intel: Add support for IPv6 IP-in-IP offload
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
dd353109 132 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 133 *
9c6c1259
KP
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
a68de58d 136 **/
dd353109 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 138{
9c6c1259 139 u32 head, tail;
a68de58d 140
dd353109
ASJ
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
9c6c1259
KP
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
a68de58d
JB
152}
153
c29af37f
ASJ
154#define WB_STRIDE 0x3
155
7f12ad74
GR
156/**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
158 * @vsi: the VSI we care about
159 * @tx_ring: Tx ring to clean
160 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
161 *
162 * Returns true if there's any budget left (e.g. the clean is finished)
163 **/
a619afe8
AD
164static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
165 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
166{
167 u16 i = tx_ring->next_to_clean;
168 struct i40e_tx_buffer *tx_buf;
1943d8ba 169 struct i40e_tx_desc *tx_head;
7f12ad74 170 struct i40e_tx_desc *tx_desc;
a619afe8
AD
171 unsigned int total_bytes = 0, total_packets = 0;
172 unsigned int budget = vsi->work_limit;
7f12ad74
GR
173
174 tx_buf = &tx_ring->tx_bi[i];
175 tx_desc = I40E_TX_DESC(tx_ring, i);
176 i -= tx_ring->count;
177
1943d8ba
JB
178 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
179
7f12ad74
GR
180 do {
181 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
182
183 /* if next_to_watch is not set then there is no work pending */
184 if (!eop_desc)
185 break;
186
187 /* prevent any other reads prior to eop_desc */
188 read_barrier_depends();
189
1943d8ba
JB
190 /* we have caught up to head, no work left to do */
191 if (tx_head == tx_desc)
7f12ad74
GR
192 break;
193
194 /* clear next_to_watch to prevent false hangs */
195 tx_buf->next_to_watch = NULL;
196
197 /* update the statistics for this packet */
198 total_bytes += tx_buf->bytecount;
199 total_packets += tx_buf->gso_segs;
200
201 /* free the skb */
a619afe8 202 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
203
204 /* unmap skb header data */
205 dma_unmap_single(tx_ring->dev,
206 dma_unmap_addr(tx_buf, dma),
207 dma_unmap_len(tx_buf, len),
208 DMA_TO_DEVICE);
209
210 /* clear tx_buffer data */
211 tx_buf->skb = NULL;
212 dma_unmap_len_set(tx_buf, len, 0);
213
214 /* unmap remaining buffers */
215 while (tx_desc != eop_desc) {
216
217 tx_buf++;
218 tx_desc++;
219 i++;
220 if (unlikely(!i)) {
221 i -= tx_ring->count;
222 tx_buf = tx_ring->tx_bi;
223 tx_desc = I40E_TX_DESC(tx_ring, 0);
224 }
225
226 /* unmap any remaining paged data */
227 if (dma_unmap_len(tx_buf, len)) {
228 dma_unmap_page(tx_ring->dev,
229 dma_unmap_addr(tx_buf, dma),
230 dma_unmap_len(tx_buf, len),
231 DMA_TO_DEVICE);
232 dma_unmap_len_set(tx_buf, len, 0);
233 }
234 }
235
236 /* move us one more past the eop_desc for start of next pkt */
237 tx_buf++;
238 tx_desc++;
239 i++;
240 if (unlikely(!i)) {
241 i -= tx_ring->count;
242 tx_buf = tx_ring->tx_bi;
243 tx_desc = I40E_TX_DESC(tx_ring, 0);
244 }
245
016890b9
JB
246 prefetch(tx_desc);
247
7f12ad74
GR
248 /* update budget accounting */
249 budget--;
250 } while (likely(budget));
251
252 i += tx_ring->count;
253 tx_ring->next_to_clean = i;
254 u64_stats_update_begin(&tx_ring->syncp);
255 tx_ring->stats.bytes += total_bytes;
256 tx_ring->stats.packets += total_packets;
257 u64_stats_update_end(&tx_ring->syncp);
258 tx_ring->q_vector->tx.total_bytes += total_bytes;
259 tx_ring->q_vector->tx.total_packets += total_packets;
260
f6d83d13
ASJ
261 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
262 unsigned int j = 0;
263 /* check to see if there are < 4 descriptors
264 * waiting to be written back, then kick the hardware to force
265 * them to be written back in case we stay in NAPI.
266 * In this mode on X722 we do not enable Interrupt.
267 */
dd353109 268 j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
269
270 if (budget &&
271 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
a619afe8 272 !test_bit(__I40E_DOWN, &vsi->state) &&
f6d83d13
ASJ
273 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
274 tx_ring->arm_wb = true;
275 }
276
7f12ad74
GR
277 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
278 tx_ring->queue_index),
279 total_packets, total_bytes);
280
281#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
282 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
283 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
284 /* Make sure that anybody stopping the queue after this
285 * sees the new next_to_clean.
286 */
287 smp_mb();
288 if (__netif_subqueue_stopped(tx_ring->netdev,
289 tx_ring->queue_index) &&
a619afe8 290 !test_bit(__I40E_DOWN, &vsi->state)) {
7f12ad74
GR
291 netif_wake_subqueue(tx_ring->netdev,
292 tx_ring->queue_index);
293 ++tx_ring->tx_stats.restart_queue;
294 }
295 }
296
b03a8c1f 297 return !!budget;
7f12ad74
GR
298}
299
c29af37f 300/**
ecc6a239 301 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 302 * @vsi: the VSI we care about
ecc6a239 303 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
304 *
305 **/
ecc6a239
ASJ
306static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
307 struct i40e_q_vector *q_vector)
c29af37f 308{
8e0764b4 309 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 310 u32 val;
8e0764b4 311
ecc6a239
ASJ
312 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
313 return;
314
315 if (q_vector->arm_wb_state)
316 return;
317
318 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
319 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
320
321 wr32(&vsi->back->hw,
322 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
323 vsi->base_vector - 1), val);
324 q_vector->arm_wb_state = true;
325}
326
327/**
328 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
329 * @vsi: the VSI we care about
330 * @q_vector: the vector on which to force writeback
331 *
332 **/
333void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
334{
335 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
336 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
337 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
338 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
339 /* allow 00 to be written to the index */;
340
341 wr32(&vsi->back->hw,
342 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
343 val);
c29af37f
ASJ
344}
345
7f12ad74
GR
346/**
347 * i40e_set_new_dynamic_itr - Find new ITR level
348 * @rc: structure containing ring performance data
349 *
8f5e39ce
JB
350 * Returns true if ITR changed, false if not
351 *
7f12ad74
GR
352 * Stores a new ITR value based on packets and byte counts during
353 * the last interrupt. The advantage of per interrupt computation
354 * is faster updates and more accurate ITR for the current traffic
355 * pattern. Constants in this function were computed based on
356 * theoretical maximum wire speed and thresholds were set based on
357 * testing data as well as attempting to minimize response time
358 * while increasing bulk throughput.
359 **/
8f5e39ce 360static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
361{
362 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 363 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
364 u32 new_itr = rc->itr;
365 int bytes_per_int;
51cc6d9f 366 int usecs;
7f12ad74
GR
367
368 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 369 return false;
7f12ad74
GR
370
371 /* simple throttlerate management
c56625d5 372 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 373 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
374 * 20-1249MB/s bulk (18000 ints/s)
375 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
376 *
377 * The math works out because the divisor is in 10^(-6) which
378 * turns the bytes/us input value into MB/s values, but
379 * make sure to use usecs, as the register values written
ee2319cf
JB
380 * are in 2 usec increments in the ITR registers, and make sure
381 * to use the smoothed values that the countdown timer gives us.
7f12ad74 382 */
ee2319cf 383 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 384 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 385
de32e3ef 386 switch (new_latency_range) {
7f12ad74
GR
387 case I40E_LOWEST_LATENCY:
388 if (bytes_per_int > 10)
389 new_latency_range = I40E_LOW_LATENCY;
390 break;
391 case I40E_LOW_LATENCY:
392 if (bytes_per_int > 20)
393 new_latency_range = I40E_BULK_LATENCY;
394 else if (bytes_per_int <= 10)
395 new_latency_range = I40E_LOWEST_LATENCY;
396 break;
397 case I40E_BULK_LATENCY:
c56625d5 398 case I40E_ULTRA_LATENCY:
de32e3ef
CW
399 default:
400 if (bytes_per_int <= 20)
401 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
402 break;
403 }
c56625d5
JB
404
405 /* this is to adjust RX more aggressively when streaming small
406 * packets. The value of 40000 was picked as it is just beyond
407 * what the hardware can receive per second if in low latency
408 * mode.
409 */
410#define RX_ULTRA_PACKET_RATE 40000
411
412 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
413 (&qv->rx == rc))
414 new_latency_range = I40E_ULTRA_LATENCY;
415
de32e3ef 416 rc->latency_range = new_latency_range;
7f12ad74
GR
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
c56625d5 420 new_itr = I40E_ITR_50K;
7f12ad74
GR
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
c56625d5
JB
426 new_itr = I40E_ITR_18K;
427 break;
428 case I40E_ULTRA_LATENCY:
7f12ad74
GR
429 new_itr = I40E_ITR_8K;
430 break;
431 default:
432 break;
433 }
434
7f12ad74
GR
435 rc->total_bytes = 0;
436 rc->total_packets = 0;
8f5e39ce
JB
437
438 if (new_itr != rc->itr) {
439 rc->itr = new_itr;
440 return true;
441 }
442
443 return false;
7f12ad74
GR
444}
445
4eeb1fff 446/**
7f12ad74
GR
447 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
448 * @tx_ring: the tx ring to set up
449 *
450 * Return 0 on success, negative on error
451 **/
452int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
453{
454 struct device *dev = tx_ring->dev;
455 int bi_size;
456
457 if (!dev)
458 return -ENOMEM;
459
67c818a1
MW
460 /* warn if we are about to overwrite the pointer */
461 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
462 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
463 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
464 if (!tx_ring->tx_bi)
465 goto err;
466
467 /* round up to nearest 4K */
468 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
469 /* add u32 for head writeback, align after this takes care of
470 * guaranteeing this is at least one cache line in size
471 */
472 tx_ring->size += sizeof(u32);
7f12ad74
GR
473 tx_ring->size = ALIGN(tx_ring->size, 4096);
474 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
475 &tx_ring->dma, GFP_KERNEL);
476 if (!tx_ring->desc) {
477 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
478 tx_ring->size);
479 goto err;
480 }
481
482 tx_ring->next_to_use = 0;
483 tx_ring->next_to_clean = 0;
484 return 0;
485
486err:
487 kfree(tx_ring->tx_bi);
488 tx_ring->tx_bi = NULL;
489 return -ENOMEM;
490}
491
492/**
493 * i40evf_clean_rx_ring - Free Rx buffers
494 * @rx_ring: ring to be cleaned
495 **/
496void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
497{
498 struct device *dev = rx_ring->dev;
7f12ad74
GR
499 unsigned long bi_size;
500 u16 i;
501
502 /* ring already cleared, nothing to do */
503 if (!rx_ring->rx_bi)
504 return;
505
506 /* Free all the Rx ring sk_buffs */
507 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
508 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
509
7f12ad74
GR
510 if (rx_bi->skb) {
511 dev_kfree_skb(rx_bi->skb);
512 rx_bi->skb = NULL;
513 }
ab9ad98e
JB
514 if (!rx_bi->page)
515 continue;
516
517 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
518 __free_pages(rx_bi->page, 0);
519
520 rx_bi->page = NULL;
521 rx_bi->page_offset = 0;
7f12ad74
GR
522 }
523
524 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
525 memset(rx_ring->rx_bi, 0, bi_size);
526
527 /* Zero out the descriptor ring */
528 memset(rx_ring->desc, 0, rx_ring->size);
529
ab9ad98e 530 rx_ring->next_to_alloc = 0;
7f12ad74
GR
531 rx_ring->next_to_clean = 0;
532 rx_ring->next_to_use = 0;
533}
534
535/**
536 * i40evf_free_rx_resources - Free Rx resources
537 * @rx_ring: ring to clean the resources from
538 *
539 * Free all receive software resources
540 **/
541void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
542{
543 i40evf_clean_rx_ring(rx_ring);
544 kfree(rx_ring->rx_bi);
545 rx_ring->rx_bi = NULL;
546
547 if (rx_ring->desc) {
548 dma_free_coherent(rx_ring->dev, rx_ring->size,
549 rx_ring->desc, rx_ring->dma);
550 rx_ring->desc = NULL;
551 }
552}
553
554/**
555 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
556 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
557 *
558 * Returns 0 on success, negative on failure
559 **/
560int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
561{
562 struct device *dev = rx_ring->dev;
563 int bi_size;
564
67c818a1
MW
565 /* warn if we are about to overwrite the pointer */
566 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
567 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
568 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
569 if (!rx_ring->rx_bi)
570 goto err;
571
f217d6ca 572 u64_stats_init(&rx_ring->syncp);
638702bd 573
7f12ad74 574 /* Round up to nearest 4K */
ab9ad98e 575 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
576 rx_ring->size = ALIGN(rx_ring->size, 4096);
577 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
578 &rx_ring->dma, GFP_KERNEL);
579
580 if (!rx_ring->desc) {
581 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
582 rx_ring->size);
583 goto err;
584 }
585
ab9ad98e 586 rx_ring->next_to_alloc = 0;
7f12ad74
GR
587 rx_ring->next_to_clean = 0;
588 rx_ring->next_to_use = 0;
589
590 return 0;
591err:
592 kfree(rx_ring->rx_bi);
593 rx_ring->rx_bi = NULL;
594 return -ENOMEM;
595}
596
597/**
598 * i40e_release_rx_desc - Store the new tail and head values
599 * @rx_ring: ring to bump
600 * @val: new head index
601 **/
602static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
603{
604 rx_ring->next_to_use = val;
ab9ad98e
JB
605
606 /* update next to alloc since we have filled the ring */
607 rx_ring->next_to_alloc = val;
608
7f12ad74
GR
609 /* Force memory writes to complete before letting h/w
610 * know there are new descriptors to fetch. (Only
611 * applicable for weak-ordered memory model archs,
612 * such as IA-64).
613 */
614 wmb();
615 writel(val, rx_ring->tail);
616}
617
618/**
ab9ad98e
JB
619 * i40e_alloc_mapped_page - recycle or make a new page
620 * @rx_ring: ring to use
621 * @bi: rx_buffer struct to modify
c2e245ab 622 *
ab9ad98e
JB
623 * Returns true if the page was successfully allocated or
624 * reused.
a132af24 625 **/
ab9ad98e
JB
626static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
627 struct i40e_rx_buffer *bi)
a132af24 628{
ab9ad98e
JB
629 struct page *page = bi->page;
630 dma_addr_t dma;
a132af24 631
ab9ad98e
JB
632 /* since we are recycling buffers we should seldom need to alloc */
633 if (likely(page)) {
634 rx_ring->rx_stats.page_reuse_count++;
635 return true;
636 }
a132af24 637
ab9ad98e
JB
638 /* alloc new page for storage */
639 page = dev_alloc_page();
640 if (unlikely(!page)) {
641 rx_ring->rx_stats.alloc_page_failed++;
642 return false;
643 }
a132af24 644
ab9ad98e
JB
645 /* map page for use */
646 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
f16704e5 647
ab9ad98e
JB
648 /* if mapping failed free memory back to system since
649 * there isn't much point in holding memory we can't use
f16704e5 650 */
ab9ad98e
JB
651 if (dma_mapping_error(rx_ring->dev, dma)) {
652 __free_pages(page, 0);
653 rx_ring->rx_stats.alloc_page_failed++;
654 return false;
a132af24
MW
655 }
656
ab9ad98e
JB
657 bi->dma = dma;
658 bi->page = page;
659 bi->page_offset = 0;
c2e245ab 660
ab9ad98e
JB
661 return true;
662}
c2e245ab 663
ab9ad98e
JB
664/**
665 * i40e_receive_skb - Send a completed packet up the stack
666 * @rx_ring: rx ring in play
667 * @skb: packet to send up
668 * @vlan_tag: vlan tag for packet
669 **/
670static void i40e_receive_skb(struct i40e_ring *rx_ring,
671 struct sk_buff *skb, u16 vlan_tag)
672{
673 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 674
ab9ad98e
JB
675 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
676 (vlan_tag & VLAN_VID_MASK))
677 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
678
679 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
680}
681
682/**
ab9ad98e 683 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
684 * @rx_ring: ring to place buffers on
685 * @cleaned_count: number of buffers to replace
c2e245ab 686 *
ab9ad98e 687 * Returns false if all allocations were successful, true if any fail
7f12ad74 688 **/
ab9ad98e 689bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 690{
ab9ad98e 691 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
692 union i40e_rx_desc *rx_desc;
693 struct i40e_rx_buffer *bi;
7f12ad74
GR
694
695 /* do nothing if no valid netdev defined */
696 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 697 return false;
7f12ad74 698
ab9ad98e
JB
699 rx_desc = I40E_RX_DESC(rx_ring, ntu);
700 bi = &rx_ring->rx_bi[ntu];
7f12ad74 701
ab9ad98e
JB
702 do {
703 if (!i40e_alloc_mapped_page(rx_ring, bi))
704 goto no_buffers;
7f12ad74 705
ab9ad98e
JB
706 /* Refresh the desc even if buffer_addrs didn't change
707 * because each write-back erases this info.
708 */
709 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
a132af24 710 rx_desc->read.hdr_addr = 0;
7f12ad74 711
ab9ad98e
JB
712 rx_desc++;
713 bi++;
714 ntu++;
715 if (unlikely(ntu == rx_ring->count)) {
716 rx_desc = I40E_RX_DESC(rx_ring, 0);
717 bi = rx_ring->rx_bi;
718 ntu = 0;
719 }
720
721 /* clear the status bits for the next_to_use descriptor */
722 rx_desc->wb.qword1.status_error_len = 0;
723
724 cleaned_count--;
725 } while (cleaned_count);
726
727 if (rx_ring->next_to_use != ntu)
728 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
729
730 return false;
731
7f12ad74 732no_buffers:
ab9ad98e
JB
733 if (rx_ring->next_to_use != ntu)
734 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
735
736 /* make sure to come back via polling to try again after
737 * allocation failure
738 */
739 return true;
7f12ad74
GR
740}
741
7f12ad74
GR
742/**
743 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
744 * @vsi: the VSI we care about
745 * @skb: skb currently being received and modified
ab9ad98e
JB
746 * @rx_desc: the receive descriptor
747 *
748 * skb->protocol must be set before this function is called
7f12ad74
GR
749 **/
750static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
751 struct sk_buff *skb,
ab9ad98e 752 union i40e_rx_desc *rx_desc)
7f12ad74 753{
ab9ad98e 754 struct i40e_rx_ptype_decoded decoded;
f8a952cb 755 bool ipv4, ipv6, tunnel = false;
ab9ad98e
JB
756 u32 rx_error, rx_status;
757 u8 ptype;
758 u64 qword;
759
760 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
761 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
762 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
763 I40E_RXD_QW1_ERROR_SHIFT;
764 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
765 I40E_RXD_QW1_STATUS_SHIFT;
766 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 767
7f12ad74
GR
768 skb->ip_summed = CHECKSUM_NONE;
769
ab9ad98e
JB
770 skb_checksum_none_assert(skb);
771
7f12ad74 772 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
773 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
774 return;
775
776 /* did the hardware decode the packet and checksum? */
41a1d04b 777 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
778 return;
779
780 /* both known and outer_ip must be set for the below code to work */
781 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
782 return;
783
fad57330
AD
784 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
785 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
786 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
787 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
788
789 if (ipv4 &&
41a1d04b
JB
790 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
791 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
792 goto checksum_fail;
793
ddf1d0d7 794 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 795 if (ipv6 &&
41a1d04b 796 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 797 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
798 return;
799
8a3c91cc 800 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 801 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
802 goto checksum_fail;
803
804 /* handle packets that were not able to be checksummed due
805 * to arrival speed, in this case the stack can compute
806 * the csum.
807 */
41a1d04b 808 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 809 return;
7f12ad74 810
a9c9a81f
AD
811 /* The hardware supported by this driver does not validate outer
812 * checksums for tunneled VXLAN or GENEVE frames. I don't agree
813 * with it but the specification states that you "MAY validate", it
814 * doesn't make it a hard requirement so if we have validated the
815 * inner checksum report CHECKSUM_UNNECESSARY.
8a3c91cc 816 */
f8a952cb
JB
817 if (decoded.inner_prot & (I40E_RX_PTYPE_INNER_PROT_TCP |
818 I40E_RX_PTYPE_INNER_PROT_UDP |
819 I40E_RX_PTYPE_INNER_PROT_SCTP))
820 tunnel = true;
fad57330 821
7f12ad74 822 skb->ip_summed = CHECKSUM_UNNECESSARY;
f8a952cb 823 skb->csum_level = tunnel ? 1 : 0;
8a3c91cc
JB
824
825 return;
826
827checksum_fail:
828 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
829}
830
831/**
857942fd 832 * i40e_ptype_to_htype - get a hash type
206812b5
JB
833 * @ptype: the ptype value from the descriptor
834 *
835 * Returns a hash type to be used by skb_set_hash
836 **/
ab9ad98e 837static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
838{
839 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
840
841 if (!decoded.known)
842 return PKT_HASH_TYPE_NONE;
843
844 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
845 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
846 return PKT_HASH_TYPE_L4;
847 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
848 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
849 return PKT_HASH_TYPE_L3;
850 else
851 return PKT_HASH_TYPE_L2;
852}
853
857942fd
ASJ
854/**
855 * i40e_rx_hash - set the hash value in the skb
856 * @ring: descriptor ring
857 * @rx_desc: specific descriptor
858 **/
859static inline void i40e_rx_hash(struct i40e_ring *ring,
860 union i40e_rx_desc *rx_desc,
861 struct sk_buff *skb,
862 u8 rx_ptype)
863{
864 u32 hash;
ab9ad98e 865 const __le64 rss_mask =
857942fd
ASJ
866 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
867 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
868
869 if (ring->netdev->features & NETIF_F_RXHASH)
870 return;
871
872 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
873 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
874 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
875 }
876}
877
7f12ad74 878/**
ab9ad98e
JB
879 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
880 * @rx_ring: rx descriptor ring packet is being transacted on
881 * @rx_desc: pointer to the EOP Rx descriptor
882 * @skb: pointer to current skb being populated
883 * @rx_ptype: the packet type decoded by hardware
7f12ad74 884 *
ab9ad98e
JB
885 * This function checks the ring, descriptor, and packet information in
886 * order to populate the hash, checksum, VLAN, protocol, and
887 * other fields within the skb.
7f12ad74 888 **/
ab9ad98e
JB
889static inline
890void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
891 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
892 u8 rx_ptype)
7f12ad74 893{
ab9ad98e 894 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 895
ab9ad98e
JB
896 /* modifies the skb - consumes the enet header */
897 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
a132af24 898
ab9ad98e 899 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 900
ab9ad98e
JB
901 skb_record_rx_queue(skb, rx_ring->queue_index);
902}
a132af24 903
ab9ad98e
JB
904/**
905 * i40e_pull_tail - i40e specific version of skb_pull_tail
906 * @rx_ring: rx descriptor ring packet is being transacted on
907 * @skb: pointer to current skb being adjusted
908 *
909 * This function is an i40e specific version of __pskb_pull_tail. The
910 * main difference between this version and the original function is that
911 * this function can make several assumptions about the state of things
912 * that allow for significant optimizations versus the standard function.
913 * As a result we can do things like drop a frag and maintain an accurate
914 * truesize for the skb.
915 */
916static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
917{
918 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
919 unsigned char *va;
920 unsigned int pull_len;
8b6ed9c2 921
ab9ad98e
JB
922 /* it is valid to use page_address instead of kmap since we are
923 * working with pages allocated out of the lomem pool per
924 * alloc_page(GFP_ATOMIC)
925 */
926 va = skb_frag_address(frag);
7f12ad74 927
ab9ad98e
JB
928 /* we need the header to contain the greater of either ETH_HLEN or
929 * 60 bytes if the skb->len is less than 60 for skb_pad.
930 */
931 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
7f12ad74 932
ab9ad98e
JB
933 /* align pull length to size of long to optimize memcpy performance */
934 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
7f12ad74 935
ab9ad98e
JB
936 /* update all of the pointers */
937 skb_frag_size_sub(frag, pull_len);
938 frag->page_offset += pull_len;
939 skb->data_len -= pull_len;
940 skb->tail += pull_len;
941}
7f12ad74 942
ab9ad98e
JB
943/**
944 * i40e_cleanup_headers - Correct empty headers
945 * @rx_ring: rx descriptor ring packet is being transacted on
946 * @skb: pointer to current skb being fixed
947 *
948 * Also address the case where we are pulling data in on pages only
949 * and as such no data is present in the skb header.
950 *
951 * In addition if skb is not at least 60 bytes we need to pad it so that
952 * it is large enough to qualify as a valid Ethernet frame.
953 *
954 * Returns true if an error was encountered and skb was freed.
955 **/
956static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
957{
958 /* place header in linear portion of buffer */
959 if (skb_is_nonlinear(skb))
960 i40e_pull_tail(rx_ring, skb);
7f12ad74 961
ab9ad98e
JB
962 /* if eth_skb_pad returns an error the skb was freed */
963 if (eth_skb_pad(skb))
964 return true;
7f12ad74 965
ab9ad98e
JB
966 return false;
967}
857942fd 968
ab9ad98e
JB
969/**
970 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
971 * @rx_ring: rx descriptor ring to store buffers on
972 * @old_buff: donor buffer to have page reused
973 *
974 * Synchronizes page for reuse by the adapter
975 **/
976static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
977 struct i40e_rx_buffer *old_buff)
978{
979 struct i40e_rx_buffer *new_buff;
980 u16 nta = rx_ring->next_to_alloc;
7f12ad74 981
ab9ad98e 982 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 983
ab9ad98e
JB
984 /* update, and store next to alloc */
985 nta++;
986 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 987
ab9ad98e
JB
988 /* transfer page from old buffer to new buffer */
989 *new_buff = *old_buff;
990}
991
992/**
993 * i40e_page_is_reserved - check if reuse is possible
994 * @page: page struct to check
995 */
996static inline bool i40e_page_is_reserved(struct page *page)
997{
998 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
999}
1000
1001/**
1002 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1003 * @rx_ring: rx descriptor ring to transact packets on
1004 * @rx_buffer: buffer containing page to add
1005 * @rx_desc: descriptor containing length of buffer written by hardware
1006 * @skb: sk_buff to place the data into
1007 *
1008 * This function will add the data contained in rx_buffer->page to the skb.
1009 * This is done either through a direct copy if the data in the buffer is
1010 * less than the skb header size, otherwise it will just attach the page as
1011 * a frag to the skb.
1012 *
1013 * The function will then update the page offset if necessary and return
1014 * true if the buffer can be reused by the adapter.
1015 **/
1016static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1017 struct i40e_rx_buffer *rx_buffer,
1018 union i40e_rx_desc *rx_desc,
1019 struct sk_buff *skb)
1020{
1021 struct page *page = rx_buffer->page;
1022 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1023 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1024 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1025#if (PAGE_SIZE < 8192)
1026 unsigned int truesize = I40E_RXBUFFER_2048;
1027#else
1028 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1029 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
a132af24 1030#endif
7f12ad74 1031
ab9ad98e
JB
1032 /* will the data fit in the skb we allocated? if so, just
1033 * copy it as it is pretty small anyway
1034 */
1035 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1036 unsigned char *va = page_address(page) + rx_buffer->page_offset;
7f12ad74 1037
ab9ad98e 1038 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
a132af24 1039
ab9ad98e
JB
1040 /* page is not reserved, we can reuse buffer as-is */
1041 if (likely(!i40e_page_is_reserved(page)))
1042 return true;
a132af24 1043
ab9ad98e
JB
1044 /* this page cannot be reused so discard it */
1045 __free_pages(page, 0);
1046 return false;
1047 }
1048
1049 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1050 rx_buffer->page_offset, size, truesize);
1051
1052 /* avoid re-using remote pages */
1053 if (unlikely(i40e_page_is_reserved(page)))
1054 return false;
1055
1056#if (PAGE_SIZE < 8192)
1057 /* if we are only owner of page we can reuse it */
1058 if (unlikely(page_count(page) != 1))
1059 return false;
1060
1061 /* flip page offset to other buffer */
1062 rx_buffer->page_offset ^= truesize;
1063#else
1064 /* move offset up to the next cache line */
1065 rx_buffer->page_offset += truesize;
1066
1067 if (rx_buffer->page_offset > last_offset)
1068 return false;
1069#endif
1070
1071 /* Even if we own the page, we are not allowed to use atomic_set()
1072 * This would break get_page_unless_zero() users.
1073 */
1074 get_page(rx_buffer->page);
1075
1076 return true;
1077}
1078
1079/**
1080 * i40evf_fetch_rx_buffer - Allocate skb and populate it
1081 * @rx_ring: rx descriptor ring to transact packets on
1082 * @rx_desc: descriptor containing info written by hardware
1083 *
1084 * This function allocates an skb on the fly, and populates it with the page
1085 * data from the current receive descriptor, taking care to set up the skb
1086 * correctly, as well as handling calling the page recycle function if
1087 * necessary.
1088 */
1089static inline
1090struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1091 union i40e_rx_desc *rx_desc)
1092{
1093 struct i40e_rx_buffer *rx_buffer;
1094 struct sk_buff *skb;
1095 struct page *page;
1096
1097 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1098 page = rx_buffer->page;
1099 prefetchw(page);
1100
1101 skb = rx_buffer->skb;
1102
1103 if (likely(!skb)) {
1104 void *page_addr = page_address(page) + rx_buffer->page_offset;
1105
1106 /* prefetch first cache line of first page */
1107 prefetch(page_addr);
1108#if L1_CACHE_BYTES < 128
1109 prefetch(page_addr + L1_CACHE_BYTES);
1110#endif
1111
1112 /* allocate a skb to store the frags */
1113 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1114 I40E_RX_HDR_SIZE,
1115 GFP_ATOMIC | __GFP_NOWARN);
1116 if (unlikely(!skb)) {
1117 rx_ring->rx_stats.alloc_buff_failed++;
1118 return NULL;
1119 }
1120
1121 /* we will be copying header into skb->data in
1122 * pskb_may_pull so it is in our interest to prefetch
1123 * it now to avoid a possible cache miss
1124 */
1125 prefetchw(skb->data);
1126 } else {
1127 rx_buffer->skb = NULL;
1128 }
1129
1130 /* we are reusing so sync this buffer for CPU use */
1131 dma_sync_single_range_for_cpu(rx_ring->dev,
1132 rx_buffer->dma,
1133 rx_buffer->page_offset,
1134 I40E_RXBUFFER_2048,
1135 DMA_FROM_DEVICE);
1136
1137 /* pull page into skb */
1138 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1139 /* hand second half of page back to the ring */
1140 i40e_reuse_rx_page(rx_ring, rx_buffer);
1141 rx_ring->rx_stats.page_reuse_count++;
1142 } else {
1143 /* we are not reusing the buffer so unmap it */
1144 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1145 DMA_FROM_DEVICE);
1146 }
1147
1148 /* clear contents of buffer_info */
1149 rx_buffer->page = NULL;
1150
1151 return skb;
1152}
1153
1154/**
1155 * i40e_is_non_eop - process handling of non-EOP buffers
1156 * @rx_ring: Rx ring being processed
1157 * @rx_desc: Rx descriptor for current buffer
1158 * @skb: Current socket buffer containing buffer in progress
1159 *
1160 * This function updates next to clean. If the buffer is an EOP buffer
1161 * this function exits returning false, otherwise it will place the
1162 * sk_buff in the next buffer to be chained and return true indicating
1163 * that this is in fact a non-EOP buffer.
1164 **/
1165static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1166 union i40e_rx_desc *rx_desc,
1167 struct sk_buff *skb)
1168{
1169 u32 ntc = rx_ring->next_to_clean + 1;
1170
1171 /* fetch, update, and store next to clean */
1172 ntc = (ntc < rx_ring->count) ? ntc : 0;
1173 rx_ring->next_to_clean = ntc;
1174
1175 prefetch(I40E_RX_DESC(rx_ring, ntc));
1176
1177 /* if we are the last buffer then there is nothing else to do */
1178#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1179 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1180 return false;
1181
1182 /* place skb in next buffer to be received */
1183 rx_ring->rx_bi[ntc].skb = skb;
1184 rx_ring->rx_stats.non_eop_descs++;
1185
1186 return true;
a132af24
MW
1187}
1188
1189/**
ab9ad98e
JB
1190 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1191 * @rx_ring: rx descriptor ring to transact packets on
1192 * @budget: Total limit on number of packets to process
1193 *
1194 * This function provides a "bounce buffer" approach to Rx interrupt
1195 * processing. The advantage to this is that on systems that have
1196 * expensive overhead for IOMMU access this provides a means of avoiding
1197 * it by maintaining the mapping of the page to the system.
a132af24 1198 *
ab9ad98e 1199 * Returns amount of work completed
a132af24 1200 **/
ab9ad98e 1201static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1202{
1203 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1204 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1205 bool failure = false;
a132af24 1206
ab9ad98e
JB
1207 while (likely(total_rx_packets < budget)) {
1208 union i40e_rx_desc *rx_desc;
a132af24 1209 struct sk_buff *skb;
ab9ad98e 1210 u32 rx_status;
a132af24 1211 u16 vlan_tag;
ab9ad98e
JB
1212 u8 rx_ptype;
1213 u64 qword;
1214
7f12ad74
GR
1215 /* return some buffers to hardware, one at a time is too slow */
1216 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1217 failure = failure ||
ab9ad98e 1218 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1219 cleaned_count = 0;
1220 }
1221
ab9ad98e
JB
1222 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1223
7f12ad74 1224 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ab9ad98e
JB
1225 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1226 I40E_RXD_QW1_PTYPE_SHIFT;
7f12ad74 1227 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
ab9ad98e 1228 I40E_RXD_QW1_STATUS_SHIFT;
a132af24 1229
41a1d04b 1230 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1231 break;
1232
ab9ad98e
JB
1233 /* status_error_len will always be zero for unused descriptors
1234 * because it's cleared in cleanup, and overlaps with hdr_addr
1235 * which is always zero because packet split isn't used, if the
1236 * hardware wrote DD then it will be non-zero
1237 */
1238 if (!rx_desc->wb.qword1.status_error_len)
1239 break;
1240
a132af24
MW
1241 /* This memory barrier is needed to keep us from reading
1242 * any other fields out of the rx_desc until we know the
1243 * DD bit is set.
1244 */
67317166 1245 dma_rmb();
a132af24 1246
ab9ad98e
JB
1247 skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
1248 if (!skb)
1249 break;
a132af24 1250
a132af24
MW
1251 cleaned_count++;
1252
ab9ad98e 1253 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1254 continue;
a132af24 1255
ab9ad98e
JB
1256 /* ERR_MASK will only have valid bits if EOP set, and
1257 * what we are doing here is actually checking
1258 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1259 * the error field
1260 */
1261 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1262 dev_kfree_skb_any(skb);
a132af24
MW
1263 continue;
1264 }
1265
ab9ad98e
JB
1266 if (i40e_cleanup_headers(rx_ring, skb))
1267 continue;
1268
a132af24
MW
1269 /* probably a little skewed due to removing CRC */
1270 total_rx_bytes += skb->len;
a132af24 1271
ab9ad98e
JB
1272 /* populate checksum, VLAN, and protocol */
1273 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1274
a132af24 1275
ab9ad98e
JB
1276 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1277 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1278
a132af24
MW
1279 i40e_receive_skb(rx_ring, skb, vlan_tag);
1280
ab9ad98e
JB
1281 /* update budget accounting */
1282 total_rx_packets++;
1283 }
7f12ad74 1284
7f12ad74
GR
1285 u64_stats_update_begin(&rx_ring->syncp);
1286 rx_ring->stats.packets += total_rx_packets;
1287 rx_ring->stats.bytes += total_rx_bytes;
1288 u64_stats_update_end(&rx_ring->syncp);
1289 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1290 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1291
ab9ad98e 1292 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1293 return failure ? budget : total_rx_packets;
7f12ad74
GR
1294}
1295
8f5e39ce
JB
1296static u32 i40e_buildreg_itr(const int type, const u16 itr)
1297{
1298 u32 val;
1299
1300 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1301 /* Don't clear PBA because that can cause lost interrupts that
1302 * came in while we were cleaning/polling
1303 */
8f5e39ce
JB
1304 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1305 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1306
1307 return val;
1308}
1309
1310/* a small macro to shorten up some long lines */
1311#define INTREG I40E_VFINT_DYN_CTLN1
1312
de32e3ef
CW
1313/**
1314 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1315 * @vsi: the VSI we care about
1316 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1317 *
1318 **/
1319static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1320 struct i40e_q_vector *q_vector)
1321{
1322 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1323 bool rx = false, tx = false;
1324 u32 rxval, txval;
de32e3ef 1325 int vector;
de32e3ef
CW
1326
1327 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1328
1329 /* avoid dynamic calculation if in countdown mode OR if
1330 * all dynamic is disabled
1331 */
8f5e39ce
JB
1332 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1333
ee2319cf
JB
1334 if (q_vector->itr_countdown > 0 ||
1335 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1336 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1337 goto enable_int;
1338 }
1339
de32e3ef 1340 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1341 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1342 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1343 }
4eeb1fff 1344
de32e3ef 1345 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1346 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1347 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1348 }
4eeb1fff 1349
8f5e39ce
JB
1350 if (rx || tx) {
1351 /* get the higher of the two ITR adjustments and
1352 * use the same value for both ITR registers
1353 * when in adaptive mode (Rx and/or Tx)
1354 */
1355 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1356
1357 q_vector->tx.itr = q_vector->rx.itr = itr;
1358 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1359 tx = true;
1360 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1361 rx = true;
de32e3ef 1362 }
8f5e39ce
JB
1363
1364 /* only need to enable the interrupt once, but need
1365 * to possibly update both ITR values
1366 */
1367 if (rx) {
1368 /* set the INTENA_MSK_MASK so that this first write
1369 * won't actually enable the interrupt, instead just
1370 * updating the ITR (it's bit 31 PF and VF)
1371 */
1372 rxval |= BIT(31);
1373 /* don't check _DOWN because interrupt isn't being enabled */
1374 wr32(hw, INTREG(vector - 1), rxval);
1375 }
1376
ee2319cf 1377enable_int:
8f5e39ce
JB
1378 if (!test_bit(__I40E_DOWN, &vsi->state))
1379 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1380
1381 if (q_vector->itr_countdown)
1382 q_vector->itr_countdown--;
1383 else
1384 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1385}
1386
7f12ad74
GR
1387/**
1388 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1389 * @napi: napi struct with our devices info in it
1390 * @budget: amount of work driver is allowed to do this pass, in packets
1391 *
1392 * This function will clean all queues associated with a q_vector.
1393 *
1394 * Returns the amount of work done
1395 **/
1396int i40evf_napi_poll(struct napi_struct *napi, int budget)
1397{
1398 struct i40e_q_vector *q_vector =
1399 container_of(napi, struct i40e_q_vector, napi);
1400 struct i40e_vsi *vsi = q_vector->vsi;
1401 struct i40e_ring *ring;
1402 bool clean_complete = true;
c29af37f 1403 bool arm_wb = false;
7f12ad74 1404 int budget_per_ring;
32b3e08f 1405 int work_done = 0;
7f12ad74
GR
1406
1407 if (test_bit(__I40E_DOWN, &vsi->state)) {
1408 napi_complete(napi);
1409 return 0;
1410 }
1411
1412 /* Since the actual Tx work is minimal, we can give the Tx a larger
1413 * budget and be more aggressive about cleaning up the Tx descriptors.
1414 */
c29af37f 1415 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1416 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1417 clean_complete = false;
1418 continue;
1419 }
1420 arm_wb |= ring->arm_wb;
0deda868 1421 ring->arm_wb = false;
c29af37f 1422 }
7f12ad74 1423
c67caceb
AD
1424 /* Handle case where we are called by netpoll with a budget of 0 */
1425 if (budget <= 0)
1426 goto tx_only;
1427
7f12ad74
GR
1428 /* We attempt to distribute budget to each Rx queue fairly, but don't
1429 * allow the budget to go below 1 because that would exit polling early.
1430 */
1431 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1432
a132af24 1433 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1434 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1435
1436 work_done += cleaned;
f2edaaaa
AD
1437 /* if we clean as many as budgeted, we must not be done */
1438 if (cleaned >= budget_per_ring)
1439 clean_complete = false;
a132af24 1440 }
7f12ad74
GR
1441
1442 /* If work not completed, return budget and polling will return */
c29af37f 1443 if (!clean_complete) {
c67caceb 1444tx_only:
164c9f54
ASJ
1445 if (arm_wb) {
1446 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1447 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1448 }
7f12ad74 1449 return budget;
c29af37f 1450 }
7f12ad74 1451
8e0764b4
ASJ
1452 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1453 q_vector->arm_wb_state = false;
1454
7f12ad74 1455 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1456 napi_complete_done(napi, work_done);
de32e3ef 1457 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1458 return 0;
1459}
1460
1461/**
3e587cf3 1462 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1463 * @skb: send buffer
1464 * @tx_ring: ring to send buffer on
1465 * @flags: the tx flags to be set
1466 *
1467 * Checks the skb and set up correspondingly several generic transmit flags
1468 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1469 *
1470 * Returns error code indicate the frame should be dropped upon error and the
1471 * otherwise returns 0 to indicate the flags has been set properly.
1472 **/
3e587cf3
JB
1473static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1474 struct i40e_ring *tx_ring,
1475 u32 *flags)
7f12ad74
GR
1476{
1477 __be16 protocol = skb->protocol;
1478 u32 tx_flags = 0;
1479
31eaaccf
GR
1480 if (protocol == htons(ETH_P_8021Q) &&
1481 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1482 /* When HW VLAN acceleration is turned off by the user the
1483 * stack sets the protocol to 8021q so that the driver
1484 * can take any steps required to support the SW only
1485 * VLAN handling. In our case the driver doesn't need
1486 * to take any further steps so just set the protocol
1487 * to the encapsulated ethertype.
1488 */
1489 skb->protocol = vlan_get_protocol(skb);
1490 goto out;
1491 }
1492
7f12ad74 1493 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1494 if (skb_vlan_tag_present(skb)) {
1495 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1496 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1497 /* else if it is a SW VLAN, check the next protocol and store the tag */
1498 } else if (protocol == htons(ETH_P_8021Q)) {
1499 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1500
7f12ad74
GR
1501 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1502 if (!vhdr)
1503 return -EINVAL;
1504
1505 protocol = vhdr->h_vlan_encapsulated_proto;
1506 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1507 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1508 }
1509
31eaaccf 1510out:
7f12ad74
GR
1511 *flags = tx_flags;
1512 return 0;
1513}
1514
1515/**
1516 * i40e_tso - set up the tso context descriptor
7f12ad74 1517 * @skb: ptr to the skb we're sending
7f12ad74 1518 * @hdr_len: ptr to the size of the packet header
9c883bd3 1519 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1520 *
1521 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1522 **/
84b07992 1523static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74 1524{
03f9d6a5 1525 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1526 union {
1527 struct iphdr *v4;
1528 struct ipv6hdr *v6;
1529 unsigned char *hdr;
1530 } ip;
c49a7bc3
AD
1531 union {
1532 struct tcphdr *tcp;
5453205c 1533 struct udphdr *udp;
c49a7bc3
AD
1534 unsigned char *hdr;
1535 } l4;
1536 u32 paylen, l4_offset;
7f12ad74 1537 int err;
7f12ad74 1538
e9f6563d
SN
1539 if (skb->ip_summed != CHECKSUM_PARTIAL)
1540 return 0;
1541
7f12ad74
GR
1542 if (!skb_is_gso(skb))
1543 return 0;
1544
fe6d4aa4
FR
1545 err = skb_cow_head(skb, 0);
1546 if (err < 0)
1547 return err;
7f12ad74 1548
c777019a
AD
1549 ip.hdr = skb_network_header(skb);
1550 l4.hdr = skb_transport_header(skb);
85e76d03 1551
c777019a
AD
1552 /* initialize outer IP header fields */
1553 if (ip.v4->version == 4) {
1554 ip.v4->tot_len = 0;
1555 ip.v4->check = 0;
c49a7bc3 1556 } else {
c777019a
AD
1557 ip.v6->payload_len = 0;
1558 }
1559
577389a5 1560 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1561 SKB_GSO_GRE_CSUM |
7e13318d 1562 SKB_GSO_IPXIP4 |
bf2d1df3 1563 SKB_GSO_IPXIP6 |
577389a5 1564 SKB_GSO_UDP_TUNNEL |
5453205c 1565 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1566 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1567 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1568 l4.udp->len = 0;
1569
5453205c
AD
1570 /* determine offset of outer transport header */
1571 l4_offset = l4.hdr - skb->data;
1572
1573 /* remove payload length from outer checksum */
24d41e5e
AD
1574 paylen = skb->len - l4_offset;
1575 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
5453205c
AD
1576 }
1577
c777019a
AD
1578 /* reset pointers to inner headers */
1579 ip.hdr = skb_inner_network_header(skb);
1580 l4.hdr = skb_inner_transport_header(skb);
1581
1582 /* initialize inner IP header fields */
1583 if (ip.v4->version == 4) {
1584 ip.v4->tot_len = 0;
1585 ip.v4->check = 0;
1586 } else {
1587 ip.v6->payload_len = 0;
1588 }
7f12ad74
GR
1589 }
1590
c49a7bc3
AD
1591 /* determine offset of inner transport header */
1592 l4_offset = l4.hdr - skb->data;
1593
1594 /* remove payload length from inner checksum */
24d41e5e
AD
1595 paylen = skb->len - l4_offset;
1596 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
c49a7bc3
AD
1597
1598 /* compute length of segmentation header */
1599 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74
GR
1600
1601 /* find the field values */
1602 cd_cmd = I40E_TX_CTX_DESC_TSO;
1603 cd_tso_len = skb->len - *hdr_len;
1604 cd_mss = skb_shinfo(skb)->gso_size;
03f9d6a5
AD
1605 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1606 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1607 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1608 return 1;
1609}
1610
1611/**
1612 * i40e_tx_enable_csum - Enable Tx checksum offloads
1613 * @skb: send buffer
89232c3b 1614 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1615 * @td_cmd: Tx descriptor command bits to set
1616 * @td_offset: Tx descriptor header offsets to set
529f1f65 1617 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1618 * @cd_tunneling: ptr to context desc bits
1619 **/
529f1f65
AD
1620static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1621 u32 *td_cmd, u32 *td_offset,
1622 struct i40e_ring *tx_ring,
1623 u32 *cd_tunneling)
7f12ad74 1624{
b96b78f2
AD
1625 union {
1626 struct iphdr *v4;
1627 struct ipv6hdr *v6;
1628 unsigned char *hdr;
1629 } ip;
1630 union {
1631 struct tcphdr *tcp;
1632 struct udphdr *udp;
1633 unsigned char *hdr;
1634 } l4;
a3fd9d88 1635 unsigned char *exthdr;
d1bd743b 1636 u32 offset, cmd = 0;
a3fd9d88 1637 __be16 frag_off;
b96b78f2
AD
1638 u8 l4_proto = 0;
1639
529f1f65
AD
1640 if (skb->ip_summed != CHECKSUM_PARTIAL)
1641 return 0;
1642
b96b78f2
AD
1643 ip.hdr = skb_network_header(skb);
1644 l4.hdr = skb_transport_header(skb);
7f12ad74 1645
475b4205
AD
1646 /* compute outer L2 header size */
1647 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1648
7f12ad74 1649 if (skb->encapsulation) {
d1bd743b 1650 u32 tunnel = 0;
a0064728
AD
1651 /* define outer network header type */
1652 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1653 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1654 I40E_TX_CTX_EXT_IP_IPV4 :
1655 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1656
a0064728
AD
1657 l4_proto = ip.v4->protocol;
1658 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1659 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1660
1661 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1662 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1663 if (l4.hdr != exthdr)
1664 ipv6_skip_exthdr(skb, exthdr - skb->data,
1665 &l4_proto, &frag_off);
a0064728
AD
1666 }
1667
1668 /* define outer transport */
1669 switch (l4_proto) {
45991204 1670 case IPPROTO_UDP:
475b4205 1671 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1672 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1673 break;
a0064728 1674 case IPPROTO_GRE:
475b4205 1675 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1676 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1677 break;
577389a5
AD
1678 case IPPROTO_IPIP:
1679 case IPPROTO_IPV6:
1680 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1681 l4.hdr = skb_inner_network_header(skb);
1682 break;
45991204 1683 default:
529f1f65
AD
1684 if (*tx_flags & I40E_TX_FLAGS_TSO)
1685 return -1;
1686
1687 skb_checksum_help(skb);
1688 return 0;
45991204 1689 }
b96b78f2 1690
577389a5
AD
1691 /* compute outer L3 header size */
1692 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1693 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1694
1695 /* switch IP header pointer from outer to inner header */
1696 ip.hdr = skb_inner_network_header(skb);
1697
475b4205
AD
1698 /* compute tunnel header size */
1699 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1700 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1701
5453205c
AD
1702 /* indicate if we need to offload outer UDP header */
1703 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1704 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1705 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1706 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1707
475b4205
AD
1708 /* record tunnel offload values */
1709 *cd_tunneling |= tunnel;
1710
b96b78f2 1711 /* switch L4 header pointer from outer to inner */
b96b78f2 1712 l4.hdr = skb_inner_transport_header(skb);
a0064728 1713 l4_proto = 0;
7f12ad74 1714
a0064728
AD
1715 /* reset type as we transition from outer to inner headers */
1716 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1717 if (ip.v4->version == 4)
1718 *tx_flags |= I40E_TX_FLAGS_IPV4;
1719 if (ip.v6->version == 6)
89232c3b 1720 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1721 }
1722
1723 /* Enable IP checksum offloads */
89232c3b 1724 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1725 l4_proto = ip.v4->protocol;
7f12ad74
GR
1726 /* the stack computes the IP header already, the only time we
1727 * need the hardware to recompute it is in the case of TSO.
1728 */
475b4205
AD
1729 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1730 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1731 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1732 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1733 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1734
1735 exthdr = ip.hdr + sizeof(*ip.v6);
1736 l4_proto = ip.v6->nexthdr;
1737 if (l4.hdr != exthdr)
1738 ipv6_skip_exthdr(skb, exthdr - skb->data,
1739 &l4_proto, &frag_off);
7f12ad74 1740 }
b96b78f2 1741
475b4205
AD
1742 /* compute inner L3 header size */
1743 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1744
1745 /* Enable L4 checksum offloads */
b96b78f2 1746 switch (l4_proto) {
7f12ad74
GR
1747 case IPPROTO_TCP:
1748 /* enable checksum offloads */
475b4205
AD
1749 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1750 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1751 break;
1752 case IPPROTO_SCTP:
1753 /* enable SCTP checksum offload */
475b4205
AD
1754 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1755 offset |= (sizeof(struct sctphdr) >> 2) <<
1756 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1757 break;
1758 case IPPROTO_UDP:
1759 /* enable UDP checksum offload */
475b4205
AD
1760 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1761 offset |= (sizeof(struct udphdr) >> 2) <<
1762 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1763 break;
1764 default:
529f1f65
AD
1765 if (*tx_flags & I40E_TX_FLAGS_TSO)
1766 return -1;
1767 skb_checksum_help(skb);
1768 return 0;
7f12ad74 1769 }
475b4205
AD
1770
1771 *td_cmd |= cmd;
1772 *td_offset |= offset;
529f1f65
AD
1773
1774 return 1;
7f12ad74
GR
1775}
1776
1777/**
1778 * i40e_create_tx_ctx Build the Tx context descriptor
1779 * @tx_ring: ring to create the descriptor on
1780 * @cd_type_cmd_tso_mss: Quad Word 1
1781 * @cd_tunneling: Quad Word 0 - bits 0-31
1782 * @cd_l2tag2: Quad Word 0 - bits 32-63
1783 **/
1784static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1785 const u64 cd_type_cmd_tso_mss,
1786 const u32 cd_tunneling, const u32 cd_l2tag2)
1787{
1788 struct i40e_tx_context_desc *context_desc;
1789 int i = tx_ring->next_to_use;
1790
ff40dd5d
JB
1791 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1792 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1793 return;
1794
1795 /* grab the next descriptor */
1796 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1797
1798 i++;
1799 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1800
1801 /* cpu_to_le32 and assign to struct fields */
1802 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1803 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1804 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1805 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1806}
1807
4eeb1fff 1808/**
3f3f7cb8 1809 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1810 * @skb: send buffer
71da6197 1811 *
3f3f7cb8
AD
1812 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1813 * and so we need to figure out the cases where we need to linearize the skb.
1814 *
1815 * For TSO we need to count the TSO header and segment payload separately.
1816 * As such we need to check cases where we have 7 fragments or more as we
1817 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1818 * the segment payload in the first descriptor, and another 7 for the
1819 * fragments.
71da6197 1820 **/
2d37490b 1821bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1822{
2d37490b 1823 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1824 int nr_frags, sum;
71da6197 1825
3f3f7cb8 1826 /* no need to check if number of frags is less than 7 */
2d37490b 1827 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1828 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1829 return false;
71da6197 1830
2d37490b
AD
1831 /* We need to walk through the list and validate that each group
1832 * of 6 fragments totals at least gso_size. However we don't need
3f3f7cb8
AD
1833 * to perform such validation on the last 6 since the last 6 cannot
1834 * inherit any data from a descriptor after them.
2d37490b 1835 */
3f3f7cb8 1836 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1837 frag = &skb_shinfo(skb)->frags[0];
1838
1839 /* Initialize size to the negative value of gso_size minus 1. We
1840 * use this as the worst case scenerio in which the frag ahead
1841 * of us only provides one byte which is why we are limited to 6
1842 * descriptors for a single transmit as the header and previous
1843 * fragment are already consuming 2 descriptors.
1844 */
3f3f7cb8 1845 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 1846
3f3f7cb8
AD
1847 /* Add size of frags 0 through 4 to create our initial sum */
1848 sum += skb_frag_size(frag++);
1849 sum += skb_frag_size(frag++);
1850 sum += skb_frag_size(frag++);
1851 sum += skb_frag_size(frag++);
1852 sum += skb_frag_size(frag++);
2d37490b
AD
1853
1854 /* Walk through fragments adding latest fragment, testing it, and
1855 * then removing stale fragments from the sum.
1856 */
1857 stale = &skb_shinfo(skb)->frags[0];
1858 for (;;) {
3f3f7cb8 1859 sum += skb_frag_size(frag++);
2d37490b
AD
1860
1861 /* if sum is negative we failed to make sufficient progress */
1862 if (sum < 0)
1863 return true;
1864
1865 /* use pre-decrement to avoid processing last fragment */
1866 if (!--nr_frags)
1867 break;
1868
3f3f7cb8 1869 sum -= skb_frag_size(stale++);
71da6197
AS
1870 }
1871
2d37490b 1872 return false;
71da6197
AS
1873}
1874
8f6a2b05
JB
1875/**
1876 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1877 * @tx_ring: the ring to be checked
1878 * @size: the size buffer we want to assure is available
1879 *
1880 * Returns -EBUSY if a stop is needed, else 0
1881 **/
4ec441df 1882int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1883{
1884 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1885 /* Memory barrier before checking head and tail */
1886 smp_mb();
1887
1888 /* Check again in a case another CPU has just made room available. */
1889 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1890 return -EBUSY;
1891
1892 /* A reprieve! - use start_queue because it doesn't call schedule */
1893 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1894 ++tx_ring->tx_stats.restart_queue;
1895 return 0;
1896}
1897
7f12ad74 1898/**
3e587cf3 1899 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1900 * @tx_ring: ring to send buffer on
1901 * @skb: send buffer
1902 * @first: first buffer info buffer to use
1903 * @tx_flags: collected send information
1904 * @hdr_len: size of the packet header
1905 * @td_cmd: the command field in the descriptor
1906 * @td_offset: offset for checksum or crc
1907 **/
3e587cf3
JB
1908static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1909 struct i40e_tx_buffer *first, u32 tx_flags,
1910 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1911{
1912 unsigned int data_len = skb->data_len;
1913 unsigned int size = skb_headlen(skb);
1914 struct skb_frag_struct *frag;
1915 struct i40e_tx_buffer *tx_bi;
1916 struct i40e_tx_desc *tx_desc;
1917 u16 i = tx_ring->next_to_use;
1918 u32 td_tag = 0;
1919 dma_addr_t dma;
1920 u16 gso_segs;
6a7fded7
ASJ
1921 u16 desc_count = 0;
1922 bool tail_bump = true;
1923 bool do_rs = false;
7f12ad74
GR
1924
1925 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1926 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1927 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1928 I40E_TX_FLAGS_VLAN_SHIFT;
1929 }
1930
1931 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1932 gso_segs = skb_shinfo(skb)->gso_segs;
1933 else
1934 gso_segs = 1;
1935
1936 /* multiply data chunks by size of headers */
1937 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1938 first->gso_segs = gso_segs;
1939 first->skb = skb;
1940 first->tx_flags = tx_flags;
1941
1942 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1943
1944 tx_desc = I40E_TX_DESC(tx_ring, i);
1945 tx_bi = first;
1946
1947 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
1948 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1949
7f12ad74
GR
1950 if (dma_mapping_error(tx_ring->dev, dma))
1951 goto dma_error;
1952
1953 /* record length, and DMA address */
1954 dma_unmap_len_set(tx_bi, len, size);
1955 dma_unmap_addr_set(tx_bi, dma, dma);
1956
5c4654da
AD
1957 /* align size to end of page */
1958 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
1959 tx_desc->buffer_addr = cpu_to_le64(dma);
1960
1961 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1962 tx_desc->cmd_type_offset_bsz =
1963 build_ctob(td_cmd, td_offset,
5c4654da 1964 max_data, td_tag);
7f12ad74
GR
1965
1966 tx_desc++;
1967 i++;
6a7fded7
ASJ
1968 desc_count++;
1969
7f12ad74
GR
1970 if (i == tx_ring->count) {
1971 tx_desc = I40E_TX_DESC(tx_ring, 0);
1972 i = 0;
1973 }
1974
5c4654da
AD
1975 dma += max_data;
1976 size -= max_data;
7f12ad74 1977
5c4654da 1978 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
1979 tx_desc->buffer_addr = cpu_to_le64(dma);
1980 }
1981
1982 if (likely(!data_len))
1983 break;
1984
1985 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1986 size, td_tag);
1987
1988 tx_desc++;
1989 i++;
6a7fded7
ASJ
1990 desc_count++;
1991
7f12ad74
GR
1992 if (i == tx_ring->count) {
1993 tx_desc = I40E_TX_DESC(tx_ring, 0);
1994 i = 0;
1995 }
1996
1997 size = skb_frag_size(frag);
1998 data_len -= size;
1999
2000 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2001 DMA_TO_DEVICE);
2002
2003 tx_bi = &tx_ring->tx_bi[i];
2004 }
2005
7f12ad74
GR
2006 /* set next_to_watch value indicating a packet is present */
2007 first->next_to_watch = tx_desc;
2008
2009 i++;
2010 if (i == tx_ring->count)
2011 i = 0;
2012
2013 tx_ring->next_to_use = i;
2014
6a7fded7
ASJ
2015 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2016 tx_ring->queue_index),
2017 first->bytecount);
4ec441df 2018 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
2019
2020 /* Algorithm to optimize tail and RS bit setting:
2021 * if xmit_more is supported
2022 * if xmit_more is true
2023 * do not update tail and do not mark RS bit.
2024 * if xmit_more is false and last xmit_more was false
2025 * if every packet spanned less than 4 desc
2026 * then set RS bit on 4th packet and update tail
2027 * on every packet
2028 * else
2029 * update tail and set RS bit on every packet.
2030 * if xmit_more is false and last_xmit_more was true
2031 * update tail and set RS bit.
6a7fded7
ASJ
2032 *
2033 * Optimization: wmb to be issued only in case of tail update.
2034 * Also optimize the Descriptor WB path for RS bit with the same
2035 * algorithm.
2036 *
2037 * Note: If there are less than 4 packets
2038 * pending and interrupts were disabled the service task will
2039 * trigger a force WB.
2040 */
2041 if (skb->xmit_more &&
2042 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2043 tx_ring->queue_index))) {
2044 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2045 tail_bump = false;
2046 } else if (!skb->xmit_more &&
2047 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2048 tx_ring->queue_index)) &&
2049 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2050 (tx_ring->packet_stride < WB_STRIDE) &&
2051 (desc_count < WB_STRIDE)) {
2052 tx_ring->packet_stride++;
2053 } else {
2054 tx_ring->packet_stride = 0;
2055 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2056 do_rs = true;
2057 }
2058 if (do_rs)
2059 tx_ring->packet_stride = 0;
2060
2061 tx_desc->cmd_type_offset_bsz =
2062 build_ctob(td_cmd, td_offset, size, td_tag) |
2063 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2064 I40E_TX_DESC_CMD_EOP) <<
2065 I40E_TXD_QW1_CMD_SHIFT);
2066
7f12ad74 2067 /* notify HW of packet */
6a7fded7 2068 if (!tail_bump)
489ce7a4 2069 prefetchw(tx_desc + 1);
7f12ad74 2070
6a7fded7
ASJ
2071 if (tail_bump) {
2072 /* Force memory writes to complete before letting h/w
2073 * know there are new descriptors to fetch. (Only
2074 * applicable for weak-ordered memory model archs,
2075 * such as IA-64).
2076 */
2077 wmb();
2078 writel(i, tx_ring->tail);
2079 }
2080
7f12ad74
GR
2081 return;
2082
2083dma_error:
2084 dev_info(tx_ring->dev, "TX DMA map failed\n");
2085
2086 /* clear dma mappings for failed tx_bi map */
2087 for (;;) {
2088 tx_bi = &tx_ring->tx_bi[i];
2089 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2090 if (tx_bi == first)
2091 break;
2092 if (i == 0)
2093 i = tx_ring->count;
2094 i--;
2095 }
2096
2097 tx_ring->next_to_use = i;
2098}
2099
7f12ad74
GR
2100/**
2101 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2102 * @skb: send buffer
2103 * @tx_ring: ring to send buffer on
2104 *
2105 * Returns NETDEV_TX_OK if sent, else an error code
2106 **/
2107static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2108 struct i40e_ring *tx_ring)
2109{
2110 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2111 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2112 struct i40e_tx_buffer *first;
2113 u32 td_offset = 0;
2114 u32 tx_flags = 0;
2115 __be16 protocol;
2116 u32 td_cmd = 0;
2117 u8 hdr_len = 0;
4ec441df 2118 int tso, count;
6995b36c 2119
b74118f0
JB
2120 /* prefetch the data, we'll need it later */
2121 prefetch(skb->data);
2122
4ec441df 2123 count = i40e_xmit_descriptor_count(skb);
2d37490b
AD
2124 if (i40e_chk_linearize(skb, count)) {
2125 if (__skb_linearize(skb))
2126 goto out_drop;
5c4654da 2127 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2128 tx_ring->tx_stats.tx_linearize++;
2129 }
4ec441df
AD
2130
2131 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2132 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2133 * + 4 desc gap to avoid the cache line where head is,
2134 * + 1 desc for context descriptor,
2135 * otherwise try next time
2136 */
2137 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2138 tx_ring->tx_stats.tx_busy++;
7f12ad74 2139 return NETDEV_TX_BUSY;
4ec441df 2140 }
7f12ad74
GR
2141
2142 /* prepare the xmit flags */
3e587cf3 2143 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2144 goto out_drop;
2145
2146 /* obtain protocol of skb */
a12c4158 2147 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2148
2149 /* record the location of the first descriptor for this packet */
2150 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2151
2152 /* setup IPv4/IPv6 offloads */
2153 if (protocol == htons(ETH_P_IP))
2154 tx_flags |= I40E_TX_FLAGS_IPV4;
2155 else if (protocol == htons(ETH_P_IPV6))
2156 tx_flags |= I40E_TX_FLAGS_IPV6;
2157
84b07992 2158 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2159
2160 if (tso < 0)
2161 goto out_drop;
2162 else if (tso)
2163 tx_flags |= I40E_TX_FLAGS_TSO;
2164
7f12ad74 2165 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2166 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2167 tx_ring, &cd_tunneling);
2168 if (tso < 0)
2169 goto out_drop;
7f12ad74 2170
3bc67973
AD
2171 skb_tx_timestamp(skb);
2172
2173 /* always enable CRC insertion offload */
2174 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2175
7f12ad74
GR
2176 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2177 cd_tunneling, cd_l2tag2);
2178
3e587cf3
JB
2179 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2180 td_cmd, td_offset);
7f12ad74 2181
7f12ad74
GR
2182 return NETDEV_TX_OK;
2183
2184out_drop:
2185 dev_kfree_skb_any(skb);
2186 return NETDEV_TX_OK;
2187}
2188
2189/**
2190 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2191 * @skb: send buffer
2192 * @netdev: network interface device structure
2193 *
2194 * Returns NETDEV_TX_OK if sent, else an error code
2195 **/
2196netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2197{
2198 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2199 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2200
2201 /* hardware can't handle really short frames, hardware padding works
2202 * beyond this point
2203 */
2204 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2205 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2206 return NETDEV_TX_OK;
2207 skb->len = I40E_MIN_TX_LEN;
2208 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2209 }
2210
2211 return i40e_xmit_frame_ring(skb, tx_ring);
2212}
This page took 0.372102 seconds and 5 git commands to generate.