i40e/i40evf: enable prefetch of Tx descriptors during cleanup
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
49d7d933
ASJ
54 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 kfree(tx_buffer->raw_buf);
56 else
57 dev_kfree_skb_any(tx_buffer->skb);
58
7f12ad74
GR
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d
JB
129/**
130 * i40e_get_head - Retrieve head from head writeback
131 * @tx_ring: tx ring to fetch head of
132 *
133 * Returns value of Tx ring head based on value stored
134 * in head write-back location
135 **/
136static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137{
138 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140 return le32_to_cpu(*(volatile __le32 *)head);
141}
142
7f12ad74
GR
143/**
144 * i40e_get_tx_pending - how many tx descriptors not processed
145 * @tx_ring: the ring of descriptors
146 *
147 * Since there is no access to the ring head register
148 * in XL710, we need to use our local copies
149 **/
150static u32 i40e_get_tx_pending(struct i40e_ring *ring)
151{
a68de58d
JB
152 u32 head, tail;
153
154 head = i40e_get_head(ring);
155 tail = readl(ring->tail);
156
157 if (head != tail)
158 return (head < tail) ?
159 tail - head : (tail + ring->count - head);
160
161 return 0;
7f12ad74
GR
162}
163
164/**
165 * i40e_check_tx_hang - Is there a hang in the Tx queue
166 * @tx_ring: the ring of descriptors
167 **/
168static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
169{
a68de58d
JB
170 u32 tx_done = tx_ring->stats.packets;
171 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
7f12ad74
GR
172 u32 tx_pending = i40e_get_tx_pending(tx_ring);
173 bool ret = false;
174
175 clear_check_for_tx_hang(tx_ring);
176
177 /* Check for a hung queue, but be thorough. This verifies
178 * that a transmit has been completed since the previous
179 * check AND there is at least one packet pending. The
180 * ARMED bit is set to indicate a potential hang. The
181 * bit is cleared if a pause frame is received to remove
182 * false hang detection due to PFC or 802.3x frames. By
183 * requiring this to fail twice we avoid races with
184 * PFC clearing the ARMED bit and conditions where we
185 * run the check_tx_hang logic with a transmit completion
186 * pending but without time to complete it yet.
187 */
a68de58d 188 if ((tx_done_old == tx_done) && tx_pending) {
7f12ad74
GR
189 /* make sure it is true for two checks in a row */
190 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
191 &tx_ring->state);
a68de58d
JB
192 } else if (tx_done_old == tx_done &&
193 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
7f12ad74 194 /* update completed stats and disarm the hang check */
a68de58d 195 tx_ring->tx_stats.tx_done_old = tx_done;
7f12ad74
GR
196 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
197 }
198
199 return ret;
200}
201
c29af37f
ASJ
202#define WB_STRIDE 0x3
203
7f12ad74
GR
204/**
205 * i40e_clean_tx_irq - Reclaim resources after transmit completes
206 * @tx_ring: tx ring to clean
207 * @budget: how many cleans we're allowed
208 *
209 * Returns true if there's any budget left (e.g. the clean is finished)
210 **/
211static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
212{
213 u16 i = tx_ring->next_to_clean;
214 struct i40e_tx_buffer *tx_buf;
1943d8ba 215 struct i40e_tx_desc *tx_head;
7f12ad74
GR
216 struct i40e_tx_desc *tx_desc;
217 unsigned int total_packets = 0;
218 unsigned int total_bytes = 0;
219
220 tx_buf = &tx_ring->tx_bi[i];
221 tx_desc = I40E_TX_DESC(tx_ring, i);
222 i -= tx_ring->count;
223
1943d8ba
JB
224 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
225
7f12ad74
GR
226 do {
227 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
228
229 /* if next_to_watch is not set then there is no work pending */
230 if (!eop_desc)
231 break;
232
233 /* prevent any other reads prior to eop_desc */
234 read_barrier_depends();
235
1943d8ba
JB
236 /* we have caught up to head, no work left to do */
237 if (tx_head == tx_desc)
7f12ad74
GR
238 break;
239
240 /* clear next_to_watch to prevent false hangs */
241 tx_buf->next_to_watch = NULL;
242
243 /* update the statistics for this packet */
244 total_bytes += tx_buf->bytecount;
245 total_packets += tx_buf->gso_segs;
246
247 /* free the skb */
248 dev_kfree_skb_any(tx_buf->skb);
249
250 /* unmap skb header data */
251 dma_unmap_single(tx_ring->dev,
252 dma_unmap_addr(tx_buf, dma),
253 dma_unmap_len(tx_buf, len),
254 DMA_TO_DEVICE);
255
256 /* clear tx_buffer data */
257 tx_buf->skb = NULL;
258 dma_unmap_len_set(tx_buf, len, 0);
259
260 /* unmap remaining buffers */
261 while (tx_desc != eop_desc) {
262
263 tx_buf++;
264 tx_desc++;
265 i++;
266 if (unlikely(!i)) {
267 i -= tx_ring->count;
268 tx_buf = tx_ring->tx_bi;
269 tx_desc = I40E_TX_DESC(tx_ring, 0);
270 }
271
272 /* unmap any remaining paged data */
273 if (dma_unmap_len(tx_buf, len)) {
274 dma_unmap_page(tx_ring->dev,
275 dma_unmap_addr(tx_buf, dma),
276 dma_unmap_len(tx_buf, len),
277 DMA_TO_DEVICE);
278 dma_unmap_len_set(tx_buf, len, 0);
279 }
280 }
281
282 /* move us one more past the eop_desc for start of next pkt */
283 tx_buf++;
284 tx_desc++;
285 i++;
286 if (unlikely(!i)) {
287 i -= tx_ring->count;
288 tx_buf = tx_ring->tx_bi;
289 tx_desc = I40E_TX_DESC(tx_ring, 0);
290 }
291
016890b9
JB
292 prefetch(tx_desc);
293
7f12ad74
GR
294 /* update budget accounting */
295 budget--;
296 } while (likely(budget));
297
298 i += tx_ring->count;
299 tx_ring->next_to_clean = i;
300 u64_stats_update_begin(&tx_ring->syncp);
301 tx_ring->stats.bytes += total_bytes;
302 tx_ring->stats.packets += total_packets;
303 u64_stats_update_end(&tx_ring->syncp);
304 tx_ring->q_vector->tx.total_bytes += total_bytes;
305 tx_ring->q_vector->tx.total_packets += total_packets;
306
c29af37f
ASJ
307 if (budget &&
308 !((i & WB_STRIDE) == WB_STRIDE) &&
309 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
310 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
311 tx_ring->arm_wb = true;
312 else
313 tx_ring->arm_wb = false;
314
7f12ad74
GR
315 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
316 /* schedule immediate reset if we believe we hung */
317 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
318 " VSI <%d>\n"
319 " Tx Queue <%d>\n"
320 " next_to_use <%x>\n"
321 " next_to_clean <%x>\n",
322 tx_ring->vsi->seid,
323 tx_ring->queue_index,
324 tx_ring->next_to_use, i);
325 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
326 " time_stamp <%lx>\n"
327 " jiffies <%lx>\n",
328 tx_ring->tx_bi[i].time_stamp, jiffies);
329
330 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
331
332 dev_info(tx_ring->dev,
333 "tx hang detected on queue %d, resetting adapter\n",
334 tx_ring->queue_index);
335
336 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
337
338 /* the adapter is about to reset, no point in enabling stuff */
339 return true;
340 }
341
342 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
343 tx_ring->queue_index),
344 total_packets, total_bytes);
345
346#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
347 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
348 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
349 /* Make sure that anybody stopping the queue after this
350 * sees the new next_to_clean.
351 */
352 smp_mb();
353 if (__netif_subqueue_stopped(tx_ring->netdev,
354 tx_ring->queue_index) &&
355 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
356 netif_wake_subqueue(tx_ring->netdev,
357 tx_ring->queue_index);
358 ++tx_ring->tx_stats.restart_queue;
359 }
360 }
361
362 return budget > 0;
363}
364
c29af37f
ASJ
365/**
366 * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
367 * @vsi: the VSI we care about
368 * @q_vector: the vector on which to force writeback
369 *
370 **/
371static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
372{
373 u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
374 I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
375 I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
376 /* allow 00 to be written to the index */
377
378 wr32(&vsi->back->hw,
379 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
380 val);
381}
382
7f12ad74
GR
383/**
384 * i40e_set_new_dynamic_itr - Find new ITR level
385 * @rc: structure containing ring performance data
386 *
387 * Stores a new ITR value based on packets and byte counts during
388 * the last interrupt. The advantage of per interrupt computation
389 * is faster updates and more accurate ITR for the current traffic
390 * pattern. Constants in this function were computed based on
391 * theoretical maximum wire speed and thresholds were set based on
392 * testing data as well as attempting to minimize response time
393 * while increasing bulk throughput.
394 **/
395static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
396{
397 enum i40e_latency_range new_latency_range = rc->latency_range;
398 u32 new_itr = rc->itr;
399 int bytes_per_int;
400
401 if (rc->total_packets == 0 || !rc->itr)
402 return;
403
404 /* simple throttlerate management
405 * 0-10MB/s lowest (100000 ints/s)
406 * 10-20MB/s low (20000 ints/s)
407 * 20-1249MB/s bulk (8000 ints/s)
408 */
409 bytes_per_int = rc->total_bytes / rc->itr;
410 switch (rc->itr) {
411 case I40E_LOWEST_LATENCY:
412 if (bytes_per_int > 10)
413 new_latency_range = I40E_LOW_LATENCY;
414 break;
415 case I40E_LOW_LATENCY:
416 if (bytes_per_int > 20)
417 new_latency_range = I40E_BULK_LATENCY;
418 else if (bytes_per_int <= 10)
419 new_latency_range = I40E_LOWEST_LATENCY;
420 break;
421 case I40E_BULK_LATENCY:
422 if (bytes_per_int <= 20)
423 rc->latency_range = I40E_LOW_LATENCY;
424 break;
425 }
426
427 switch (new_latency_range) {
428 case I40E_LOWEST_LATENCY:
429 new_itr = I40E_ITR_100K;
430 break;
431 case I40E_LOW_LATENCY:
432 new_itr = I40E_ITR_20K;
433 break;
434 case I40E_BULK_LATENCY:
435 new_itr = I40E_ITR_8K;
436 break;
437 default:
438 break;
439 }
440
441 if (new_itr != rc->itr) {
442 /* do an exponential smoothing */
443 new_itr = (10 * new_itr * rc->itr) /
444 ((9 * new_itr) + rc->itr);
445 rc->itr = new_itr & I40E_MAX_ITR;
446 }
447
448 rc->total_bytes = 0;
449 rc->total_packets = 0;
450}
451
452/**
453 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
454 * @q_vector: the vector to adjust
455 **/
456static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
457{
458 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
459 struct i40e_hw *hw = &q_vector->vsi->back->hw;
460 u32 reg_addr;
461 u16 old_itr;
462
463 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
464 old_itr = q_vector->rx.itr;
465 i40e_set_new_dynamic_itr(&q_vector->rx);
466 if (old_itr != q_vector->rx.itr)
467 wr32(hw, reg_addr, q_vector->rx.itr);
468
469 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
470 old_itr = q_vector->tx.itr;
471 i40e_set_new_dynamic_itr(&q_vector->tx);
472 if (old_itr != q_vector->tx.itr)
473 wr32(hw, reg_addr, q_vector->tx.itr);
474}
475
476/**
477 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
478 * @tx_ring: the tx ring to set up
479 *
480 * Return 0 on success, negative on error
481 **/
482int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
483{
484 struct device *dev = tx_ring->dev;
485 int bi_size;
486
487 if (!dev)
488 return -ENOMEM;
489
490 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
491 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
492 if (!tx_ring->tx_bi)
493 goto err;
494
495 /* round up to nearest 4K */
496 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
497 /* add u32 for head writeback, align after this takes care of
498 * guaranteeing this is at least one cache line in size
499 */
500 tx_ring->size += sizeof(u32);
7f12ad74
GR
501 tx_ring->size = ALIGN(tx_ring->size, 4096);
502 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
503 &tx_ring->dma, GFP_KERNEL);
504 if (!tx_ring->desc) {
505 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
506 tx_ring->size);
507 goto err;
508 }
509
510 tx_ring->next_to_use = 0;
511 tx_ring->next_to_clean = 0;
512 return 0;
513
514err:
515 kfree(tx_ring->tx_bi);
516 tx_ring->tx_bi = NULL;
517 return -ENOMEM;
518}
519
520/**
521 * i40evf_clean_rx_ring - Free Rx buffers
522 * @rx_ring: ring to be cleaned
523 **/
524void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
525{
526 struct device *dev = rx_ring->dev;
527 struct i40e_rx_buffer *rx_bi;
528 unsigned long bi_size;
529 u16 i;
530
531 /* ring already cleared, nothing to do */
532 if (!rx_ring->rx_bi)
533 return;
534
a132af24
MW
535 if (ring_is_ps_enabled(rx_ring)) {
536 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
537
538 rx_bi = &rx_ring->rx_bi[0];
539 if (rx_bi->hdr_buf) {
540 dma_free_coherent(dev,
541 bufsz,
542 rx_bi->hdr_buf,
543 rx_bi->dma);
544 for (i = 0; i < rx_ring->count; i++) {
545 rx_bi = &rx_ring->rx_bi[i];
546 rx_bi->dma = 0;
37a2973a 547 rx_bi->hdr_buf = NULL;
a132af24
MW
548 }
549 }
550 }
7f12ad74
GR
551 /* Free all the Rx ring sk_buffs */
552 for (i = 0; i < rx_ring->count; i++) {
553 rx_bi = &rx_ring->rx_bi[i];
554 if (rx_bi->dma) {
555 dma_unmap_single(dev,
556 rx_bi->dma,
557 rx_ring->rx_buf_len,
558 DMA_FROM_DEVICE);
559 rx_bi->dma = 0;
560 }
561 if (rx_bi->skb) {
562 dev_kfree_skb(rx_bi->skb);
563 rx_bi->skb = NULL;
564 }
565 if (rx_bi->page) {
566 if (rx_bi->page_dma) {
567 dma_unmap_page(dev,
568 rx_bi->page_dma,
569 PAGE_SIZE / 2,
570 DMA_FROM_DEVICE);
571 rx_bi->page_dma = 0;
572 }
573 __free_page(rx_bi->page);
574 rx_bi->page = NULL;
575 rx_bi->page_offset = 0;
576 }
577 }
578
579 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
580 memset(rx_ring->rx_bi, 0, bi_size);
581
582 /* Zero out the descriptor ring */
583 memset(rx_ring->desc, 0, rx_ring->size);
584
585 rx_ring->next_to_clean = 0;
586 rx_ring->next_to_use = 0;
587}
588
589/**
590 * i40evf_free_rx_resources - Free Rx resources
591 * @rx_ring: ring to clean the resources from
592 *
593 * Free all receive software resources
594 **/
595void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
596{
597 i40evf_clean_rx_ring(rx_ring);
598 kfree(rx_ring->rx_bi);
599 rx_ring->rx_bi = NULL;
600
601 if (rx_ring->desc) {
602 dma_free_coherent(rx_ring->dev, rx_ring->size,
603 rx_ring->desc, rx_ring->dma);
604 rx_ring->desc = NULL;
605 }
606}
607
a132af24
MW
608/**
609 * i40evf_alloc_rx_headers - allocate rx header buffers
610 * @rx_ring: ring to alloc buffers
611 *
612 * Allocate rx header buffers for the entire ring. As these are static,
613 * this is only called when setting up a new ring.
614 **/
615void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
616{
617 struct device *dev = rx_ring->dev;
618 struct i40e_rx_buffer *rx_bi;
619 dma_addr_t dma;
620 void *buffer;
621 int buf_size;
622 int i;
623
624 if (rx_ring->rx_bi[0].hdr_buf)
625 return;
626 /* Make sure the buffers don't cross cache line boundaries. */
627 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
628 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
629 &dma, GFP_KERNEL);
630 if (!buffer)
631 return;
632 for (i = 0; i < rx_ring->count; i++) {
633 rx_bi = &rx_ring->rx_bi[i];
634 rx_bi->dma = dma + (i * buf_size);
635 rx_bi->hdr_buf = buffer + (i * buf_size);
636 }
637}
638
7f12ad74
GR
639/**
640 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
641 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
642 *
643 * Returns 0 on success, negative on failure
644 **/
645int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
646{
647 struct device *dev = rx_ring->dev;
648 int bi_size;
649
650 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
651 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
652 if (!rx_ring->rx_bi)
653 goto err;
654
f217d6ca 655 u64_stats_init(&rx_ring->syncp);
638702bd 656
7f12ad74
GR
657 /* Round up to nearest 4K */
658 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
659 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
660 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
661 rx_ring->size = ALIGN(rx_ring->size, 4096);
662 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
663 &rx_ring->dma, GFP_KERNEL);
664
665 if (!rx_ring->desc) {
666 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
667 rx_ring->size);
668 goto err;
669 }
670
671 rx_ring->next_to_clean = 0;
672 rx_ring->next_to_use = 0;
673
674 return 0;
675err:
676 kfree(rx_ring->rx_bi);
677 rx_ring->rx_bi = NULL;
678 return -ENOMEM;
679}
680
681/**
682 * i40e_release_rx_desc - Store the new tail and head values
683 * @rx_ring: ring to bump
684 * @val: new head index
685 **/
686static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
687{
688 rx_ring->next_to_use = val;
689 /* Force memory writes to complete before letting h/w
690 * know there are new descriptors to fetch. (Only
691 * applicable for weak-ordered memory model archs,
692 * such as IA-64).
693 */
694 wmb();
695 writel(val, rx_ring->tail);
696}
697
698/**
a132af24
MW
699 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
700 * @rx_ring: ring to place buffers on
701 * @cleaned_count: number of buffers to replace
702 **/
703void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
704{
705 u16 i = rx_ring->next_to_use;
706 union i40e_rx_desc *rx_desc;
707 struct i40e_rx_buffer *bi;
708
709 /* do nothing if no valid netdev defined */
710 if (!rx_ring->netdev || !cleaned_count)
711 return;
712
713 while (cleaned_count--) {
714 rx_desc = I40E_RX_DESC(rx_ring, i);
715 bi = &rx_ring->rx_bi[i];
716
717 if (bi->skb) /* desc is in use */
718 goto no_buffers;
719 if (!bi->page) {
720 bi->page = alloc_page(GFP_ATOMIC);
721 if (!bi->page) {
722 rx_ring->rx_stats.alloc_page_failed++;
723 goto no_buffers;
724 }
725 }
726
727 if (!bi->page_dma) {
728 /* use a half page if we're re-using */
729 bi->page_offset ^= PAGE_SIZE / 2;
730 bi->page_dma = dma_map_page(rx_ring->dev,
731 bi->page,
732 bi->page_offset,
733 PAGE_SIZE / 2,
734 DMA_FROM_DEVICE);
735 if (dma_mapping_error(rx_ring->dev,
736 bi->page_dma)) {
737 rx_ring->rx_stats.alloc_page_failed++;
738 bi->page_dma = 0;
739 goto no_buffers;
740 }
741 }
742
743 dma_sync_single_range_for_device(rx_ring->dev,
744 bi->dma,
745 0,
746 rx_ring->rx_hdr_len,
747 DMA_FROM_DEVICE);
748 /* Refresh the desc even if buffer_addrs didn't change
749 * because each write-back erases this info.
750 */
751 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
752 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
753 i++;
754 if (i == rx_ring->count)
755 i = 0;
756 }
757
758no_buffers:
759 if (rx_ring->next_to_use != i)
760 i40e_release_rx_desc(rx_ring, i);
761}
762
763/**
764 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
765 * @rx_ring: ring to place buffers on
766 * @cleaned_count: number of buffers to replace
767 **/
a132af24 768void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
769{
770 u16 i = rx_ring->next_to_use;
771 union i40e_rx_desc *rx_desc;
772 struct i40e_rx_buffer *bi;
773 struct sk_buff *skb;
774
775 /* do nothing if no valid netdev defined */
776 if (!rx_ring->netdev || !cleaned_count)
777 return;
778
779 while (cleaned_count--) {
780 rx_desc = I40E_RX_DESC(rx_ring, i);
781 bi = &rx_ring->rx_bi[i];
782 skb = bi->skb;
783
784 if (!skb) {
785 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
786 rx_ring->rx_buf_len);
787 if (!skb) {
788 rx_ring->rx_stats.alloc_buff_failed++;
789 goto no_buffers;
790 }
791 /* initialize queue mapping */
792 skb_record_rx_queue(skb, rx_ring->queue_index);
793 bi->skb = skb;
794 }
795
796 if (!bi->dma) {
797 bi->dma = dma_map_single(rx_ring->dev,
798 skb->data,
799 rx_ring->rx_buf_len,
800 DMA_FROM_DEVICE);
801 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
802 rx_ring->rx_stats.alloc_buff_failed++;
803 bi->dma = 0;
804 goto no_buffers;
805 }
806 }
807
a132af24
MW
808 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
809 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
810 i++;
811 if (i == rx_ring->count)
812 i = 0;
813 }
814
815no_buffers:
816 if (rx_ring->next_to_use != i)
817 i40e_release_rx_desc(rx_ring, i);
818}
819
820/**
821 * i40e_receive_skb - Send a completed packet up the stack
822 * @rx_ring: rx ring in play
823 * @skb: packet to send up
824 * @vlan_tag: vlan tag for packet
825 **/
826static void i40e_receive_skb(struct i40e_ring *rx_ring,
827 struct sk_buff *skb, u16 vlan_tag)
828{
829 struct i40e_q_vector *q_vector = rx_ring->q_vector;
830 struct i40e_vsi *vsi = rx_ring->vsi;
831 u64 flags = vsi->back->flags;
832
833 if (vlan_tag & VLAN_VID_MASK)
834 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
835
836 if (flags & I40E_FLAG_IN_NETPOLL)
837 netif_rx(skb);
838 else
839 napi_gro_receive(&q_vector->napi, skb);
840}
841
842/**
843 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
844 * @vsi: the VSI we care about
845 * @skb: skb currently being received and modified
846 * @rx_status: status value of last descriptor in packet
847 * @rx_error: error value of last descriptor in packet
848 * @rx_ptype: ptype value of last descriptor in packet
849 **/
850static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
851 struct sk_buff *skb,
852 u32 rx_status,
853 u32 rx_error,
854 u16 rx_ptype)
855{
8a3c91cc
JB
856 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
857 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
858 bool ipv4_tunnel, ipv6_tunnel;
859 __wsum rx_udp_csum;
7f12ad74 860 struct iphdr *iph;
8a3c91cc 861 __sum16 csum;
7f12ad74 862
f8faaa40
ASJ
863 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
864 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
865 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
866 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 867
7f12ad74
GR
868 skb->ip_summed = CHECKSUM_NONE;
869
870 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
871 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
872 return;
873
874 /* did the hardware decode the packet and checksum? */
875 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
876 return;
877
878 /* both known and outer_ip must be set for the below code to work */
879 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
880 return;
881
8a3c91cc
JB
882 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
883 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
884 ipv4 = true;
885 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
886 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
887 ipv6 = true;
888
889 if (ipv4 &&
890 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
891 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
892 goto checksum_fail;
893
ddf1d0d7 894 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 895 if (ipv6 &&
8a3c91cc
JB
896 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
897 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
898 return;
899
8a3c91cc
JB
900 /* there was some L4 error, count error and punt packet to the stack */
901 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
902 goto checksum_fail;
903
904 /* handle packets that were not able to be checksummed due
905 * to arrival speed, in this case the stack can compute
906 * the csum.
907 */
908 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 909 return;
7f12ad74 910
8a3c91cc
JB
911 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
912 * it in the driver, hardware does not do it for us.
913 * Since L3L4P bit was set we assume a valid IHL value (>=5)
914 * so the total length of IPv4 header is IHL*4 bytes
915 * The UDP_0 bit *may* bet set if the *inner* header is UDP
916 */
7f12ad74 917 if (ipv4_tunnel &&
8a3c91cc 918 (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
7f12ad74 919 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
7f12ad74
GR
920 skb->transport_header = skb->mac_header +
921 sizeof(struct ethhdr) +
922 (ip_hdr(skb)->ihl * 4);
923
924 /* Add 4 bytes for VLAN tagged packets */
925 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
926 skb->protocol == htons(ETH_P_8021AD))
927 ? VLAN_HLEN : 0;
928
929 rx_udp_csum = udp_csum(skb);
930 iph = ip_hdr(skb);
931 csum = csum_tcpudp_magic(
932 iph->saddr, iph->daddr,
933 (skb->len - skb_transport_offset(skb)),
934 IPPROTO_UDP, rx_udp_csum);
935
8a3c91cc
JB
936 if (udp_hdr(skb)->check != csum)
937 goto checksum_fail;
7f12ad74
GR
938 }
939
940 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 941 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
942
943 return;
944
945checksum_fail:
946 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
947}
948
949/**
950 * i40e_rx_hash - returns the hash value from the Rx descriptor
951 * @ring: descriptor ring
952 * @rx_desc: specific descriptor
953 **/
954static inline u32 i40e_rx_hash(struct i40e_ring *ring,
955 union i40e_rx_desc *rx_desc)
956{
957 const __le64 rss_mask =
958 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
959 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
960
961 if ((ring->netdev->features & NETIF_F_RXHASH) &&
962 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
963 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
964 else
965 return 0;
966}
967
206812b5
JB
968/**
969 * i40e_ptype_to_hash - get a hash type
970 * @ptype: the ptype value from the descriptor
971 *
972 * Returns a hash type to be used by skb_set_hash
973 **/
974static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
975{
976 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
977
978 if (!decoded.known)
979 return PKT_HASH_TYPE_NONE;
980
981 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
982 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
983 return PKT_HASH_TYPE_L4;
984 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
985 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
986 return PKT_HASH_TYPE_L3;
987 else
988 return PKT_HASH_TYPE_L2;
989}
990
7f12ad74 991/**
a132af24 992 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
993 * @rx_ring: rx ring to clean
994 * @budget: how many cleans we're allowed
995 *
996 * Returns true if there's any budget left (e.g. the clean is finished)
997 **/
a132af24 998static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
7f12ad74
GR
999{
1000 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1001 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1002 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1003 const int current_node = numa_node_id();
1004 struct i40e_vsi *vsi = rx_ring->vsi;
1005 u16 i = rx_ring->next_to_clean;
1006 union i40e_rx_desc *rx_desc;
1007 u32 rx_error, rx_status;
206812b5 1008 u8 rx_ptype;
7f12ad74 1009 u64 qword;
7f12ad74 1010
a132af24 1011 do {
7f12ad74
GR
1012 struct i40e_rx_buffer *rx_bi;
1013 struct sk_buff *skb;
1014 u16 vlan_tag;
a132af24
MW
1015 /* return some buffers to hardware, one at a time is too slow */
1016 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1017 i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1018 cleaned_count = 0;
1019 }
1020
1021 i = rx_ring->next_to_clean;
1022 rx_desc = I40E_RX_DESC(rx_ring, i);
1023 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1024 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1025 I40E_RXD_QW1_STATUS_SHIFT;
1026
1027 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1028 break;
1029
1030 /* This memory barrier is needed to keep us from reading
1031 * any other fields out of the rx_desc until we know the
1032 * DD bit is set.
1033 */
1034 rmb();
7f12ad74
GR
1035 rx_bi = &rx_ring->rx_bi[i];
1036 skb = rx_bi->skb;
a132af24
MW
1037 if (likely(!skb)) {
1038 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1039 rx_ring->rx_hdr_len);
1040 if (!skb)
1041 rx_ring->rx_stats.alloc_buff_failed++;
1042 /* initialize queue mapping */
1043 skb_record_rx_queue(skb, rx_ring->queue_index);
1044 /* we are reusing so sync this buffer for CPU use */
1045 dma_sync_single_range_for_cpu(rx_ring->dev,
1046 rx_bi->dma,
1047 0,
1048 rx_ring->rx_hdr_len,
1049 DMA_FROM_DEVICE);
1050 }
7f12ad74
GR
1051 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1052 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1053 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1054 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1055 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1056 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1057
1058 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1059 I40E_RXD_QW1_ERROR_SHIFT;
1060 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1061 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1062
1063 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1064 I40E_RXD_QW1_PTYPE_SHIFT;
a132af24 1065 prefetch(rx_bi->page);
7f12ad74 1066 rx_bi->skb = NULL;
a132af24
MW
1067 cleaned_count++;
1068 if (rx_hbo || rx_sph) {
1069 int len;
7f12ad74
GR
1070 if (rx_hbo)
1071 len = I40E_RX_HDR_SIZE;
7f12ad74 1072 else
a132af24
MW
1073 len = rx_header_len;
1074 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1075 } else if (skb->len == 0) {
1076 int len;
1077
1078 len = (rx_packet_len > skb_headlen(skb) ?
1079 skb_headlen(skb) : rx_packet_len);
1080 memcpy(__skb_put(skb, len),
1081 rx_bi->page + rx_bi->page_offset,
1082 len);
1083 rx_bi->page_offset += len;
1084 rx_packet_len -= len;
7f12ad74
GR
1085 }
1086
1087 /* Get the rest of the data if this was a header split */
a132af24 1088 if (rx_packet_len) {
7f12ad74
GR
1089 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1090 rx_bi->page,
1091 rx_bi->page_offset,
1092 rx_packet_len);
1093
1094 skb->len += rx_packet_len;
1095 skb->data_len += rx_packet_len;
1096 skb->truesize += rx_packet_len;
1097
1098 if ((page_count(rx_bi->page) == 1) &&
1099 (page_to_nid(rx_bi->page) == current_node))
1100 get_page(rx_bi->page);
1101 else
1102 rx_bi->page = NULL;
1103
1104 dma_unmap_page(rx_ring->dev,
1105 rx_bi->page_dma,
1106 PAGE_SIZE / 2,
1107 DMA_FROM_DEVICE);
1108 rx_bi->page_dma = 0;
1109 }
a132af24 1110 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1111
1112 if (unlikely(
1113 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1114 struct i40e_rx_buffer *next_buffer;
1115
1116 next_buffer = &rx_ring->rx_bi[i];
a132af24 1117 next_buffer->skb = skb;
7f12ad74 1118 rx_ring->rx_stats.non_eop_descs++;
a132af24 1119 continue;
7f12ad74
GR
1120 }
1121
1122 /* ERR_MASK will only have valid bits if EOP set */
1123 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1124 dev_kfree_skb_any(skb);
8a3c91cc
JB
1125 /* TODO: shouldn't we increment a counter indicating the
1126 * drop?
1127 */
a132af24 1128 continue;
7f12ad74
GR
1129 }
1130
206812b5
JB
1131 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1132 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1133 /* probably a little skewed due to removing CRC */
1134 total_rx_bytes += skb->len;
1135 total_rx_packets++;
1136
1137 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1138
1139 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1140
1141 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1142 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1143 : 0;
a132af24
MW
1144#ifdef I40E_FCOE
1145 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1146 dev_kfree_skb_any(skb);
1147 continue;
1148 }
1149#endif
1150 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
7f12ad74
GR
1151 i40e_receive_skb(rx_ring, skb, vlan_tag);
1152
1153 rx_ring->netdev->last_rx = jiffies;
7f12ad74 1154 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1155
a132af24
MW
1156 } while (likely(total_rx_packets < budget));
1157
1158 u64_stats_update_begin(&rx_ring->syncp);
1159 rx_ring->stats.packets += total_rx_packets;
1160 rx_ring->stats.bytes += total_rx_bytes;
1161 u64_stats_update_end(&rx_ring->syncp);
1162 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1163 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1164
1165 return total_rx_packets;
1166}
1167
1168/**
1169 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1170 * @rx_ring: rx ring to clean
1171 * @budget: how many cleans we're allowed
1172 *
1173 * Returns number of packets cleaned
1174 **/
1175static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1176{
1177 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1178 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1179 struct i40e_vsi *vsi = rx_ring->vsi;
1180 union i40e_rx_desc *rx_desc;
1181 u32 rx_error, rx_status;
1182 u16 rx_packet_len;
1183 u8 rx_ptype;
1184 u64 qword;
1185 u16 i;
1186
1187 do {
1188 struct i40e_rx_buffer *rx_bi;
1189 struct sk_buff *skb;
1190 u16 vlan_tag;
7f12ad74
GR
1191 /* return some buffers to hardware, one at a time is too slow */
1192 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
a132af24 1193 i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
7f12ad74
GR
1194 cleaned_count = 0;
1195 }
1196
a132af24
MW
1197 i = rx_ring->next_to_clean;
1198 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1199 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1200 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1201 I40E_RXD_QW1_STATUS_SHIFT;
1202
1203 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1204 break;
1205
1206 /* This memory barrier is needed to keep us from reading
1207 * any other fields out of the rx_desc until we know the
1208 * DD bit is set.
1209 */
1210 rmb();
1211
1212 rx_bi = &rx_ring->rx_bi[i];
1213 skb = rx_bi->skb;
1214 prefetch(skb->data);
1215
1216 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1217 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1218
1219 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1220 I40E_RXD_QW1_ERROR_SHIFT;
1221 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1222
1223 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1224 I40E_RXD_QW1_PTYPE_SHIFT;
1225 rx_bi->skb = NULL;
1226 cleaned_count++;
1227
1228 /* Get the header and possibly the whole packet
1229 * If this is an skb from previous receive dma will be 0
1230 */
1231 skb_put(skb, rx_packet_len);
1232 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1233 DMA_FROM_DEVICE);
1234 rx_bi->dma = 0;
1235
1236 I40E_RX_INCREMENT(rx_ring, i);
1237
1238 if (unlikely(
1239 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1240 rx_ring->rx_stats.non_eop_descs++;
1241 continue;
1242 }
1243
1244 /* ERR_MASK will only have valid bits if EOP set */
1245 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1246 dev_kfree_skb_any(skb);
1247 /* TODO: shouldn't we increment a counter indicating the
1248 * drop?
1249 */
1250 continue;
1251 }
1252
1253 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1254 i40e_ptype_to_hash(rx_ptype));
1255 /* probably a little skewed due to removing CRC */
1256 total_rx_bytes += skb->len;
1257 total_rx_packets++;
1258
1259 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1260
1261 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1262
1263 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1264 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1265 : 0;
1266 i40e_receive_skb(rx_ring, skb, vlan_tag);
1267
1268 rx_ring->netdev->last_rx = jiffies;
1269 rx_desc->wb.qword1.status_error_len = 0;
1270 } while (likely(total_rx_packets < budget));
7f12ad74 1271
7f12ad74
GR
1272 u64_stats_update_begin(&rx_ring->syncp);
1273 rx_ring->stats.packets += total_rx_packets;
1274 rx_ring->stats.bytes += total_rx_bytes;
1275 u64_stats_update_end(&rx_ring->syncp);
1276 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1277 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1278
a132af24 1279 return total_rx_packets;
7f12ad74
GR
1280}
1281
1282/**
1283 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1284 * @napi: napi struct with our devices info in it
1285 * @budget: amount of work driver is allowed to do this pass, in packets
1286 *
1287 * This function will clean all queues associated with a q_vector.
1288 *
1289 * Returns the amount of work done
1290 **/
1291int i40evf_napi_poll(struct napi_struct *napi, int budget)
1292{
1293 struct i40e_q_vector *q_vector =
1294 container_of(napi, struct i40e_q_vector, napi);
1295 struct i40e_vsi *vsi = q_vector->vsi;
1296 struct i40e_ring *ring;
1297 bool clean_complete = true;
c29af37f 1298 bool arm_wb = false;
7f12ad74 1299 int budget_per_ring;
a132af24 1300 int cleaned;
7f12ad74
GR
1301
1302 if (test_bit(__I40E_DOWN, &vsi->state)) {
1303 napi_complete(napi);
1304 return 0;
1305 }
1306
1307 /* Since the actual Tx work is minimal, we can give the Tx a larger
1308 * budget and be more aggressive about cleaning up the Tx descriptors.
1309 */
c29af37f 1310 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1311 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
c29af37f
ASJ
1312 arm_wb |= ring->arm_wb;
1313 }
7f12ad74
GR
1314
1315 /* We attempt to distribute budget to each Rx queue fairly, but don't
1316 * allow the budget to go below 1 because that would exit polling early.
1317 */
1318 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1319
a132af24
MW
1320 i40e_for_each_ring(ring, q_vector->rx) {
1321 if (ring_is_ps_enabled(ring))
1322 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1323 else
1324 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1325 /* if we didn't clean as many as budgeted, we must be done */
1326 clean_complete &= (budget_per_ring != cleaned);
1327 }
7f12ad74
GR
1328
1329 /* If work not completed, return budget and polling will return */
c29af37f
ASJ
1330 if (!clean_complete) {
1331 if (arm_wb)
1332 i40e_force_wb(vsi, q_vector);
7f12ad74 1333 return budget;
c29af37f 1334 }
7f12ad74
GR
1335
1336 /* Work is done so exit the polling mode and re-enable the interrupt */
1337 napi_complete(napi);
1338 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1339 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1340 i40e_update_dynamic_itr(q_vector);
1341
1342 if (!test_bit(__I40E_DOWN, &vsi->state))
1343 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1344
1345 return 0;
1346}
1347
1348/**
1349 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1350 * @skb: send buffer
1351 * @tx_ring: ring to send buffer on
1352 * @flags: the tx flags to be set
1353 *
1354 * Checks the skb and set up correspondingly several generic transmit flags
1355 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1356 *
1357 * Returns error code indicate the frame should be dropped upon error and the
1358 * otherwise returns 0 to indicate the flags has been set properly.
1359 **/
1360static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1361 struct i40e_ring *tx_ring,
1362 u32 *flags)
1363{
1364 __be16 protocol = skb->protocol;
1365 u32 tx_flags = 0;
1366
1367 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1368 if (skb_vlan_tag_present(skb)) {
1369 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1370 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1371 /* else if it is a SW VLAN, check the next protocol and store the tag */
1372 } else if (protocol == htons(ETH_P_8021Q)) {
1373 struct vlan_hdr *vhdr, _vhdr;
1374 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1375 if (!vhdr)
1376 return -EINVAL;
1377
1378 protocol = vhdr->h_vlan_encapsulated_proto;
1379 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1380 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1381 }
1382
1383 *flags = tx_flags;
1384 return 0;
1385}
1386
1387/**
1388 * i40e_tso - set up the tso context descriptor
1389 * @tx_ring: ptr to the ring to send
1390 * @skb: ptr to the skb we're sending
1391 * @tx_flags: the collected send information
1392 * @protocol: the send protocol
1393 * @hdr_len: ptr to the size of the packet header
1394 * @cd_tunneling: ptr to context descriptor bits
1395 *
1396 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1397 **/
1398static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1399 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1400 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1401{
1402 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1403 struct ipv6hdr *ipv6h;
7f12ad74
GR
1404 struct tcphdr *tcph;
1405 struct iphdr *iph;
1406 u32 l4len;
1407 int err;
7f12ad74
GR
1408
1409 if (!skb_is_gso(skb))
1410 return 0;
1411
fe6d4aa4
FR
1412 err = skb_cow_head(skb, 0);
1413 if (err < 0)
1414 return err;
7f12ad74 1415
85e76d03
AS
1416 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1417 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1418
1419 if (iph->version == 4) {
7f12ad74
GR
1420 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1421 iph->tot_len = 0;
1422 iph->check = 0;
1423 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1424 0, IPPROTO_TCP, 0);
85e76d03 1425 } else if (ipv6h->version == 6) {
7f12ad74
GR
1426 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1427 ipv6h->payload_len = 0;
1428 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1429 0, IPPROTO_TCP, 0);
1430 }
1431
1432 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1433 *hdr_len = (skb->encapsulation
1434 ? (skb_inner_transport_header(skb) - skb->data)
1435 : skb_transport_offset(skb)) + l4len;
1436
1437 /* find the field values */
1438 cd_cmd = I40E_TX_CTX_DESC_TSO;
1439 cd_tso_len = skb->len - *hdr_len;
1440 cd_mss = skb_shinfo(skb)->gso_size;
1441 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1442 ((u64)cd_tso_len <<
1443 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1444 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1445 return 1;
1446}
1447
1448/**
1449 * i40e_tx_enable_csum - Enable Tx checksum offloads
1450 * @skb: send buffer
1451 * @tx_flags: Tx flags currently set
1452 * @td_cmd: Tx descriptor command bits to set
1453 * @td_offset: Tx descriptor header offsets to set
1454 * @cd_tunneling: ptr to context desc bits
1455 **/
1456static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1457 u32 *td_cmd, u32 *td_offset,
1458 struct i40e_ring *tx_ring,
1459 u32 *cd_tunneling)
1460{
1461 struct ipv6hdr *this_ipv6_hdr;
1462 unsigned int this_tcp_hdrlen;
1463 struct iphdr *this_ip_hdr;
1464 u32 network_hdr_len;
1465 u8 l4_hdr = 0;
45991204 1466 u32 l4_tunnel = 0;
7f12ad74
GR
1467
1468 if (skb->encapsulation) {
45991204
ASJ
1469 switch (ip_hdr(skb)->protocol) {
1470 case IPPROTO_UDP:
1471 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1472 break;
1473 default:
1474 return;
1475 }
7f12ad74
GR
1476 network_hdr_len = skb_inner_network_header_len(skb);
1477 this_ip_hdr = inner_ip_hdr(skb);
1478 this_ipv6_hdr = inner_ipv6_hdr(skb);
1479 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1480
1481 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1482
1483 if (tx_flags & I40E_TX_FLAGS_TSO) {
1484 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1485 ip_hdr(skb)->check = 0;
1486 } else {
1487 *cd_tunneling |=
1488 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1489 }
1490 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03
AS
1491 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1492 if (tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1493 ip_hdr(skb)->check = 0;
7f12ad74
GR
1494 }
1495
1496 /* Now set the ctx descriptor fields */
1497 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1498 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1499 l4_tunnel |
7f12ad74
GR
1500 ((skb_inner_network_offset(skb) -
1501 skb_transport_offset(skb)) >> 1) <<
1502 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03
AS
1503 if (this_ip_hdr->version == 6) {
1504 tx_flags &= ~I40E_TX_FLAGS_IPV4;
1505 tx_flags |= I40E_TX_FLAGS_IPV6;
1506 }
1507
7f12ad74
GR
1508
1509 } else {
1510 network_hdr_len = skb_network_header_len(skb);
1511 this_ip_hdr = ip_hdr(skb);
1512 this_ipv6_hdr = ipv6_hdr(skb);
1513 this_tcp_hdrlen = tcp_hdrlen(skb);
1514 }
1515
1516 /* Enable IP checksum offloads */
1517 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1518 l4_hdr = this_ip_hdr->protocol;
1519 /* the stack computes the IP header already, the only time we
1520 * need the hardware to recompute it is in the case of TSO.
1521 */
1522 if (tx_flags & I40E_TX_FLAGS_TSO) {
1523 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1524 this_ip_hdr->check = 0;
1525 } else {
1526 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1527 }
1528 /* Now set the td_offset for IP header length */
1529 *td_offset = (network_hdr_len >> 2) <<
1530 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1531 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1532 l4_hdr = this_ipv6_hdr->nexthdr;
1533 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1534 /* Now set the td_offset for IP header length */
1535 *td_offset = (network_hdr_len >> 2) <<
1536 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1537 }
1538 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1539 *td_offset |= (skb_network_offset(skb) >> 1) <<
1540 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1541
1542 /* Enable L4 checksum offloads */
1543 switch (l4_hdr) {
1544 case IPPROTO_TCP:
1545 /* enable checksum offloads */
1546 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1547 *td_offset |= (this_tcp_hdrlen >> 2) <<
1548 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1549 break;
1550 case IPPROTO_SCTP:
1551 /* enable SCTP checksum offload */
1552 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1553 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1554 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1555 break;
1556 case IPPROTO_UDP:
1557 /* enable UDP checksum offload */
1558 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1559 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1560 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1561 break;
1562 default:
1563 break;
1564 }
1565}
1566
1567/**
1568 * i40e_create_tx_ctx Build the Tx context descriptor
1569 * @tx_ring: ring to create the descriptor on
1570 * @cd_type_cmd_tso_mss: Quad Word 1
1571 * @cd_tunneling: Quad Word 0 - bits 0-31
1572 * @cd_l2tag2: Quad Word 0 - bits 32-63
1573 **/
1574static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1575 const u64 cd_type_cmd_tso_mss,
1576 const u32 cd_tunneling, const u32 cd_l2tag2)
1577{
1578 struct i40e_tx_context_desc *context_desc;
1579 int i = tx_ring->next_to_use;
1580
ff40dd5d
JB
1581 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1582 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1583 return;
1584
1585 /* grab the next descriptor */
1586 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1587
1588 i++;
1589 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1590
1591 /* cpu_to_le32 and assign to struct fields */
1592 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1593 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1594 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1595 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1596}
1597
71da6197
AS
1598 /**
1599 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1600 * @skb: send buffer
1601 * @tx_flags: collected send information
1602 * @hdr_len: size of the packet header
1603 *
1604 * Note: Our HW can't scatter-gather more than 8 fragments to build
1605 * a packet on the wire and so we need to figure out the cases where we
1606 * need to linearize the skb.
1607 **/
1608static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
1609 const u8 hdr_len)
1610{
1611 struct skb_frag_struct *frag;
1612 bool linearize = false;
1613 unsigned int size = 0;
1614 u16 num_frags;
1615 u16 gso_segs;
1616
1617 num_frags = skb_shinfo(skb)->nr_frags;
1618 gso_segs = skb_shinfo(skb)->gso_segs;
1619
1620 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1621 u16 j = 1;
1622
1623 if (num_frags < (I40E_MAX_BUFFER_TXD))
1624 goto linearize_chk_done;
1625 /* try the simple math, if we have too many frags per segment */
1626 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1627 I40E_MAX_BUFFER_TXD) {
1628 linearize = true;
1629 goto linearize_chk_done;
1630 }
1631 frag = &skb_shinfo(skb)->frags[0];
1632 size = hdr_len;
1633 /* we might still have more fragments per segment */
1634 do {
1635 size += skb_frag_size(frag);
1636 frag++; j++;
1637 if (j == I40E_MAX_BUFFER_TXD) {
1638 if (size < skb_shinfo(skb)->gso_size) {
1639 linearize = true;
1640 break;
1641 }
1642 j = 1;
1643 size -= skb_shinfo(skb)->gso_size;
1644 if (size)
1645 j++;
1646 size += hdr_len;
1647 }
1648 num_frags--;
1649 } while (num_frags);
1650 } else {
1651 if (num_frags >= I40E_MAX_BUFFER_TXD)
1652 linearize = true;
1653 }
1654
1655linearize_chk_done:
1656 return linearize;
1657}
1658
7f12ad74
GR
1659/**
1660 * i40e_tx_map - Build the Tx descriptor
1661 * @tx_ring: ring to send buffer on
1662 * @skb: send buffer
1663 * @first: first buffer info buffer to use
1664 * @tx_flags: collected send information
1665 * @hdr_len: size of the packet header
1666 * @td_cmd: the command field in the descriptor
1667 * @td_offset: offset for checksum or crc
1668 **/
1669static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1670 struct i40e_tx_buffer *first, u32 tx_flags,
1671 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1672{
1673 unsigned int data_len = skb->data_len;
1674 unsigned int size = skb_headlen(skb);
1675 struct skb_frag_struct *frag;
1676 struct i40e_tx_buffer *tx_bi;
1677 struct i40e_tx_desc *tx_desc;
1678 u16 i = tx_ring->next_to_use;
1679 u32 td_tag = 0;
1680 dma_addr_t dma;
1681 u16 gso_segs;
1682
1683 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1684 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1685 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1686 I40E_TX_FLAGS_VLAN_SHIFT;
1687 }
1688
1689 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1690 gso_segs = skb_shinfo(skb)->gso_segs;
1691 else
1692 gso_segs = 1;
1693
1694 /* multiply data chunks by size of headers */
1695 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1696 first->gso_segs = gso_segs;
1697 first->skb = skb;
1698 first->tx_flags = tx_flags;
1699
1700 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1701
1702 tx_desc = I40E_TX_DESC(tx_ring, i);
1703 tx_bi = first;
1704
1705 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1706 if (dma_mapping_error(tx_ring->dev, dma))
1707 goto dma_error;
1708
1709 /* record length, and DMA address */
1710 dma_unmap_len_set(tx_bi, len, size);
1711 dma_unmap_addr_set(tx_bi, dma, dma);
1712
1713 tx_desc->buffer_addr = cpu_to_le64(dma);
1714
1715 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1716 tx_desc->cmd_type_offset_bsz =
1717 build_ctob(td_cmd, td_offset,
1718 I40E_MAX_DATA_PER_TXD, td_tag);
1719
1720 tx_desc++;
1721 i++;
1722 if (i == tx_ring->count) {
1723 tx_desc = I40E_TX_DESC(tx_ring, 0);
1724 i = 0;
1725 }
1726
1727 dma += I40E_MAX_DATA_PER_TXD;
1728 size -= I40E_MAX_DATA_PER_TXD;
1729
1730 tx_desc->buffer_addr = cpu_to_le64(dma);
1731 }
1732
1733 if (likely(!data_len))
1734 break;
1735
1736 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1737 size, td_tag);
1738
1739 tx_desc++;
1740 i++;
1741 if (i == tx_ring->count) {
1742 tx_desc = I40E_TX_DESC(tx_ring, 0);
1743 i = 0;
1744 }
1745
1746 size = skb_frag_size(frag);
1747 data_len -= size;
1748
1749 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1750 DMA_TO_DEVICE);
1751
1752 tx_bi = &tx_ring->tx_bi[i];
1753 }
1754
1943d8ba
JB
1755 /* Place RS bit on last descriptor of any packet that spans across the
1756 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1757 */
1758#define WB_STRIDE 0x3
1759 if (((i & WB_STRIDE) != WB_STRIDE) &&
1760 (first <= &tx_ring->tx_bi[i]) &&
1761 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1762 tx_desc->cmd_type_offset_bsz =
1763 build_ctob(td_cmd, td_offset, size, td_tag) |
1764 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1765 I40E_TXD_QW1_CMD_SHIFT);
1766 } else {
1767 tx_desc->cmd_type_offset_bsz =
1768 build_ctob(td_cmd, td_offset, size, td_tag) |
1769 cpu_to_le64((u64)I40E_TXD_CMD <<
1770 I40E_TXD_QW1_CMD_SHIFT);
1771 }
7f12ad74
GR
1772
1773 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1774 tx_ring->queue_index),
1775 first->bytecount);
1776
1777 /* set the timestamp */
1778 first->time_stamp = jiffies;
1779
1780 /* Force memory writes to complete before letting h/w
1781 * know there are new descriptors to fetch. (Only
1782 * applicable for weak-ordered memory model archs,
1783 * such as IA-64).
1784 */
1785 wmb();
1786
1787 /* set next_to_watch value indicating a packet is present */
1788 first->next_to_watch = tx_desc;
1789
1790 i++;
1791 if (i == tx_ring->count)
1792 i = 0;
1793
1794 tx_ring->next_to_use = i;
1795
1796 /* notify HW of packet */
1797 writel(i, tx_ring->tail);
1798
1799 return;
1800
1801dma_error:
1802 dev_info(tx_ring->dev, "TX DMA map failed\n");
1803
1804 /* clear dma mappings for failed tx_bi map */
1805 for (;;) {
1806 tx_bi = &tx_ring->tx_bi[i];
1807 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1808 if (tx_bi == first)
1809 break;
1810 if (i == 0)
1811 i = tx_ring->count;
1812 i--;
1813 }
1814
1815 tx_ring->next_to_use = i;
1816}
1817
1818/**
1819 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1820 * @tx_ring: the ring to be checked
1821 * @size: the size buffer we want to assure is available
1822 *
1823 * Returns -EBUSY if a stop is needed, else 0
1824 **/
1825static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1826{
1827 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1828 /* Memory barrier before checking head and tail */
1829 smp_mb();
1830
1831 /* Check again in a case another CPU has just made room available. */
1832 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1833 return -EBUSY;
1834
1835 /* A reprieve! - use start_queue because it doesn't call schedule */
1836 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1837 ++tx_ring->tx_stats.restart_queue;
1838 return 0;
1839}
1840
1841/**
1842 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1843 * @tx_ring: the ring to be checked
1844 * @size: the size buffer we want to assure is available
1845 *
1846 * Returns 0 if stop is not needed
1847 **/
1848static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1849{
1850 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1851 return 0;
1852 return __i40e_maybe_stop_tx(tx_ring, size);
1853}
1854
1855/**
1856 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1857 * @skb: send buffer
1858 * @tx_ring: ring to send buffer on
1859 *
1860 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1861 * there is not enough descriptors available in this ring since we need at least
1862 * one descriptor.
1863 **/
1864static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1865 struct i40e_ring *tx_ring)
1866{
7f12ad74 1867 unsigned int f;
7f12ad74
GR
1868 int count = 0;
1869
1870 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1871 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1872 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1873 * + 1 desc for context descriptor,
1874 * otherwise try next time
1875 */
7f12ad74
GR
1876 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1877 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1878
7f12ad74 1879 count += TXD_USE_COUNT(skb_headlen(skb));
be560521 1880 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1881 tx_ring->tx_stats.tx_busy++;
1882 return 0;
1883 }
1884 return count;
1885}
1886
1887/**
1888 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1889 * @skb: send buffer
1890 * @tx_ring: ring to send buffer on
1891 *
1892 * Returns NETDEV_TX_OK if sent, else an error code
1893 **/
1894static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1895 struct i40e_ring *tx_ring)
1896{
1897 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1898 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1899 struct i40e_tx_buffer *first;
1900 u32 td_offset = 0;
1901 u32 tx_flags = 0;
1902 __be16 protocol;
1903 u32 td_cmd = 0;
1904 u8 hdr_len = 0;
1905 int tso;
1906 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1907 return NETDEV_TX_BUSY;
1908
1909 /* prepare the xmit flags */
1910 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1911 goto out_drop;
1912
1913 /* obtain protocol of skb */
a12c4158 1914 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1915
1916 /* record the location of the first descriptor for this packet */
1917 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1918
1919 /* setup IPv4/IPv6 offloads */
1920 if (protocol == htons(ETH_P_IP))
1921 tx_flags |= I40E_TX_FLAGS_IPV4;
1922 else if (protocol == htons(ETH_P_IPV6))
1923 tx_flags |= I40E_TX_FLAGS_IPV6;
1924
1925 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1926 &cd_type_cmd_tso_mss, &cd_tunneling);
1927
1928 if (tso < 0)
1929 goto out_drop;
1930 else if (tso)
1931 tx_flags |= I40E_TX_FLAGS_TSO;
1932
71da6197
AS
1933 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
1934 if (skb_linearize(skb))
1935 goto out_drop;
1936
7f12ad74
GR
1937 skb_tx_timestamp(skb);
1938
1939 /* always enable CRC insertion offload */
1940 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1941
1942 /* Always offload the checksum, since it's in the data descriptor */
1943 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1944 tx_flags |= I40E_TX_FLAGS_CSUM;
1945
1946 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1947 tx_ring, &cd_tunneling);
1948 }
1949
1950 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1951 cd_tunneling, cd_l2tag2);
1952
1953 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1954 td_cmd, td_offset);
1955
1956 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1957
1958 return NETDEV_TX_OK;
1959
1960out_drop:
1961 dev_kfree_skb_any(skb);
1962 return NETDEV_TX_OK;
1963}
1964
1965/**
1966 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1967 * @skb: send buffer
1968 * @netdev: network interface device structure
1969 *
1970 * Returns NETDEV_TX_OK if sent, else an error code
1971 **/
1972netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1973{
1974 struct i40evf_adapter *adapter = netdev_priv(netdev);
1975 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1976
1977 /* hardware can't handle really short frames, hardware padding works
1978 * beyond this point
1979 */
1980 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1981 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1982 return NETDEV_TX_OK;
1983 skb->len = I40E_MIN_TX_LEN;
1984 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1985 }
1986
1987 return i40e_xmit_frame_ring(skb, tx_ring);
1988}
This page took 0.218791 seconds and 5 git commands to generate.