i40e: warn at the right time
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
49d7d933
ASJ
54 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 kfree(tx_buffer->raw_buf);
56 else
57 dev_kfree_skb_any(tx_buffer->skb);
58
7f12ad74
GR
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d
JB
129/**
130 * i40e_get_head - Retrieve head from head writeback
131 * @tx_ring: tx ring to fetch head of
132 *
133 * Returns value of Tx ring head based on value stored
134 * in head write-back location
135 **/
136static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137{
138 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140 return le32_to_cpu(*(volatile __le32 *)head);
141}
142
7f12ad74
GR
143/**
144 * i40e_get_tx_pending - how many tx descriptors not processed
145 * @tx_ring: the ring of descriptors
146 *
147 * Since there is no access to the ring head register
148 * in XL710, we need to use our local copies
149 **/
150static u32 i40e_get_tx_pending(struct i40e_ring *ring)
151{
a68de58d
JB
152 u32 head, tail;
153
154 head = i40e_get_head(ring);
155 tail = readl(ring->tail);
156
157 if (head != tail)
158 return (head < tail) ?
159 tail - head : (tail + ring->count - head);
160
161 return 0;
7f12ad74
GR
162}
163
164/**
165 * i40e_check_tx_hang - Is there a hang in the Tx queue
166 * @tx_ring: the ring of descriptors
167 **/
168static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
169{
a68de58d
JB
170 u32 tx_done = tx_ring->stats.packets;
171 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
7f12ad74
GR
172 u32 tx_pending = i40e_get_tx_pending(tx_ring);
173 bool ret = false;
174
175 clear_check_for_tx_hang(tx_ring);
176
177 /* Check for a hung queue, but be thorough. This verifies
178 * that a transmit has been completed since the previous
179 * check AND there is at least one packet pending. The
180 * ARMED bit is set to indicate a potential hang. The
181 * bit is cleared if a pause frame is received to remove
182 * false hang detection due to PFC or 802.3x frames. By
183 * requiring this to fail twice we avoid races with
184 * PFC clearing the ARMED bit and conditions where we
185 * run the check_tx_hang logic with a transmit completion
186 * pending but without time to complete it yet.
187 */
a68de58d 188 if ((tx_done_old == tx_done) && tx_pending) {
7f12ad74
GR
189 /* make sure it is true for two checks in a row */
190 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
191 &tx_ring->state);
a68de58d
JB
192 } else if (tx_done_old == tx_done &&
193 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
7f12ad74 194 /* update completed stats and disarm the hang check */
a68de58d 195 tx_ring->tx_stats.tx_done_old = tx_done;
7f12ad74
GR
196 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
197 }
198
199 return ret;
200}
201
c29af37f
ASJ
202#define WB_STRIDE 0x3
203
7f12ad74
GR
204/**
205 * i40e_clean_tx_irq - Reclaim resources after transmit completes
206 * @tx_ring: tx ring to clean
207 * @budget: how many cleans we're allowed
208 *
209 * Returns true if there's any budget left (e.g. the clean is finished)
210 **/
211static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
212{
213 u16 i = tx_ring->next_to_clean;
214 struct i40e_tx_buffer *tx_buf;
1943d8ba 215 struct i40e_tx_desc *tx_head;
7f12ad74
GR
216 struct i40e_tx_desc *tx_desc;
217 unsigned int total_packets = 0;
218 unsigned int total_bytes = 0;
219
220 tx_buf = &tx_ring->tx_bi[i];
221 tx_desc = I40E_TX_DESC(tx_ring, i);
222 i -= tx_ring->count;
223
1943d8ba
JB
224 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
225
7f12ad74
GR
226 do {
227 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
228
229 /* if next_to_watch is not set then there is no work pending */
230 if (!eop_desc)
231 break;
232
233 /* prevent any other reads prior to eop_desc */
234 read_barrier_depends();
235
1943d8ba
JB
236 /* we have caught up to head, no work left to do */
237 if (tx_head == tx_desc)
7f12ad74
GR
238 break;
239
240 /* clear next_to_watch to prevent false hangs */
241 tx_buf->next_to_watch = NULL;
242
243 /* update the statistics for this packet */
244 total_bytes += tx_buf->bytecount;
245 total_packets += tx_buf->gso_segs;
246
247 /* free the skb */
248 dev_kfree_skb_any(tx_buf->skb);
249
250 /* unmap skb header data */
251 dma_unmap_single(tx_ring->dev,
252 dma_unmap_addr(tx_buf, dma),
253 dma_unmap_len(tx_buf, len),
254 DMA_TO_DEVICE);
255
256 /* clear tx_buffer data */
257 tx_buf->skb = NULL;
258 dma_unmap_len_set(tx_buf, len, 0);
259
260 /* unmap remaining buffers */
261 while (tx_desc != eop_desc) {
262
263 tx_buf++;
264 tx_desc++;
265 i++;
266 if (unlikely(!i)) {
267 i -= tx_ring->count;
268 tx_buf = tx_ring->tx_bi;
269 tx_desc = I40E_TX_DESC(tx_ring, 0);
270 }
271
272 /* unmap any remaining paged data */
273 if (dma_unmap_len(tx_buf, len)) {
274 dma_unmap_page(tx_ring->dev,
275 dma_unmap_addr(tx_buf, dma),
276 dma_unmap_len(tx_buf, len),
277 DMA_TO_DEVICE);
278 dma_unmap_len_set(tx_buf, len, 0);
279 }
280 }
281
282 /* move us one more past the eop_desc for start of next pkt */
283 tx_buf++;
284 tx_desc++;
285 i++;
286 if (unlikely(!i)) {
287 i -= tx_ring->count;
288 tx_buf = tx_ring->tx_bi;
289 tx_desc = I40E_TX_DESC(tx_ring, 0);
290 }
291
016890b9
JB
292 prefetch(tx_desc);
293
7f12ad74
GR
294 /* update budget accounting */
295 budget--;
296 } while (likely(budget));
297
298 i += tx_ring->count;
299 tx_ring->next_to_clean = i;
300 u64_stats_update_begin(&tx_ring->syncp);
301 tx_ring->stats.bytes += total_bytes;
302 tx_ring->stats.packets += total_packets;
303 u64_stats_update_end(&tx_ring->syncp);
304 tx_ring->q_vector->tx.total_bytes += total_bytes;
305 tx_ring->q_vector->tx.total_packets += total_packets;
306
c29af37f
ASJ
307 if (budget &&
308 !((i & WB_STRIDE) == WB_STRIDE) &&
309 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
310 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
311 tx_ring->arm_wb = true;
312 else
313 tx_ring->arm_wb = false;
314
7f12ad74
GR
315 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
316 /* schedule immediate reset if we believe we hung */
317 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
318 " VSI <%d>\n"
319 " Tx Queue <%d>\n"
320 " next_to_use <%x>\n"
321 " next_to_clean <%x>\n",
322 tx_ring->vsi->seid,
323 tx_ring->queue_index,
324 tx_ring->next_to_use, i);
325 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
326 " time_stamp <%lx>\n"
327 " jiffies <%lx>\n",
328 tx_ring->tx_bi[i].time_stamp, jiffies);
329
330 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
331
332 dev_info(tx_ring->dev,
333 "tx hang detected on queue %d, resetting adapter\n",
334 tx_ring->queue_index);
335
336 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
337
338 /* the adapter is about to reset, no point in enabling stuff */
339 return true;
340 }
341
342 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
343 tx_ring->queue_index),
344 total_packets, total_bytes);
345
346#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
347 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
348 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
349 /* Make sure that anybody stopping the queue after this
350 * sees the new next_to_clean.
351 */
352 smp_mb();
353 if (__netif_subqueue_stopped(tx_ring->netdev,
354 tx_ring->queue_index) &&
355 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
356 netif_wake_subqueue(tx_ring->netdev,
357 tx_ring->queue_index);
358 ++tx_ring->tx_stats.restart_queue;
359 }
360 }
361
362 return budget > 0;
363}
364
c29af37f
ASJ
365/**
366 * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
367 * @vsi: the VSI we care about
368 * @q_vector: the vector on which to force writeback
369 *
370 **/
371static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
372{
373 u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
97bf75f1 374 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
c29af37f
ASJ
375 I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
376 I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
377 /* allow 00 to be written to the index */
378
379 wr32(&vsi->back->hw,
380 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
381 val);
382}
383
7f12ad74
GR
384/**
385 * i40e_set_new_dynamic_itr - Find new ITR level
386 * @rc: structure containing ring performance data
387 *
388 * Stores a new ITR value based on packets and byte counts during
389 * the last interrupt. The advantage of per interrupt computation
390 * is faster updates and more accurate ITR for the current traffic
391 * pattern. Constants in this function were computed based on
392 * theoretical maximum wire speed and thresholds were set based on
393 * testing data as well as attempting to minimize response time
394 * while increasing bulk throughput.
395 **/
396static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
397{
398 enum i40e_latency_range new_latency_range = rc->latency_range;
399 u32 new_itr = rc->itr;
400 int bytes_per_int;
401
402 if (rc->total_packets == 0 || !rc->itr)
403 return;
404
405 /* simple throttlerate management
406 * 0-10MB/s lowest (100000 ints/s)
407 * 10-20MB/s low (20000 ints/s)
408 * 20-1249MB/s bulk (8000 ints/s)
409 */
410 bytes_per_int = rc->total_bytes / rc->itr;
411 switch (rc->itr) {
412 case I40E_LOWEST_LATENCY:
413 if (bytes_per_int > 10)
414 new_latency_range = I40E_LOW_LATENCY;
415 break;
416 case I40E_LOW_LATENCY:
417 if (bytes_per_int > 20)
418 new_latency_range = I40E_BULK_LATENCY;
419 else if (bytes_per_int <= 10)
420 new_latency_range = I40E_LOWEST_LATENCY;
421 break;
422 case I40E_BULK_LATENCY:
423 if (bytes_per_int <= 20)
424 rc->latency_range = I40E_LOW_LATENCY;
425 break;
426 }
427
428 switch (new_latency_range) {
429 case I40E_LOWEST_LATENCY:
430 new_itr = I40E_ITR_100K;
431 break;
432 case I40E_LOW_LATENCY:
433 new_itr = I40E_ITR_20K;
434 break;
435 case I40E_BULK_LATENCY:
436 new_itr = I40E_ITR_8K;
437 break;
438 default:
439 break;
440 }
441
442 if (new_itr != rc->itr) {
443 /* do an exponential smoothing */
444 new_itr = (10 * new_itr * rc->itr) /
445 ((9 * new_itr) + rc->itr);
446 rc->itr = new_itr & I40E_MAX_ITR;
447 }
448
449 rc->total_bytes = 0;
450 rc->total_packets = 0;
451}
452
453/**
454 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
455 * @q_vector: the vector to adjust
456 **/
457static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
458{
459 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
460 struct i40e_hw *hw = &q_vector->vsi->back->hw;
461 u32 reg_addr;
462 u16 old_itr;
463
464 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
465 old_itr = q_vector->rx.itr;
466 i40e_set_new_dynamic_itr(&q_vector->rx);
467 if (old_itr != q_vector->rx.itr)
468 wr32(hw, reg_addr, q_vector->rx.itr);
469
470 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
471 old_itr = q_vector->tx.itr;
472 i40e_set_new_dynamic_itr(&q_vector->tx);
473 if (old_itr != q_vector->tx.itr)
474 wr32(hw, reg_addr, q_vector->tx.itr);
475}
476
477/**
478 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
479 * @tx_ring: the tx ring to set up
480 *
481 * Return 0 on success, negative on error
482 **/
483int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
484{
485 struct device *dev = tx_ring->dev;
486 int bi_size;
487
488 if (!dev)
489 return -ENOMEM;
490
491 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
492 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
493 if (!tx_ring->tx_bi)
494 goto err;
495
496 /* round up to nearest 4K */
497 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
498 /* add u32 for head writeback, align after this takes care of
499 * guaranteeing this is at least one cache line in size
500 */
501 tx_ring->size += sizeof(u32);
7f12ad74
GR
502 tx_ring->size = ALIGN(tx_ring->size, 4096);
503 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
504 &tx_ring->dma, GFP_KERNEL);
505 if (!tx_ring->desc) {
506 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
507 tx_ring->size);
508 goto err;
509 }
510
511 tx_ring->next_to_use = 0;
512 tx_ring->next_to_clean = 0;
513 return 0;
514
515err:
516 kfree(tx_ring->tx_bi);
517 tx_ring->tx_bi = NULL;
518 return -ENOMEM;
519}
520
521/**
522 * i40evf_clean_rx_ring - Free Rx buffers
523 * @rx_ring: ring to be cleaned
524 **/
525void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
526{
527 struct device *dev = rx_ring->dev;
528 struct i40e_rx_buffer *rx_bi;
529 unsigned long bi_size;
530 u16 i;
531
532 /* ring already cleared, nothing to do */
533 if (!rx_ring->rx_bi)
534 return;
535
a132af24
MW
536 if (ring_is_ps_enabled(rx_ring)) {
537 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
538
539 rx_bi = &rx_ring->rx_bi[0];
540 if (rx_bi->hdr_buf) {
541 dma_free_coherent(dev,
542 bufsz,
543 rx_bi->hdr_buf,
544 rx_bi->dma);
545 for (i = 0; i < rx_ring->count; i++) {
546 rx_bi = &rx_ring->rx_bi[i];
547 rx_bi->dma = 0;
37a2973a 548 rx_bi->hdr_buf = NULL;
a132af24
MW
549 }
550 }
551 }
7f12ad74
GR
552 /* Free all the Rx ring sk_buffs */
553 for (i = 0; i < rx_ring->count; i++) {
554 rx_bi = &rx_ring->rx_bi[i];
555 if (rx_bi->dma) {
556 dma_unmap_single(dev,
557 rx_bi->dma,
558 rx_ring->rx_buf_len,
559 DMA_FROM_DEVICE);
560 rx_bi->dma = 0;
561 }
562 if (rx_bi->skb) {
563 dev_kfree_skb(rx_bi->skb);
564 rx_bi->skb = NULL;
565 }
566 if (rx_bi->page) {
567 if (rx_bi->page_dma) {
568 dma_unmap_page(dev,
569 rx_bi->page_dma,
570 PAGE_SIZE / 2,
571 DMA_FROM_DEVICE);
572 rx_bi->page_dma = 0;
573 }
574 __free_page(rx_bi->page);
575 rx_bi->page = NULL;
576 rx_bi->page_offset = 0;
577 }
578 }
579
580 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
581 memset(rx_ring->rx_bi, 0, bi_size);
582
583 /* Zero out the descriptor ring */
584 memset(rx_ring->desc, 0, rx_ring->size);
585
586 rx_ring->next_to_clean = 0;
587 rx_ring->next_to_use = 0;
588}
589
590/**
591 * i40evf_free_rx_resources - Free Rx resources
592 * @rx_ring: ring to clean the resources from
593 *
594 * Free all receive software resources
595 **/
596void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
597{
598 i40evf_clean_rx_ring(rx_ring);
599 kfree(rx_ring->rx_bi);
600 rx_ring->rx_bi = NULL;
601
602 if (rx_ring->desc) {
603 dma_free_coherent(rx_ring->dev, rx_ring->size,
604 rx_ring->desc, rx_ring->dma);
605 rx_ring->desc = NULL;
606 }
607}
608
a132af24
MW
609/**
610 * i40evf_alloc_rx_headers - allocate rx header buffers
611 * @rx_ring: ring to alloc buffers
612 *
613 * Allocate rx header buffers for the entire ring. As these are static,
614 * this is only called when setting up a new ring.
615 **/
616void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
617{
618 struct device *dev = rx_ring->dev;
619 struct i40e_rx_buffer *rx_bi;
620 dma_addr_t dma;
621 void *buffer;
622 int buf_size;
623 int i;
624
625 if (rx_ring->rx_bi[0].hdr_buf)
626 return;
627 /* Make sure the buffers don't cross cache line boundaries. */
628 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
629 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
630 &dma, GFP_KERNEL);
631 if (!buffer)
632 return;
633 for (i = 0; i < rx_ring->count; i++) {
634 rx_bi = &rx_ring->rx_bi[i];
635 rx_bi->dma = dma + (i * buf_size);
636 rx_bi->hdr_buf = buffer + (i * buf_size);
637 }
638}
639
7f12ad74
GR
640/**
641 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
642 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
643 *
644 * Returns 0 on success, negative on failure
645 **/
646int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
647{
648 struct device *dev = rx_ring->dev;
649 int bi_size;
650
651 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
652 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
653 if (!rx_ring->rx_bi)
654 goto err;
655
f217d6ca 656 u64_stats_init(&rx_ring->syncp);
638702bd 657
7f12ad74
GR
658 /* Round up to nearest 4K */
659 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
660 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
661 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
662 rx_ring->size = ALIGN(rx_ring->size, 4096);
663 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
664 &rx_ring->dma, GFP_KERNEL);
665
666 if (!rx_ring->desc) {
667 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
668 rx_ring->size);
669 goto err;
670 }
671
672 rx_ring->next_to_clean = 0;
673 rx_ring->next_to_use = 0;
674
675 return 0;
676err:
677 kfree(rx_ring->rx_bi);
678 rx_ring->rx_bi = NULL;
679 return -ENOMEM;
680}
681
682/**
683 * i40e_release_rx_desc - Store the new tail and head values
684 * @rx_ring: ring to bump
685 * @val: new head index
686 **/
687static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
688{
689 rx_ring->next_to_use = val;
690 /* Force memory writes to complete before letting h/w
691 * know there are new descriptors to fetch. (Only
692 * applicable for weak-ordered memory model archs,
693 * such as IA-64).
694 */
695 wmb();
696 writel(val, rx_ring->tail);
697}
698
699/**
a132af24
MW
700 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
701 * @rx_ring: ring to place buffers on
702 * @cleaned_count: number of buffers to replace
703 **/
704void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
705{
706 u16 i = rx_ring->next_to_use;
707 union i40e_rx_desc *rx_desc;
708 struct i40e_rx_buffer *bi;
709
710 /* do nothing if no valid netdev defined */
711 if (!rx_ring->netdev || !cleaned_count)
712 return;
713
714 while (cleaned_count--) {
715 rx_desc = I40E_RX_DESC(rx_ring, i);
716 bi = &rx_ring->rx_bi[i];
717
718 if (bi->skb) /* desc is in use */
719 goto no_buffers;
720 if (!bi->page) {
721 bi->page = alloc_page(GFP_ATOMIC);
722 if (!bi->page) {
723 rx_ring->rx_stats.alloc_page_failed++;
724 goto no_buffers;
725 }
726 }
727
728 if (!bi->page_dma) {
729 /* use a half page if we're re-using */
730 bi->page_offset ^= PAGE_SIZE / 2;
731 bi->page_dma = dma_map_page(rx_ring->dev,
732 bi->page,
733 bi->page_offset,
734 PAGE_SIZE / 2,
735 DMA_FROM_DEVICE);
736 if (dma_mapping_error(rx_ring->dev,
737 bi->page_dma)) {
738 rx_ring->rx_stats.alloc_page_failed++;
739 bi->page_dma = 0;
740 goto no_buffers;
741 }
742 }
743
744 dma_sync_single_range_for_device(rx_ring->dev,
745 bi->dma,
746 0,
747 rx_ring->rx_hdr_len,
748 DMA_FROM_DEVICE);
749 /* Refresh the desc even if buffer_addrs didn't change
750 * because each write-back erases this info.
751 */
752 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
753 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
754 i++;
755 if (i == rx_ring->count)
756 i = 0;
757 }
758
759no_buffers:
760 if (rx_ring->next_to_use != i)
761 i40e_release_rx_desc(rx_ring, i);
762}
763
764/**
765 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
766 * @rx_ring: ring to place buffers on
767 * @cleaned_count: number of buffers to replace
768 **/
a132af24 769void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
770{
771 u16 i = rx_ring->next_to_use;
772 union i40e_rx_desc *rx_desc;
773 struct i40e_rx_buffer *bi;
774 struct sk_buff *skb;
775
776 /* do nothing if no valid netdev defined */
777 if (!rx_ring->netdev || !cleaned_count)
778 return;
779
780 while (cleaned_count--) {
781 rx_desc = I40E_RX_DESC(rx_ring, i);
782 bi = &rx_ring->rx_bi[i];
783 skb = bi->skb;
784
785 if (!skb) {
786 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
787 rx_ring->rx_buf_len);
788 if (!skb) {
789 rx_ring->rx_stats.alloc_buff_failed++;
790 goto no_buffers;
791 }
792 /* initialize queue mapping */
793 skb_record_rx_queue(skb, rx_ring->queue_index);
794 bi->skb = skb;
795 }
796
797 if (!bi->dma) {
798 bi->dma = dma_map_single(rx_ring->dev,
799 skb->data,
800 rx_ring->rx_buf_len,
801 DMA_FROM_DEVICE);
802 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
803 rx_ring->rx_stats.alloc_buff_failed++;
804 bi->dma = 0;
805 goto no_buffers;
806 }
807 }
808
a132af24
MW
809 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
810 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
811 i++;
812 if (i == rx_ring->count)
813 i = 0;
814 }
815
816no_buffers:
817 if (rx_ring->next_to_use != i)
818 i40e_release_rx_desc(rx_ring, i);
819}
820
821/**
822 * i40e_receive_skb - Send a completed packet up the stack
823 * @rx_ring: rx ring in play
824 * @skb: packet to send up
825 * @vlan_tag: vlan tag for packet
826 **/
827static void i40e_receive_skb(struct i40e_ring *rx_ring,
828 struct sk_buff *skb, u16 vlan_tag)
829{
830 struct i40e_q_vector *q_vector = rx_ring->q_vector;
831 struct i40e_vsi *vsi = rx_ring->vsi;
832 u64 flags = vsi->back->flags;
833
834 if (vlan_tag & VLAN_VID_MASK)
835 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
836
837 if (flags & I40E_FLAG_IN_NETPOLL)
838 netif_rx(skb);
839 else
840 napi_gro_receive(&q_vector->napi, skb);
841}
842
843/**
844 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
845 * @vsi: the VSI we care about
846 * @skb: skb currently being received and modified
847 * @rx_status: status value of last descriptor in packet
848 * @rx_error: error value of last descriptor in packet
849 * @rx_ptype: ptype value of last descriptor in packet
850 **/
851static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
852 struct sk_buff *skb,
853 u32 rx_status,
854 u32 rx_error,
855 u16 rx_ptype)
856{
8a3c91cc
JB
857 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
858 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
859 bool ipv4_tunnel, ipv6_tunnel;
860 __wsum rx_udp_csum;
7f12ad74 861 struct iphdr *iph;
8a3c91cc 862 __sum16 csum;
7f12ad74 863
f8faaa40
ASJ
864 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
865 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
866 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
867 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 868
7f12ad74
GR
869 skb->ip_summed = CHECKSUM_NONE;
870
871 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
872 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
873 return;
874
875 /* did the hardware decode the packet and checksum? */
876 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
877 return;
878
879 /* both known and outer_ip must be set for the below code to work */
880 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
881 return;
882
8a3c91cc
JB
883 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
884 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
885 ipv4 = true;
886 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
887 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
888 ipv6 = true;
889
890 if (ipv4 &&
891 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
892 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
893 goto checksum_fail;
894
ddf1d0d7 895 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 896 if (ipv6 &&
8a3c91cc
JB
897 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
898 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
899 return;
900
8a3c91cc
JB
901 /* there was some L4 error, count error and punt packet to the stack */
902 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
903 goto checksum_fail;
904
905 /* handle packets that were not able to be checksummed due
906 * to arrival speed, in this case the stack can compute
907 * the csum.
908 */
909 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 910 return;
7f12ad74 911
8a3c91cc
JB
912 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
913 * it in the driver, hardware does not do it for us.
914 * Since L3L4P bit was set we assume a valid IHL value (>=5)
915 * so the total length of IPv4 header is IHL*4 bytes
916 * The UDP_0 bit *may* bet set if the *inner* header is UDP
917 */
818f2e7b 918 if (ipv4_tunnel) {
7f12ad74
GR
919 skb->transport_header = skb->mac_header +
920 sizeof(struct ethhdr) +
921 (ip_hdr(skb)->ihl * 4);
922
923 /* Add 4 bytes for VLAN tagged packets */
924 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
925 skb->protocol == htons(ETH_P_8021AD))
926 ? VLAN_HLEN : 0;
927
818f2e7b
ASJ
928 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
929 (udp_hdr(skb)->check != 0)) {
930 rx_udp_csum = udp_csum(skb);
931 iph = ip_hdr(skb);
932 csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
933 (skb->len -
934 skb_transport_offset(skb)),
935 IPPROTO_UDP, rx_udp_csum);
7f12ad74 936
818f2e7b
ASJ
937 if (udp_hdr(skb)->check != csum)
938 goto checksum_fail;
939
940 } /* else its GRE and so no outer UDP header */
7f12ad74
GR
941 }
942
943 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 944 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
945
946 return;
947
948checksum_fail:
949 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
950}
951
952/**
953 * i40e_rx_hash - returns the hash value from the Rx descriptor
954 * @ring: descriptor ring
955 * @rx_desc: specific descriptor
956 **/
957static inline u32 i40e_rx_hash(struct i40e_ring *ring,
958 union i40e_rx_desc *rx_desc)
959{
960 const __le64 rss_mask =
961 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
962 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
963
964 if ((ring->netdev->features & NETIF_F_RXHASH) &&
965 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
966 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
967 else
968 return 0;
969}
970
206812b5
JB
971/**
972 * i40e_ptype_to_hash - get a hash type
973 * @ptype: the ptype value from the descriptor
974 *
975 * Returns a hash type to be used by skb_set_hash
976 **/
977static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
978{
979 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
980
981 if (!decoded.known)
982 return PKT_HASH_TYPE_NONE;
983
984 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
985 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
986 return PKT_HASH_TYPE_L4;
987 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
988 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
989 return PKT_HASH_TYPE_L3;
990 else
991 return PKT_HASH_TYPE_L2;
992}
993
7f12ad74 994/**
a132af24 995 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
996 * @rx_ring: rx ring to clean
997 * @budget: how many cleans we're allowed
998 *
999 * Returns true if there's any budget left (e.g. the clean is finished)
1000 **/
a132af24 1001static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
7f12ad74
GR
1002{
1003 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1004 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1005 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1006 const int current_node = numa_node_id();
1007 struct i40e_vsi *vsi = rx_ring->vsi;
1008 u16 i = rx_ring->next_to_clean;
1009 union i40e_rx_desc *rx_desc;
1010 u32 rx_error, rx_status;
206812b5 1011 u8 rx_ptype;
7f12ad74 1012 u64 qword;
7f12ad74 1013
a132af24 1014 do {
7f12ad74
GR
1015 struct i40e_rx_buffer *rx_bi;
1016 struct sk_buff *skb;
1017 u16 vlan_tag;
a132af24
MW
1018 /* return some buffers to hardware, one at a time is too slow */
1019 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1020 i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1021 cleaned_count = 0;
1022 }
1023
1024 i = rx_ring->next_to_clean;
1025 rx_desc = I40E_RX_DESC(rx_ring, i);
1026 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1027 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1028 I40E_RXD_QW1_STATUS_SHIFT;
1029
1030 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1031 break;
1032
1033 /* This memory barrier is needed to keep us from reading
1034 * any other fields out of the rx_desc until we know the
1035 * DD bit is set.
1036 */
1037 rmb();
7f12ad74
GR
1038 rx_bi = &rx_ring->rx_bi[i];
1039 skb = rx_bi->skb;
a132af24
MW
1040 if (likely(!skb)) {
1041 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1042 rx_ring->rx_hdr_len);
8b6ed9c2 1043 if (!skb) {
a132af24 1044 rx_ring->rx_stats.alloc_buff_failed++;
8b6ed9c2
JB
1045 break;
1046 }
1047
a132af24
MW
1048 /* initialize queue mapping */
1049 skb_record_rx_queue(skb, rx_ring->queue_index);
1050 /* we are reusing so sync this buffer for CPU use */
1051 dma_sync_single_range_for_cpu(rx_ring->dev,
1052 rx_bi->dma,
1053 0,
1054 rx_ring->rx_hdr_len,
1055 DMA_FROM_DEVICE);
1056 }
7f12ad74
GR
1057 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1058 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1059 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1060 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1061 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1062 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1063
1064 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1065 I40E_RXD_QW1_ERROR_SHIFT;
1066 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1067 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1068
1069 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1070 I40E_RXD_QW1_PTYPE_SHIFT;
a132af24 1071 prefetch(rx_bi->page);
7f12ad74 1072 rx_bi->skb = NULL;
a132af24
MW
1073 cleaned_count++;
1074 if (rx_hbo || rx_sph) {
1075 int len;
7f12ad74
GR
1076 if (rx_hbo)
1077 len = I40E_RX_HDR_SIZE;
7f12ad74 1078 else
a132af24
MW
1079 len = rx_header_len;
1080 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1081 } else if (skb->len == 0) {
1082 int len;
1083
1084 len = (rx_packet_len > skb_headlen(skb) ?
1085 skb_headlen(skb) : rx_packet_len);
1086 memcpy(__skb_put(skb, len),
1087 rx_bi->page + rx_bi->page_offset,
1088 len);
1089 rx_bi->page_offset += len;
1090 rx_packet_len -= len;
7f12ad74
GR
1091 }
1092
1093 /* Get the rest of the data if this was a header split */
a132af24 1094 if (rx_packet_len) {
7f12ad74
GR
1095 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1096 rx_bi->page,
1097 rx_bi->page_offset,
1098 rx_packet_len);
1099
1100 skb->len += rx_packet_len;
1101 skb->data_len += rx_packet_len;
1102 skb->truesize += rx_packet_len;
1103
1104 if ((page_count(rx_bi->page) == 1) &&
1105 (page_to_nid(rx_bi->page) == current_node))
1106 get_page(rx_bi->page);
1107 else
1108 rx_bi->page = NULL;
1109
1110 dma_unmap_page(rx_ring->dev,
1111 rx_bi->page_dma,
1112 PAGE_SIZE / 2,
1113 DMA_FROM_DEVICE);
1114 rx_bi->page_dma = 0;
1115 }
a132af24 1116 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1117
1118 if (unlikely(
1119 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1120 struct i40e_rx_buffer *next_buffer;
1121
1122 next_buffer = &rx_ring->rx_bi[i];
a132af24 1123 next_buffer->skb = skb;
7f12ad74 1124 rx_ring->rx_stats.non_eop_descs++;
a132af24 1125 continue;
7f12ad74
GR
1126 }
1127
1128 /* ERR_MASK will only have valid bits if EOP set */
1129 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1130 dev_kfree_skb_any(skb);
8a3c91cc
JB
1131 /* TODO: shouldn't we increment a counter indicating the
1132 * drop?
1133 */
a132af24 1134 continue;
7f12ad74
GR
1135 }
1136
206812b5
JB
1137 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1138 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1139 /* probably a little skewed due to removing CRC */
1140 total_rx_bytes += skb->len;
1141 total_rx_packets++;
1142
1143 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1144
1145 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1146
1147 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1148 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1149 : 0;
a132af24
MW
1150#ifdef I40E_FCOE
1151 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1152 dev_kfree_skb_any(skb);
1153 continue;
1154 }
1155#endif
1156 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
7f12ad74
GR
1157 i40e_receive_skb(rx_ring, skb, vlan_tag);
1158
1159 rx_ring->netdev->last_rx = jiffies;
7f12ad74 1160 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1161
a132af24
MW
1162 } while (likely(total_rx_packets < budget));
1163
1164 u64_stats_update_begin(&rx_ring->syncp);
1165 rx_ring->stats.packets += total_rx_packets;
1166 rx_ring->stats.bytes += total_rx_bytes;
1167 u64_stats_update_end(&rx_ring->syncp);
1168 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1169 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1170
1171 return total_rx_packets;
1172}
1173
1174/**
1175 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1176 * @rx_ring: rx ring to clean
1177 * @budget: how many cleans we're allowed
1178 *
1179 * Returns number of packets cleaned
1180 **/
1181static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1182{
1183 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1184 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1185 struct i40e_vsi *vsi = rx_ring->vsi;
1186 union i40e_rx_desc *rx_desc;
1187 u32 rx_error, rx_status;
1188 u16 rx_packet_len;
1189 u8 rx_ptype;
1190 u64 qword;
1191 u16 i;
1192
1193 do {
1194 struct i40e_rx_buffer *rx_bi;
1195 struct sk_buff *skb;
1196 u16 vlan_tag;
7f12ad74
GR
1197 /* return some buffers to hardware, one at a time is too slow */
1198 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
a132af24 1199 i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
7f12ad74
GR
1200 cleaned_count = 0;
1201 }
1202
a132af24
MW
1203 i = rx_ring->next_to_clean;
1204 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1205 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1206 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1207 I40E_RXD_QW1_STATUS_SHIFT;
1208
1209 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1210 break;
1211
1212 /* This memory barrier is needed to keep us from reading
1213 * any other fields out of the rx_desc until we know the
1214 * DD bit is set.
1215 */
1216 rmb();
1217
1218 rx_bi = &rx_ring->rx_bi[i];
1219 skb = rx_bi->skb;
1220 prefetch(skb->data);
1221
1222 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1223 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1224
1225 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1226 I40E_RXD_QW1_ERROR_SHIFT;
1227 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1228
1229 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1230 I40E_RXD_QW1_PTYPE_SHIFT;
1231 rx_bi->skb = NULL;
1232 cleaned_count++;
1233
1234 /* Get the header and possibly the whole packet
1235 * If this is an skb from previous receive dma will be 0
1236 */
1237 skb_put(skb, rx_packet_len);
1238 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1239 DMA_FROM_DEVICE);
1240 rx_bi->dma = 0;
1241
1242 I40E_RX_INCREMENT(rx_ring, i);
1243
1244 if (unlikely(
1245 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1246 rx_ring->rx_stats.non_eop_descs++;
1247 continue;
1248 }
1249
1250 /* ERR_MASK will only have valid bits if EOP set */
1251 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1252 dev_kfree_skb_any(skb);
1253 /* TODO: shouldn't we increment a counter indicating the
1254 * drop?
1255 */
1256 continue;
1257 }
1258
1259 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1260 i40e_ptype_to_hash(rx_ptype));
1261 /* probably a little skewed due to removing CRC */
1262 total_rx_bytes += skb->len;
1263 total_rx_packets++;
1264
1265 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1266
1267 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1268
1269 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1270 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1271 : 0;
1272 i40e_receive_skb(rx_ring, skb, vlan_tag);
1273
1274 rx_ring->netdev->last_rx = jiffies;
1275 rx_desc->wb.qword1.status_error_len = 0;
1276 } while (likely(total_rx_packets < budget));
7f12ad74 1277
7f12ad74
GR
1278 u64_stats_update_begin(&rx_ring->syncp);
1279 rx_ring->stats.packets += total_rx_packets;
1280 rx_ring->stats.bytes += total_rx_bytes;
1281 u64_stats_update_end(&rx_ring->syncp);
1282 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1283 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1284
a132af24 1285 return total_rx_packets;
7f12ad74
GR
1286}
1287
1288/**
1289 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1290 * @napi: napi struct with our devices info in it
1291 * @budget: amount of work driver is allowed to do this pass, in packets
1292 *
1293 * This function will clean all queues associated with a q_vector.
1294 *
1295 * Returns the amount of work done
1296 **/
1297int i40evf_napi_poll(struct napi_struct *napi, int budget)
1298{
1299 struct i40e_q_vector *q_vector =
1300 container_of(napi, struct i40e_q_vector, napi);
1301 struct i40e_vsi *vsi = q_vector->vsi;
1302 struct i40e_ring *ring;
1303 bool clean_complete = true;
c29af37f 1304 bool arm_wb = false;
7f12ad74 1305 int budget_per_ring;
a132af24 1306 int cleaned;
7f12ad74
GR
1307
1308 if (test_bit(__I40E_DOWN, &vsi->state)) {
1309 napi_complete(napi);
1310 return 0;
1311 }
1312
1313 /* Since the actual Tx work is minimal, we can give the Tx a larger
1314 * budget and be more aggressive about cleaning up the Tx descriptors.
1315 */
c29af37f 1316 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1317 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
c29af37f
ASJ
1318 arm_wb |= ring->arm_wb;
1319 }
7f12ad74
GR
1320
1321 /* We attempt to distribute budget to each Rx queue fairly, but don't
1322 * allow the budget to go below 1 because that would exit polling early.
1323 */
1324 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1325
a132af24
MW
1326 i40e_for_each_ring(ring, q_vector->rx) {
1327 if (ring_is_ps_enabled(ring))
1328 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1329 else
1330 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1331 /* if we didn't clean as many as budgeted, we must be done */
1332 clean_complete &= (budget_per_ring != cleaned);
1333 }
7f12ad74
GR
1334
1335 /* If work not completed, return budget and polling will return */
c29af37f
ASJ
1336 if (!clean_complete) {
1337 if (arm_wb)
1338 i40e_force_wb(vsi, q_vector);
7f12ad74 1339 return budget;
c29af37f 1340 }
7f12ad74
GR
1341
1342 /* Work is done so exit the polling mode and re-enable the interrupt */
1343 napi_complete(napi);
1344 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1345 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1346 i40e_update_dynamic_itr(q_vector);
1347
1348 if (!test_bit(__I40E_DOWN, &vsi->state))
1349 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1350
1351 return 0;
1352}
1353
1354/**
1355 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1356 * @skb: send buffer
1357 * @tx_ring: ring to send buffer on
1358 * @flags: the tx flags to be set
1359 *
1360 * Checks the skb and set up correspondingly several generic transmit flags
1361 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1362 *
1363 * Returns error code indicate the frame should be dropped upon error and the
1364 * otherwise returns 0 to indicate the flags has been set properly.
1365 **/
1366static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1367 struct i40e_ring *tx_ring,
1368 u32 *flags)
1369{
1370 __be16 protocol = skb->protocol;
1371 u32 tx_flags = 0;
1372
1373 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1374 if (skb_vlan_tag_present(skb)) {
1375 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1376 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1377 /* else if it is a SW VLAN, check the next protocol and store the tag */
1378 } else if (protocol == htons(ETH_P_8021Q)) {
1379 struct vlan_hdr *vhdr, _vhdr;
1380 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1381 if (!vhdr)
1382 return -EINVAL;
1383
1384 protocol = vhdr->h_vlan_encapsulated_proto;
1385 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1386 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1387 }
1388
1389 *flags = tx_flags;
1390 return 0;
1391}
1392
1393/**
1394 * i40e_tso - set up the tso context descriptor
1395 * @tx_ring: ptr to the ring to send
1396 * @skb: ptr to the skb we're sending
1397 * @tx_flags: the collected send information
1398 * @protocol: the send protocol
1399 * @hdr_len: ptr to the size of the packet header
1400 * @cd_tunneling: ptr to context descriptor bits
1401 *
1402 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1403 **/
1404static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1405 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1406 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1407{
1408 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1409 struct ipv6hdr *ipv6h;
7f12ad74
GR
1410 struct tcphdr *tcph;
1411 struct iphdr *iph;
1412 u32 l4len;
1413 int err;
7f12ad74
GR
1414
1415 if (!skb_is_gso(skb))
1416 return 0;
1417
fe6d4aa4
FR
1418 err = skb_cow_head(skb, 0);
1419 if (err < 0)
1420 return err;
7f12ad74 1421
85e76d03
AS
1422 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1423 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1424
1425 if (iph->version == 4) {
7f12ad74
GR
1426 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1427 iph->tot_len = 0;
1428 iph->check = 0;
1429 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1430 0, IPPROTO_TCP, 0);
85e76d03 1431 } else if (ipv6h->version == 6) {
7f12ad74
GR
1432 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1433 ipv6h->payload_len = 0;
1434 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1435 0, IPPROTO_TCP, 0);
1436 }
1437
1438 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1439 *hdr_len = (skb->encapsulation
1440 ? (skb_inner_transport_header(skb) - skb->data)
1441 : skb_transport_offset(skb)) + l4len;
1442
1443 /* find the field values */
1444 cd_cmd = I40E_TX_CTX_DESC_TSO;
1445 cd_tso_len = skb->len - *hdr_len;
1446 cd_mss = skb_shinfo(skb)->gso_size;
1447 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1448 ((u64)cd_tso_len <<
1449 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1450 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1451 return 1;
1452}
1453
1454/**
1455 * i40e_tx_enable_csum - Enable Tx checksum offloads
1456 * @skb: send buffer
1457 * @tx_flags: Tx flags currently set
1458 * @td_cmd: Tx descriptor command bits to set
1459 * @td_offset: Tx descriptor header offsets to set
1460 * @cd_tunneling: ptr to context desc bits
1461 **/
1462static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1463 u32 *td_cmd, u32 *td_offset,
1464 struct i40e_ring *tx_ring,
1465 u32 *cd_tunneling)
1466{
1467 struct ipv6hdr *this_ipv6_hdr;
1468 unsigned int this_tcp_hdrlen;
1469 struct iphdr *this_ip_hdr;
1470 u32 network_hdr_len;
1471 u8 l4_hdr = 0;
45991204 1472 u32 l4_tunnel = 0;
7f12ad74
GR
1473
1474 if (skb->encapsulation) {
45991204
ASJ
1475 switch (ip_hdr(skb)->protocol) {
1476 case IPPROTO_UDP:
1477 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1478 break;
1479 default:
1480 return;
1481 }
7f12ad74
GR
1482 network_hdr_len = skb_inner_network_header_len(skb);
1483 this_ip_hdr = inner_ip_hdr(skb);
1484 this_ipv6_hdr = inner_ipv6_hdr(skb);
1485 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1486
1487 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1488
1489 if (tx_flags & I40E_TX_FLAGS_TSO) {
1490 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1491 ip_hdr(skb)->check = 0;
1492 } else {
1493 *cd_tunneling |=
1494 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1495 }
1496 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03
AS
1497 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1498 if (tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1499 ip_hdr(skb)->check = 0;
7f12ad74
GR
1500 }
1501
1502 /* Now set the ctx descriptor fields */
1503 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1504 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1505 l4_tunnel |
7f12ad74
GR
1506 ((skb_inner_network_offset(skb) -
1507 skb_transport_offset(skb)) >> 1) <<
1508 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03
AS
1509 if (this_ip_hdr->version == 6) {
1510 tx_flags &= ~I40E_TX_FLAGS_IPV4;
1511 tx_flags |= I40E_TX_FLAGS_IPV6;
1512 }
1513
7f12ad74
GR
1514
1515 } else {
1516 network_hdr_len = skb_network_header_len(skb);
1517 this_ip_hdr = ip_hdr(skb);
1518 this_ipv6_hdr = ipv6_hdr(skb);
1519 this_tcp_hdrlen = tcp_hdrlen(skb);
1520 }
1521
1522 /* Enable IP checksum offloads */
1523 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1524 l4_hdr = this_ip_hdr->protocol;
1525 /* the stack computes the IP header already, the only time we
1526 * need the hardware to recompute it is in the case of TSO.
1527 */
1528 if (tx_flags & I40E_TX_FLAGS_TSO) {
1529 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1530 this_ip_hdr->check = 0;
1531 } else {
1532 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1533 }
1534 /* Now set the td_offset for IP header length */
1535 *td_offset = (network_hdr_len >> 2) <<
1536 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1537 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1538 l4_hdr = this_ipv6_hdr->nexthdr;
1539 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1540 /* Now set the td_offset for IP header length */
1541 *td_offset = (network_hdr_len >> 2) <<
1542 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1543 }
1544 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1545 *td_offset |= (skb_network_offset(skb) >> 1) <<
1546 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1547
1548 /* Enable L4 checksum offloads */
1549 switch (l4_hdr) {
1550 case IPPROTO_TCP:
1551 /* enable checksum offloads */
1552 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1553 *td_offset |= (this_tcp_hdrlen >> 2) <<
1554 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1555 break;
1556 case IPPROTO_SCTP:
1557 /* enable SCTP checksum offload */
1558 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1559 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1560 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1561 break;
1562 case IPPROTO_UDP:
1563 /* enable UDP checksum offload */
1564 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1565 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1566 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1567 break;
1568 default:
1569 break;
1570 }
1571}
1572
1573/**
1574 * i40e_create_tx_ctx Build the Tx context descriptor
1575 * @tx_ring: ring to create the descriptor on
1576 * @cd_type_cmd_tso_mss: Quad Word 1
1577 * @cd_tunneling: Quad Word 0 - bits 0-31
1578 * @cd_l2tag2: Quad Word 0 - bits 32-63
1579 **/
1580static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1581 const u64 cd_type_cmd_tso_mss,
1582 const u32 cd_tunneling, const u32 cd_l2tag2)
1583{
1584 struct i40e_tx_context_desc *context_desc;
1585 int i = tx_ring->next_to_use;
1586
ff40dd5d
JB
1587 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1588 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1589 return;
1590
1591 /* grab the next descriptor */
1592 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1593
1594 i++;
1595 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1596
1597 /* cpu_to_le32 and assign to struct fields */
1598 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1599 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1600 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1601 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1602}
1603
71da6197
AS
1604 /**
1605 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1606 * @skb: send buffer
1607 * @tx_flags: collected send information
1608 * @hdr_len: size of the packet header
1609 *
1610 * Note: Our HW can't scatter-gather more than 8 fragments to build
1611 * a packet on the wire and so we need to figure out the cases where we
1612 * need to linearize the skb.
1613 **/
1614static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
1615 const u8 hdr_len)
1616{
1617 struct skb_frag_struct *frag;
1618 bool linearize = false;
1619 unsigned int size = 0;
1620 u16 num_frags;
1621 u16 gso_segs;
1622
1623 num_frags = skb_shinfo(skb)->nr_frags;
1624 gso_segs = skb_shinfo(skb)->gso_segs;
1625
1626 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1627 u16 j = 1;
1628
1629 if (num_frags < (I40E_MAX_BUFFER_TXD))
1630 goto linearize_chk_done;
1631 /* try the simple math, if we have too many frags per segment */
1632 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1633 I40E_MAX_BUFFER_TXD) {
1634 linearize = true;
1635 goto linearize_chk_done;
1636 }
1637 frag = &skb_shinfo(skb)->frags[0];
1638 size = hdr_len;
1639 /* we might still have more fragments per segment */
1640 do {
1641 size += skb_frag_size(frag);
1642 frag++; j++;
1643 if (j == I40E_MAX_BUFFER_TXD) {
1644 if (size < skb_shinfo(skb)->gso_size) {
1645 linearize = true;
1646 break;
1647 }
1648 j = 1;
1649 size -= skb_shinfo(skb)->gso_size;
1650 if (size)
1651 j++;
1652 size += hdr_len;
1653 }
1654 num_frags--;
1655 } while (num_frags);
1656 } else {
1657 if (num_frags >= I40E_MAX_BUFFER_TXD)
1658 linearize = true;
1659 }
1660
1661linearize_chk_done:
1662 return linearize;
1663}
1664
7f12ad74
GR
1665/**
1666 * i40e_tx_map - Build the Tx descriptor
1667 * @tx_ring: ring to send buffer on
1668 * @skb: send buffer
1669 * @first: first buffer info buffer to use
1670 * @tx_flags: collected send information
1671 * @hdr_len: size of the packet header
1672 * @td_cmd: the command field in the descriptor
1673 * @td_offset: offset for checksum or crc
1674 **/
1675static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1676 struct i40e_tx_buffer *first, u32 tx_flags,
1677 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1678{
1679 unsigned int data_len = skb->data_len;
1680 unsigned int size = skb_headlen(skb);
1681 struct skb_frag_struct *frag;
1682 struct i40e_tx_buffer *tx_bi;
1683 struct i40e_tx_desc *tx_desc;
1684 u16 i = tx_ring->next_to_use;
1685 u32 td_tag = 0;
1686 dma_addr_t dma;
1687 u16 gso_segs;
1688
1689 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1690 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1691 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1692 I40E_TX_FLAGS_VLAN_SHIFT;
1693 }
1694
1695 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1696 gso_segs = skb_shinfo(skb)->gso_segs;
1697 else
1698 gso_segs = 1;
1699
1700 /* multiply data chunks by size of headers */
1701 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1702 first->gso_segs = gso_segs;
1703 first->skb = skb;
1704 first->tx_flags = tx_flags;
1705
1706 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1707
1708 tx_desc = I40E_TX_DESC(tx_ring, i);
1709 tx_bi = first;
1710
1711 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1712 if (dma_mapping_error(tx_ring->dev, dma))
1713 goto dma_error;
1714
1715 /* record length, and DMA address */
1716 dma_unmap_len_set(tx_bi, len, size);
1717 dma_unmap_addr_set(tx_bi, dma, dma);
1718
1719 tx_desc->buffer_addr = cpu_to_le64(dma);
1720
1721 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1722 tx_desc->cmd_type_offset_bsz =
1723 build_ctob(td_cmd, td_offset,
1724 I40E_MAX_DATA_PER_TXD, td_tag);
1725
1726 tx_desc++;
1727 i++;
1728 if (i == tx_ring->count) {
1729 tx_desc = I40E_TX_DESC(tx_ring, 0);
1730 i = 0;
1731 }
1732
1733 dma += I40E_MAX_DATA_PER_TXD;
1734 size -= I40E_MAX_DATA_PER_TXD;
1735
1736 tx_desc->buffer_addr = cpu_to_le64(dma);
1737 }
1738
1739 if (likely(!data_len))
1740 break;
1741
1742 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1743 size, td_tag);
1744
1745 tx_desc++;
1746 i++;
1747 if (i == tx_ring->count) {
1748 tx_desc = I40E_TX_DESC(tx_ring, 0);
1749 i = 0;
1750 }
1751
1752 size = skb_frag_size(frag);
1753 data_len -= size;
1754
1755 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1756 DMA_TO_DEVICE);
1757
1758 tx_bi = &tx_ring->tx_bi[i];
1759 }
1760
1943d8ba
JB
1761 /* Place RS bit on last descriptor of any packet that spans across the
1762 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1763 */
1764#define WB_STRIDE 0x3
1765 if (((i & WB_STRIDE) != WB_STRIDE) &&
1766 (first <= &tx_ring->tx_bi[i]) &&
1767 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1768 tx_desc->cmd_type_offset_bsz =
1769 build_ctob(td_cmd, td_offset, size, td_tag) |
1770 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1771 I40E_TXD_QW1_CMD_SHIFT);
1772 } else {
1773 tx_desc->cmd_type_offset_bsz =
1774 build_ctob(td_cmd, td_offset, size, td_tag) |
1775 cpu_to_le64((u64)I40E_TXD_CMD <<
1776 I40E_TXD_QW1_CMD_SHIFT);
1777 }
7f12ad74
GR
1778
1779 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1780 tx_ring->queue_index),
1781 first->bytecount);
1782
1783 /* set the timestamp */
1784 first->time_stamp = jiffies;
1785
1786 /* Force memory writes to complete before letting h/w
1787 * know there are new descriptors to fetch. (Only
1788 * applicable for weak-ordered memory model archs,
1789 * such as IA-64).
1790 */
1791 wmb();
1792
1793 /* set next_to_watch value indicating a packet is present */
1794 first->next_to_watch = tx_desc;
1795
1796 i++;
1797 if (i == tx_ring->count)
1798 i = 0;
1799
1800 tx_ring->next_to_use = i;
1801
1802 /* notify HW of packet */
1803 writel(i, tx_ring->tail);
1804
1805 return;
1806
1807dma_error:
1808 dev_info(tx_ring->dev, "TX DMA map failed\n");
1809
1810 /* clear dma mappings for failed tx_bi map */
1811 for (;;) {
1812 tx_bi = &tx_ring->tx_bi[i];
1813 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1814 if (tx_bi == first)
1815 break;
1816 if (i == 0)
1817 i = tx_ring->count;
1818 i--;
1819 }
1820
1821 tx_ring->next_to_use = i;
1822}
1823
1824/**
1825 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1826 * @tx_ring: the ring to be checked
1827 * @size: the size buffer we want to assure is available
1828 *
1829 * Returns -EBUSY if a stop is needed, else 0
1830 **/
1831static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1832{
1833 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1834 /* Memory barrier before checking head and tail */
1835 smp_mb();
1836
1837 /* Check again in a case another CPU has just made room available. */
1838 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1839 return -EBUSY;
1840
1841 /* A reprieve! - use start_queue because it doesn't call schedule */
1842 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1843 ++tx_ring->tx_stats.restart_queue;
1844 return 0;
1845}
1846
1847/**
1848 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1849 * @tx_ring: the ring to be checked
1850 * @size: the size buffer we want to assure is available
1851 *
1852 * Returns 0 if stop is not needed
1853 **/
1854static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1855{
1856 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1857 return 0;
1858 return __i40e_maybe_stop_tx(tx_ring, size);
1859}
1860
1861/**
1862 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1863 * @skb: send buffer
1864 * @tx_ring: ring to send buffer on
1865 *
1866 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1867 * there is not enough descriptors available in this ring since we need at least
1868 * one descriptor.
1869 **/
1870static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1871 struct i40e_ring *tx_ring)
1872{
7f12ad74 1873 unsigned int f;
7f12ad74
GR
1874 int count = 0;
1875
1876 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1877 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1878 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1879 * + 1 desc for context descriptor,
1880 * otherwise try next time
1881 */
7f12ad74
GR
1882 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1883 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1884
7f12ad74 1885 count += TXD_USE_COUNT(skb_headlen(skb));
be560521 1886 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1887 tx_ring->tx_stats.tx_busy++;
1888 return 0;
1889 }
1890 return count;
1891}
1892
1893/**
1894 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1895 * @skb: send buffer
1896 * @tx_ring: ring to send buffer on
1897 *
1898 * Returns NETDEV_TX_OK if sent, else an error code
1899 **/
1900static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1901 struct i40e_ring *tx_ring)
1902{
1903 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1904 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1905 struct i40e_tx_buffer *first;
1906 u32 td_offset = 0;
1907 u32 tx_flags = 0;
1908 __be16 protocol;
1909 u32 td_cmd = 0;
1910 u8 hdr_len = 0;
1911 int tso;
1912 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1913 return NETDEV_TX_BUSY;
1914
1915 /* prepare the xmit flags */
1916 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1917 goto out_drop;
1918
1919 /* obtain protocol of skb */
a12c4158 1920 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1921
1922 /* record the location of the first descriptor for this packet */
1923 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1924
1925 /* setup IPv4/IPv6 offloads */
1926 if (protocol == htons(ETH_P_IP))
1927 tx_flags |= I40E_TX_FLAGS_IPV4;
1928 else if (protocol == htons(ETH_P_IPV6))
1929 tx_flags |= I40E_TX_FLAGS_IPV6;
1930
1931 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1932 &cd_type_cmd_tso_mss, &cd_tunneling);
1933
1934 if (tso < 0)
1935 goto out_drop;
1936 else if (tso)
1937 tx_flags |= I40E_TX_FLAGS_TSO;
1938
71da6197
AS
1939 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
1940 if (skb_linearize(skb))
1941 goto out_drop;
1942
7f12ad74
GR
1943 skb_tx_timestamp(skb);
1944
1945 /* always enable CRC insertion offload */
1946 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1947
1948 /* Always offload the checksum, since it's in the data descriptor */
1949 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1950 tx_flags |= I40E_TX_FLAGS_CSUM;
1951
1952 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1953 tx_ring, &cd_tunneling);
1954 }
1955
1956 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1957 cd_tunneling, cd_l2tag2);
1958
1959 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1960 td_cmd, td_offset);
1961
1962 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1963
1964 return NETDEV_TX_OK;
1965
1966out_drop:
1967 dev_kfree_skb_any(skb);
1968 return NETDEV_TX_OK;
1969}
1970
1971/**
1972 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1973 * @skb: send buffer
1974 * @netdev: network interface device structure
1975 *
1976 * Returns NETDEV_TX_OK if sent, else an error code
1977 **/
1978netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1979{
1980 struct i40evf_adapter *adapter = netdev_priv(netdev);
1981 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1982
1983 /* hardware can't handle really short frames, hardware padding works
1984 * beyond this point
1985 */
1986 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1987 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1988 return NETDEV_TX_OK;
1989 skb->len = I40E_MIN_TX_LEN;
1990 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1991 }
1992
1993 return i40e_xmit_frame_ring(skb, tx_ring);
1994}
This page took 0.223734 seconds and 5 git commands to generate.