i40e: use new add_veb calling with VEB stats control
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
a68de58d 132 *
9c6c1259
KP
133 * Since there is no access to the ring head register
134 * in XL710, we need to use our local copies
a68de58d 135 **/
9c6c1259 136u32 i40evf_get_tx_pending(struct i40e_ring *ring)
a68de58d 137{
9c6c1259 138 u32 head, tail;
a68de58d 139
9c6c1259
KP
140 head = i40e_get_head(ring);
141 tail = readl(ring->tail);
142
143 if (head != tail)
144 return (head < tail) ?
145 tail - head : (tail + ring->count - head);
146
147 return 0;
a68de58d
JB
148}
149
c29af37f
ASJ
150#define WB_STRIDE 0x3
151
7f12ad74
GR
152/**
153 * i40e_clean_tx_irq - Reclaim resources after transmit completes
154 * @tx_ring: tx ring to clean
155 * @budget: how many cleans we're allowed
156 *
157 * Returns true if there's any budget left (e.g. the clean is finished)
158 **/
159static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
160{
161 u16 i = tx_ring->next_to_clean;
162 struct i40e_tx_buffer *tx_buf;
1943d8ba 163 struct i40e_tx_desc *tx_head;
7f12ad74
GR
164 struct i40e_tx_desc *tx_desc;
165 unsigned int total_packets = 0;
166 unsigned int total_bytes = 0;
167
168 tx_buf = &tx_ring->tx_bi[i];
169 tx_desc = I40E_TX_DESC(tx_ring, i);
170 i -= tx_ring->count;
171
1943d8ba
JB
172 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
173
7f12ad74
GR
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 read_barrier_depends();
183
1943d8ba
JB
184 /* we have caught up to head, no work left to do */
185 if (tx_head == tx_desc)
7f12ad74
GR
186 break;
187
188 /* clear next_to_watch to prevent false hangs */
189 tx_buf->next_to_watch = NULL;
190
191 /* update the statistics for this packet */
192 total_bytes += tx_buf->bytecount;
193 total_packets += tx_buf->gso_segs;
194
195 /* free the skb */
196 dev_kfree_skb_any(tx_buf->skb);
197
198 /* unmap skb header data */
199 dma_unmap_single(tx_ring->dev,
200 dma_unmap_addr(tx_buf, dma),
201 dma_unmap_len(tx_buf, len),
202 DMA_TO_DEVICE);
203
204 /* clear tx_buffer data */
205 tx_buf->skb = NULL;
206 dma_unmap_len_set(tx_buf, len, 0);
207
208 /* unmap remaining buffers */
209 while (tx_desc != eop_desc) {
210
211 tx_buf++;
212 tx_desc++;
213 i++;
214 if (unlikely(!i)) {
215 i -= tx_ring->count;
216 tx_buf = tx_ring->tx_bi;
217 tx_desc = I40E_TX_DESC(tx_ring, 0);
218 }
219
220 /* unmap any remaining paged data */
221 if (dma_unmap_len(tx_buf, len)) {
222 dma_unmap_page(tx_ring->dev,
223 dma_unmap_addr(tx_buf, dma),
224 dma_unmap_len(tx_buf, len),
225 DMA_TO_DEVICE);
226 dma_unmap_len_set(tx_buf, len, 0);
227 }
228 }
229
230 /* move us one more past the eop_desc for start of next pkt */
231 tx_buf++;
232 tx_desc++;
233 i++;
234 if (unlikely(!i)) {
235 i -= tx_ring->count;
236 tx_buf = tx_ring->tx_bi;
237 tx_desc = I40E_TX_DESC(tx_ring, 0);
238 }
239
016890b9
JB
240 prefetch(tx_desc);
241
7f12ad74
GR
242 /* update budget accounting */
243 budget--;
244 } while (likely(budget));
245
246 i += tx_ring->count;
247 tx_ring->next_to_clean = i;
248 u64_stats_update_begin(&tx_ring->syncp);
249 tx_ring->stats.bytes += total_bytes;
250 tx_ring->stats.packets += total_packets;
251 u64_stats_update_end(&tx_ring->syncp);
252 tx_ring->q_vector->tx.total_bytes += total_bytes;
253 tx_ring->q_vector->tx.total_packets += total_packets;
254
f6d83d13
ASJ
255 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
256 unsigned int j = 0;
257 /* check to see if there are < 4 descriptors
258 * waiting to be written back, then kick the hardware to force
259 * them to be written back in case we stay in NAPI.
260 * In this mode on X722 we do not enable Interrupt.
261 */
262 j = i40evf_get_tx_pending(tx_ring);
263
264 if (budget &&
265 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
266 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
267 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
268 tx_ring->arm_wb = true;
269 }
270
7f12ad74
GR
271 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
272 tx_ring->queue_index),
273 total_packets, total_bytes);
274
275#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
276 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
277 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
278 /* Make sure that anybody stopping the queue after this
279 * sees the new next_to_clean.
280 */
281 smp_mb();
282 if (__netif_subqueue_stopped(tx_ring->netdev,
283 tx_ring->queue_index) &&
284 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
285 netif_wake_subqueue(tx_ring->netdev,
286 tx_ring->queue_index);
287 ++tx_ring->tx_stats.restart_queue;
288 }
289 }
290
b03a8c1f 291 return !!budget;
7f12ad74
GR
292}
293
c29af37f 294/**
b03a8c1f 295 * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
c29af37f
ASJ
296 * @vsi: the VSI we care about
297 * @q_vector: the vector on which to force writeback
298 *
299 **/
b03a8c1f 300static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
c29af37f 301{
8e0764b4
ASJ
302 u16 flags = q_vector->tx.ring[0].flags;
303
304 if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
305 u32 val;
306
307 if (q_vector->arm_wb_state)
308 return;
309
a3d772a3
ASJ
310 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
311 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
8e0764b4
ASJ
312
313 wr32(&vsi->back->hw,
314 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
315 vsi->base_vector - 1),
316 val);
317 q_vector->arm_wb_state = true;
318 } else {
319 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
320 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
321 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
322 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
323 /* allow 00 to be written to the index */
324
325 wr32(&vsi->back->hw,
326 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
327 vsi->base_vector - 1), val);
328 }
c29af37f
ASJ
329}
330
7f12ad74
GR
331/**
332 * i40e_set_new_dynamic_itr - Find new ITR level
333 * @rc: structure containing ring performance data
334 *
8f5e39ce
JB
335 * Returns true if ITR changed, false if not
336 *
7f12ad74
GR
337 * Stores a new ITR value based on packets and byte counts during
338 * the last interrupt. The advantage of per interrupt computation
339 * is faster updates and more accurate ITR for the current traffic
340 * pattern. Constants in this function were computed based on
341 * theoretical maximum wire speed and thresholds were set based on
342 * testing data as well as attempting to minimize response time
343 * while increasing bulk throughput.
344 **/
8f5e39ce 345static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
346{
347 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 348 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
349 u32 new_itr = rc->itr;
350 int bytes_per_int;
51cc6d9f 351 int usecs;
7f12ad74
GR
352
353 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 354 return false;
7f12ad74
GR
355
356 /* simple throttlerate management
c56625d5 357 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 358 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
359 * 20-1249MB/s bulk (18000 ints/s)
360 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
361 *
362 * The math works out because the divisor is in 10^(-6) which
363 * turns the bytes/us input value into MB/s values, but
364 * make sure to use usecs, as the register values written
ee2319cf
JB
365 * are in 2 usec increments in the ITR registers, and make sure
366 * to use the smoothed values that the countdown timer gives us.
7f12ad74 367 */
ee2319cf 368 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 369 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 370
de32e3ef 371 switch (new_latency_range) {
7f12ad74
GR
372 case I40E_LOWEST_LATENCY:
373 if (bytes_per_int > 10)
374 new_latency_range = I40E_LOW_LATENCY;
375 break;
376 case I40E_LOW_LATENCY:
377 if (bytes_per_int > 20)
378 new_latency_range = I40E_BULK_LATENCY;
379 else if (bytes_per_int <= 10)
380 new_latency_range = I40E_LOWEST_LATENCY;
381 break;
382 case I40E_BULK_LATENCY:
c56625d5 383 case I40E_ULTRA_LATENCY:
de32e3ef
CW
384 default:
385 if (bytes_per_int <= 20)
386 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
387 break;
388 }
c56625d5
JB
389
390 /* this is to adjust RX more aggressively when streaming small
391 * packets. The value of 40000 was picked as it is just beyond
392 * what the hardware can receive per second if in low latency
393 * mode.
394 */
395#define RX_ULTRA_PACKET_RATE 40000
396
397 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
398 (&qv->rx == rc))
399 new_latency_range = I40E_ULTRA_LATENCY;
400
de32e3ef 401 rc->latency_range = new_latency_range;
7f12ad74
GR
402
403 switch (new_latency_range) {
404 case I40E_LOWEST_LATENCY:
c56625d5 405 new_itr = I40E_ITR_50K;
7f12ad74
GR
406 break;
407 case I40E_LOW_LATENCY:
408 new_itr = I40E_ITR_20K;
409 break;
410 case I40E_BULK_LATENCY:
c56625d5
JB
411 new_itr = I40E_ITR_18K;
412 break;
413 case I40E_ULTRA_LATENCY:
7f12ad74
GR
414 new_itr = I40E_ITR_8K;
415 break;
416 default:
417 break;
418 }
419
7f12ad74
GR
420 rc->total_bytes = 0;
421 rc->total_packets = 0;
8f5e39ce
JB
422
423 if (new_itr != rc->itr) {
424 rc->itr = new_itr;
425 return true;
426 }
427
428 return false;
7f12ad74
GR
429}
430
4eeb1fff 431/**
7f12ad74
GR
432 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
433 * @tx_ring: the tx ring to set up
434 *
435 * Return 0 on success, negative on error
436 **/
437int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
438{
439 struct device *dev = tx_ring->dev;
440 int bi_size;
441
442 if (!dev)
443 return -ENOMEM;
444
67c818a1
MW
445 /* warn if we are about to overwrite the pointer */
446 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
447 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
448 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
449 if (!tx_ring->tx_bi)
450 goto err;
451
452 /* round up to nearest 4K */
453 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
454 /* add u32 for head writeback, align after this takes care of
455 * guaranteeing this is at least one cache line in size
456 */
457 tx_ring->size += sizeof(u32);
7f12ad74
GR
458 tx_ring->size = ALIGN(tx_ring->size, 4096);
459 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
460 &tx_ring->dma, GFP_KERNEL);
461 if (!tx_ring->desc) {
462 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
463 tx_ring->size);
464 goto err;
465 }
466
467 tx_ring->next_to_use = 0;
468 tx_ring->next_to_clean = 0;
469 return 0;
470
471err:
472 kfree(tx_ring->tx_bi);
473 tx_ring->tx_bi = NULL;
474 return -ENOMEM;
475}
476
477/**
478 * i40evf_clean_rx_ring - Free Rx buffers
479 * @rx_ring: ring to be cleaned
480 **/
481void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
482{
483 struct device *dev = rx_ring->dev;
484 struct i40e_rx_buffer *rx_bi;
485 unsigned long bi_size;
486 u16 i;
487
488 /* ring already cleared, nothing to do */
489 if (!rx_ring->rx_bi)
490 return;
491
a132af24
MW
492 if (ring_is_ps_enabled(rx_ring)) {
493 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
494
495 rx_bi = &rx_ring->rx_bi[0];
496 if (rx_bi->hdr_buf) {
497 dma_free_coherent(dev,
498 bufsz,
499 rx_bi->hdr_buf,
500 rx_bi->dma);
501 for (i = 0; i < rx_ring->count; i++) {
502 rx_bi = &rx_ring->rx_bi[i];
503 rx_bi->dma = 0;
37a2973a 504 rx_bi->hdr_buf = NULL;
a132af24
MW
505 }
506 }
507 }
7f12ad74
GR
508 /* Free all the Rx ring sk_buffs */
509 for (i = 0; i < rx_ring->count; i++) {
510 rx_bi = &rx_ring->rx_bi[i];
511 if (rx_bi->dma) {
512 dma_unmap_single(dev,
513 rx_bi->dma,
514 rx_ring->rx_buf_len,
515 DMA_FROM_DEVICE);
516 rx_bi->dma = 0;
517 }
518 if (rx_bi->skb) {
519 dev_kfree_skb(rx_bi->skb);
520 rx_bi->skb = NULL;
521 }
522 if (rx_bi->page) {
523 if (rx_bi->page_dma) {
524 dma_unmap_page(dev,
525 rx_bi->page_dma,
526 PAGE_SIZE / 2,
527 DMA_FROM_DEVICE);
528 rx_bi->page_dma = 0;
529 }
530 __free_page(rx_bi->page);
531 rx_bi->page = NULL;
532 rx_bi->page_offset = 0;
533 }
534 }
535
536 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
537 memset(rx_ring->rx_bi, 0, bi_size);
538
539 /* Zero out the descriptor ring */
540 memset(rx_ring->desc, 0, rx_ring->size);
541
542 rx_ring->next_to_clean = 0;
543 rx_ring->next_to_use = 0;
544}
545
546/**
547 * i40evf_free_rx_resources - Free Rx resources
548 * @rx_ring: ring to clean the resources from
549 *
550 * Free all receive software resources
551 **/
552void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
553{
554 i40evf_clean_rx_ring(rx_ring);
555 kfree(rx_ring->rx_bi);
556 rx_ring->rx_bi = NULL;
557
558 if (rx_ring->desc) {
559 dma_free_coherent(rx_ring->dev, rx_ring->size,
560 rx_ring->desc, rx_ring->dma);
561 rx_ring->desc = NULL;
562 }
563}
564
a132af24
MW
565/**
566 * i40evf_alloc_rx_headers - allocate rx header buffers
567 * @rx_ring: ring to alloc buffers
568 *
569 * Allocate rx header buffers for the entire ring. As these are static,
570 * this is only called when setting up a new ring.
571 **/
572void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
573{
574 struct device *dev = rx_ring->dev;
575 struct i40e_rx_buffer *rx_bi;
576 dma_addr_t dma;
577 void *buffer;
578 int buf_size;
579 int i;
580
581 if (rx_ring->rx_bi[0].hdr_buf)
582 return;
583 /* Make sure the buffers don't cross cache line boundaries. */
584 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
585 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
586 &dma, GFP_KERNEL);
587 if (!buffer)
588 return;
589 for (i = 0; i < rx_ring->count; i++) {
590 rx_bi = &rx_ring->rx_bi[i];
591 rx_bi->dma = dma + (i * buf_size);
592 rx_bi->hdr_buf = buffer + (i * buf_size);
593 }
594}
595
7f12ad74
GR
596/**
597 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
598 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
599 *
600 * Returns 0 on success, negative on failure
601 **/
602int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
603{
604 struct device *dev = rx_ring->dev;
605 int bi_size;
606
67c818a1
MW
607 /* warn if we are about to overwrite the pointer */
608 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
609 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
610 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
611 if (!rx_ring->rx_bi)
612 goto err;
613
f217d6ca 614 u64_stats_init(&rx_ring->syncp);
638702bd 615
7f12ad74
GR
616 /* Round up to nearest 4K */
617 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
618 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
619 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
620 rx_ring->size = ALIGN(rx_ring->size, 4096);
621 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
622 &rx_ring->dma, GFP_KERNEL);
623
624 if (!rx_ring->desc) {
625 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
626 rx_ring->size);
627 goto err;
628 }
629
630 rx_ring->next_to_clean = 0;
631 rx_ring->next_to_use = 0;
632
633 return 0;
634err:
635 kfree(rx_ring->rx_bi);
636 rx_ring->rx_bi = NULL;
637 return -ENOMEM;
638}
639
640/**
641 * i40e_release_rx_desc - Store the new tail and head values
642 * @rx_ring: ring to bump
643 * @val: new head index
644 **/
645static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
646{
647 rx_ring->next_to_use = val;
648 /* Force memory writes to complete before letting h/w
649 * know there are new descriptors to fetch. (Only
650 * applicable for weak-ordered memory model archs,
651 * such as IA-64).
652 */
653 wmb();
654 writel(val, rx_ring->tail);
655}
656
657/**
a132af24
MW
658 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
659 * @rx_ring: ring to place buffers on
660 * @cleaned_count: number of buffers to replace
661 **/
662void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
663{
664 u16 i = rx_ring->next_to_use;
665 union i40e_rx_desc *rx_desc;
666 struct i40e_rx_buffer *bi;
667
668 /* do nothing if no valid netdev defined */
669 if (!rx_ring->netdev || !cleaned_count)
670 return;
671
672 while (cleaned_count--) {
673 rx_desc = I40E_RX_DESC(rx_ring, i);
674 bi = &rx_ring->rx_bi[i];
675
676 if (bi->skb) /* desc is in use */
677 goto no_buffers;
678 if (!bi->page) {
679 bi->page = alloc_page(GFP_ATOMIC);
680 if (!bi->page) {
681 rx_ring->rx_stats.alloc_page_failed++;
682 goto no_buffers;
683 }
684 }
685
686 if (!bi->page_dma) {
687 /* use a half page if we're re-using */
688 bi->page_offset ^= PAGE_SIZE / 2;
689 bi->page_dma = dma_map_page(rx_ring->dev,
690 bi->page,
691 bi->page_offset,
692 PAGE_SIZE / 2,
693 DMA_FROM_DEVICE);
694 if (dma_mapping_error(rx_ring->dev,
695 bi->page_dma)) {
696 rx_ring->rx_stats.alloc_page_failed++;
697 bi->page_dma = 0;
698 goto no_buffers;
699 }
700 }
701
702 dma_sync_single_range_for_device(rx_ring->dev,
3578fa0a
JB
703 rx_ring->rx_bi[0].dma,
704 i * rx_ring->rx_hdr_len,
a132af24
MW
705 rx_ring->rx_hdr_len,
706 DMA_FROM_DEVICE);
707 /* Refresh the desc even if buffer_addrs didn't change
708 * because each write-back erases this info.
709 */
710 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
711 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
712 i++;
713 if (i == rx_ring->count)
714 i = 0;
715 }
716
717no_buffers:
718 if (rx_ring->next_to_use != i)
719 i40e_release_rx_desc(rx_ring, i);
720}
721
722/**
723 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
724 * @rx_ring: ring to place buffers on
725 * @cleaned_count: number of buffers to replace
726 **/
a132af24 727void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
728{
729 u16 i = rx_ring->next_to_use;
730 union i40e_rx_desc *rx_desc;
731 struct i40e_rx_buffer *bi;
732 struct sk_buff *skb;
733
734 /* do nothing if no valid netdev defined */
735 if (!rx_ring->netdev || !cleaned_count)
736 return;
737
738 while (cleaned_count--) {
739 rx_desc = I40E_RX_DESC(rx_ring, i);
740 bi = &rx_ring->rx_bi[i];
741 skb = bi->skb;
742
743 if (!skb) {
744 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
745 rx_ring->rx_buf_len);
746 if (!skb) {
747 rx_ring->rx_stats.alloc_buff_failed++;
748 goto no_buffers;
749 }
750 /* initialize queue mapping */
751 skb_record_rx_queue(skb, rx_ring->queue_index);
752 bi->skb = skb;
753 }
754
755 if (!bi->dma) {
756 bi->dma = dma_map_single(rx_ring->dev,
757 skb->data,
758 rx_ring->rx_buf_len,
759 DMA_FROM_DEVICE);
760 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
761 rx_ring->rx_stats.alloc_buff_failed++;
762 bi->dma = 0;
763 goto no_buffers;
764 }
765 }
766
a132af24
MW
767 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
768 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
769 i++;
770 if (i == rx_ring->count)
771 i = 0;
772 }
773
774no_buffers:
775 if (rx_ring->next_to_use != i)
776 i40e_release_rx_desc(rx_ring, i);
777}
778
779/**
780 * i40e_receive_skb - Send a completed packet up the stack
781 * @rx_ring: rx ring in play
782 * @skb: packet to send up
783 * @vlan_tag: vlan tag for packet
784 **/
785static void i40e_receive_skb(struct i40e_ring *rx_ring,
786 struct sk_buff *skb, u16 vlan_tag)
787{
788 struct i40e_q_vector *q_vector = rx_ring->q_vector;
7f12ad74
GR
789
790 if (vlan_tag & VLAN_VID_MASK)
791 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
792
8b650359 793 napi_gro_receive(&q_vector->napi, skb);
7f12ad74
GR
794}
795
796/**
797 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
798 * @vsi: the VSI we care about
799 * @skb: skb currently being received and modified
800 * @rx_status: status value of last descriptor in packet
801 * @rx_error: error value of last descriptor in packet
802 * @rx_ptype: ptype value of last descriptor in packet
803 **/
804static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
805 struct sk_buff *skb,
806 u32 rx_status,
807 u32 rx_error,
808 u16 rx_ptype)
809{
8a3c91cc
JB
810 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
811 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
812 bool ipv4_tunnel, ipv6_tunnel;
813 __wsum rx_udp_csum;
7f12ad74 814 struct iphdr *iph;
8a3c91cc 815 __sum16 csum;
7f12ad74 816
f8faaa40
ASJ
817 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
818 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
819 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
820 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 821
7f12ad74
GR
822 skb->ip_summed = CHECKSUM_NONE;
823
824 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
825 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
826 return;
827
828 /* did the hardware decode the packet and checksum? */
41a1d04b 829 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
830 return;
831
832 /* both known and outer_ip must be set for the below code to work */
833 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
834 return;
835
8a3c91cc
JB
836 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
837 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
838 ipv4 = true;
839 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
840 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
841 ipv6 = true;
842
843 if (ipv4 &&
41a1d04b
JB
844 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
845 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
846 goto checksum_fail;
847
ddf1d0d7 848 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 849 if (ipv6 &&
41a1d04b 850 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 851 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
852 return;
853
8a3c91cc 854 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 855 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
856 goto checksum_fail;
857
858 /* handle packets that were not able to be checksummed due
859 * to arrival speed, in this case the stack can compute
860 * the csum.
861 */
41a1d04b 862 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 863 return;
7f12ad74 864
8a3c91cc
JB
865 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
866 * it in the driver, hardware does not do it for us.
867 * Since L3L4P bit was set we assume a valid IHL value (>=5)
868 * so the total length of IPv4 header is IHL*4 bytes
869 * The UDP_0 bit *may* bet set if the *inner* header is UDP
870 */
818f2e7b 871 if (ipv4_tunnel) {
7f12ad74
GR
872 skb->transport_header = skb->mac_header +
873 sizeof(struct ethhdr) +
874 (ip_hdr(skb)->ihl * 4);
875
876 /* Add 4 bytes for VLAN tagged packets */
877 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
878 skb->protocol == htons(ETH_P_8021AD))
879 ? VLAN_HLEN : 0;
880
818f2e7b
ASJ
881 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
882 (udp_hdr(skb)->check != 0)) {
883 rx_udp_csum = udp_csum(skb);
884 iph = ip_hdr(skb);
885 csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
886 (skb->len -
887 skb_transport_offset(skb)),
888 IPPROTO_UDP, rx_udp_csum);
7f12ad74 889
818f2e7b
ASJ
890 if (udp_hdr(skb)->check != csum)
891 goto checksum_fail;
892
893 } /* else its GRE and so no outer UDP header */
7f12ad74
GR
894 }
895
896 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 897 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
898
899 return;
900
901checksum_fail:
902 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
903}
904
905/**
857942fd 906 * i40e_ptype_to_htype - get a hash type
206812b5
JB
907 * @ptype: the ptype value from the descriptor
908 *
909 * Returns a hash type to be used by skb_set_hash
910 **/
857942fd 911static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
206812b5
JB
912{
913 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
914
915 if (!decoded.known)
916 return PKT_HASH_TYPE_NONE;
917
918 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
919 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
920 return PKT_HASH_TYPE_L4;
921 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
922 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
923 return PKT_HASH_TYPE_L3;
924 else
925 return PKT_HASH_TYPE_L2;
926}
927
857942fd
ASJ
928/**
929 * i40e_rx_hash - set the hash value in the skb
930 * @ring: descriptor ring
931 * @rx_desc: specific descriptor
932 **/
933static inline void i40e_rx_hash(struct i40e_ring *ring,
934 union i40e_rx_desc *rx_desc,
935 struct sk_buff *skb,
936 u8 rx_ptype)
937{
938 u32 hash;
939 const __le64 rss_mask =
940 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
941 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
942
943 if (ring->netdev->features & NETIF_F_RXHASH)
944 return;
945
946 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
947 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
948 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
949 }
950}
951
7f12ad74 952/**
a132af24 953 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
954 * @rx_ring: rx ring to clean
955 * @budget: how many cleans we're allowed
956 *
957 * Returns true if there's any budget left (e.g. the clean is finished)
958 **/
a132af24 959static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
7f12ad74
GR
960{
961 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
962 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
963 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
27ca2753 964 const int current_node = numa_mem_id();
7f12ad74
GR
965 struct i40e_vsi *vsi = rx_ring->vsi;
966 u16 i = rx_ring->next_to_clean;
967 union i40e_rx_desc *rx_desc;
968 u32 rx_error, rx_status;
206812b5 969 u8 rx_ptype;
7f12ad74 970 u64 qword;
7f12ad74 971
a132af24 972 do {
7f12ad74
GR
973 struct i40e_rx_buffer *rx_bi;
974 struct sk_buff *skb;
975 u16 vlan_tag;
a132af24
MW
976 /* return some buffers to hardware, one at a time is too slow */
977 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
978 i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
979 cleaned_count = 0;
980 }
981
982 i = rx_ring->next_to_clean;
983 rx_desc = I40E_RX_DESC(rx_ring, i);
984 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
985 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
986 I40E_RXD_QW1_STATUS_SHIFT;
987
41a1d04b 988 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
989 break;
990
991 /* This memory barrier is needed to keep us from reading
992 * any other fields out of the rx_desc until we know the
993 * DD bit is set.
994 */
67317166 995 dma_rmb();
7f12ad74
GR
996 rx_bi = &rx_ring->rx_bi[i];
997 skb = rx_bi->skb;
a132af24
MW
998 if (likely(!skb)) {
999 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1000 rx_ring->rx_hdr_len);
8b6ed9c2 1001 if (!skb) {
a132af24 1002 rx_ring->rx_stats.alloc_buff_failed++;
8b6ed9c2
JB
1003 break;
1004 }
1005
a132af24
MW
1006 /* initialize queue mapping */
1007 skb_record_rx_queue(skb, rx_ring->queue_index);
1008 /* we are reusing so sync this buffer for CPU use */
1009 dma_sync_single_range_for_cpu(rx_ring->dev,
3578fa0a
JB
1010 rx_ring->rx_bi[0].dma,
1011 i * rx_ring->rx_hdr_len,
a132af24
MW
1012 rx_ring->rx_hdr_len,
1013 DMA_FROM_DEVICE);
1014 }
7f12ad74
GR
1015 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1016 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1017 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1018 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1019 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1020 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1021
1022 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1023 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b
JB
1024 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1025 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
7f12ad74
GR
1026
1027 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1028 I40E_RXD_QW1_PTYPE_SHIFT;
a132af24 1029 prefetch(rx_bi->page);
7f12ad74 1030 rx_bi->skb = NULL;
a132af24
MW
1031 cleaned_count++;
1032 if (rx_hbo || rx_sph) {
1033 int len;
6995b36c 1034
7f12ad74
GR
1035 if (rx_hbo)
1036 len = I40E_RX_HDR_SIZE;
7f12ad74 1037 else
a132af24
MW
1038 len = rx_header_len;
1039 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1040 } else if (skb->len == 0) {
1041 int len;
1042
1043 len = (rx_packet_len > skb_headlen(skb) ?
1044 skb_headlen(skb) : rx_packet_len);
1045 memcpy(__skb_put(skb, len),
1046 rx_bi->page + rx_bi->page_offset,
1047 len);
1048 rx_bi->page_offset += len;
1049 rx_packet_len -= len;
7f12ad74
GR
1050 }
1051
1052 /* Get the rest of the data if this was a header split */
a132af24 1053 if (rx_packet_len) {
7f12ad74
GR
1054 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1055 rx_bi->page,
1056 rx_bi->page_offset,
1057 rx_packet_len);
1058
1059 skb->len += rx_packet_len;
1060 skb->data_len += rx_packet_len;
1061 skb->truesize += rx_packet_len;
1062
1063 if ((page_count(rx_bi->page) == 1) &&
1064 (page_to_nid(rx_bi->page) == current_node))
1065 get_page(rx_bi->page);
1066 else
1067 rx_bi->page = NULL;
1068
1069 dma_unmap_page(rx_ring->dev,
1070 rx_bi->page_dma,
1071 PAGE_SIZE / 2,
1072 DMA_FROM_DEVICE);
1073 rx_bi->page_dma = 0;
1074 }
a132af24 1075 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1076
1077 if (unlikely(
41a1d04b 1078 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
7f12ad74
GR
1079 struct i40e_rx_buffer *next_buffer;
1080
1081 next_buffer = &rx_ring->rx_bi[i];
a132af24 1082 next_buffer->skb = skb;
7f12ad74 1083 rx_ring->rx_stats.non_eop_descs++;
a132af24 1084 continue;
7f12ad74
GR
1085 }
1086
1087 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1088 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
7f12ad74 1089 dev_kfree_skb_any(skb);
a132af24 1090 continue;
7f12ad74
GR
1091 }
1092
857942fd
ASJ
1093 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1094
7f12ad74
GR
1095 /* probably a little skewed due to removing CRC */
1096 total_rx_bytes += skb->len;
1097 total_rx_packets++;
1098
1099 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1100
1101 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1102
41a1d04b 1103 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
7f12ad74
GR
1104 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1105 : 0;
a132af24
MW
1106#ifdef I40E_FCOE
1107 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1108 dev_kfree_skb_any(skb);
1109 continue;
1110 }
1111#endif
7f12ad74
GR
1112 i40e_receive_skb(rx_ring, skb, vlan_tag);
1113
7f12ad74 1114 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1115
a132af24
MW
1116 } while (likely(total_rx_packets < budget));
1117
1118 u64_stats_update_begin(&rx_ring->syncp);
1119 rx_ring->stats.packets += total_rx_packets;
1120 rx_ring->stats.bytes += total_rx_bytes;
1121 u64_stats_update_end(&rx_ring->syncp);
1122 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1123 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1124
1125 return total_rx_packets;
1126}
1127
1128/**
1129 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1130 * @rx_ring: rx ring to clean
1131 * @budget: how many cleans we're allowed
1132 *
1133 * Returns number of packets cleaned
1134 **/
1135static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1136{
1137 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1138 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1139 struct i40e_vsi *vsi = rx_ring->vsi;
1140 union i40e_rx_desc *rx_desc;
1141 u32 rx_error, rx_status;
1142 u16 rx_packet_len;
1143 u8 rx_ptype;
1144 u64 qword;
1145 u16 i;
1146
1147 do {
1148 struct i40e_rx_buffer *rx_bi;
1149 struct sk_buff *skb;
1150 u16 vlan_tag;
7f12ad74
GR
1151 /* return some buffers to hardware, one at a time is too slow */
1152 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
a132af24 1153 i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
7f12ad74
GR
1154 cleaned_count = 0;
1155 }
1156
a132af24
MW
1157 i = rx_ring->next_to_clean;
1158 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1159 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1160 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1161 I40E_RXD_QW1_STATUS_SHIFT;
1162
41a1d04b 1163 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1164 break;
1165
1166 /* This memory barrier is needed to keep us from reading
1167 * any other fields out of the rx_desc until we know the
1168 * DD bit is set.
1169 */
67317166 1170 dma_rmb();
a132af24
MW
1171
1172 rx_bi = &rx_ring->rx_bi[i];
1173 skb = rx_bi->skb;
1174 prefetch(skb->data);
1175
1176 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1177 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1178
1179 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1180 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b 1181 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
a132af24
MW
1182
1183 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1184 I40E_RXD_QW1_PTYPE_SHIFT;
1185 rx_bi->skb = NULL;
1186 cleaned_count++;
1187
1188 /* Get the header and possibly the whole packet
1189 * If this is an skb from previous receive dma will be 0
1190 */
1191 skb_put(skb, rx_packet_len);
1192 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1193 DMA_FROM_DEVICE);
1194 rx_bi->dma = 0;
1195
1196 I40E_RX_INCREMENT(rx_ring, i);
1197
1198 if (unlikely(
41a1d04b 1199 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
a132af24
MW
1200 rx_ring->rx_stats.non_eop_descs++;
1201 continue;
1202 }
1203
1204 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1205 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
a132af24 1206 dev_kfree_skb_any(skb);
a132af24
MW
1207 continue;
1208 }
1209
857942fd 1210 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
a132af24
MW
1211 /* probably a little skewed due to removing CRC */
1212 total_rx_bytes += skb->len;
1213 total_rx_packets++;
1214
1215 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1216
1217 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1218
41a1d04b 1219 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
a132af24
MW
1220 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1221 : 0;
1222 i40e_receive_skb(rx_ring, skb, vlan_tag);
1223
a132af24
MW
1224 rx_desc->wb.qword1.status_error_len = 0;
1225 } while (likely(total_rx_packets < budget));
7f12ad74 1226
7f12ad74
GR
1227 u64_stats_update_begin(&rx_ring->syncp);
1228 rx_ring->stats.packets += total_rx_packets;
1229 rx_ring->stats.bytes += total_rx_bytes;
1230 u64_stats_update_end(&rx_ring->syncp);
1231 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1232 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1233
a132af24 1234 return total_rx_packets;
7f12ad74
GR
1235}
1236
8f5e39ce
JB
1237static u32 i40e_buildreg_itr(const int type, const u16 itr)
1238{
1239 u32 val;
1240
1241 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1242 I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1243 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1244 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1245
1246 return val;
1247}
1248
1249/* a small macro to shorten up some long lines */
1250#define INTREG I40E_VFINT_DYN_CTLN1
1251
de32e3ef
CW
1252/**
1253 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1254 * @vsi: the VSI we care about
1255 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1256 *
1257 **/
1258static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1259 struct i40e_q_vector *q_vector)
1260{
1261 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1262 bool rx = false, tx = false;
1263 u32 rxval, txval;
de32e3ef 1264 int vector;
de32e3ef
CW
1265
1266 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1267
1268 /* avoid dynamic calculation if in countdown mode OR if
1269 * all dynamic is disabled
1270 */
8f5e39ce
JB
1271 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1272
ee2319cf
JB
1273 if (q_vector->itr_countdown > 0 ||
1274 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1275 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1276 goto enable_int;
1277 }
1278
de32e3ef 1279 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1280 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1281 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1282 }
4eeb1fff 1283
de32e3ef 1284 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1285 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1286 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1287 }
4eeb1fff 1288
8f5e39ce
JB
1289 if (rx || tx) {
1290 /* get the higher of the two ITR adjustments and
1291 * use the same value for both ITR registers
1292 * when in adaptive mode (Rx and/or Tx)
1293 */
1294 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1295
1296 q_vector->tx.itr = q_vector->rx.itr = itr;
1297 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1298 tx = true;
1299 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1300 rx = true;
de32e3ef 1301 }
8f5e39ce
JB
1302
1303 /* only need to enable the interrupt once, but need
1304 * to possibly update both ITR values
1305 */
1306 if (rx) {
1307 /* set the INTENA_MSK_MASK so that this first write
1308 * won't actually enable the interrupt, instead just
1309 * updating the ITR (it's bit 31 PF and VF)
1310 */
1311 rxval |= BIT(31);
1312 /* don't check _DOWN because interrupt isn't being enabled */
1313 wr32(hw, INTREG(vector - 1), rxval);
1314 }
1315
ee2319cf 1316enable_int:
8f5e39ce
JB
1317 if (!test_bit(__I40E_DOWN, &vsi->state))
1318 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1319
1320 if (q_vector->itr_countdown)
1321 q_vector->itr_countdown--;
1322 else
1323 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1324}
1325
7f12ad74
GR
1326/**
1327 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1328 * @napi: napi struct with our devices info in it
1329 * @budget: amount of work driver is allowed to do this pass, in packets
1330 *
1331 * This function will clean all queues associated with a q_vector.
1332 *
1333 * Returns the amount of work done
1334 **/
1335int i40evf_napi_poll(struct napi_struct *napi, int budget)
1336{
1337 struct i40e_q_vector *q_vector =
1338 container_of(napi, struct i40e_q_vector, napi);
1339 struct i40e_vsi *vsi = q_vector->vsi;
1340 struct i40e_ring *ring;
1341 bool clean_complete = true;
c29af37f 1342 bool arm_wb = false;
7f12ad74 1343 int budget_per_ring;
32b3e08f 1344 int work_done = 0;
7f12ad74
GR
1345
1346 if (test_bit(__I40E_DOWN, &vsi->state)) {
1347 napi_complete(napi);
1348 return 0;
1349 }
1350
1351 /* Since the actual Tx work is minimal, we can give the Tx a larger
1352 * budget and be more aggressive about cleaning up the Tx descriptors.
1353 */
c29af37f 1354 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1355 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
44cdb791 1356 arm_wb = arm_wb || ring->arm_wb;
0deda868 1357 ring->arm_wb = false;
c29af37f 1358 }
7f12ad74 1359
c67caceb
AD
1360 /* Handle case where we are called by netpoll with a budget of 0 */
1361 if (budget <= 0)
1362 goto tx_only;
1363
7f12ad74
GR
1364 /* We attempt to distribute budget to each Rx queue fairly, but don't
1365 * allow the budget to go below 1 because that would exit polling early.
1366 */
1367 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1368
a132af24 1369 i40e_for_each_ring(ring, q_vector->rx) {
32b3e08f
JB
1370 int cleaned;
1371
a132af24
MW
1372 if (ring_is_ps_enabled(ring))
1373 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1374 else
1375 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
32b3e08f
JB
1376
1377 work_done += cleaned;
a132af24
MW
1378 /* if we didn't clean as many as budgeted, we must be done */
1379 clean_complete &= (budget_per_ring != cleaned);
1380 }
7f12ad74
GR
1381
1382 /* If work not completed, return budget and polling will return */
c29af37f 1383 if (!clean_complete) {
c67caceb 1384tx_only:
164c9f54
ASJ
1385 if (arm_wb) {
1386 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
b03a8c1f 1387 i40evf_force_wb(vsi, q_vector);
164c9f54 1388 }
7f12ad74 1389 return budget;
c29af37f 1390 }
7f12ad74 1391
8e0764b4
ASJ
1392 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1393 q_vector->arm_wb_state = false;
1394
7f12ad74 1395 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1396 napi_complete_done(napi, work_done);
de32e3ef 1397 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1398 return 0;
1399}
1400
1401/**
3e587cf3 1402 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1403 * @skb: send buffer
1404 * @tx_ring: ring to send buffer on
1405 * @flags: the tx flags to be set
1406 *
1407 * Checks the skb and set up correspondingly several generic transmit flags
1408 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1409 *
1410 * Returns error code indicate the frame should be dropped upon error and the
1411 * otherwise returns 0 to indicate the flags has been set properly.
1412 **/
3e587cf3
JB
1413static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1414 struct i40e_ring *tx_ring,
1415 u32 *flags)
7f12ad74
GR
1416{
1417 __be16 protocol = skb->protocol;
1418 u32 tx_flags = 0;
1419
31eaaccf
GR
1420 if (protocol == htons(ETH_P_8021Q) &&
1421 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1422 /* When HW VLAN acceleration is turned off by the user the
1423 * stack sets the protocol to 8021q so that the driver
1424 * can take any steps required to support the SW only
1425 * VLAN handling. In our case the driver doesn't need
1426 * to take any further steps so just set the protocol
1427 * to the encapsulated ethertype.
1428 */
1429 skb->protocol = vlan_get_protocol(skb);
1430 goto out;
1431 }
1432
7f12ad74 1433 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1434 if (skb_vlan_tag_present(skb)) {
1435 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1436 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1437 /* else if it is a SW VLAN, check the next protocol and store the tag */
1438 } else if (protocol == htons(ETH_P_8021Q)) {
1439 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1440
7f12ad74
GR
1441 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1442 if (!vhdr)
1443 return -EINVAL;
1444
1445 protocol = vhdr->h_vlan_encapsulated_proto;
1446 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1447 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1448 }
1449
31eaaccf 1450out:
7f12ad74
GR
1451 *flags = tx_flags;
1452 return 0;
1453}
1454
1455/**
1456 * i40e_tso - set up the tso context descriptor
1457 * @tx_ring: ptr to the ring to send
1458 * @skb: ptr to the skb we're sending
7f12ad74 1459 * @hdr_len: ptr to the size of the packet header
9c883bd3 1460 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1461 *
1462 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1463 **/
1464static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
9c883bd3 1465 u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74
GR
1466{
1467 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1468 struct ipv6hdr *ipv6h;
7f12ad74
GR
1469 struct tcphdr *tcph;
1470 struct iphdr *iph;
1471 u32 l4len;
1472 int err;
7f12ad74 1473
e9f6563d
SN
1474 if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 return 0;
1476
7f12ad74
GR
1477 if (!skb_is_gso(skb))
1478 return 0;
1479
fe6d4aa4
FR
1480 err = skb_cow_head(skb, 0);
1481 if (err < 0)
1482 return err;
7f12ad74 1483
85e76d03
AS
1484 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1485 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1486
1487 if (iph->version == 4) {
7f12ad74
GR
1488 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1489 iph->tot_len = 0;
1490 iph->check = 0;
1491 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1492 0, IPPROTO_TCP, 0);
85e76d03 1493 } else if (ipv6h->version == 6) {
7f12ad74
GR
1494 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1495 ipv6h->payload_len = 0;
1496 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1497 0, IPPROTO_TCP, 0);
1498 }
1499
1500 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1501 *hdr_len = (skb->encapsulation
1502 ? (skb_inner_transport_header(skb) - skb->data)
1503 : skb_transport_offset(skb)) + l4len;
1504
1505 /* find the field values */
1506 cd_cmd = I40E_TX_CTX_DESC_TSO;
1507 cd_tso_len = skb->len - *hdr_len;
1508 cd_mss = skb_shinfo(skb)->gso_size;
1509 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1510 ((u64)cd_tso_len <<
1511 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1512 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1513 return 1;
1514}
1515
1516/**
1517 * i40e_tx_enable_csum - Enable Tx checksum offloads
1518 * @skb: send buffer
89232c3b 1519 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1520 * @td_cmd: Tx descriptor command bits to set
1521 * @td_offset: Tx descriptor header offsets to set
1522 * @cd_tunneling: ptr to context desc bits
1523 **/
89232c3b 1524static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
7f12ad74
GR
1525 u32 *td_cmd, u32 *td_offset,
1526 struct i40e_ring *tx_ring,
1527 u32 *cd_tunneling)
1528{
1529 struct ipv6hdr *this_ipv6_hdr;
1530 unsigned int this_tcp_hdrlen;
1531 struct iphdr *this_ip_hdr;
1532 u32 network_hdr_len;
1533 u8 l4_hdr = 0;
527274c7
ASJ
1534 struct udphdr *oudph;
1535 struct iphdr *oiph;
45991204 1536 u32 l4_tunnel = 0;
7f12ad74
GR
1537
1538 if (skb->encapsulation) {
45991204
ASJ
1539 switch (ip_hdr(skb)->protocol) {
1540 case IPPROTO_UDP:
527274c7
ASJ
1541 oudph = udp_hdr(skb);
1542 oiph = ip_hdr(skb);
45991204 1543 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1544 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204
ASJ
1545 break;
1546 default:
1547 return;
1548 }
7f12ad74
GR
1549 network_hdr_len = skb_inner_network_header_len(skb);
1550 this_ip_hdr = inner_ip_hdr(skb);
1551 this_ipv6_hdr = inner_ipv6_hdr(skb);
1552 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1553
89232c3b
ASJ
1554 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1555 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1556 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1557 ip_hdr(skb)->check = 0;
1558 } else {
1559 *cd_tunneling |=
1560 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1561 }
89232c3b 1562 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03 1563 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
89232c3b 1564 if (*tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1565 ip_hdr(skb)->check = 0;
7f12ad74
GR
1566 }
1567
1568 /* Now set the ctx descriptor fields */
1569 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1570 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1571 l4_tunnel |
7f12ad74
GR
1572 ((skb_inner_network_offset(skb) -
1573 skb_transport_offset(skb)) >> 1) <<
1574 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03 1575 if (this_ip_hdr->version == 6) {
89232c3b
ASJ
1576 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1577 *tx_flags |= I40E_TX_FLAGS_IPV6;
85e76d03
AS
1578 }
1579
527274c7
ASJ
1580 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1581 (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
1582 (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1583 oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1584 oiph->daddr,
1585 (skb->len - skb_transport_offset(skb)),
1586 IPPROTO_UDP, 0);
1587 *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1588 }
7f12ad74
GR
1589 } else {
1590 network_hdr_len = skb_network_header_len(skb);
1591 this_ip_hdr = ip_hdr(skb);
1592 this_ipv6_hdr = ipv6_hdr(skb);
1593 this_tcp_hdrlen = tcp_hdrlen(skb);
1594 }
1595
1596 /* Enable IP checksum offloads */
89232c3b 1597 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
7f12ad74
GR
1598 l4_hdr = this_ip_hdr->protocol;
1599 /* the stack computes the IP header already, the only time we
1600 * need the hardware to recompute it is in the case of TSO.
1601 */
89232c3b 1602 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1603 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1604 this_ip_hdr->check = 0;
1605 } else {
1606 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1607 }
1608 /* Now set the td_offset for IP header length */
1609 *td_offset = (network_hdr_len >> 2) <<
1610 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
89232c3b 1611 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
7f12ad74
GR
1612 l4_hdr = this_ipv6_hdr->nexthdr;
1613 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1614 /* Now set the td_offset for IP header length */
1615 *td_offset = (network_hdr_len >> 2) <<
1616 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1617 }
1618 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1619 *td_offset |= (skb_network_offset(skb) >> 1) <<
1620 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1621
1622 /* Enable L4 checksum offloads */
1623 switch (l4_hdr) {
1624 case IPPROTO_TCP:
1625 /* enable checksum offloads */
1626 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1627 *td_offset |= (this_tcp_hdrlen >> 2) <<
1628 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1629 break;
1630 case IPPROTO_SCTP:
1631 /* enable SCTP checksum offload */
1632 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1633 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1634 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1635 break;
1636 case IPPROTO_UDP:
1637 /* enable UDP checksum offload */
1638 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1639 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1640 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1641 break;
1642 default:
1643 break;
1644 }
1645}
1646
1647/**
1648 * i40e_create_tx_ctx Build the Tx context descriptor
1649 * @tx_ring: ring to create the descriptor on
1650 * @cd_type_cmd_tso_mss: Quad Word 1
1651 * @cd_tunneling: Quad Word 0 - bits 0-31
1652 * @cd_l2tag2: Quad Word 0 - bits 32-63
1653 **/
1654static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1655 const u64 cd_type_cmd_tso_mss,
1656 const u32 cd_tunneling, const u32 cd_l2tag2)
1657{
1658 struct i40e_tx_context_desc *context_desc;
1659 int i = tx_ring->next_to_use;
1660
ff40dd5d
JB
1661 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1662 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1663 return;
1664
1665 /* grab the next descriptor */
1666 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1667
1668 i++;
1669 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1670
1671 /* cpu_to_le32 and assign to struct fields */
1672 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1673 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1674 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1675 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1676}
1677
4eeb1fff 1678/**
71da6197
AS
1679 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1680 * @skb: send buffer
1681 * @tx_flags: collected send information
71da6197
AS
1682 *
1683 * Note: Our HW can't scatter-gather more than 8 fragments to build
1684 * a packet on the wire and so we need to figure out the cases where we
1685 * need to linearize the skb.
1686 **/
30520831 1687static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
71da6197
AS
1688{
1689 struct skb_frag_struct *frag;
1690 bool linearize = false;
1691 unsigned int size = 0;
1692 u16 num_frags;
1693 u16 gso_segs;
1694
1695 num_frags = skb_shinfo(skb)->nr_frags;
1696 gso_segs = skb_shinfo(skb)->gso_segs;
1697
1698 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
30520831 1699 u16 j = 0;
71da6197
AS
1700
1701 if (num_frags < (I40E_MAX_BUFFER_TXD))
1702 goto linearize_chk_done;
1703 /* try the simple math, if we have too many frags per segment */
1704 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1705 I40E_MAX_BUFFER_TXD) {
1706 linearize = true;
1707 goto linearize_chk_done;
1708 }
1709 frag = &skb_shinfo(skb)->frags[0];
71da6197
AS
1710 /* we might still have more fragments per segment */
1711 do {
1712 size += skb_frag_size(frag);
1713 frag++; j++;
30520831
ASJ
1714 if ((size >= skb_shinfo(skb)->gso_size) &&
1715 (j < I40E_MAX_BUFFER_TXD)) {
1716 size = (size % skb_shinfo(skb)->gso_size);
1717 j = (size) ? 1 : 0;
1718 }
71da6197 1719 if (j == I40E_MAX_BUFFER_TXD) {
30520831
ASJ
1720 linearize = true;
1721 break;
71da6197
AS
1722 }
1723 num_frags--;
1724 } while (num_frags);
1725 } else {
1726 if (num_frags >= I40E_MAX_BUFFER_TXD)
1727 linearize = true;
1728 }
1729
1730linearize_chk_done:
1731 return linearize;
1732}
1733
8f6a2b05
JB
1734/**
1735 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1736 * @tx_ring: the ring to be checked
1737 * @size: the size buffer we want to assure is available
1738 *
1739 * Returns -EBUSY if a stop is needed, else 0
1740 **/
1741static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1742{
1743 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1744 /* Memory barrier before checking head and tail */
1745 smp_mb();
1746
1747 /* Check again in a case another CPU has just made room available. */
1748 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1749 return -EBUSY;
1750
1751 /* A reprieve! - use start_queue because it doesn't call schedule */
1752 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1753 ++tx_ring->tx_stats.restart_queue;
1754 return 0;
1755}
1756
1757/**
1758 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1759 * @tx_ring: the ring to be checked
1760 * @size: the size buffer we want to assure is available
1761 *
1762 * Returns 0 if stop is not needed
1763 **/
3e587cf3 1764static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1765{
1766 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1767 return 0;
1768 return __i40evf_maybe_stop_tx(tx_ring, size);
1769}
1770
7f12ad74 1771/**
3e587cf3 1772 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1773 * @tx_ring: ring to send buffer on
1774 * @skb: send buffer
1775 * @first: first buffer info buffer to use
1776 * @tx_flags: collected send information
1777 * @hdr_len: size of the packet header
1778 * @td_cmd: the command field in the descriptor
1779 * @td_offset: offset for checksum or crc
1780 **/
3e587cf3
JB
1781static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1782 struct i40e_tx_buffer *first, u32 tx_flags,
1783 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1784{
1785 unsigned int data_len = skb->data_len;
1786 unsigned int size = skb_headlen(skb);
1787 struct skb_frag_struct *frag;
1788 struct i40e_tx_buffer *tx_bi;
1789 struct i40e_tx_desc *tx_desc;
1790 u16 i = tx_ring->next_to_use;
1791 u32 td_tag = 0;
1792 dma_addr_t dma;
1793 u16 gso_segs;
6a7fded7
ASJ
1794 u16 desc_count = 0;
1795 bool tail_bump = true;
1796 bool do_rs = false;
7f12ad74
GR
1797
1798 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1799 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1800 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1801 I40E_TX_FLAGS_VLAN_SHIFT;
1802 }
1803
1804 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1805 gso_segs = skb_shinfo(skb)->gso_segs;
1806 else
1807 gso_segs = 1;
1808
1809 /* multiply data chunks by size of headers */
1810 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1811 first->gso_segs = gso_segs;
1812 first->skb = skb;
1813 first->tx_flags = tx_flags;
1814
1815 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1816
1817 tx_desc = I40E_TX_DESC(tx_ring, i);
1818 tx_bi = first;
1819
1820 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1821 if (dma_mapping_error(tx_ring->dev, dma))
1822 goto dma_error;
1823
1824 /* record length, and DMA address */
1825 dma_unmap_len_set(tx_bi, len, size);
1826 dma_unmap_addr_set(tx_bi, dma, dma);
1827
1828 tx_desc->buffer_addr = cpu_to_le64(dma);
1829
1830 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1831 tx_desc->cmd_type_offset_bsz =
1832 build_ctob(td_cmd, td_offset,
1833 I40E_MAX_DATA_PER_TXD, td_tag);
1834
1835 tx_desc++;
1836 i++;
6a7fded7
ASJ
1837 desc_count++;
1838
7f12ad74
GR
1839 if (i == tx_ring->count) {
1840 tx_desc = I40E_TX_DESC(tx_ring, 0);
1841 i = 0;
1842 }
1843
1844 dma += I40E_MAX_DATA_PER_TXD;
1845 size -= I40E_MAX_DATA_PER_TXD;
1846
1847 tx_desc->buffer_addr = cpu_to_le64(dma);
1848 }
1849
1850 if (likely(!data_len))
1851 break;
1852
1853 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1854 size, td_tag);
1855
1856 tx_desc++;
1857 i++;
6a7fded7
ASJ
1858 desc_count++;
1859
7f12ad74
GR
1860 if (i == tx_ring->count) {
1861 tx_desc = I40E_TX_DESC(tx_ring, 0);
1862 i = 0;
1863 }
1864
1865 size = skb_frag_size(frag);
1866 data_len -= size;
1867
1868 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1869 DMA_TO_DEVICE);
1870
1871 tx_bi = &tx_ring->tx_bi[i];
1872 }
1873
7f12ad74
GR
1874 /* set next_to_watch value indicating a packet is present */
1875 first->next_to_watch = tx_desc;
1876
1877 i++;
1878 if (i == tx_ring->count)
1879 i = 0;
1880
1881 tx_ring->next_to_use = i;
1882
6a7fded7
ASJ
1883 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1884 tx_ring->queue_index),
1885 first->bytecount);
8f6a2b05 1886 i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
1887
1888 /* Algorithm to optimize tail and RS bit setting:
1889 * if xmit_more is supported
1890 * if xmit_more is true
1891 * do not update tail and do not mark RS bit.
1892 * if xmit_more is false and last xmit_more was false
1893 * if every packet spanned less than 4 desc
1894 * then set RS bit on 4th packet and update tail
1895 * on every packet
1896 * else
1897 * update tail and set RS bit on every packet.
1898 * if xmit_more is false and last_xmit_more was true
1899 * update tail and set RS bit.
6a7fded7
ASJ
1900 *
1901 * Optimization: wmb to be issued only in case of tail update.
1902 * Also optimize the Descriptor WB path for RS bit with the same
1903 * algorithm.
1904 *
1905 * Note: If there are less than 4 packets
1906 * pending and interrupts were disabled the service task will
1907 * trigger a force WB.
1908 */
1909 if (skb->xmit_more &&
1910 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1911 tx_ring->queue_index))) {
1912 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1913 tail_bump = false;
1914 } else if (!skb->xmit_more &&
1915 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1916 tx_ring->queue_index)) &&
1917 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
1918 (tx_ring->packet_stride < WB_STRIDE) &&
1919 (desc_count < WB_STRIDE)) {
1920 tx_ring->packet_stride++;
1921 } else {
1922 tx_ring->packet_stride = 0;
1923 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1924 do_rs = true;
1925 }
1926 if (do_rs)
1927 tx_ring->packet_stride = 0;
1928
1929 tx_desc->cmd_type_offset_bsz =
1930 build_ctob(td_cmd, td_offset, size, td_tag) |
1931 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
1932 I40E_TX_DESC_CMD_EOP) <<
1933 I40E_TXD_QW1_CMD_SHIFT);
1934
7f12ad74 1935 /* notify HW of packet */
6a7fded7 1936 if (!tail_bump)
489ce7a4 1937 prefetchw(tx_desc + 1);
7f12ad74 1938
6a7fded7
ASJ
1939 if (tail_bump) {
1940 /* Force memory writes to complete before letting h/w
1941 * know there are new descriptors to fetch. (Only
1942 * applicable for weak-ordered memory model archs,
1943 * such as IA-64).
1944 */
1945 wmb();
1946 writel(i, tx_ring->tail);
1947 }
1948
7f12ad74
GR
1949 return;
1950
1951dma_error:
1952 dev_info(tx_ring->dev, "TX DMA map failed\n");
1953
1954 /* clear dma mappings for failed tx_bi map */
1955 for (;;) {
1956 tx_bi = &tx_ring->tx_bi[i];
1957 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1958 if (tx_bi == first)
1959 break;
1960 if (i == 0)
1961 i = tx_ring->count;
1962 i--;
1963 }
1964
1965 tx_ring->next_to_use = i;
1966}
1967
7f12ad74 1968/**
3e587cf3 1969 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
7f12ad74
GR
1970 * @skb: send buffer
1971 * @tx_ring: ring to send buffer on
1972 *
1973 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1974 * there is not enough descriptors available in this ring since we need at least
1975 * one descriptor.
1976 **/
3e587cf3
JB
1977static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1978 struct i40e_ring *tx_ring)
7f12ad74 1979{
7f12ad74 1980 unsigned int f;
7f12ad74
GR
1981 int count = 0;
1982
1983 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1984 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1985 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1986 * + 1 desc for context descriptor,
1987 * otherwise try next time
1988 */
7f12ad74
GR
1989 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1990 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1991
7f12ad74 1992 count += TXD_USE_COUNT(skb_headlen(skb));
8f6a2b05 1993 if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1994 tx_ring->tx_stats.tx_busy++;
1995 return 0;
1996 }
1997 return count;
1998}
1999
2000/**
2001 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2002 * @skb: send buffer
2003 * @tx_ring: ring to send buffer on
2004 *
2005 * Returns NETDEV_TX_OK if sent, else an error code
2006 **/
2007static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2008 struct i40e_ring *tx_ring)
2009{
2010 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2011 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2012 struct i40e_tx_buffer *first;
2013 u32 td_offset = 0;
2014 u32 tx_flags = 0;
2015 __be16 protocol;
2016 u32 td_cmd = 0;
2017 u8 hdr_len = 0;
2018 int tso;
6995b36c 2019
b74118f0
JB
2020 /* prefetch the data, we'll need it later */
2021 prefetch(skb->data);
2022
3e587cf3 2023 if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
7f12ad74
GR
2024 return NETDEV_TX_BUSY;
2025
2026 /* prepare the xmit flags */
3e587cf3 2027 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2028 goto out_drop;
2029
2030 /* obtain protocol of skb */
a12c4158 2031 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2032
2033 /* record the location of the first descriptor for this packet */
2034 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2035
2036 /* setup IPv4/IPv6 offloads */
2037 if (protocol == htons(ETH_P_IP))
2038 tx_flags |= I40E_TX_FLAGS_IPV4;
2039 else if (protocol == htons(ETH_P_IPV6))
2040 tx_flags |= I40E_TX_FLAGS_IPV6;
2041
9c883bd3 2042 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2043
2044 if (tso < 0)
2045 goto out_drop;
2046 else if (tso)
2047 tx_flags |= I40E_TX_FLAGS_TSO;
2048
2fc3d715 2049 if (i40e_chk_linearize(skb, tx_flags)) {
71da6197
AS
2050 if (skb_linearize(skb))
2051 goto out_drop;
2fc3d715
ASJ
2052 tx_ring->tx_stats.tx_linearize++;
2053 }
7f12ad74
GR
2054 skb_tx_timestamp(skb);
2055
2056 /* always enable CRC insertion offload */
2057 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2058
2059 /* Always offload the checksum, since it's in the data descriptor */
2060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2061 tx_flags |= I40E_TX_FLAGS_CSUM;
2062
89232c3b 2063 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
7f12ad74
GR
2064 tx_ring, &cd_tunneling);
2065 }
2066
2067 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2068 cd_tunneling, cd_l2tag2);
2069
3e587cf3
JB
2070 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2071 td_cmd, td_offset);
7f12ad74 2072
7f12ad74
GR
2073 return NETDEV_TX_OK;
2074
2075out_drop:
2076 dev_kfree_skb_any(skb);
2077 return NETDEV_TX_OK;
2078}
2079
2080/**
2081 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2082 * @skb: send buffer
2083 * @netdev: network interface device structure
2084 *
2085 * Returns NETDEV_TX_OK if sent, else an error code
2086 **/
2087netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2088{
2089 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2090 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2091
2092 /* hardware can't handle really short frames, hardware padding works
2093 * beyond this point
2094 */
2095 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2096 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2097 return NETDEV_TX_OK;
2098 skb->len = I40E_MIN_TX_LEN;
2099 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2100 }
2101
2102 return i40e_xmit_frame_ring(skb, tx_ring);
2103}
This page took 0.316842 seconds and 5 git commands to generate.