fm10k: Add netconsole support
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
b3890e30
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
31#define DRV_VERSION "0.12.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
6d2ce900
AD
44/**
45 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
46 *
47 * fm10k_init_module is the first routine called when the driver is
48 * loaded. All it does is register with the PCI subsystem.
49 **/
50static int __init fm10k_init_module(void)
51{
52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 pr_info("%s\n", fm10k_copyright);
54
7461fd91
AD
55 fm10k_dbg_init();
56
b3890e30
AD
57 return fm10k_register_pci_driver();
58}
59module_init(fm10k_init_module);
60
61/**
62 * fm10k_exit_module - Driver Exit Cleanup Routine
63 *
64 * fm10k_exit_module is called just before the driver is removed
65 * from memory.
66 **/
67static void __exit fm10k_exit_module(void)
68{
69 fm10k_unregister_pci_driver();
7461fd91
AD
70
71 fm10k_dbg_exit();
b3890e30
AD
72}
73module_exit(fm10k_exit_module);
18283cad 74
b101c962
AD
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 struct fm10k_rx_buffer *bi)
77{
78 struct page *page = bi->page;
79 dma_addr_t dma;
80
81 /* Only page will be NULL if buffer was consumed */
82 if (likely(page))
83 return true;
84
85 /* alloc new page for storage */
42b17f09 86 page = dev_alloc_page();
b101c962
AD
87 if (unlikely(!page)) {
88 rx_ring->rx_stats.alloc_failed++;
89 return false;
90 }
91
92 /* map page for use */
93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95 /* if mapping failed free memory back to system since
96 * there isn't much point in holding memory we can't use
97 */
98 if (dma_mapping_error(rx_ring->dev, dma)) {
99 __free_page(page);
b101c962
AD
100
101 rx_ring->rx_stats.alloc_failed++;
102 return false;
103 }
104
105 bi->dma = dma;
106 bi->page = page;
107 bi->page_offset = 0;
108
109 return true;
110}
111
112/**
113 * fm10k_alloc_rx_buffers - Replace used receive buffers
114 * @rx_ring: ring to place buffers on
115 * @cleaned_count: number of buffers to replace
116 **/
117void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
118{
119 union fm10k_rx_desc *rx_desc;
120 struct fm10k_rx_buffer *bi;
121 u16 i = rx_ring->next_to_use;
122
123 /* nothing to do */
124 if (!cleaned_count)
125 return;
126
127 rx_desc = FM10K_RX_DESC(rx_ring, i);
128 bi = &rx_ring->rx_buffer[i];
129 i -= rx_ring->count;
130
131 do {
132 if (!fm10k_alloc_mapped_page(rx_ring, bi))
133 break;
134
135 /* Refresh the desc even if buffer_addrs didn't change
136 * because each write-back erases this info.
137 */
138 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
139
140 rx_desc++;
141 bi++;
142 i++;
143 if (unlikely(!i)) {
144 rx_desc = FM10K_RX_DESC(rx_ring, 0);
145 bi = rx_ring->rx_buffer;
146 i -= rx_ring->count;
147 }
148
ba5b8dcd
AD
149 /* clear the status bits for the next_to_use descriptor */
150 rx_desc->d.staterr = 0;
b101c962
AD
151
152 cleaned_count--;
153 } while (cleaned_count);
154
155 i += rx_ring->count;
156
157 if (rx_ring->next_to_use != i) {
158 /* record the next descriptor to use */
159 rx_ring->next_to_use = i;
160
161 /* update next to alloc since we have filled the ring */
162 rx_ring->next_to_alloc = i;
163
164 /* Force memory writes to complete before letting h/w
165 * know there are new descriptors to fetch. (Only
166 * applicable for weak-ordered memory model archs,
167 * such as IA-64).
168 */
169 wmb();
170
171 /* notify hardware of new descriptors */
172 writel(i, rx_ring->tail);
173 }
174}
175
176/**
177 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
178 * @rx_ring: rx descriptor ring to store buffers on
179 * @old_buff: donor buffer to have page reused
180 *
181 * Synchronizes page for reuse by the interface
182 **/
183static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
184 struct fm10k_rx_buffer *old_buff)
185{
186 struct fm10k_rx_buffer *new_buff;
187 u16 nta = rx_ring->next_to_alloc;
188
189 new_buff = &rx_ring->rx_buffer[nta];
190
191 /* update, and store next to alloc */
192 nta++;
193 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
194
195 /* transfer page from old buffer to new buffer */
ba5b8dcd 196 *new_buff = *old_buff;
b101c962
AD
197
198 /* sync the buffer for use by the device */
199 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
200 old_buff->page_offset,
201 FM10K_RX_BUFSZ,
202 DMA_FROM_DEVICE);
203}
204
ba5b8dcd
AD
205static inline bool fm10k_page_is_reserved(struct page *page)
206{
207 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
208}
209
b101c962
AD
210static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
211 struct page *page,
212 unsigned int truesize)
213{
214 /* avoid re-using remote pages */
ba5b8dcd 215 if (unlikely(fm10k_page_is_reserved(page)))
b101c962
AD
216 return false;
217
218#if (PAGE_SIZE < 8192)
219 /* if we are only owner of page we can reuse it */
220 if (unlikely(page_count(page) != 1))
221 return false;
222
223 /* flip page offset to other buffer */
224 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
b101c962
AD
225#else
226 /* move offset up to the next cache line */
227 rx_buffer->page_offset += truesize;
228
229 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
230 return false;
b101c962
AD
231#endif
232
ba5b8dcd
AD
233 /* Even if we own the page, we are not allowed to use atomic_set()
234 * This would break get_page_unless_zero() users.
235 */
236 atomic_inc(&page->_count);
237
b101c962
AD
238 return true;
239}
240
241/**
242 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
243 * @rx_ring: rx descriptor ring to transact packets on
244 * @rx_buffer: buffer containing page to add
245 * @rx_desc: descriptor containing length of buffer written by hardware
246 * @skb: sk_buff to place the data into
247 *
248 * This function will add the data contained in rx_buffer->page to the skb.
249 * This is done either through a direct copy if the data in the buffer is
250 * less than the skb header size, otherwise it will just attach the page as
251 * a frag to the skb.
252 *
253 * The function will then update the page offset if necessary and return
254 * true if the buffer can be reused by the interface.
255 **/
256static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
257 struct fm10k_rx_buffer *rx_buffer,
258 union fm10k_rx_desc *rx_desc,
259 struct sk_buff *skb)
260{
261 struct page *page = rx_buffer->page;
262 unsigned int size = le16_to_cpu(rx_desc->w.length);
263#if (PAGE_SIZE < 8192)
264 unsigned int truesize = FM10K_RX_BUFSZ;
265#else
266 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
267#endif
268
269 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
270 unsigned char *va = page_address(page) + rx_buffer->page_offset;
271
272 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
273
ba5b8dcd
AD
274 /* page is not reserved, we can reuse buffer as-is */
275 if (likely(!fm10k_page_is_reserved(page)))
b101c962
AD
276 return true;
277
278 /* this page cannot be reused so discard it */
ba5b8dcd 279 __free_page(page);
b101c962
AD
280 return false;
281 }
282
283 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
284 rx_buffer->page_offset, size, truesize);
285
286 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
287}
288
289static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
290 union fm10k_rx_desc *rx_desc,
291 struct sk_buff *skb)
292{
293 struct fm10k_rx_buffer *rx_buffer;
294 struct page *page;
295
296 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
b101c962
AD
297 page = rx_buffer->page;
298 prefetchw(page);
299
300 if (likely(!skb)) {
301 void *page_addr = page_address(page) +
302 rx_buffer->page_offset;
303
304 /* prefetch first cache line of first page */
305 prefetch(page_addr);
306#if L1_CACHE_BYTES < 128
307 prefetch(page_addr + L1_CACHE_BYTES);
308#endif
309
310 /* allocate a skb to store the frags */
67fd893e
AD
311 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
312 FM10K_RX_HDR_LEN);
b101c962
AD
313 if (unlikely(!skb)) {
314 rx_ring->rx_stats.alloc_failed++;
315 return NULL;
316 }
317
318 /* we will be copying header into skb->data in
319 * pskb_may_pull so it is in our interest to prefetch
320 * it now to avoid a possible cache miss
321 */
322 prefetchw(skb->data);
323 }
324
325 /* we are reusing so sync this buffer for CPU use */
326 dma_sync_single_range_for_cpu(rx_ring->dev,
327 rx_buffer->dma,
328 rx_buffer->page_offset,
329 FM10K_RX_BUFSZ,
330 DMA_FROM_DEVICE);
331
332 /* pull page into skb */
333 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334 /* hand second half of page back to the ring */
335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 } else {
337 /* we are not reusing the buffer so unmap it */
338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 PAGE_SIZE, DMA_FROM_DEVICE);
340 }
341
342 /* clear contents of rx_buffer */
343 rx_buffer->page = NULL;
344
345 return skb;
346}
347
76a540d4
AD
348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 union fm10k_rx_desc *rx_desc,
350 struct sk_buff *skb)
351{
352 skb_checksum_none_assert(skb);
353
354 /* Rx checksum disabled via ethtool */
355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 return;
357
358 /* TCP/UDP checksum error bit is set */
359 if (fm10k_test_staterr(rx_desc,
360 FM10K_RXD_STATUS_L4E |
361 FM10K_RXD_STATUS_L4E2 |
362 FM10K_RXD_STATUS_IPE |
363 FM10K_RXD_STATUS_IPE2)) {
364 ring->rx_stats.csum_err++;
365 return;
366 }
367
368 /* It must be a TCP or UDP packet with a valid checksum */
369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 skb->encapsulation = true;
371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 return;
373
374 skb->ip_summed = CHECKSUM_UNNECESSARY;
375}
376
377#define FM10K_RSS_L4_TYPES_MASK \
378 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382
383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384 union fm10k_rx_desc *rx_desc,
385 struct sk_buff *skb)
386{
387 u16 rss_type;
388
389 if (!(ring->netdev->features & NETIF_F_RXHASH))
390 return;
391
392 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393 if (!rss_type)
394 return;
395
396 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399}
400
a211e013
AD
401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402 union fm10k_rx_desc *rx_desc,
403 struct sk_buff *skb)
404{
405 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406
407 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408
409 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411 le64_to_cpu(rx_desc->q.timestamp));
412}
413
5cd5e2e9
AD
414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 union fm10k_rx_desc *rx_desc,
416 struct sk_buff *skb)
417{
418 struct net_device *dev = rx_ring->netdev;
419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420
421 /* check to see if DGLORT belongs to a MACVLAN */
422 if (l2_accel) {
423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424
425 idx -= l2_accel->dglort;
426 if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 dev = l2_accel->macvlan[idx];
428 else
429 l2_accel = NULL;
430 }
431
432 skb->protocol = eth_type_trans(skb, dev);
433
434 if (!l2_accel)
435 return;
436
437 /* update MACVLAN statistics */
438 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439 !!(rx_desc->w.hdr_info &
440 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441}
442
b101c962
AD
443/**
444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445 * @rx_ring: rx descriptor ring packet is being transacted on
446 * @rx_desc: pointer to the EOP Rx descriptor
447 * @skb: pointer to current skb being populated
448 *
449 * This function checks the ring, descriptor, and packet information in
450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451 * other fields within the skb.
452 **/
453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454 union fm10k_rx_desc *rx_desc,
455 struct sk_buff *skb)
456{
457 unsigned int len = skb->len;
458
76a540d4
AD
459 fm10k_rx_hash(rx_ring, rx_desc, skb);
460
461 fm10k_rx_checksum(rx_ring, rx_desc, skb);
462
a211e013
AD
463 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464
b101c962
AD
465 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466
467 skb_record_rx_queue(skb, rx_ring->queue_index);
468
469 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470
471 if (rx_desc->w.vlan) {
472 u16 vid = le16_to_cpu(rx_desc->w.vlan);
473
474 if (vid != rx_ring->vid)
475 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476 }
477
5cd5e2e9 478 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
479
480 return len;
481}
482
483/**
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
487 *
488 * This function updates next to clean. If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
492 **/
493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 union fm10k_rx_desc *rx_desc)
495{
496 u32 ntc = rx_ring->next_to_clean + 1;
497
498 /* fetch, update, and store next to clean */
499 ntc = (ntc < rx_ring->count) ? ntc : 0;
500 rx_ring->next_to_clean = ntc;
501
502 prefetch(FM10K_RX_DESC(rx_ring, ntc));
503
504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 return false;
506
507 return true;
508}
509
510/**
511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being adjusted
515 *
516 * This function is an fm10k specific version of __pskb_pull_tail. The
517 * main difference between this version and the original function is that
518 * this function can make several assumptions about the state of things
519 * that allow for significant optimizations versus the standard function.
520 * As a result we can do things like drop a frag and maintain an accurate
521 * truesize for the skb.
522 */
523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524 union fm10k_rx_desc *rx_desc,
525 struct sk_buff *skb)
526{
527 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528 unsigned char *va;
529 unsigned int pull_len;
530
531 /* it is valid to use page_address instead of kmap since we are
532 * working with pages allocated out of the lomem pool per
533 * alloc_page(GFP_ATOMIC)
534 */
535 va = skb_frag_address(frag);
536
537 /* we need the header to contain the greater of either ETH_HLEN or
538 * 60 bytes if the skb->len is less than 60 for skb_pad.
539 */
540 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541
542 /* align pull length to size of long to optimize memcpy performance */
543 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544
545 /* update all of the pointers */
546 skb_frag_size_sub(frag, pull_len);
547 frag->page_offset += pull_len;
548 skb->data_len -= pull_len;
549 skb->tail += pull_len;
550}
551
552/**
553 * fm10k_cleanup_headers - Correct corrupted or empty headers
554 * @rx_ring: rx descriptor ring packet is being transacted on
555 * @rx_desc: pointer to the EOP Rx descriptor
556 * @skb: pointer to current skb being fixed
557 *
558 * Address the case where we are pulling data in on pages only
559 * and as such no data is present in the skb header.
560 *
561 * In addition if skb is not at least 60 bytes we need to pad it so that
562 * it is large enough to qualify as a valid Ethernet frame.
563 *
564 * Returns true if an error was encountered and skb was freed.
565 **/
566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567 union fm10k_rx_desc *rx_desc,
568 struct sk_buff *skb)
569{
570 if (unlikely((fm10k_test_staterr(rx_desc,
571 FM10K_RXD_STATUS_RXE)))) {
572 dev_kfree_skb_any(skb);
573 rx_ring->rx_stats.errors++;
574 return true;
575 }
576
577 /* place header in linear portion of buffer */
578 if (skb_is_nonlinear(skb))
579 fm10k_pull_tail(rx_ring, rx_desc, skb);
580
a94d9e22
AD
581 /* if eth_skb_pad returns an error the skb was freed */
582 if (eth_skb_pad(skb))
583 return true;
b101c962
AD
584
585 return false;
586}
587
588/**
589 * fm10k_receive_skb - helper function to handle rx indications
590 * @q_vector: structure containing interrupt and ring information
591 * @skb: packet to send up
592 **/
593static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
594 struct sk_buff *skb)
595{
596 napi_gro_receive(&q_vector->napi, skb);
597}
598
599static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
600 struct fm10k_ring *rx_ring,
601 int budget)
602{
603 struct sk_buff *skb = rx_ring->skb;
604 unsigned int total_bytes = 0, total_packets = 0;
605 u16 cleaned_count = fm10k_desc_unused(rx_ring);
606
607 do {
608 union fm10k_rx_desc *rx_desc;
609
610 /* return some buffers to hardware, one at a time is too slow */
611 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
612 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
613 cleaned_count = 0;
614 }
615
616 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
617
124b74c1 618 if (!rx_desc->d.staterr)
b101c962
AD
619 break;
620
621 /* This memory barrier is needed to keep us from reading
622 * any other fields out of the rx_desc until we know the
124b74c1 623 * descriptor has been written back
b101c962 624 */
124b74c1 625 dma_rmb();
b101c962
AD
626
627 /* retrieve a buffer from the ring */
628 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
629
630 /* exit if we failed to retrieve a buffer */
631 if (!skb)
632 break;
633
634 cleaned_count++;
635
636 /* fetch next buffer in frame if non-eop */
637 if (fm10k_is_non_eop(rx_ring, rx_desc))
638 continue;
639
640 /* verify the packet layout is correct */
641 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
642 skb = NULL;
643 continue;
644 }
645
646 /* populate checksum, timestamp, VLAN, and protocol */
647 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
648
649 fm10k_receive_skb(q_vector, skb);
650
651 /* reset skb pointer */
652 skb = NULL;
653
654 /* update budget accounting */
655 total_packets++;
656 } while (likely(total_packets < budget));
657
658 /* place incomplete frames back on ring for completion */
659 rx_ring->skb = skb;
660
661 u64_stats_update_begin(&rx_ring->syncp);
662 rx_ring->stats.packets += total_packets;
663 rx_ring->stats.bytes += total_bytes;
664 u64_stats_update_end(&rx_ring->syncp);
665 q_vector->rx.total_packets += total_packets;
666 q_vector->rx.total_bytes += total_bytes;
667
668 return total_packets < budget;
669}
670
76a540d4
AD
671#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
672static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
673{
674 struct fm10k_intfc *interface = netdev_priv(skb->dev);
675 struct fm10k_vxlan_port *vxlan_port;
676
677 /* we can only offload a vxlan if we recognize it as such */
678 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
679 struct fm10k_vxlan_port, list);
680
681 if (!vxlan_port)
682 return NULL;
683 if (vxlan_port->port != udp_hdr(skb)->dest)
684 return NULL;
685
686 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
687 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
688}
689
690#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
691#define NVGRE_TNI htons(0x2000)
692struct fm10k_nvgre_hdr {
693 __be16 flags;
694 __be16 proto;
695 __be32 tni;
696};
697
698static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
699{
700 struct fm10k_nvgre_hdr *nvgre_hdr;
701 int hlen = ip_hdrlen(skb);
702
703 /* currently only IPv4 is supported due to hlen above */
704 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
705 return NULL;
706
707 /* our transport header should be NVGRE */
708 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
709
710 /* verify all reserved flags are 0 */
711 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
712 return NULL;
713
76a540d4
AD
714 /* report start of ethernet header */
715 if (nvgre_hdr->flags & NVGRE_TNI)
716 return (struct ethhdr *)(nvgre_hdr + 1);
717
718 return (struct ethhdr *)(&nvgre_hdr->tni);
719}
720
5bf33dc6 721__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
76a540d4 722{
8c1a90aa 723 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
76a540d4 724 struct ethhdr *eth_hdr;
76a540d4 725
8c1a90aa
MV
726 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
727 skb->inner_protocol != htons(ETH_P_TEB))
b66b6d9f
JS
728 return 0;
729
76a540d4
AD
730 switch (vlan_get_protocol(skb)) {
731 case htons(ETH_P_IP):
732 l4_hdr = ip_hdr(skb)->protocol;
733 break;
734 case htons(ETH_P_IPV6):
735 l4_hdr = ipv6_hdr(skb)->nexthdr;
736 break;
737 default:
738 return 0;
739 }
740
741 switch (l4_hdr) {
742 case IPPROTO_UDP:
743 eth_hdr = fm10k_port_is_vxlan(skb);
744 break;
745 case IPPROTO_GRE:
746 eth_hdr = fm10k_gre_is_nvgre(skb);
747 break;
748 default:
749 return 0;
750 }
751
752 if (!eth_hdr)
753 return 0;
754
755 switch (eth_hdr->h_proto) {
756 case htons(ETH_P_IP):
8c1a90aa
MV
757 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
758 break;
76a540d4 759 case htons(ETH_P_IPV6):
8c1a90aa 760 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
76a540d4
AD
761 break;
762 default:
763 return 0;
764 }
765
8c1a90aa
MV
766 switch (inner_l4_hdr) {
767 case IPPROTO_TCP:
768 inner_l4_hlen = inner_tcp_hdrlen(skb);
769 break;
770 case IPPROTO_UDP:
771 inner_l4_hlen = 8;
772 break;
773 default:
774 return 0;
775 }
776
777 /* The hardware allows tunnel offloads only if the combined inner and
778 * outer header is 184 bytes or less
779 */
780 if (skb_inner_transport_header(skb) + inner_l4_hlen -
781 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
782 return 0;
783
76a540d4
AD
784 return eth_hdr->h_proto;
785}
786
787static int fm10k_tso(struct fm10k_ring *tx_ring,
788 struct fm10k_tx_buffer *first)
789{
790 struct sk_buff *skb = first->skb;
791 struct fm10k_tx_desc *tx_desc;
792 unsigned char *th;
793 u8 hdrlen;
794
795 if (skb->ip_summed != CHECKSUM_PARTIAL)
796 return 0;
797
798 if (!skb_is_gso(skb))
799 return 0;
800
801 /* compute header lengths */
802 if (skb->encapsulation) {
803 if (!fm10k_tx_encap_offload(skb))
804 goto err_vxlan;
805 th = skb_inner_transport_header(skb);
806 } else {
807 th = skb_transport_header(skb);
808 }
809
810 /* compute offset from SOF to transport header and add header len */
811 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
812
813 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
814
815 /* update gso size and bytecount with header size */
816 first->gso_segs = skb_shinfo(skb)->gso_segs;
817 first->bytecount += (first->gso_segs - 1) * hdrlen;
818
819 /* populate Tx descriptor header size and mss */
820 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
821 tx_desc->hdrlen = hdrlen;
822 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
823
824 return 1;
825err_vxlan:
826 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
827 if (!net_ratelimit())
828 netdev_err(tx_ring->netdev,
829 "TSO requested for unsupported tunnel, disabling offload\n");
830 return -1;
831}
832
833static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
834 struct fm10k_tx_buffer *first)
835{
836 struct sk_buff *skb = first->skb;
837 struct fm10k_tx_desc *tx_desc;
838 union {
839 struct iphdr *ipv4;
840 struct ipv6hdr *ipv6;
841 u8 *raw;
842 } network_hdr;
843 __be16 protocol;
844 u8 l4_hdr = 0;
845
846 if (skb->ip_summed != CHECKSUM_PARTIAL)
847 goto no_csum;
848
849 if (skb->encapsulation) {
850 protocol = fm10k_tx_encap_offload(skb);
851 if (!protocol) {
852 if (skb_checksum_help(skb)) {
853 dev_warn(tx_ring->dev,
854 "failed to offload encap csum!\n");
855 tx_ring->tx_stats.csum_err++;
856 }
857 goto no_csum;
858 }
859 network_hdr.raw = skb_inner_network_header(skb);
860 } else {
861 protocol = vlan_get_protocol(skb);
862 network_hdr.raw = skb_network_header(skb);
863 }
864
865 switch (protocol) {
866 case htons(ETH_P_IP):
867 l4_hdr = network_hdr.ipv4->protocol;
868 break;
869 case htons(ETH_P_IPV6):
870 l4_hdr = network_hdr.ipv6->nexthdr;
871 break;
872 default:
873 if (unlikely(net_ratelimit())) {
874 dev_warn(tx_ring->dev,
875 "partial checksum but ip version=%x!\n",
876 protocol);
877 }
878 tx_ring->tx_stats.csum_err++;
879 goto no_csum;
880 }
881
882 switch (l4_hdr) {
883 case IPPROTO_TCP:
884 case IPPROTO_UDP:
885 break;
886 case IPPROTO_GRE:
887 if (skb->encapsulation)
888 break;
889 default:
890 if (unlikely(net_ratelimit())) {
891 dev_warn(tx_ring->dev,
892 "partial checksum but l4 proto=%x!\n",
893 l4_hdr);
894 }
895 tx_ring->tx_stats.csum_err++;
896 goto no_csum;
897 }
898
899 /* update TX checksum flag */
900 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
901
902no_csum:
903 /* populate Tx descriptor header size and mss */
904 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
905 tx_desc->hdrlen = 0;
906 tx_desc->mss = 0;
907}
908
909#define FM10K_SET_FLAG(_input, _flag, _result) \
910 ((_flag <= _result) ? \
911 ((u32)(_input & _flag) * (_result / _flag)) : \
912 ((u32)(_input & _flag) / (_flag / _result)))
913
914static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
915{
916 /* set type for advanced descriptor with frame checksum insertion */
917 u32 desc_flags = 0;
918
a211e013
AD
919 /* set timestamping bits */
920 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
921 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
922 desc_flags |= FM10K_TXD_FLAG_TIME;
923
76a540d4
AD
924 /* set checksum offload bits */
925 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
926 FM10K_TXD_FLAG_CSUM);
927
928 return desc_flags;
929}
930
b101c962
AD
931static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
932 struct fm10k_tx_desc *tx_desc, u16 i,
933 dma_addr_t dma, unsigned int size, u8 desc_flags)
934{
935 /* set RS and INT for last frame in a cache line */
936 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
937 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
938
939 /* record values to descriptor */
940 tx_desc->buffer_addr = cpu_to_le64(dma);
941 tx_desc->flags = desc_flags;
942 tx_desc->buflen = cpu_to_le16(size);
943
944 /* return true if we just wrapped the ring */
945 return i == tx_ring->count;
946}
947
2c2b2f0c
AD
948static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
949{
950 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
951
eca32047 952 /* Memory barrier before checking head and tail */
2c2b2f0c
AD
953 smp_mb();
954
eca32047 955 /* Check again in a case another CPU has just made room available */
2c2b2f0c
AD
956 if (likely(fm10k_desc_unused(tx_ring) < size))
957 return -EBUSY;
958
959 /* A reprieve! - use start_queue because it doesn't call schedule */
960 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
961 ++tx_ring->tx_stats.restart_queue;
962 return 0;
963}
964
965static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
966{
967 if (likely(fm10k_desc_unused(tx_ring) >= size))
968 return 0;
969 return __fm10k_maybe_stop_tx(tx_ring, size);
970}
971
b101c962
AD
972static void fm10k_tx_map(struct fm10k_ring *tx_ring,
973 struct fm10k_tx_buffer *first)
974{
975 struct sk_buff *skb = first->skb;
976 struct fm10k_tx_buffer *tx_buffer;
977 struct fm10k_tx_desc *tx_desc;
978 struct skb_frag_struct *frag;
979 unsigned char *data;
980 dma_addr_t dma;
981 unsigned int data_len, size;
76a540d4 982 u32 tx_flags = first->tx_flags;
b101c962 983 u16 i = tx_ring->next_to_use;
76a540d4 984 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
985
986 tx_desc = FM10K_TX_DESC(tx_ring, i);
987
988 /* add HW VLAN tag */
df8a39de
JP
989 if (skb_vlan_tag_present(skb))
990 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
b101c962
AD
991 else
992 tx_desc->vlan = 0;
993
994 size = skb_headlen(skb);
995 data = skb->data;
996
997 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
998
999 data_len = skb->data_len;
1000 tx_buffer = first;
1001
1002 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1003 if (dma_mapping_error(tx_ring->dev, dma))
1004 goto dma_error;
1005
1006 /* record length, and DMA address */
1007 dma_unmap_len_set(tx_buffer, len, size);
1008 dma_unmap_addr_set(tx_buffer, dma, dma);
1009
1010 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1011 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1012 FM10K_MAX_DATA_PER_TXD, flags)) {
1013 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1014 i = 0;
1015 }
1016
1017 dma += FM10K_MAX_DATA_PER_TXD;
1018 size -= FM10K_MAX_DATA_PER_TXD;
1019 }
1020
1021 if (likely(!data_len))
1022 break;
1023
1024 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1025 dma, size, flags)) {
1026 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1027 i = 0;
1028 }
1029
1030 size = skb_frag_size(frag);
1031 data_len -= size;
1032
1033 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1034 DMA_TO_DEVICE);
1035
1036 tx_buffer = &tx_ring->tx_buffer[i];
1037 }
1038
1039 /* write last descriptor with LAST bit set */
1040 flags |= FM10K_TXD_FLAG_LAST;
1041
1042 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1043 i = 0;
1044
1045 /* record bytecount for BQL */
1046 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1047
1048 /* record SW timestamp if HW timestamp is not available */
1049 skb_tx_timestamp(first->skb);
1050
1051 /* Force memory writes to complete before letting h/w know there
1052 * are new descriptors to fetch. (Only applicable for weak-ordered
1053 * memory model archs, such as IA-64).
1054 *
1055 * We also need this memory barrier to make certain all of the
1056 * status bits have been updated before next_to_watch is written.
1057 */
1058 wmb();
1059
1060 /* set next_to_watch value indicating a packet is present */
1061 first->next_to_watch = tx_desc;
1062
1063 tx_ring->next_to_use = i;
1064
2c2b2f0c
AD
1065 /* Make sure there is space in the ring for the next send. */
1066 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1067
b101c962 1068 /* notify HW of packet */
2c2b2f0c
AD
1069 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1070 writel(i, tx_ring->tail);
b101c962 1071
2c2b2f0c
AD
1072 /* we need this if more than one processor can write to our tail
1073 * at a time, it synchronizes IO on IA64/Altix systems
1074 */
1075 mmiowb();
1076 }
b101c962
AD
1077
1078 return;
1079dma_error:
1080 dev_err(tx_ring->dev, "TX DMA map failed\n");
1081
1082 /* clear dma mappings for failed tx_buffer map */
1083 for (;;) {
1084 tx_buffer = &tx_ring->tx_buffer[i];
1085 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1086 if (tx_buffer == first)
1087 break;
1088 if (i == 0)
1089 i = tx_ring->count;
1090 i--;
1091 }
1092
1093 tx_ring->next_to_use = i;
1094}
1095
b101c962
AD
1096netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1097 struct fm10k_ring *tx_ring)
1098{
1099 struct fm10k_tx_buffer *first;
76a540d4 1100 int tso;
b101c962
AD
1101 u32 tx_flags = 0;
1102#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1103 unsigned short f;
1104#endif
1105 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1106
1107 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1108 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1109 * + 2 desc gap to keep tail from touching head
1110 * otherwise try next time
1111 */
1112#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1113 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1114 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1115#else
1116 count += skb_shinfo(skb)->nr_frags;
1117#endif
1118 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1119 tx_ring->tx_stats.tx_busy++;
1120 return NETDEV_TX_BUSY;
1121 }
1122
1123 /* record the location of the first descriptor for this packet */
1124 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1125 first->skb = skb;
1126 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1127 first->gso_segs = 1;
1128
1129 /* record initial flags and protocol */
1130 first->tx_flags = tx_flags;
1131
76a540d4
AD
1132 tso = fm10k_tso(tx_ring, first);
1133 if (tso < 0)
1134 goto out_drop;
1135 else if (!tso)
1136 fm10k_tx_csum(tx_ring, first);
1137
b101c962
AD
1138 fm10k_tx_map(tx_ring, first);
1139
76a540d4
AD
1140 return NETDEV_TX_OK;
1141
1142out_drop:
1143 dev_kfree_skb_any(first->skb);
1144 first->skb = NULL;
1145
b101c962
AD
1146 return NETDEV_TX_OK;
1147}
1148
1149static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1150{
1151 return ring->stats.packets;
1152}
1153
1154static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1155{
1156 /* use SW head and tail until we have real hardware */
1157 u32 head = ring->next_to_clean;
1158 u32 tail = ring->next_to_use;
1159
1160 return ((head <= tail) ? tail : tail + ring->count) - head;
1161}
1162
1163bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1164{
1165 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1166 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1167 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1168
1169 clear_check_for_tx_hang(tx_ring);
1170
1171 /* Check for a hung queue, but be thorough. This verifies
1172 * that a transmit has been completed since the previous
1173 * check AND there is at least one packet pending. By
1174 * requiring this to fail twice we avoid races with
1175 * clearing the ARMED bit and conditions where we
1176 * run the check_tx_hang logic with a transmit completion
1177 * pending but without time to complete it yet.
1178 */
1179 if (!tx_pending || (tx_done_old != tx_done)) {
1180 /* update completed stats and continue */
1181 tx_ring->tx_stats.tx_done_old = tx_done;
1182 /* reset the countdown */
1183 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1184
1185 return false;
1186 }
1187
1188 /* make sure it is true for two checks in a row */
1189 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190}
1191
1192/**
1193 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1194 * @interface: driver private struct
1195 **/
1196void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1197{
1198 /* Do the reset outside of interrupt context */
1199 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1200 netdev_err(interface->netdev, "Reset interface\n");
1201 interface->tx_timeout_count++;
1202 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1203 fm10k_service_event_schedule(interface);
1204 }
1205}
1206
1207/**
1208 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1209 * @q_vector: structure containing interrupt and ring information
1210 * @tx_ring: tx ring to clean
1211 **/
1212static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1213 struct fm10k_ring *tx_ring)
1214{
1215 struct fm10k_intfc *interface = q_vector->interface;
1216 struct fm10k_tx_buffer *tx_buffer;
1217 struct fm10k_tx_desc *tx_desc;
1218 unsigned int total_bytes = 0, total_packets = 0;
1219 unsigned int budget = q_vector->tx.work_limit;
1220 unsigned int i = tx_ring->next_to_clean;
1221
1222 if (test_bit(__FM10K_DOWN, &interface->state))
1223 return true;
1224
1225 tx_buffer = &tx_ring->tx_buffer[i];
1226 tx_desc = FM10K_TX_DESC(tx_ring, i);
1227 i -= tx_ring->count;
1228
1229 do {
1230 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1231
1232 /* if next_to_watch is not set then there is no work pending */
1233 if (!eop_desc)
1234 break;
1235
1236 /* prevent any other reads prior to eop_desc */
1237 read_barrier_depends();
1238
1239 /* if DD is not set pending work has not been completed */
1240 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1241 break;
1242
1243 /* clear next_to_watch to prevent false hangs */
1244 tx_buffer->next_to_watch = NULL;
1245
1246 /* update the statistics for this packet */
1247 total_bytes += tx_buffer->bytecount;
1248 total_packets += tx_buffer->gso_segs;
1249
1250 /* free the skb */
1251 dev_consume_skb_any(tx_buffer->skb);
1252
1253 /* unmap skb header data */
1254 dma_unmap_single(tx_ring->dev,
1255 dma_unmap_addr(tx_buffer, dma),
1256 dma_unmap_len(tx_buffer, len),
1257 DMA_TO_DEVICE);
1258
1259 /* clear tx_buffer data */
1260 tx_buffer->skb = NULL;
1261 dma_unmap_len_set(tx_buffer, len, 0);
1262
1263 /* unmap remaining buffers */
1264 while (tx_desc != eop_desc) {
1265 tx_buffer++;
1266 tx_desc++;
1267 i++;
1268 if (unlikely(!i)) {
1269 i -= tx_ring->count;
1270 tx_buffer = tx_ring->tx_buffer;
1271 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1272 }
1273
1274 /* unmap any remaining paged data */
1275 if (dma_unmap_len(tx_buffer, len)) {
1276 dma_unmap_page(tx_ring->dev,
1277 dma_unmap_addr(tx_buffer, dma),
1278 dma_unmap_len(tx_buffer, len),
1279 DMA_TO_DEVICE);
1280 dma_unmap_len_set(tx_buffer, len, 0);
1281 }
1282 }
1283
1284 /* move us one more past the eop_desc for start of next pkt */
1285 tx_buffer++;
1286 tx_desc++;
1287 i++;
1288 if (unlikely(!i)) {
1289 i -= tx_ring->count;
1290 tx_buffer = tx_ring->tx_buffer;
1291 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1292 }
1293
1294 /* issue prefetch for next Tx descriptor */
1295 prefetch(tx_desc);
1296
1297 /* update budget accounting */
1298 budget--;
1299 } while (likely(budget));
1300
1301 i += tx_ring->count;
1302 tx_ring->next_to_clean = i;
1303 u64_stats_update_begin(&tx_ring->syncp);
1304 tx_ring->stats.bytes += total_bytes;
1305 tx_ring->stats.packets += total_packets;
1306 u64_stats_update_end(&tx_ring->syncp);
1307 q_vector->tx.total_bytes += total_bytes;
1308 q_vector->tx.total_packets += total_packets;
1309
1310 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1311 /* schedule immediate reset if we believe we hung */
1312 struct fm10k_hw *hw = &interface->hw;
1313
1314 netif_err(interface, drv, tx_ring->netdev,
1315 "Detected Tx Unit Hang\n"
1316 " Tx Queue <%d>\n"
1317 " TDH, TDT <%x>, <%x>\n"
1318 " next_to_use <%x>\n"
1319 " next_to_clean <%x>\n",
1320 tx_ring->queue_index,
1321 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1322 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1323 tx_ring->next_to_use, i);
1324
1325 netif_stop_subqueue(tx_ring->netdev,
1326 tx_ring->queue_index);
1327
1328 netif_info(interface, probe, tx_ring->netdev,
1329 "tx hang %d detected on queue %d, resetting interface\n",
1330 interface->tx_timeout_count + 1,
1331 tx_ring->queue_index);
1332
1333 fm10k_tx_timeout_reset(interface);
1334
1335 /* the netdev is about to reset, no point in enabling stuff */
1336 return true;
1337 }
1338
1339 /* notify netdev of completed buffers */
1340 netdev_tx_completed_queue(txring_txq(tx_ring),
1341 total_packets, total_bytes);
1342
1343#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1344 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1345 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1346 /* Make sure that anybody stopping the queue after this
1347 * sees the new next_to_clean.
1348 */
1349 smp_mb();
1350 if (__netif_subqueue_stopped(tx_ring->netdev,
1351 tx_ring->queue_index) &&
1352 !test_bit(__FM10K_DOWN, &interface->state)) {
1353 netif_wake_subqueue(tx_ring->netdev,
1354 tx_ring->queue_index);
1355 ++tx_ring->tx_stats.restart_queue;
1356 }
1357 }
1358
1359 return !!budget;
1360}
1361
18283cad
AD
1362/**
1363 * fm10k_update_itr - update the dynamic ITR value based on packet size
1364 *
1365 * Stores a new ITR value based on strictly on packet size. The
1366 * divisors and thresholds used by this function were determined based
1367 * on theoretical maximum wire speed and testing data, in order to
1368 * minimize response time while increasing bulk throughput.
1369 *
1370 * @ring_container: Container for rings to have ITR updated
1371 **/
1372static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1373{
1374 unsigned int avg_wire_size, packets;
1375
1376 /* Only update ITR if we are using adaptive setting */
1377 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1378 goto clear_counts;
1379
1380 packets = ring_container->total_packets;
1381 if (!packets)
1382 goto clear_counts;
1383
1384 avg_wire_size = ring_container->total_bytes / packets;
1385
1386 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1387 avg_wire_size += 24;
1388
1389 /* Don't starve jumbo frames */
1390 if (avg_wire_size > 3000)
1391 avg_wire_size = 3000;
1392
1393 /* Give a little boost to mid-size frames */
1394 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1395 avg_wire_size /= 3;
1396 else
1397 avg_wire_size /= 2;
1398
1399 /* write back value and retain adaptive flag */
1400 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1401
1402clear_counts:
1403 ring_container->total_bytes = 0;
1404 ring_container->total_packets = 0;
1405}
1406
1407static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1408{
1409 /* Enable auto-mask and clear the current mask */
1410 u32 itr = FM10K_ITR_ENABLE;
1411
1412 /* Update Tx ITR */
1413 fm10k_update_itr(&q_vector->tx);
1414
1415 /* Update Rx ITR */
1416 fm10k_update_itr(&q_vector->rx);
1417
1418 /* Store Tx itr in timer slot 0 */
1419 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1420
1421 /* Shift Rx itr to timer slot 1 */
1422 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1423
1424 /* Write the final value to the ITR register */
1425 writel(itr, q_vector->itr);
1426}
1427
1428static int fm10k_poll(struct napi_struct *napi, int budget)
1429{
1430 struct fm10k_q_vector *q_vector =
1431 container_of(napi, struct fm10k_q_vector, napi);
b101c962
AD
1432 struct fm10k_ring *ring;
1433 int per_ring_budget;
1434 bool clean_complete = true;
1435
1436 fm10k_for_each_ring(ring, q_vector->tx)
1437 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1438
1439 /* attempt to distribute budget to each queue fairly, but don't
1440 * allow the budget to go below 1 because we'll exit polling
1441 */
1442 if (q_vector->rx.count > 1)
1443 per_ring_budget = max(budget/q_vector->rx.count, 1);
1444 else
1445 per_ring_budget = budget;
1446
1447 fm10k_for_each_ring(ring, q_vector->rx)
1448 clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1449 per_ring_budget);
1450
1451 /* If all work not completed, return budget and keep polling */
1452 if (!clean_complete)
1453 return budget;
18283cad
AD
1454
1455 /* all work done, exit the polling mode */
1456 napi_complete(napi);
1457
1458 /* re-enable the q_vector */
1459 fm10k_qv_enable(q_vector);
1460
1461 return 0;
1462}
1463
aa3ac822
AD
1464/**
1465 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1466 * @interface: board private structure to initialize
1467 *
1468 * When QoS (Quality of Service) is enabled, allocate queues for
1469 * each traffic class. If multiqueue isn't available,then abort QoS
1470 * initialization.
1471 *
1472 * This function handles all combinations of Qos and RSS.
1473 *
1474 **/
1475static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1476{
1477 struct net_device *dev = interface->netdev;
1478 struct fm10k_ring_feature *f;
1479 int rss_i, i;
1480 int pcs;
1481
1482 /* Map queue offset and counts onto allocated tx queues */
1483 pcs = netdev_get_num_tc(dev);
1484
1485 if (pcs <= 1)
1486 return false;
1487
1488 /* set QoS mask and indices */
1489 f = &interface->ring_feature[RING_F_QOS];
1490 f->indices = pcs;
1491 f->mask = (1 << fls(pcs - 1)) - 1;
1492
1493 /* determine the upper limit for our current DCB mode */
1494 rss_i = interface->hw.mac.max_queues / pcs;
1495 rss_i = 1 << (fls(rss_i) - 1);
1496
1497 /* set RSS mask and indices */
1498 f = &interface->ring_feature[RING_F_RSS];
1499 rss_i = min_t(u16, rss_i, f->limit);
1500 f->indices = rss_i;
1501 f->mask = (1 << fls(rss_i - 1)) - 1;
1502
1503 /* configure pause class to queue mapping */
1504 for (i = 0; i < pcs; i++)
1505 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1506
1507 interface->num_rx_queues = rss_i * pcs;
1508 interface->num_tx_queues = rss_i * pcs;
1509
1510 return true;
1511}
1512
1513/**
1514 * fm10k_set_rss_queues: Allocate queues for RSS
1515 * @interface: board private structure to initialize
1516 *
1517 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1518 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1519 *
1520 **/
1521static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1522{
1523 struct fm10k_ring_feature *f;
1524 u16 rss_i;
1525
1526 f = &interface->ring_feature[RING_F_RSS];
1527 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1528
1529 /* record indices and power of 2 mask for RSS */
1530 f->indices = rss_i;
1531 f->mask = (1 << fls(rss_i - 1)) - 1;
1532
1533 interface->num_rx_queues = rss_i;
1534 interface->num_tx_queues = rss_i;
1535
1536 return true;
1537}
1538
18283cad
AD
1539/**
1540 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1541 * @interface: board private structure to initialize
1542 *
1543 * This is the top level queue allocation routine. The order here is very
1544 * important, starting with the "most" number of features turned on at once,
1545 * and ending with the smallest set of features. This way large combinations
1546 * can be allocated if they're turned on, and smaller combinations are the
1547 * fallthrough conditions.
1548 *
1549 **/
1550static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1551{
1552 /* Start with base case */
1553 interface->num_rx_queues = 1;
1554 interface->num_tx_queues = 1;
aa3ac822
AD
1555
1556 if (fm10k_set_qos_queues(interface))
1557 return;
1558
1559 fm10k_set_rss_queues(interface);
18283cad
AD
1560}
1561
1562/**
1563 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1564 * @interface: board private structure to initialize
1565 * @v_count: q_vectors allocated on interface, used for ring interleaving
1566 * @v_idx: index of vector in interface struct
1567 * @txr_count: total number of Tx rings to allocate
1568 * @txr_idx: index of first Tx ring to allocate
1569 * @rxr_count: total number of Rx rings to allocate
1570 * @rxr_idx: index of first Rx ring to allocate
1571 *
1572 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1573 **/
1574static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1575 unsigned int v_count, unsigned int v_idx,
1576 unsigned int txr_count, unsigned int txr_idx,
1577 unsigned int rxr_count, unsigned int rxr_idx)
1578{
1579 struct fm10k_q_vector *q_vector;
e27ef599 1580 struct fm10k_ring *ring;
18283cad
AD
1581 int ring_count, size;
1582
1583 ring_count = txr_count + rxr_count;
e27ef599
AD
1584 size = sizeof(struct fm10k_q_vector) +
1585 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1586
1587 /* allocate q_vector and rings */
1588 q_vector = kzalloc(size, GFP_KERNEL);
1589 if (!q_vector)
1590 return -ENOMEM;
1591
1592 /* initialize NAPI */
1593 netif_napi_add(interface->netdev, &q_vector->napi,
1594 fm10k_poll, NAPI_POLL_WEIGHT);
1595
1596 /* tie q_vector and interface together */
1597 interface->q_vector[v_idx] = q_vector;
1598 q_vector->interface = interface;
1599 q_vector->v_idx = v_idx;
1600
e27ef599
AD
1601 /* initialize pointer to rings */
1602 ring = q_vector->ring;
1603
18283cad 1604 /* save Tx ring container info */
e27ef599
AD
1605 q_vector->tx.ring = ring;
1606 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad
AD
1607 q_vector->tx.itr = interface->tx_itr;
1608 q_vector->tx.count = txr_count;
1609
e27ef599
AD
1610 while (txr_count) {
1611 /* assign generic ring traits */
1612 ring->dev = &interface->pdev->dev;
1613 ring->netdev = interface->netdev;
1614
1615 /* configure backlink on ring */
1616 ring->q_vector = q_vector;
1617
1618 /* apply Tx specific ring traits */
1619 ring->count = interface->tx_ring_count;
1620 ring->queue_index = txr_idx;
1621
1622 /* assign ring to interface */
1623 interface->tx_ring[txr_idx] = ring;
1624
1625 /* update count and index */
1626 txr_count--;
1627 txr_idx += v_count;
1628
1629 /* push pointer to next ring */
1630 ring++;
1631 }
1632
18283cad 1633 /* save Rx ring container info */
e27ef599 1634 q_vector->rx.ring = ring;
18283cad
AD
1635 q_vector->rx.itr = interface->rx_itr;
1636 q_vector->rx.count = rxr_count;
1637
e27ef599
AD
1638 while (rxr_count) {
1639 /* assign generic ring traits */
1640 ring->dev = &interface->pdev->dev;
1641 ring->netdev = interface->netdev;
5cd5e2e9 1642 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1643
1644 /* configure backlink on ring */
1645 ring->q_vector = q_vector;
1646
1647 /* apply Rx specific ring traits */
1648 ring->count = interface->rx_ring_count;
1649 ring->queue_index = rxr_idx;
1650
1651 /* assign ring to interface */
1652 interface->rx_ring[rxr_idx] = ring;
1653
1654 /* update count and index */
1655 rxr_count--;
1656 rxr_idx += v_count;
1657
1658 /* push pointer to next ring */
1659 ring++;
1660 }
1661
7461fd91
AD
1662 fm10k_dbg_q_vector_init(q_vector);
1663
18283cad
AD
1664 return 0;
1665}
1666
1667/**
1668 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1669 * @interface: board private structure to initialize
1670 * @v_idx: Index of vector to be freed
1671 *
1672 * This function frees the memory allocated to the q_vector. In addition if
1673 * NAPI is enabled it will delete any references to the NAPI struct prior
1674 * to freeing the q_vector.
1675 **/
1676static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1677{
1678 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1679 struct fm10k_ring *ring;
1680
7461fd91
AD
1681 fm10k_dbg_q_vector_exit(q_vector);
1682
e27ef599
AD
1683 fm10k_for_each_ring(ring, q_vector->tx)
1684 interface->tx_ring[ring->queue_index] = NULL;
1685
1686 fm10k_for_each_ring(ring, q_vector->rx)
1687 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1688
1689 interface->q_vector[v_idx] = NULL;
1690 netif_napi_del(&q_vector->napi);
1691 kfree_rcu(q_vector, rcu);
1692}
1693
1694/**
1695 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1696 * @interface: board private structure to initialize
1697 *
1698 * We allocate one q_vector per queue interrupt. If allocation fails we
1699 * return -ENOMEM.
1700 **/
1701static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1702{
1703 unsigned int q_vectors = interface->num_q_vectors;
1704 unsigned int rxr_remaining = interface->num_rx_queues;
1705 unsigned int txr_remaining = interface->num_tx_queues;
1706 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1707 int err;
1708
1709 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1710 for (; rxr_remaining; v_idx++) {
1711 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1712 0, 0, 1, rxr_idx);
1713 if (err)
1714 goto err_out;
1715
1716 /* update counts and index */
1717 rxr_remaining--;
1718 rxr_idx++;
1719 }
1720 }
1721
1722 for (; v_idx < q_vectors; v_idx++) {
1723 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1724 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1725
1726 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1727 tqpv, txr_idx,
1728 rqpv, rxr_idx);
1729
1730 if (err)
1731 goto err_out;
1732
1733 /* update counts and index */
1734 rxr_remaining -= rqpv;
1735 txr_remaining -= tqpv;
1736 rxr_idx++;
1737 txr_idx++;
1738 }
1739
1740 return 0;
1741
1742err_out:
1743 interface->num_tx_queues = 0;
1744 interface->num_rx_queues = 0;
1745 interface->num_q_vectors = 0;
1746
1747 while (v_idx--)
1748 fm10k_free_q_vector(interface, v_idx);
1749
1750 return -ENOMEM;
1751}
1752
1753/**
1754 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1755 * @interface: board private structure to initialize
1756 *
1757 * This function frees the memory allocated to the q_vectors. In addition if
1758 * NAPI is enabled it will delete any references to the NAPI struct prior
1759 * to freeing the q_vector.
1760 **/
1761static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1762{
1763 int v_idx = interface->num_q_vectors;
1764
1765 interface->num_tx_queues = 0;
1766 interface->num_rx_queues = 0;
1767 interface->num_q_vectors = 0;
1768
1769 while (v_idx--)
1770 fm10k_free_q_vector(interface, v_idx);
1771}
1772
1773/**
1774 * f10k_reset_msix_capability - reset MSI-X capability
1775 * @interface: board private structure to initialize
1776 *
1777 * Reset the MSI-X capability back to its starting state
1778 **/
1779static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1780{
1781 pci_disable_msix(interface->pdev);
1782 kfree(interface->msix_entries);
1783 interface->msix_entries = NULL;
1784}
1785
1786/**
1787 * f10k_init_msix_capability - configure MSI-X capability
1788 * @interface: board private structure to initialize
1789 *
1790 * Attempt to configure the interrupts using the best available
1791 * capabilities of the hardware and the kernel.
1792 **/
1793static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1794{
1795 struct fm10k_hw *hw = &interface->hw;
1796 int v_budget, vector;
1797
1798 /* It's easy to be greedy for MSI-X vectors, but it really
1799 * doesn't do us much good if we have a lot more vectors
1800 * than CPU's. So let's be conservative and only ask for
1801 * (roughly) the same number of vectors as there are CPU's.
1802 * the default is to use pairs of vectors
1803 */
1804 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1805 v_budget = min_t(u16, v_budget, num_online_cpus());
1806
1807 /* account for vectors not related to queues */
1808 v_budget += NON_Q_VECTORS(hw);
1809
1810 /* At the same time, hardware can only support a maximum of
1811 * hw.mac->max_msix_vectors vectors. With features
1812 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1813 * descriptor queues supported by our device. Thus, we cap it off in
1814 * those rare cases where the cpu count also exceeds our vector limit.
1815 */
1816 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1817
1818 /* A failure in MSI-X entry allocation is fatal. */
1819 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1820 GFP_KERNEL);
1821 if (!interface->msix_entries)
1822 return -ENOMEM;
1823
1824 /* populate entry values */
1825 for (vector = 0; vector < v_budget; vector++)
1826 interface->msix_entries[vector].entry = vector;
1827
1828 /* Attempt to enable MSI-X with requested value */
1829 v_budget = pci_enable_msix_range(interface->pdev,
1830 interface->msix_entries,
1831 MIN_MSIX_COUNT(hw),
1832 v_budget);
1833 if (v_budget < 0) {
1834 kfree(interface->msix_entries);
1835 interface->msix_entries = NULL;
1836 return -ENOMEM;
1837 }
1838
1839 /* record the number of queues available for q_vectors */
1840 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1841
1842 return 0;
1843}
1844
aa3ac822
AD
1845/**
1846 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1847 * @interface: Interface structure continaining rings and devices
1848 *
1849 * Cache the descriptor ring offsets for Qos
1850 **/
1851static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1852{
1853 struct net_device *dev = interface->netdev;
1854 int pc, offset, rss_i, i, q_idx;
1855 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1856 u8 num_pcs = netdev_get_num_tc(dev);
1857
1858 if (num_pcs <= 1)
1859 return false;
1860
1861 rss_i = interface->ring_feature[RING_F_RSS].indices;
1862
1863 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1864 q_idx = pc;
1865 for (i = 0; i < rss_i; i++) {
1866 interface->tx_ring[offset + i]->reg_idx = q_idx;
1867 interface->tx_ring[offset + i]->qos_pc = pc;
1868 interface->rx_ring[offset + i]->reg_idx = q_idx;
1869 interface->rx_ring[offset + i]->qos_pc = pc;
1870 q_idx += pc_stride;
1871 }
1872 }
1873
1874 return true;
1875}
1876
1877/**
1878 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1879 * @interface: Interface structure continaining rings and devices
1880 *
1881 * Cache the descriptor ring offsets for RSS
1882 **/
1883static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1884{
1885 int i;
1886
1887 for (i = 0; i < interface->num_rx_queues; i++)
1888 interface->rx_ring[i]->reg_idx = i;
1889
1890 for (i = 0; i < interface->num_tx_queues; i++)
1891 interface->tx_ring[i]->reg_idx = i;
1892}
1893
1894/**
1895 * fm10k_assign_rings - Map rings to network devices
1896 * @interface: Interface structure containing rings and devices
1897 *
1898 * This function is meant to go though and configure both the network
1899 * devices so that they contain rings, and configure the rings so that
1900 * they function with their network devices.
1901 **/
1902static void fm10k_assign_rings(struct fm10k_intfc *interface)
1903{
1904 if (fm10k_cache_ring_qos(interface))
1905 return;
1906
1907 fm10k_cache_ring_rss(interface);
1908}
1909
18283cad
AD
1910static void fm10k_init_reta(struct fm10k_intfc *interface)
1911{
1912 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1913 u32 reta, base;
1914
1915 /* If the netdev is initialized we have to maintain table if possible */
1916 if (interface->netdev->reg_state) {
1917 for (i = FM10K_RETA_SIZE; i--;) {
1918 reta = interface->reta[i];
1919 if ((((reta << 24) >> 24) < rss_i) &&
1920 (((reta << 16) >> 24) < rss_i) &&
1921 (((reta << 8) >> 24) < rss_i) &&
1922 (((reta) >> 24) < rss_i))
1923 continue;
1924 goto repopulate_reta;
1925 }
1926
1927 /* do nothing if all of the elements are in bounds */
1928 return;
1929 }
1930
1931repopulate_reta:
1932 /* Populate the redirection table 4 entries at a time. To do this
1933 * we are generating the results for n and n+2 and then interleaving
1934 * those with the results with n+1 and n+3.
1935 */
1936 for (i = FM10K_RETA_SIZE; i--;) {
1937 /* first pass generates n and n+2 */
1938 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1939 reta = (base & 0x3F803F80) >> 7;
1940
1941 /* second pass generates n+1 and n+3 */
1942 base += 0x00010001 * rss_i;
1943 reta |= (base & 0x3F803F80) << 1;
1944
1945 interface->reta[i] = reta;
1946 }
1947}
1948
1949/**
1950 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1951 * @interface: board private structure to initialize
1952 *
1953 * We determine which queueing scheme to use based on...
1954 * - Hardware queue count (num_*_queues)
1955 * - defined by miscellaneous hardware support/features (RSS, etc.)
1956 **/
1957int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1958{
1959 int err;
1960
1961 /* Number of supported queues */
1962 fm10k_set_num_queues(interface);
1963
1964 /* Configure MSI-X capability */
1965 err = fm10k_init_msix_capability(interface);
1966 if (err) {
1967 dev_err(&interface->pdev->dev,
1968 "Unable to initialize MSI-X capability\n");
1969 return err;
1970 }
1971
1972 /* Allocate memory for queues */
1973 err = fm10k_alloc_q_vectors(interface);
1974 if (err)
1975 return err;
1976
aa3ac822
AD
1977 /* Map rings to devices, and map devices to physical queues */
1978 fm10k_assign_rings(interface);
1979
18283cad
AD
1980 /* Initialize RSS redirection table */
1981 fm10k_init_reta(interface);
1982
1983 return 0;
1984}
1985
1986/**
1987 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1988 * @interface: board private structure to clear queueing scheme on
1989 *
1990 * We go through and clear queueing specific resources and reset the structure
1991 * to pre-load conditions
1992 **/
1993void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1994{
1995 fm10k_free_q_vectors(interface);
1996 fm10k_reset_msix_capability(interface);
1997}
This page took 0.141942 seconds and 5 git commands to generate.