rx_buffer->page_offset += truesize;
240
241 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 return false;
b101c962
AD
243#endif
244
ba5b8dcd
AD
245 /* Even if we own the page, we are not allowed to use atomic_set()
246 * This would break get_page_unless_zero() users.
247 */
248 atomic_inc(&page->_count);
249
b101c962
AD
250 return true;
251}
252
253/**
254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
b101c962
AD
255 * @rx_buffer: buffer containing page to add
256 * @rx_desc: descriptor containing length of buffer written by hardware
257 * @skb: sk_buff to place the data into
258 *
259 * This function will add the data contained in rx_buffer->page to the skb.
260 * This is done either through a direct copy if the data in the buffer is
261 * less than the skb header size, otherwise it will just attach the page as
262 * a frag to the skb.
263 *
264 * The function will then update the page offset if necessary and return
265 * true if the buffer can be reused by the interface.
266 **/
de445199 267static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
b101c962
AD
268 union fm10k_rx_desc *rx_desc,
269 struct sk_buff *skb)
270{
271 struct page *page = rx_buffer->page;
272 unsigned int size = le16_to_cpu(rx_desc->w.length);
273#if (PAGE_SIZE < 8192)
274 unsigned int truesize = FM10K_RX_BUFSZ;
275#else
276 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
277#endif
278
279 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
280 unsigned char *va = page_address(page) + rx_buffer->page_offset;
281
282 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283
ba5b8dcd
AD
284 /* page is not reserved, we can reuse buffer as-is */
285 if (likely(!fm10k_page_is_reserved(page)))
b101c962
AD
286 return true;
287
288 /* this page cannot be reused so discard it */
ba5b8dcd 289 __free_page(page);
b101c962
AD
290 return false;
291 }
292
293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 rx_buffer->page_offset, size, truesize);
295
296 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297}
298
299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 union fm10k_rx_desc *rx_desc,
301 struct sk_buff *skb)
302{
303 struct fm10k_rx_buffer *rx_buffer;
304 struct page *page;
305
306 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
b101c962
AD
307 page = rx_buffer->page;
308 prefetchw(page);
309
310 if (likely(!skb)) {
311 void *page_addr = page_address(page) +
312 rx_buffer->page_offset;
313
314 /* prefetch first cache line of first page */
315 prefetch(page_addr);
316#if L1_CACHE_BYTES < 128
317 prefetch(page_addr + L1_CACHE_BYTES);
318#endif
319
320 /* allocate a skb to store the frags */
67fd893e
AD
321 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
322 FM10K_RX_HDR_LEN);
b101c962
AD
323 if (unlikely(!skb)) {
324 rx_ring->rx_stats.alloc_failed++;
325 return NULL;
326 }
327
328 /* we will be copying header into skb->data in
329 * pskb_may_pull so it is in our interest to prefetch
330 * it now to avoid a possible cache miss
331 */
332 prefetchw(skb->data);
333 }
334
335 /* we are reusing so sync this buffer for CPU use */
336 dma_sync_single_range_for_cpu(rx_ring->dev,
337 rx_buffer->dma,
338 rx_buffer->page_offset,
339 FM10K_RX_BUFSZ,
340 DMA_FROM_DEVICE);
341
342 /* pull page into skb */
de445199 343 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
b101c962
AD
344 /* hand second half of page back to the ring */
345 fm10k_reuse_rx_page(rx_ring, rx_buffer);
346 } else {
347 /* we are not reusing the buffer so unmap it */
348 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
349 PAGE_SIZE, DMA_FROM_DEVICE);
350 }
351
352 /* clear contents of rx_buffer */
353 rx_buffer->page = NULL;
354
355 return skb;
356}
357
76a540d4
AD
358static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
359 union fm10k_rx_desc *rx_desc,
360 struct sk_buff *skb)
361{
362 skb_checksum_none_assert(skb);
363
364 /* Rx checksum disabled via ethtool */
365 if (!(ring->netdev->features & NETIF_F_RXCSUM))
366 return;
367
368 /* TCP/UDP checksum error bit is set */
369 if (fm10k_test_staterr(rx_desc,
370 FM10K_RXD_STATUS_L4E |
371 FM10K_RXD_STATUS_L4E2 |
372 FM10K_RXD_STATUS_IPE |
373 FM10K_RXD_STATUS_IPE2)) {
374 ring->rx_stats.csum_err++;
375 return;
376 }
377
378 /* It must be a TCP or UDP packet with a valid checksum */
379 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
380 skb->encapsulation = true;
381 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
382 return;
383
384 skb->ip_summed = CHECKSUM_UNNECESSARY;
385}
386
387#define FM10K_RSS_L4_TYPES_MASK \
388 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
389 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
390 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
391 (1ul << FM10K_RSSTYPE_IPV6_UDP))
392
393static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394 union fm10k_rx_desc *rx_desc,
395 struct sk_buff *skb)
396{
397 u16 rss_type;
398
399 if (!(ring->netdev->features & NETIF_F_RXHASH))
400 return;
401
402 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403 if (!rss_type)
404 return;
405
406 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
408 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409}
410
a211e013
AD
411static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
412 union fm10k_rx_desc *rx_desc,
413 struct sk_buff *skb)
414{
415 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
416
417 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
418
419 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
420 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
421 le64_to_cpu(rx_desc->q.timestamp));
422}
423
5cd5e2e9 424static void fm10k_type_trans(struct fm10k_ring *rx_ring,
de445199 425 union fm10k_rx_desc __maybe_unused *rx_desc,
5cd5e2e9
AD
426 struct sk_buff *skb)
427{
428 struct net_device *dev = rx_ring->netdev;
429 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
430
431 /* check to see if DGLORT belongs to a MACVLAN */
432 if (l2_accel) {
433 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
434
435 idx -= l2_accel->dglort;
436 if (idx < l2_accel->size && l2_accel->macvlan[idx])
437 dev = l2_accel->macvlan[idx];
438 else
439 l2_accel = NULL;
440 }
441
442 skb->protocol = eth_type_trans(skb, dev);
443
444 if (!l2_accel)
445 return;
446
447 /* update MACVLAN statistics */
448 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
449 !!(rx_desc->w.hdr_info &
450 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
451}
452
b101c962
AD
453/**
454 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
455 * @rx_ring: rx descriptor ring packet is being transacted on
456 * @rx_desc: pointer to the EOP Rx descriptor
457 * @skb: pointer to current skb being populated
458 *
459 * This function checks the ring, descriptor, and packet information in
460 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
461 * other fields within the skb.
462 **/
463static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
464 union fm10k_rx_desc *rx_desc,
465 struct sk_buff *skb)
466{
467 unsigned int len = skb->len;
468
76a540d4
AD
469 fm10k_rx_hash(rx_ring, rx_desc, skb);
470
471 fm10k_rx_checksum(rx_ring, rx_desc, skb);
472
a211e013
AD
473 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
474
b101c962
AD
475 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476
477 skb_record_rx_queue(skb, rx_ring->queue_index);
478
479 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480
481 if (rx_desc->w.vlan) {
482 u16 vid = le16_to_cpu(rx_desc->w.vlan);
483
484 if (vid != rx_ring->vid)
485 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486 }
487
5cd5e2e9 488 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
489
490 return len;
491}
492
493/**
494 * fm10k_is_non_eop - process handling of non-EOP buffers
495 * @rx_ring: Rx ring being processed
496 * @rx_desc: Rx descriptor for current buffer
497 *
498 * This function updates next to clean. If the buffer is an EOP buffer
499 * this function exits returning false, otherwise it will place the
500 * sk_buff in the next buffer to be chained and return true indicating
501 * that this is in fact a non-EOP buffer.
502 **/
503static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
504 union fm10k_rx_desc *rx_desc)
505{
506 u32 ntc = rx_ring->next_to_clean + 1;
507
508 /* fetch, update, and store next to clean */
509 ntc = (ntc < rx_ring->count) ? ntc : 0;
510 rx_ring->next_to_clean = ntc;
511
512 prefetch(FM10K_RX_DESC(rx_ring, ntc));
513
514 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
515 return false;
516
517 return true;
518}
519
520/**
521 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
b101c962
AD
522 * @skb: pointer to current skb being adjusted
523 *
524 * This function is an fm10k specific version of __pskb_pull_tail. The
525 * main difference between this version and the original function is that
526 * this function can make several assumptions about the state of things
527 * that allow for significant optimizations versus the standard function.
528 * As a result we can do things like drop a frag and maintain an accurate
529 * truesize for the skb.
530 */
de445199 531static void fm10k_pull_tail(struct sk_buff *skb)
b101c962
AD
532{
533 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
534 unsigned char *va;
535 unsigned int pull_len;
536
537 /* it is valid to use page_address instead of kmap since we are
538 * working with pages allocated out of the lomem pool per
539 * alloc_page(GFP_ATOMIC)
540 */
541 va = skb_frag_address(frag);
542
543 /* we need the header to contain the greater of either ETH_HLEN or
544 * 60 bytes if the skb->len is less than 60 for skb_pad.
545 */
546 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
547
548 /* align pull length to size of long to optimize memcpy performance */
549 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
550
551 /* update all of the pointers */
552 skb_frag_size_sub(frag, pull_len);
553 frag->page_offset += pull_len;
554 skb->data_len -= pull_len;
555 skb->tail += pull_len;
556}
557
558/**
559 * fm10k_cleanup_headers - Correct corrupted or empty headers
560 * @rx_ring: rx descriptor ring packet is being transacted on
561 * @rx_desc: pointer to the EOP Rx descriptor
562 * @skb: pointer to current skb being fixed
563 *
564 * Address the case where we are pulling data in on pages only
565 * and as such no data is present in the skb header.
566 *
567 * In addition if skb is not at least 60 bytes we need to pad it so that
568 * it is large enough to qualify as a valid Ethernet frame.
569 *
570 * Returns true if an error was encountered and skb was freed.
571 **/
572static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
573 union fm10k_rx_desc *rx_desc,
574 struct sk_buff *skb)
575{
576 if (unlikely((fm10k_test_staterr(rx_desc,
577 FM10K_RXD_STATUS_RXE)))) {
578 dev_kfree_skb_any(skb);
579 rx_ring->rx_stats.errors++;
580 return true;
581 }
582
583 /* place header in linear portion of buffer */
584 if (skb_is_nonlinear(skb))
de445199 585 fm10k_pull_tail(skb);
b101c962 586
a94d9e22
AD
587 /* if eth_skb_pad returns an error the skb was freed */
588 if (eth_skb_pad(skb))
589 return true;
b101c962
AD
590
591 return false;
592}
593
594/**
595 * fm10k_receive_skb - helper function to handle rx indications
596 * @q_vector: structure containing interrupt and ring information
597 * @skb: packet to send up
598 **/
599static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
600 struct sk_buff *skb)
601{
602 napi_gro_receive(&q_vector->napi, skb);
603}
604
605static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
606 struct fm10k_ring *rx_ring,
607 int budget)
608{
609 struct sk_buff *skb = rx_ring->skb;
610 unsigned int total_bytes = 0, total_packets = 0;
611 u16 cleaned_count = fm10k_desc_unused(rx_ring);
612
59486329 613 while (likely(total_packets < budget)) {
b101c962
AD
614 union fm10k_rx_desc *rx_desc;
615
616 /* return some buffers to hardware, one at a time is too slow */
617 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
618 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
619 cleaned_count = 0;
620 }
621
622 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
623
124b74c1 624 if (!rx_desc->d.staterr)
b101c962
AD
625 break;
626
627 /* This memory barrier is needed to keep us from reading
628 * any other fields out of the rx_desc until we know the
124b74c1 629 * descriptor has been written back
b101c962 630 */
124b74c1 631 dma_rmb();
b101c962
AD
632
633 /* retrieve a buffer from the ring */
634 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
635
636 /* exit if we failed to retrieve a buffer */
637 if (!skb)
638 break;
639
640 cleaned_count++;
641
642 /* fetch next buffer in frame if non-eop */
643 if (fm10k_is_non_eop(rx_ring, rx_desc))
644 continue;
645
646 /* verify the packet layout is correct */
647 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
648 skb = NULL;
649 continue;
650 }
651
652 /* populate checksum, timestamp, VLAN, and protocol */
653 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
654
655 fm10k_receive_skb(q_vector, skb);
656
657 /* reset skb pointer */
658 skb = NULL;
659
660 /* update budget accounting */
661 total_packets++;
59486329 662 }
b101c962
AD
663
664 /* place incomplete frames back on ring for completion */
665 rx_ring->skb = skb;
666
667 u64_stats_update_begin(&rx_ring->syncp);
668 rx_ring->stats.packets += total_packets;
669 rx_ring->stats.bytes += total_bytes;
670 u64_stats_update_end(&rx_ring->syncp);
671 q_vector->rx.total_packets += total_packets;
672 q_vector->rx.total_bytes += total_bytes;
673
674 return total_packets < budget;
675}
676
76a540d4
AD
677#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
678static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
679{
680 struct fm10k_intfc *interface = netdev_priv(skb->dev);
681 struct fm10k_vxlan_port *vxlan_port;
682
683 /* we can only offload a vxlan if we recognize it as such */
684 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
685 struct fm10k_vxlan_port, list);
686
687 if (!vxlan_port)
688 return NULL;
689 if (vxlan_port->port != udp_hdr(skb)->dest)
690 return NULL;
691
692 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
693 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
694}
695
696#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
697#define NVGRE_TNI htons(0x2000)
698struct fm10k_nvgre_hdr {
699 __be16 flags;
700 __be16 proto;
701 __be32 tni;
702};
703
704static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
705{
706 struct fm10k_nvgre_hdr *nvgre_hdr;
707 int hlen = ip_hdrlen(skb);
708
709 /* currently only IPv4 is supported due to hlen above */
710 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
711 return NULL;
712
713 /* our transport header should be NVGRE */
714 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
715
716 /* verify all reserved flags are 0 */
717 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
718 return NULL;
719
76a540d4
AD
720 /* report start of ethernet header */
721 if (nvgre_hdr->flags & NVGRE_TNI)
722 return (struct ethhdr *)(nvgre_hdr + 1);
723
724 return (struct ethhdr *)(&nvgre_hdr->tni);
725}
726
5bf33dc6 727__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
76a540d4 728{
8c1a90aa 729 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
76a540d4 730 struct ethhdr *eth_hdr;
76a540d4 731
8c1a90aa
MV
732 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
733 skb->inner_protocol != htons(ETH_P_TEB))
b66b6d9f
JS
734 return 0;
735
76a540d4
AD
736 switch (vlan_get_protocol(skb)) {
737 case htons(ETH_P_IP):
738 l4_hdr = ip_hdr(skb)->protocol;
739 break;
740 case htons(ETH_P_IPV6):
741 l4_hdr = ipv6_hdr(skb)->nexthdr;
742 break;
743 default:
744 return 0;
745 }
746
747 switch (l4_hdr) {
748 case IPPROTO_UDP:
749 eth_hdr = fm10k_port_is_vxlan(skb);
750 break;
751 case IPPROTO_GRE:
752 eth_hdr = fm10k_gre_is_nvgre(skb);
753 break;
754 default:
755 return 0;
756 }
757
758 if (!eth_hdr)
759 return 0;
760
761 switch (eth_hdr->h_proto) {
762 case htons(ETH_P_IP):
8c1a90aa
MV
763 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
764 break;
76a540d4 765 case htons(ETH_P_IPV6):
8c1a90aa 766 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
76a540d4
AD
767 break;
768 default:
769 return 0;
770 }
771
8c1a90aa
MV
772 switch (inner_l4_hdr) {
773 case IPPROTO_TCP:
774 inner_l4_hlen = inner_tcp_hdrlen(skb);
775 break;
776 case IPPROTO_UDP:
777 inner_l4_hlen = 8;
778 break;
779 default:
780 return 0;
781 }
782
783 /* The hardware allows tunnel offloads only if the combined inner and
784 * outer header is 184 bytes or less
785 */
786 if (skb_inner_transport_header(skb) + inner_l4_hlen -
787 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
788 return 0;
789
76a540d4
AD
790 return eth_hdr->h_proto;
791}
792
793static int fm10k_tso(struct fm10k_ring *tx_ring,
794 struct fm10k_tx_buffer *first)
795{
796 struct sk_buff *skb = first->skb;
797 struct fm10k_tx_desc *tx_desc;
798 unsigned char *th;
799 u8 hdrlen;
800
801 if (skb->ip_summed != CHECKSUM_PARTIAL)
802 return 0;
803
804 if (!skb_is_gso(skb))
805 return 0;
806
807 /* compute header lengths */
808 if (skb->encapsulation) {
809 if (!fm10k_tx_encap_offload(skb))
810 goto err_vxlan;
811 th = skb_inner_transport_header(skb);
812 } else {
813 th = skb_transport_header(skb);
814 }
815
816 /* compute offset from SOF to transport header and add header len */
817 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
818
819 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
820
821 /* update gso size and bytecount with header size */
822 first->gso_segs = skb_shinfo(skb)->gso_segs;
823 first->bytecount += (first->gso_segs - 1) * hdrlen;
824
825 /* populate Tx descriptor header size and mss */
826 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
827 tx_desc->hdrlen = hdrlen;
828 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
829
830 return 1;
831err_vxlan:
832 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
833 if (!net_ratelimit())
834 netdev_err(tx_ring->netdev,
835 "TSO requested for unsupported tunnel, disabling offload\n");
836 return -1;
837}
838
839static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
840 struct fm10k_tx_buffer *first)
841{
842 struct sk_buff *skb = first->skb;
843 struct fm10k_tx_desc *tx_desc;
844 union {
845 struct iphdr *ipv4;
846 struct ipv6hdr *ipv6;
847 u8 *raw;
848 } network_hdr;
849 __be16 protocol;
850 u8 l4_hdr = 0;
851
852 if (skb->ip_summed != CHECKSUM_PARTIAL)
853 goto no_csum;
854
855 if (skb->encapsulation) {
856 protocol = fm10k_tx_encap_offload(skb);
857 if (!protocol) {
858 if (skb_checksum_help(skb)) {
859 dev_warn(tx_ring->dev,
860 "failed to offload encap csum!\n");
861 tx_ring->tx_stats.csum_err++;
862 }
863 goto no_csum;
864 }
865 network_hdr.raw = skb_inner_network_header(skb);
866 } else {
867 protocol = vlan_get_protocol(skb);
868 network_hdr.raw = skb_network_header(skb);
869 }
870
871 switch (protocol) {
872 case htons(ETH_P_IP):
873 l4_hdr = network_hdr.ipv4->protocol;
874 break;
875 case htons(ETH_P_IPV6):
876 l4_hdr = network_hdr.ipv6->nexthdr;
877 break;
878 default:
879 if (unlikely(net_ratelimit())) {
880 dev_warn(tx_ring->dev,
881 "partial checksum but ip version=%x!\n",
882 protocol);
883 }
884 tx_ring->tx_stats.csum_err++;
885 goto no_csum;
886 }
887
888 switch (l4_hdr) {
889 case IPPROTO_TCP:
890 case IPPROTO_UDP:
891 break;
892 case IPPROTO_GRE:
893 if (skb->encapsulation)
894 break;
895 default:
896 if (unlikely(net_ratelimit())) {
897 dev_warn(tx_ring->dev,
898 "partial checksum but l4 proto=%x!\n",
899 l4_hdr);
900 }
901 tx_ring->tx_stats.csum_err++;
902 goto no_csum;
903 }
904
905 /* update TX checksum flag */
906 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
907
908no_csum:
909 /* populate Tx descriptor header size and mss */
910 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
911 tx_desc->hdrlen = 0;
912 tx_desc->mss = 0;
913}
914
915#define FM10K_SET_FLAG(_input, _flag, _result) \
916 ((_flag <= _result) ? \
917 ((u32)(_input & _flag) * (_result / _flag)) : \
918 ((u32)(_input & _flag) / (_flag / _result)))
919
920static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
921{
922 /* set type for advanced descriptor with frame checksum insertion */
923 u32 desc_flags = 0;
924
a211e013
AD
925 /* set timestamping bits */
926 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
927 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
928 desc_flags |= FM10K_TXD_FLAG_TIME;
929
76a540d4
AD
930 /* set checksum offload bits */
931 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
932 FM10K_TXD_FLAG_CSUM);
933
934 return desc_flags;
935}
936
b101c962
AD
937static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
938 struct fm10k_tx_desc *tx_desc, u16 i,
939 dma_addr_t dma, unsigned int size, u8 desc_flags)
940{
941 /* set RS and INT for last frame in a cache line */
942 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
943 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
944
945 /* record values to descriptor */
946 tx_desc->buffer_addr = cpu_to_le64(dma);
947 tx_desc->flags = desc_flags;
948 tx_desc->buflen = cpu_to_le16(size);
949
950 /* return true if we just wrapped the ring */
951 return i == tx_ring->count;
952}
953
2c2b2f0c
AD
954static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
955{
956 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
957
eca32047 958 /* Memory barrier before checking head and tail */
2c2b2f0c
AD
959 smp_mb();
960
eca32047 961 /* Check again in a case another CPU has just made room available */
2c2b2f0c
AD
962 if (likely(fm10k_desc_unused(tx_ring) < size))
963 return -EBUSY;
964
965 /* A reprieve! - use start_queue because it doesn't call schedule */
966 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
967 ++tx_ring->tx_stats.restart_queue;
968 return 0;
969}
970
971static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
972{
973 if (likely(fm10k_desc_unused(tx_ring) >= size))
974 return 0;
975 return __fm10k_maybe_stop_tx(tx_ring, size);
976}
977
b101c962
AD
978static void fm10k_tx_map(struct fm10k_ring *tx_ring,
979 struct fm10k_tx_buffer *first)
980{
981 struct sk_buff *skb = first->skb;
982 struct fm10k_tx_buffer *tx_buffer;
983 struct fm10k_tx_desc *tx_desc;
984 struct skb_frag_struct *frag;
985 unsigned char *data;
986 dma_addr_t dma;
987 unsigned int data_len, size;
76a540d4 988 u32 tx_flags = first->tx_flags;
b101c962 989 u16 i = tx_ring->next_to_use;
76a540d4 990 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
991
992 tx_desc = FM10K_TX_DESC(tx_ring, i);
993
994 /* add HW VLAN tag */
df8a39de
JP
995 if (skb_vlan_tag_present(skb))
996 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
b101c962
AD
997 else
998 tx_desc->vlan = 0;
999
1000 size = skb_headlen(skb);
1001 data = skb->data;
1002
1003 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1004
1005 data_len = skb->data_len;
1006 tx_buffer = first;
1007
1008 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1009 if (dma_mapping_error(tx_ring->dev, dma))
1010 goto dma_error;
1011
1012 /* record length, and DMA address */
1013 dma_unmap_len_set(tx_buffer, len, size);
1014 dma_unmap_addr_set(tx_buffer, dma, dma);
1015
1016 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1017 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1018 FM10K_MAX_DATA_PER_TXD, flags)) {
1019 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1020 i = 0;
1021 }
1022
1023 dma += FM10K_MAX_DATA_PER_TXD;
1024 size -= FM10K_MAX_DATA_PER_TXD;
1025 }
1026
1027 if (likely(!data_len))
1028 break;
1029
1030 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1031 dma, size, flags)) {
1032 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1033 i = 0;
1034 }
1035
1036 size = skb_frag_size(frag);
1037 data_len -= size;
1038
1039 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1040 DMA_TO_DEVICE);
1041
1042 tx_buffer = &tx_ring->tx_buffer[i];
1043 }
1044
1045 /* write last descriptor with LAST bit set */
1046 flags |= FM10K_TXD_FLAG_LAST;
1047
1048 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1049 i = 0;
1050
1051 /* record bytecount for BQL */
1052 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1053
1054 /* record SW timestamp if HW timestamp is not available */
1055 skb_tx_timestamp(first->skb);
1056
1057 /* Force memory writes to complete before letting h/w know there
1058 * are new descriptors to fetch. (Only applicable for weak-ordered
1059 * memory model archs, such as IA-64).
1060 *
1061 * We also need this memory barrier to make certain all of the
1062 * status bits have been updated before next_to_watch is written.
1063 */
1064 wmb();
1065
1066 /* set next_to_watch value indicating a packet is present */
1067 first->next_to_watch = tx_desc;
1068
1069 tx_ring->next_to_use = i;
1070
2c2b2f0c
AD
1071 /* Make sure there is space in the ring for the next send. */
1072 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1073
b101c962 1074 /* notify HW of packet */
2c2b2f0c
AD
1075 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1076 writel(i, tx_ring->tail);
b101c962 1077
2c2b2f0c
AD
1078 /* we need this if more than one processor can write to our tail
1079 * at a time, it synchronizes IO on IA64/Altix systems
1080 */
1081 mmiowb();
1082 }
b101c962
AD
1083
1084 return;
1085dma_error:
1086 dev_err(tx_ring->dev, "TX DMA map failed\n");
1087
1088 /* clear dma mappings for failed tx_buffer map */
1089 for (;;) {
1090 tx_buffer = &tx_ring->tx_buffer[i];
1091 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1092 if (tx_buffer == first)
1093 break;
1094 if (i == 0)
1095 i = tx_ring->count;
1096 i--;
1097 }
1098
1099 tx_ring->next_to_use = i;
1100}
1101
b101c962
AD
1102netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1103 struct fm10k_ring *tx_ring)
1104{
1105 struct fm10k_tx_buffer *first;
76a540d4 1106 int tso;
b101c962
AD
1107 u32 tx_flags = 0;
1108#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1109 unsigned short f;
1110#endif
1111 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1112
1113 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1114 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1115 * + 2 desc gap to keep tail from touching head
1116 * otherwise try next time
1117 */
1118#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1119 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1120 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1121#else
1122 count += skb_shinfo(skb)->nr_frags;
1123#endif
1124 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1125 tx_ring->tx_stats.tx_busy++;
1126 return NETDEV_TX_BUSY;
1127 }
1128
1129 /* record the location of the first descriptor for this packet */
1130 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1131 first->skb = skb;
1132 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1133 first->gso_segs = 1;
1134
1135 /* record initial flags and protocol */
1136 first->tx_flags = tx_flags;
1137
76a540d4
AD
1138 tso = fm10k_tso(tx_ring, first);
1139 if (tso < 0)
1140 goto out_drop;
1141 else if (!tso)
1142 fm10k_tx_csum(tx_ring, first);
1143
b101c962
AD
1144 fm10k_tx_map(tx_ring, first);
1145
76a540d4
AD
1146 return NETDEV_TX_OK;
1147
1148out_drop:
1149 dev_kfree_skb_any(first->skb);
1150 first->skb = NULL;
1151
b101c962
AD
1152 return NETDEV_TX_OK;
1153}
1154
1155static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1156{
1157 return ring->stats.packets;
1158}
1159
1160static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1161{
1162 /* use SW head and tail until we have real hardware */
1163 u32 head = ring->next_to_clean;
1164 u32 tail = ring->next_to_use;
1165
1166 return ((head <= tail) ? tail : tail + ring->count) - head;
1167}
1168
1169bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1170{
1171 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1172 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1173 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1174
1175 clear_check_for_tx_hang(tx_ring);
1176
1177 /* Check for a hung queue, but be thorough. This verifies
1178 * that a transmit has been completed since the previous
1179 * check AND there is at least one packet pending. By
1180 * requiring this to fail twice we avoid races with
1181 * clearing the ARMED bit and conditions where we
1182 * run the check_tx_hang logic with a transmit completion
1183 * pending but without time to complete it yet.
1184 */
1185 if (!tx_pending || (tx_done_old != tx_done)) {
1186 /* update completed stats and continue */
1187 tx_ring->tx_stats.tx_done_old = tx_done;
1188 /* reset the countdown */
1189 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190
1191 return false;
1192 }
1193
1194 /* make sure it is true for two checks in a row */
1195 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1196}
1197
1198/**
1199 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1200 * @interface: driver private struct
1201 **/
1202void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1203{
1204 /* Do the reset outside of interrupt context */
1205 if (!test_bit(__FM10K_DOWN, &interface->state)) {
b101c962
AD
1206 interface->tx_timeout_count++;
1207 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1208 fm10k_service_event_schedule(interface);
1209 }
1210}
1211
1212/**
1213 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1214 * @q_vector: structure containing interrupt and ring information
1215 * @tx_ring: tx ring to clean
1216 **/
1217static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1218 struct fm10k_ring *tx_ring)
1219{
1220 struct fm10k_intfc *interface = q_vector->interface;
1221 struct fm10k_tx_buffer *tx_buffer;
1222 struct fm10k_tx_desc *tx_desc;
1223 unsigned int total_bytes = 0, total_packets = 0;
1224 unsigned int budget = q_vector->tx.work_limit;
1225 unsigned int i = tx_ring->next_to_clean;
1226
1227 if (test_bit(__FM10K_DOWN, &interface->state))
1228 return true;
1229
1230 tx_buffer = &tx_ring->tx_buffer[i];
1231 tx_desc = FM10K_TX_DESC(tx_ring, i);
1232 i -= tx_ring->count;
1233
1234 do {
1235 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1236
1237 /* if next_to_watch is not set then there is no work pending */
1238 if (!eop_desc)
1239 break;
1240
1241 /* prevent any other reads prior to eop_desc */
1242 read_barrier_depends();
1243
1244 /* if DD is not set pending work has not been completed */
1245 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1246 break;
1247
1248 /* clear next_to_watch to prevent false hangs */
1249 tx_buffer->next_to_watch = NULL;
1250
1251 /* update the statistics for this packet */
1252 total_bytes += tx_buffer->bytecount;
1253 total_packets += tx_buffer->gso_segs;
1254
1255 /* free the skb */
1256 dev_consume_skb_any(tx_buffer->skb);
1257
1258 /* unmap skb header data */
1259 dma_unmap_single(tx_ring->dev,
1260 dma_unmap_addr(tx_buffer, dma),
1261 dma_unmap_len(tx_buffer, len),
1262 DMA_TO_DEVICE);
1263
1264 /* clear tx_buffer data */
1265 tx_buffer->skb = NULL;
1266 dma_unmap_len_set(tx_buffer, len, 0);
1267
1268 /* unmap remaining buffers */
1269 while (tx_desc != eop_desc) {
1270 tx_buffer++;
1271 tx_desc++;
1272 i++;
1273 if (unlikely(!i)) {
1274 i -= tx_ring->count;
1275 tx_buffer = tx_ring->tx_buffer;
1276 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1277 }
1278
1279 /* unmap any remaining paged data */
1280 if (dma_unmap_len(tx_buffer, len)) {
1281 dma_unmap_page(tx_ring->dev,
1282 dma_unmap_addr(tx_buffer, dma),
1283 dma_unmap_len(tx_buffer, len),
1284 DMA_TO_DEVICE);
1285 dma_unmap_len_set(tx_buffer, len, 0);
1286 }
1287 }
1288
1289 /* move us one more past the eop_desc for start of next pkt */
1290 tx_buffer++;
1291 tx_desc++;
1292 i++;
1293 if (unlikely(!i)) {
1294 i -= tx_ring->count;
1295 tx_buffer = tx_ring->tx_buffer;
1296 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1297 }
1298
1299 /* issue prefetch for next Tx descriptor */
1300 prefetch(tx_desc);
1301
1302 /* update budget accounting */
1303 budget--;
1304 } while (likely(budget));
1305
1306 i += tx_ring->count;
1307 tx_ring->next_to_clean = i;
1308 u64_stats_update_begin(&tx_ring->syncp);
1309 tx_ring->stats.bytes += total_bytes;
1310 tx_ring->stats.packets += total_packets;
1311 u64_stats_update_end(&tx_ring->syncp);
1312 q_vector->tx.total_bytes += total_bytes;
1313 q_vector->tx.total_packets += total_packets;
1314
1315 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1316 /* schedule immediate reset if we believe we hung */
1317 struct fm10k_hw *hw = &interface->hw;
1318
1319 netif_err(interface, drv, tx_ring->netdev,
1320 "Detected Tx Unit Hang\n"
1321 " Tx Queue <%d>\n"
1322 " TDH, TDT <%x>, <%x>\n"
1323 " next_to_use <%x>\n"
1324 " next_to_clean <%x>\n",
1325 tx_ring->queue_index,
1326 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1327 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1328 tx_ring->next_to_use, i);
1329
1330 netif_stop_subqueue(tx_ring->netdev,
1331 tx_ring->queue_index);
1332
1333 netif_info(interface, probe, tx_ring->netdev,
1334 "tx hang %d detected on queue %d, resetting interface\n",
1335 interface->tx_timeout_count + 1,
1336 tx_ring->queue_index);
1337
1338 fm10k_tx_timeout_reset(interface);
1339
1340 /* the netdev is about to reset, no point in enabling stuff */
1341 return true;
1342 }
1343
1344 /* notify netdev of completed buffers */
1345 netdev_tx_completed_queue(txring_txq(tx_ring),
1346 total_packets, total_bytes);
1347
1348#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1349 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1350 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1351 /* Make sure that anybody stopping the queue after this
1352 * sees the new next_to_clean.
1353 */
1354 smp_mb();
1355 if (__netif_subqueue_stopped(tx_ring->netdev,
1356 tx_ring->queue_index) &&
1357 !test_bit(__FM10K_DOWN, &interface->state)) {
1358 netif_wake_subqueue(tx_ring->netdev,
1359 tx_ring->queue_index);
1360 ++tx_ring->tx_stats.restart_queue;
1361 }
1362 }
1363
1364 return !!budget;
1365}
1366
18283cad
AD
1367/**
1368 * fm10k_update_itr - update the dynamic ITR value based on packet size
1369 *
1370 * Stores a new ITR value based on strictly on packet size. The
1371 * divisors and thresholds used by this function were determined based
1372 * on theoretical maximum wire speed and testing data, in order to
1373 * minimize response time while increasing bulk throughput.
1374 *
1375 * @ring_container: Container for rings to have ITR updated
1376 **/
1377static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1378{
1379 unsigned int avg_wire_size, packets;
1380
1381 /* Only update ITR if we are using adaptive setting */
1382 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1383 goto clear_counts;
1384
1385 packets = ring_container->total_packets;
1386 if (!packets)
1387 goto clear_counts;
1388
1389 avg_wire_size = ring_container->total_bytes / packets;
1390
1391 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1392 avg_wire_size += 24;
1393
1394 /* Don't starve jumbo frames */
1395 if (avg_wire_size > 3000)
1396 avg_wire_size = 3000;
1397
1398 /* Give a little boost to mid-size frames */
1399 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1400 avg_wire_size /= 3;
1401 else
1402 avg_wire_size /= 2;
1403
1404 /* write back value and retain adaptive flag */
1405 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406
1407clear_counts:
1408 ring_container->total_bytes = 0;
1409 ring_container->total_packets = 0;
1410}
1411
1412static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413{
1414 /* Enable auto-mask and clear the current mask */
1415 u32 itr = FM10K_ITR_ENABLE;
1416
1417 /* Update Tx ITR */
1418 fm10k_update_itr(&q_vector->tx);
1419
1420 /* Update Rx ITR */
1421 fm10k_update_itr(&q_vector->rx);
1422
1423 /* Store Tx itr in timer slot 0 */
1424 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425
1426 /* Shift Rx itr to timer slot 1 */
1427 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428
1429 /* Write the final value to the ITR register */
1430 writel(itr, q_vector->itr);
1431}
1432
1433static int fm10k_poll(struct napi_struct *napi, int budget)
1434{
1435 struct fm10k_q_vector *q_vector =
1436 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1437 struct fm10k_ring *ring;
1438 int per_ring_budget;
1439 bool clean_complete = true;
1440
1441 fm10k_for_each_ring(ring, q_vector->tx)
1442 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1443
1444 /* attempt to distribute budget to each queue fairly, but don't
1445 * allow the budget to go below 1 because we'll exit polling
1446 */
1447 if (q_vector->rx.count > 1)
1448 per_ring_budget = max(budget/q_vector->rx.count, 1);
1449 else
1450 per_ring_budget = budget;
1451
1452 fm10k_for_each_ring(ring, q_vector->rx)
1453 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1454 per_ring_budget);
1455
1456 /* If all work not completed, return budget and keep polling */
1457 if (!clean_complete)
1458 return budget;
18283cad
AD
1459
1460 /* all work done, exit the polling mode */
1461 napi_complete(napi);
1462
1463 /* re-enable the q_vector */
1464 fm10k_qv_enable(q_vector);
1465
1466 return 0;
1467}
1468
aa3ac822
AD
1469/**
1470 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1471 * @interface: board private structure to initialize
1472 *
1473 * When QoS (Quality of Service) is enabled, allocate queues for
1474 * each traffic class. If multiqueue isn't available,then abort QoS
1475 * initialization.
1476 *
1477 * This function handles all combinations of Qos and RSS.
1478 *
1479 **/
1480static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1481{
1482 struct net_device *dev = interface->netdev;
1483 struct fm10k_ring_feature *f;
1484 int rss_i, i;
1485 int pcs;
1486
1487 /* Map queue offset and counts onto allocated tx queues */
1488 pcs = netdev_get_num_tc(dev);
1489
1490 if (pcs <= 1)
1491 return false;
1492
1493 /* set QoS mask and indices */
1494 f = &interface->ring_feature[RING_F_QOS];
1495 f->indices = pcs;
1496 f->mask = (1 << fls(pcs - 1)) - 1;
1497
1498 /* determine the upper limit for our current DCB mode */
1499 rss_i = interface->hw.mac.max_queues / pcs;
1500 rss_i = 1 << (fls(rss_i) - 1);
1501
1502 /* set RSS mask and indices */
1503 f = &interface->ring_feature[RING_F_RSS];
1504 rss_i = min_t(u16, rss_i, f->limit);
1505 f->indices = rss_i;
1506 f->mask = (1 << fls(rss_i - 1)) - 1;
1507
1508 /* configure pause class to queue mapping */
1509 for (i = 0; i < pcs; i++)
1510 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1511
1512 interface->num_rx_queues = rss_i * pcs;
1513 interface->num_tx_queues = rss_i * pcs;
1514
1515 return true;
1516}
1517
1518/**
1519 * fm10k_set_rss_queues: Allocate queues for RSS
1520 * @interface: board private structure to initialize
1521 *
1522 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1523 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1524 *
1525 **/
1526static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1527{
1528 struct fm10k_ring_feature *f;
1529 u16 rss_i;
1530
1531 f = &interface->ring_feature[RING_F_RSS];
1532 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1533
1534 /* record indices and power of 2 mask for RSS */
1535 f->indices = rss_i;
1536 f->mask = (1 << fls(rss_i - 1)) - 1;
1537
1538 interface->num_rx_queues = rss_i;
1539 interface->num_tx_queues = rss_i;
1540
1541 return true;
1542}
1543
18283cad
AD
1544/**
1545 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1546 * @interface: board private structure to initialize
1547 *
1548 * This is the top level queue allocation routine. The order here is very
1549 * important, starting with the "most" number of features turned on at once,
1550 * and ending with the smallest set of features. This way large combinations
1551 * can be allocated if they're turned on, and smaller combinations are the
1552 * fallthrough conditions.
1553 *
1554 **/
1555static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1556{
1557 /* Start with base case */
1558 interface->num_rx_queues = 1;
1559 interface->num_tx_queues = 1;
aa3ac822
AD
1560
1561 if (fm10k_set_qos_queues(interface))
1562 return;
1563
1564 fm10k_set_rss_queues(interface);
18283cad
AD
1565}
1566
1567/**
1568 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1569 * @interface: board private structure to initialize
1570 * @v_count: q_vectors allocated on interface, used for ring interleaving
1571 * @v_idx: index of vector in interface struct
1572 * @txr_count: total number of Tx rings to allocate
1573 * @txr_idx: index of first Tx ring to allocate
1574 * @rxr_count: total number of Rx rings to allocate
1575 * @rxr_idx: index of first Rx ring to allocate
1576 *
1577 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1578 **/
1579static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1580 unsigned int v_count, unsigned int v_idx,
1581 unsigned int txr_count, unsigned int txr_idx,
1582 unsigned int rxr_count, unsigned int rxr_idx)
1583{
1584 struct fm10k_q_vector *q_vector;
e27ef599 1585 struct fm10k_ring *ring;
18283cad
AD
1586 int ring_count, size;
1587
1588 ring_count = txr_count + rxr_count;
e27ef599
AD
1589 size = sizeof(struct fm10k_q_vector) +
1590 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1591
1592 /* allocate q_vector and rings */
1593 q_vector = kzalloc(size, GFP_KERNEL);
1594 if (!q_vector)
1595 return -ENOMEM;
1596
1597 /* initialize NAPI */
1598 netif_napi_add(interface->netdev, &q_vector->napi,
1599 fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601 /* tie q_vector and interface together */
1602 interface->q_vector[v_idx] = q_vector;
1603 q_vector->interface = interface;
1604 q_vector->v_idx = v_idx;
1605
e27ef599
AD
1606 /* initialize pointer to rings */
1607 ring = q_vector->ring;
1608
18283cad 1609 /* save Tx ring container info */
e27ef599
AD
1610 q_vector->tx.ring = ring;
1611 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1612 q_vector->tx.itr = interface->tx_itr;
1613 q_vector->tx.count = txr_count;
1614
e27ef599
AD
1615 while (txr_count) {
1616 /* assign generic ring traits */
1617 ring->dev = &interface->pdev->dev;
1618 ring->netdev = interface->netdev;
1619
1620 /* configure backlink on ring */
1621 ring->q_vector = q_vector;
1622
1623 /* apply Tx specific ring traits */
1624 ring->count = interface->tx_ring_count;
1625 ring->queue_index = txr_idx;
1626
1627 /* assign ring to interface */
1628 interface->tx_ring[txr_idx] = ring;
1629
1630 /* update count and index */
1631 txr_count--;
1632 txr_idx += v_count;
1633
1634 /* push pointer to next ring */
1635 ring++;
1636 }
1637
18283cad 1638 /* save Rx ring container info */
e27ef599 1639 q_vector->rx.ring = ring;
18283cad
AD
1640 q_vector->rx.itr = interface->rx_itr;
1641 q_vector->rx.count = rxr_count;
1642
e27ef599
AD
1643 while (rxr_count) {
1644 /* assign generic ring traits */
1645 ring->dev = &interface->pdev->dev;
1646 ring->netdev = interface->netdev;
5cd5e2e9 1647 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1648
1649 /* configure backlink on ring */
1650 ring->q_vector = q_vector;
1651
1652 /* apply Rx specific ring traits */
1653 ring->count = interface->rx_ring_count;
1654 ring->queue_index = rxr_idx;
1655
1656 /* assign ring to interface */
1657 interface->rx_ring[rxr_idx] = ring;
1658
1659 /* update count and index */
1660 rxr_count--;
1661 rxr_idx += v_count;
1662
1663 /* push pointer to next ring */
1664 ring++;
1665 }
1666
7461fd91
AD
1667 fm10k_dbg_q_vector_init(q_vector);
1668
18283cad
AD
1669 return 0;
1670}
1671
1672/**
1673 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1674 * @interface: board private structure to initialize
1675 * @v_idx: Index of vector to be freed
1676 *
1677 * This function frees the memory allocated to the q_vector. In addition if
1678 * NAPI is enabled it will delete any references to the NAPI struct prior
1679 * to freeing the q_vector.
1680 **/
1681static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1682{
1683 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1684 struct fm10k_ring *ring;
1685
7461fd91
AD
1686 fm10k_dbg_q_vector_exit(q_vector);
1687
e27ef599
AD
1688 fm10k_for_each_ring(ring, q_vector->tx)
1689 interface->tx_ring[ring->queue_index] = NULL;
1690
1691 fm10k_for_each_ring(ring, q_vector->rx)
1692 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1693
1694 interface->q_vector[v_idx] = NULL;
1695 netif_napi_del(&q_vector->napi);
1696 kfree_rcu(q_vector, rcu);
1697}
1698
1699/**
1700 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1701 * @interface: board private structure to initialize
1702 *
1703 * We allocate one q_vector per queue interrupt. If allocation fails we
1704 * return -ENOMEM.
1705 **/
1706static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1707{
1708 unsigned int q_vectors = interface->num_q_vectors;
1709 unsigned int rxr_remaining = interface->num_rx_queues;
1710 unsigned int txr_remaining = interface->num_tx_queues;
1711 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1712 int err;
1713
1714 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1715 for (; rxr_remaining; v_idx++) {
1716 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1717 0, 0, 1, rxr_idx);
1718 if (err)
1719 goto err_out;
1720
1721 /* update counts and index */
1722 rxr_remaining--;
1723 rxr_idx++;
1724 }
1725 }
1726
1727 for (; v_idx < q_vectors; v_idx++) {
1728 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1729 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1730
1731 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1732 tqpv, txr_idx,
1733 rqpv, rxr_idx);
1734
1735 if (err)
1736 goto err_out;
1737
1738 /* update counts and index */
1739 rxr_remaining -= rqpv;
1740 txr_remaining -= tqpv;
1741 rxr_idx++;
1742 txr_idx++;
1743 }
1744
1745 return 0;
1746
1747err_out:
1748 interface->num_tx_queues = 0;
1749 interface->num_rx_queues = 0;
1750 interface->num_q_vectors = 0;
1751
1752 while (v_idx--)
1753 fm10k_free_q_vector(interface, v_idx);
1754
1755 return -ENOMEM;
1756}
1757
1758/**
1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760 * @interface: board private structure to initialize
1761 *
1762 * This function frees the memory allocated to the q_vectors. In addition if
1763 * NAPI is enabled it will delete any references to the NAPI struct prior
1764 * to freeing the q_vector.
1765 **/
1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767{
1768 int v_idx = interface->num_q_vectors;
1769
1770 interface->num_tx_queues = 0;
1771 interface->num_rx_queues = 0;
1772 interface->num_q_vectors = 0;
1773
1774 while (v_idx--)
1775 fm10k_free_q_vector(interface, v_idx);
1776}
1777
1778/**
1779 * f10k_reset_msix_capability - reset MSI-X capability
1780 * @interface: board private structure to initialize
1781 *
1782 * Reset the MSI-X capability back to its starting state
1783 **/
1784static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1785{
1786 pci_disable_msix(interface->pdev);
1787 kfree(interface->msix_entries);
1788 interface->msix_entries = NULL;
1789}
1790
1791/**
1792 * f10k_init_msix_capability - configure MSI-X capability
1793 * @interface: board private structure to initialize
1794 *
1795 * Attempt to configure the interrupts using the best available
1796 * capabilities of the hardware and the kernel.
1797 **/
1798static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1799{
1800 struct fm10k_hw *hw = &interface->hw;
1801 int v_budget, vector;
1802
1803 /* It's easy to be greedy for MSI-X vectors, but it really
1804 * doesn't do us much good if we have a lot more vectors
1805 * than CPU's. So let's be conservative and only ask for
1806 * (roughly) the same number of vectors as there are CPU's.
1807 * the default is to use pairs of vectors
1808 */
1809 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1810 v_budget = min_t(u16, v_budget, num_online_cpus());
1811
1812 /* account for vectors not related to queues */
1813 v_budget += NON_Q_VECTORS(hw);
1814
1815 /* At the same time, hardware can only support a maximum of
1816 * hw.mac->max_msix_vectors vectors. With features
1817 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1818 * descriptor queues supported by our device. Thus, we cap it off in
1819 * those rare cases where the cpu count also exceeds our vector limit.
1820 */
1821 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1822
1823 /* A failure in MSI-X entry allocation is fatal. */
1824 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1825 GFP_KERNEL);
1826 if (!interface->msix_entries)
1827 return -ENOMEM;
1828
1829 /* populate entry values */
1830 for (vector = 0; vector < v_budget; vector++)
1831 interface->msix_entries[vector].entry = vector;
1832
1833 /* Attempt to enable MSI-X with requested value */
1834 v_budget = pci_enable_msix_range(interface->pdev,
1835 interface->msix_entries,
1836 MIN_MSIX_COUNT(hw),
1837 v_budget);
1838 if (v_budget < 0) {
1839 kfree(interface->msix_entries);
1840 interface->msix_entries = NULL;
1841 return -ENOMEM;
1842 }
1843
1844 /* record the number of queues available for q_vectors */
1845 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1846
1847 return 0;
1848}
1849
aa3ac822
AD
1850/**
1851 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1852 * @interface: Interface structure continaining rings and devices
1853 *
1854 * Cache the descriptor ring offsets for Qos
1855 **/
1856static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1857{
1858 struct net_device *dev = interface->netdev;
1859 int pc, offset, rss_i, i, q_idx;
1860 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1861 u8 num_pcs = netdev_get_num_tc(dev);
1862
1863 if (num_pcs <= 1)
1864 return false;
1865
1866 rss_i = interface->ring_feature[RING_F_RSS].indices;
1867
1868 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1869 q_idx = pc;
1870 for (i = 0; i < rss_i; i++) {
1871 interface->tx_ring[offset + i]->reg_idx = q_idx;
1872 interface->tx_ring[offset + i]->qos_pc = pc;
1873 interface->rx_ring[offset + i]->reg_idx = q_idx;
1874 interface->rx_ring[offset + i]->qos_pc = pc;
1875 q_idx += pc_stride;
1876 }
1877 }
1878
1879 return true;
1880}
1881
1882/**
1883 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1884 * @interface: Interface structure continaining rings and devices
1885 *
1886 * Cache the descriptor ring offsets for RSS
1887 **/
1888static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1889{
1890 int i;
1891
1892 for (i = 0; i < interface->num_rx_queues; i++)
1893 interface->rx_ring[i]->reg_idx = i;
1894
1895 for (i = 0; i < interface->num_tx_queues; i++)
1896 interface->tx_ring[i]->reg_idx = i;
1897}
1898
1899/**
1900 * fm10k_assign_rings - Map rings to network devices
1901 * @interface: Interface structure containing rings and devices
1902 *
1903 * This function is meant to go though and configure both the network
1904 * devices so that they contain rings, and configure the rings so that
1905 * they function with their network devices.
1906 **/
1907static void fm10k_assign_rings(struct fm10k_intfc *interface)
1908{
1909 if (fm10k_cache_ring_qos(interface))
1910 return;
1911
1912 fm10k_cache_ring_rss(interface);
1913}
1914
18283cad
AD
1915static void fm10k_init_reta(struct fm10k_intfc *interface)
1916{
1917 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1918 u32 reta, base;
1919
1920 /* If the netdev is initialized we have to maintain table if possible */
1921 if (interface->netdev->reg_state) {
1922 for (i = FM10K_RETA_SIZE; i--;) {
1923 reta = interface->reta[i];
1924 if ((((reta << 24) >> 24) < rss_i) &&
1925 (((reta << 16) >> 24) < rss_i) &&
1926 (((reta << 8) >> 24) < rss_i) &&
1927 (((reta) >> 24) < rss_i))
1928 continue;
1929 goto repopulate_reta;
1930 }
1931
1932 /* do nothing if all of the elements are in bounds */
1933 return;
1934 }
1935
1936repopulate_reta:
1937 /* Populate the redirection table 4 entries at a time. To do this
1938 * we are generating the results for n and n+2 and then interleaving
1939 * those with the results with n+1 and n+3.
1940 */
1941 for (i = FM10K_RETA_SIZE; i--;) {
1942 /* first pass generates n and n+2 */
1943 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1944 reta = (base & 0x3F803F80) >> 7;
1945
1946 /* second pass generates n+1 and n+3 */
1947 base += 0x00010001 * rss_i;
1948 reta |= (base & 0x3F803F80) << 1;
1949
1950 interface->reta[i] = reta;
1951 }
1952}
1953
1954/**
1955 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1956 * @interface: board private structure to initialize
1957 *
1958 * We determine which queueing scheme to use based on...
1959 * - Hardware queue count (num_*_queues)
1960 * - defined by miscellaneous hardware support/features (RSS, etc.)
1961 **/
1962int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1963{
1964 int err;
1965
1966 /* Number of supported queues */
1967 fm10k_set_num_queues(interface);
1968
1969 /* Configure MSI-X capability */
1970 err = fm10k_init_msix_capability(interface);
1971 if (err) {
1972 dev_err(&interface->pdev->dev,
1973 "Unable to initialize MSI-X capability\n");
1974 return err;
1975 }
1976
1977 /* Allocate memory for queues */
1978 err = fm10k_alloc_q_vectors(interface);
1979 if (err)
1980 return err;
1981
aa3ac822
AD
1982 /* Map rings to devices, and map devices to physical queues */
1983 fm10k_assign_rings(interface);
1984
18283cad
AD
1985 /* Initialize RSS redirection table */
1986 fm10k_init_reta(interface);
1987
1988 return 0;
1989}
1990
1991/**
1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993 * @interface: board private structure to clear queueing scheme on
1994 *
1995 * We go through and clear queueing specific resources and reset the structure
1996 * to pre-load conditions
1997 **/
1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999{
2000 fm10k_free_q_vectors(interface);
2001 fm10k_reset_msix_capability(interface);
2002}
This page took 0.18207 seconds and 5 git commands to generate.