i40e/i40evf: Add support for IPIP and SIT offloads
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
dd353109 132 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 133 *
9c6c1259
KP
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
a68de58d 136 **/
dd353109 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 138{
9c6c1259 139 u32 head, tail;
a68de58d 140
dd353109
ASJ
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
9c6c1259
KP
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
a68de58d
JB
152}
153
c29af37f
ASJ
154#define WB_STRIDE 0x3
155
7f12ad74
GR
156/**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
158 * @vsi: the VSI we care about
159 * @tx_ring: Tx ring to clean
160 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
161 *
162 * Returns true if there's any budget left (e.g. the clean is finished)
163 **/
a619afe8
AD
164static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
165 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
166{
167 u16 i = tx_ring->next_to_clean;
168 struct i40e_tx_buffer *tx_buf;
1943d8ba 169 struct i40e_tx_desc *tx_head;
7f12ad74 170 struct i40e_tx_desc *tx_desc;
a619afe8
AD
171 unsigned int total_bytes = 0, total_packets = 0;
172 unsigned int budget = vsi->work_limit;
7f12ad74
GR
173
174 tx_buf = &tx_ring->tx_bi[i];
175 tx_desc = I40E_TX_DESC(tx_ring, i);
176 i -= tx_ring->count;
177
1943d8ba
JB
178 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
179
7f12ad74
GR
180 do {
181 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
182
183 /* if next_to_watch is not set then there is no work pending */
184 if (!eop_desc)
185 break;
186
187 /* prevent any other reads prior to eop_desc */
188 read_barrier_depends();
189
1943d8ba
JB
190 /* we have caught up to head, no work left to do */
191 if (tx_head == tx_desc)
7f12ad74
GR
192 break;
193
194 /* clear next_to_watch to prevent false hangs */
195 tx_buf->next_to_watch = NULL;
196
197 /* update the statistics for this packet */
198 total_bytes += tx_buf->bytecount;
199 total_packets += tx_buf->gso_segs;
200
201 /* free the skb */
a619afe8 202 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
203
204 /* unmap skb header data */
205 dma_unmap_single(tx_ring->dev,
206 dma_unmap_addr(tx_buf, dma),
207 dma_unmap_len(tx_buf, len),
208 DMA_TO_DEVICE);
209
210 /* clear tx_buffer data */
211 tx_buf->skb = NULL;
212 dma_unmap_len_set(tx_buf, len, 0);
213
214 /* unmap remaining buffers */
215 while (tx_desc != eop_desc) {
216
217 tx_buf++;
218 tx_desc++;
219 i++;
220 if (unlikely(!i)) {
221 i -= tx_ring->count;
222 tx_buf = tx_ring->tx_bi;
223 tx_desc = I40E_TX_DESC(tx_ring, 0);
224 }
225
226 /* unmap any remaining paged data */
227 if (dma_unmap_len(tx_buf, len)) {
228 dma_unmap_page(tx_ring->dev,
229 dma_unmap_addr(tx_buf, dma),
230 dma_unmap_len(tx_buf, len),
231 DMA_TO_DEVICE);
232 dma_unmap_len_set(tx_buf, len, 0);
233 }
234 }
235
236 /* move us one more past the eop_desc for start of next pkt */
237 tx_buf++;
238 tx_desc++;
239 i++;
240 if (unlikely(!i)) {
241 i -= tx_ring->count;
242 tx_buf = tx_ring->tx_bi;
243 tx_desc = I40E_TX_DESC(tx_ring, 0);
244 }
245
016890b9
JB
246 prefetch(tx_desc);
247
7f12ad74
GR
248 /* update budget accounting */
249 budget--;
250 } while (likely(budget));
251
252 i += tx_ring->count;
253 tx_ring->next_to_clean = i;
254 u64_stats_update_begin(&tx_ring->syncp);
255 tx_ring->stats.bytes += total_bytes;
256 tx_ring->stats.packets += total_packets;
257 u64_stats_update_end(&tx_ring->syncp);
258 tx_ring->q_vector->tx.total_bytes += total_bytes;
259 tx_ring->q_vector->tx.total_packets += total_packets;
260
f6d83d13
ASJ
261 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
262 unsigned int j = 0;
263 /* check to see if there are < 4 descriptors
264 * waiting to be written back, then kick the hardware to force
265 * them to be written back in case we stay in NAPI.
266 * In this mode on X722 we do not enable Interrupt.
267 */
dd353109 268 j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
269
270 if (budget &&
271 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
a619afe8 272 !test_bit(__I40E_DOWN, &vsi->state) &&
f6d83d13
ASJ
273 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
274 tx_ring->arm_wb = true;
275 }
276
7f12ad74
GR
277 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
278 tx_ring->queue_index),
279 total_packets, total_bytes);
280
281#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
282 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
283 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
284 /* Make sure that anybody stopping the queue after this
285 * sees the new next_to_clean.
286 */
287 smp_mb();
288 if (__netif_subqueue_stopped(tx_ring->netdev,
289 tx_ring->queue_index) &&
a619afe8 290 !test_bit(__I40E_DOWN, &vsi->state)) {
7f12ad74
GR
291 netif_wake_subqueue(tx_ring->netdev,
292 tx_ring->queue_index);
293 ++tx_ring->tx_stats.restart_queue;
294 }
295 }
296
b03a8c1f 297 return !!budget;
7f12ad74
GR
298}
299
c29af37f 300/**
ecc6a239 301 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 302 * @vsi: the VSI we care about
ecc6a239 303 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
304 *
305 **/
ecc6a239
ASJ
306static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
307 struct i40e_q_vector *q_vector)
c29af37f 308{
8e0764b4 309 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 310 u32 val;
8e0764b4 311
ecc6a239
ASJ
312 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
313 return;
314
315 if (q_vector->arm_wb_state)
316 return;
317
318 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
319 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
320
321 wr32(&vsi->back->hw,
322 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
323 vsi->base_vector - 1), val);
324 q_vector->arm_wb_state = true;
325}
326
327/**
328 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
329 * @vsi: the VSI we care about
330 * @q_vector: the vector on which to force writeback
331 *
332 **/
333void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
334{
335 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
336 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
337 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
338 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
339 /* allow 00 to be written to the index */;
340
341 wr32(&vsi->back->hw,
342 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
343 val);
c29af37f
ASJ
344}
345
7f12ad74
GR
346/**
347 * i40e_set_new_dynamic_itr - Find new ITR level
348 * @rc: structure containing ring performance data
349 *
8f5e39ce
JB
350 * Returns true if ITR changed, false if not
351 *
7f12ad74
GR
352 * Stores a new ITR value based on packets and byte counts during
353 * the last interrupt. The advantage of per interrupt computation
354 * is faster updates and more accurate ITR for the current traffic
355 * pattern. Constants in this function were computed based on
356 * theoretical maximum wire speed and thresholds were set based on
357 * testing data as well as attempting to minimize response time
358 * while increasing bulk throughput.
359 **/
8f5e39ce 360static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
361{
362 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 363 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
364 u32 new_itr = rc->itr;
365 int bytes_per_int;
51cc6d9f 366 int usecs;
7f12ad74
GR
367
368 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 369 return false;
7f12ad74
GR
370
371 /* simple throttlerate management
c56625d5 372 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 373 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
374 * 20-1249MB/s bulk (18000 ints/s)
375 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
376 *
377 * The math works out because the divisor is in 10^(-6) which
378 * turns the bytes/us input value into MB/s values, but
379 * make sure to use usecs, as the register values written
ee2319cf
JB
380 * are in 2 usec increments in the ITR registers, and make sure
381 * to use the smoothed values that the countdown timer gives us.
7f12ad74 382 */
ee2319cf 383 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 384 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 385
de32e3ef 386 switch (new_latency_range) {
7f12ad74
GR
387 case I40E_LOWEST_LATENCY:
388 if (bytes_per_int > 10)
389 new_latency_range = I40E_LOW_LATENCY;
390 break;
391 case I40E_LOW_LATENCY:
392 if (bytes_per_int > 20)
393 new_latency_range = I40E_BULK_LATENCY;
394 else if (bytes_per_int <= 10)
395 new_latency_range = I40E_LOWEST_LATENCY;
396 break;
397 case I40E_BULK_LATENCY:
c56625d5 398 case I40E_ULTRA_LATENCY:
de32e3ef
CW
399 default:
400 if (bytes_per_int <= 20)
401 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
402 break;
403 }
c56625d5
JB
404
405 /* this is to adjust RX more aggressively when streaming small
406 * packets. The value of 40000 was picked as it is just beyond
407 * what the hardware can receive per second if in low latency
408 * mode.
409 */
410#define RX_ULTRA_PACKET_RATE 40000
411
412 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
413 (&qv->rx == rc))
414 new_latency_range = I40E_ULTRA_LATENCY;
415
de32e3ef 416 rc->latency_range = new_latency_range;
7f12ad74
GR
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
c56625d5 420 new_itr = I40E_ITR_50K;
7f12ad74
GR
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
c56625d5
JB
426 new_itr = I40E_ITR_18K;
427 break;
428 case I40E_ULTRA_LATENCY:
7f12ad74
GR
429 new_itr = I40E_ITR_8K;
430 break;
431 default:
432 break;
433 }
434
7f12ad74
GR
435 rc->total_bytes = 0;
436 rc->total_packets = 0;
8f5e39ce
JB
437
438 if (new_itr != rc->itr) {
439 rc->itr = new_itr;
440 return true;
441 }
442
443 return false;
7f12ad74
GR
444}
445
4eeb1fff 446/**
7f12ad74
GR
447 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
448 * @tx_ring: the tx ring to set up
449 *
450 * Return 0 on success, negative on error
451 **/
452int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
453{
454 struct device *dev = tx_ring->dev;
455 int bi_size;
456
457 if (!dev)
458 return -ENOMEM;
459
67c818a1
MW
460 /* warn if we are about to overwrite the pointer */
461 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
462 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
463 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
464 if (!tx_ring->tx_bi)
465 goto err;
466
467 /* round up to nearest 4K */
468 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
469 /* add u32 for head writeback, align after this takes care of
470 * guaranteeing this is at least one cache line in size
471 */
472 tx_ring->size += sizeof(u32);
7f12ad74
GR
473 tx_ring->size = ALIGN(tx_ring->size, 4096);
474 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
475 &tx_ring->dma, GFP_KERNEL);
476 if (!tx_ring->desc) {
477 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
478 tx_ring->size);
479 goto err;
480 }
481
482 tx_ring->next_to_use = 0;
483 tx_ring->next_to_clean = 0;
484 return 0;
485
486err:
487 kfree(tx_ring->tx_bi);
488 tx_ring->tx_bi = NULL;
489 return -ENOMEM;
490}
491
492/**
493 * i40evf_clean_rx_ring - Free Rx buffers
494 * @rx_ring: ring to be cleaned
495 **/
496void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
497{
498 struct device *dev = rx_ring->dev;
499 struct i40e_rx_buffer *rx_bi;
500 unsigned long bi_size;
501 u16 i;
502
503 /* ring already cleared, nothing to do */
504 if (!rx_ring->rx_bi)
505 return;
506
a132af24
MW
507 if (ring_is_ps_enabled(rx_ring)) {
508 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
509
510 rx_bi = &rx_ring->rx_bi[0];
511 if (rx_bi->hdr_buf) {
512 dma_free_coherent(dev,
513 bufsz,
514 rx_bi->hdr_buf,
515 rx_bi->dma);
516 for (i = 0; i < rx_ring->count; i++) {
517 rx_bi = &rx_ring->rx_bi[i];
518 rx_bi->dma = 0;
37a2973a 519 rx_bi->hdr_buf = NULL;
a132af24
MW
520 }
521 }
522 }
7f12ad74
GR
523 /* Free all the Rx ring sk_buffs */
524 for (i = 0; i < rx_ring->count; i++) {
525 rx_bi = &rx_ring->rx_bi[i];
526 if (rx_bi->dma) {
527 dma_unmap_single(dev,
528 rx_bi->dma,
529 rx_ring->rx_buf_len,
530 DMA_FROM_DEVICE);
531 rx_bi->dma = 0;
532 }
533 if (rx_bi->skb) {
534 dev_kfree_skb(rx_bi->skb);
535 rx_bi->skb = NULL;
536 }
537 if (rx_bi->page) {
538 if (rx_bi->page_dma) {
539 dma_unmap_page(dev,
540 rx_bi->page_dma,
f16704e5 541 PAGE_SIZE,
7f12ad74
GR
542 DMA_FROM_DEVICE);
543 rx_bi->page_dma = 0;
544 }
545 __free_page(rx_bi->page);
546 rx_bi->page = NULL;
547 rx_bi->page_offset = 0;
548 }
549 }
550
551 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
552 memset(rx_ring->rx_bi, 0, bi_size);
553
554 /* Zero out the descriptor ring */
555 memset(rx_ring->desc, 0, rx_ring->size);
556
557 rx_ring->next_to_clean = 0;
558 rx_ring->next_to_use = 0;
559}
560
561/**
562 * i40evf_free_rx_resources - Free Rx resources
563 * @rx_ring: ring to clean the resources from
564 *
565 * Free all receive software resources
566 **/
567void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
568{
569 i40evf_clean_rx_ring(rx_ring);
570 kfree(rx_ring->rx_bi);
571 rx_ring->rx_bi = NULL;
572
573 if (rx_ring->desc) {
574 dma_free_coherent(rx_ring->dev, rx_ring->size,
575 rx_ring->desc, rx_ring->dma);
576 rx_ring->desc = NULL;
577 }
578}
579
a132af24
MW
580/**
581 * i40evf_alloc_rx_headers - allocate rx header buffers
582 * @rx_ring: ring to alloc buffers
583 *
584 * Allocate rx header buffers for the entire ring. As these are static,
585 * this is only called when setting up a new ring.
586 **/
587void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
588{
589 struct device *dev = rx_ring->dev;
590 struct i40e_rx_buffer *rx_bi;
591 dma_addr_t dma;
592 void *buffer;
593 int buf_size;
594 int i;
595
596 if (rx_ring->rx_bi[0].hdr_buf)
597 return;
598 /* Make sure the buffers don't cross cache line boundaries. */
599 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
600 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
601 &dma, GFP_KERNEL);
602 if (!buffer)
603 return;
604 for (i = 0; i < rx_ring->count; i++) {
605 rx_bi = &rx_ring->rx_bi[i];
606 rx_bi->dma = dma + (i * buf_size);
607 rx_bi->hdr_buf = buffer + (i * buf_size);
608 }
609}
610
7f12ad74
GR
611/**
612 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
613 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
614 *
615 * Returns 0 on success, negative on failure
616 **/
617int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
618{
619 struct device *dev = rx_ring->dev;
620 int bi_size;
621
67c818a1
MW
622 /* warn if we are about to overwrite the pointer */
623 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
624 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
625 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
626 if (!rx_ring->rx_bi)
627 goto err;
628
f217d6ca 629 u64_stats_init(&rx_ring->syncp);
638702bd 630
7f12ad74
GR
631 /* Round up to nearest 4K */
632 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
633 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
634 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
635 rx_ring->size = ALIGN(rx_ring->size, 4096);
636 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
637 &rx_ring->dma, GFP_KERNEL);
638
639 if (!rx_ring->desc) {
640 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
641 rx_ring->size);
642 goto err;
643 }
644
645 rx_ring->next_to_clean = 0;
646 rx_ring->next_to_use = 0;
647
648 return 0;
649err:
650 kfree(rx_ring->rx_bi);
651 rx_ring->rx_bi = NULL;
652 return -ENOMEM;
653}
654
655/**
656 * i40e_release_rx_desc - Store the new tail and head values
657 * @rx_ring: ring to bump
658 * @val: new head index
659 **/
660static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
661{
662 rx_ring->next_to_use = val;
663 /* Force memory writes to complete before letting h/w
664 * know there are new descriptors to fetch. (Only
665 * applicable for weak-ordered memory model archs,
666 * such as IA-64).
667 */
668 wmb();
669 writel(val, rx_ring->tail);
670}
671
672/**
a132af24
MW
673 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
674 * @rx_ring: ring to place buffers on
675 * @cleaned_count: number of buffers to replace
c2e245ab
JB
676 *
677 * Returns true if any errors on allocation
a132af24 678 **/
c2e245ab 679bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
a132af24
MW
680{
681 u16 i = rx_ring->next_to_use;
682 union i40e_rx_desc *rx_desc;
683 struct i40e_rx_buffer *bi;
f16704e5 684 const int current_node = numa_node_id();
a132af24
MW
685
686 /* do nothing if no valid netdev defined */
687 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 688 return false;
a132af24
MW
689
690 while (cleaned_count--) {
691 rx_desc = I40E_RX_DESC(rx_ring, i);
692 bi = &rx_ring->rx_bi[i];
693
694 if (bi->skb) /* desc is in use */
695 goto no_buffers;
f16704e5
MW
696
697 /* If we've been moved to a different NUMA node, release the
698 * page so we can get a new one on the current node.
699 */
700 if (bi->page && page_to_nid(bi->page) != current_node) {
701 dma_unmap_page(rx_ring->dev,
702 bi->page_dma,
703 PAGE_SIZE,
704 DMA_FROM_DEVICE);
705 __free_page(bi->page);
706 bi->page = NULL;
707 bi->page_dma = 0;
708 rx_ring->rx_stats.realloc_count++;
709 } else if (bi->page) {
710 rx_ring->rx_stats.page_reuse_count++;
711 }
712
a132af24
MW
713 if (!bi->page) {
714 bi->page = alloc_page(GFP_ATOMIC);
715 if (!bi->page) {
716 rx_ring->rx_stats.alloc_page_failed++;
717 goto no_buffers;
718 }
a132af24
MW
719 bi->page_dma = dma_map_page(rx_ring->dev,
720 bi->page,
f16704e5
MW
721 0,
722 PAGE_SIZE,
a132af24 723 DMA_FROM_DEVICE);
f16704e5 724 if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
a132af24 725 rx_ring->rx_stats.alloc_page_failed++;
f16704e5
MW
726 __free_page(bi->page);
727 bi->page = NULL;
a132af24 728 bi->page_dma = 0;
f16704e5 729 bi->page_offset = 0;
a132af24
MW
730 goto no_buffers;
731 }
f16704e5 732 bi->page_offset = 0;
a132af24
MW
733 }
734
a132af24
MW
735 /* Refresh the desc even if buffer_addrs didn't change
736 * because each write-back erases this info.
737 */
f16704e5
MW
738 rx_desc->read.pkt_addr =
739 cpu_to_le64(bi->page_dma + bi->page_offset);
a132af24
MW
740 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
741 i++;
742 if (i == rx_ring->count)
743 i = 0;
744 }
745
c2e245ab
JB
746 if (rx_ring->next_to_use != i)
747 i40e_release_rx_desc(rx_ring, i);
748
749 return false;
750
a132af24
MW
751no_buffers:
752 if (rx_ring->next_to_use != i)
753 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
754
755 /* make sure to come back via polling to try again after
756 * allocation failure
757 */
758 return true;
a132af24
MW
759}
760
761/**
762 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
763 * @rx_ring: ring to place buffers on
764 * @cleaned_count: number of buffers to replace
c2e245ab
JB
765 *
766 * Returns true if any errors on allocation
7f12ad74 767 **/
c2e245ab 768bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
769{
770 u16 i = rx_ring->next_to_use;
771 union i40e_rx_desc *rx_desc;
772 struct i40e_rx_buffer *bi;
773 struct sk_buff *skb;
774
775 /* do nothing if no valid netdev defined */
776 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 777 return false;
7f12ad74
GR
778
779 while (cleaned_count--) {
780 rx_desc = I40E_RX_DESC(rx_ring, i);
781 bi = &rx_ring->rx_bi[i];
782 skb = bi->skb;
783
784 if (!skb) {
dd1a5df8
JB
785 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
786 rx_ring->rx_buf_len,
787 GFP_ATOMIC |
788 __GFP_NOWARN);
7f12ad74
GR
789 if (!skb) {
790 rx_ring->rx_stats.alloc_buff_failed++;
791 goto no_buffers;
792 }
793 /* initialize queue mapping */
794 skb_record_rx_queue(skb, rx_ring->queue_index);
795 bi->skb = skb;
796 }
797
798 if (!bi->dma) {
799 bi->dma = dma_map_single(rx_ring->dev,
800 skb->data,
801 rx_ring->rx_buf_len,
802 DMA_FROM_DEVICE);
803 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
804 rx_ring->rx_stats.alloc_buff_failed++;
805 bi->dma = 0;
c2e245ab
JB
806 dev_kfree_skb(bi->skb);
807 bi->skb = NULL;
7f12ad74
GR
808 goto no_buffers;
809 }
810 }
811
a132af24
MW
812 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
813 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
814 i++;
815 if (i == rx_ring->count)
816 i = 0;
817 }
818
c2e245ab
JB
819 if (rx_ring->next_to_use != i)
820 i40e_release_rx_desc(rx_ring, i);
821
822 return false;
823
7f12ad74
GR
824no_buffers:
825 if (rx_ring->next_to_use != i)
826 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
827
828 /* make sure to come back via polling to try again after
829 * allocation failure
830 */
831 return true;
7f12ad74
GR
832}
833
834/**
835 * i40e_receive_skb - Send a completed packet up the stack
836 * @rx_ring: rx ring in play
837 * @skb: packet to send up
838 * @vlan_tag: vlan tag for packet
839 **/
840static void i40e_receive_skb(struct i40e_ring *rx_ring,
841 struct sk_buff *skb, u16 vlan_tag)
842{
843 struct i40e_q_vector *q_vector = rx_ring->q_vector;
7f12ad74
GR
844
845 if (vlan_tag & VLAN_VID_MASK)
846 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
847
8b650359 848 napi_gro_receive(&q_vector->napi, skb);
7f12ad74
GR
849}
850
851/**
852 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
853 * @vsi: the VSI we care about
854 * @skb: skb currently being received and modified
855 * @rx_status: status value of last descriptor in packet
856 * @rx_error: error value of last descriptor in packet
857 * @rx_ptype: ptype value of last descriptor in packet
858 **/
859static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
860 struct sk_buff *skb,
861 u32 rx_status,
862 u32 rx_error,
863 u16 rx_ptype)
864{
8a3c91cc 865 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
fad57330 866 bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
7f12ad74 867
7f12ad74
GR
868 skb->ip_summed = CHECKSUM_NONE;
869
870 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
871 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
872 return;
873
874 /* did the hardware decode the packet and checksum? */
41a1d04b 875 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
876 return;
877
878 /* both known and outer_ip must be set for the below code to work */
879 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
880 return;
881
fad57330
AD
882 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
883 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
884 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
885 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
886
887 if (ipv4 &&
41a1d04b
JB
888 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
889 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
890 goto checksum_fail;
891
ddf1d0d7 892 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 893 if (ipv6 &&
41a1d04b 894 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 895 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
896 return;
897
8a3c91cc 898 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 899 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
900 goto checksum_fail;
901
902 /* handle packets that were not able to be checksummed due
903 * to arrival speed, in this case the stack can compute
904 * the csum.
905 */
41a1d04b 906 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 907 return;
7f12ad74 908
a9c9a81f
AD
909 /* The hardware supported by this driver does not validate outer
910 * checksums for tunneled VXLAN or GENEVE frames. I don't agree
911 * with it but the specification states that you "MAY validate", it
912 * doesn't make it a hard requirement so if we have validated the
913 * inner checksum report CHECKSUM_UNNECESSARY.
8a3c91cc 914 */
7f12ad74 915
fad57330
AD
916 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
917 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
918 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
919 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
920
7f12ad74 921 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 922 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
923
924 return;
925
926checksum_fail:
927 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
928}
929
930/**
857942fd 931 * i40e_ptype_to_htype - get a hash type
206812b5
JB
932 * @ptype: the ptype value from the descriptor
933 *
934 * Returns a hash type to be used by skb_set_hash
935 **/
857942fd 936static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
206812b5
JB
937{
938 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
939
940 if (!decoded.known)
941 return PKT_HASH_TYPE_NONE;
942
943 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
944 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
945 return PKT_HASH_TYPE_L4;
946 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
947 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
948 return PKT_HASH_TYPE_L3;
949 else
950 return PKT_HASH_TYPE_L2;
951}
952
857942fd
ASJ
953/**
954 * i40e_rx_hash - set the hash value in the skb
955 * @ring: descriptor ring
956 * @rx_desc: specific descriptor
957 **/
958static inline void i40e_rx_hash(struct i40e_ring *ring,
959 union i40e_rx_desc *rx_desc,
960 struct sk_buff *skb,
961 u8 rx_ptype)
962{
963 u32 hash;
964 const __le64 rss_mask =
965 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
966 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
967
968 if (ring->netdev->features & NETIF_F_RXHASH)
969 return;
970
971 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
972 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
973 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
974 }
975}
976
7f12ad74 977/**
a132af24 978 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
979 * @rx_ring: rx ring to clean
980 * @budget: how many cleans we're allowed
981 *
982 * Returns true if there's any budget left (e.g. the clean is finished)
983 **/
c2e245ab 984static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
7f12ad74
GR
985{
986 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
987 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
988 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
7f12ad74
GR
989 struct i40e_vsi *vsi = rx_ring->vsi;
990 u16 i = rx_ring->next_to_clean;
991 union i40e_rx_desc *rx_desc;
992 u32 rx_error, rx_status;
c2e245ab 993 bool failure = false;
206812b5 994 u8 rx_ptype;
7f12ad74 995 u64 qword;
f16704e5 996 u32 copysize;
7f12ad74 997
a132af24 998 do {
7f12ad74
GR
999 struct i40e_rx_buffer *rx_bi;
1000 struct sk_buff *skb;
1001 u16 vlan_tag;
a132af24
MW
1002 /* return some buffers to hardware, one at a time is too slow */
1003 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1004 failure = failure ||
1005 i40evf_alloc_rx_buffers_ps(rx_ring,
1006 cleaned_count);
a132af24
MW
1007 cleaned_count = 0;
1008 }
1009
1010 i = rx_ring->next_to_clean;
1011 rx_desc = I40E_RX_DESC(rx_ring, i);
1012 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1013 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1014 I40E_RXD_QW1_STATUS_SHIFT;
1015
41a1d04b 1016 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1017 break;
1018
1019 /* This memory barrier is needed to keep us from reading
1020 * any other fields out of the rx_desc until we know the
1021 * DD bit is set.
1022 */
67317166 1023 dma_rmb();
f16704e5
MW
1024 /* sync header buffer for reading */
1025 dma_sync_single_range_for_cpu(rx_ring->dev,
1026 rx_ring->rx_bi[0].dma,
1027 i * rx_ring->rx_hdr_len,
1028 rx_ring->rx_hdr_len,
1029 DMA_FROM_DEVICE);
7f12ad74
GR
1030 rx_bi = &rx_ring->rx_bi[i];
1031 skb = rx_bi->skb;
a132af24 1032 if (likely(!skb)) {
dd1a5df8
JB
1033 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1034 rx_ring->rx_hdr_len,
1035 GFP_ATOMIC |
1036 __GFP_NOWARN);
8b6ed9c2 1037 if (!skb) {
a132af24 1038 rx_ring->rx_stats.alloc_buff_failed++;
c2e245ab 1039 failure = true;
8b6ed9c2
JB
1040 break;
1041 }
1042
a132af24
MW
1043 /* initialize queue mapping */
1044 skb_record_rx_queue(skb, rx_ring->queue_index);
1045 /* we are reusing so sync this buffer for CPU use */
1046 dma_sync_single_range_for_cpu(rx_ring->dev,
3578fa0a
JB
1047 rx_ring->rx_bi[0].dma,
1048 i * rx_ring->rx_hdr_len,
a132af24
MW
1049 rx_ring->rx_hdr_len,
1050 DMA_FROM_DEVICE);
1051 }
7f12ad74
GR
1052 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1053 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1054 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1055 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1056 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1057 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1058
1059 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1060 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b
JB
1061 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1062 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
7f12ad74
GR
1063
1064 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1065 I40E_RXD_QW1_PTYPE_SHIFT;
f16704e5
MW
1066 /* sync half-page for reading */
1067 dma_sync_single_range_for_cpu(rx_ring->dev,
1068 rx_bi->page_dma,
1069 rx_bi->page_offset,
1070 PAGE_SIZE / 2,
1071 DMA_FROM_DEVICE);
1072 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
7f12ad74 1073 rx_bi->skb = NULL;
a132af24 1074 cleaned_count++;
f16704e5 1075 copysize = 0;
a132af24
MW
1076 if (rx_hbo || rx_sph) {
1077 int len;
6995b36c 1078
7f12ad74
GR
1079 if (rx_hbo)
1080 len = I40E_RX_HDR_SIZE;
7f12ad74 1081 else
a132af24
MW
1082 len = rx_header_len;
1083 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1084 } else if (skb->len == 0) {
1085 int len;
f16704e5
MW
1086 unsigned char *va = page_address(rx_bi->page) +
1087 rx_bi->page_offset;
a132af24 1088
f16704e5
MW
1089 len = min(rx_packet_len, rx_ring->rx_hdr_len);
1090 memcpy(__skb_put(skb, len), va, len);
1091 copysize = len;
a132af24 1092 rx_packet_len -= len;
7f12ad74 1093 }
7f12ad74 1094 /* Get the rest of the data if this was a header split */
a132af24 1095 if (rx_packet_len) {
f16704e5
MW
1096 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1097 rx_bi->page,
1098 rx_bi->page_offset + copysize,
1099 rx_packet_len, I40E_RXBUFFER_2048);
1100
f16704e5
MW
1101 /* If the page count is more than 2, then both halves
1102 * of the page are used and we need to free it. Do it
1103 * here instead of in the alloc code. Otherwise one
1104 * of the half-pages might be released between now and
1105 * then, and we wouldn't know which one to use.
16fd08b8
MW
1106 * Don't call get_page and free_page since those are
1107 * both expensive atomic operations that just change
1108 * the refcount in opposite directions. Just give the
1109 * page to the stack; he can have our refcount.
f16704e5
MW
1110 */
1111 if (page_count(rx_bi->page) > 2) {
1112 dma_unmap_page(rx_ring->dev,
1113 rx_bi->page_dma,
1114 PAGE_SIZE,
1115 DMA_FROM_DEVICE);
7f12ad74 1116 rx_bi->page = NULL;
f16704e5
MW
1117 rx_bi->page_dma = 0;
1118 rx_ring->rx_stats.realloc_count++;
16fd08b8
MW
1119 } else {
1120 get_page(rx_bi->page);
1121 /* switch to the other half-page here; the
1122 * allocation code programs the right addr
1123 * into HW. If we haven't used this half-page,
1124 * the address won't be changed, and HW can
1125 * just use it next time through.
1126 */
1127 rx_bi->page_offset ^= PAGE_SIZE / 2;
f16704e5 1128 }
7f12ad74 1129
7f12ad74 1130 }
a132af24 1131 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1132
1133 if (unlikely(
41a1d04b 1134 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
7f12ad74
GR
1135 struct i40e_rx_buffer *next_buffer;
1136
1137 next_buffer = &rx_ring->rx_bi[i];
a132af24 1138 next_buffer->skb = skb;
7f12ad74 1139 rx_ring->rx_stats.non_eop_descs++;
a132af24 1140 continue;
7f12ad74
GR
1141 }
1142
1143 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1144 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
7f12ad74 1145 dev_kfree_skb_any(skb);
a132af24 1146 continue;
7f12ad74
GR
1147 }
1148
857942fd
ASJ
1149 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1150
7f12ad74
GR
1151 /* probably a little skewed due to removing CRC */
1152 total_rx_bytes += skb->len;
1153 total_rx_packets++;
1154
1155 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1156
1157 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1158
41a1d04b 1159 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
7f12ad74
GR
1160 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1161 : 0;
a132af24 1162#ifdef I40E_FCOE
1f15d667
JB
1163 if (unlikely(
1164 i40e_rx_is_fcoe(rx_ptype) &&
1165 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
a132af24
MW
1166 dev_kfree_skb_any(skb);
1167 continue;
1168 }
1169#endif
7f12ad74
GR
1170 i40e_receive_skb(rx_ring, skb, vlan_tag);
1171
7f12ad74 1172 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1173
a132af24
MW
1174 } while (likely(total_rx_packets < budget));
1175
1176 u64_stats_update_begin(&rx_ring->syncp);
1177 rx_ring->stats.packets += total_rx_packets;
1178 rx_ring->stats.bytes += total_rx_bytes;
1179 u64_stats_update_end(&rx_ring->syncp);
1180 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1181 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1182
c2e245ab 1183 return failure ? budget : total_rx_packets;
a132af24
MW
1184}
1185
1186/**
1187 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1188 * @rx_ring: rx ring to clean
1189 * @budget: how many cleans we're allowed
1190 *
1191 * Returns number of packets cleaned
1192 **/
1193static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1194{
1195 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1196 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1197 struct i40e_vsi *vsi = rx_ring->vsi;
1198 union i40e_rx_desc *rx_desc;
1199 u32 rx_error, rx_status;
1200 u16 rx_packet_len;
c2e245ab 1201 bool failure = false;
a132af24
MW
1202 u8 rx_ptype;
1203 u64 qword;
1204 u16 i;
1205
1206 do {
1207 struct i40e_rx_buffer *rx_bi;
1208 struct sk_buff *skb;
1209 u16 vlan_tag;
7f12ad74
GR
1210 /* return some buffers to hardware, one at a time is too slow */
1211 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1212 failure = failure ||
1213 i40evf_alloc_rx_buffers_1buf(rx_ring,
1214 cleaned_count);
7f12ad74
GR
1215 cleaned_count = 0;
1216 }
1217
a132af24
MW
1218 i = rx_ring->next_to_clean;
1219 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1220 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1221 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1222 I40E_RXD_QW1_STATUS_SHIFT;
1223
41a1d04b 1224 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1225 break;
1226
1227 /* This memory barrier is needed to keep us from reading
1228 * any other fields out of the rx_desc until we know the
1229 * DD bit is set.
1230 */
67317166 1231 dma_rmb();
a132af24
MW
1232
1233 rx_bi = &rx_ring->rx_bi[i];
1234 skb = rx_bi->skb;
1235 prefetch(skb->data);
1236
1237 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1238 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1239
1240 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1241 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b 1242 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
a132af24
MW
1243
1244 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1245 I40E_RXD_QW1_PTYPE_SHIFT;
1246 rx_bi->skb = NULL;
1247 cleaned_count++;
1248
1249 /* Get the header and possibly the whole packet
1250 * If this is an skb from previous receive dma will be 0
1251 */
1252 skb_put(skb, rx_packet_len);
1253 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1254 DMA_FROM_DEVICE);
1255 rx_bi->dma = 0;
1256
1257 I40E_RX_INCREMENT(rx_ring, i);
1258
1259 if (unlikely(
41a1d04b 1260 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
a132af24
MW
1261 rx_ring->rx_stats.non_eop_descs++;
1262 continue;
1263 }
1264
1265 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1266 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
a132af24 1267 dev_kfree_skb_any(skb);
a132af24
MW
1268 continue;
1269 }
1270
857942fd 1271 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
a132af24
MW
1272 /* probably a little skewed due to removing CRC */
1273 total_rx_bytes += skb->len;
1274 total_rx_packets++;
1275
1276 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1277
1278 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1279
41a1d04b 1280 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
a132af24
MW
1281 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1282 : 0;
1283 i40e_receive_skb(rx_ring, skb, vlan_tag);
1284
a132af24
MW
1285 rx_desc->wb.qword1.status_error_len = 0;
1286 } while (likely(total_rx_packets < budget));
7f12ad74 1287
7f12ad74
GR
1288 u64_stats_update_begin(&rx_ring->syncp);
1289 rx_ring->stats.packets += total_rx_packets;
1290 rx_ring->stats.bytes += total_rx_bytes;
1291 u64_stats_update_end(&rx_ring->syncp);
1292 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1293 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1294
c2e245ab 1295 return failure ? budget : total_rx_packets;
7f12ad74
GR
1296}
1297
8f5e39ce
JB
1298static u32 i40e_buildreg_itr(const int type, const u16 itr)
1299{
1300 u32 val;
1301
1302 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1303 /* Don't clear PBA because that can cause lost interrupts that
1304 * came in while we were cleaning/polling
1305 */
8f5e39ce
JB
1306 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1307 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1308
1309 return val;
1310}
1311
1312/* a small macro to shorten up some long lines */
1313#define INTREG I40E_VFINT_DYN_CTLN1
1314
de32e3ef
CW
1315/**
1316 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1317 * @vsi: the VSI we care about
1318 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1319 *
1320 **/
1321static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1322 struct i40e_q_vector *q_vector)
1323{
1324 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1325 bool rx = false, tx = false;
1326 u32 rxval, txval;
de32e3ef 1327 int vector;
de32e3ef
CW
1328
1329 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1330
1331 /* avoid dynamic calculation if in countdown mode OR if
1332 * all dynamic is disabled
1333 */
8f5e39ce
JB
1334 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1335
ee2319cf
JB
1336 if (q_vector->itr_countdown > 0 ||
1337 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1338 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1339 goto enable_int;
1340 }
1341
de32e3ef 1342 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1343 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1344 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1345 }
4eeb1fff 1346
de32e3ef 1347 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1348 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1349 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1350 }
4eeb1fff 1351
8f5e39ce
JB
1352 if (rx || tx) {
1353 /* get the higher of the two ITR adjustments and
1354 * use the same value for both ITR registers
1355 * when in adaptive mode (Rx and/or Tx)
1356 */
1357 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1358
1359 q_vector->tx.itr = q_vector->rx.itr = itr;
1360 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1361 tx = true;
1362 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1363 rx = true;
de32e3ef 1364 }
8f5e39ce
JB
1365
1366 /* only need to enable the interrupt once, but need
1367 * to possibly update both ITR values
1368 */
1369 if (rx) {
1370 /* set the INTENA_MSK_MASK so that this first write
1371 * won't actually enable the interrupt, instead just
1372 * updating the ITR (it's bit 31 PF and VF)
1373 */
1374 rxval |= BIT(31);
1375 /* don't check _DOWN because interrupt isn't being enabled */
1376 wr32(hw, INTREG(vector - 1), rxval);
1377 }
1378
ee2319cf 1379enable_int:
8f5e39ce
JB
1380 if (!test_bit(__I40E_DOWN, &vsi->state))
1381 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1382
1383 if (q_vector->itr_countdown)
1384 q_vector->itr_countdown--;
1385 else
1386 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1387}
1388
7f12ad74
GR
1389/**
1390 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1391 * @napi: napi struct with our devices info in it
1392 * @budget: amount of work driver is allowed to do this pass, in packets
1393 *
1394 * This function will clean all queues associated with a q_vector.
1395 *
1396 * Returns the amount of work done
1397 **/
1398int i40evf_napi_poll(struct napi_struct *napi, int budget)
1399{
1400 struct i40e_q_vector *q_vector =
1401 container_of(napi, struct i40e_q_vector, napi);
1402 struct i40e_vsi *vsi = q_vector->vsi;
1403 struct i40e_ring *ring;
1404 bool clean_complete = true;
c29af37f 1405 bool arm_wb = false;
7f12ad74 1406 int budget_per_ring;
32b3e08f 1407 int work_done = 0;
7f12ad74
GR
1408
1409 if (test_bit(__I40E_DOWN, &vsi->state)) {
1410 napi_complete(napi);
1411 return 0;
1412 }
1413
1414 /* Since the actual Tx work is minimal, we can give the Tx a larger
1415 * budget and be more aggressive about cleaning up the Tx descriptors.
1416 */
c29af37f 1417 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1418 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1419 clean_complete = false;
1420 continue;
1421 }
1422 arm_wb |= ring->arm_wb;
0deda868 1423 ring->arm_wb = false;
c29af37f 1424 }
7f12ad74 1425
c67caceb
AD
1426 /* Handle case where we are called by netpoll with a budget of 0 */
1427 if (budget <= 0)
1428 goto tx_only;
1429
7f12ad74
GR
1430 /* We attempt to distribute budget to each Rx queue fairly, but don't
1431 * allow the budget to go below 1 because that would exit polling early.
1432 */
1433 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1434
a132af24 1435 i40e_for_each_ring(ring, q_vector->rx) {
32b3e08f
JB
1436 int cleaned;
1437
a132af24
MW
1438 if (ring_is_ps_enabled(ring))
1439 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1440 else
1441 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
32b3e08f
JB
1442
1443 work_done += cleaned;
f2edaaaa
AD
1444 /* if we clean as many as budgeted, we must not be done */
1445 if (cleaned >= budget_per_ring)
1446 clean_complete = false;
a132af24 1447 }
7f12ad74
GR
1448
1449 /* If work not completed, return budget and polling will return */
c29af37f 1450 if (!clean_complete) {
c67caceb 1451tx_only:
164c9f54
ASJ
1452 if (arm_wb) {
1453 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1454 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1455 }
7f12ad74 1456 return budget;
c29af37f 1457 }
7f12ad74 1458
8e0764b4
ASJ
1459 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1460 q_vector->arm_wb_state = false;
1461
7f12ad74 1462 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1463 napi_complete_done(napi, work_done);
de32e3ef 1464 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1465 return 0;
1466}
1467
1468/**
3e587cf3 1469 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1470 * @skb: send buffer
1471 * @tx_ring: ring to send buffer on
1472 * @flags: the tx flags to be set
1473 *
1474 * Checks the skb and set up correspondingly several generic transmit flags
1475 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1476 *
1477 * Returns error code indicate the frame should be dropped upon error and the
1478 * otherwise returns 0 to indicate the flags has been set properly.
1479 **/
3e587cf3
JB
1480static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1481 struct i40e_ring *tx_ring,
1482 u32 *flags)
7f12ad74
GR
1483{
1484 __be16 protocol = skb->protocol;
1485 u32 tx_flags = 0;
1486
31eaaccf
GR
1487 if (protocol == htons(ETH_P_8021Q) &&
1488 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1489 /* When HW VLAN acceleration is turned off by the user the
1490 * stack sets the protocol to 8021q so that the driver
1491 * can take any steps required to support the SW only
1492 * VLAN handling. In our case the driver doesn't need
1493 * to take any further steps so just set the protocol
1494 * to the encapsulated ethertype.
1495 */
1496 skb->protocol = vlan_get_protocol(skb);
1497 goto out;
1498 }
1499
7f12ad74 1500 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1501 if (skb_vlan_tag_present(skb)) {
1502 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1503 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1504 /* else if it is a SW VLAN, check the next protocol and store the tag */
1505 } else if (protocol == htons(ETH_P_8021Q)) {
1506 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1507
7f12ad74
GR
1508 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1509 if (!vhdr)
1510 return -EINVAL;
1511
1512 protocol = vhdr->h_vlan_encapsulated_proto;
1513 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1514 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1515 }
1516
31eaaccf 1517out:
7f12ad74
GR
1518 *flags = tx_flags;
1519 return 0;
1520}
1521
1522/**
1523 * i40e_tso - set up the tso context descriptor
7f12ad74 1524 * @skb: ptr to the skb we're sending
7f12ad74 1525 * @hdr_len: ptr to the size of the packet header
9c883bd3 1526 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1527 *
1528 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1529 **/
84b07992 1530static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74 1531{
03f9d6a5 1532 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1533 union {
1534 struct iphdr *v4;
1535 struct ipv6hdr *v6;
1536 unsigned char *hdr;
1537 } ip;
c49a7bc3
AD
1538 union {
1539 struct tcphdr *tcp;
5453205c 1540 struct udphdr *udp;
c49a7bc3
AD
1541 unsigned char *hdr;
1542 } l4;
1543 u32 paylen, l4_offset;
7f12ad74 1544 int err;
7f12ad74 1545
e9f6563d
SN
1546 if (skb->ip_summed != CHECKSUM_PARTIAL)
1547 return 0;
1548
7f12ad74
GR
1549 if (!skb_is_gso(skb))
1550 return 0;
1551
fe6d4aa4
FR
1552 err = skb_cow_head(skb, 0);
1553 if (err < 0)
1554 return err;
7f12ad74 1555
c777019a
AD
1556 ip.hdr = skb_network_header(skb);
1557 l4.hdr = skb_transport_header(skb);
85e76d03 1558
c777019a
AD
1559 /* initialize outer IP header fields */
1560 if (ip.v4->version == 4) {
1561 ip.v4->tot_len = 0;
1562 ip.v4->check = 0;
c49a7bc3 1563 } else {
c777019a
AD
1564 ip.v6->payload_len = 0;
1565 }
1566
577389a5
AD
1567 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1568 SKB_GSO_IPIP |
1569 SKB_GSO_SIT |
1570 SKB_GSO_UDP_TUNNEL |
5453205c
AD
1571 SKB_GSO_UDP_TUNNEL_CSUM)) {
1572 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
1573 /* determine offset of outer transport header */
1574 l4_offset = l4.hdr - skb->data;
1575
1576 /* remove payload length from outer checksum */
24d41e5e
AD
1577 paylen = skb->len - l4_offset;
1578 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
5453205c
AD
1579 }
1580
c777019a
AD
1581 /* reset pointers to inner headers */
1582 ip.hdr = skb_inner_network_header(skb);
1583 l4.hdr = skb_inner_transport_header(skb);
1584
1585 /* initialize inner IP header fields */
1586 if (ip.v4->version == 4) {
1587 ip.v4->tot_len = 0;
1588 ip.v4->check = 0;
1589 } else {
1590 ip.v6->payload_len = 0;
1591 }
7f12ad74
GR
1592 }
1593
c49a7bc3
AD
1594 /* determine offset of inner transport header */
1595 l4_offset = l4.hdr - skb->data;
1596
1597 /* remove payload length from inner checksum */
24d41e5e
AD
1598 paylen = skb->len - l4_offset;
1599 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
c49a7bc3
AD
1600
1601 /* compute length of segmentation header */
1602 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74
GR
1603
1604 /* find the field values */
1605 cd_cmd = I40E_TX_CTX_DESC_TSO;
1606 cd_tso_len = skb->len - *hdr_len;
1607 cd_mss = skb_shinfo(skb)->gso_size;
03f9d6a5
AD
1608 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1609 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1610 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1611 return 1;
1612}
1613
1614/**
1615 * i40e_tx_enable_csum - Enable Tx checksum offloads
1616 * @skb: send buffer
89232c3b 1617 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1618 * @td_cmd: Tx descriptor command bits to set
1619 * @td_offset: Tx descriptor header offsets to set
529f1f65 1620 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1621 * @cd_tunneling: ptr to context desc bits
1622 **/
529f1f65
AD
1623static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1624 u32 *td_cmd, u32 *td_offset,
1625 struct i40e_ring *tx_ring,
1626 u32 *cd_tunneling)
7f12ad74 1627{
b96b78f2
AD
1628 union {
1629 struct iphdr *v4;
1630 struct ipv6hdr *v6;
1631 unsigned char *hdr;
1632 } ip;
1633 union {
1634 struct tcphdr *tcp;
1635 struct udphdr *udp;
1636 unsigned char *hdr;
1637 } l4;
a3fd9d88 1638 unsigned char *exthdr;
d1bd743b 1639 u32 offset, cmd = 0;
a3fd9d88 1640 __be16 frag_off;
b96b78f2
AD
1641 u8 l4_proto = 0;
1642
529f1f65
AD
1643 if (skb->ip_summed != CHECKSUM_PARTIAL)
1644 return 0;
1645
b96b78f2
AD
1646 ip.hdr = skb_network_header(skb);
1647 l4.hdr = skb_transport_header(skb);
7f12ad74 1648
475b4205
AD
1649 /* compute outer L2 header size */
1650 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1651
7f12ad74 1652 if (skb->encapsulation) {
d1bd743b 1653 u32 tunnel = 0;
a0064728
AD
1654 /* define outer network header type */
1655 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1656 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1657 I40E_TX_CTX_EXT_IP_IPV4 :
1658 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1659
a0064728
AD
1660 l4_proto = ip.v4->protocol;
1661 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1662 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1663
1664 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1665 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1666 if (l4.hdr != exthdr)
1667 ipv6_skip_exthdr(skb, exthdr - skb->data,
1668 &l4_proto, &frag_off);
a0064728
AD
1669 }
1670
1671 /* define outer transport */
1672 switch (l4_proto) {
45991204 1673 case IPPROTO_UDP:
475b4205 1674 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1675 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1676 break;
a0064728 1677 case IPPROTO_GRE:
475b4205 1678 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1679 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680 break;
577389a5
AD
1681 case IPPROTO_IPIP:
1682 case IPPROTO_IPV6:
1683 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1684 l4.hdr = skb_inner_network_header(skb);
1685 break;
45991204 1686 default:
529f1f65
AD
1687 if (*tx_flags & I40E_TX_FLAGS_TSO)
1688 return -1;
1689
1690 skb_checksum_help(skb);
1691 return 0;
45991204 1692 }
b96b78f2 1693
577389a5
AD
1694 /* compute outer L3 header size */
1695 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1696 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1697
1698 /* switch IP header pointer from outer to inner header */
1699 ip.hdr = skb_inner_network_header(skb);
1700
475b4205
AD
1701 /* compute tunnel header size */
1702 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1703 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1704
5453205c
AD
1705 /* indicate if we need to offload outer UDP header */
1706 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1707 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1708 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1709
475b4205
AD
1710 /* record tunnel offload values */
1711 *cd_tunneling |= tunnel;
1712
b96b78f2 1713 /* switch L4 header pointer from outer to inner */
b96b78f2 1714 l4.hdr = skb_inner_transport_header(skb);
a0064728 1715 l4_proto = 0;
7f12ad74 1716
a0064728
AD
1717 /* reset type as we transition from outer to inner headers */
1718 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1719 if (ip.v4->version == 4)
1720 *tx_flags |= I40E_TX_FLAGS_IPV4;
1721 if (ip.v6->version == 6)
89232c3b 1722 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1723 }
1724
1725 /* Enable IP checksum offloads */
89232c3b 1726 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1727 l4_proto = ip.v4->protocol;
7f12ad74
GR
1728 /* the stack computes the IP header already, the only time we
1729 * need the hardware to recompute it is in the case of TSO.
1730 */
475b4205
AD
1731 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1732 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1733 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1734 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1735 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1736
1737 exthdr = ip.hdr + sizeof(*ip.v6);
1738 l4_proto = ip.v6->nexthdr;
1739 if (l4.hdr != exthdr)
1740 ipv6_skip_exthdr(skb, exthdr - skb->data,
1741 &l4_proto, &frag_off);
7f12ad74 1742 }
b96b78f2 1743
475b4205
AD
1744 /* compute inner L3 header size */
1745 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1746
1747 /* Enable L4 checksum offloads */
b96b78f2 1748 switch (l4_proto) {
7f12ad74
GR
1749 case IPPROTO_TCP:
1750 /* enable checksum offloads */
475b4205
AD
1751 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1752 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1753 break;
1754 case IPPROTO_SCTP:
1755 /* enable SCTP checksum offload */
475b4205
AD
1756 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1757 offset |= (sizeof(struct sctphdr) >> 2) <<
1758 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1759 break;
1760 case IPPROTO_UDP:
1761 /* enable UDP checksum offload */
475b4205
AD
1762 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1763 offset |= (sizeof(struct udphdr) >> 2) <<
1764 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1765 break;
1766 default:
529f1f65
AD
1767 if (*tx_flags & I40E_TX_FLAGS_TSO)
1768 return -1;
1769 skb_checksum_help(skb);
1770 return 0;
7f12ad74 1771 }
475b4205
AD
1772
1773 *td_cmd |= cmd;
1774 *td_offset |= offset;
529f1f65
AD
1775
1776 return 1;
7f12ad74
GR
1777}
1778
1779/**
1780 * i40e_create_tx_ctx Build the Tx context descriptor
1781 * @tx_ring: ring to create the descriptor on
1782 * @cd_type_cmd_tso_mss: Quad Word 1
1783 * @cd_tunneling: Quad Word 0 - bits 0-31
1784 * @cd_l2tag2: Quad Word 0 - bits 32-63
1785 **/
1786static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1787 const u64 cd_type_cmd_tso_mss,
1788 const u32 cd_tunneling, const u32 cd_l2tag2)
1789{
1790 struct i40e_tx_context_desc *context_desc;
1791 int i = tx_ring->next_to_use;
1792
ff40dd5d
JB
1793 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1794 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1795 return;
1796
1797 /* grab the next descriptor */
1798 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1799
1800 i++;
1801 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1802
1803 /* cpu_to_le32 and assign to struct fields */
1804 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1805 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1806 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1807 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1808}
1809
4eeb1fff 1810/**
3f3f7cb8 1811 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1812 * @skb: send buffer
71da6197 1813 *
3f3f7cb8
AD
1814 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1815 * and so we need to figure out the cases where we need to linearize the skb.
1816 *
1817 * For TSO we need to count the TSO header and segment payload separately.
1818 * As such we need to check cases where we have 7 fragments or more as we
1819 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1820 * the segment payload in the first descriptor, and another 7 for the
1821 * fragments.
71da6197 1822 **/
2d37490b 1823bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1824{
2d37490b 1825 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1826 int nr_frags, sum;
71da6197 1827
3f3f7cb8 1828 /* no need to check if number of frags is less than 7 */
2d37490b 1829 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1830 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1831 return false;
71da6197 1832
2d37490b
AD
1833 /* We need to walk through the list and validate that each group
1834 * of 6 fragments totals at least gso_size. However we don't need
3f3f7cb8
AD
1835 * to perform such validation on the last 6 since the last 6 cannot
1836 * inherit any data from a descriptor after them.
2d37490b 1837 */
3f3f7cb8 1838 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1839 frag = &skb_shinfo(skb)->frags[0];
1840
1841 /* Initialize size to the negative value of gso_size minus 1. We
1842 * use this as the worst case scenerio in which the frag ahead
1843 * of us only provides one byte which is why we are limited to 6
1844 * descriptors for a single transmit as the header and previous
1845 * fragment are already consuming 2 descriptors.
1846 */
3f3f7cb8 1847 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 1848
3f3f7cb8
AD
1849 /* Add size of frags 0 through 4 to create our initial sum */
1850 sum += skb_frag_size(frag++);
1851 sum += skb_frag_size(frag++);
1852 sum += skb_frag_size(frag++);
1853 sum += skb_frag_size(frag++);
1854 sum += skb_frag_size(frag++);
2d37490b
AD
1855
1856 /* Walk through fragments adding latest fragment, testing it, and
1857 * then removing stale fragments from the sum.
1858 */
1859 stale = &skb_shinfo(skb)->frags[0];
1860 for (;;) {
3f3f7cb8 1861 sum += skb_frag_size(frag++);
2d37490b
AD
1862
1863 /* if sum is negative we failed to make sufficient progress */
1864 if (sum < 0)
1865 return true;
1866
1867 /* use pre-decrement to avoid processing last fragment */
1868 if (!--nr_frags)
1869 break;
1870
3f3f7cb8 1871 sum -= skb_frag_size(stale++);
71da6197
AS
1872 }
1873
2d37490b 1874 return false;
71da6197
AS
1875}
1876
8f6a2b05
JB
1877/**
1878 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1879 * @tx_ring: the ring to be checked
1880 * @size: the size buffer we want to assure is available
1881 *
1882 * Returns -EBUSY if a stop is needed, else 0
1883 **/
4ec441df 1884int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1885{
1886 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1887 /* Memory barrier before checking head and tail */
1888 smp_mb();
1889
1890 /* Check again in a case another CPU has just made room available. */
1891 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1892 return -EBUSY;
1893
1894 /* A reprieve! - use start_queue because it doesn't call schedule */
1895 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1896 ++tx_ring->tx_stats.restart_queue;
1897 return 0;
1898}
1899
7f12ad74 1900/**
3e587cf3 1901 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1902 * @tx_ring: ring to send buffer on
1903 * @skb: send buffer
1904 * @first: first buffer info buffer to use
1905 * @tx_flags: collected send information
1906 * @hdr_len: size of the packet header
1907 * @td_cmd: the command field in the descriptor
1908 * @td_offset: offset for checksum or crc
1909 **/
3e587cf3
JB
1910static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1911 struct i40e_tx_buffer *first, u32 tx_flags,
1912 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1913{
1914 unsigned int data_len = skb->data_len;
1915 unsigned int size = skb_headlen(skb);
1916 struct skb_frag_struct *frag;
1917 struct i40e_tx_buffer *tx_bi;
1918 struct i40e_tx_desc *tx_desc;
1919 u16 i = tx_ring->next_to_use;
1920 u32 td_tag = 0;
1921 dma_addr_t dma;
1922 u16 gso_segs;
6a7fded7
ASJ
1923 u16 desc_count = 0;
1924 bool tail_bump = true;
1925 bool do_rs = false;
7f12ad74
GR
1926
1927 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1928 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1929 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1930 I40E_TX_FLAGS_VLAN_SHIFT;
1931 }
1932
1933 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1934 gso_segs = skb_shinfo(skb)->gso_segs;
1935 else
1936 gso_segs = 1;
1937
1938 /* multiply data chunks by size of headers */
1939 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1940 first->gso_segs = gso_segs;
1941 first->skb = skb;
1942 first->tx_flags = tx_flags;
1943
1944 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1945
1946 tx_desc = I40E_TX_DESC(tx_ring, i);
1947 tx_bi = first;
1948
1949 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
1950 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1951
7f12ad74
GR
1952 if (dma_mapping_error(tx_ring->dev, dma))
1953 goto dma_error;
1954
1955 /* record length, and DMA address */
1956 dma_unmap_len_set(tx_bi, len, size);
1957 dma_unmap_addr_set(tx_bi, dma, dma);
1958
5c4654da
AD
1959 /* align size to end of page */
1960 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
1961 tx_desc->buffer_addr = cpu_to_le64(dma);
1962
1963 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1964 tx_desc->cmd_type_offset_bsz =
1965 build_ctob(td_cmd, td_offset,
5c4654da 1966 max_data, td_tag);
7f12ad74
GR
1967
1968 tx_desc++;
1969 i++;
6a7fded7
ASJ
1970 desc_count++;
1971
7f12ad74
GR
1972 if (i == tx_ring->count) {
1973 tx_desc = I40E_TX_DESC(tx_ring, 0);
1974 i = 0;
1975 }
1976
5c4654da
AD
1977 dma += max_data;
1978 size -= max_data;
7f12ad74 1979
5c4654da 1980 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
1981 tx_desc->buffer_addr = cpu_to_le64(dma);
1982 }
1983
1984 if (likely(!data_len))
1985 break;
1986
1987 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1988 size, td_tag);
1989
1990 tx_desc++;
1991 i++;
6a7fded7
ASJ
1992 desc_count++;
1993
7f12ad74
GR
1994 if (i == tx_ring->count) {
1995 tx_desc = I40E_TX_DESC(tx_ring, 0);
1996 i = 0;
1997 }
1998
1999 size = skb_frag_size(frag);
2000 data_len -= size;
2001
2002 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2003 DMA_TO_DEVICE);
2004
2005 tx_bi = &tx_ring->tx_bi[i];
2006 }
2007
7f12ad74
GR
2008 /* set next_to_watch value indicating a packet is present */
2009 first->next_to_watch = tx_desc;
2010
2011 i++;
2012 if (i == tx_ring->count)
2013 i = 0;
2014
2015 tx_ring->next_to_use = i;
2016
6a7fded7
ASJ
2017 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2018 tx_ring->queue_index),
2019 first->bytecount);
4ec441df 2020 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
2021
2022 /* Algorithm to optimize tail and RS bit setting:
2023 * if xmit_more is supported
2024 * if xmit_more is true
2025 * do not update tail and do not mark RS bit.
2026 * if xmit_more is false and last xmit_more was false
2027 * if every packet spanned less than 4 desc
2028 * then set RS bit on 4th packet and update tail
2029 * on every packet
2030 * else
2031 * update tail and set RS bit on every packet.
2032 * if xmit_more is false and last_xmit_more was true
2033 * update tail and set RS bit.
6a7fded7
ASJ
2034 *
2035 * Optimization: wmb to be issued only in case of tail update.
2036 * Also optimize the Descriptor WB path for RS bit with the same
2037 * algorithm.
2038 *
2039 * Note: If there are less than 4 packets
2040 * pending and interrupts were disabled the service task will
2041 * trigger a force WB.
2042 */
2043 if (skb->xmit_more &&
2044 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2045 tx_ring->queue_index))) {
2046 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2047 tail_bump = false;
2048 } else if (!skb->xmit_more &&
2049 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2050 tx_ring->queue_index)) &&
2051 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2052 (tx_ring->packet_stride < WB_STRIDE) &&
2053 (desc_count < WB_STRIDE)) {
2054 tx_ring->packet_stride++;
2055 } else {
2056 tx_ring->packet_stride = 0;
2057 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2058 do_rs = true;
2059 }
2060 if (do_rs)
2061 tx_ring->packet_stride = 0;
2062
2063 tx_desc->cmd_type_offset_bsz =
2064 build_ctob(td_cmd, td_offset, size, td_tag) |
2065 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2066 I40E_TX_DESC_CMD_EOP) <<
2067 I40E_TXD_QW1_CMD_SHIFT);
2068
7f12ad74 2069 /* notify HW of packet */
6a7fded7 2070 if (!tail_bump)
489ce7a4 2071 prefetchw(tx_desc + 1);
7f12ad74 2072
6a7fded7
ASJ
2073 if (tail_bump) {
2074 /* Force memory writes to complete before letting h/w
2075 * know there are new descriptors to fetch. (Only
2076 * applicable for weak-ordered memory model archs,
2077 * such as IA-64).
2078 */
2079 wmb();
2080 writel(i, tx_ring->tail);
2081 }
2082
7f12ad74
GR
2083 return;
2084
2085dma_error:
2086 dev_info(tx_ring->dev, "TX DMA map failed\n");
2087
2088 /* clear dma mappings for failed tx_bi map */
2089 for (;;) {
2090 tx_bi = &tx_ring->tx_bi[i];
2091 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2092 if (tx_bi == first)
2093 break;
2094 if (i == 0)
2095 i = tx_ring->count;
2096 i--;
2097 }
2098
2099 tx_ring->next_to_use = i;
2100}
2101
7f12ad74
GR
2102/**
2103 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2104 * @skb: send buffer
2105 * @tx_ring: ring to send buffer on
2106 *
2107 * Returns NETDEV_TX_OK if sent, else an error code
2108 **/
2109static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2110 struct i40e_ring *tx_ring)
2111{
2112 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2113 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2114 struct i40e_tx_buffer *first;
2115 u32 td_offset = 0;
2116 u32 tx_flags = 0;
2117 __be16 protocol;
2118 u32 td_cmd = 0;
2119 u8 hdr_len = 0;
4ec441df 2120 int tso, count;
6995b36c 2121
b74118f0
JB
2122 /* prefetch the data, we'll need it later */
2123 prefetch(skb->data);
2124
4ec441df 2125 count = i40e_xmit_descriptor_count(skb);
2d37490b
AD
2126 if (i40e_chk_linearize(skb, count)) {
2127 if (__skb_linearize(skb))
2128 goto out_drop;
5c4654da 2129 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2130 tx_ring->tx_stats.tx_linearize++;
2131 }
4ec441df
AD
2132
2133 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2134 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2135 * + 4 desc gap to avoid the cache line where head is,
2136 * + 1 desc for context descriptor,
2137 * otherwise try next time
2138 */
2139 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2140 tx_ring->tx_stats.tx_busy++;
7f12ad74 2141 return NETDEV_TX_BUSY;
4ec441df 2142 }
7f12ad74
GR
2143
2144 /* prepare the xmit flags */
3e587cf3 2145 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2146 goto out_drop;
2147
2148 /* obtain protocol of skb */
a12c4158 2149 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2150
2151 /* record the location of the first descriptor for this packet */
2152 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2153
2154 /* setup IPv4/IPv6 offloads */
2155 if (protocol == htons(ETH_P_IP))
2156 tx_flags |= I40E_TX_FLAGS_IPV4;
2157 else if (protocol == htons(ETH_P_IPV6))
2158 tx_flags |= I40E_TX_FLAGS_IPV6;
2159
84b07992 2160 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2161
2162 if (tso < 0)
2163 goto out_drop;
2164 else if (tso)
2165 tx_flags |= I40E_TX_FLAGS_TSO;
2166
7f12ad74 2167 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2168 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2169 tx_ring, &cd_tunneling);
2170 if (tso < 0)
2171 goto out_drop;
7f12ad74 2172
3bc67973
AD
2173 skb_tx_timestamp(skb);
2174
2175 /* always enable CRC insertion offload */
2176 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2177
7f12ad74
GR
2178 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2179 cd_tunneling, cd_l2tag2);
2180
3e587cf3
JB
2181 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2182 td_cmd, td_offset);
7f12ad74 2183
7f12ad74
GR
2184 return NETDEV_TX_OK;
2185
2186out_drop:
2187 dev_kfree_skb_any(skb);
2188 return NETDEV_TX_OK;
2189}
2190
2191/**
2192 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2193 * @skb: send buffer
2194 * @netdev: network interface device structure
2195 *
2196 * Returns NETDEV_TX_OK if sent, else an error code
2197 **/
2198netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2199{
2200 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2201 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2202
2203 /* hardware can't handle really short frames, hardware padding works
2204 * beyond this point
2205 */
2206 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2207 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2208 return NETDEV_TX_OK;
2209 skb->len = I40E_MIN_TX_LEN;
2210 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2211 }
2212
2213 return i40e_xmit_frame_ring(skb, tx_ring);
2214}
This page took 0.332342 seconds and 5 git commands to generate.