igb: Cleanups for messaging
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
74cfb2e1 4 Copyright(c) 2007-2014 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
74cfb2e1 16 this program; if not, see <http://www.gnu.org/licenses/>.
9d5c8243
AK
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#include <linux/if_ether.h>
28#include <linux/delay.h>
29
30#include "e1000_mac.h"
31#include "e1000_phy.h"
32
9d5c8243
AK
33static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
34static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
b980ac18 35 u16 *phy_ctrl);
9d5c8243 36static s32 igb_wait_autoneg(struct e1000_hw *hw);
f96a8a0b 37static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
9d5c8243
AK
38
39/* Cable length tables */
b980ac18
JK
40static const u16 e1000_m88_cable_length_table[] = {
41 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
2553bb26 42#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
b980ac18
JK
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
45
46static const u16 e1000_igp_2_cable_length_table[] = {
47 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
9d5c8243 55#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
b980ac18
JK
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
9d5c8243
AK
58
59/**
733596be 60 * igb_check_reset_block - Check if PHY reset is blocked
9d5c8243
AK
61 * @hw: pointer to the HW structure
62 *
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
66 **/
67s32 igb_check_reset_block(struct e1000_hw *hw)
68{
69 u32 manc;
70
71 manc = rd32(E1000_MANC);
72
b980ac18 73 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
9d5c8243
AK
74}
75
76/**
733596be 77 * igb_get_phy_id - Retrieve the PHY ID and revision
9d5c8243
AK
78 * @hw: pointer to the HW structure
79 *
80 * Reads the PHY registers and stores the PHY ID and possibly the PHY
81 * revision in the hardware structure.
82 **/
83s32 igb_get_phy_id(struct e1000_hw *hw)
84{
85 struct e1000_phy_info *phy = &hw->phy;
86 s32 ret_val = 0;
87 u16 phy_id;
88
a8d2a0c2 89 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
9d5c8243
AK
90 if (ret_val)
91 goto out;
92
93 phy->id = (u32)(phy_id << 16);
94 udelay(20);
a8d2a0c2 95 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
9d5c8243
AK
96 if (ret_val)
97 goto out;
98
99 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
100 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
101
102out:
103 return ret_val;
104}
105
106/**
733596be 107 * igb_phy_reset_dsp - Reset PHY DSP
9d5c8243
AK
108 * @hw: pointer to the HW structure
109 *
110 * Reset the digital signal processor.
111 **/
112static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
113{
2553bb26
AD
114 s32 ret_val = 0;
115
116 if (!(hw->phy.ops.write_reg))
117 goto out;
9d5c8243 118
a8d2a0c2 119 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
9d5c8243
AK
120 if (ret_val)
121 goto out;
122
a8d2a0c2 123 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
9d5c8243
AK
124
125out:
126 return ret_val;
127}
128
129/**
733596be 130 * igb_read_phy_reg_mdic - Read MDI control register
9d5c8243
AK
131 * @hw: pointer to the HW structure
132 * @offset: register offset to be read
133 * @data: pointer to the read data
134 *
135 * Reads the MDI control regsiter in the PHY at offset and stores the
136 * information read to data.
137 **/
bb2ac47b 138s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
9d5c8243
AK
139{
140 struct e1000_phy_info *phy = &hw->phy;
141 u32 i, mdic = 0;
142 s32 ret_val = 0;
143
144 if (offset > MAX_PHY_REG_ADDRESS) {
652fff32 145 hw_dbg("PHY Address %d is out of range\n", offset);
9d5c8243
AK
146 ret_val = -E1000_ERR_PARAM;
147 goto out;
148 }
149
b980ac18 150 /* Set up Op-code, Phy Address, and register offset in the MDI
9d5c8243
AK
151 * Control register. The MAC will take care of interfacing with the
152 * PHY to retrieve the desired data.
153 */
154 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
155 (phy->addr << E1000_MDIC_PHY_SHIFT) |
156 (E1000_MDIC_OP_READ));
157
158 wr32(E1000_MDIC, mdic);
159
b980ac18 160 /* Poll the ready bit to see if the MDI read completed
9d5c8243
AK
161 * Increasing the time out as testing showed failures with
162 * the lower time out
163 */
164 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
165 udelay(50);
166 mdic = rd32(E1000_MDIC);
167 if (mdic & E1000_MDIC_READY)
168 break;
169 }
170 if (!(mdic & E1000_MDIC_READY)) {
652fff32 171 hw_dbg("MDI Read did not complete\n");
9d5c8243
AK
172 ret_val = -E1000_ERR_PHY;
173 goto out;
174 }
175 if (mdic & E1000_MDIC_ERROR) {
652fff32 176 hw_dbg("MDI Error\n");
9d5c8243
AK
177 ret_val = -E1000_ERR_PHY;
178 goto out;
179 }
180 *data = (u16) mdic;
181
182out:
183 return ret_val;
184}
185
186/**
733596be 187 * igb_write_phy_reg_mdic - Write MDI control register
9d5c8243
AK
188 * @hw: pointer to the HW structure
189 * @offset: register offset to write to
190 * @data: data to write to register at offset
191 *
192 * Writes data to MDI control register in the PHY at offset.
193 **/
bb2ac47b 194s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
9d5c8243
AK
195{
196 struct e1000_phy_info *phy = &hw->phy;
197 u32 i, mdic = 0;
198 s32 ret_val = 0;
199
200 if (offset > MAX_PHY_REG_ADDRESS) {
652fff32 201 hw_dbg("PHY Address %d is out of range\n", offset);
9d5c8243
AK
202 ret_val = -E1000_ERR_PARAM;
203 goto out;
204 }
205
b980ac18 206 /* Set up Op-code, Phy Address, and register offset in the MDI
9d5c8243
AK
207 * Control register. The MAC will take care of interfacing with the
208 * PHY to retrieve the desired data.
209 */
210 mdic = (((u32)data) |
211 (offset << E1000_MDIC_REG_SHIFT) |
212 (phy->addr << E1000_MDIC_PHY_SHIFT) |
213 (E1000_MDIC_OP_WRITE));
214
215 wr32(E1000_MDIC, mdic);
216
b980ac18 217 /* Poll the ready bit to see if the MDI read completed
9d5c8243
AK
218 * Increasing the time out as testing showed failures with
219 * the lower time out
220 */
221 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
222 udelay(50);
223 mdic = rd32(E1000_MDIC);
224 if (mdic & E1000_MDIC_READY)
225 break;
226 }
227 if (!(mdic & E1000_MDIC_READY)) {
652fff32 228 hw_dbg("MDI Write did not complete\n");
9d5c8243
AK
229 ret_val = -E1000_ERR_PHY;
230 goto out;
231 }
232 if (mdic & E1000_MDIC_ERROR) {
652fff32 233 hw_dbg("MDI Error\n");
9d5c8243
AK
234 ret_val = -E1000_ERR_PHY;
235 goto out;
236 }
237
238out:
239 return ret_val;
240}
241
bf6f7a92
AD
242/**
243 * igb_read_phy_reg_i2c - Read PHY register using i2c
244 * @hw: pointer to the HW structure
245 * @offset: register offset to be read
246 * @data: pointer to the read data
247 *
248 * Reads the PHY register at offset using the i2c interface and stores the
249 * retrieved information in data.
250 **/
251s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
252{
253 struct e1000_phy_info *phy = &hw->phy;
254 u32 i, i2ccmd = 0;
255
b980ac18 256 /* Set up Op-code, Phy Address, and register address in the I2CCMD
bf6f7a92
AD
257 * register. The MAC will take care of interfacing with the
258 * PHY to retrieve the desired data.
259 */
260 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
b980ac18
JK
261 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
262 (E1000_I2CCMD_OPCODE_READ));
bf6f7a92
AD
263
264 wr32(E1000_I2CCMD, i2ccmd);
265
266 /* Poll the ready bit to see if the I2C read completed */
267 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
268 udelay(50);
269 i2ccmd = rd32(E1000_I2CCMD);
270 if (i2ccmd & E1000_I2CCMD_READY)
271 break;
272 }
273 if (!(i2ccmd & E1000_I2CCMD_READY)) {
274 hw_dbg("I2CCMD Read did not complete\n");
275 return -E1000_ERR_PHY;
276 }
277 if (i2ccmd & E1000_I2CCMD_ERROR) {
278 hw_dbg("I2CCMD Error bit set\n");
279 return -E1000_ERR_PHY;
280 }
281
282 /* Need to byte-swap the 16-bit value. */
283 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
284
285 return 0;
286}
287
288/**
289 * igb_write_phy_reg_i2c - Write PHY register using i2c
290 * @hw: pointer to the HW structure
291 * @offset: register offset to write to
292 * @data: data to write at register offset
293 *
294 * Writes the data to PHY register at the offset using the i2c interface.
295 **/
296s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
297{
298 struct e1000_phy_info *phy = &hw->phy;
299 u32 i, i2ccmd = 0;
300 u16 phy_data_swapped;
301
76d06521
AA
302 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
303 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
304 hw_dbg("PHY I2C Address %d is out of range.\n",
305 hw->phy.addr);
306 return -E1000_ERR_CONFIG;
307 }
bf6f7a92
AD
308
309 /* Swap the data bytes for the I2C interface */
310 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
311
b980ac18 312 /* Set up Op-code, Phy Address, and register address in the I2CCMD
bf6f7a92
AD
313 * register. The MAC will take care of interfacing with the
314 * PHY to retrieve the desired data.
315 */
316 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
b980ac18
JK
317 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
318 E1000_I2CCMD_OPCODE_WRITE |
319 phy_data_swapped);
bf6f7a92
AD
320
321 wr32(E1000_I2CCMD, i2ccmd);
322
323 /* Poll the ready bit to see if the I2C read completed */
324 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
325 udelay(50);
326 i2ccmd = rd32(E1000_I2CCMD);
327 if (i2ccmd & E1000_I2CCMD_READY)
328 break;
329 }
330 if (!(i2ccmd & E1000_I2CCMD_READY)) {
331 hw_dbg("I2CCMD Write did not complete\n");
332 return -E1000_ERR_PHY;
333 }
334 if (i2ccmd & E1000_I2CCMD_ERROR) {
335 hw_dbg("I2CCMD Error bit set\n");
336 return -E1000_ERR_PHY;
337 }
338
339 return 0;
340}
341
641ac5c0
AA
342/**
343 * igb_read_sfp_data_byte - Reads SFP module data.
344 * @hw: pointer to the HW structure
345 * @offset: byte location offset to be read
346 * @data: read data buffer pointer
347 *
348 * Reads one byte from SFP module data stored
349 * in SFP resided EEPROM memory or SFP diagnostic area.
350 * Function should be called with
351 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
352 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
353 * access
354 **/
355s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
356{
357 u32 i = 0;
358 u32 i2ccmd = 0;
359 u32 data_local = 0;
360
361 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
362 hw_dbg("I2CCMD command address exceeds upper limit\n");
363 return -E1000_ERR_PHY;
364 }
365
366 /* Set up Op-code, EEPROM Address,in the I2CCMD
367 * register. The MAC will take care of interfacing with the
368 * EEPROM to retrieve the desired data.
369 */
370 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
371 E1000_I2CCMD_OPCODE_READ);
372
373 wr32(E1000_I2CCMD, i2ccmd);
374
375 /* Poll the ready bit to see if the I2C read completed */
376 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
377 udelay(50);
378 data_local = rd32(E1000_I2CCMD);
379 if (data_local & E1000_I2CCMD_READY)
380 break;
381 }
382 if (!(data_local & E1000_I2CCMD_READY)) {
383 hw_dbg("I2CCMD Read did not complete\n");
384 return -E1000_ERR_PHY;
385 }
386 if (data_local & E1000_I2CCMD_ERROR) {
387 hw_dbg("I2CCMD Error bit set\n");
388 return -E1000_ERR_PHY;
389 }
390 *data = (u8) data_local & 0xFF;
391
392 return 0;
393}
394
9d5c8243 395/**
733596be 396 * igb_read_phy_reg_igp - Read igp PHY register
9d5c8243
AK
397 * @hw: pointer to the HW structure
398 * @offset: register offset to be read
399 * @data: pointer to the read data
400 *
401 * Acquires semaphore, if necessary, then reads the PHY register at offset
402 * and storing the retrieved information in data. Release any acquired
403 * semaphores before exiting.
404 **/
405s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
406{
a8d2a0c2
AD
407 s32 ret_val = 0;
408
409 if (!(hw->phy.ops.acquire))
410 goto out;
9d5c8243 411
a8d2a0c2 412 ret_val = hw->phy.ops.acquire(hw);
9d5c8243
AK
413 if (ret_val)
414 goto out;
415
416 if (offset > MAX_PHY_MULTI_PAGE_REG) {
417 ret_val = igb_write_phy_reg_mdic(hw,
b980ac18
JK
418 IGP01E1000_PHY_PAGE_SELECT,
419 (u16)offset);
9d5c8243 420 if (ret_val) {
a8d2a0c2 421 hw->phy.ops.release(hw);
9d5c8243
AK
422 goto out;
423 }
424 }
425
a8d2a0c2
AD
426 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
427 data);
9d5c8243 428
a8d2a0c2 429 hw->phy.ops.release(hw);
9d5c8243
AK
430
431out:
432 return ret_val;
433}
434
435/**
733596be 436 * igb_write_phy_reg_igp - Write igp PHY register
9d5c8243
AK
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
440 *
441 * Acquires semaphore, if necessary, then writes the data to PHY register
442 * at the offset. Release any acquired semaphores before exiting.
443 **/
444s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
445{
a8d2a0c2 446 s32 ret_val = 0;
9d5c8243 447
a8d2a0c2
AD
448 if (!(hw->phy.ops.acquire))
449 goto out;
450
451 ret_val = hw->phy.ops.acquire(hw);
9d5c8243
AK
452 if (ret_val)
453 goto out;
454
455 if (offset > MAX_PHY_MULTI_PAGE_REG) {
456 ret_val = igb_write_phy_reg_mdic(hw,
b980ac18
JK
457 IGP01E1000_PHY_PAGE_SELECT,
458 (u16)offset);
9d5c8243 459 if (ret_val) {
a8d2a0c2 460 hw->phy.ops.release(hw);
9d5c8243
AK
461 goto out;
462 }
463 }
464
a8d2a0c2 465 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
b980ac18 466 data);
9d5c8243 467
a8d2a0c2 468 hw->phy.ops.release(hw);
9d5c8243
AK
469
470out:
471 return ret_val;
472}
473
2909c3f7
AD
474/**
475 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
476 * @hw: pointer to the HW structure
477 *
478 * Sets up Carrier-sense on Transmit and downshift values.
479 **/
480s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
481{
482 struct e1000_phy_info *phy = &hw->phy;
483 s32 ret_val;
484 u16 phy_data;
485
2909c3f7
AD
486 if (phy->reset_disable) {
487 ret_val = 0;
488 goto out;
489 }
490
491 if (phy->type == e1000_phy_82580) {
492 ret_val = hw->phy.ops.reset(hw);
493 if (ret_val) {
494 hw_dbg("Error resetting the PHY.\n");
495 goto out;
496 }
497 }
498
499 /* Enable CRS on TX. This must be set for half-duplex operation. */
500 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
501 if (ret_val)
502 goto out;
503
504 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
505
506 /* Enable downshift */
507 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
508
509 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
1b556783
JB
510 if (ret_val)
511 goto out;
512
513 /* Set MDI/MDIX mode */
514 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
515 if (ret_val)
516 goto out;
517 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
b980ac18 518 /* Options:
1b556783
JB
519 * 0 - Auto (default)
520 * 1 - MDI mode
521 * 2 - MDI-X mode
522 */
523 switch (hw->phy.mdix) {
524 case 1:
525 break;
526 case 2:
527 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
528 break;
529 case 0:
530 default:
531 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
532 break;
533 }
534 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2909c3f7
AD
535
536out:
537 return ret_val;
538}
539
9d5c8243 540/**
733596be 541 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
9d5c8243
AK
542 * @hw: pointer to the HW structure
543 *
544 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
545 * and downshift values are set also.
546 **/
547s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
548{
549 struct e1000_phy_info *phy = &hw->phy;
550 s32 ret_val;
551 u16 phy_data;
552
553 if (phy->reset_disable) {
554 ret_val = 0;
555 goto out;
556 }
557
558 /* Enable CRS on TX. This must be set for half-duplex operation. */
a8d2a0c2 559 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
560 if (ret_val)
561 goto out;
562
563 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
564
b980ac18 565 /* Options:
9d5c8243
AK
566 * MDI/MDI-X = 0 (default)
567 * 0 - Auto for all speeds
568 * 1 - MDI mode
569 * 2 - MDI-X mode
570 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
571 */
572 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
573
574 switch (phy->mdix) {
575 case 1:
576 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
577 break;
578 case 2:
579 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
580 break;
581 case 3:
582 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
583 break;
584 case 0:
585 default:
586 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
587 break;
588 }
589
b980ac18 590 /* Options:
9d5c8243
AK
591 * disable_polarity_correction = 0 (default)
592 * Automatic Correction for Reversed Cable Polarity
593 * 0 - Disabled
594 * 1 - Enabled
595 */
596 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
597 if (phy->disable_polarity_correction == 1)
598 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
599
a8d2a0c2 600 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
601 if (ret_val)
602 goto out;
603
604 if (phy->revision < E1000_REVISION_4) {
b980ac18 605 /* Force TX_CLK in the Extended PHY Specific Control Register
9d5c8243
AK
606 * to 25MHz clock.
607 */
a8d2a0c2 608 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
b980ac18 609 &phy_data);
9d5c8243
AK
610 if (ret_val)
611 goto out;
612
613 phy_data |= M88E1000_EPSCR_TX_CLK_25;
614
615 if ((phy->revision == E1000_REVISION_2) &&
616 (phy->id == M88E1111_I_PHY_ID)) {
617 /* 82573L PHY - set the downshift counter to 5x. */
618 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
619 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
620 } else {
621 /* Configure Master and Slave downshift values */
622 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
623 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
624 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
625 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
626 }
a8d2a0c2 627 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
9d5c8243
AK
628 phy_data);
629 if (ret_val)
630 goto out;
631 }
632
633 /* Commit the changes. */
634 ret_val = igb_phy_sw_reset(hw);
635 if (ret_val) {
652fff32 636 hw_dbg("Error committing the PHY changes\n");
9d5c8243
AK
637 goto out;
638 }
639
640out:
641 return ret_val;
642}
643
308fb39a
JG
644/**
645 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
646 * @hw: pointer to the HW structure
647 *
648 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
649 * Also enables and sets the downshift parameters.
650 **/
651s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
652{
653 struct e1000_phy_info *phy = &hw->phy;
654 s32 ret_val;
655 u16 phy_data;
656
dfc70755
AA
657 if (phy->reset_disable)
658 return 0;
308fb39a
JG
659
660 /* Enable CRS on Tx. This must be set for half-duplex operation. */
661 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
662 if (ret_val)
dfc70755 663 return ret_val;
308fb39a 664
b980ac18 665 /* Options:
308fb39a
JG
666 * MDI/MDI-X = 0 (default)
667 * 0 - Auto for all speeds
668 * 1 - MDI mode
669 * 2 - MDI-X mode
670 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
671 */
672 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
673
674 switch (phy->mdix) {
675 case 1:
676 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
677 break;
678 case 2:
679 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
680 break;
681 case 3:
682 /* M88E1112 does not support this mode) */
683 if (phy->id != M88E1112_E_PHY_ID) {
684 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
685 break;
686 }
687 case 0:
688 default:
689 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
690 break;
691 }
692
b980ac18 693 /* Options:
308fb39a
JG
694 * disable_polarity_correction = 0 (default)
695 * Automatic Correction for Reversed Cable Polarity
696 * 0 - Disabled
697 * 1 - Enabled
698 */
699 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
700 if (phy->disable_polarity_correction == 1)
701 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
702
703 /* Enable downshift and setting it to X6 */
dfc70755
AA
704 if (phy->id == M88E1543_E_PHY_ID) {
705 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
706 ret_val =
707 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
708 if (ret_val)
709 return ret_val;
710
711 ret_val = igb_phy_sw_reset(hw);
712 if (ret_val) {
713 hw_dbg("Error committing the PHY changes\n");
714 return ret_val;
715 }
716 }
717
308fb39a
JG
718 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
719 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
720 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
721
722 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
723 if (ret_val)
dfc70755 724 return ret_val;
308fb39a
JG
725
726 /* Commit the changes. */
727 ret_val = igb_phy_sw_reset(hw);
728 if (ret_val) {
729 hw_dbg("Error committing the PHY changes\n");
dfc70755 730 return ret_val;
308fb39a 731 }
d1c17d80
CW
732 ret_val = igb_set_master_slave_mode(hw);
733 if (ret_val)
734 return ret_val;
308fb39a 735
dfc70755 736 return 0;
308fb39a
JG
737}
738
9d5c8243 739/**
733596be 740 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
9d5c8243
AK
741 * @hw: pointer to the HW structure
742 *
743 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
744 * igp PHY's.
745 **/
746s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
747{
748 struct e1000_phy_info *phy = &hw->phy;
749 s32 ret_val;
750 u16 data;
751
752 if (phy->reset_disable) {
753 ret_val = 0;
754 goto out;
755 }
756
a8d2a0c2 757 ret_val = phy->ops.reset(hw);
9d5c8243 758 if (ret_val) {
652fff32 759 hw_dbg("Error resetting the PHY.\n");
9d5c8243
AK
760 goto out;
761 }
762
b980ac18 763 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
a6a60569
AD
764 * timeout issues when LFS is enabled.
765 */
766 msleep(100);
9d5c8243 767
b980ac18 768 /* The NVM settings will configure LPLU in D3 for
9d5c8243
AK
769 * non-IGP1 PHYs.
770 */
771 if (phy->type == e1000_phy_igp) {
772 /* disable lplu d3 during driver init */
a8d2a0c2
AD
773 if (phy->ops.set_d3_lplu_state)
774 ret_val = phy->ops.set_d3_lplu_state(hw, false);
9d5c8243 775 if (ret_val) {
652fff32 776 hw_dbg("Error Disabling LPLU D3\n");
9d5c8243
AK
777 goto out;
778 }
779 }
780
781 /* disable lplu d0 during driver init */
a8d2a0c2 782 ret_val = phy->ops.set_d0_lplu_state(hw, false);
9d5c8243 783 if (ret_val) {
652fff32 784 hw_dbg("Error Disabling LPLU D0\n");
9d5c8243
AK
785 goto out;
786 }
787 /* Configure mdi-mdix settings */
a8d2a0c2 788 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
9d5c8243
AK
789 if (ret_val)
790 goto out;
791
792 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
793
794 switch (phy->mdix) {
795 case 1:
796 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
797 break;
798 case 2:
799 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
800 break;
801 case 0:
802 default:
803 data |= IGP01E1000_PSCR_AUTO_MDIX;
804 break;
805 }
a8d2a0c2 806 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
9d5c8243
AK
807 if (ret_val)
808 goto out;
809
810 /* set auto-master slave resolution settings */
811 if (hw->mac.autoneg) {
b980ac18 812 /* when autonegotiation advertisement is only 1000Mbps then we
9d5c8243
AK
813 * should disable SmartSpeed and enable Auto MasterSlave
814 * resolution as hardware default.
815 */
816 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
817 /* Disable SmartSpeed */
a8d2a0c2
AD
818 ret_val = phy->ops.read_reg(hw,
819 IGP01E1000_PHY_PORT_CONFIG,
820 &data);
9d5c8243
AK
821 if (ret_val)
822 goto out;
823
824 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 825 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
826 IGP01E1000_PHY_PORT_CONFIG,
827 data);
828 if (ret_val)
829 goto out;
830
831 /* Set auto Master/Slave resolution process */
a8d2a0c2 832 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
9d5c8243
AK
833 if (ret_val)
834 goto out;
835
836 data &= ~CR_1000T_MS_ENABLE;
a8d2a0c2 837 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
9d5c8243
AK
838 if (ret_val)
839 goto out;
840 }
841
a8d2a0c2 842 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
9d5c8243
AK
843 if (ret_val)
844 goto out;
845
846 /* load defaults for future use */
847 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
848 ((data & CR_1000T_MS_VALUE) ?
849 e1000_ms_force_master :
850 e1000_ms_force_slave) :
851 e1000_ms_auto;
852
853 switch (phy->ms_type) {
854 case e1000_ms_force_master:
855 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
856 break;
857 case e1000_ms_force_slave:
858 data |= CR_1000T_MS_ENABLE;
859 data &= ~(CR_1000T_MS_VALUE);
860 break;
861 case e1000_ms_auto:
862 data &= ~CR_1000T_MS_ENABLE;
863 default:
864 break;
865 }
a8d2a0c2 866 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
9d5c8243
AK
867 if (ret_val)
868 goto out;
869 }
870
871out:
872 return ret_val;
873}
874
875/**
733596be 876 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
9d5c8243
AK
877 * @hw: pointer to the HW structure
878 *
879 * Performs initial bounds checking on autoneg advertisement parameter, then
880 * configure to advertise the full capability. Setup the PHY to autoneg
881 * and restart the negotiation process between the link partner. If
882 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
883 **/
81fadd81 884static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
9d5c8243
AK
885{
886 struct e1000_phy_info *phy = &hw->phy;
887 s32 ret_val;
888 u16 phy_ctrl;
889
b980ac18 890 /* Perform some bounds checking on the autoneg advertisement
9d5c8243
AK
891 * parameter.
892 */
893 phy->autoneg_advertised &= phy->autoneg_mask;
894
b980ac18 895 /* If autoneg_advertised is zero, we assume it was not defaulted
9d5c8243
AK
896 * by the calling code so we set to advertise full capability.
897 */
898 if (phy->autoneg_advertised == 0)
899 phy->autoneg_advertised = phy->autoneg_mask;
900
652fff32 901 hw_dbg("Reconfiguring auto-neg advertisement params\n");
9d5c8243
AK
902 ret_val = igb_phy_setup_autoneg(hw);
903 if (ret_val) {
652fff32 904 hw_dbg("Error Setting up Auto-Negotiation\n");
9d5c8243
AK
905 goto out;
906 }
652fff32 907 hw_dbg("Restarting Auto-Neg\n");
9d5c8243 908
b980ac18 909 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
9d5c8243
AK
910 * the Auto Neg Restart bit in the PHY control register.
911 */
a8d2a0c2 912 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
9d5c8243
AK
913 if (ret_val)
914 goto out;
915
916 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
a8d2a0c2 917 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
9d5c8243
AK
918 if (ret_val)
919 goto out;
920
b980ac18 921 /* Does the user want to wait for Auto-Neg to complete here, or
9d5c8243
AK
922 * check at a later time (for example, callback routine).
923 */
924 if (phy->autoneg_wait_to_complete) {
925 ret_val = igb_wait_autoneg(hw);
926 if (ret_val) {
c75c4edf 927 hw_dbg("Error while waiting for autoneg to complete\n");
9d5c8243
AK
928 goto out;
929 }
930 }
931
932 hw->mac.get_link_status = true;
933
934out:
935 return ret_val;
936}
937
938/**
733596be 939 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
9d5c8243
AK
940 * @hw: pointer to the HW structure
941 *
942 * Reads the MII auto-neg advertisement register and/or the 1000T control
943 * register and if the PHY is already setup for auto-negotiation, then
944 * return successful. Otherwise, setup advertisement and flow control to
945 * the appropriate values for the wanted auto-negotiation.
946 **/
947static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
948{
949 struct e1000_phy_info *phy = &hw->phy;
950 s32 ret_val;
951 u16 mii_autoneg_adv_reg;
952 u16 mii_1000t_ctrl_reg = 0;
953
954 phy->autoneg_advertised &= phy->autoneg_mask;
955
956 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
a8d2a0c2 957 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
9d5c8243
AK
958 if (ret_val)
959 goto out;
960
961 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
962 /* Read the MII 1000Base-T Control Register (Address 9). */
a8d2a0c2 963 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
9d5c8243
AK
964 &mii_1000t_ctrl_reg);
965 if (ret_val)
966 goto out;
967 }
968
b980ac18 969 /* Need to parse both autoneg_advertised and fc and set up
9d5c8243
AK
970 * the appropriate PHY registers. First we will parse for
971 * autoneg_advertised software override. Since we can advertise
972 * a plethora of combinations, we need to check each bit
973 * individually.
974 */
975
b980ac18 976 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
9d5c8243
AK
977 * Advertisement Register (Address 4) and the 1000 mb speed bits in
978 * the 1000Base-T Control Register (Address 9).
979 */
980 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
981 NWAY_AR_100TX_HD_CAPS |
982 NWAY_AR_10T_FD_CAPS |
983 NWAY_AR_10T_HD_CAPS);
984 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
985
652fff32 986 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
9d5c8243
AK
987
988 /* Do we want to advertise 10 Mb Half Duplex? */
989 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
652fff32 990 hw_dbg("Advertise 10mb Half duplex\n");
9d5c8243
AK
991 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
992 }
993
994 /* Do we want to advertise 10 Mb Full Duplex? */
995 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
652fff32 996 hw_dbg("Advertise 10mb Full duplex\n");
9d5c8243
AK
997 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
998 }
999
1000 /* Do we want to advertise 100 Mb Half Duplex? */
1001 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
652fff32 1002 hw_dbg("Advertise 100mb Half duplex\n");
9d5c8243
AK
1003 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1004 }
1005
1006 /* Do we want to advertise 100 Mb Full Duplex? */
1007 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
652fff32 1008 hw_dbg("Advertise 100mb Full duplex\n");
9d5c8243
AK
1009 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1010 }
1011
1012 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1013 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
652fff32 1014 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
9d5c8243
AK
1015
1016 /* Do we want to advertise 1000 Mb Full Duplex? */
1017 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
652fff32 1018 hw_dbg("Advertise 1000mb Full duplex\n");
9d5c8243
AK
1019 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1020 }
1021
b980ac18 1022 /* Check for a software override of the flow control settings, and
9d5c8243
AK
1023 * setup the PHY advertisement registers accordingly. If
1024 * auto-negotiation is enabled, then software will have to set the
1025 * "PAUSE" bits to the correct value in the Auto-Negotiation
1026 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1027 * negotiation.
1028 *
1029 * The possible values of the "fc" parameter are:
1030 * 0: Flow control is completely disabled
1031 * 1: Rx flow control is enabled (we can receive pause frames
1032 * but not send pause frames).
1033 * 2: Tx flow control is enabled (we can send pause frames
1034 * but we do not support receiving pause frames).
1035 * 3: Both Rx and TX flow control (symmetric) are enabled.
1036 * other: No software override. The flow control configuration
1037 * in the EEPROM is used.
1038 */
0cce119a 1039 switch (hw->fc.current_mode) {
9d5c8243 1040 case e1000_fc_none:
b980ac18 1041 /* Flow control (RX & TX) is completely disabled by a
9d5c8243
AK
1042 * software over-ride.
1043 */
1044 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1045 break;
1046 case e1000_fc_rx_pause:
b980ac18 1047 /* RX Flow control is enabled, and TX Flow control is
9d5c8243
AK
1048 * disabled, by a software over-ride.
1049 *
1050 * Since there really isn't a way to advertise that we are
1051 * capable of RX Pause ONLY, we will advertise that we
1052 * support both symmetric and asymmetric RX PAUSE. Later
1053 * (in e1000_config_fc_after_link_up) we will disable the
1054 * hw's ability to send PAUSE frames.
1055 */
1056 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1057 break;
1058 case e1000_fc_tx_pause:
b980ac18 1059 /* TX Flow control is enabled, and RX Flow control is
9d5c8243
AK
1060 * disabled, by a software over-ride.
1061 */
1062 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1063 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1064 break;
1065 case e1000_fc_full:
b980ac18 1066 /* Flow control (both RX and TX) is enabled by a software
9d5c8243
AK
1067 * over-ride.
1068 */
1069 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1070 break;
1071 default:
652fff32 1072 hw_dbg("Flow control param set incorrectly\n");
9d5c8243
AK
1073 ret_val = -E1000_ERR_CONFIG;
1074 goto out;
1075 }
1076
a8d2a0c2 1077 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
9d5c8243
AK
1078 if (ret_val)
1079 goto out;
1080
652fff32 1081 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
9d5c8243
AK
1082
1083 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
a8d2a0c2
AD
1084 ret_val = phy->ops.write_reg(hw,
1085 PHY_1000T_CTRL,
1086 mii_1000t_ctrl_reg);
9d5c8243
AK
1087 if (ret_val)
1088 goto out;
1089 }
1090
1091out:
1092 return ret_val;
1093}
1094
81fadd81
AD
1095/**
1096 * igb_setup_copper_link - Configure copper link settings
1097 * @hw: pointer to the HW structure
1098 *
1099 * Calls the appropriate function to configure the link for auto-neg or forced
1100 * speed and duplex. Then we check for link, once link is established calls
1101 * to configure collision distance and flow control are called. If link is
1102 * not established, we return -E1000_ERR_PHY (-2).
1103 **/
1104s32 igb_setup_copper_link(struct e1000_hw *hw)
1105{
1106 s32 ret_val;
1107 bool link;
1108
81fadd81 1109 if (hw->mac.autoneg) {
b980ac18 1110 /* Setup autoneg and flow control advertisement and perform
81fadd81
AD
1111 * autonegotiation.
1112 */
1113 ret_val = igb_copper_link_autoneg(hw);
1114 if (ret_val)
1115 goto out;
1116 } else {
b980ac18 1117 /* PHY will be set to 10H, 10F, 100H or 100F
81fadd81
AD
1118 * depending on user settings.
1119 */
1120 hw_dbg("Forcing Speed and Duplex\n");
1121 ret_val = hw->phy.ops.force_speed_duplex(hw);
1122 if (ret_val) {
1123 hw_dbg("Error Forcing Speed and Duplex\n");
1124 goto out;
1125 }
1126 }
1127
b980ac18 1128 /* Check link status. Wait up to 100 microseconds for link to become
81fadd81
AD
1129 * valid.
1130 */
b980ac18 1131 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
81fadd81
AD
1132 if (ret_val)
1133 goto out;
1134
1135 if (link) {
1136 hw_dbg("Valid link established!!!\n");
1137 igb_config_collision_dist(hw);
1138 ret_val = igb_config_fc_after_link_up(hw);
1139 } else {
1140 hw_dbg("Unable to establish link!!!\n");
1141 }
1142
1143out:
1144 return ret_val;
1145}
1146
9d5c8243 1147/**
733596be 1148 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
9d5c8243
AK
1149 * @hw: pointer to the HW structure
1150 *
1151 * Calls the PHY setup function to force speed and duplex. Clears the
1152 * auto-crossover to force MDI manually. Waits for link and returns
1153 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1154 **/
1155s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1156{
1157 struct e1000_phy_info *phy = &hw->phy;
1158 s32 ret_val;
1159 u16 phy_data;
1160 bool link;
1161
a8d2a0c2 1162 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
9d5c8243
AK
1163 if (ret_val)
1164 goto out;
1165
1166 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1167
a8d2a0c2 1168 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
9d5c8243
AK
1169 if (ret_val)
1170 goto out;
1171
b980ac18 1172 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
9d5c8243
AK
1173 * forced whenever speed and duplex are forced.
1174 */
a8d2a0c2 1175 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
9d5c8243
AK
1176 if (ret_val)
1177 goto out;
1178
1179 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1180 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1181
a8d2a0c2 1182 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
9d5c8243
AK
1183 if (ret_val)
1184 goto out;
1185
652fff32 1186 hw_dbg("IGP PSCR: %X\n", phy_data);
9d5c8243
AK
1187
1188 udelay(1);
1189
1190 if (phy->autoneg_wait_to_complete) {
652fff32 1191 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
9d5c8243 1192
dc3d226f 1193 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
9d5c8243
AK
1194 if (ret_val)
1195 goto out;
1196
1197 if (!link)
652fff32 1198 hw_dbg("Link taking longer than expected.\n");
9d5c8243
AK
1199
1200 /* Try once more */
dc3d226f 1201 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
9d5c8243
AK
1202 if (ret_val)
1203 goto out;
1204 }
1205
1206out:
1207 return ret_val;
1208}
1209
1210/**
733596be 1211 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
9d5c8243
AK
1212 * @hw: pointer to the HW structure
1213 *
1214 * Calls the PHY setup function to force speed and duplex. Clears the
1215 * auto-crossover to force MDI manually. Resets the PHY to commit the
1216 * changes. If time expires while waiting for link up, we reset the DSP.
1217 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1218 * successful completion, else return corresponding error code.
1219 **/
1220s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1221{
1222 struct e1000_phy_info *phy = &hw->phy;
1223 s32 ret_val;
1224 u16 phy_data;
1225 bool link;
1226
9f0b8516
MV
1227 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1228 if (phy->type != e1000_phy_i210) {
b980ac18 1229 /* Clear Auto-Crossover to force MDI manually. M88E1000
9f0b8516
MV
1230 * requires MDI forced whenever speed and duplex are forced.
1231 */
1232 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1233 &phy_data);
1234 if (ret_val)
1235 goto out;
9d5c8243 1236
9f0b8516
MV
1237 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1238 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1239 phy_data);
1240 if (ret_val)
1241 goto out;
9d5c8243 1242
9f0b8516
MV
1243 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1244 }
9d5c8243 1245
a8d2a0c2 1246 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
9d5c8243
AK
1247 if (ret_val)
1248 goto out;
1249
1250 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1251
a8d2a0c2 1252 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
9d5c8243
AK
1253 if (ret_val)
1254 goto out;
1255
2553bb26
AD
1256 /* Reset the phy to commit changes. */
1257 ret_val = igb_phy_sw_reset(hw);
1258 if (ret_val)
1259 goto out;
9d5c8243
AK
1260
1261 if (phy->autoneg_wait_to_complete) {
652fff32 1262 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
9d5c8243 1263
2553bb26 1264 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
9d5c8243
AK
1265 if (ret_val)
1266 goto out;
1267
1268 if (!link) {
f96a8a0b
CW
1269 bool reset_dsp = true;
1270
1271 switch (hw->phy.id) {
1272 case I347AT4_E_PHY_ID:
1273 case M88E1112_E_PHY_ID:
1274 case I210_I_PHY_ID:
1275 reset_dsp = false;
1276 break;
1277 default:
1278 if (hw->phy.type != e1000_phy_m88)
1279 reset_dsp = false;
1280 break;
1281 }
1282 if (!reset_dsp)
308fb39a 1283 hw_dbg("Link taking longer than expected.\n");
f96a8a0b 1284 else {
b980ac18 1285 /* We didn't get link.
308fb39a
JG
1286 * Reset the DSP and cross our fingers.
1287 */
1288 ret_val = phy->ops.write_reg(hw,
b980ac18
JK
1289 M88E1000_PHY_PAGE_SELECT,
1290 0x001d);
308fb39a
JG
1291 if (ret_val)
1292 goto out;
1293 ret_val = igb_phy_reset_dsp(hw);
1294 if (ret_val)
1295 goto out;
1296 }
9d5c8243
AK
1297 }
1298
1299 /* Try once more */
1300 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
2553bb26 1301 100000, &link);
9d5c8243
AK
1302 if (ret_val)
1303 goto out;
1304 }
1305
308fb39a
JG
1306 if (hw->phy.type != e1000_phy_m88 ||
1307 hw->phy.id == I347AT4_E_PHY_ID ||
f96a8a0b
CW
1308 hw->phy.id == M88E1112_E_PHY_ID ||
1309 hw->phy.id == I210_I_PHY_ID)
308fb39a
JG
1310 goto out;
1311
a8d2a0c2 1312 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1313 if (ret_val)
1314 goto out;
1315
b980ac18 1316 /* Resetting the phy means we need to re-force TX_CLK in the
9d5c8243
AK
1317 * Extended PHY Specific Control Register to 25MHz clock from
1318 * the reset value of 2.5MHz.
1319 */
1320 phy_data |= M88E1000_EPSCR_TX_CLK_25;
a8d2a0c2 1321 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
1322 if (ret_val)
1323 goto out;
1324
b980ac18 1325 /* In addition, we must re-enable CRS on Tx for both half and full
9d5c8243
AK
1326 * duplex.
1327 */
a8d2a0c2 1328 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1329 if (ret_val)
1330 goto out;
1331
1332 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
a8d2a0c2 1333 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
1334
1335out:
1336 return ret_val;
1337}
1338
1339/**
733596be 1340 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
9d5c8243
AK
1341 * @hw: pointer to the HW structure
1342 * @phy_ctrl: pointer to current value of PHY_CONTROL
1343 *
1344 * Forces speed and duplex on the PHY by doing the following: disable flow
1345 * control, force speed/duplex on the MAC, disable auto speed detection,
1346 * disable auto-negotiation, configure duplex, configure speed, configure
1347 * the collision distance, write configuration to CTRL register. The
1348 * caller must write to the PHY_CONTROL register for these settings to
1349 * take affect.
1350 **/
1351static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
b980ac18 1352 u16 *phy_ctrl)
9d5c8243
AK
1353{
1354 struct e1000_mac_info *mac = &hw->mac;
1355 u32 ctrl;
1356
1357 /* Turn off flow control when forcing speed/duplex */
0cce119a 1358 hw->fc.current_mode = e1000_fc_none;
9d5c8243
AK
1359
1360 /* Force speed/duplex on the mac */
1361 ctrl = rd32(E1000_CTRL);
1362 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1363 ctrl &= ~E1000_CTRL_SPD_SEL;
1364
1365 /* Disable Auto Speed Detection */
1366 ctrl &= ~E1000_CTRL_ASDE;
1367
1368 /* Disable autoneg on the phy */
1369 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1370
1371 /* Forcing Full or Half Duplex? */
1372 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1373 ctrl &= ~E1000_CTRL_FD;
1374 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
652fff32 1375 hw_dbg("Half Duplex\n");
9d5c8243
AK
1376 } else {
1377 ctrl |= E1000_CTRL_FD;
1378 *phy_ctrl |= MII_CR_FULL_DUPLEX;
652fff32 1379 hw_dbg("Full Duplex\n");
9d5c8243
AK
1380 }
1381
1382 /* Forcing 10mb or 100mb? */
1383 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1384 ctrl |= E1000_CTRL_SPD_100;
1385 *phy_ctrl |= MII_CR_SPEED_100;
1386 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
652fff32 1387 hw_dbg("Forcing 100mb\n");
9d5c8243
AK
1388 } else {
1389 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1390 *phy_ctrl |= MII_CR_SPEED_10;
1391 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
652fff32 1392 hw_dbg("Forcing 10mb\n");
9d5c8243
AK
1393 }
1394
1395 igb_config_collision_dist(hw);
1396
1397 wr32(E1000_CTRL, ctrl);
1398}
1399
1400/**
733596be 1401 * igb_set_d3_lplu_state - Sets low power link up state for D3
9d5c8243
AK
1402 * @hw: pointer to the HW structure
1403 * @active: boolean used to enable/disable lplu
1404 *
1405 * Success returns 0, Failure returns 1
1406 *
1407 * The low power link up (lplu) state is set to the power management level D3
1408 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1409 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1410 * is used during Dx states where the power conservation is most important.
1411 * During driver activity, SmartSpeed should be enabled so performance is
1412 * maintained.
1413 **/
1414s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1415{
1416 struct e1000_phy_info *phy = &hw->phy;
2553bb26 1417 s32 ret_val = 0;
9d5c8243
AK
1418 u16 data;
1419
2553bb26
AD
1420 if (!(hw->phy.ops.read_reg))
1421 goto out;
1422
a8d2a0c2 1423 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
1424 if (ret_val)
1425 goto out;
1426
1427 if (!active) {
1428 data &= ~IGP02E1000_PM_D3_LPLU;
a8d2a0c2 1429 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
9d5c8243
AK
1430 data);
1431 if (ret_val)
1432 goto out;
b980ac18 1433 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
9d5c8243
AK
1434 * during Dx states where the power conservation is most
1435 * important. During driver activity we should enable
1436 * SmartSpeed, so performance is maintained.
1437 */
1438 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 1439 ret_val = phy->ops.read_reg(hw,
9d5c8243
AK
1440 IGP01E1000_PHY_PORT_CONFIG,
1441 &data);
1442 if (ret_val)
1443 goto out;
1444
1445 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1446 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
1447 IGP01E1000_PHY_PORT_CONFIG,
1448 data);
1449 if (ret_val)
1450 goto out;
1451 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 1452 ret_val = phy->ops.read_reg(hw,
9d5c8243
AK
1453 IGP01E1000_PHY_PORT_CONFIG,
1454 &data);
1455 if (ret_val)
1456 goto out;
1457
1458 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1459 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
1460 IGP01E1000_PHY_PORT_CONFIG,
1461 data);
1462 if (ret_val)
1463 goto out;
1464 }
1465 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1466 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1467 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1468 data |= IGP02E1000_PM_D3_LPLU;
a8d2a0c2 1469 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
9d5c8243
AK
1470 data);
1471 if (ret_val)
1472 goto out;
1473
1474 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 1475 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
b980ac18 1476 &data);
9d5c8243
AK
1477 if (ret_val)
1478 goto out;
1479
1480 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1481 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
b980ac18 1482 data);
9d5c8243
AK
1483 }
1484
1485out:
1486 return ret_val;
1487}
1488
1489/**
25985edc 1490 * igb_check_downshift - Checks whether a downshift in speed occurred
9d5c8243
AK
1491 * @hw: pointer to the HW structure
1492 *
1493 * Success returns 0, Failure returns 1
1494 *
1495 * A downshift is detected by querying the PHY link health.
1496 **/
1497s32 igb_check_downshift(struct e1000_hw *hw)
1498{
1499 struct e1000_phy_info *phy = &hw->phy;
1500 s32 ret_val;
1501 u16 phy_data, offset, mask;
1502
1503 switch (phy->type) {
f96a8a0b 1504 case e1000_phy_i210:
9d5c8243
AK
1505 case e1000_phy_m88:
1506 case e1000_phy_gg82563:
1507 offset = M88E1000_PHY_SPEC_STATUS;
1508 mask = M88E1000_PSSR_DOWNSHIFT;
1509 break;
1510 case e1000_phy_igp_2:
1511 case e1000_phy_igp:
1512 case e1000_phy_igp_3:
1513 offset = IGP01E1000_PHY_LINK_HEALTH;
1514 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1515 break;
1516 default:
1517 /* speed downshift not supported */
1518 phy->speed_downgraded = false;
1519 ret_val = 0;
1520 goto out;
1521 }
1522
a8d2a0c2 1523 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
9d5c8243
AK
1524
1525 if (!ret_val)
1526 phy->speed_downgraded = (phy_data & mask) ? true : false;
1527
1528out:
1529 return ret_val;
1530}
1531
1532/**
733596be 1533 * igb_check_polarity_m88 - Checks the polarity.
9d5c8243
AK
1534 * @hw: pointer to the HW structure
1535 *
1536 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1537 *
1538 * Polarity is determined based on the PHY specific status register.
1539 **/
f96a8a0b 1540s32 igb_check_polarity_m88(struct e1000_hw *hw)
9d5c8243
AK
1541{
1542 struct e1000_phy_info *phy = &hw->phy;
1543 s32 ret_val;
1544 u16 data;
1545
a8d2a0c2 1546 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
9d5c8243
AK
1547
1548 if (!ret_val)
1549 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1550 ? e1000_rev_polarity_reversed
1551 : e1000_rev_polarity_normal;
1552
1553 return ret_val;
1554}
1555
1556/**
733596be 1557 * igb_check_polarity_igp - Checks the polarity.
9d5c8243
AK
1558 * @hw: pointer to the HW structure
1559 *
1560 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1561 *
1562 * Polarity is determined based on the PHY port status register, and the
1563 * current speed (since there is no polarity at 100Mbps).
1564 **/
1565static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1566{
1567 struct e1000_phy_info *phy = &hw->phy;
1568 s32 ret_val;
1569 u16 data, offset, mask;
1570
b980ac18 1571 /* Polarity is determined based on the speed of
9d5c8243
AK
1572 * our connection.
1573 */
a8d2a0c2 1574 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
9d5c8243
AK
1575 if (ret_val)
1576 goto out;
1577
1578 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1579 IGP01E1000_PSSR_SPEED_1000MBPS) {
1580 offset = IGP01E1000_PHY_PCS_INIT_REG;
1581 mask = IGP01E1000_PHY_POLARITY_MASK;
1582 } else {
b980ac18 1583 /* This really only applies to 10Mbps since
9d5c8243
AK
1584 * there is no polarity for 100Mbps (always 0).
1585 */
1586 offset = IGP01E1000_PHY_PORT_STATUS;
1587 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1588 }
1589
a8d2a0c2 1590 ret_val = phy->ops.read_reg(hw, offset, &data);
9d5c8243
AK
1591
1592 if (!ret_val)
1593 phy->cable_polarity = (data & mask)
1594 ? e1000_rev_polarity_reversed
1595 : e1000_rev_polarity_normal;
1596
1597out:
1598 return ret_val;
1599}
1600
1601/**
b980ac18 1602 * igb_wait_autoneg - Wait for auto-neg completion
9d5c8243
AK
1603 * @hw: pointer to the HW structure
1604 *
1605 * Waits for auto-negotiation to complete or for the auto-negotiation time
1606 * limit to expire, which ever happens first.
1607 **/
1608static s32 igb_wait_autoneg(struct e1000_hw *hw)
1609{
1610 s32 ret_val = 0;
1611 u16 i, phy_status;
1612
1613 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1614 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
a8d2a0c2 1615 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1616 if (ret_val)
1617 break;
a8d2a0c2 1618 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1619 if (ret_val)
1620 break;
1621 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1622 break;
1623 msleep(100);
1624 }
1625
b980ac18 1626 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
9d5c8243
AK
1627 * has completed.
1628 */
1629 return ret_val;
1630}
1631
1632/**
733596be 1633 * igb_phy_has_link - Polls PHY for link
9d5c8243
AK
1634 * @hw: pointer to the HW structure
1635 * @iterations: number of times to poll for link
1636 * @usec_interval: delay between polling attempts
1637 * @success: pointer to whether polling was successful or not
1638 *
1639 * Polls the PHY status register for link, 'iterations' number of times.
1640 **/
1641s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
b980ac18 1642 u32 usec_interval, bool *success)
9d5c8243
AK
1643{
1644 s32 ret_val = 0;
1645 u16 i, phy_status;
1646
1647 for (i = 0; i < iterations; i++) {
b980ac18 1648 /* Some PHYs require the PHY_STATUS register to be read
9d5c8243
AK
1649 * twice due to the link bit being sticky. No harm doing
1650 * it across the board.
1651 */
a8d2a0c2 1652 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
dc3d226f 1653 if (ret_val && usec_interval > 0) {
b980ac18 1654 /* If the first read fails, another entity may have
ab576389
AD
1655 * ownership of the resources, wait and try again to
1656 * see if they have relinquished the resources yet.
1657 */
df29df92
CW
1658 if (usec_interval >= 1000)
1659 mdelay(usec_interval/1000);
1660 else
1661 udelay(usec_interval);
ab576389 1662 }
a8d2a0c2 1663 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1664 if (ret_val)
1665 break;
1666 if (phy_status & MII_SR_LINK_STATUS)
1667 break;
1668 if (usec_interval >= 1000)
1669 mdelay(usec_interval/1000);
1670 else
1671 udelay(usec_interval);
1672 }
1673
1674 *success = (i < iterations) ? true : false;
1675
1676 return ret_val;
1677}
1678
1679/**
733596be 1680 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
9d5c8243
AK
1681 * @hw: pointer to the HW structure
1682 *
1683 * Reads the PHY specific status register to retrieve the cable length
1684 * information. The cable length is determined by averaging the minimum and
1685 * maximum values to get the "average" cable length. The m88 PHY has four
1686 * possible cable length values, which are:
1687 * Register Value Cable Length
1688 * 0 < 50 meters
1689 * 1 50 - 80 meters
1690 * 2 80 - 110 meters
1691 * 3 110 - 140 meters
1692 * 4 > 140 meters
1693 **/
1694s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1695{
1696 struct e1000_phy_info *phy = &hw->phy;
1697 s32 ret_val;
1698 u16 phy_data, index;
1699
a8d2a0c2 1700 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
9d5c8243
AK
1701 if (ret_val)
1702 goto out;
1703
1704 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1705 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2553bb26
AD
1706 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1707 ret_val = -E1000_ERR_PHY;
1708 goto out;
1709 }
1710
9d5c8243 1711 phy->min_cable_length = e1000_m88_cable_length_table[index];
2553bb26 1712 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
9d5c8243
AK
1713
1714 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1715
1716out:
1717 return ret_val;
1718}
1719
308fb39a
JG
1720s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1721{
1722 struct e1000_phy_info *phy = &hw->phy;
1723 s32 ret_val;
1724 u16 phy_data, phy_data2, index, default_page, is_cm;
1725
1726 switch (hw->phy.id) {
f96a8a0b 1727 case I210_I_PHY_ID:
59f30104
CW
1728 /* Get cable length from PHY Cable Diagnostics Control Reg */
1729 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1730 (I347AT4_PCDL + phy->addr),
1731 &phy_data);
1732 if (ret_val)
1733 return ret_val;
1734
1735 /* Check if the unit of cable length is meters or cm */
1736 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1737 I347AT4_PCDC, &phy_data2);
1738 if (ret_val)
1739 return ret_val;
1740
1741 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1742
1743 /* Populate the phy structure with cable length in meters */
1744 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1745 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1746 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1747 break;
99af4729 1748 case M88E1543_E_PHY_ID:
308fb39a
JG
1749 case I347AT4_E_PHY_ID:
1750 /* Remember the original page select and set it to 7 */
1751 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1752 &default_page);
1753 if (ret_val)
1754 goto out;
1755
1756 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1757 if (ret_val)
1758 goto out;
1759
1760 /* Get cable length from PHY Cable Diagnostics Control Reg */
1761 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1762 &phy_data);
1763 if (ret_val)
1764 goto out;
1765
1766 /* Check if the unit of cable length is meters or cm */
1767 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1768 if (ret_val)
1769 goto out;
1770
d5a0e364 1771 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
308fb39a
JG
1772
1773 /* Populate the phy structure with cable length in meters */
1774 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1775 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1776 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1777
1778 /* Reset the page selec to its original value */
1779 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1780 default_page);
1781 if (ret_val)
1782 goto out;
1783 break;
1784 case M88E1112_E_PHY_ID:
1785 /* Remember the original page select and set it to 5 */
1786 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1787 &default_page);
1788 if (ret_val)
1789 goto out;
1790
1791 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1792 if (ret_val)
1793 goto out;
1794
1795 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1796 &phy_data);
1797 if (ret_val)
1798 goto out;
1799
1800 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1801 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1802 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1803 ret_val = -E1000_ERR_PHY;
1804 goto out;
1805 }
1806
1807 phy->min_cable_length = e1000_m88_cable_length_table[index];
1808 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1809
1810 phy->cable_length = (phy->min_cable_length +
1811 phy->max_cable_length) / 2;
1812
1813 /* Reset the page select to its original value */
1814 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1815 default_page);
1816 if (ret_val)
1817 goto out;
1818
1819 break;
1820 default:
1821 ret_val = -E1000_ERR_PHY;
1822 goto out;
1823 }
1824
1825out:
1826 return ret_val;
1827}
1828
9d5c8243 1829/**
733596be 1830 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
9d5c8243
AK
1831 * @hw: pointer to the HW structure
1832 *
1833 * The automatic gain control (agc) normalizes the amplitude of the
1834 * received signal, adjusting for the attenuation produced by the
a8d2a0c2
AD
1835 * cable. By reading the AGC registers, which represent the
1836 * combination of coarse and fine gain value, the value can be put
9d5c8243
AK
1837 * into a lookup table to obtain the approximate cable length
1838 * for each channel.
1839 **/
1840s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1841{
1842 struct e1000_phy_info *phy = &hw->phy;
1843 s32 ret_val = 0;
1844 u16 phy_data, i, agc_value = 0;
1845 u16 cur_agc_index, max_agc_index = 0;
1846 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
66744500 1847 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
b980ac18
JK
1848 IGP02E1000_PHY_AGC_A,
1849 IGP02E1000_PHY_AGC_B,
1850 IGP02E1000_PHY_AGC_C,
1851 IGP02E1000_PHY_AGC_D
66744500 1852 };
9d5c8243
AK
1853
1854 /* Read the AGC registers for all channels */
1855 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
a8d2a0c2 1856 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
9d5c8243
AK
1857 if (ret_val)
1858 goto out;
1859
b980ac18 1860 /* Getting bits 15:9, which represent the combination of
a8d2a0c2 1861 * coarse and fine gain values. The result is a number
9d5c8243
AK
1862 * that can be put into the lookup table to obtain the
1863 * approximate cable length.
1864 */
1865 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1866 IGP02E1000_AGC_LENGTH_MASK;
1867
1868 /* Array index bound check. */
1869 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1870 (cur_agc_index == 0)) {
1871 ret_val = -E1000_ERR_PHY;
1872 goto out;
1873 }
1874
1875 /* Remove min & max AGC values from calculation. */
1876 if (e1000_igp_2_cable_length_table[min_agc_index] >
1877 e1000_igp_2_cable_length_table[cur_agc_index])
1878 min_agc_index = cur_agc_index;
1879 if (e1000_igp_2_cable_length_table[max_agc_index] <
1880 e1000_igp_2_cable_length_table[cur_agc_index])
1881 max_agc_index = cur_agc_index;
1882
1883 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1884 }
1885
1886 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1887 e1000_igp_2_cable_length_table[max_agc_index]);
1888 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1889
1890 /* Calculate cable length with the error range of +/- 10 meters. */
1891 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1892 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1893 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1894
1895 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1896
1897out:
1898 return ret_val;
1899}
1900
1901/**
733596be 1902 * igb_get_phy_info_m88 - Retrieve PHY information
9d5c8243
AK
1903 * @hw: pointer to the HW structure
1904 *
1905 * Valid for only copper links. Read the PHY status register (sticky read)
1906 * to verify that link is up. Read the PHY special control register to
1907 * determine the polarity and 10base-T extended distance. Read the PHY
1908 * special status register to determine MDI/MDIx and current speed. If
1909 * speed is 1000, then determine cable length, local and remote receiver.
1910 **/
1911s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1912{
1913 struct e1000_phy_info *phy = &hw->phy;
1914 s32 ret_val;
1915 u16 phy_data;
1916 bool link;
1917
a8d2a0c2 1918 if (phy->media_type != e1000_media_type_copper) {
652fff32 1919 hw_dbg("Phy info is only valid for copper media\n");
9d5c8243
AK
1920 ret_val = -E1000_ERR_CONFIG;
1921 goto out;
1922 }
1923
1924 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1925 if (ret_val)
1926 goto out;
1927
1928 if (!link) {
652fff32 1929 hw_dbg("Phy info is only valid if link is up\n");
9d5c8243
AK
1930 ret_val = -E1000_ERR_CONFIG;
1931 goto out;
1932 }
1933
a8d2a0c2 1934 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1935 if (ret_val)
1936 goto out;
1937
1938 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
a8d2a0c2 1939 ? true : false;
9d5c8243
AK
1940
1941 ret_val = igb_check_polarity_m88(hw);
1942 if (ret_val)
1943 goto out;
1944
a8d2a0c2 1945 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
9d5c8243
AK
1946 if (ret_val)
1947 goto out;
1948
1949 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1950
1951 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
a8d2a0c2 1952 ret_val = phy->ops.get_cable_length(hw);
9d5c8243
AK
1953 if (ret_val)
1954 goto out;
1955
a8d2a0c2 1956 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
9d5c8243
AK
1957 if (ret_val)
1958 goto out;
1959
1960 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1961 ? e1000_1000t_rx_status_ok
1962 : e1000_1000t_rx_status_not_ok;
1963
1964 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1965 ? e1000_1000t_rx_status_ok
1966 : e1000_1000t_rx_status_not_ok;
1967 } else {
1968 /* Set values to "undefined" */
1969 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1970 phy->local_rx = e1000_1000t_rx_status_undefined;
1971 phy->remote_rx = e1000_1000t_rx_status_undefined;
1972 }
1973
1974out:
1975 return ret_val;
1976}
1977
1978/**
733596be 1979 * igb_get_phy_info_igp - Retrieve igp PHY information
9d5c8243
AK
1980 * @hw: pointer to the HW structure
1981 *
1982 * Read PHY status to determine if link is up. If link is up, then
1983 * set/determine 10base-T extended distance and polarity correction. Read
1984 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1985 * determine on the cable length, local and remote receiver.
1986 **/
1987s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1988{
1989 struct e1000_phy_info *phy = &hw->phy;
1990 s32 ret_val;
1991 u16 data;
1992 bool link;
1993
1994 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1995 if (ret_val)
1996 goto out;
1997
1998 if (!link) {
652fff32 1999 hw_dbg("Phy info is only valid if link is up\n");
9d5c8243
AK
2000 ret_val = -E1000_ERR_CONFIG;
2001 goto out;
2002 }
2003
2004 phy->polarity_correction = true;
2005
2006 ret_val = igb_check_polarity_igp(hw);
2007 if (ret_val)
2008 goto out;
2009
a8d2a0c2 2010 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
9d5c8243
AK
2011 if (ret_val)
2012 goto out;
2013
2014 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2015
2016 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2017 IGP01E1000_PSSR_SPEED_1000MBPS) {
a8d2a0c2 2018 ret_val = phy->ops.get_cable_length(hw);
9d5c8243
AK
2019 if (ret_val)
2020 goto out;
2021
a8d2a0c2 2022 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
9d5c8243
AK
2023 if (ret_val)
2024 goto out;
2025
2026 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2027 ? e1000_1000t_rx_status_ok
2028 : e1000_1000t_rx_status_not_ok;
2029
2030 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2031 ? e1000_1000t_rx_status_ok
2032 : e1000_1000t_rx_status_not_ok;
2033 } else {
2034 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2035 phy->local_rx = e1000_1000t_rx_status_undefined;
2036 phy->remote_rx = e1000_1000t_rx_status_undefined;
2037 }
2038
2039out:
2040 return ret_val;
2041}
2042
2043/**
733596be 2044 * igb_phy_sw_reset - PHY software reset
9d5c8243
AK
2045 * @hw: pointer to the HW structure
2046 *
2047 * Does a software reset of the PHY by reading the PHY control register and
2048 * setting/write the control register reset bit to the PHY.
2049 **/
2050s32 igb_phy_sw_reset(struct e1000_hw *hw)
2051{
d314737a 2052 s32 ret_val = 0;
9d5c8243
AK
2053 u16 phy_ctrl;
2054
d314737a
AD
2055 if (!(hw->phy.ops.read_reg))
2056 goto out;
2057
a8d2a0c2 2058 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
9d5c8243
AK
2059 if (ret_val)
2060 goto out;
2061
2062 phy_ctrl |= MII_CR_RESET;
a8d2a0c2 2063 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
9d5c8243
AK
2064 if (ret_val)
2065 goto out;
2066
2067 udelay(1);
2068
2069out:
2070 return ret_val;
2071}
2072
2073/**
733596be 2074 * igb_phy_hw_reset - PHY hardware reset
9d5c8243
AK
2075 * @hw: pointer to the HW structure
2076 *
2077 * Verify the reset block is not blocking us from resetting. Acquire
2078 * semaphore (if necessary) and read/set/write the device control reset
2079 * bit in the PHY. Wait the appropriate delay time for the device to
83a35e36 2080 * reset and release the semaphore (if necessary).
9d5c8243
AK
2081 **/
2082s32 igb_phy_hw_reset(struct e1000_hw *hw)
2083{
2084 struct e1000_phy_info *phy = &hw->phy;
2085 s32 ret_val;
2086 u32 ctrl;
2087
2088 ret_val = igb_check_reset_block(hw);
2089 if (ret_val) {
2090 ret_val = 0;
2091 goto out;
2092 }
2093
a8d2a0c2 2094 ret_val = phy->ops.acquire(hw);
9d5c8243
AK
2095 if (ret_val)
2096 goto out;
2097
2098 ctrl = rd32(E1000_CTRL);
2099 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2100 wrfl();
2101
2102 udelay(phy->reset_delay_us);
2103
2104 wr32(E1000_CTRL, ctrl);
2105 wrfl();
2106
2107 udelay(150);
2108
a8d2a0c2 2109 phy->ops.release(hw);
9d5c8243 2110
a8d2a0c2 2111 ret_val = phy->ops.get_cfg_done(hw);
9d5c8243
AK
2112
2113out:
2114 return ret_val;
2115}
2116
9d5c8243 2117/**
733596be 2118 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
9d5c8243
AK
2119 * @hw: pointer to the HW structure
2120 *
2121 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2122 **/
2123s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2124{
652fff32 2125 hw_dbg("Running IGP 3 PHY init script\n");
9d5c8243
AK
2126
2127 /* PHY init IGP 3 */
2128 /* Enable rise/fall, 10-mode work in class-A */
a8d2a0c2 2129 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
9d5c8243 2130 /* Remove all caps from Replica path filter */
a8d2a0c2 2131 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
9d5c8243 2132 /* Bias trimming for ADC, AFE and Driver (Default) */
a8d2a0c2 2133 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
9d5c8243 2134 /* Increase Hybrid poly bias */
a8d2a0c2 2135 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
9d5c8243 2136 /* Add 4% to TX amplitude in Giga mode */
a8d2a0c2 2137 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
9d5c8243 2138 /* Disable trimming (TTT) */
a8d2a0c2 2139 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
9d5c8243 2140 /* Poly DC correction to 94.6% + 2% for all channels */
a8d2a0c2 2141 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
9d5c8243 2142 /* ABS DC correction to 95.9% */
a8d2a0c2 2143 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
9d5c8243 2144 /* BG temp curve trim */
a8d2a0c2 2145 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
9d5c8243 2146 /* Increasing ADC OPAMP stage 1 currents to max */
a8d2a0c2 2147 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
9d5c8243 2148 /* Force 1000 ( required for enabling PHY regs configuration) */
a8d2a0c2 2149 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
9d5c8243 2150 /* Set upd_freq to 6 */
a8d2a0c2 2151 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
9d5c8243 2152 /* Disable NPDFE */
a8d2a0c2 2153 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
9d5c8243 2154 /* Disable adaptive fixed FFE (Default) */
a8d2a0c2 2155 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
9d5c8243 2156 /* Enable FFE hysteresis */
a8d2a0c2 2157 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
9d5c8243 2158 /* Fixed FFE for short cable lengths */
a8d2a0c2 2159 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
9d5c8243 2160 /* Fixed FFE for medium cable lengths */
a8d2a0c2 2161 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
9d5c8243 2162 /* Fixed FFE for long cable lengths */
a8d2a0c2 2163 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
9d5c8243 2164 /* Enable Adaptive Clip Threshold */
a8d2a0c2 2165 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
9d5c8243 2166 /* AHT reset limit to 1 */
a8d2a0c2 2167 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
9d5c8243 2168 /* Set AHT master delay to 127 msec */
a8d2a0c2 2169 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
9d5c8243 2170 /* Set scan bits for AHT */
a8d2a0c2 2171 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
9d5c8243 2172 /* Set AHT Preset bits */
a8d2a0c2 2173 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
9d5c8243 2174 /* Change integ_factor of channel A to 3 */
a8d2a0c2 2175 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
9d5c8243 2176 /* Change prop_factor of channels BCD to 8 */
a8d2a0c2 2177 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
9d5c8243 2178 /* Change cg_icount + enable integbp for channels BCD */
a8d2a0c2 2179 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
b980ac18 2180 /* Change cg_icount + enable integbp + change prop_factor_master
9d5c8243
AK
2181 * to 8 for channel A
2182 */
a8d2a0c2 2183 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
9d5c8243 2184 /* Disable AHT in Slave mode on channel A */
a8d2a0c2 2185 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
b980ac18 2186 /* Enable LPLU and disable AN to 1000 in non-D0a states,
9d5c8243
AK
2187 * Enable SPD+B2B
2188 */
a8d2a0c2 2189 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
9d5c8243 2190 /* Enable restart AN on an1000_dis change */
a8d2a0c2 2191 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
9d5c8243 2192 /* Enable wh_fifo read clock in 10/100 modes */
a8d2a0c2 2193 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
9d5c8243 2194 /* Restart AN, Speed selection is 1000 */
a8d2a0c2 2195 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
9d5c8243
AK
2196
2197 return 0;
2198}
2199
88a268c1
NN
2200/**
2201 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2202 * @hw: pointer to the HW structure
2203 *
2204 * In the case of a PHY power down to save power, or to turn off link during a
2205 * driver unload, restore the link to previous settings.
2206 **/
2207void igb_power_up_phy_copper(struct e1000_hw *hw)
2208{
2209 u16 mii_reg = 0;
f96a8a0b 2210 u16 power_reg = 0;
88a268c1
NN
2211
2212 /* The PHY will retain its settings across a power down/up cycle */
2213 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2214 mii_reg &= ~MII_CR_POWER_DOWN;
f96a8a0b
CW
2215 if (hw->phy.type == e1000_phy_i210) {
2216 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2217 power_reg &= ~GS40G_CS_POWER_DOWN;
2218 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2219 }
88a268c1
NN
2220 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2221}
2222
2223/**
2224 * igb_power_down_phy_copper - Power down copper PHY
2225 * @hw: pointer to the HW structure
2226 *
2227 * Power down PHY to save power when interface is down and wake on lan
2228 * is not enabled.
2229 **/
2230void igb_power_down_phy_copper(struct e1000_hw *hw)
2231{
2232 u16 mii_reg = 0;
f96a8a0b 2233 u16 power_reg = 0;
88a268c1
NN
2234
2235 /* The PHY will retain its settings across a power down/up cycle */
2236 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2237 mii_reg |= MII_CR_POWER_DOWN;
f96a8a0b
CW
2238
2239 /* i210 Phy requires an additional bit for power up/down */
2240 if (hw->phy.type == e1000_phy_i210) {
2241 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2242 power_reg |= GS40G_CS_POWER_DOWN;
2243 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2244 }
88a268c1
NN
2245 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2246 msleep(1);
2247}
2248
2909c3f7
AD
2249/**
2250 * igb_check_polarity_82580 - Checks the polarity.
2251 * @hw: pointer to the HW structure
2252 *
2253 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2254 *
2255 * Polarity is determined based on the PHY specific status register.
2256 **/
bb2ac47b 2257static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2909c3f7
AD
2258{
2259 struct e1000_phy_info *phy = &hw->phy;
2260 s32 ret_val;
2261 u16 data;
2262
2263
2264 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2265
2266 if (!ret_val)
2267 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
b980ac18
JK
2268 ? e1000_rev_polarity_reversed
2269 : e1000_rev_polarity_normal;
2909c3f7
AD
2270
2271 return ret_val;
2272}
2273
2274/**
2275 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2276 * @hw: pointer to the HW structure
2277 *
2278 * Calls the PHY setup function to force speed and duplex. Clears the
2279 * auto-crossover to force MDI manually. Waits for link and returns
2280 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2281 **/
2282s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2283{
2284 struct e1000_phy_info *phy = &hw->phy;
2285 s32 ret_val;
2286 u16 phy_data;
2287 bool link;
2288
2909c3f7
AD
2289 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2290 if (ret_val)
2291 goto out;
2292
2293 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2294
2295 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2296 if (ret_val)
2297 goto out;
2298
b980ac18 2299 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2909c3f7
AD
2300 * forced whenever speed and duplex are forced.
2301 */
2302 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2303 if (ret_val)
2304 goto out;
2305
1b556783 2306 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2909c3f7
AD
2307
2308 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2309 if (ret_val)
2310 goto out;
2311
2312 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2313
2314 udelay(1);
2315
2316 if (phy->autoneg_wait_to_complete) {
2317 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2318
b980ac18 2319 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2909c3f7
AD
2320 if (ret_val)
2321 goto out;
2322
2323 if (!link)
2324 hw_dbg("Link taking longer than expected.\n");
2325
2326 /* Try once more */
b980ac18 2327 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2909c3f7
AD
2328 if (ret_val)
2329 goto out;
2330 }
2331
2332out:
2333 return ret_val;
2334}
2335
2336/**
2337 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2338 * @hw: pointer to the HW structure
2339 *
2340 * Read PHY status to determine if link is up. If link is up, then
2341 * set/determine 10base-T extended distance and polarity correction. Read
2342 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2343 * determine on the cable length, local and remote receiver.
2344 **/
2345s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2346{
2347 struct e1000_phy_info *phy = &hw->phy;
2348 s32 ret_val;
2349 u16 data;
2350 bool link;
2351
2909c3f7
AD
2352 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2353 if (ret_val)
2354 goto out;
2355
2356 if (!link) {
2357 hw_dbg("Phy info is only valid if link is up\n");
2358 ret_val = -E1000_ERR_CONFIG;
2359 goto out;
2360 }
2361
2362 phy->polarity_correction = true;
2363
2364 ret_val = igb_check_polarity_82580(hw);
2365 if (ret_val)
2366 goto out;
2367
2368 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2369 if (ret_val)
2370 goto out;
2371
2372 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2373
2374 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2375 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2376 ret_val = hw->phy.ops.get_cable_length(hw);
2377 if (ret_val)
2378 goto out;
2379
2380 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2381 if (ret_val)
2382 goto out;
2383
2384 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
b980ac18
JK
2385 ? e1000_1000t_rx_status_ok
2386 : e1000_1000t_rx_status_not_ok;
2909c3f7
AD
2387
2388 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
b980ac18
JK
2389 ? e1000_1000t_rx_status_ok
2390 : e1000_1000t_rx_status_not_ok;
2909c3f7
AD
2391 } else {
2392 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2393 phy->local_rx = e1000_1000t_rx_status_undefined;
2394 phy->remote_rx = e1000_1000t_rx_status_undefined;
2395 }
2396
2397out:
2398 return ret_val;
2399}
2400
2401/**
2402 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2403 * @hw: pointer to the HW structure
2404 *
2405 * Reads the diagnostic status register and verifies result is valid before
2406 * placing it in the phy_cable_length field.
2407 **/
2408s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2409{
2410 struct e1000_phy_info *phy = &hw->phy;
2411 s32 ret_val;
2412 u16 phy_data, length;
2413
2909c3f7
AD
2414 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2415 if (ret_val)
2416 goto out;
2417
2418 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
b980ac18 2419 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2909c3f7
AD
2420
2421 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2422 ret_val = -E1000_ERR_PHY;
2423
2424 phy->cable_length = length;
2425
2426out:
2427 return ret_val;
2428}
f96a8a0b
CW
2429
2430/**
2431 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2432 * @hw: pointer to the HW structure
2433 * @offset: lower half is register offset to write to
2434 * upper half is page to use.
2435 * @data: data to write at register offset
2436 *
2437 * Acquires semaphore, if necessary, then writes the data to PHY register
2438 * at the offset. Release any acquired semaphores before exiting.
2439 **/
2440s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2441{
2442 s32 ret_val;
2443 u16 page = offset >> GS40G_PAGE_SHIFT;
2444
2445 offset = offset & GS40G_OFFSET_MASK;
2446 ret_val = hw->phy.ops.acquire(hw);
2447 if (ret_val)
2448 return ret_val;
2449
2450 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2451 if (ret_val)
2452 goto release;
2453 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2454
2455release:
2456 hw->phy.ops.release(hw);
2457 return ret_val;
2458}
2459
2460/**
2461 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2462 * @hw: pointer to the HW structure
2463 * @offset: lower half is register offset to read to
2464 * upper half is page to use.
2465 * @data: data to read at register offset
2466 *
2467 * Acquires semaphore, if necessary, then reads the data in the PHY register
2468 * at the offset. Release any acquired semaphores before exiting.
2469 **/
2470s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472 s32 ret_val;
2473 u16 page = offset >> GS40G_PAGE_SHIFT;
2474
2475 offset = offset & GS40G_OFFSET_MASK;
2476 ret_val = hw->phy.ops.acquire(hw);
2477 if (ret_val)
2478 return ret_val;
2479
2480 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2481 if (ret_val)
2482 goto release;
2483 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2484
2485release:
2486 hw->phy.ops.release(hw);
2487 return ret_val;
2488}
2489
2490/**
2491 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2492 * @hw: pointer to the HW structure
2493 *
2494 * Sets up Master/slave mode
2495 **/
2496static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2497{
2498 s32 ret_val;
2499 u16 phy_data;
2500
2501 /* Resolve Master/Slave mode */
2502 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2503 if (ret_val)
2504 return ret_val;
2505
2506 /* load defaults for future use */
2507 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2508 ((phy_data & CR_1000T_MS_VALUE) ?
2509 e1000_ms_force_master :
2510 e1000_ms_force_slave) : e1000_ms_auto;
2511
2512 switch (hw->phy.ms_type) {
2513 case e1000_ms_force_master:
2514 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2515 break;
2516 case e1000_ms_force_slave:
2517 phy_data |= CR_1000T_MS_ENABLE;
2518 phy_data &= ~(CR_1000T_MS_VALUE);
2519 break;
2520 case e1000_ms_auto:
2521 phy_data &= ~CR_1000T_MS_ENABLE;
2522 /* fall-through */
2523 default:
2524 break;
2525 }
2526
2527 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2528}
This page took 0.696967 seconds and 5 git commands to generate.