igb: avoid unnecessarily creating a local copy of the q_vector
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
9d5c8243
AK
57#include "igb.h"
58
0d1fe82d
CW
59#define MAJ 3
60#define MIN 0
61#define BUILD 6
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 68static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 69
9d5c8243
AK
70static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
72};
73
a3aa1884 74static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
102};
103
104MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 111static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
112static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 114static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure_tx(struct igb_adapter *);
119static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
120static void igb_clean_all_tx_rings(struct igb_adapter *);
121static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
122static void igb_clean_tx_ring(struct igb_ring *);
123static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 124static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
125static void igb_update_phy_info(unsigned long);
126static void igb_watchdog(unsigned long);
127static void igb_watchdog_task(struct work_struct *);
cd392f5c 128static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
9d5c8243
AK
131static int igb_change_mtu(struct net_device *, int);
132static int igb_set_mac(struct net_device *, void *);
68d480c4 133static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
134static irqreturn_t igb_intr(int irq, void *);
135static irqreturn_t igb_intr_msi(int irq, void *);
136static irqreturn_t igb_msix_other(int irq, void *);
047e0030 137static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 138#ifdef CONFIG_IGB_DCA
047e0030 139static void igb_update_dca(struct igb_q_vector *);
fe4506b6 140static void igb_setup_dca(struct igb_adapter *);
421e02f0 141#endif /* CONFIG_IGB_DCA */
661086df 142static int igb_poll(struct napi_struct *, int);
13fde97a 143static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 144static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
145static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146static void igb_tx_timeout(struct net_device *);
147static void igb_reset_task(struct work_struct *);
b2cb09b1 148static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
149static void igb_vlan_rx_add_vid(struct net_device *, u16);
150static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151static void igb_restore_vlan(struct igb_adapter *);
26ad9178 152static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
153static void igb_ping_all_vfs(struct igb_adapter *);
154static void igb_msg_task(struct igb_adapter *);
4ae196df 155static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 156static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 157static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
158static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
17dc566c 164static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 165
9d5c8243 166#ifdef CONFIG_PM
3fe7c4c9 167static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
168static int igb_resume(struct pci_dev *);
169#endif
170static void igb_shutdown(struct pci_dev *);
421e02f0 171#ifdef CONFIG_IGB_DCA
fe4506b6
JC
172static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
177};
178#endif
9d5c8243
AK
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void igb_netpoll(struct net_device *);
182#endif
37680117 183#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
184static unsigned int max_vfs = 0;
185module_param(max_vfs, uint, 0);
186MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188#endif /* CONFIG_PCI_IOV */
189
9d5c8243
AK
190static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193static void igb_io_resume(struct pci_dev *);
194
195static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
199};
200
201
202static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207#ifdef CONFIG_PM
25985edc 208 /* Power Management Hooks */
9d5c8243
AK
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211#endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
214};
215
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
c97ec42a
TI
221struct igb_reg_info {
222 u32 ofs;
223 char *name;
224};
225
226static const struct igb_reg_info igb_reg_info_tbl[] = {
227
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
232
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
235
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
244
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
257
258 /* List Terminator */
259 {}
260};
261
262/*
263 * igb_regdump - register printout routine
264 */
265static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
266{
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
270
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
324 }
325
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
331}
332
333/*
334 * igb_dump - Print registers, tx-rings and rx-rings
335 */
336static void igb_dump(struct igb_adapter *adapter)
337{
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
c97ec42a
TI
341 struct igb_ring *tx_ring;
342 union e1000_adv_tx_desc *tx_desc;
343 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
344 struct igb_ring *rx_ring;
345 union e1000_adv_rx_desc *rx_desc;
346 u32 staterr;
6ad4edfc 347 u16 i, n;
c97ec42a
TI
348
349 if (!netif_msg_hw(adapter))
350 return;
351
352 /* Print netdevice Info */
353 if (netdev) {
354 dev_info(&adapter->pdev->dev, "Net device Info\n");
355 printk(KERN_INFO "Device Name state "
356 "trans_start last_rx\n");
357 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
358 netdev->name,
359 netdev->state,
360 netdev->trans_start,
361 netdev->last_rx);
362 }
363
364 /* Print Registers */
365 dev_info(&adapter->pdev->dev, "Register Dump\n");
366 printk(KERN_INFO " Register Name Value\n");
367 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
368 reginfo->name; reginfo++) {
369 igb_regdump(hw, reginfo);
370 }
371
372 /* Print TX Ring Summary */
373 if (!netdev || !netif_running(netdev))
374 goto exit;
375
376 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
377 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
378 " leng ntw timestamp\n");
379 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 380 struct igb_tx_buffer *buffer_info;
c97ec42a 381 tx_ring = adapter->tx_ring[n];
06034649 382 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
8542db05 383 printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
c97ec42a
TI
384 n, tx_ring->next_to_use, tx_ring->next_to_clean,
385 (u64)buffer_info->dma,
386 buffer_info->length,
387 buffer_info->next_to_watch,
388 (u64)buffer_info->time_stamp);
389 }
390
391 /* Print TX Rings */
392 if (!netif_msg_tx_done(adapter))
393 goto rx_ring_summary;
394
395 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
396
397 /* Transmit Descriptor Formats
398 *
399 * Advanced Transmit Descriptor
400 * +--------------------------------------------------------------+
401 * 0 | Buffer Address [63:0] |
402 * +--------------------------------------------------------------+
403 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
404 * +--------------------------------------------------------------+
405 * 63 46 45 40 39 38 36 35 32 31 24 15 0
406 */
407
408 for (n = 0; n < adapter->num_tx_queues; n++) {
409 tx_ring = adapter->tx_ring[n];
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
412 printk(KERN_INFO "------------------------------------\n");
413 printk(KERN_INFO "T [desc] [address 63:0 ] "
414 "[PlPOCIStDDM Ln] [bi->dma ] "
415 "leng ntw timestamp bi->skb\n");
416
417 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
06034649 418 struct igb_tx_buffer *buffer_info;
60136906 419 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 420 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a
TI
421 u0 = (struct my_u0 *)tx_desc;
422 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
8542db05 423 " %04X %p %016llX %p", i,
c97ec42a
TI
424 le64_to_cpu(u0->a),
425 le64_to_cpu(u0->b),
426 (u64)buffer_info->dma,
427 buffer_info->length,
428 buffer_info->next_to_watch,
429 (u64)buffer_info->time_stamp,
430 buffer_info->skb);
431 if (i == tx_ring->next_to_use &&
432 i == tx_ring->next_to_clean)
433 printk(KERN_CONT " NTC/U\n");
434 else if (i == tx_ring->next_to_use)
435 printk(KERN_CONT " NTU\n");
436 else if (i == tx_ring->next_to_clean)
437 printk(KERN_CONT " NTC\n");
438 else
439 printk(KERN_CONT "\n");
440
441 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
442 print_hex_dump(KERN_INFO, "",
443 DUMP_PREFIX_ADDRESS,
444 16, 1, phys_to_virt(buffer_info->dma),
445 buffer_info->length, true);
446 }
447 }
448
449 /* Print RX Rings Summary */
450rx_ring_summary:
451 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
452 printk(KERN_INFO "Queue [NTU] [NTC]\n");
453 for (n = 0; n < adapter->num_rx_queues; n++) {
454 rx_ring = adapter->rx_ring[n];
455 printk(KERN_INFO " %5d %5X %5X\n", n,
456 rx_ring->next_to_use, rx_ring->next_to_clean);
457 }
458
459 /* Print RX Rings */
460 if (!netif_msg_rx_status(adapter))
461 goto exit;
462
463 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
464
465 /* Advanced Receive Descriptor (Read) Format
466 * 63 1 0
467 * +-----------------------------------------------------+
468 * 0 | Packet Buffer Address [63:1] |A0/NSE|
469 * +----------------------------------------------+------+
470 * 8 | Header Buffer Address [63:1] | DD |
471 * +-----------------------------------------------------+
472 *
473 *
474 * Advanced Receive Descriptor (Write-Back) Format
475 *
476 * 63 48 47 32 31 30 21 20 17 16 4 3 0
477 * +------------------------------------------------------+
478 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
479 * | Checksum Ident | | | | Type | Type |
480 * +------------------------------------------------------+
481 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
482 * +------------------------------------------------------+
483 * 63 48 47 32 31 20 19 0
484 */
485
486 for (n = 0; n < adapter->num_rx_queues; n++) {
487 rx_ring = adapter->rx_ring[n];
488 printk(KERN_INFO "------------------------------------\n");
489 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
490 printk(KERN_INFO "------------------------------------\n");
491 printk(KERN_INFO "R [desc] [ PktBuf A0] "
492 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
493 "<-- Adv Rx Read format\n");
494 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
495 "[vl er S cks ln] ---------------- [bi->skb] "
496 "<-- Adv Rx Write-Back format\n");
497
498 for (i = 0; i < rx_ring->count; i++) {
06034649
AD
499 struct igb_rx_buffer *buffer_info;
500 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 501 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
502 u0 = (struct my_u0 *)rx_desc;
503 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
504 if (staterr & E1000_RXD_STAT_DD) {
505 /* Descriptor Done */
506 printk(KERN_INFO "RWB[0x%03X] %016llX "
507 "%016llX ---------------- %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 buffer_info->skb);
511 } else {
512 printk(KERN_INFO "R [0x%03X] %016llX "
513 "%016llX %016llX %p", i,
514 le64_to_cpu(u0->a),
515 le64_to_cpu(u0->b),
516 (u64)buffer_info->dma,
517 buffer_info->skb);
518
519 if (netif_msg_pktdata(adapter)) {
520 print_hex_dump(KERN_INFO, "",
521 DUMP_PREFIX_ADDRESS,
522 16, 1,
523 phys_to_virt(buffer_info->dma),
44390ca6
AD
524 IGB_RX_HDR_LEN, true);
525 print_hex_dump(KERN_INFO, "",
526 DUMP_PREFIX_ADDRESS,
527 16, 1,
528 phys_to_virt(
529 buffer_info->page_dma +
530 buffer_info->page_offset),
531 PAGE_SIZE/2, true);
c97ec42a
TI
532 }
533 }
534
535 if (i == rx_ring->next_to_use)
536 printk(KERN_CONT " NTU\n");
537 else if (i == rx_ring->next_to_clean)
538 printk(KERN_CONT " NTC\n");
539 else
540 printk(KERN_CONT "\n");
541
542 }
543 }
544
545exit:
546 return;
547}
548
549
38c845c7
PO
550/**
551 * igb_read_clock - read raw cycle counter (to be used by time counter)
552 */
553static cycle_t igb_read_clock(const struct cyclecounter *tc)
554{
555 struct igb_adapter *adapter =
556 container_of(tc, struct igb_adapter, cycles);
557 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
558 u64 stamp = 0;
559 int shift = 0;
38c845c7 560
55cac248
AD
561 /*
562 * The timestamp latches on lowest register read. For the 82580
563 * the lowest register is SYSTIMR instead of SYSTIML. However we never
564 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
565 */
566 if (hw->mac.type == e1000_82580) {
567 stamp = rd32(E1000_SYSTIMR) >> 8;
568 shift = IGB_82580_TSYNC_SHIFT;
569 }
570
c5b9bd5e
AD
571 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
572 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
573 return stamp;
574}
575
9d5c8243 576/**
c041076a 577 * igb_get_hw_dev - return device
9d5c8243
AK
578 * used by hardware layer to print debugging information
579 **/
c041076a 580struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
581{
582 struct igb_adapter *adapter = hw->back;
c041076a 583 return adapter->netdev;
9d5c8243 584}
38c845c7 585
9d5c8243
AK
586/**
587 * igb_init_module - Driver Registration Routine
588 *
589 * igb_init_module is the first routine called when the driver is
590 * loaded. All it does is register with the PCI subsystem.
591 **/
592static int __init igb_init_module(void)
593{
594 int ret;
595 printk(KERN_INFO "%s - version %s\n",
596 igb_driver_string, igb_driver_version);
597
598 printk(KERN_INFO "%s\n", igb_copyright);
599
421e02f0 600#ifdef CONFIG_IGB_DCA
fe4506b6
JC
601 dca_register_notify(&dca_notifier);
602#endif
bbd98fe4 603 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
604 return ret;
605}
606
607module_init(igb_init_module);
608
609/**
610 * igb_exit_module - Driver Exit Cleanup Routine
611 *
612 * igb_exit_module is called just before the driver is removed
613 * from memory.
614 **/
615static void __exit igb_exit_module(void)
616{
421e02f0 617#ifdef CONFIG_IGB_DCA
fe4506b6
JC
618 dca_unregister_notify(&dca_notifier);
619#endif
9d5c8243
AK
620 pci_unregister_driver(&igb_driver);
621}
622
623module_exit(igb_exit_module);
624
26bc19ec
AD
625#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
626/**
627 * igb_cache_ring_register - Descriptor ring to register mapping
628 * @adapter: board private structure to initialize
629 *
630 * Once we know the feature-set enabled for the device, we'll cache
631 * the register offset the descriptor ring is assigned to.
632 **/
633static void igb_cache_ring_register(struct igb_adapter *adapter)
634{
ee1b9f06 635 int i = 0, j = 0;
047e0030 636 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
637
638 switch (adapter->hw.mac.type) {
639 case e1000_82576:
640 /* The queues are allocated for virtualization such that VF 0
641 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
642 * In order to avoid collision we start at the first free queue
643 * and continue consuming queues in the same sequence
644 */
ee1b9f06 645 if (adapter->vfs_allocated_count) {
a99955fc 646 for (; i < adapter->rss_queues; i++)
3025a446
AD
647 adapter->rx_ring[i]->reg_idx = rbase_offset +
648 Q_IDX_82576(i);
ee1b9f06 649 }
26bc19ec 650 case e1000_82575:
55cac248 651 case e1000_82580:
d2ba2ed8 652 case e1000_i350:
26bc19ec 653 default:
ee1b9f06 654 for (; i < adapter->num_rx_queues; i++)
3025a446 655 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 656 for (; j < adapter->num_tx_queues; j++)
3025a446 657 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
658 break;
659 }
660}
661
047e0030
AD
662static void igb_free_queues(struct igb_adapter *adapter)
663{
3025a446 664 int i;
047e0030 665
3025a446
AD
666 for (i = 0; i < adapter->num_tx_queues; i++) {
667 kfree(adapter->tx_ring[i]);
668 adapter->tx_ring[i] = NULL;
669 }
670 for (i = 0; i < adapter->num_rx_queues; i++) {
671 kfree(adapter->rx_ring[i]);
672 adapter->rx_ring[i] = NULL;
673 }
047e0030
AD
674 adapter->num_rx_queues = 0;
675 adapter->num_tx_queues = 0;
676}
677
9d5c8243
AK
678/**
679 * igb_alloc_queues - Allocate memory for all rings
680 * @adapter: board private structure to initialize
681 *
682 * We allocate one ring per queue at run-time since we don't know the
683 * number of queues at compile-time.
684 **/
685static int igb_alloc_queues(struct igb_adapter *adapter)
686{
3025a446 687 struct igb_ring *ring;
9d5c8243 688 int i;
81c2fc22 689 int orig_node = adapter->node;
9d5c8243 690
661086df 691 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
692 if (orig_node == -1) {
693 int cur_node = next_online_node(adapter->node);
694 if (cur_node == MAX_NUMNODES)
695 cur_node = first_online_node;
696 adapter->node = cur_node;
697 }
698 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
699 adapter->node);
700 if (!ring)
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->tx_ring_count;
661086df 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
81c2fc22 708 ring->numa_node = adapter->node;
85ad76b2
AD
709 /* For 82575, context index must be unique per ring. */
710 if (adapter->hw.mac.type == e1000_82575)
866cff06 711 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 712 adapter->tx_ring[i] = ring;
661086df 713 }
81c2fc22
AD
714 /* Restore the adapter's original node */
715 adapter->node = orig_node;
85ad76b2 716
9d5c8243 717 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
718 if (orig_node == -1) {
719 int cur_node = next_online_node(adapter->node);
720 if (cur_node == MAX_NUMNODES)
721 cur_node = first_online_node;
722 adapter->node = cur_node;
723 }
724 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
725 adapter->node);
726 if (!ring)
727 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
728 if (!ring)
729 goto err;
68fd9910 730 ring->count = adapter->rx_ring_count;
844290e5 731 ring->queue_index = i;
59d71989 732 ring->dev = &adapter->pdev->dev;
e694e964 733 ring->netdev = adapter->netdev;
81c2fc22 734 ring->numa_node = adapter->node;
85ad76b2
AD
735 /* set flag indicating ring supports SCTP checksum offload */
736 if (adapter->hw.mac.type >= e1000_82576)
866cff06 737 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
3025a446 738 adapter->rx_ring[i] = ring;
9d5c8243 739 }
81c2fc22
AD
740 /* Restore the adapter's original node */
741 adapter->node = orig_node;
26bc19ec
AD
742
743 igb_cache_ring_register(adapter);
9d5c8243 744
047e0030 745 return 0;
a88f10ec 746
047e0030 747err:
81c2fc22
AD
748 /* Restore the adapter's original node */
749 adapter->node = orig_node;
047e0030 750 igb_free_queues(adapter);
d1a8c9e1 751
047e0030 752 return -ENOMEM;
a88f10ec
AD
753}
754
4be000c8
AD
755/**
756 * igb_write_ivar - configure ivar for given MSI-X vector
757 * @hw: pointer to the HW structure
758 * @msix_vector: vector number we are allocating to a given ring
759 * @index: row index of IVAR register to write within IVAR table
760 * @offset: column offset of in IVAR, should be multiple of 8
761 *
762 * This function is intended to handle the writing of the IVAR register
763 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
764 * each containing an cause allocation for an Rx and Tx ring, and a
765 * variable number of rows depending on the number of queues supported.
766 **/
767static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 int index, int offset)
769{
770 u32 ivar = array_rd32(E1000_IVAR0, index);
771
772 /* clear any bits that are currently set */
773 ivar &= ~((u32)0xFF << offset);
774
775 /* write vector and valid bit */
776 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778 array_wr32(E1000_IVAR0, index, ivar);
779}
780
9d5c8243 781#define IGB_N0_QUEUE -1
047e0030 782static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 783{
047e0030 784 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 785 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
786 int rx_queue = IGB_N0_QUEUE;
787 int tx_queue = IGB_N0_QUEUE;
4be000c8 788 u32 msixbm = 0;
047e0030 789
0ba82994
AD
790 if (q_vector->rx.ring)
791 rx_queue = q_vector->rx.ring->reg_idx;
792 if (q_vector->tx.ring)
793 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
794
795 switch (hw->mac.type) {
796 case e1000_82575:
9d5c8243
AK
797 /* The 82575 assigns vectors using a bitmask, which matches the
798 bitmask for the EICR/EIMS/EIMC registers. To assign one
799 or more queues to a vector, we write the appropriate bits
800 into the MSIXBM register for that vector. */
047e0030 801 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 803 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
805 if (!adapter->msix_entries && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
9d5c8243 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 808 q_vector->eims_value = msixbm;
2d064c06
AD
809 break;
810 case e1000_82576:
4be000c8
AD
811 /*
812 * 82576 uses a table that essentially consists of 2 columns
813 * with 8 rows. The ordering is column-major so we use the
814 * lower 3 bits as the row index, and the 4th bit as the
815 * column offset.
816 */
817 if (rx_queue > IGB_N0_QUEUE)
818 igb_write_ivar(hw, msix_vector,
819 rx_queue & 0x7,
820 (rx_queue & 0x8) << 1);
821 if (tx_queue > IGB_N0_QUEUE)
822 igb_write_ivar(hw, msix_vector,
823 tx_queue & 0x7,
824 ((tx_queue & 0x8) << 1) + 8);
047e0030 825 q_vector->eims_value = 1 << msix_vector;
2d064c06 826 break;
55cac248 827 case e1000_82580:
d2ba2ed8 828 case e1000_i350:
4be000c8
AD
829 /*
830 * On 82580 and newer adapters the scheme is similar to 82576
831 * however instead of ordering column-major we have things
832 * ordered row-major. So we traverse the table by using
833 * bit 0 as the column offset, and the remaining bits as the
834 * row index.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue >> 1,
839 (rx_queue & 0x1) << 4);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue >> 1,
843 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
844 q_vector->eims_value = 1 << msix_vector;
845 break;
2d064c06
AD
846 default:
847 BUG();
848 break;
849 }
26b39276
AD
850
851 /* add q_vector eims value to global eims_enable_mask */
852 adapter->eims_enable_mask |= q_vector->eims_value;
853
854 /* configure q_vector to set itr on first interrupt */
855 q_vector->set_itr = 1;
9d5c8243
AK
856}
857
858/**
859 * igb_configure_msix - Configure MSI-X hardware
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
9d5c8243
AK
871
872 /* set vector for other causes, i.e. link changes */
2d064c06
AD
873 switch (hw->mac.type) {
874 case e1000_82575:
9d5c8243
AK
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++,
887 E1000_EIMS_OTHER);
844290e5 888 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 889
2d064c06
AD
890 break;
891
892 case e1000_82576:
55cac248 893 case e1000_82580:
d2ba2ed8 894 case e1000_i350:
047e0030
AD
895 /* Turn on MSI-X capability first, or our settings
896 * won't stick. And it will take days to debug. */
897 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
898 E1000_GPIE_PBA | E1000_GPIE_EIAME |
899 E1000_GPIE_NSICR);
900
901 /* enable msix_other interrupt */
902 adapter->eims_other = 1 << vector;
2d064c06 903 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 904
047e0030 905 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
906 break;
907 default:
908 /* do nothing, since nothing else supports MSI-X */
909 break;
910 } /* switch (hw->mac.type) */
047e0030
AD
911
912 adapter->eims_enable_mask |= adapter->eims_other;
913
26b39276
AD
914 for (i = 0; i < adapter->num_q_vectors; i++)
915 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 916
9d5c8243
AK
917 wrfl();
918}
919
920/**
921 * igb_request_msix - Initialize MSI-X interrupts
922 *
923 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
924 * kernel.
925 **/
926static int igb_request_msix(struct igb_adapter *adapter)
927{
928 struct net_device *netdev = adapter->netdev;
047e0030 929 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
930 int i, err = 0, vector = 0;
931
047e0030 932 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 933 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
934 if (err)
935 goto out;
936 vector++;
937
938 for (i = 0; i < adapter->num_q_vectors; i++) {
939 struct igb_q_vector *q_vector = adapter->q_vector[i];
940
941 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
942
0ba82994 943 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 944 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
945 q_vector->rx.ring->queue_index);
946 else if (q_vector->tx.ring)
047e0030 947 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
948 q_vector->tx.ring->queue_index);
949 else if (q_vector->rx.ring)
047e0030 950 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 951 q_vector->rx.ring->queue_index);
9d5c8243 952 else
047e0030
AD
953 sprintf(q_vector->name, "%s-unused", netdev->name);
954
9d5c8243 955 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 956 igb_msix_ring, 0, q_vector->name,
047e0030 957 q_vector);
9d5c8243
AK
958 if (err)
959 goto out;
9d5c8243
AK
960 vector++;
961 }
962
9d5c8243
AK
963 igb_configure_msix(adapter);
964 return 0;
965out:
966 return err;
967}
968
969static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
970{
971 if (adapter->msix_entries) {
972 pci_disable_msix(adapter->pdev);
973 kfree(adapter->msix_entries);
974 adapter->msix_entries = NULL;
047e0030 975 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 976 pci_disable_msi(adapter->pdev);
047e0030 977 }
9d5c8243
AK
978}
979
047e0030
AD
980/**
981 * igb_free_q_vectors - Free memory allocated for interrupt vectors
982 * @adapter: board private structure to initialize
983 *
984 * This function frees the memory allocated to the q_vectors. In addition if
985 * NAPI is enabled it will delete any references to the NAPI struct prior
986 * to freeing the q_vector.
987 **/
988static void igb_free_q_vectors(struct igb_adapter *adapter)
989{
990 int v_idx;
991
992 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
993 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
995 if (!q_vector)
996 continue;
047e0030
AD
997 netif_napi_del(&q_vector->napi);
998 kfree(q_vector);
999 }
1000 adapter->num_q_vectors = 0;
1001}
1002
1003/**
1004 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1005 *
1006 * This function resets the device so that it has 0 rx queues, tx queues, and
1007 * MSI-X interrupts allocated.
1008 */
1009static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1010{
1011 igb_free_queues(adapter);
1012 igb_free_q_vectors(adapter);
1013 igb_reset_interrupt_capability(adapter);
1014}
9d5c8243
AK
1015
1016/**
1017 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1018 *
1019 * Attempt to configure interrupts using the best available
1020 * capabilities of the hardware and kernel.
1021 **/
21adef3e 1022static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1023{
1024 int err;
1025 int numvecs, i;
1026
83b7180d 1027 /* Number of supported queues. */
a99955fc 1028 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1029 if (adapter->vfs_allocated_count)
1030 adapter->num_tx_queues = 1;
1031 else
1032 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1033
047e0030
AD
1034 /* start with one vector for every rx queue */
1035 numvecs = adapter->num_rx_queues;
1036
3ad2f3fb 1037 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1038 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1039 numvecs += adapter->num_tx_queues;
047e0030
AD
1040
1041 /* store the number of vectors reserved for queues */
1042 adapter->num_q_vectors = numvecs;
1043
1044 /* add 1 vector for link status interrupts */
1045 numvecs++;
9d5c8243
AK
1046 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1047 GFP_KERNEL);
1048 if (!adapter->msix_entries)
1049 goto msi_only;
1050
1051 for (i = 0; i < numvecs; i++)
1052 adapter->msix_entries[i].entry = i;
1053
1054 err = pci_enable_msix(adapter->pdev,
1055 adapter->msix_entries,
1056 numvecs);
1057 if (err == 0)
34a20e89 1058 goto out;
9d5c8243
AK
1059
1060 igb_reset_interrupt_capability(adapter);
1061
1062 /* If we can't do MSI-X, try MSI */
1063msi_only:
2a3abf6d
AD
1064#ifdef CONFIG_PCI_IOV
1065 /* disable SR-IOV for non MSI-X configurations */
1066 if (adapter->vf_data) {
1067 struct e1000_hw *hw = &adapter->hw;
1068 /* disable iov and allow time for transactions to clear */
1069 pci_disable_sriov(adapter->pdev);
1070 msleep(500);
1071
1072 kfree(adapter->vf_data);
1073 adapter->vf_data = NULL;
1074 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1075 wrfl();
2a3abf6d
AD
1076 msleep(100);
1077 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1078 }
1079#endif
4fc82adf 1080 adapter->vfs_allocated_count = 0;
a99955fc 1081 adapter->rss_queues = 1;
4fc82adf 1082 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1083 adapter->num_rx_queues = 1;
661086df 1084 adapter->num_tx_queues = 1;
047e0030 1085 adapter->num_q_vectors = 1;
9d5c8243 1086 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1087 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1088out:
21adef3e
BH
1089 /* Notify the stack of the (possibly) reduced queue counts. */
1090 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1091 return netif_set_real_num_rx_queues(adapter->netdev,
1092 adapter->num_rx_queues);
9d5c8243
AK
1093}
1094
047e0030
AD
1095/**
1096 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1097 * @adapter: board private structure to initialize
1098 *
1099 * We allocate one q_vector per queue interrupt. If allocation fails we
1100 * return -ENOMEM.
1101 **/
1102static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1103{
1104 struct igb_q_vector *q_vector;
1105 struct e1000_hw *hw = &adapter->hw;
1106 int v_idx;
81c2fc22 1107 int orig_node = adapter->node;
047e0030
AD
1108
1109 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1110 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1111 adapter->num_tx_queues)) &&
1112 (adapter->num_rx_queues == v_idx))
1113 adapter->node = orig_node;
1114 if (orig_node == -1) {
1115 int cur_node = next_online_node(adapter->node);
1116 if (cur_node == MAX_NUMNODES)
1117 cur_node = first_online_node;
1118 adapter->node = cur_node;
1119 }
1120 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1121 adapter->node);
1122 if (!q_vector)
1123 q_vector = kzalloc(sizeof(struct igb_q_vector),
1124 GFP_KERNEL);
047e0030
AD
1125 if (!q_vector)
1126 goto err_out;
1127 q_vector->adapter = adapter;
047e0030
AD
1128 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1129 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1130 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1131 adapter->q_vector[v_idx] = q_vector;
1132 }
81c2fc22
AD
1133 /* Restore the adapter's original node */
1134 adapter->node = orig_node;
1135
047e0030
AD
1136 return 0;
1137
1138err_out:
81c2fc22
AD
1139 /* Restore the adapter's original node */
1140 adapter->node = orig_node;
fe0592b4 1141 igb_free_q_vectors(adapter);
047e0030
AD
1142 return -ENOMEM;
1143}
1144
1145static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1146 int ring_idx, int v_idx)
1147{
3025a446 1148 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1149
0ba82994
AD
1150 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1151 q_vector->rx.ring->q_vector = q_vector;
1152 q_vector->rx.count++;
4fc82adf
AD
1153 q_vector->itr_val = adapter->rx_itr_setting;
1154 if (q_vector->itr_val && q_vector->itr_val <= 3)
1155 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1156}
1157
1158static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1159 int ring_idx, int v_idx)
1160{
3025a446 1161 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1162
0ba82994
AD
1163 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1164 q_vector->tx.ring->q_vector = q_vector;
1165 q_vector->tx.count++;
4fc82adf 1166 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1167 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1168 if (q_vector->itr_val && q_vector->itr_val <= 3)
1169 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1170}
1171
1172/**
1173 * igb_map_ring_to_vector - maps allocated queues to vectors
1174 *
1175 * This function maps the recently allocated queues to vectors.
1176 **/
1177static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1178{
1179 int i;
1180 int v_idx = 0;
1181
1182 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1183 (adapter->num_q_vectors < adapter->num_tx_queues))
1184 return -ENOMEM;
1185
1186 if (adapter->num_q_vectors >=
1187 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1188 for (i = 0; i < adapter->num_rx_queues; i++)
1189 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1190 for (i = 0; i < adapter->num_tx_queues; i++)
1191 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1192 } else {
1193 for (i = 0; i < adapter->num_rx_queues; i++) {
1194 if (i < adapter->num_tx_queues)
1195 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1196 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1197 }
1198 for (; i < adapter->num_tx_queues; i++)
1199 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1200 }
1201 return 0;
1202}
1203
1204/**
1205 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1206 *
1207 * This function initializes the interrupts and allocates all of the queues.
1208 **/
1209static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1210{
1211 struct pci_dev *pdev = adapter->pdev;
1212 int err;
1213
21adef3e
BH
1214 err = igb_set_interrupt_capability(adapter);
1215 if (err)
1216 return err;
047e0030
AD
1217
1218 err = igb_alloc_q_vectors(adapter);
1219 if (err) {
1220 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1221 goto err_alloc_q_vectors;
1222 }
1223
1224 err = igb_alloc_queues(adapter);
1225 if (err) {
1226 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1227 goto err_alloc_queues;
1228 }
1229
1230 err = igb_map_ring_to_vector(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1233 goto err_map_queues;
1234 }
1235
1236
1237 return 0;
1238err_map_queues:
1239 igb_free_queues(adapter);
1240err_alloc_queues:
1241 igb_free_q_vectors(adapter);
1242err_alloc_q_vectors:
1243 igb_reset_interrupt_capability(adapter);
1244 return err;
1245}
1246
9d5c8243
AK
1247/**
1248 * igb_request_irq - initialize interrupts
1249 *
1250 * Attempts to configure interrupts using the best available
1251 * capabilities of the hardware and kernel.
1252 **/
1253static int igb_request_irq(struct igb_adapter *adapter)
1254{
1255 struct net_device *netdev = adapter->netdev;
047e0030 1256 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1257 int err = 0;
1258
1259 if (adapter->msix_entries) {
1260 err = igb_request_msix(adapter);
844290e5 1261 if (!err)
9d5c8243 1262 goto request_done;
9d5c8243 1263 /* fall back to MSI */
047e0030 1264 igb_clear_interrupt_scheme(adapter);
9d5c8243 1265 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1266 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1267 igb_free_all_tx_resources(adapter);
1268 igb_free_all_rx_resources(adapter);
047e0030 1269 adapter->num_tx_queues = 1;
9d5c8243 1270 adapter->num_rx_queues = 1;
047e0030
AD
1271 adapter->num_q_vectors = 1;
1272 err = igb_alloc_q_vectors(adapter);
1273 if (err) {
1274 dev_err(&pdev->dev,
1275 "Unable to allocate memory for vectors\n");
1276 goto request_done;
1277 }
1278 err = igb_alloc_queues(adapter);
1279 if (err) {
1280 dev_err(&pdev->dev,
1281 "Unable to allocate memory for queues\n");
1282 igb_free_q_vectors(adapter);
1283 goto request_done;
1284 }
1285 igb_setup_all_tx_resources(adapter);
1286 igb_setup_all_rx_resources(adapter);
844290e5 1287 } else {
feeb2721 1288 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1289 }
844290e5 1290
7dfc16fa 1291 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1292 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1293 netdev->name, adapter);
9d5c8243
AK
1294 if (!err)
1295 goto request_done;
047e0030 1296
9d5c8243
AK
1297 /* fall back to legacy interrupts */
1298 igb_reset_interrupt_capability(adapter);
7dfc16fa 1299 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1300 }
1301
a0607fd3 1302 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1303 netdev->name, adapter);
9d5c8243 1304
6cb5e577 1305 if (err)
9d5c8243
AK
1306 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1307 err);
9d5c8243
AK
1308
1309request_done:
1310 return err;
1311}
1312
1313static void igb_free_irq(struct igb_adapter *adapter)
1314{
9d5c8243
AK
1315 if (adapter->msix_entries) {
1316 int vector = 0, i;
1317
047e0030 1318 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1319
0d1ae7f4 1320 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1321 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1322 adapter->q_vector[i]);
047e0030
AD
1323 } else {
1324 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1325 }
9d5c8243
AK
1326}
1327
1328/**
1329 * igb_irq_disable - Mask off interrupt generation on the NIC
1330 * @adapter: board private structure
1331 **/
1332static void igb_irq_disable(struct igb_adapter *adapter)
1333{
1334 struct e1000_hw *hw = &adapter->hw;
1335
25568a53
AD
1336 /*
1337 * we need to be careful when disabling interrupts. The VFs are also
1338 * mapped into these registers and so clearing the bits can cause
1339 * issues on the VF drivers so we only need to clear what we set
1340 */
9d5c8243 1341 if (adapter->msix_entries) {
2dfd1212
AD
1342 u32 regval = rd32(E1000_EIAM);
1343 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1344 wr32(E1000_EIMC, adapter->eims_enable_mask);
1345 regval = rd32(E1000_EIAC);
1346 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1347 }
844290e5
PW
1348
1349 wr32(E1000_IAM, 0);
9d5c8243
AK
1350 wr32(E1000_IMC, ~0);
1351 wrfl();
81a61859
ET
1352 if (adapter->msix_entries) {
1353 int i;
1354 for (i = 0; i < adapter->num_q_vectors; i++)
1355 synchronize_irq(adapter->msix_entries[i].vector);
1356 } else {
1357 synchronize_irq(adapter->pdev->irq);
1358 }
9d5c8243
AK
1359}
1360
1361/**
1362 * igb_irq_enable - Enable default interrupt generation settings
1363 * @adapter: board private structure
1364 **/
1365static void igb_irq_enable(struct igb_adapter *adapter)
1366{
1367 struct e1000_hw *hw = &adapter->hw;
1368
1369 if (adapter->msix_entries) {
25568a53 1370 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1371 u32 regval = rd32(E1000_EIAC);
1372 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1373 regval = rd32(E1000_EIAM);
1374 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1375 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1376 if (adapter->vfs_allocated_count) {
4ae196df 1377 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1378 ims |= E1000_IMS_VMMB;
1379 }
55cac248
AD
1380 if (adapter->hw.mac.type == e1000_82580)
1381 ims |= E1000_IMS_DRSTA;
1382
25568a53 1383 wr32(E1000_IMS, ims);
844290e5 1384 } else {
55cac248
AD
1385 wr32(E1000_IMS, IMS_ENABLE_MASK |
1386 E1000_IMS_DRSTA);
1387 wr32(E1000_IAM, IMS_ENABLE_MASK |
1388 E1000_IMS_DRSTA);
844290e5 1389 }
9d5c8243
AK
1390}
1391
1392static void igb_update_mng_vlan(struct igb_adapter *adapter)
1393{
51466239 1394 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1395 u16 vid = adapter->hw.mng_cookie.vlan_id;
1396 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1397
1398 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1399 /* add VID to filter table */
1400 igb_vfta_set(hw, vid, true);
1401 adapter->mng_vlan_id = vid;
1402 } else {
1403 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1404 }
1405
1406 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1407 (vid != old_vid) &&
b2cb09b1 1408 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1409 /* remove VID from filter table */
1410 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1411 }
1412}
1413
1414/**
1415 * igb_release_hw_control - release control of the h/w to f/w
1416 * @adapter: address of board private structure
1417 *
1418 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1419 * For ASF and Pass Through versions of f/w this means that the
1420 * driver is no longer loaded.
1421 *
1422 **/
1423static void igb_release_hw_control(struct igb_adapter *adapter)
1424{
1425 struct e1000_hw *hw = &adapter->hw;
1426 u32 ctrl_ext;
1427
1428 /* Let firmware take over control of h/w */
1429 ctrl_ext = rd32(E1000_CTRL_EXT);
1430 wr32(E1000_CTRL_EXT,
1431 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1432}
1433
9d5c8243
AK
1434/**
1435 * igb_get_hw_control - get control of the h/w from f/w
1436 * @adapter: address of board private structure
1437 *
1438 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1439 * For ASF and Pass Through versions of f/w this means that
1440 * the driver is loaded.
1441 *
1442 **/
1443static void igb_get_hw_control(struct igb_adapter *adapter)
1444{
1445 struct e1000_hw *hw = &adapter->hw;
1446 u32 ctrl_ext;
1447
1448 /* Let firmware know the driver has taken over */
1449 ctrl_ext = rd32(E1000_CTRL_EXT);
1450 wr32(E1000_CTRL_EXT,
1451 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1452}
1453
9d5c8243
AK
1454/**
1455 * igb_configure - configure the hardware for RX and TX
1456 * @adapter: private board structure
1457 **/
1458static void igb_configure(struct igb_adapter *adapter)
1459{
1460 struct net_device *netdev = adapter->netdev;
1461 int i;
1462
1463 igb_get_hw_control(adapter);
ff41f8dc 1464 igb_set_rx_mode(netdev);
9d5c8243
AK
1465
1466 igb_restore_vlan(adapter);
9d5c8243 1467
85b430b4 1468 igb_setup_tctl(adapter);
06cf2666 1469 igb_setup_mrqc(adapter);
9d5c8243 1470 igb_setup_rctl(adapter);
85b430b4
AD
1471
1472 igb_configure_tx(adapter);
9d5c8243 1473 igb_configure_rx(adapter);
662d7205
AD
1474
1475 igb_rx_fifo_flush_82575(&adapter->hw);
1476
c493ea45 1477 /* call igb_desc_unused which always leaves
9d5c8243
AK
1478 * at least 1 descriptor unused to make sure
1479 * next_to_use != next_to_clean */
1480 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1481 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1482 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1483 }
9d5c8243
AK
1484}
1485
88a268c1
NN
1486/**
1487 * igb_power_up_link - Power up the phy/serdes link
1488 * @adapter: address of board private structure
1489 **/
1490void igb_power_up_link(struct igb_adapter *adapter)
1491{
1492 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1493 igb_power_up_phy_copper(&adapter->hw);
1494 else
1495 igb_power_up_serdes_link_82575(&adapter->hw);
1496}
1497
1498/**
1499 * igb_power_down_link - Power down the phy/serdes link
1500 * @adapter: address of board private structure
1501 */
1502static void igb_power_down_link(struct igb_adapter *adapter)
1503{
1504 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1505 igb_power_down_phy_copper_82575(&adapter->hw);
1506 else
1507 igb_shutdown_serdes_link_82575(&adapter->hw);
1508}
9d5c8243
AK
1509
1510/**
1511 * igb_up - Open the interface and prepare it to handle traffic
1512 * @adapter: board private structure
1513 **/
9d5c8243
AK
1514int igb_up(struct igb_adapter *adapter)
1515{
1516 struct e1000_hw *hw = &adapter->hw;
1517 int i;
1518
1519 /* hardware has been reset, we need to reload some things */
1520 igb_configure(adapter);
1521
1522 clear_bit(__IGB_DOWN, &adapter->state);
1523
0d1ae7f4
AD
1524 for (i = 0; i < adapter->num_q_vectors; i++)
1525 napi_enable(&(adapter->q_vector[i]->napi));
1526
844290e5 1527 if (adapter->msix_entries)
9d5c8243 1528 igb_configure_msix(adapter);
feeb2721
AD
1529 else
1530 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1531
1532 /* Clear any pending interrupts. */
1533 rd32(E1000_ICR);
1534 igb_irq_enable(adapter);
1535
d4960307
AD
1536 /* notify VFs that reset has been completed */
1537 if (adapter->vfs_allocated_count) {
1538 u32 reg_data = rd32(E1000_CTRL_EXT);
1539 reg_data |= E1000_CTRL_EXT_PFRSTD;
1540 wr32(E1000_CTRL_EXT, reg_data);
1541 }
1542
4cb9be7a
JB
1543 netif_tx_start_all_queues(adapter->netdev);
1544
25568a53
AD
1545 /* start the watchdog. */
1546 hw->mac.get_link_status = 1;
1547 schedule_work(&adapter->watchdog_task);
1548
9d5c8243
AK
1549 return 0;
1550}
1551
1552void igb_down(struct igb_adapter *adapter)
1553{
9d5c8243 1554 struct net_device *netdev = adapter->netdev;
330a6d6a 1555 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1556 u32 tctl, rctl;
1557 int i;
1558
1559 /* signal that we're down so the interrupt handler does not
1560 * reschedule our watchdog timer */
1561 set_bit(__IGB_DOWN, &adapter->state);
1562
1563 /* disable receives in the hardware */
1564 rctl = rd32(E1000_RCTL);
1565 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1566 /* flush and sleep below */
1567
fd2ea0a7 1568 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1569
1570 /* disable transmits in the hardware */
1571 tctl = rd32(E1000_TCTL);
1572 tctl &= ~E1000_TCTL_EN;
1573 wr32(E1000_TCTL, tctl);
1574 /* flush both disables and wait for them to finish */
1575 wrfl();
1576 msleep(10);
1577
0d1ae7f4
AD
1578 for (i = 0; i < adapter->num_q_vectors; i++)
1579 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1580
9d5c8243
AK
1581 igb_irq_disable(adapter);
1582
1583 del_timer_sync(&adapter->watchdog_timer);
1584 del_timer_sync(&adapter->phy_info_timer);
1585
9d5c8243 1586 netif_carrier_off(netdev);
04fe6358
AD
1587
1588 /* record the stats before reset*/
12dcd86b
ED
1589 spin_lock(&adapter->stats64_lock);
1590 igb_update_stats(adapter, &adapter->stats64);
1591 spin_unlock(&adapter->stats64_lock);
04fe6358 1592
9d5c8243
AK
1593 adapter->link_speed = 0;
1594 adapter->link_duplex = 0;
1595
3023682e
JK
1596 if (!pci_channel_offline(adapter->pdev))
1597 igb_reset(adapter);
9d5c8243
AK
1598 igb_clean_all_tx_rings(adapter);
1599 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1600#ifdef CONFIG_IGB_DCA
1601
1602 /* since we reset the hardware DCA settings were cleared */
1603 igb_setup_dca(adapter);
1604#endif
9d5c8243
AK
1605}
1606
1607void igb_reinit_locked(struct igb_adapter *adapter)
1608{
1609 WARN_ON(in_interrupt());
1610 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1611 msleep(1);
1612 igb_down(adapter);
1613 igb_up(adapter);
1614 clear_bit(__IGB_RESETTING, &adapter->state);
1615}
1616
1617void igb_reset(struct igb_adapter *adapter)
1618{
090b1795 1619 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1620 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1621 struct e1000_mac_info *mac = &hw->mac;
1622 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1623 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1624 u16 hwm;
1625
1626 /* Repartition Pba for greater than 9k mtu
1627 * To take effect CTRL.RST is required.
1628 */
fa4dfae0 1629 switch (mac->type) {
d2ba2ed8 1630 case e1000_i350:
55cac248
AD
1631 case e1000_82580:
1632 pba = rd32(E1000_RXPBS);
1633 pba = igb_rxpbs_adjust_82580(pba);
1634 break;
fa4dfae0 1635 case e1000_82576:
d249be54
AD
1636 pba = rd32(E1000_RXPBS);
1637 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1638 break;
1639 case e1000_82575:
1640 default:
1641 pba = E1000_PBA_34K;
1642 break;
2d064c06 1643 }
9d5c8243 1644
2d064c06
AD
1645 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1646 (mac->type < e1000_82576)) {
9d5c8243
AK
1647 /* adjust PBA for jumbo frames */
1648 wr32(E1000_PBA, pba);
1649
1650 /* To maintain wire speed transmits, the Tx FIFO should be
1651 * large enough to accommodate two full transmit packets,
1652 * rounded up to the next 1KB and expressed in KB. Likewise,
1653 * the Rx FIFO should be large enough to accommodate at least
1654 * one full receive packet and is similarly rounded up and
1655 * expressed in KB. */
1656 pba = rd32(E1000_PBA);
1657 /* upper 16 bits has Tx packet buffer allocation size in KB */
1658 tx_space = pba >> 16;
1659 /* lower 16 bits has Rx packet buffer allocation size in KB */
1660 pba &= 0xffff;
1661 /* the tx fifo also stores 16 bytes of information about the tx
1662 * but don't include ethernet FCS because hardware appends it */
1663 min_tx_space = (adapter->max_frame_size +
85e8d004 1664 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1665 ETH_FCS_LEN) * 2;
1666 min_tx_space = ALIGN(min_tx_space, 1024);
1667 min_tx_space >>= 10;
1668 /* software strips receive CRC, so leave room for it */
1669 min_rx_space = adapter->max_frame_size;
1670 min_rx_space = ALIGN(min_rx_space, 1024);
1671 min_rx_space >>= 10;
1672
1673 /* If current Tx allocation is less than the min Tx FIFO size,
1674 * and the min Tx FIFO size is less than the current Rx FIFO
1675 * allocation, take space away from current Rx allocation */
1676 if (tx_space < min_tx_space &&
1677 ((min_tx_space - tx_space) < pba)) {
1678 pba = pba - (min_tx_space - tx_space);
1679
1680 /* if short on rx space, rx wins and must trump tx
1681 * adjustment */
1682 if (pba < min_rx_space)
1683 pba = min_rx_space;
1684 }
2d064c06 1685 wr32(E1000_PBA, pba);
9d5c8243 1686 }
9d5c8243
AK
1687
1688 /* flow control settings */
1689 /* The high water mark must be low enough to fit one full frame
1690 * (or the size used for early receive) above it in the Rx FIFO.
1691 * Set it to the lower of:
1692 * - 90% of the Rx FIFO size, or
1693 * - the full Rx FIFO size minus one full frame */
1694 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1695 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1696
d405ea3e
AD
1697 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1698 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1699 fc->pause_time = 0xFFFF;
1700 fc->send_xon = 1;
0cce119a 1701 fc->current_mode = fc->requested_mode;
9d5c8243 1702
4ae196df
AD
1703 /* disable receive for all VFs and wait one second */
1704 if (adapter->vfs_allocated_count) {
1705 int i;
1706 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1707 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1708
1709 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1710 igb_ping_all_vfs(adapter);
4ae196df
AD
1711
1712 /* disable transmits and receives */
1713 wr32(E1000_VFRE, 0);
1714 wr32(E1000_VFTE, 0);
1715 }
1716
9d5c8243 1717 /* Allow time for pending master requests to run */
330a6d6a 1718 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1719 wr32(E1000_WUC, 0);
1720
330a6d6a 1721 if (hw->mac.ops.init_hw(hw))
090b1795 1722 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1723 if (hw->mac.type > e1000_82580) {
1724 if (adapter->flags & IGB_FLAG_DMAC) {
1725 u32 reg;
1726
1727 /*
1728 * DMA Coalescing high water mark needs to be higher
1729 * than * the * Rx threshold. The Rx threshold is
1730 * currently * pba - 6, so we * should use a high water
1731 * mark of pba * - 4. */
1732 hwm = (pba - 4) << 10;
1733
1734 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1735 & E1000_DMACR_DMACTHR_MASK);
1736
1737 /* transition to L0x or L1 if available..*/
1738 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1739
1740 /* watchdog timer= +-1000 usec in 32usec intervals */
1741 reg |= (1000 >> 5);
1742 wr32(E1000_DMACR, reg);
1743
1744 /* no lower threshold to disable coalescing(smart fifb)
1745 * -UTRESH=0*/
1746 wr32(E1000_DMCRTRH, 0);
1747
1748 /* set hwm to PBA - 2 * max frame size */
1749 wr32(E1000_FCRTC, hwm);
1750
1751 /*
1752 * This sets the time to wait before requesting tran-
1753 * sition to * low power state to number of usecs needed
1754 * to receive 1 512 * byte frame at gigabit line rate
1755 */
1756 reg = rd32(E1000_DMCTLX);
1757 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1758
1759 /* Delay 255 usec before entering Lx state. */
1760 reg |= 0xFF;
1761 wr32(E1000_DMCTLX, reg);
1762
1763 /* free space in Tx packet buffer to wake from DMAC */
1764 wr32(E1000_DMCTXTH,
1765 (IGB_MIN_TXPBSIZE -
1766 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1767 >> 6);
1768
1769 /* make low power state decision controlled by DMAC */
1770 reg = rd32(E1000_PCIEMISC);
1771 reg |= E1000_PCIEMISC_LX_DECISION;
1772 wr32(E1000_PCIEMISC, reg);
1773 } /* end if IGB_FLAG_DMAC set */
1774 }
55cac248
AD
1775 if (hw->mac.type == e1000_82580) {
1776 u32 reg = rd32(E1000_PCIEMISC);
1777 wr32(E1000_PCIEMISC,
1778 reg & ~E1000_PCIEMISC_LX_DECISION);
1779 }
88a268c1
NN
1780 if (!netif_running(adapter->netdev))
1781 igb_power_down_link(adapter);
1782
9d5c8243
AK
1783 igb_update_mng_vlan(adapter);
1784
1785 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1786 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1787
330a6d6a 1788 igb_get_phy_info(hw);
9d5c8243
AK
1789}
1790
b2cb09b1
JP
1791static u32 igb_fix_features(struct net_device *netdev, u32 features)
1792{
1793 /*
1794 * Since there is no support for separate rx/tx vlan accel
1795 * enable/disable make sure tx flag is always in same state as rx.
1796 */
1797 if (features & NETIF_F_HW_VLAN_RX)
1798 features |= NETIF_F_HW_VLAN_TX;
1799 else
1800 features &= ~NETIF_F_HW_VLAN_TX;
1801
1802 return features;
1803}
1804
ac52caa3
MM
1805static int igb_set_features(struct net_device *netdev, u32 features)
1806{
b2cb09b1 1807 u32 changed = netdev->features ^ features;
ac52caa3 1808
b2cb09b1
JP
1809 if (changed & NETIF_F_HW_VLAN_RX)
1810 igb_vlan_mode(netdev, features);
1811
ac52caa3
MM
1812 return 0;
1813}
1814
2e5c6922 1815static const struct net_device_ops igb_netdev_ops = {
559e9c49 1816 .ndo_open = igb_open,
2e5c6922 1817 .ndo_stop = igb_close,
cd392f5c 1818 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1819 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1820 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1821 .ndo_set_mac_address = igb_set_mac,
1822 .ndo_change_mtu = igb_change_mtu,
1823 .ndo_do_ioctl = igb_ioctl,
1824 .ndo_tx_timeout = igb_tx_timeout,
1825 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1826 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1827 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1828 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1829 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1830 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1831 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1832#ifdef CONFIG_NET_POLL_CONTROLLER
1833 .ndo_poll_controller = igb_netpoll,
1834#endif
b2cb09b1
JP
1835 .ndo_fix_features = igb_fix_features,
1836 .ndo_set_features = igb_set_features,
2e5c6922
SH
1837};
1838
9d5c8243
AK
1839/**
1840 * igb_probe - Device Initialization Routine
1841 * @pdev: PCI device information struct
1842 * @ent: entry in igb_pci_tbl
1843 *
1844 * Returns 0 on success, negative on failure
1845 *
1846 * igb_probe initializes an adapter identified by a pci_dev structure.
1847 * The OS initialization, configuring of the adapter private structure,
1848 * and a hardware reset occur.
1849 **/
1850static int __devinit igb_probe(struct pci_dev *pdev,
1851 const struct pci_device_id *ent)
1852{
1853 struct net_device *netdev;
1854 struct igb_adapter *adapter;
1855 struct e1000_hw *hw;
4337e993 1856 u16 eeprom_data = 0;
9835fd73 1857 s32 ret_val;
4337e993 1858 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1859 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1860 unsigned long mmio_start, mmio_len;
2d6a5e95 1861 int err, pci_using_dac;
9d5c8243 1862 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1863 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1864
bded64a7
AG
1865 /* Catch broken hardware that put the wrong VF device ID in
1866 * the PCIe SR-IOV capability.
1867 */
1868 if (pdev->is_virtfn) {
1869 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1870 pci_name(pdev), pdev->vendor, pdev->device);
1871 return -EINVAL;
1872 }
1873
aed5dec3 1874 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1875 if (err)
1876 return err;
1877
1878 pci_using_dac = 0;
59d71989 1879 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1880 if (!err) {
59d71989 1881 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1882 if (!err)
1883 pci_using_dac = 1;
1884 } else {
59d71989 1885 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1886 if (err) {
59d71989 1887 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1888 if (err) {
1889 dev_err(&pdev->dev, "No usable DMA "
1890 "configuration, aborting\n");
1891 goto err_dma;
1892 }
1893 }
1894 }
1895
aed5dec3
AD
1896 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1897 IORESOURCE_MEM),
1898 igb_driver_name);
9d5c8243
AK
1899 if (err)
1900 goto err_pci_reg;
1901
19d5afd4 1902 pci_enable_pcie_error_reporting(pdev);
40a914fa 1903
9d5c8243 1904 pci_set_master(pdev);
c682fc23 1905 pci_save_state(pdev);
9d5c8243
AK
1906
1907 err = -ENOMEM;
1bfaf07b 1908 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1909 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1910 if (!netdev)
1911 goto err_alloc_etherdev;
1912
1913 SET_NETDEV_DEV(netdev, &pdev->dev);
1914
1915 pci_set_drvdata(pdev, netdev);
1916 adapter = netdev_priv(netdev);
1917 adapter->netdev = netdev;
1918 adapter->pdev = pdev;
1919 hw = &adapter->hw;
1920 hw->back = adapter;
1921 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1922
1923 mmio_start = pci_resource_start(pdev, 0);
1924 mmio_len = pci_resource_len(pdev, 0);
1925
1926 err = -EIO;
28b0759c
AD
1927 hw->hw_addr = ioremap(mmio_start, mmio_len);
1928 if (!hw->hw_addr)
9d5c8243
AK
1929 goto err_ioremap;
1930
2e5c6922 1931 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1932 igb_set_ethtool_ops(netdev);
9d5c8243 1933 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1934
1935 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1936
1937 netdev->mem_start = mmio_start;
1938 netdev->mem_end = mmio_start + mmio_len;
1939
9d5c8243
AK
1940 /* PCI config space info */
1941 hw->vendor_id = pdev->vendor;
1942 hw->device_id = pdev->device;
1943 hw->revision_id = pdev->revision;
1944 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1945 hw->subsystem_device_id = pdev->subsystem_device;
1946
9d5c8243
AK
1947 /* Copy the default MAC, PHY and NVM function pointers */
1948 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1949 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1950 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1951 /* Initialize skew-specific constants */
1952 err = ei->get_invariants(hw);
1953 if (err)
450c87c8 1954 goto err_sw_init;
9d5c8243 1955
450c87c8 1956 /* setup the private structure */
9d5c8243
AK
1957 err = igb_sw_init(adapter);
1958 if (err)
1959 goto err_sw_init;
1960
1961 igb_get_bus_info_pcie(hw);
1962
1963 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1964
1965 /* Copper options */
1966 if (hw->phy.media_type == e1000_media_type_copper) {
1967 hw->phy.mdix = AUTO_ALL_MODES;
1968 hw->phy.disable_polarity_correction = false;
1969 hw->phy.ms_type = e1000_ms_hw_default;
1970 }
1971
1972 if (igb_check_reset_block(hw))
1973 dev_info(&pdev->dev,
1974 "PHY reset is blocked due to SOL/IDER session.\n");
1975
077887c3
AD
1976 /*
1977 * features is initialized to 0 in allocation, it might have bits
1978 * set by igb_sw_init so we should use an or instead of an
1979 * assignment.
1980 */
1981 netdev->features |= NETIF_F_SG |
1982 NETIF_F_IP_CSUM |
1983 NETIF_F_IPV6_CSUM |
1984 NETIF_F_TSO |
1985 NETIF_F_TSO6 |
1986 NETIF_F_RXHASH |
1987 NETIF_F_RXCSUM |
1988 NETIF_F_HW_VLAN_RX |
1989 NETIF_F_HW_VLAN_TX;
1990
1991 /* copy netdev features into list of user selectable features */
1992 netdev->hw_features |= netdev->features;
1993
1994 /* set this bit last since it cannot be part of hw_features */
1995 netdev->features |= NETIF_F_HW_VLAN_FILTER;
1996
1997 netdev->vlan_features |= NETIF_F_TSO |
1998 NETIF_F_TSO6 |
1999 NETIF_F_IP_CSUM |
2000 NETIF_F_IPV6_CSUM |
2001 NETIF_F_SG;
48f29ffc 2002
7b872a55 2003 if (pci_using_dac) {
9d5c8243 2004 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2005 netdev->vlan_features |= NETIF_F_HIGHDMA;
2006 }
9d5c8243 2007
ac52caa3
MM
2008 if (hw->mac.type >= e1000_82576) {
2009 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2010 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2011 }
b9473560 2012
01789349
JP
2013 netdev->priv_flags |= IFF_UNICAST_FLT;
2014
330a6d6a 2015 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2016
2017 /* before reading the NVM, reset the controller to put the device in a
2018 * known good starting state */
2019 hw->mac.ops.reset_hw(hw);
2020
2021 /* make sure the NVM is good */
4322e561 2022 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
2023 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2024 err = -EIO;
2025 goto err_eeprom;
2026 }
2027
2028 /* copy the MAC address out of the NVM */
2029 if (hw->mac.ops.read_mac_addr(hw))
2030 dev_err(&pdev->dev, "NVM Read Error\n");
2031
2032 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2033 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2034
2035 if (!is_valid_ether_addr(netdev->perm_addr)) {
2036 dev_err(&pdev->dev, "Invalid MAC Address\n");
2037 err = -EIO;
2038 goto err_eeprom;
2039 }
2040
c061b18d 2041 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2042 (unsigned long) adapter);
c061b18d 2043 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2044 (unsigned long) adapter);
9d5c8243
AK
2045
2046 INIT_WORK(&adapter->reset_task, igb_reset_task);
2047 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2048
450c87c8 2049 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2050 adapter->fc_autoneg = true;
2051 hw->mac.autoneg = true;
2052 hw->phy.autoneg_advertised = 0x2f;
2053
0cce119a
AD
2054 hw->fc.requested_mode = e1000_fc_default;
2055 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2056
9d5c8243
AK
2057 igb_validate_mdi_setting(hw);
2058
9d5c8243
AK
2059 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2060 * enable the ACPI Magic Packet filter
2061 */
2062
a2cf8b6c 2063 if (hw->bus.func == 0)
312c75ae 2064 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2065 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2066 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2067 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2068 &eeprom_data);
a2cf8b6c
AD
2069 else if (hw->bus.func == 1)
2070 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2071
2072 if (eeprom_data & eeprom_apme_mask)
2073 adapter->eeprom_wol |= E1000_WUFC_MAG;
2074
2075 /* now that we have the eeprom settings, apply the special cases where
2076 * the eeprom may be wrong or the board simply won't support wake on
2077 * lan on a particular port */
2078 switch (pdev->device) {
2079 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2080 adapter->eeprom_wol = 0;
2081 break;
2082 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2083 case E1000_DEV_ID_82576_FIBER:
2084 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2085 /* Wake events only supported on port A for dual fiber
2086 * regardless of eeprom setting */
2087 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2088 adapter->eeprom_wol = 0;
2089 break;
c8ea5ea9 2090 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2091 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2092 /* if quad port adapter, disable WoL on all but port A */
2093 if (global_quad_port_a != 0)
2094 adapter->eeprom_wol = 0;
2095 else
2096 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2097 /* Reset for multiple quad port adapters */
2098 if (++global_quad_port_a == 4)
2099 global_quad_port_a = 0;
2100 break;
9d5c8243
AK
2101 }
2102
2103 /* initialize the wol settings based on the eeprom settings */
2104 adapter->wol = adapter->eeprom_wol;
e1b86d84 2105 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2106
2107 /* reset the hardware with the new settings */
2108 igb_reset(adapter);
2109
2110 /* let the f/w know that the h/w is now under the control of the
2111 * driver. */
2112 igb_get_hw_control(adapter);
2113
9d5c8243
AK
2114 strcpy(netdev->name, "eth%d");
2115 err = register_netdev(netdev);
2116 if (err)
2117 goto err_register;
2118
b168dfc5
JB
2119 /* carrier off reporting is important to ethtool even BEFORE open */
2120 netif_carrier_off(netdev);
2121
421e02f0 2122#ifdef CONFIG_IGB_DCA
bbd98fe4 2123 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2124 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2125 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2126 igb_setup_dca(adapter);
2127 }
fe4506b6 2128
38c845c7 2129#endif
673b8b70
AB
2130 /* do hw tstamp init after resetting */
2131 igb_init_hw_timer(adapter);
2132
9d5c8243
AK
2133 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2134 /* print bus type/speed/width info */
7c510e4b 2135 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2136 netdev->name,
559e9c49 2137 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2138 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2139 "unknown"),
59c3de89
AD
2140 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2141 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2142 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2143 "unknown"),
7c510e4b 2144 netdev->dev_addr);
9d5c8243 2145
9835fd73
CW
2146 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2147 if (ret_val)
2148 strcpy(part_str, "Unknown");
2149 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2150 dev_info(&pdev->dev,
2151 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2152 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2153 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2154 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2155 switch (hw->mac.type) {
2156 case e1000_i350:
2157 igb_set_eee_i350(hw);
2158 break;
2159 default:
2160 break;
2161 }
9d5c8243
AK
2162 return 0;
2163
2164err_register:
2165 igb_release_hw_control(adapter);
2166err_eeprom:
2167 if (!igb_check_reset_block(hw))
f5f4cf08 2168 igb_reset_phy(hw);
9d5c8243
AK
2169
2170 if (hw->flash_address)
2171 iounmap(hw->flash_address);
9d5c8243 2172err_sw_init:
047e0030 2173 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2174 iounmap(hw->hw_addr);
2175err_ioremap:
2176 free_netdev(netdev);
2177err_alloc_etherdev:
559e9c49
AD
2178 pci_release_selected_regions(pdev,
2179 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2180err_pci_reg:
2181err_dma:
2182 pci_disable_device(pdev);
2183 return err;
2184}
2185
2186/**
2187 * igb_remove - Device Removal Routine
2188 * @pdev: PCI device information struct
2189 *
2190 * igb_remove is called by the PCI subsystem to alert the driver
2191 * that it should release a PCI device. The could be caused by a
2192 * Hot-Plug event, or because the driver is going to be removed from
2193 * memory.
2194 **/
2195static void __devexit igb_remove(struct pci_dev *pdev)
2196{
2197 struct net_device *netdev = pci_get_drvdata(pdev);
2198 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2199 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2200
760141a5
TH
2201 /*
2202 * The watchdog timer may be rescheduled, so explicitly
2203 * disable watchdog from being rescheduled.
2204 */
9d5c8243
AK
2205 set_bit(__IGB_DOWN, &adapter->state);
2206 del_timer_sync(&adapter->watchdog_timer);
2207 del_timer_sync(&adapter->phy_info_timer);
2208
760141a5
TH
2209 cancel_work_sync(&adapter->reset_task);
2210 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2211
421e02f0 2212#ifdef CONFIG_IGB_DCA
7dfc16fa 2213 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2214 dev_info(&pdev->dev, "DCA disabled\n");
2215 dca_remove_requester(&pdev->dev);
7dfc16fa 2216 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2217 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2218 }
2219#endif
2220
9d5c8243
AK
2221 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2222 * would have already happened in close and is redundant. */
2223 igb_release_hw_control(adapter);
2224
2225 unregister_netdev(netdev);
2226
047e0030 2227 igb_clear_interrupt_scheme(adapter);
9d5c8243 2228
37680117
AD
2229#ifdef CONFIG_PCI_IOV
2230 /* reclaim resources allocated to VFs */
2231 if (adapter->vf_data) {
2232 /* disable iov and allow time for transactions to clear */
2233 pci_disable_sriov(pdev);
2234 msleep(500);
2235
2236 kfree(adapter->vf_data);
2237 adapter->vf_data = NULL;
2238 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2239 wrfl();
37680117
AD
2240 msleep(100);
2241 dev_info(&pdev->dev, "IOV Disabled\n");
2242 }
2243#endif
559e9c49 2244
28b0759c
AD
2245 iounmap(hw->hw_addr);
2246 if (hw->flash_address)
2247 iounmap(hw->flash_address);
559e9c49
AD
2248 pci_release_selected_regions(pdev,
2249 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2250
2251 free_netdev(netdev);
2252
19d5afd4 2253 pci_disable_pcie_error_reporting(pdev);
40a914fa 2254
9d5c8243
AK
2255 pci_disable_device(pdev);
2256}
2257
a6b623e0
AD
2258/**
2259 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2260 * @adapter: board private structure to initialize
2261 *
2262 * This function initializes the vf specific data storage and then attempts to
2263 * allocate the VFs. The reason for ordering it this way is because it is much
2264 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2265 * the memory for the VFs.
2266 **/
2267static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2268{
2269#ifdef CONFIG_PCI_IOV
2270 struct pci_dev *pdev = adapter->pdev;
2271
a6b623e0
AD
2272 if (adapter->vfs_allocated_count) {
2273 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2274 sizeof(struct vf_data_storage),
2275 GFP_KERNEL);
2276 /* if allocation failed then we do not support SR-IOV */
2277 if (!adapter->vf_data) {
2278 adapter->vfs_allocated_count = 0;
2279 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2280 "Data Storage\n");
2281 }
2282 }
2283
2284 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2285 kfree(adapter->vf_data);
2286 adapter->vf_data = NULL;
2287#endif /* CONFIG_PCI_IOV */
2288 adapter->vfs_allocated_count = 0;
2289#ifdef CONFIG_PCI_IOV
2290 } else {
2291 unsigned char mac_addr[ETH_ALEN];
2292 int i;
2293 dev_info(&pdev->dev, "%d vfs allocated\n",
2294 adapter->vfs_allocated_count);
2295 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2296 random_ether_addr(mac_addr);
2297 igb_set_vf_mac(adapter, i, mac_addr);
2298 }
831ec0b4
CW
2299 /* DMA Coalescing is not supported in IOV mode. */
2300 if (adapter->flags & IGB_FLAG_DMAC)
2301 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2302 }
2303#endif /* CONFIG_PCI_IOV */
2304}
2305
115f459a
AD
2306
2307/**
2308 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2309 * @adapter: board private structure to initialize
2310 *
2311 * igb_init_hw_timer initializes the function pointer and values for the hw
2312 * timer found in hardware.
2313 **/
2314static void igb_init_hw_timer(struct igb_adapter *adapter)
2315{
2316 struct e1000_hw *hw = &adapter->hw;
2317
2318 switch (hw->mac.type) {
d2ba2ed8 2319 case e1000_i350:
55cac248
AD
2320 case e1000_82580:
2321 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2322 adapter->cycles.read = igb_read_clock;
2323 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2324 adapter->cycles.mult = 1;
2325 /*
2326 * The 82580 timesync updates the system timer every 8ns by 8ns
2327 * and the value cannot be shifted. Instead we need to shift
2328 * the registers to generate a 64bit timer value. As a result
2329 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2330 * 24 in order to generate a larger value for synchronization.
2331 */
2332 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2333 /* disable system timer temporarily by setting bit 31 */
2334 wr32(E1000_TSAUXC, 0x80000000);
2335 wrfl();
2336
2337 /* Set registers so that rollover occurs soon to test this. */
2338 wr32(E1000_SYSTIMR, 0x00000000);
2339 wr32(E1000_SYSTIML, 0x80000000);
2340 wr32(E1000_SYSTIMH, 0x000000FF);
2341 wrfl();
2342
2343 /* enable system timer by clearing bit 31 */
2344 wr32(E1000_TSAUXC, 0x0);
2345 wrfl();
2346
2347 timecounter_init(&adapter->clock,
2348 &adapter->cycles,
2349 ktime_to_ns(ktime_get_real()));
2350 /*
2351 * Synchronize our NIC clock against system wall clock. NIC
2352 * time stamp reading requires ~3us per sample, each sample
2353 * was pretty stable even under load => only require 10
2354 * samples for each offset comparison.
2355 */
2356 memset(&adapter->compare, 0, sizeof(adapter->compare));
2357 adapter->compare.source = &adapter->clock;
2358 adapter->compare.target = ktime_get_real;
2359 adapter->compare.num_samples = 10;
2360 timecompare_update(&adapter->compare, 0);
2361 break;
115f459a
AD
2362 case e1000_82576:
2363 /*
2364 * Initialize hardware timer: we keep it running just in case
2365 * that some program needs it later on.
2366 */
2367 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2368 adapter->cycles.read = igb_read_clock;
2369 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2370 adapter->cycles.mult = 1;
2371 /**
2372 * Scale the NIC clock cycle by a large factor so that
2373 * relatively small clock corrections can be added or
25985edc 2374 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2375 * factor are a) that the clock register overflows more quickly
2376 * (not such a big deal) and b) that the increment per tick has
2377 * to fit into 24 bits. As a result we need to use a shift of
2378 * 19 so we can fit a value of 16 into the TIMINCA register.
2379 */
2380 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2381 wr32(E1000_TIMINCA,
2382 (1 << E1000_TIMINCA_16NS_SHIFT) |
2383 (16 << IGB_82576_TSYNC_SHIFT));
2384
2385 /* Set registers so that rollover occurs soon to test this. */
2386 wr32(E1000_SYSTIML, 0x00000000);
2387 wr32(E1000_SYSTIMH, 0xFF800000);
2388 wrfl();
2389
2390 timecounter_init(&adapter->clock,
2391 &adapter->cycles,
2392 ktime_to_ns(ktime_get_real()));
2393 /*
2394 * Synchronize our NIC clock against system wall clock. NIC
2395 * time stamp reading requires ~3us per sample, each sample
2396 * was pretty stable even under load => only require 10
2397 * samples for each offset comparison.
2398 */
2399 memset(&adapter->compare, 0, sizeof(adapter->compare));
2400 adapter->compare.source = &adapter->clock;
2401 adapter->compare.target = ktime_get_real;
2402 adapter->compare.num_samples = 10;
2403 timecompare_update(&adapter->compare, 0);
2404 break;
2405 case e1000_82575:
2406 /* 82575 does not support timesync */
2407 default:
2408 break;
2409 }
2410
2411}
2412
9d5c8243
AK
2413/**
2414 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2415 * @adapter: board private structure to initialize
2416 *
2417 * igb_sw_init initializes the Adapter private data structure.
2418 * Fields are initialized based on PCI device information and
2419 * OS network device settings (MTU size).
2420 **/
2421static int __devinit igb_sw_init(struct igb_adapter *adapter)
2422{
2423 struct e1000_hw *hw = &adapter->hw;
2424 struct net_device *netdev = adapter->netdev;
2425 struct pci_dev *pdev = adapter->pdev;
2426
2427 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2428
13fde97a 2429 /* set default ring sizes */
68fd9910
AD
2430 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2431 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2432
2433 /* set default ITR values */
4fc82adf
AD
2434 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2435 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2436
13fde97a
AD
2437 /* set default work limits */
2438 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2439
153285f9
AD
2440 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2441 VLAN_HLEN;
9d5c8243
AK
2442 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2443
81c2fc22
AD
2444 adapter->node = -1;
2445
12dcd86b 2446 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2447#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2448 switch (hw->mac.type) {
2449 case e1000_82576:
2450 case e1000_i350:
9b082d73
SA
2451 if (max_vfs > 7) {
2452 dev_warn(&pdev->dev,
2453 "Maximum of 7 VFs per PF, using max\n");
2454 adapter->vfs_allocated_count = 7;
2455 } else
2456 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2457 break;
2458 default:
2459 break;
2460 }
a6b623e0 2461#endif /* CONFIG_PCI_IOV */
a99955fc 2462 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2463 /* i350 cannot do RSS and SR-IOV at the same time */
2464 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2465 adapter->rss_queues = 1;
a99955fc
AD
2466
2467 /*
2468 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2469 * then we should combine the queues into a queue pair in order to
2470 * conserve interrupts due to limited supply
2471 */
2472 if ((adapter->rss_queues > 4) ||
2473 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2474 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2475
a6b623e0 2476 /* This call may decrease the number of queues */
047e0030 2477 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2478 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2479 return -ENOMEM;
2480 }
2481
a6b623e0
AD
2482 igb_probe_vfs(adapter);
2483
9d5c8243
AK
2484 /* Explicitly disable IRQ since the NIC can be in any state. */
2485 igb_irq_disable(adapter);
2486
831ec0b4
CW
2487 if (hw->mac.type == e1000_i350)
2488 adapter->flags &= ~IGB_FLAG_DMAC;
2489
9d5c8243
AK
2490 set_bit(__IGB_DOWN, &adapter->state);
2491 return 0;
2492}
2493
2494/**
2495 * igb_open - Called when a network interface is made active
2496 * @netdev: network interface device structure
2497 *
2498 * Returns 0 on success, negative value on failure
2499 *
2500 * The open entry point is called when a network interface is made
2501 * active by the system (IFF_UP). At this point all resources needed
2502 * for transmit and receive operations are allocated, the interrupt
2503 * handler is registered with the OS, the watchdog timer is started,
2504 * and the stack is notified that the interface is ready.
2505 **/
2506static int igb_open(struct net_device *netdev)
2507{
2508 struct igb_adapter *adapter = netdev_priv(netdev);
2509 struct e1000_hw *hw = &adapter->hw;
2510 int err;
2511 int i;
2512
2513 /* disallow open during test */
2514 if (test_bit(__IGB_TESTING, &adapter->state))
2515 return -EBUSY;
2516
b168dfc5
JB
2517 netif_carrier_off(netdev);
2518
9d5c8243
AK
2519 /* allocate transmit descriptors */
2520 err = igb_setup_all_tx_resources(adapter);
2521 if (err)
2522 goto err_setup_tx;
2523
2524 /* allocate receive descriptors */
2525 err = igb_setup_all_rx_resources(adapter);
2526 if (err)
2527 goto err_setup_rx;
2528
88a268c1 2529 igb_power_up_link(adapter);
9d5c8243 2530
9d5c8243
AK
2531 /* before we allocate an interrupt, we must be ready to handle it.
2532 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2533 * as soon as we call pci_request_irq, so we have to setup our
2534 * clean_rx handler before we do so. */
2535 igb_configure(adapter);
2536
2537 err = igb_request_irq(adapter);
2538 if (err)
2539 goto err_req_irq;
2540
2541 /* From here on the code is the same as igb_up() */
2542 clear_bit(__IGB_DOWN, &adapter->state);
2543
0d1ae7f4
AD
2544 for (i = 0; i < adapter->num_q_vectors; i++)
2545 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2546
2547 /* Clear any pending interrupts. */
2548 rd32(E1000_ICR);
844290e5
PW
2549
2550 igb_irq_enable(adapter);
2551
d4960307
AD
2552 /* notify VFs that reset has been completed */
2553 if (adapter->vfs_allocated_count) {
2554 u32 reg_data = rd32(E1000_CTRL_EXT);
2555 reg_data |= E1000_CTRL_EXT_PFRSTD;
2556 wr32(E1000_CTRL_EXT, reg_data);
2557 }
2558
d55b53ff
JK
2559 netif_tx_start_all_queues(netdev);
2560
25568a53
AD
2561 /* start the watchdog. */
2562 hw->mac.get_link_status = 1;
2563 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2564
2565 return 0;
2566
2567err_req_irq:
2568 igb_release_hw_control(adapter);
88a268c1 2569 igb_power_down_link(adapter);
9d5c8243
AK
2570 igb_free_all_rx_resources(adapter);
2571err_setup_rx:
2572 igb_free_all_tx_resources(adapter);
2573err_setup_tx:
2574 igb_reset(adapter);
2575
2576 return err;
2577}
2578
2579/**
2580 * igb_close - Disables a network interface
2581 * @netdev: network interface device structure
2582 *
2583 * Returns 0, this is not allowed to fail
2584 *
2585 * The close entry point is called when an interface is de-activated
2586 * by the OS. The hardware is still under the driver's control, but
2587 * needs to be disabled. A global MAC reset is issued to stop the
2588 * hardware, and all transmit and receive resources are freed.
2589 **/
2590static int igb_close(struct net_device *netdev)
2591{
2592 struct igb_adapter *adapter = netdev_priv(netdev);
2593
2594 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2595 igb_down(adapter);
2596
2597 igb_free_irq(adapter);
2598
2599 igb_free_all_tx_resources(adapter);
2600 igb_free_all_rx_resources(adapter);
2601
9d5c8243
AK
2602 return 0;
2603}
2604
2605/**
2606 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2607 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2608 *
2609 * Return 0 on success, negative on failure
2610 **/
80785298 2611int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2612{
59d71989 2613 struct device *dev = tx_ring->dev;
81c2fc22 2614 int orig_node = dev_to_node(dev);
9d5c8243
AK
2615 int size;
2616
06034649 2617 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2618 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2619 if (!tx_ring->tx_buffer_info)
2620 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2621 if (!tx_ring->tx_buffer_info)
9d5c8243 2622 goto err;
9d5c8243
AK
2623
2624 /* round up to nearest 4K */
85e8d004 2625 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2626 tx_ring->size = ALIGN(tx_ring->size, 4096);
2627
81c2fc22 2628 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2629 tx_ring->desc = dma_alloc_coherent(dev,
2630 tx_ring->size,
2631 &tx_ring->dma,
2632 GFP_KERNEL);
81c2fc22
AD
2633 set_dev_node(dev, orig_node);
2634 if (!tx_ring->desc)
2635 tx_ring->desc = dma_alloc_coherent(dev,
2636 tx_ring->size,
2637 &tx_ring->dma,
2638 GFP_KERNEL);
9d5c8243
AK
2639
2640 if (!tx_ring->desc)
2641 goto err;
2642
9d5c8243
AK
2643 tx_ring->next_to_use = 0;
2644 tx_ring->next_to_clean = 0;
81c2fc22 2645
9d5c8243
AK
2646 return 0;
2647
2648err:
06034649 2649 vfree(tx_ring->tx_buffer_info);
59d71989 2650 dev_err(dev,
9d5c8243
AK
2651 "Unable to allocate memory for the transmit descriptor ring\n");
2652 return -ENOMEM;
2653}
2654
2655/**
2656 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2657 * (Descriptors) for all queues
2658 * @adapter: board private structure
2659 *
2660 * Return 0 on success, negative on failure
2661 **/
2662static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2663{
439705e1 2664 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2665 int i, err = 0;
2666
2667 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2668 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2669 if (err) {
439705e1 2670 dev_err(&pdev->dev,
9d5c8243
AK
2671 "Allocation for Tx Queue %u failed\n", i);
2672 for (i--; i >= 0; i--)
3025a446 2673 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2674 break;
2675 }
2676 }
2677
2678 return err;
2679}
2680
2681/**
85b430b4
AD
2682 * igb_setup_tctl - configure the transmit control registers
2683 * @adapter: Board private structure
9d5c8243 2684 **/
d7ee5b3a 2685void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2686{
9d5c8243
AK
2687 struct e1000_hw *hw = &adapter->hw;
2688 u32 tctl;
9d5c8243 2689
85b430b4
AD
2690 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2691 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2692
2693 /* Program the Transmit Control Register */
9d5c8243
AK
2694 tctl = rd32(E1000_TCTL);
2695 tctl &= ~E1000_TCTL_CT;
2696 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2697 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2698
2699 igb_config_collision_dist(hw);
2700
9d5c8243
AK
2701 /* Enable transmits */
2702 tctl |= E1000_TCTL_EN;
2703
2704 wr32(E1000_TCTL, tctl);
2705}
2706
85b430b4
AD
2707/**
2708 * igb_configure_tx_ring - Configure transmit ring after Reset
2709 * @adapter: board private structure
2710 * @ring: tx ring to configure
2711 *
2712 * Configure a transmit ring after a reset.
2713 **/
d7ee5b3a
AD
2714void igb_configure_tx_ring(struct igb_adapter *adapter,
2715 struct igb_ring *ring)
85b430b4
AD
2716{
2717 struct e1000_hw *hw = &adapter->hw;
a74420e0 2718 u32 txdctl = 0;
85b430b4
AD
2719 u64 tdba = ring->dma;
2720 int reg_idx = ring->reg_idx;
2721
2722 /* disable the queue */
a74420e0 2723 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2724 wrfl();
2725 mdelay(10);
2726
2727 wr32(E1000_TDLEN(reg_idx),
2728 ring->count * sizeof(union e1000_adv_tx_desc));
2729 wr32(E1000_TDBAL(reg_idx),
2730 tdba & 0x00000000ffffffffULL);
2731 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2732
fce99e34 2733 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2734 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2735 writel(0, ring->tail);
85b430b4
AD
2736
2737 txdctl |= IGB_TX_PTHRESH;
2738 txdctl |= IGB_TX_HTHRESH << 8;
2739 txdctl |= IGB_TX_WTHRESH << 16;
2740
2741 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2742 wr32(E1000_TXDCTL(reg_idx), txdctl);
2743}
2744
2745/**
2746 * igb_configure_tx - Configure transmit Unit after Reset
2747 * @adapter: board private structure
2748 *
2749 * Configure the Tx unit of the MAC after a reset.
2750 **/
2751static void igb_configure_tx(struct igb_adapter *adapter)
2752{
2753 int i;
2754
2755 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2756 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2757}
2758
9d5c8243
AK
2759/**
2760 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2761 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2762 *
2763 * Returns 0 on success, negative on failure
2764 **/
80785298 2765int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2766{
59d71989 2767 struct device *dev = rx_ring->dev;
81c2fc22 2768 int orig_node = dev_to_node(dev);
9d5c8243
AK
2769 int size, desc_len;
2770
06034649 2771 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2772 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2773 if (!rx_ring->rx_buffer_info)
2774 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2775 if (!rx_ring->rx_buffer_info)
9d5c8243 2776 goto err;
9d5c8243
AK
2777
2778 desc_len = sizeof(union e1000_adv_rx_desc);
2779
2780 /* Round up to nearest 4K */
2781 rx_ring->size = rx_ring->count * desc_len;
2782 rx_ring->size = ALIGN(rx_ring->size, 4096);
2783
81c2fc22 2784 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2785 rx_ring->desc = dma_alloc_coherent(dev,
2786 rx_ring->size,
2787 &rx_ring->dma,
2788 GFP_KERNEL);
81c2fc22
AD
2789 set_dev_node(dev, orig_node);
2790 if (!rx_ring->desc)
2791 rx_ring->desc = dma_alloc_coherent(dev,
2792 rx_ring->size,
2793 &rx_ring->dma,
2794 GFP_KERNEL);
9d5c8243
AK
2795
2796 if (!rx_ring->desc)
2797 goto err;
2798
2799 rx_ring->next_to_clean = 0;
2800 rx_ring->next_to_use = 0;
9d5c8243 2801
9d5c8243
AK
2802 return 0;
2803
2804err:
06034649
AD
2805 vfree(rx_ring->rx_buffer_info);
2806 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2807 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2808 " ring\n");
9d5c8243
AK
2809 return -ENOMEM;
2810}
2811
2812/**
2813 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2814 * (Descriptors) for all queues
2815 * @adapter: board private structure
2816 *
2817 * Return 0 on success, negative on failure
2818 **/
2819static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2820{
439705e1 2821 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2822 int i, err = 0;
2823
2824 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2825 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2826 if (err) {
439705e1 2827 dev_err(&pdev->dev,
9d5c8243
AK
2828 "Allocation for Rx Queue %u failed\n", i);
2829 for (i--; i >= 0; i--)
3025a446 2830 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2831 break;
2832 }
2833 }
2834
2835 return err;
2836}
2837
06cf2666
AD
2838/**
2839 * igb_setup_mrqc - configure the multiple receive queue control registers
2840 * @adapter: Board private structure
2841 **/
2842static void igb_setup_mrqc(struct igb_adapter *adapter)
2843{
2844 struct e1000_hw *hw = &adapter->hw;
2845 u32 mrqc, rxcsum;
2846 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2847 union e1000_reta {
2848 u32 dword;
2849 u8 bytes[4];
2850 } reta;
2851 static const u8 rsshash[40] = {
2852 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2853 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2854 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2855 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2856
2857 /* Fill out hash function seeds */
2858 for (j = 0; j < 10; j++) {
2859 u32 rsskey = rsshash[(j * 4)];
2860 rsskey |= rsshash[(j * 4) + 1] << 8;
2861 rsskey |= rsshash[(j * 4) + 2] << 16;
2862 rsskey |= rsshash[(j * 4) + 3] << 24;
2863 array_wr32(E1000_RSSRK(0), j, rsskey);
2864 }
2865
a99955fc 2866 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2867
2868 if (adapter->vfs_allocated_count) {
2869 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2870 switch (hw->mac.type) {
d2ba2ed8 2871 case e1000_i350:
55cac248
AD
2872 case e1000_82580:
2873 num_rx_queues = 1;
2874 shift = 0;
2875 break;
06cf2666
AD
2876 case e1000_82576:
2877 shift = 3;
2878 num_rx_queues = 2;
2879 break;
2880 case e1000_82575:
2881 shift = 2;
2882 shift2 = 6;
2883 default:
2884 break;
2885 }
2886 } else {
2887 if (hw->mac.type == e1000_82575)
2888 shift = 6;
2889 }
2890
2891 for (j = 0; j < (32 * 4); j++) {
2892 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2893 if (shift2)
2894 reta.bytes[j & 3] |= num_rx_queues << shift2;
2895 if ((j & 3) == 3)
2896 wr32(E1000_RETA(j >> 2), reta.dword);
2897 }
2898
2899 /*
2900 * Disable raw packet checksumming so that RSS hash is placed in
2901 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2902 * offloads as they are enabled by default
2903 */
2904 rxcsum = rd32(E1000_RXCSUM);
2905 rxcsum |= E1000_RXCSUM_PCSD;
2906
2907 if (adapter->hw.mac.type >= e1000_82576)
2908 /* Enable Receive Checksum Offload for SCTP */
2909 rxcsum |= E1000_RXCSUM_CRCOFL;
2910
2911 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2912 wr32(E1000_RXCSUM, rxcsum);
2913
2914 /* If VMDq is enabled then we set the appropriate mode for that, else
2915 * we default to RSS so that an RSS hash is calculated per packet even
2916 * if we are only using one queue */
2917 if (adapter->vfs_allocated_count) {
2918 if (hw->mac.type > e1000_82575) {
2919 /* Set the default pool for the PF's first queue */
2920 u32 vtctl = rd32(E1000_VT_CTL);
2921 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2922 E1000_VT_CTL_DISABLE_DEF_POOL);
2923 vtctl |= adapter->vfs_allocated_count <<
2924 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2925 wr32(E1000_VT_CTL, vtctl);
2926 }
a99955fc 2927 if (adapter->rss_queues > 1)
06cf2666
AD
2928 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2929 else
2930 mrqc = E1000_MRQC_ENABLE_VMDQ;
2931 } else {
2932 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2933 }
2934 igb_vmm_control(adapter);
2935
4478a9cd
AD
2936 /*
2937 * Generate RSS hash based on TCP port numbers and/or
2938 * IPv4/v6 src and dst addresses since UDP cannot be
2939 * hashed reliably due to IP fragmentation
2940 */
2941 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2942 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2943 E1000_MRQC_RSS_FIELD_IPV6 |
2944 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2945 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2946
2947 wr32(E1000_MRQC, mrqc);
2948}
2949
9d5c8243
AK
2950/**
2951 * igb_setup_rctl - configure the receive control registers
2952 * @adapter: Board private structure
2953 **/
d7ee5b3a 2954void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2955{
2956 struct e1000_hw *hw = &adapter->hw;
2957 u32 rctl;
9d5c8243
AK
2958
2959 rctl = rd32(E1000_RCTL);
2960
2961 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2962 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2963
69d728ba 2964 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2965 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2966
87cb7e8c
AK
2967 /*
2968 * enable stripping of CRC. It's unlikely this will break BMC
2969 * redirection as it did with e1000. Newer features require
2970 * that the HW strips the CRC.
73cd78f1 2971 */
87cb7e8c 2972 rctl |= E1000_RCTL_SECRC;
9d5c8243 2973
559e9c49 2974 /* disable store bad packets and clear size bits. */
ec54d7d6 2975 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2976
6ec43fe6
AD
2977 /* enable LPE to prevent packets larger than max_frame_size */
2978 rctl |= E1000_RCTL_LPE;
9d5c8243 2979
952f72a8
AD
2980 /* disable queue 0 to prevent tail write w/o re-config */
2981 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2982
e1739522
AD
2983 /* Attention!!! For SR-IOV PF driver operations you must enable
2984 * queue drop for all VF and PF queues to prevent head of line blocking
2985 * if an un-trusted VF does not provide descriptors to hardware.
2986 */
2987 if (adapter->vfs_allocated_count) {
e1739522
AD
2988 /* set all queue drop enable bits */
2989 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2990 }
2991
9d5c8243
AK
2992 wr32(E1000_RCTL, rctl);
2993}
2994
7d5753f0
AD
2995static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2996 int vfn)
2997{
2998 struct e1000_hw *hw = &adapter->hw;
2999 u32 vmolr;
3000
3001 /* if it isn't the PF check to see if VFs are enabled and
3002 * increase the size to support vlan tags */
3003 if (vfn < adapter->vfs_allocated_count &&
3004 adapter->vf_data[vfn].vlans_enabled)
3005 size += VLAN_TAG_SIZE;
3006
3007 vmolr = rd32(E1000_VMOLR(vfn));
3008 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3009 vmolr |= size | E1000_VMOLR_LPE;
3010 wr32(E1000_VMOLR(vfn), vmolr);
3011
3012 return 0;
3013}
3014
e1739522
AD
3015/**
3016 * igb_rlpml_set - set maximum receive packet size
3017 * @adapter: board private structure
3018 *
3019 * Configure maximum receivable packet size.
3020 **/
3021static void igb_rlpml_set(struct igb_adapter *adapter)
3022{
153285f9 3023 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3024 struct e1000_hw *hw = &adapter->hw;
3025 u16 pf_id = adapter->vfs_allocated_count;
3026
e1739522
AD
3027 if (pf_id) {
3028 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3029 /*
3030 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3031 * to our max jumbo frame size, in case we need to enable
3032 * jumbo frames on one of the rings later.
3033 * This will not pass over-length frames into the default
3034 * queue because it's gated by the VMOLR.RLPML.
3035 */
7d5753f0 3036 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3037 }
3038
3039 wr32(E1000_RLPML, max_frame_size);
3040}
3041
8151d294
WM
3042static inline void igb_set_vmolr(struct igb_adapter *adapter,
3043 int vfn, bool aupe)
7d5753f0
AD
3044{
3045 struct e1000_hw *hw = &adapter->hw;
3046 u32 vmolr;
3047
3048 /*
3049 * This register exists only on 82576 and newer so if we are older then
3050 * we should exit and do nothing
3051 */
3052 if (hw->mac.type < e1000_82576)
3053 return;
3054
3055 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3056 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3057 if (aupe)
3058 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3059 else
3060 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3061
3062 /* clear all bits that might not be set */
3063 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3064
a99955fc 3065 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3066 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3067 /*
3068 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3069 * multicast packets
3070 */
3071 if (vfn <= adapter->vfs_allocated_count)
3072 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3073
3074 wr32(E1000_VMOLR(vfn), vmolr);
3075}
3076
85b430b4
AD
3077/**
3078 * igb_configure_rx_ring - Configure a receive ring after Reset
3079 * @adapter: board private structure
3080 * @ring: receive ring to be configured
3081 *
3082 * Configure the Rx unit of the MAC after a reset.
3083 **/
d7ee5b3a
AD
3084void igb_configure_rx_ring(struct igb_adapter *adapter,
3085 struct igb_ring *ring)
85b430b4
AD
3086{
3087 struct e1000_hw *hw = &adapter->hw;
3088 u64 rdba = ring->dma;
3089 int reg_idx = ring->reg_idx;
a74420e0 3090 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3091
3092 /* disable the queue */
a74420e0 3093 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3094
3095 /* Set DMA base address registers */
3096 wr32(E1000_RDBAL(reg_idx),
3097 rdba & 0x00000000ffffffffULL);
3098 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3099 wr32(E1000_RDLEN(reg_idx),
3100 ring->count * sizeof(union e1000_adv_rx_desc));
3101
3102 /* initialize head and tail */
fce99e34 3103 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3104 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3105 writel(0, ring->tail);
85b430b4 3106
952f72a8 3107 /* set descriptor configuration */
44390ca6 3108 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3109#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3110 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3111#else
44390ca6 3112 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3113#endif
44390ca6 3114 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3115 if (hw->mac.type == e1000_82580)
3116 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3117 /* Only set Drop Enable if we are supporting multiple queues */
3118 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3119 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3120
3121 wr32(E1000_SRRCTL(reg_idx), srrctl);
3122
7d5753f0 3123 /* set filtering for VMDQ pools */
8151d294 3124 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3125
85b430b4
AD
3126 rxdctl |= IGB_RX_PTHRESH;
3127 rxdctl |= IGB_RX_HTHRESH << 8;
3128 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3129
3130 /* enable receive descriptor fetching */
3131 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3132 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3133}
3134
9d5c8243
AK
3135/**
3136 * igb_configure_rx - Configure receive Unit after Reset
3137 * @adapter: board private structure
3138 *
3139 * Configure the Rx unit of the MAC after a reset.
3140 **/
3141static void igb_configure_rx(struct igb_adapter *adapter)
3142{
9107584e 3143 int i;
9d5c8243 3144
68d480c4
AD
3145 /* set UTA to appropriate mode */
3146 igb_set_uta(adapter);
3147
26ad9178
AD
3148 /* set the correct pool for the PF default MAC address in entry 0 */
3149 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3150 adapter->vfs_allocated_count);
3151
06cf2666
AD
3152 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3153 * the Base and Length of the Rx Descriptor Ring */
3154 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3155 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3156}
3157
3158/**
3159 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3160 * @tx_ring: Tx descriptor ring for a specific queue
3161 *
3162 * Free all transmit software resources
3163 **/
68fd9910 3164void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3165{
3b644cf6 3166 igb_clean_tx_ring(tx_ring);
9d5c8243 3167
06034649
AD
3168 vfree(tx_ring->tx_buffer_info);
3169 tx_ring->tx_buffer_info = NULL;
9d5c8243 3170
439705e1
AD
3171 /* if not set, then don't free */
3172 if (!tx_ring->desc)
3173 return;
3174
59d71989
AD
3175 dma_free_coherent(tx_ring->dev, tx_ring->size,
3176 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3177
3178 tx_ring->desc = NULL;
3179}
3180
3181/**
3182 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3183 * @adapter: board private structure
3184 *
3185 * Free all transmit software resources
3186 **/
3187static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3188{
3189 int i;
3190
3191 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3192 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3193}
3194
ebe42d16
AD
3195void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3196 struct igb_tx_buffer *tx_buffer)
3197{
3198 if (tx_buffer->skb) {
3199 dev_kfree_skb_any(tx_buffer->skb);
3200 if (tx_buffer->dma)
3201 dma_unmap_single(ring->dev,
3202 tx_buffer->dma,
3203 tx_buffer->length,
3204 DMA_TO_DEVICE);
3205 } else if (tx_buffer->dma) {
3206 dma_unmap_page(ring->dev,
3207 tx_buffer->dma,
3208 tx_buffer->length,
3209 DMA_TO_DEVICE);
3210 }
3211 tx_buffer->next_to_watch = NULL;
3212 tx_buffer->skb = NULL;
3213 tx_buffer->dma = 0;
3214 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3215}
3216
3217/**
3218 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3219 * @tx_ring: ring to be cleaned
3220 **/
3b644cf6 3221static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3222{
06034649 3223 struct igb_tx_buffer *buffer_info;
9d5c8243 3224 unsigned long size;
6ad4edfc 3225 u16 i;
9d5c8243 3226
06034649 3227 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3228 return;
3229 /* Free all the Tx ring sk_buffs */
3230
3231 for (i = 0; i < tx_ring->count; i++) {
06034649 3232 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3233 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3234 }
3235
06034649
AD
3236 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3237 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3238
3239 /* Zero out the descriptor ring */
9d5c8243
AK
3240 memset(tx_ring->desc, 0, tx_ring->size);
3241
3242 tx_ring->next_to_use = 0;
3243 tx_ring->next_to_clean = 0;
9d5c8243
AK
3244}
3245
3246/**
3247 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3248 * @adapter: board private structure
3249 **/
3250static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3251{
3252 int i;
3253
3254 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3255 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3256}
3257
3258/**
3259 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3260 * @rx_ring: ring to clean the resources from
3261 *
3262 * Free all receive software resources
3263 **/
68fd9910 3264void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3265{
3b644cf6 3266 igb_clean_rx_ring(rx_ring);
9d5c8243 3267
06034649
AD
3268 vfree(rx_ring->rx_buffer_info);
3269 rx_ring->rx_buffer_info = NULL;
9d5c8243 3270
439705e1
AD
3271 /* if not set, then don't free */
3272 if (!rx_ring->desc)
3273 return;
3274
59d71989
AD
3275 dma_free_coherent(rx_ring->dev, rx_ring->size,
3276 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3277
3278 rx_ring->desc = NULL;
3279}
3280
3281/**
3282 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3283 * @adapter: board private structure
3284 *
3285 * Free all receive software resources
3286 **/
3287static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3288{
3289 int i;
3290
3291 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3292 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3293}
3294
3295/**
3296 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3297 * @rx_ring: ring to free buffers from
3298 **/
3b644cf6 3299static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3300{
9d5c8243 3301 unsigned long size;
c023cd88 3302 u16 i;
9d5c8243 3303
06034649 3304 if (!rx_ring->rx_buffer_info)
9d5c8243 3305 return;
439705e1 3306
9d5c8243
AK
3307 /* Free all the Rx ring sk_buffs */
3308 for (i = 0; i < rx_ring->count; i++) {
06034649 3309 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3310 if (buffer_info->dma) {
59d71989 3311 dma_unmap_single(rx_ring->dev,
80785298 3312 buffer_info->dma,
44390ca6 3313 IGB_RX_HDR_LEN,
59d71989 3314 DMA_FROM_DEVICE);
9d5c8243
AK
3315 buffer_info->dma = 0;
3316 }
3317
3318 if (buffer_info->skb) {
3319 dev_kfree_skb(buffer_info->skb);
3320 buffer_info->skb = NULL;
3321 }
6ec43fe6 3322 if (buffer_info->page_dma) {
59d71989 3323 dma_unmap_page(rx_ring->dev,
80785298 3324 buffer_info->page_dma,
6ec43fe6 3325 PAGE_SIZE / 2,
59d71989 3326 DMA_FROM_DEVICE);
6ec43fe6
AD
3327 buffer_info->page_dma = 0;
3328 }
9d5c8243 3329 if (buffer_info->page) {
9d5c8243
AK
3330 put_page(buffer_info->page);
3331 buffer_info->page = NULL;
bf36c1a0 3332 buffer_info->page_offset = 0;
9d5c8243
AK
3333 }
3334 }
3335
06034649
AD
3336 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3337 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3338
3339 /* Zero out the descriptor ring */
3340 memset(rx_ring->desc, 0, rx_ring->size);
3341
3342 rx_ring->next_to_clean = 0;
3343 rx_ring->next_to_use = 0;
9d5c8243
AK
3344}
3345
3346/**
3347 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3348 * @adapter: board private structure
3349 **/
3350static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3351{
3352 int i;
3353
3354 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3355 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3356}
3357
3358/**
3359 * igb_set_mac - Change the Ethernet Address of the NIC
3360 * @netdev: network interface device structure
3361 * @p: pointer to an address structure
3362 *
3363 * Returns 0 on success, negative on failure
3364 **/
3365static int igb_set_mac(struct net_device *netdev, void *p)
3366{
3367 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3368 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3369 struct sockaddr *addr = p;
3370
3371 if (!is_valid_ether_addr(addr->sa_data))
3372 return -EADDRNOTAVAIL;
3373
3374 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3375 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3376
26ad9178
AD
3377 /* set the correct pool for the new PF MAC address in entry 0 */
3378 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3379 adapter->vfs_allocated_count);
e1739522 3380
9d5c8243
AK
3381 return 0;
3382}
3383
3384/**
68d480c4 3385 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3386 * @netdev: network interface device structure
3387 *
68d480c4
AD
3388 * Writes multicast address list to the MTA hash table.
3389 * Returns: -ENOMEM on failure
3390 * 0 on no addresses written
3391 * X on writing X addresses to MTA
9d5c8243 3392 **/
68d480c4 3393static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3394{
3395 struct igb_adapter *adapter = netdev_priv(netdev);
3396 struct e1000_hw *hw = &adapter->hw;
22bedad3 3397 struct netdev_hw_addr *ha;
68d480c4 3398 u8 *mta_list;
9d5c8243
AK
3399 int i;
3400
4cd24eaf 3401 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3402 /* nothing to program, so clear mc list */
3403 igb_update_mc_addr_list(hw, NULL, 0);
3404 igb_restore_vf_multicasts(adapter);
3405 return 0;
3406 }
9d5c8243 3407
4cd24eaf 3408 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3409 if (!mta_list)
3410 return -ENOMEM;
ff41f8dc 3411
68d480c4 3412 /* The shared function expects a packed array of only addresses. */
48e2f183 3413 i = 0;
22bedad3
JP
3414 netdev_for_each_mc_addr(ha, netdev)
3415 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3416
68d480c4
AD
3417 igb_update_mc_addr_list(hw, mta_list, i);
3418 kfree(mta_list);
3419
4cd24eaf 3420 return netdev_mc_count(netdev);
68d480c4
AD
3421}
3422
3423/**
3424 * igb_write_uc_addr_list - write unicast addresses to RAR table
3425 * @netdev: network interface device structure
3426 *
3427 * Writes unicast address list to the RAR table.
3428 * Returns: -ENOMEM on failure/insufficient address space
3429 * 0 on no addresses written
3430 * X on writing X addresses to the RAR table
3431 **/
3432static int igb_write_uc_addr_list(struct net_device *netdev)
3433{
3434 struct igb_adapter *adapter = netdev_priv(netdev);
3435 struct e1000_hw *hw = &adapter->hw;
3436 unsigned int vfn = adapter->vfs_allocated_count;
3437 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3438 int count = 0;
3439
3440 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3441 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3442 return -ENOMEM;
9d5c8243 3443
32e7bfc4 3444 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3445 struct netdev_hw_addr *ha;
32e7bfc4
JP
3446
3447 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3448 if (!rar_entries)
3449 break;
26ad9178
AD
3450 igb_rar_set_qsel(adapter, ha->addr,
3451 rar_entries--,
68d480c4
AD
3452 vfn);
3453 count++;
ff41f8dc
AD
3454 }
3455 }
3456 /* write the addresses in reverse order to avoid write combining */
3457 for (; rar_entries > 0 ; rar_entries--) {
3458 wr32(E1000_RAH(rar_entries), 0);
3459 wr32(E1000_RAL(rar_entries), 0);
3460 }
3461 wrfl();
3462
68d480c4
AD
3463 return count;
3464}
3465
3466/**
3467 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3468 * @netdev: network interface device structure
3469 *
3470 * The set_rx_mode entry point is called whenever the unicast or multicast
3471 * address lists or the network interface flags are updated. This routine is
3472 * responsible for configuring the hardware for proper unicast, multicast,
3473 * promiscuous mode, and all-multi behavior.
3474 **/
3475static void igb_set_rx_mode(struct net_device *netdev)
3476{
3477 struct igb_adapter *adapter = netdev_priv(netdev);
3478 struct e1000_hw *hw = &adapter->hw;
3479 unsigned int vfn = adapter->vfs_allocated_count;
3480 u32 rctl, vmolr = 0;
3481 int count;
3482
3483 /* Check for Promiscuous and All Multicast modes */
3484 rctl = rd32(E1000_RCTL);
3485
3486 /* clear the effected bits */
3487 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3488
3489 if (netdev->flags & IFF_PROMISC) {
3490 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3491 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3492 } else {
3493 if (netdev->flags & IFF_ALLMULTI) {
3494 rctl |= E1000_RCTL_MPE;
3495 vmolr |= E1000_VMOLR_MPME;
3496 } else {
3497 /*
3498 * Write addresses to the MTA, if the attempt fails
25985edc 3499 * then we should just turn on promiscuous mode so
68d480c4
AD
3500 * that we can at least receive multicast traffic
3501 */
3502 count = igb_write_mc_addr_list(netdev);
3503 if (count < 0) {
3504 rctl |= E1000_RCTL_MPE;
3505 vmolr |= E1000_VMOLR_MPME;
3506 } else if (count) {
3507 vmolr |= E1000_VMOLR_ROMPE;
3508 }
3509 }
3510 /*
3511 * Write addresses to available RAR registers, if there is not
3512 * sufficient space to store all the addresses then enable
25985edc 3513 * unicast promiscuous mode
68d480c4
AD
3514 */
3515 count = igb_write_uc_addr_list(netdev);
3516 if (count < 0) {
3517 rctl |= E1000_RCTL_UPE;
3518 vmolr |= E1000_VMOLR_ROPE;
3519 }
3520 rctl |= E1000_RCTL_VFE;
28fc06f5 3521 }
68d480c4 3522 wr32(E1000_RCTL, rctl);
28fc06f5 3523
68d480c4
AD
3524 /*
3525 * In order to support SR-IOV and eventually VMDq it is necessary to set
3526 * the VMOLR to enable the appropriate modes. Without this workaround
3527 * we will have issues with VLAN tag stripping not being done for frames
3528 * that are only arriving because we are the default pool
3529 */
3530 if (hw->mac.type < e1000_82576)
28fc06f5 3531 return;
9d5c8243 3532
68d480c4
AD
3533 vmolr |= rd32(E1000_VMOLR(vfn)) &
3534 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3535 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3536 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3537}
3538
13800469
GR
3539static void igb_check_wvbr(struct igb_adapter *adapter)
3540{
3541 struct e1000_hw *hw = &adapter->hw;
3542 u32 wvbr = 0;
3543
3544 switch (hw->mac.type) {
3545 case e1000_82576:
3546 case e1000_i350:
3547 if (!(wvbr = rd32(E1000_WVBR)))
3548 return;
3549 break;
3550 default:
3551 break;
3552 }
3553
3554 adapter->wvbr |= wvbr;
3555}
3556
3557#define IGB_STAGGERED_QUEUE_OFFSET 8
3558
3559static void igb_spoof_check(struct igb_adapter *adapter)
3560{
3561 int j;
3562
3563 if (!adapter->wvbr)
3564 return;
3565
3566 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3567 if (adapter->wvbr & (1 << j) ||
3568 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3569 dev_warn(&adapter->pdev->dev,
3570 "Spoof event(s) detected on VF %d\n", j);
3571 adapter->wvbr &=
3572 ~((1 << j) |
3573 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3574 }
3575 }
3576}
3577
9d5c8243
AK
3578/* Need to wait a few seconds after link up to get diagnostic information from
3579 * the phy */
3580static void igb_update_phy_info(unsigned long data)
3581{
3582 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3583 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3584}
3585
4d6b725e
AD
3586/**
3587 * igb_has_link - check shared code for link and determine up/down
3588 * @adapter: pointer to driver private info
3589 **/
3145535a 3590bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3591{
3592 struct e1000_hw *hw = &adapter->hw;
3593 bool link_active = false;
3594 s32 ret_val = 0;
3595
3596 /* get_link_status is set on LSC (link status) interrupt or
3597 * rx sequence error interrupt. get_link_status will stay
3598 * false until the e1000_check_for_link establishes link
3599 * for copper adapters ONLY
3600 */
3601 switch (hw->phy.media_type) {
3602 case e1000_media_type_copper:
3603 if (hw->mac.get_link_status) {
3604 ret_val = hw->mac.ops.check_for_link(hw);
3605 link_active = !hw->mac.get_link_status;
3606 } else {
3607 link_active = true;
3608 }
3609 break;
4d6b725e
AD
3610 case e1000_media_type_internal_serdes:
3611 ret_val = hw->mac.ops.check_for_link(hw);
3612 link_active = hw->mac.serdes_has_link;
3613 break;
3614 default:
3615 case e1000_media_type_unknown:
3616 break;
3617 }
3618
3619 return link_active;
3620}
3621
563988dc
SA
3622static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3623{
3624 bool ret = false;
3625 u32 ctrl_ext, thstat;
3626
3627 /* check for thermal sensor event on i350, copper only */
3628 if (hw->mac.type == e1000_i350) {
3629 thstat = rd32(E1000_THSTAT);
3630 ctrl_ext = rd32(E1000_CTRL_EXT);
3631
3632 if ((hw->phy.media_type == e1000_media_type_copper) &&
3633 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3634 ret = !!(thstat & event);
3635 }
3636 }
3637
3638 return ret;
3639}
3640
9d5c8243
AK
3641/**
3642 * igb_watchdog - Timer Call-back
3643 * @data: pointer to adapter cast into an unsigned long
3644 **/
3645static void igb_watchdog(unsigned long data)
3646{
3647 struct igb_adapter *adapter = (struct igb_adapter *)data;
3648 /* Do the rest outside of interrupt context */
3649 schedule_work(&adapter->watchdog_task);
3650}
3651
3652static void igb_watchdog_task(struct work_struct *work)
3653{
3654 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3655 struct igb_adapter,
3656 watchdog_task);
9d5c8243 3657 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3658 struct net_device *netdev = adapter->netdev;
563988dc 3659 u32 link;
7a6ea550 3660 int i;
9d5c8243 3661
4d6b725e 3662 link = igb_has_link(adapter);
9d5c8243
AK
3663 if (link) {
3664 if (!netif_carrier_ok(netdev)) {
3665 u32 ctrl;
330a6d6a
AD
3666 hw->mac.ops.get_speed_and_duplex(hw,
3667 &adapter->link_speed,
3668 &adapter->link_duplex);
9d5c8243
AK
3669
3670 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3671 /* Links status message must follow this format */
3672 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3673 "Flow Control: %s\n",
559e9c49
AD
3674 netdev->name,
3675 adapter->link_speed,
3676 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3677 "Full Duplex" : "Half Duplex",
559e9c49
AD
3678 ((ctrl & E1000_CTRL_TFCE) &&
3679 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3680 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3681 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3682
563988dc
SA
3683 /* check for thermal sensor event */
3684 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3685 printk(KERN_INFO "igb: %s The network adapter "
3686 "link speed was downshifted "
3687 "because it overheated.\n",
3688 netdev->name);
7ef5ed1c 3689 }
563988dc 3690
d07f3e37 3691 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3692 adapter->tx_timeout_factor = 1;
3693 switch (adapter->link_speed) {
3694 case SPEED_10:
9d5c8243
AK
3695 adapter->tx_timeout_factor = 14;
3696 break;
3697 case SPEED_100:
9d5c8243
AK
3698 /* maybe add some timeout factor ? */
3699 break;
3700 }
3701
3702 netif_carrier_on(netdev);
9d5c8243 3703
4ae196df 3704 igb_ping_all_vfs(adapter);
17dc566c 3705 igb_check_vf_rate_limit(adapter);
4ae196df 3706
4b1a9877 3707 /* link state has changed, schedule phy info update */
9d5c8243
AK
3708 if (!test_bit(__IGB_DOWN, &adapter->state))
3709 mod_timer(&adapter->phy_info_timer,
3710 round_jiffies(jiffies + 2 * HZ));
3711 }
3712 } else {
3713 if (netif_carrier_ok(netdev)) {
3714 adapter->link_speed = 0;
3715 adapter->link_duplex = 0;
563988dc
SA
3716
3717 /* check for thermal sensor event */
3718 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3719 printk(KERN_ERR "igb: %s The network adapter "
3720 "was stopped because it "
3721 "overheated.\n",
7ef5ed1c 3722 netdev->name);
7ef5ed1c 3723 }
563988dc 3724
527d47c1
AD
3725 /* Links status message must follow this format */
3726 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3727 netdev->name);
9d5c8243 3728 netif_carrier_off(netdev);
4b1a9877 3729
4ae196df
AD
3730 igb_ping_all_vfs(adapter);
3731
4b1a9877 3732 /* link state has changed, schedule phy info update */
9d5c8243
AK
3733 if (!test_bit(__IGB_DOWN, &adapter->state))
3734 mod_timer(&adapter->phy_info_timer,
3735 round_jiffies(jiffies + 2 * HZ));
3736 }
3737 }
3738
12dcd86b
ED
3739 spin_lock(&adapter->stats64_lock);
3740 igb_update_stats(adapter, &adapter->stats64);
3741 spin_unlock(&adapter->stats64_lock);
9d5c8243 3742
dbabb065 3743 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3744 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3745 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3746 /* We've lost link, so the controller stops DMA,
3747 * but we've got queued Tx work that's never going
3748 * to get done, so reset controller to flush Tx.
3749 * (Do the reset outside of interrupt context). */
dbabb065
AD
3750 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3751 adapter->tx_timeout_count++;
3752 schedule_work(&adapter->reset_task);
3753 /* return immediately since reset is imminent */
3754 return;
3755 }
9d5c8243 3756 }
9d5c8243 3757
dbabb065 3758 /* Force detection of hung controller every watchdog period */
6d095fa8 3759 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3760 }
f7ba205e 3761
9d5c8243 3762 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3763 if (adapter->msix_entries) {
047e0030 3764 u32 eics = 0;
0d1ae7f4
AD
3765 for (i = 0; i < adapter->num_q_vectors; i++)
3766 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3767 wr32(E1000_EICS, eics);
3768 } else {
3769 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3770 }
9d5c8243 3771
13800469
GR
3772 igb_spoof_check(adapter);
3773
9d5c8243
AK
3774 /* Reset the timer */
3775 if (!test_bit(__IGB_DOWN, &adapter->state))
3776 mod_timer(&adapter->watchdog_timer,
3777 round_jiffies(jiffies + 2 * HZ));
3778}
3779
3780enum latency_range {
3781 lowest_latency = 0,
3782 low_latency = 1,
3783 bulk_latency = 2,
3784 latency_invalid = 255
3785};
3786
6eb5a7f1
AD
3787/**
3788 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3789 *
3790 * Stores a new ITR value based on strictly on packet size. This
3791 * algorithm is less sophisticated than that used in igb_update_itr,
3792 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3793 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3794 * were determined based on theoretical maximum wire speed and testing
3795 * data, in order to minimize response time while increasing bulk
3796 * throughput.
3797 * This functionality is controlled by the InterruptThrottleRate module
3798 * parameter (see igb_param.c)
3799 * NOTE: This function is called only when operating in a multiqueue
3800 * receive environment.
047e0030 3801 * @q_vector: pointer to q_vector
6eb5a7f1 3802 **/
047e0030 3803static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3804{
047e0030 3805 int new_val = q_vector->itr_val;
6eb5a7f1 3806 int avg_wire_size = 0;
047e0030 3807 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3808 unsigned int packets;
9d5c8243 3809
6eb5a7f1
AD
3810 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3811 * ints/sec - ITR timer value of 120 ticks.
3812 */
3813 if (adapter->link_speed != SPEED_1000) {
0ba82994 3814 new_val = IGB_4K_ITR;
6eb5a7f1 3815 goto set_itr_val;
9d5c8243 3816 }
047e0030 3817
0ba82994
AD
3818 packets = q_vector->rx.total_packets;
3819 if (packets)
3820 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3821
0ba82994
AD
3822 packets = q_vector->tx.total_packets;
3823 if (packets)
3824 avg_wire_size = max_t(u32, avg_wire_size,
3825 q_vector->tx.total_bytes / packets);
047e0030
AD
3826
3827 /* if avg_wire_size isn't set no work was done */
3828 if (!avg_wire_size)
3829 goto clear_counts;
9d5c8243 3830
6eb5a7f1
AD
3831 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3832 avg_wire_size += 24;
3833
3834 /* Don't starve jumbo frames */
3835 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3836
6eb5a7f1
AD
3837 /* Give a little boost to mid-size frames */
3838 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3839 new_val = avg_wire_size / 3;
3840 else
3841 new_val = avg_wire_size / 2;
9d5c8243 3842
0ba82994
AD
3843 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3844 if (new_val < IGB_20K_ITR &&
3845 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3846 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3847 new_val = IGB_20K_ITR;
abe1c363 3848
6eb5a7f1 3849set_itr_val:
047e0030
AD
3850 if (new_val != q_vector->itr_val) {
3851 q_vector->itr_val = new_val;
3852 q_vector->set_itr = 1;
9d5c8243 3853 }
6eb5a7f1 3854clear_counts:
0ba82994
AD
3855 q_vector->rx.total_bytes = 0;
3856 q_vector->rx.total_packets = 0;
3857 q_vector->tx.total_bytes = 0;
3858 q_vector->tx.total_packets = 0;
9d5c8243
AK
3859}
3860
3861/**
3862 * igb_update_itr - update the dynamic ITR value based on statistics
3863 * Stores a new ITR value based on packets and byte
3864 * counts during the last interrupt. The advantage of per interrupt
3865 * computation is faster updates and more accurate ITR for the current
3866 * traffic pattern. Constants in this function were computed
3867 * based on theoretical maximum wire speed and thresholds were set based
3868 * on testing data as well as attempting to minimize response time
3869 * while increasing bulk throughput.
3870 * this functionality is controlled by the InterruptThrottleRate module
3871 * parameter (see igb_param.c)
3872 * NOTE: These calculations are only valid when operating in a single-
3873 * queue environment.
0ba82994
AD
3874 * @q_vector: pointer to q_vector
3875 * @ring_container: ring info to update the itr for
9d5c8243 3876 **/
0ba82994
AD
3877static void igb_update_itr(struct igb_q_vector *q_vector,
3878 struct igb_ring_container *ring_container)
9d5c8243 3879{
0ba82994
AD
3880 unsigned int packets = ring_container->total_packets;
3881 unsigned int bytes = ring_container->total_bytes;
3882 u8 itrval = ring_container->itr;
9d5c8243 3883
0ba82994 3884 /* no packets, exit with status unchanged */
9d5c8243 3885 if (packets == 0)
0ba82994 3886 return;
9d5c8243 3887
0ba82994 3888 switch (itrval) {
9d5c8243
AK
3889 case lowest_latency:
3890 /* handle TSO and jumbo frames */
3891 if (bytes/packets > 8000)
0ba82994 3892 itrval = bulk_latency;
9d5c8243 3893 else if ((packets < 5) && (bytes > 512))
0ba82994 3894 itrval = low_latency;
9d5c8243
AK
3895 break;
3896 case low_latency: /* 50 usec aka 20000 ints/s */
3897 if (bytes > 10000) {
3898 /* this if handles the TSO accounting */
3899 if (bytes/packets > 8000) {
0ba82994 3900 itrval = bulk_latency;
9d5c8243 3901 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3902 itrval = bulk_latency;
9d5c8243 3903 } else if ((packets > 35)) {
0ba82994 3904 itrval = lowest_latency;
9d5c8243
AK
3905 }
3906 } else if (bytes/packets > 2000) {
0ba82994 3907 itrval = bulk_latency;
9d5c8243 3908 } else if (packets <= 2 && bytes < 512) {
0ba82994 3909 itrval = lowest_latency;
9d5c8243
AK
3910 }
3911 break;
3912 case bulk_latency: /* 250 usec aka 4000 ints/s */
3913 if (bytes > 25000) {
3914 if (packets > 35)
0ba82994 3915 itrval = low_latency;
1e5c3d21 3916 } else if (bytes < 1500) {
0ba82994 3917 itrval = low_latency;
9d5c8243
AK
3918 }
3919 break;
3920 }
3921
0ba82994
AD
3922 /* clear work counters since we have the values we need */
3923 ring_container->total_bytes = 0;
3924 ring_container->total_packets = 0;
3925
3926 /* write updated itr to ring container */
3927 ring_container->itr = itrval;
9d5c8243
AK
3928}
3929
0ba82994 3930static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3931{
0ba82994 3932 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3933 u32 new_itr = q_vector->itr_val;
0ba82994 3934 u8 current_itr = 0;
9d5c8243
AK
3935
3936 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3937 if (adapter->link_speed != SPEED_1000) {
3938 current_itr = 0;
0ba82994 3939 new_itr = IGB_4K_ITR;
9d5c8243
AK
3940 goto set_itr_now;
3941 }
3942
0ba82994
AD
3943 igb_update_itr(q_vector, &q_vector->tx);
3944 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3945
0ba82994 3946 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3947
6eb5a7f1 3948 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3949 if (current_itr == lowest_latency &&
3950 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3951 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3952 current_itr = low_latency;
3953
9d5c8243
AK
3954 switch (current_itr) {
3955 /* counts and packets in update_itr are dependent on these numbers */
3956 case lowest_latency:
0ba82994 3957 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3958 break;
3959 case low_latency:
0ba82994 3960 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3961 break;
3962 case bulk_latency:
0ba82994 3963 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3964 break;
3965 default:
3966 break;
3967 }
3968
3969set_itr_now:
047e0030 3970 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3971 /* this attempts to bias the interrupt rate towards Bulk
3972 * by adding intermediate steps when interrupt rate is
3973 * increasing */
047e0030
AD
3974 new_itr = new_itr > q_vector->itr_val ?
3975 max((new_itr * q_vector->itr_val) /
3976 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3977 new_itr) :
9d5c8243
AK
3978 new_itr;
3979 /* Don't write the value here; it resets the adapter's
3980 * internal timer, and causes us to delay far longer than
3981 * we should between interrupts. Instead, we write the ITR
3982 * value at the beginning of the next interrupt so the timing
3983 * ends up being correct.
3984 */
047e0030
AD
3985 q_vector->itr_val = new_itr;
3986 q_vector->set_itr = 1;
9d5c8243 3987 }
9d5c8243
AK
3988}
3989
7d13a7d0
AD
3990void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3991 u32 type_tucmd, u32 mss_l4len_idx)
3992{
3993 struct e1000_adv_tx_context_desc *context_desc;
3994 u16 i = tx_ring->next_to_use;
3995
3996 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3997
3998 i++;
3999 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4000
4001 /* set bits to identify this as an advanced context descriptor */
4002 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4003
4004 /* For 82575, context index must be unique per ring. */
866cff06 4005 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4006 mss_l4len_idx |= tx_ring->reg_idx << 4;
4007
4008 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4009 context_desc->seqnum_seed = 0;
4010 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4011 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4012}
4013
7af40ad9
AD
4014static int igb_tso(struct igb_ring *tx_ring,
4015 struct igb_tx_buffer *first,
4016 u8 *hdr_len)
9d5c8243 4017{
7af40ad9 4018 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4019 u32 vlan_macip_lens, type_tucmd;
4020 u32 mss_l4len_idx, l4len;
4021
4022 if (!skb_is_gso(skb))
4023 return 0;
9d5c8243
AK
4024
4025 if (skb_header_cloned(skb)) {
7af40ad9 4026 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4027 if (err)
4028 return err;
4029 }
4030
7d13a7d0
AD
4031 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4032 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4033
7af40ad9 4034 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4035 struct iphdr *iph = ip_hdr(skb);
4036 iph->tot_len = 0;
4037 iph->check = 0;
4038 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4039 iph->daddr, 0,
4040 IPPROTO_TCP,
4041 0);
7d13a7d0 4042 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4043 first->tx_flags |= IGB_TX_FLAGS_TSO |
4044 IGB_TX_FLAGS_CSUM |
4045 IGB_TX_FLAGS_IPV4;
8e1e8a47 4046 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4047 ipv6_hdr(skb)->payload_len = 0;
4048 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4049 &ipv6_hdr(skb)->daddr,
4050 0, IPPROTO_TCP, 0);
7af40ad9
AD
4051 first->tx_flags |= IGB_TX_FLAGS_TSO |
4052 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4053 }
4054
7af40ad9 4055 /* compute header lengths */
7d13a7d0
AD
4056 l4len = tcp_hdrlen(skb);
4057 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4058
7af40ad9
AD
4059 /* update gso size and bytecount with header size */
4060 first->gso_segs = skb_shinfo(skb)->gso_segs;
4061 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4062
9d5c8243 4063 /* MSS L4LEN IDX */
7d13a7d0
AD
4064 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4065 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4066
7d13a7d0
AD
4067 /* VLAN MACLEN IPLEN */
4068 vlan_macip_lens = skb_network_header_len(skb);
4069 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4070 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4071
7d13a7d0 4072 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4073
7d13a7d0 4074 return 1;
9d5c8243
AK
4075}
4076
7af40ad9 4077static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4078{
7af40ad9 4079 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4080 u32 vlan_macip_lens = 0;
4081 u32 mss_l4len_idx = 0;
4082 u32 type_tucmd = 0;
9d5c8243 4083
7d13a7d0 4084 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4085 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4086 return;
7d13a7d0
AD
4087 } else {
4088 u8 l4_hdr = 0;
7af40ad9 4089 switch (first->protocol) {
7d13a7d0
AD
4090 case __constant_htons(ETH_P_IP):
4091 vlan_macip_lens |= skb_network_header_len(skb);
4092 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4093 l4_hdr = ip_hdr(skb)->protocol;
4094 break;
4095 case __constant_htons(ETH_P_IPV6):
4096 vlan_macip_lens |= skb_network_header_len(skb);
4097 l4_hdr = ipv6_hdr(skb)->nexthdr;
4098 break;
4099 default:
4100 if (unlikely(net_ratelimit())) {
4101 dev_warn(tx_ring->dev,
4102 "partial checksum but proto=%x!\n",
7af40ad9 4103 first->protocol);
fa4a7ef3 4104 }
7d13a7d0
AD
4105 break;
4106 }
fa4a7ef3 4107
7d13a7d0
AD
4108 switch (l4_hdr) {
4109 case IPPROTO_TCP:
4110 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4111 mss_l4len_idx = tcp_hdrlen(skb) <<
4112 E1000_ADVTXD_L4LEN_SHIFT;
4113 break;
4114 case IPPROTO_SCTP:
4115 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4116 mss_l4len_idx = sizeof(struct sctphdr) <<
4117 E1000_ADVTXD_L4LEN_SHIFT;
4118 break;
4119 case IPPROTO_UDP:
4120 mss_l4len_idx = sizeof(struct udphdr) <<
4121 E1000_ADVTXD_L4LEN_SHIFT;
4122 break;
4123 default:
4124 if (unlikely(net_ratelimit())) {
4125 dev_warn(tx_ring->dev,
4126 "partial checksum but l4 proto=%x!\n",
4127 l4_hdr);
44b0cda3 4128 }
7d13a7d0 4129 break;
9d5c8243 4130 }
7af40ad9
AD
4131
4132 /* update TX checksum flag */
4133 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4134 }
9d5c8243 4135
7d13a7d0 4136 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4137 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4138
7d13a7d0 4139 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4140}
4141
e032afc8
AD
4142static __le32 igb_tx_cmd_type(u32 tx_flags)
4143{
4144 /* set type for advanced descriptor with frame checksum insertion */
4145 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4146 E1000_ADVTXD_DCMD_IFCS |
4147 E1000_ADVTXD_DCMD_DEXT);
4148
4149 /* set HW vlan bit if vlan is present */
4150 if (tx_flags & IGB_TX_FLAGS_VLAN)
4151 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4152
4153 /* set timestamp bit if present */
4154 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4155 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4156
4157 /* set segmentation bits for TSO */
4158 if (tx_flags & IGB_TX_FLAGS_TSO)
4159 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4160
4161 return cmd_type;
4162}
4163
7af40ad9
AD
4164static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4165 union e1000_adv_tx_desc *tx_desc,
4166 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4167{
4168 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4169
4170 /* 82575 requires a unique index per ring if any offload is enabled */
4171 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4172 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4173 olinfo_status |= tx_ring->reg_idx << 4;
4174
4175 /* insert L4 checksum */
4176 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4177 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4178
4179 /* insert IPv4 checksum */
4180 if (tx_flags & IGB_TX_FLAGS_IPV4)
4181 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4182 }
4183
7af40ad9 4184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4185}
4186
ebe42d16
AD
4187/*
4188 * The largest size we can write to the descriptor is 65535. In order to
4189 * maintain a power of two alignment we have to limit ourselves to 32K.
4190 */
4191#define IGB_MAX_TXD_PWR 15
7af40ad9 4192#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4193
7af40ad9
AD
4194static void igb_tx_map(struct igb_ring *tx_ring,
4195 struct igb_tx_buffer *first,
ebe42d16 4196 const u8 hdr_len)
9d5c8243 4197{
7af40ad9 4198 struct sk_buff *skb = first->skb;
ebe42d16
AD
4199 struct igb_tx_buffer *tx_buffer_info;
4200 union e1000_adv_tx_desc *tx_desc;
4201 dma_addr_t dma;
4202 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4203 unsigned int data_len = skb->data_len;
4204 unsigned int size = skb_headlen(skb);
4205 unsigned int paylen = skb->len - hdr_len;
4206 __le32 cmd_type;
7af40ad9 4207 u32 tx_flags = first->tx_flags;
ebe42d16 4208 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4209
4210 tx_desc = IGB_TX_DESC(tx_ring, i);
4211
7af40ad9 4212 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4213 cmd_type = igb_tx_cmd_type(tx_flags);
4214
4215 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4216 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4217 goto dma_error;
9d5c8243 4218
ebe42d16
AD
4219 /* record length, and DMA address */
4220 first->length = size;
4221 first->dma = dma;
ebe42d16
AD
4222 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4223
4224 for (;;) {
4225 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4226 tx_desc->read.cmd_type_len =
4227 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4228
4229 i++;
4230 tx_desc++;
4231 if (i == tx_ring->count) {
4232 tx_desc = IGB_TX_DESC(tx_ring, 0);
4233 i = 0;
4234 }
4235
4236 dma += IGB_MAX_DATA_PER_TXD;
4237 size -= IGB_MAX_DATA_PER_TXD;
4238
4239 tx_desc->read.olinfo_status = 0;
4240 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4241 }
4242
4243 if (likely(!data_len))
4244 break;
2bbfebe2 4245
ebe42d16 4246 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4247
65689fef 4248 i++;
ebe42d16
AD
4249 tx_desc++;
4250 if (i == tx_ring->count) {
4251 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4252 i = 0;
ebe42d16 4253 }
65689fef 4254
ebe42d16
AD
4255 size = frag->size;
4256 data_len -= size;
4257
4258 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4259 size, DMA_TO_DEVICE);
4260 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4261 goto dma_error;
4262
ebe42d16
AD
4263 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4264 tx_buffer_info->length = size;
4265 tx_buffer_info->dma = dma;
4266
4267 tx_desc->read.olinfo_status = 0;
4268 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4269
4270 frag++;
9d5c8243
AK
4271 }
4272
ebe42d16
AD
4273 /* write last descriptor with RS and EOP bits */
4274 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4275 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4276
4277 /* set the timestamp */
4278 first->time_stamp = jiffies;
4279
ebe42d16
AD
4280 /*
4281 * Force memory writes to complete before letting h/w know there
4282 * are new descriptors to fetch. (Only applicable for weak-ordered
4283 * memory model archs, such as IA-64).
4284 *
4285 * We also need this memory barrier to make certain all of the
4286 * status bits have been updated before next_to_watch is written.
4287 */
4288 wmb();
4289
8542db05 4290 /* set next_to_watch value indicating a packet is present */
ebe42d16 4291 first->next_to_watch = tx_desc;
9d5c8243 4292
ebe42d16
AD
4293 i++;
4294 if (i == tx_ring->count)
4295 i = 0;
6366ad33 4296
ebe42d16 4297 tx_ring->next_to_use = i;
6366ad33 4298
ebe42d16 4299 writel(i, tx_ring->tail);
6366ad33 4300
ebe42d16
AD
4301 /* we need this if more than one processor can write to our tail
4302 * at a time, it syncronizes IO on IA64/Altix systems */
4303 mmiowb();
4304
4305 return;
4306
4307dma_error:
4308 dev_err(tx_ring->dev, "TX DMA map failed\n");
4309
4310 /* clear dma mappings for failed tx_buffer_info map */
4311 for (;;) {
4312 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4313 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4314 if (tx_buffer_info == first)
4315 break;
a77ff709
NN
4316 if (i == 0)
4317 i = tx_ring->count;
6366ad33 4318 i--;
6366ad33
AD
4319 }
4320
9d5c8243 4321 tx_ring->next_to_use = i;
9d5c8243
AK
4322}
4323
6ad4edfc 4324static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4325{
e694e964
AD
4326 struct net_device *netdev = tx_ring->netdev;
4327
661086df 4328 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4329
9d5c8243
AK
4330 /* Herbert's original patch had:
4331 * smp_mb__after_netif_stop_queue();
4332 * but since that doesn't exist yet, just open code it. */
4333 smp_mb();
4334
4335 /* We need to check again in a case another CPU has just
4336 * made room available. */
c493ea45 4337 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4338 return -EBUSY;
4339
4340 /* A reprieve! */
661086df 4341 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4342
4343 u64_stats_update_begin(&tx_ring->tx_syncp2);
4344 tx_ring->tx_stats.restart_queue2++;
4345 u64_stats_update_end(&tx_ring->tx_syncp2);
4346
9d5c8243
AK
4347 return 0;
4348}
4349
6ad4edfc 4350static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4351{
c493ea45 4352 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4353 return 0;
e694e964 4354 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4355}
4356
cd392f5c
AD
4357netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4358 struct igb_ring *tx_ring)
9d5c8243 4359{
8542db05 4360 struct igb_tx_buffer *first;
ebe42d16 4361 int tso;
91d4ee33 4362 u32 tx_flags = 0;
31f6adbb 4363 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4364 u8 hdr_len = 0;
9d5c8243 4365
9d5c8243
AK
4366 /* need: 1 descriptor per page,
4367 * + 2 desc gap to keep tail from touching head,
4368 * + 1 desc for skb->data,
4369 * + 1 desc for context descriptor,
4370 * otherwise try next time */
e694e964 4371 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4372 /* this is a hard error */
9d5c8243
AK
4373 return NETDEV_TX_BUSY;
4374 }
33af6bcc 4375
7af40ad9
AD
4376 /* record the location of the first descriptor for this packet */
4377 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4378 first->skb = skb;
4379 first->bytecount = skb->len;
4380 first->gso_segs = 1;
4381
2244d07b
OH
4382 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4383 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4384 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4385 }
9d5c8243 4386
eab6d18d 4387 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4388 tx_flags |= IGB_TX_FLAGS_VLAN;
4389 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4390 }
4391
7af40ad9
AD
4392 /* record initial flags and protocol */
4393 first->tx_flags = tx_flags;
4394 first->protocol = protocol;
cdfd01fc 4395
7af40ad9
AD
4396 tso = igb_tso(tx_ring, first, &hdr_len);
4397 if (tso < 0)
7d13a7d0 4398 goto out_drop;
7af40ad9
AD
4399 else if (!tso)
4400 igb_tx_csum(tx_ring, first);
9d5c8243 4401
7af40ad9 4402 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4403
4404 /* Make sure there is space in the ring for the next send. */
e694e964 4405 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4406
9d5c8243 4407 return NETDEV_TX_OK;
7d13a7d0
AD
4408
4409out_drop:
7af40ad9
AD
4410 igb_unmap_and_free_tx_resource(tx_ring, first);
4411
7d13a7d0 4412 return NETDEV_TX_OK;
9d5c8243
AK
4413}
4414
1cc3bd87
AD
4415static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4416 struct sk_buff *skb)
4417{
4418 unsigned int r_idx = skb->queue_mapping;
4419
4420 if (r_idx >= adapter->num_tx_queues)
4421 r_idx = r_idx % adapter->num_tx_queues;
4422
4423 return adapter->tx_ring[r_idx];
4424}
4425
cd392f5c
AD
4426static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4427 struct net_device *netdev)
9d5c8243
AK
4428{
4429 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4430
4431 if (test_bit(__IGB_DOWN, &adapter->state)) {
4432 dev_kfree_skb_any(skb);
4433 return NETDEV_TX_OK;
4434 }
4435
4436 if (skb->len <= 0) {
4437 dev_kfree_skb_any(skb);
4438 return NETDEV_TX_OK;
4439 }
4440
1cc3bd87
AD
4441 /*
4442 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4443 * in order to meet this minimum size requirement.
4444 */
4445 if (skb->len < 17) {
4446 if (skb_padto(skb, 17))
4447 return NETDEV_TX_OK;
4448 skb->len = 17;
4449 }
9d5c8243 4450
1cc3bd87 4451 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4452}
4453
4454/**
4455 * igb_tx_timeout - Respond to a Tx Hang
4456 * @netdev: network interface device structure
4457 **/
4458static void igb_tx_timeout(struct net_device *netdev)
4459{
4460 struct igb_adapter *adapter = netdev_priv(netdev);
4461 struct e1000_hw *hw = &adapter->hw;
4462
4463 /* Do the reset outside of interrupt context */
4464 adapter->tx_timeout_count++;
f7ba205e 4465
55cac248
AD
4466 if (hw->mac.type == e1000_82580)
4467 hw->dev_spec._82575.global_device_reset = true;
4468
9d5c8243 4469 schedule_work(&adapter->reset_task);
265de409
AD
4470 wr32(E1000_EICS,
4471 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4472}
4473
4474static void igb_reset_task(struct work_struct *work)
4475{
4476 struct igb_adapter *adapter;
4477 adapter = container_of(work, struct igb_adapter, reset_task);
4478
c97ec42a
TI
4479 igb_dump(adapter);
4480 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4481 igb_reinit_locked(adapter);
4482}
4483
4484/**
12dcd86b 4485 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4486 * @netdev: network interface device structure
12dcd86b 4487 * @stats: rtnl_link_stats64 pointer
9d5c8243 4488 *
9d5c8243 4489 **/
12dcd86b
ED
4490static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4491 struct rtnl_link_stats64 *stats)
9d5c8243 4492{
12dcd86b
ED
4493 struct igb_adapter *adapter = netdev_priv(netdev);
4494
4495 spin_lock(&adapter->stats64_lock);
4496 igb_update_stats(adapter, &adapter->stats64);
4497 memcpy(stats, &adapter->stats64, sizeof(*stats));
4498 spin_unlock(&adapter->stats64_lock);
4499
4500 return stats;
9d5c8243
AK
4501}
4502
4503/**
4504 * igb_change_mtu - Change the Maximum Transfer Unit
4505 * @netdev: network interface device structure
4506 * @new_mtu: new value for maximum frame size
4507 *
4508 * Returns 0 on success, negative on failure
4509 **/
4510static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4511{
4512 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4513 struct pci_dev *pdev = adapter->pdev;
153285f9 4514 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4515
c809d227 4516 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4517 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4518 return -EINVAL;
4519 }
4520
153285f9 4521#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4522 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4523 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4524 return -EINVAL;
4525 }
4526
4527 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4528 msleep(1);
73cd78f1 4529
9d5c8243
AK
4530 /* igb_down has a dependency on max_frame_size */
4531 adapter->max_frame_size = max_frame;
559e9c49 4532
4c844851
AD
4533 if (netif_running(netdev))
4534 igb_down(adapter);
9d5c8243 4535
090b1795 4536 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4537 netdev->mtu, new_mtu);
4538 netdev->mtu = new_mtu;
4539
4540 if (netif_running(netdev))
4541 igb_up(adapter);
4542 else
4543 igb_reset(adapter);
4544
4545 clear_bit(__IGB_RESETTING, &adapter->state);
4546
4547 return 0;
4548}
4549
4550/**
4551 * igb_update_stats - Update the board statistics counters
4552 * @adapter: board private structure
4553 **/
4554
12dcd86b
ED
4555void igb_update_stats(struct igb_adapter *adapter,
4556 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4557{
4558 struct e1000_hw *hw = &adapter->hw;
4559 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4560 u32 reg, mpc;
9d5c8243 4561 u16 phy_tmp;
3f9c0164
AD
4562 int i;
4563 u64 bytes, packets;
12dcd86b
ED
4564 unsigned int start;
4565 u64 _bytes, _packets;
9d5c8243
AK
4566
4567#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4568
4569 /*
4570 * Prevent stats update while adapter is being reset, or if the pci
4571 * connection is down.
4572 */
4573 if (adapter->link_speed == 0)
4574 return;
4575 if (pci_channel_offline(pdev))
4576 return;
4577
3f9c0164
AD
4578 bytes = 0;
4579 packets = 0;
4580 for (i = 0; i < adapter->num_rx_queues; i++) {
4581 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4582 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4583
3025a446 4584 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4585 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4586
4587 do {
4588 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4589 _bytes = ring->rx_stats.bytes;
4590 _packets = ring->rx_stats.packets;
4591 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4592 bytes += _bytes;
4593 packets += _packets;
3f9c0164
AD
4594 }
4595
128e45eb
AD
4596 net_stats->rx_bytes = bytes;
4597 net_stats->rx_packets = packets;
3f9c0164
AD
4598
4599 bytes = 0;
4600 packets = 0;
4601 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4602 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4603 do {
4604 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4605 _bytes = ring->tx_stats.bytes;
4606 _packets = ring->tx_stats.packets;
4607 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4608 bytes += _bytes;
4609 packets += _packets;
3f9c0164 4610 }
128e45eb
AD
4611 net_stats->tx_bytes = bytes;
4612 net_stats->tx_packets = packets;
3f9c0164
AD
4613
4614 /* read stats registers */
9d5c8243
AK
4615 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4616 adapter->stats.gprc += rd32(E1000_GPRC);
4617 adapter->stats.gorc += rd32(E1000_GORCL);
4618 rd32(E1000_GORCH); /* clear GORCL */
4619 adapter->stats.bprc += rd32(E1000_BPRC);
4620 adapter->stats.mprc += rd32(E1000_MPRC);
4621 adapter->stats.roc += rd32(E1000_ROC);
4622
4623 adapter->stats.prc64 += rd32(E1000_PRC64);
4624 adapter->stats.prc127 += rd32(E1000_PRC127);
4625 adapter->stats.prc255 += rd32(E1000_PRC255);
4626 adapter->stats.prc511 += rd32(E1000_PRC511);
4627 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4628 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4629 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4630 adapter->stats.sec += rd32(E1000_SEC);
4631
fa3d9a6d
MW
4632 mpc = rd32(E1000_MPC);
4633 adapter->stats.mpc += mpc;
4634 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4635 adapter->stats.scc += rd32(E1000_SCC);
4636 adapter->stats.ecol += rd32(E1000_ECOL);
4637 adapter->stats.mcc += rd32(E1000_MCC);
4638 adapter->stats.latecol += rd32(E1000_LATECOL);
4639 adapter->stats.dc += rd32(E1000_DC);
4640 adapter->stats.rlec += rd32(E1000_RLEC);
4641 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4642 adapter->stats.xontxc += rd32(E1000_XONTXC);
4643 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4644 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4645 adapter->stats.fcruc += rd32(E1000_FCRUC);
4646 adapter->stats.gptc += rd32(E1000_GPTC);
4647 adapter->stats.gotc += rd32(E1000_GOTCL);
4648 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4649 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4650 adapter->stats.ruc += rd32(E1000_RUC);
4651 adapter->stats.rfc += rd32(E1000_RFC);
4652 adapter->stats.rjc += rd32(E1000_RJC);
4653 adapter->stats.tor += rd32(E1000_TORH);
4654 adapter->stats.tot += rd32(E1000_TOTH);
4655 adapter->stats.tpr += rd32(E1000_TPR);
4656
4657 adapter->stats.ptc64 += rd32(E1000_PTC64);
4658 adapter->stats.ptc127 += rd32(E1000_PTC127);
4659 adapter->stats.ptc255 += rd32(E1000_PTC255);
4660 adapter->stats.ptc511 += rd32(E1000_PTC511);
4661 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4662 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4663
4664 adapter->stats.mptc += rd32(E1000_MPTC);
4665 adapter->stats.bptc += rd32(E1000_BPTC);
4666
2d0b0f69
NN
4667 adapter->stats.tpt += rd32(E1000_TPT);
4668 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4669
4670 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4671 /* read internal phy specific stats */
4672 reg = rd32(E1000_CTRL_EXT);
4673 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4674 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4675 adapter->stats.tncrs += rd32(E1000_TNCRS);
4676 }
4677
9d5c8243
AK
4678 adapter->stats.tsctc += rd32(E1000_TSCTC);
4679 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4680
4681 adapter->stats.iac += rd32(E1000_IAC);
4682 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4683 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4684 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4685 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4686 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4687 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4688 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4689 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4690
4691 /* Fill out the OS statistics structure */
128e45eb
AD
4692 net_stats->multicast = adapter->stats.mprc;
4693 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4694
4695 /* Rx Errors */
4696
4697 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4698 * our own version based on RUC and ROC */
128e45eb 4699 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4700 adapter->stats.crcerrs + adapter->stats.algnerrc +
4701 adapter->stats.ruc + adapter->stats.roc +
4702 adapter->stats.cexterr;
128e45eb
AD
4703 net_stats->rx_length_errors = adapter->stats.ruc +
4704 adapter->stats.roc;
4705 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4706 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4707 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4708
4709 /* Tx Errors */
128e45eb
AD
4710 net_stats->tx_errors = adapter->stats.ecol +
4711 adapter->stats.latecol;
4712 net_stats->tx_aborted_errors = adapter->stats.ecol;
4713 net_stats->tx_window_errors = adapter->stats.latecol;
4714 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4715
4716 /* Tx Dropped needs to be maintained elsewhere */
4717
4718 /* Phy Stats */
4719 if (hw->phy.media_type == e1000_media_type_copper) {
4720 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4721 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4722 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4723 adapter->phy_stats.idle_errors += phy_tmp;
4724 }
4725 }
4726
4727 /* Management Stats */
4728 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4729 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4730 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4731
4732 /* OS2BMC Stats */
4733 reg = rd32(E1000_MANC);
4734 if (reg & E1000_MANC_EN_BMC2OS) {
4735 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4736 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4737 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4738 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4739 }
9d5c8243
AK
4740}
4741
9d5c8243
AK
4742static irqreturn_t igb_msix_other(int irq, void *data)
4743{
047e0030 4744 struct igb_adapter *adapter = data;
9d5c8243 4745 struct e1000_hw *hw = &adapter->hw;
844290e5 4746 u32 icr = rd32(E1000_ICR);
844290e5 4747 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4748
7f081d40
AD
4749 if (icr & E1000_ICR_DRSTA)
4750 schedule_work(&adapter->reset_task);
4751
047e0030 4752 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4753 /* HW is reporting DMA is out of sync */
4754 adapter->stats.doosync++;
13800469
GR
4755 /* The DMA Out of Sync is also indication of a spoof event
4756 * in IOV mode. Check the Wrong VM Behavior register to
4757 * see if it is really a spoof event. */
4758 igb_check_wvbr(adapter);
dda0e083 4759 }
eebbbdba 4760
4ae196df
AD
4761 /* Check for a mailbox event */
4762 if (icr & E1000_ICR_VMMB)
4763 igb_msg_task(adapter);
4764
4765 if (icr & E1000_ICR_LSC) {
4766 hw->mac.get_link_status = 1;
4767 /* guard against interrupt when we're going down */
4768 if (!test_bit(__IGB_DOWN, &adapter->state))
4769 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4770 }
4771
25568a53
AD
4772 if (adapter->vfs_allocated_count)
4773 wr32(E1000_IMS, E1000_IMS_LSC |
4774 E1000_IMS_VMMB |
4775 E1000_IMS_DOUTSYNC);
4776 else
4777 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4778 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4779
4780 return IRQ_HANDLED;
4781}
4782
047e0030 4783static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4784{
26b39276 4785 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4786 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4787
047e0030
AD
4788 if (!q_vector->set_itr)
4789 return;
73cd78f1 4790
047e0030
AD
4791 if (!itr_val)
4792 itr_val = 0x4;
661086df 4793
26b39276
AD
4794 if (adapter->hw.mac.type == e1000_82575)
4795 itr_val |= itr_val << 16;
661086df 4796 else
0ba82994 4797 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4798
047e0030
AD
4799 writel(itr_val, q_vector->itr_register);
4800 q_vector->set_itr = 0;
6eb5a7f1
AD
4801}
4802
047e0030 4803static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4804{
047e0030 4805 struct igb_q_vector *q_vector = data;
9d5c8243 4806
047e0030
AD
4807 /* Write the ITR value calculated from the previous interrupt. */
4808 igb_write_itr(q_vector);
9d5c8243 4809
047e0030 4810 napi_schedule(&q_vector->napi);
844290e5 4811
047e0030 4812 return IRQ_HANDLED;
fe4506b6
JC
4813}
4814
421e02f0 4815#ifdef CONFIG_IGB_DCA
047e0030 4816static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4817{
047e0030 4818 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4819 struct e1000_hw *hw = &adapter->hw;
4820 int cpu = get_cpu();
fe4506b6 4821
047e0030
AD
4822 if (q_vector->cpu == cpu)
4823 goto out_no_update;
4824
0ba82994
AD
4825 if (q_vector->tx.ring) {
4826 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4827 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4828 if (hw->mac.type == e1000_82575) {
4829 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4830 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4831 } else {
047e0030
AD
4832 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4833 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4834 E1000_DCA_TXCTRL_CPUID_SHIFT;
4835 }
4836 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4837 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4838 }
0ba82994
AD
4839 if (q_vector->rx.ring) {
4840 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4841 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4842 if (hw->mac.type == e1000_82575) {
2d064c06 4843 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4844 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4845 } else {
4846 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4847 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4848 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4849 }
fe4506b6
JC
4850 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4851 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4852 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4853 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4854 }
047e0030
AD
4855 q_vector->cpu = cpu;
4856out_no_update:
fe4506b6
JC
4857 put_cpu();
4858}
4859
4860static void igb_setup_dca(struct igb_adapter *adapter)
4861{
7e0e99ef 4862 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4863 int i;
4864
7dfc16fa 4865 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4866 return;
4867
7e0e99ef
AD
4868 /* Always use CB2 mode, difference is masked in the CB driver. */
4869 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4870
047e0030 4871 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4872 adapter->q_vector[i]->cpu = -1;
4873 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4874 }
4875}
4876
4877static int __igb_notify_dca(struct device *dev, void *data)
4878{
4879 struct net_device *netdev = dev_get_drvdata(dev);
4880 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4881 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4882 struct e1000_hw *hw = &adapter->hw;
4883 unsigned long event = *(unsigned long *)data;
4884
4885 switch (event) {
4886 case DCA_PROVIDER_ADD:
4887 /* if already enabled, don't do it again */
7dfc16fa 4888 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4889 break;
fe4506b6 4890 if (dca_add_requester(dev) == 0) {
bbd98fe4 4891 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4892 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4893 igb_setup_dca(adapter);
4894 break;
4895 }
4896 /* Fall Through since DCA is disabled. */
4897 case DCA_PROVIDER_REMOVE:
7dfc16fa 4898 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4899 /* without this a class_device is left
047e0030 4900 * hanging around in the sysfs model */
fe4506b6 4901 dca_remove_requester(dev);
090b1795 4902 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4903 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4904 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4905 }
4906 break;
4907 }
bbd98fe4 4908
fe4506b6 4909 return 0;
9d5c8243
AK
4910}
4911
fe4506b6
JC
4912static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4913 void *p)
4914{
4915 int ret_val;
4916
4917 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4918 __igb_notify_dca);
4919
4920 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4921}
421e02f0 4922#endif /* CONFIG_IGB_DCA */
9d5c8243 4923
4ae196df
AD
4924static void igb_ping_all_vfs(struct igb_adapter *adapter)
4925{
4926 struct e1000_hw *hw = &adapter->hw;
4927 u32 ping;
4928 int i;
4929
4930 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4931 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4932 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4933 ping |= E1000_VT_MSGTYPE_CTS;
4934 igb_write_mbx(hw, &ping, 1, i);
4935 }
4936}
4937
7d5753f0
AD
4938static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4939{
4940 struct e1000_hw *hw = &adapter->hw;
4941 u32 vmolr = rd32(E1000_VMOLR(vf));
4942 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4943
d85b9004 4944 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4945 IGB_VF_FLAG_MULTI_PROMISC);
4946 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4947
4948 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4949 vmolr |= E1000_VMOLR_MPME;
d85b9004 4950 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4951 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4952 } else {
4953 /*
4954 * if we have hashes and we are clearing a multicast promisc
4955 * flag we need to write the hashes to the MTA as this step
4956 * was previously skipped
4957 */
4958 if (vf_data->num_vf_mc_hashes > 30) {
4959 vmolr |= E1000_VMOLR_MPME;
4960 } else if (vf_data->num_vf_mc_hashes) {
4961 int j;
4962 vmolr |= E1000_VMOLR_ROMPE;
4963 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4964 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4965 }
4966 }
4967
4968 wr32(E1000_VMOLR(vf), vmolr);
4969
4970 /* there are flags left unprocessed, likely not supported */
4971 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4972 return -EINVAL;
4973
4974 return 0;
4975
4976}
4977
4ae196df
AD
4978static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4979 u32 *msgbuf, u32 vf)
4980{
4981 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4982 u16 *hash_list = (u16 *)&msgbuf[1];
4983 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4984 int i;
4985
7d5753f0 4986 /* salt away the number of multicast addresses assigned
4ae196df
AD
4987 * to this VF for later use to restore when the PF multi cast
4988 * list changes
4989 */
4990 vf_data->num_vf_mc_hashes = n;
4991
7d5753f0
AD
4992 /* only up to 30 hash values supported */
4993 if (n > 30)
4994 n = 30;
4995
4996 /* store the hashes for later use */
4ae196df 4997 for (i = 0; i < n; i++)
a419aef8 4998 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4999
5000 /* Flush and reset the mta with the new values */
ff41f8dc 5001 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5002
5003 return 0;
5004}
5005
5006static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5007{
5008 struct e1000_hw *hw = &adapter->hw;
5009 struct vf_data_storage *vf_data;
5010 int i, j;
5011
5012 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5013 u32 vmolr = rd32(E1000_VMOLR(i));
5014 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5015
4ae196df 5016 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5017
5018 if ((vf_data->num_vf_mc_hashes > 30) ||
5019 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5020 vmolr |= E1000_VMOLR_MPME;
5021 } else if (vf_data->num_vf_mc_hashes) {
5022 vmolr |= E1000_VMOLR_ROMPE;
5023 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5024 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5025 }
5026 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5027 }
5028}
5029
5030static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5031{
5032 struct e1000_hw *hw = &adapter->hw;
5033 u32 pool_mask, reg, vid;
5034 int i;
5035
5036 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5037
5038 /* Find the vlan filter for this id */
5039 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5040 reg = rd32(E1000_VLVF(i));
5041
5042 /* remove the vf from the pool */
5043 reg &= ~pool_mask;
5044
5045 /* if pool is empty then remove entry from vfta */
5046 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5047 (reg & E1000_VLVF_VLANID_ENABLE)) {
5048 reg = 0;
5049 vid = reg & E1000_VLVF_VLANID_MASK;
5050 igb_vfta_set(hw, vid, false);
5051 }
5052
5053 wr32(E1000_VLVF(i), reg);
5054 }
ae641bdc
AD
5055
5056 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5057}
5058
5059static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5060{
5061 struct e1000_hw *hw = &adapter->hw;
5062 u32 reg, i;
5063
51466239
AD
5064 /* The vlvf table only exists on 82576 hardware and newer */
5065 if (hw->mac.type < e1000_82576)
5066 return -1;
5067
5068 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5069 if (!adapter->vfs_allocated_count)
5070 return -1;
5071
5072 /* Find the vlan filter for this id */
5073 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5074 reg = rd32(E1000_VLVF(i));
5075 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5076 vid == (reg & E1000_VLVF_VLANID_MASK))
5077 break;
5078 }
5079
5080 if (add) {
5081 if (i == E1000_VLVF_ARRAY_SIZE) {
5082 /* Did not find a matching VLAN ID entry that was
5083 * enabled. Search for a free filter entry, i.e.
5084 * one without the enable bit set
5085 */
5086 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5087 reg = rd32(E1000_VLVF(i));
5088 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5089 break;
5090 }
5091 }
5092 if (i < E1000_VLVF_ARRAY_SIZE) {
5093 /* Found an enabled/available entry */
5094 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5095
5096 /* if !enabled we need to set this up in vfta */
5097 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5098 /* add VID to filter table */
5099 igb_vfta_set(hw, vid, true);
4ae196df
AD
5100 reg |= E1000_VLVF_VLANID_ENABLE;
5101 }
cad6d05f
AD
5102 reg &= ~E1000_VLVF_VLANID_MASK;
5103 reg |= vid;
4ae196df 5104 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5105
5106 /* do not modify RLPML for PF devices */
5107 if (vf >= adapter->vfs_allocated_count)
5108 return 0;
5109
5110 if (!adapter->vf_data[vf].vlans_enabled) {
5111 u32 size;
5112 reg = rd32(E1000_VMOLR(vf));
5113 size = reg & E1000_VMOLR_RLPML_MASK;
5114 size += 4;
5115 reg &= ~E1000_VMOLR_RLPML_MASK;
5116 reg |= size;
5117 wr32(E1000_VMOLR(vf), reg);
5118 }
ae641bdc 5119
51466239 5120 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5121 }
5122 } else {
5123 if (i < E1000_VLVF_ARRAY_SIZE) {
5124 /* remove vf from the pool */
5125 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5126 /* if pool is empty then remove entry from vfta */
5127 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5128 reg = 0;
5129 igb_vfta_set(hw, vid, false);
5130 }
5131 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5132
5133 /* do not modify RLPML for PF devices */
5134 if (vf >= adapter->vfs_allocated_count)
5135 return 0;
5136
5137 adapter->vf_data[vf].vlans_enabled--;
5138 if (!adapter->vf_data[vf].vlans_enabled) {
5139 u32 size;
5140 reg = rd32(E1000_VMOLR(vf));
5141 size = reg & E1000_VMOLR_RLPML_MASK;
5142 size -= 4;
5143 reg &= ~E1000_VMOLR_RLPML_MASK;
5144 reg |= size;
5145 wr32(E1000_VMOLR(vf), reg);
5146 }
4ae196df
AD
5147 }
5148 }
8151d294
WM
5149 return 0;
5150}
5151
5152static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5153{
5154 struct e1000_hw *hw = &adapter->hw;
5155
5156 if (vid)
5157 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5158 else
5159 wr32(E1000_VMVIR(vf), 0);
5160}
5161
5162static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5163 int vf, u16 vlan, u8 qos)
5164{
5165 int err = 0;
5166 struct igb_adapter *adapter = netdev_priv(netdev);
5167
5168 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5169 return -EINVAL;
5170 if (vlan || qos) {
5171 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5172 if (err)
5173 goto out;
5174 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5175 igb_set_vmolr(adapter, vf, !vlan);
5176 adapter->vf_data[vf].pf_vlan = vlan;
5177 adapter->vf_data[vf].pf_qos = qos;
5178 dev_info(&adapter->pdev->dev,
5179 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5180 if (test_bit(__IGB_DOWN, &adapter->state)) {
5181 dev_warn(&adapter->pdev->dev,
5182 "The VF VLAN has been set,"
5183 " but the PF device is not up.\n");
5184 dev_warn(&adapter->pdev->dev,
5185 "Bring the PF device up before"
5186 " attempting to use the VF device.\n");
5187 }
5188 } else {
5189 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5190 false, vf);
5191 igb_set_vmvir(adapter, vlan, vf);
5192 igb_set_vmolr(adapter, vf, true);
5193 adapter->vf_data[vf].pf_vlan = 0;
5194 adapter->vf_data[vf].pf_qos = 0;
5195 }
5196out:
5197 return err;
4ae196df
AD
5198}
5199
5200static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5201{
5202 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5203 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5204
5205 return igb_vlvf_set(adapter, vid, add, vf);
5206}
5207
f2ca0dbe 5208static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5209{
8fa7e0f7
GR
5210 /* clear flags - except flag that indicates PF has set the MAC */
5211 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5212 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5213
5214 /* reset offloads to defaults */
8151d294 5215 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5216
5217 /* reset vlans for device */
5218 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5219 if (adapter->vf_data[vf].pf_vlan)
5220 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5221 adapter->vf_data[vf].pf_vlan,
5222 adapter->vf_data[vf].pf_qos);
5223 else
5224 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5225
5226 /* reset multicast table array for vf */
5227 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5228
5229 /* Flush and reset the mta with the new values */
ff41f8dc 5230 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5231}
5232
f2ca0dbe
AD
5233static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5234{
5235 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5236
5237 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5238 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5239 random_ether_addr(vf_mac);
f2ca0dbe
AD
5240
5241 /* process remaining reset events */
5242 igb_vf_reset(adapter, vf);
5243}
5244
5245static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5246{
5247 struct e1000_hw *hw = &adapter->hw;
5248 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5249 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5250 u32 reg, msgbuf[3];
5251 u8 *addr = (u8 *)(&msgbuf[1]);
5252
5253 /* process all the same items cleared in a function level reset */
f2ca0dbe 5254 igb_vf_reset(adapter, vf);
4ae196df
AD
5255
5256 /* set vf mac address */
26ad9178 5257 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5258
5259 /* enable transmit and receive for vf */
5260 reg = rd32(E1000_VFTE);
5261 wr32(E1000_VFTE, reg | (1 << vf));
5262 reg = rd32(E1000_VFRE);
5263 wr32(E1000_VFRE, reg | (1 << vf));
5264
8fa7e0f7 5265 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5266
5267 /* reply to reset with ack and vf mac address */
5268 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5269 memcpy(addr, vf_mac, 6);
5270 igb_write_mbx(hw, msgbuf, 3, vf);
5271}
5272
5273static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5274{
de42edde
GR
5275 /*
5276 * The VF MAC Address is stored in a packed array of bytes
5277 * starting at the second 32 bit word of the msg array
5278 */
f2ca0dbe
AD
5279 unsigned char *addr = (char *)&msg[1];
5280 int err = -1;
4ae196df 5281
f2ca0dbe
AD
5282 if (is_valid_ether_addr(addr))
5283 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5284
f2ca0dbe 5285 return err;
4ae196df
AD
5286}
5287
5288static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5289{
5290 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5291 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5292 u32 msg = E1000_VT_MSGTYPE_NACK;
5293
5294 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5295 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5296 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5297 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5298 vf_data->last_nack = jiffies;
4ae196df
AD
5299 }
5300}
5301
f2ca0dbe 5302static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5303{
f2ca0dbe
AD
5304 struct pci_dev *pdev = adapter->pdev;
5305 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5306 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5307 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5308 s32 retval;
5309
f2ca0dbe 5310 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5311
fef45f4c
AD
5312 if (retval) {
5313 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5314 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5315 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5316 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5317 return;
5318 goto out;
5319 }
4ae196df
AD
5320
5321 /* this is a message we already processed, do nothing */
5322 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5323 return;
4ae196df
AD
5324
5325 /*
5326 * until the vf completes a reset it should not be
5327 * allowed to start any configuration.
5328 */
5329
5330 if (msgbuf[0] == E1000_VF_RESET) {
5331 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5332 return;
4ae196df
AD
5333 }
5334
f2ca0dbe 5335 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5336 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5337 return;
5338 retval = -1;
5339 goto out;
4ae196df
AD
5340 }
5341
5342 switch ((msgbuf[0] & 0xFFFF)) {
5343 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5344 retval = -EINVAL;
5345 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5346 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5347 else
5348 dev_warn(&pdev->dev,
5349 "VF %d attempted to override administratively "
5350 "set MAC address\nReload the VF driver to "
5351 "resume operations\n", vf);
4ae196df 5352 break;
7d5753f0
AD
5353 case E1000_VF_SET_PROMISC:
5354 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5355 break;
4ae196df
AD
5356 case E1000_VF_SET_MULTICAST:
5357 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5358 break;
5359 case E1000_VF_SET_LPE:
5360 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5361 break;
5362 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5363 retval = -1;
5364 if (vf_data->pf_vlan)
5365 dev_warn(&pdev->dev,
5366 "VF %d attempted to override administratively "
5367 "set VLAN tag\nReload the VF driver to "
5368 "resume operations\n", vf);
8151d294
WM
5369 else
5370 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5371 break;
5372 default:
090b1795 5373 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5374 retval = -1;
5375 break;
5376 }
5377
fef45f4c
AD
5378 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5379out:
4ae196df
AD
5380 /* notify the VF of the results of what it sent us */
5381 if (retval)
5382 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5383 else
5384 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5385
4ae196df 5386 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5387}
4ae196df 5388
f2ca0dbe
AD
5389static void igb_msg_task(struct igb_adapter *adapter)
5390{
5391 struct e1000_hw *hw = &adapter->hw;
5392 u32 vf;
5393
5394 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5395 /* process any reset requests */
5396 if (!igb_check_for_rst(hw, vf))
5397 igb_vf_reset_event(adapter, vf);
5398
5399 /* process any messages pending */
5400 if (!igb_check_for_msg(hw, vf))
5401 igb_rcv_msg_from_vf(adapter, vf);
5402
5403 /* process any acks */
5404 if (!igb_check_for_ack(hw, vf))
5405 igb_rcv_ack_from_vf(adapter, vf);
5406 }
4ae196df
AD
5407}
5408
68d480c4
AD
5409/**
5410 * igb_set_uta - Set unicast filter table address
5411 * @adapter: board private structure
5412 *
5413 * The unicast table address is a register array of 32-bit registers.
5414 * The table is meant to be used in a way similar to how the MTA is used
5415 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5416 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5417 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5418 **/
5419static void igb_set_uta(struct igb_adapter *adapter)
5420{
5421 struct e1000_hw *hw = &adapter->hw;
5422 int i;
5423
5424 /* The UTA table only exists on 82576 hardware and newer */
5425 if (hw->mac.type < e1000_82576)
5426 return;
5427
5428 /* we only need to do this if VMDq is enabled */
5429 if (!adapter->vfs_allocated_count)
5430 return;
5431
5432 for (i = 0; i < hw->mac.uta_reg_count; i++)
5433 array_wr32(E1000_UTA, i, ~0);
5434}
5435
9d5c8243
AK
5436/**
5437 * igb_intr_msi - Interrupt Handler
5438 * @irq: interrupt number
5439 * @data: pointer to a network interface device structure
5440 **/
5441static irqreturn_t igb_intr_msi(int irq, void *data)
5442{
047e0030
AD
5443 struct igb_adapter *adapter = data;
5444 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5445 struct e1000_hw *hw = &adapter->hw;
5446 /* read ICR disables interrupts using IAM */
5447 u32 icr = rd32(E1000_ICR);
5448
047e0030 5449 igb_write_itr(q_vector);
9d5c8243 5450
7f081d40
AD
5451 if (icr & E1000_ICR_DRSTA)
5452 schedule_work(&adapter->reset_task);
5453
047e0030 5454 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5455 /* HW is reporting DMA is out of sync */
5456 adapter->stats.doosync++;
5457 }
5458
9d5c8243
AK
5459 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5460 hw->mac.get_link_status = 1;
5461 if (!test_bit(__IGB_DOWN, &adapter->state))
5462 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5463 }
5464
047e0030 5465 napi_schedule(&q_vector->napi);
9d5c8243
AK
5466
5467 return IRQ_HANDLED;
5468}
5469
5470/**
4a3c6433 5471 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5472 * @irq: interrupt number
5473 * @data: pointer to a network interface device structure
5474 **/
5475static irqreturn_t igb_intr(int irq, void *data)
5476{
047e0030
AD
5477 struct igb_adapter *adapter = data;
5478 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5479 struct e1000_hw *hw = &adapter->hw;
5480 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5481 * need for the IMC write */
5482 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5483
5484 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5485 * not set, then the adapter didn't send an interrupt */
5486 if (!(icr & E1000_ICR_INT_ASSERTED))
5487 return IRQ_NONE;
5488
0ba82994
AD
5489 igb_write_itr(q_vector);
5490
7f081d40
AD
5491 if (icr & E1000_ICR_DRSTA)
5492 schedule_work(&adapter->reset_task);
5493
047e0030 5494 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5495 /* HW is reporting DMA is out of sync */
5496 adapter->stats.doosync++;
5497 }
5498
9d5c8243
AK
5499 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5500 hw->mac.get_link_status = 1;
5501 /* guard against interrupt when we're going down */
5502 if (!test_bit(__IGB_DOWN, &adapter->state))
5503 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5504 }
5505
047e0030 5506 napi_schedule(&q_vector->napi);
9d5c8243
AK
5507
5508 return IRQ_HANDLED;
5509}
5510
0ba82994 5511void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5512{
047e0030 5513 struct igb_adapter *adapter = q_vector->adapter;
46544258 5514 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5515
0ba82994
AD
5516 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5517 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5518 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5519 igb_set_itr(q_vector);
46544258 5520 else
047e0030 5521 igb_update_ring_itr(q_vector);
9d5c8243
AK
5522 }
5523
46544258
AD
5524 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5525 if (adapter->msix_entries)
047e0030 5526 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5527 else
5528 igb_irq_enable(adapter);
5529 }
9d5c8243
AK
5530}
5531
46544258
AD
5532/**
5533 * igb_poll - NAPI Rx polling callback
5534 * @napi: napi polling structure
5535 * @budget: count of how many packets we should handle
5536 **/
5537static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5538{
047e0030
AD
5539 struct igb_q_vector *q_vector = container_of(napi,
5540 struct igb_q_vector,
5541 napi);
16eb8815 5542 bool clean_complete = true;
9d5c8243 5543
421e02f0 5544#ifdef CONFIG_IGB_DCA
047e0030
AD
5545 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5546 igb_update_dca(q_vector);
fe4506b6 5547#endif
0ba82994 5548 if (q_vector->tx.ring)
13fde97a 5549 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5550
0ba82994 5551 if (q_vector->rx.ring)
cd392f5c 5552 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5553
16eb8815
AD
5554 /* If all work not completed, return budget and keep polling */
5555 if (!clean_complete)
5556 return budget;
46544258 5557
9d5c8243 5558 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5559 napi_complete(napi);
5560 igb_ring_irq_enable(q_vector);
9d5c8243 5561
16eb8815 5562 return 0;
9d5c8243 5563}
6d8126f9 5564
33af6bcc 5565/**
c5b9bd5e 5566 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5567 * @adapter: board private structure
c5b9bd5e
AD
5568 * @shhwtstamps: timestamp structure to update
5569 * @regval: unsigned 64bit system time value.
5570 *
5571 * We need to convert the system time value stored in the RX/TXSTMP registers
5572 * into a hwtstamp which can be used by the upper level timestamping functions
5573 */
5574static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5575 struct skb_shared_hwtstamps *shhwtstamps,
5576 u64 regval)
5577{
5578 u64 ns;
5579
55cac248
AD
5580 /*
5581 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5582 * 24 to match clock shift we setup earlier.
5583 */
5584 if (adapter->hw.mac.type == e1000_82580)
5585 regval <<= IGB_82580_TSYNC_SHIFT;
5586
c5b9bd5e
AD
5587 ns = timecounter_cyc2time(&adapter->clock, regval);
5588 timecompare_update(&adapter->compare, ns);
5589 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5590 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5591 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5592}
5593
5594/**
5595 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5596 * @q_vector: pointer to q_vector containing needed info
06034649 5597 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5598 *
5599 * If we were asked to do hardware stamping and such a time stamp is
5600 * available, then it must have been for this skb here because we only
5601 * allow only one such packet into the queue.
5602 */
06034649
AD
5603static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5604 struct igb_tx_buffer *buffer_info)
33af6bcc 5605{
c5b9bd5e 5606 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5607 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5608 struct skb_shared_hwtstamps shhwtstamps;
5609 u64 regval;
33af6bcc 5610
c5b9bd5e 5611 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5612 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5613 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5614 return;
5615
5616 regval = rd32(E1000_TXSTMPL);
5617 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5618
5619 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5620 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5621}
5622
9d5c8243
AK
5623/**
5624 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5625 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5626 * returns true if ring is completely cleaned
5627 **/
047e0030 5628static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5629{
047e0030 5630 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5631 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5632 struct igb_tx_buffer *tx_buffer;
8542db05 5633 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5634 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5635 unsigned int budget = q_vector->tx.work_limit;
8542db05 5636 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5637
13fde97a
AD
5638 if (test_bit(__IGB_DOWN, &adapter->state))
5639 return true;
0e014cb1 5640
06034649 5641 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5642 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5643 i -= tx_ring->count;
9d5c8243 5644
13fde97a 5645 for (; budget; budget--) {
8542db05 5646 eop_desc = tx_buffer->next_to_watch;
13fde97a 5647
8542db05
AD
5648 /* prevent any other reads prior to eop_desc */
5649 rmb();
5650
5651 /* if next_to_watch is not set then there is no work pending */
5652 if (!eop_desc)
5653 break;
13fde97a
AD
5654
5655 /* if DD is not set pending work has not been completed */
5656 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5657 break;
5658
8542db05
AD
5659 /* clear next_to_watch to prevent false hangs */
5660 tx_buffer->next_to_watch = NULL;
9d5c8243 5661
ebe42d16
AD
5662 /* update the statistics for this packet */
5663 total_bytes += tx_buffer->bytecount;
5664 total_packets += tx_buffer->gso_segs;
13fde97a 5665
ebe42d16
AD
5666 /* retrieve hardware timestamp */
5667 igb_tx_hwtstamp(q_vector, tx_buffer);
5668
5669 /* free the skb */
5670 dev_kfree_skb_any(tx_buffer->skb);
5671 tx_buffer->skb = NULL;
13fde97a 5672
ebe42d16
AD
5673 /* unmap skb header data */
5674 dma_unmap_single(tx_ring->dev,
5675 tx_buffer->dma,
5676 tx_buffer->length,
5677 DMA_TO_DEVICE);
5678
5679 /* clear last DMA location and unmap remaining buffers */
5680 while (tx_desc != eop_desc) {
5681 tx_buffer->dma = 0;
9d5c8243 5682
13fde97a
AD
5683 tx_buffer++;
5684 tx_desc++;
9d5c8243 5685 i++;
8542db05
AD
5686 if (unlikely(!i)) {
5687 i -= tx_ring->count;
06034649 5688 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5689 tx_desc = IGB_TX_DESC(tx_ring, 0);
5690 }
ebe42d16
AD
5691
5692 /* unmap any remaining paged data */
5693 if (tx_buffer->dma) {
5694 dma_unmap_page(tx_ring->dev,
5695 tx_buffer->dma,
5696 tx_buffer->length,
5697 DMA_TO_DEVICE);
5698 }
5699 }
5700
5701 /* clear last DMA location */
5702 tx_buffer->dma = 0;
5703
5704 /* move us one more past the eop_desc for start of next pkt */
5705 tx_buffer++;
5706 tx_desc++;
5707 i++;
5708 if (unlikely(!i)) {
5709 i -= tx_ring->count;
5710 tx_buffer = tx_ring->tx_buffer_info;
5711 tx_desc = IGB_TX_DESC(tx_ring, 0);
5712 }
0e014cb1
AD
5713 }
5714
8542db05 5715 i += tx_ring->count;
9d5c8243 5716 tx_ring->next_to_clean = i;
13fde97a
AD
5717 u64_stats_update_begin(&tx_ring->tx_syncp);
5718 tx_ring->tx_stats.bytes += total_bytes;
5719 tx_ring->tx_stats.packets += total_packets;
5720 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5721 q_vector->tx.total_bytes += total_bytes;
5722 q_vector->tx.total_packets += total_packets;
9d5c8243 5723
6d095fa8 5724 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5725 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5726
8542db05 5727 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5728
9d5c8243
AK
5729 /* Detect a transmit hang in hardware, this serializes the
5730 * check with the clearing of time_stamp and movement of i */
6d095fa8 5731 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8542db05
AD
5732 if (eop_desc &&
5733 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5734 (adapter->tx_timeout_factor * HZ)) &&
5735 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5736
9d5c8243 5737 /* detected Tx unit hang */
59d71989 5738 dev_err(tx_ring->dev,
9d5c8243 5739 "Detected Tx Unit Hang\n"
2d064c06 5740 " Tx Queue <%d>\n"
9d5c8243
AK
5741 " TDH <%x>\n"
5742 " TDT <%x>\n"
5743 " next_to_use <%x>\n"
5744 " next_to_clean <%x>\n"
9d5c8243
AK
5745 "buffer_info[next_to_clean]\n"
5746 " time_stamp <%lx>\n"
8542db05 5747 " next_to_watch <%p>\n"
9d5c8243
AK
5748 " jiffies <%lx>\n"
5749 " desc.status <%x>\n",
2d064c06 5750 tx_ring->queue_index,
238ac817 5751 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5752 readl(tx_ring->tail),
9d5c8243
AK
5753 tx_ring->next_to_use,
5754 tx_ring->next_to_clean,
8542db05
AD
5755 tx_buffer->time_stamp,
5756 eop_desc,
9d5c8243 5757 jiffies,
0e014cb1 5758 eop_desc->wb.status);
13fde97a
AD
5759 netif_stop_subqueue(tx_ring->netdev,
5760 tx_ring->queue_index);
5761
5762 /* we are about to reset, no point in enabling stuff */
5763 return true;
9d5c8243
AK
5764 }
5765 }
13fde97a
AD
5766
5767 if (unlikely(total_packets &&
5768 netif_carrier_ok(tx_ring->netdev) &&
5769 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5770 /* Make sure that anybody stopping the queue after this
5771 * sees the new next_to_clean.
5772 */
5773 smp_mb();
5774 if (__netif_subqueue_stopped(tx_ring->netdev,
5775 tx_ring->queue_index) &&
5776 !(test_bit(__IGB_DOWN, &adapter->state))) {
5777 netif_wake_subqueue(tx_ring->netdev,
5778 tx_ring->queue_index);
5779
5780 u64_stats_update_begin(&tx_ring->tx_syncp);
5781 tx_ring->tx_stats.restart_queue++;
5782 u64_stats_update_end(&tx_ring->tx_syncp);
5783 }
5784 }
5785
5786 return !!budget;
9d5c8243
AK
5787}
5788
cd392f5c 5789static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5790 union e1000_adv_rx_desc *rx_desc,
5791 struct sk_buff *skb)
9d5c8243 5792{
bc8acf2c 5793 skb_checksum_none_assert(skb);
9d5c8243 5794
294e7d78 5795 /* Ignore Checksum bit is set */
3ceb90fd 5796 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5797 return;
5798
5799 /* Rx checksum disabled via ethtool */
5800 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5801 return;
85ad76b2 5802
9d5c8243 5803 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5804 if (igb_test_staterr(rx_desc,
5805 E1000_RXDEXT_STATERR_TCPE |
5806 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5807 /*
5808 * work around errata with sctp packets where the TCPE aka
5809 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5810 * packets, (aka let the stack check the crc32c)
5811 */
866cff06
AD
5812 if (!((skb->len == 60) &&
5813 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5814 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5815 ring->rx_stats.csum_err++;
12dcd86b
ED
5816 u64_stats_update_end(&ring->rx_syncp);
5817 }
9d5c8243 5818 /* let the stack verify checksum errors */
9d5c8243
AK
5819 return;
5820 }
5821 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5822 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5823 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5824 skb->ip_summed = CHECKSUM_UNNECESSARY;
5825
3ceb90fd
AD
5826 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5827 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5828}
5829
077887c3
AD
5830static inline void igb_rx_hash(struct igb_ring *ring,
5831 union e1000_adv_rx_desc *rx_desc,
5832 struct sk_buff *skb)
5833{
5834 if (ring->netdev->features & NETIF_F_RXHASH)
5835 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5836}
5837
3ceb90fd
AD
5838static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5839 union e1000_adv_rx_desc *rx_desc,
5840 struct sk_buff *skb)
c5b9bd5e
AD
5841{
5842 struct igb_adapter *adapter = q_vector->adapter;
5843 struct e1000_hw *hw = &adapter->hw;
5844 u64 regval;
5845
3ceb90fd
AD
5846 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
5847 E1000_RXDADV_STAT_TS))
5848 return;
5849
c5b9bd5e
AD
5850 /*
5851 * If this bit is set, then the RX registers contain the time stamp. No
5852 * other packet will be time stamped until we read these registers, so
5853 * read the registers to make them available again. Because only one
5854 * packet can be time stamped at a time, we know that the register
5855 * values must belong to this one here and therefore we don't need to
5856 * compare any of the additional attributes stored for it.
5857 *
2244d07b 5858 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5859 * can turn into a skb_shared_hwtstamps.
5860 */
3ceb90fd 5861 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
5862 u32 *stamp = (u32 *)skb->data;
5863 regval = le32_to_cpu(*(stamp + 2));
5864 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5865 skb_pull(skb, IGB_TS_HDR_LEN);
5866 } else {
5867 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5868 return;
c5b9bd5e 5869
757b77e2
NN
5870 regval = rd32(E1000_RXSTMPL);
5871 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5872 }
c5b9bd5e
AD
5873
5874 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5875}
44390ca6 5876static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5877{
5878 /* HW will not DMA in data larger than the given buffer, even if it
5879 * parses the (NFS, of course) header to be larger. In that case, it
5880 * fills the header buffer and spills the rest into the page.
5881 */
5882 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5883 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5884 if (hlen > IGB_RX_HDR_LEN)
5885 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5886 return hlen;
5887}
5888
cd392f5c 5889static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5890{
0ba82994 5891 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
5892 union e1000_adv_rx_desc *rx_desc;
5893 const int current_node = numa_node_id();
9d5c8243 5894 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
5895 u16 cleaned_count = igb_desc_unused(rx_ring);
5896 u16 i = rx_ring->next_to_clean;
9d5c8243 5897
60136906 5898 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 5899
3ceb90fd 5900 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 5901 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5902 struct sk_buff *skb = buffer_info->skb;
5903 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5904
69d3ca53 5905 buffer_info->skb = NULL;
16eb8815 5906 prefetch(skb->data);
69d3ca53
AD
5907
5908 i++;
5909 if (i == rx_ring->count)
5910 i = 0;
42d0781a 5911
60136906 5912 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5913 prefetch(next_rxd);
9d5c8243 5914
16eb8815
AD
5915 /*
5916 * This memory barrier is needed to keep us from reading
5917 * any other fields out of the rx_desc until we know the
5918 * RXD_STAT_DD bit is set
5919 */
5920 rmb();
9d5c8243 5921
16eb8815
AD
5922 if (!skb_is_nonlinear(skb)) {
5923 __skb_put(skb, igb_get_hlen(rx_desc));
5924 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5925 IGB_RX_HDR_LEN,
59d71989 5926 DMA_FROM_DEVICE);
91615f76 5927 buffer_info->dma = 0;
bf36c1a0
AD
5928 }
5929
16eb8815
AD
5930 if (rx_desc->wb.upper.length) {
5931 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5932
aa913403 5933 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5934 buffer_info->page,
5935 buffer_info->page_offset,
5936 length);
5937
16eb8815
AD
5938 skb->len += length;
5939 skb->data_len += length;
5940 skb->truesize += length;
5941
d1eff350
AD
5942 if ((page_count(buffer_info->page) != 1) ||
5943 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5944 buffer_info->page = NULL;
5945 else
5946 get_page(buffer_info->page);
9d5c8243 5947
16eb8815
AD
5948 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5949 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5950 buffer_info->page_dma = 0;
9d5c8243 5951 }
9d5c8243 5952
3ceb90fd 5953 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
5954 struct igb_rx_buffer *next_buffer;
5955 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5956 buffer_info->skb = next_buffer->skb;
5957 buffer_info->dma = next_buffer->dma;
5958 next_buffer->skb = skb;
5959 next_buffer->dma = 0;
bf36c1a0
AD
5960 goto next_desc;
5961 }
44390ca6 5962
3ceb90fd
AD
5963 if (igb_test_staterr(rx_desc,
5964 E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
16eb8815 5965 dev_kfree_skb_any(skb);
9d5c8243
AK
5966 goto next_desc;
5967 }
9d5c8243 5968
3ceb90fd 5969 igb_rx_hwtstamp(q_vector, rx_desc, skb);
077887c3 5970 igb_rx_hash(rx_ring, rx_desc, skb);
3ceb90fd 5971 igb_rx_checksum(rx_ring, rx_desc, skb);
047e0030 5972
3ceb90fd 5973 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
b2cb09b1 5974 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5975
b2cb09b1
JP
5976 __vlan_hwaccel_put_tag(skb, vid);
5977 }
3ceb90fd
AD
5978
5979 total_bytes += skb->len;
5980 total_packets++;
5981
5982 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
5983
b2cb09b1 5984 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5985
16eb8815 5986 budget--;
9d5c8243 5987next_desc:
16eb8815
AD
5988 if (!budget)
5989 break;
5990
5991 cleaned_count++;
9d5c8243
AK
5992 /* return some buffers to hardware, one at a time is too slow */
5993 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5994 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5995 cleaned_count = 0;
5996 }
5997
5998 /* use prefetched values */
5999 rx_desc = next_rxd;
9d5c8243 6000 }
bf36c1a0 6001
9d5c8243 6002 rx_ring->next_to_clean = i;
12dcd86b 6003 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6004 rx_ring->rx_stats.packets += total_packets;
6005 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6006 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6007 q_vector->rx.total_packets += total_packets;
6008 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6009
6010 if (cleaned_count)
cd392f5c 6011 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6012
16eb8815 6013 return !!budget;
9d5c8243
AK
6014}
6015
c023cd88 6016static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6017 struct igb_rx_buffer *bi)
c023cd88
AD
6018{
6019 struct sk_buff *skb = bi->skb;
6020 dma_addr_t dma = bi->dma;
6021
6022 if (dma)
6023 return true;
6024
6025 if (likely(!skb)) {
6026 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6027 IGB_RX_HDR_LEN);
6028 bi->skb = skb;
6029 if (!skb) {
6030 rx_ring->rx_stats.alloc_failed++;
6031 return false;
6032 }
6033
6034 /* initialize skb for ring */
6035 skb_record_rx_queue(skb, rx_ring->queue_index);
6036 }
6037
6038 dma = dma_map_single(rx_ring->dev, skb->data,
6039 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6040
6041 if (dma_mapping_error(rx_ring->dev, dma)) {
6042 rx_ring->rx_stats.alloc_failed++;
6043 return false;
6044 }
6045
6046 bi->dma = dma;
6047 return true;
6048}
6049
6050static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6051 struct igb_rx_buffer *bi)
c023cd88
AD
6052{
6053 struct page *page = bi->page;
6054 dma_addr_t page_dma = bi->page_dma;
6055 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6056
6057 if (page_dma)
6058 return true;
6059
6060 if (!page) {
6061 page = netdev_alloc_page(rx_ring->netdev);
6062 bi->page = page;
6063 if (unlikely(!page)) {
6064 rx_ring->rx_stats.alloc_failed++;
6065 return false;
6066 }
6067 }
6068
6069 page_dma = dma_map_page(rx_ring->dev, page,
6070 page_offset, PAGE_SIZE / 2,
6071 DMA_FROM_DEVICE);
6072
6073 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6074 rx_ring->rx_stats.alloc_failed++;
6075 return false;
6076 }
6077
6078 bi->page_dma = page_dma;
6079 bi->page_offset = page_offset;
6080 return true;
6081}
6082
9d5c8243 6083/**
cd392f5c 6084 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6085 * @adapter: address of board private structure
6086 **/
cd392f5c 6087void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6088{
9d5c8243 6089 union e1000_adv_rx_desc *rx_desc;
06034649 6090 struct igb_rx_buffer *bi;
c023cd88 6091 u16 i = rx_ring->next_to_use;
9d5c8243 6092
60136906 6093 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6094 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6095 i -= rx_ring->count;
9d5c8243
AK
6096
6097 while (cleaned_count--) {
c023cd88
AD
6098 if (!igb_alloc_mapped_skb(rx_ring, bi))
6099 break;
9d5c8243 6100
c023cd88
AD
6101 /* Refresh the desc even if buffer_addrs didn't change
6102 * because each write-back erases this info. */
6103 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6104
c023cd88
AD
6105 if (!igb_alloc_mapped_page(rx_ring, bi))
6106 break;
6107
6108 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6109
c023cd88
AD
6110 rx_desc++;
6111 bi++;
9d5c8243 6112 i++;
c023cd88 6113 if (unlikely(!i)) {
60136906 6114 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6115 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6116 i -= rx_ring->count;
6117 }
6118
6119 /* clear the hdr_addr for the next_to_use descriptor */
6120 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6121 }
6122
c023cd88
AD
6123 i += rx_ring->count;
6124
9d5c8243
AK
6125 if (rx_ring->next_to_use != i) {
6126 rx_ring->next_to_use = i;
9d5c8243
AK
6127
6128 /* Force memory writes to complete before letting h/w
6129 * know there are new descriptors to fetch. (Only
6130 * applicable for weak-ordered memory model archs,
6131 * such as IA-64). */
6132 wmb();
fce99e34 6133 writel(i, rx_ring->tail);
9d5c8243
AK
6134 }
6135}
6136
6137/**
6138 * igb_mii_ioctl -
6139 * @netdev:
6140 * @ifreq:
6141 * @cmd:
6142 **/
6143static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6144{
6145 struct igb_adapter *adapter = netdev_priv(netdev);
6146 struct mii_ioctl_data *data = if_mii(ifr);
6147
6148 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6149 return -EOPNOTSUPP;
6150
6151 switch (cmd) {
6152 case SIOCGMIIPHY:
6153 data->phy_id = adapter->hw.phy.addr;
6154 break;
6155 case SIOCGMIIREG:
f5f4cf08
AD
6156 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6157 &data->val_out))
9d5c8243
AK
6158 return -EIO;
6159 break;
6160 case SIOCSMIIREG:
6161 default:
6162 return -EOPNOTSUPP;
6163 }
6164 return 0;
6165}
6166
c6cb090b
PO
6167/**
6168 * igb_hwtstamp_ioctl - control hardware time stamping
6169 * @netdev:
6170 * @ifreq:
6171 * @cmd:
6172 *
33af6bcc
PO
6173 * Outgoing time stamping can be enabled and disabled. Play nice and
6174 * disable it when requested, although it shouldn't case any overhead
6175 * when no packet needs it. At most one packet in the queue may be
6176 * marked for time stamping, otherwise it would be impossible to tell
6177 * for sure to which packet the hardware time stamp belongs.
6178 *
6179 * Incoming time stamping has to be configured via the hardware
6180 * filters. Not all combinations are supported, in particular event
6181 * type has to be specified. Matching the kind of event packet is
6182 * not supported, with the exception of "all V2 events regardless of
6183 * level 2 or 4".
6184 *
c6cb090b
PO
6185 **/
6186static int igb_hwtstamp_ioctl(struct net_device *netdev,
6187 struct ifreq *ifr, int cmd)
6188{
33af6bcc
PO
6189 struct igb_adapter *adapter = netdev_priv(netdev);
6190 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6191 struct hwtstamp_config config;
c5b9bd5e
AD
6192 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6193 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6194 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6195 bool is_l4 = false;
6196 bool is_l2 = false;
33af6bcc 6197 u32 regval;
c6cb090b
PO
6198
6199 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6200 return -EFAULT;
6201
6202 /* reserved for future extensions */
6203 if (config.flags)
6204 return -EINVAL;
6205
33af6bcc
PO
6206 switch (config.tx_type) {
6207 case HWTSTAMP_TX_OFF:
c5b9bd5e 6208 tsync_tx_ctl = 0;
33af6bcc 6209 case HWTSTAMP_TX_ON:
33af6bcc
PO
6210 break;
6211 default:
6212 return -ERANGE;
6213 }
6214
6215 switch (config.rx_filter) {
6216 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6217 tsync_rx_ctl = 0;
33af6bcc
PO
6218 break;
6219 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6220 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6221 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6222 case HWTSTAMP_FILTER_ALL:
6223 /*
6224 * register TSYNCRXCFG must be set, therefore it is not
6225 * possible to time stamp both Sync and Delay_Req messages
6226 * => fall back to time stamping all packets
6227 */
c5b9bd5e 6228 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6229 config.rx_filter = HWTSTAMP_FILTER_ALL;
6230 break;
6231 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6232 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6233 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6234 is_l4 = true;
33af6bcc
PO
6235 break;
6236 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6237 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6238 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6239 is_l4 = true;
33af6bcc
PO
6240 break;
6241 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6242 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6243 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6244 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6245 is_l2 = true;
6246 is_l4 = true;
33af6bcc
PO
6247 config.rx_filter = HWTSTAMP_FILTER_SOME;
6248 break;
6249 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6250 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6251 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6252 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6253 is_l2 = true;
6254 is_l4 = true;
33af6bcc
PO
6255 config.rx_filter = HWTSTAMP_FILTER_SOME;
6256 break;
6257 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6258 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6259 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6260 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6261 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6262 is_l2 = true;
33af6bcc
PO
6263 break;
6264 default:
6265 return -ERANGE;
6266 }
6267
c5b9bd5e
AD
6268 if (hw->mac.type == e1000_82575) {
6269 if (tsync_rx_ctl | tsync_tx_ctl)
6270 return -EINVAL;
6271 return 0;
6272 }
6273
757b77e2
NN
6274 /*
6275 * Per-packet timestamping only works if all packets are
6276 * timestamped, so enable timestamping in all packets as
6277 * long as one rx filter was configured.
6278 */
6279 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6280 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6281 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6282 }
6283
33af6bcc
PO
6284 /* enable/disable TX */
6285 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6286 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6287 regval |= tsync_tx_ctl;
33af6bcc
PO
6288 wr32(E1000_TSYNCTXCTL, regval);
6289
c5b9bd5e 6290 /* enable/disable RX */
33af6bcc 6291 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6292 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6293 regval |= tsync_rx_ctl;
33af6bcc 6294 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6295
c5b9bd5e
AD
6296 /* define which PTP packets are time stamped */
6297 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6298
c5b9bd5e
AD
6299 /* define ethertype filter for timestamped packets */
6300 if (is_l2)
6301 wr32(E1000_ETQF(3),
6302 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6303 E1000_ETQF_1588 | /* enable timestamping */
6304 ETH_P_1588)); /* 1588 eth protocol type */
6305 else
6306 wr32(E1000_ETQF(3), 0);
6307
6308#define PTP_PORT 319
6309 /* L4 Queue Filter[3]: filter by destination port and protocol */
6310 if (is_l4) {
6311 u32 ftqf = (IPPROTO_UDP /* UDP */
6312 | E1000_FTQF_VF_BP /* VF not compared */
6313 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6314 | E1000_FTQF_MASK); /* mask all inputs */
6315 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6316
6317 wr32(E1000_IMIR(3), htons(PTP_PORT));
6318 wr32(E1000_IMIREXT(3),
6319 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6320 if (hw->mac.type == e1000_82576) {
6321 /* enable source port check */
6322 wr32(E1000_SPQF(3), htons(PTP_PORT));
6323 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6324 }
6325 wr32(E1000_FTQF(3), ftqf);
6326 } else {
6327 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6328 }
33af6bcc
PO
6329 wrfl();
6330
6331 adapter->hwtstamp_config = config;
6332
6333 /* clear TX/RX time stamp registers, just to be sure */
6334 regval = rd32(E1000_TXSTMPH);
6335 regval = rd32(E1000_RXSTMPH);
c6cb090b 6336
33af6bcc
PO
6337 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6338 -EFAULT : 0;
c6cb090b
PO
6339}
6340
9d5c8243
AK
6341/**
6342 * igb_ioctl -
6343 * @netdev:
6344 * @ifreq:
6345 * @cmd:
6346 **/
6347static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6348{
6349 switch (cmd) {
6350 case SIOCGMIIPHY:
6351 case SIOCGMIIREG:
6352 case SIOCSMIIREG:
6353 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6354 case SIOCSHWTSTAMP:
6355 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6356 default:
6357 return -EOPNOTSUPP;
6358 }
6359}
6360
009bc06e
AD
6361s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6362{
6363 struct igb_adapter *adapter = hw->back;
6364 u16 cap_offset;
6365
bdaae04c 6366 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6367 if (!cap_offset)
6368 return -E1000_ERR_CONFIG;
6369
6370 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6371
6372 return 0;
6373}
6374
6375s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6376{
6377 struct igb_adapter *adapter = hw->back;
6378 u16 cap_offset;
6379
bdaae04c 6380 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6381 if (!cap_offset)
6382 return -E1000_ERR_CONFIG;
6383
6384 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6385
6386 return 0;
6387}
6388
b2cb09b1 6389static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6390{
6391 struct igb_adapter *adapter = netdev_priv(netdev);
6392 struct e1000_hw *hw = &adapter->hw;
6393 u32 ctrl, rctl;
5faf030c 6394 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6395
5faf030c 6396 if (enable) {
9d5c8243
AK
6397 /* enable VLAN tag insert/strip */
6398 ctrl = rd32(E1000_CTRL);
6399 ctrl |= E1000_CTRL_VME;
6400 wr32(E1000_CTRL, ctrl);
6401
51466239 6402 /* Disable CFI check */
9d5c8243 6403 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6404 rctl &= ~E1000_RCTL_CFIEN;
6405 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6406 } else {
6407 /* disable VLAN tag insert/strip */
6408 ctrl = rd32(E1000_CTRL);
6409 ctrl &= ~E1000_CTRL_VME;
6410 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6411 }
6412
e1739522 6413 igb_rlpml_set(adapter);
9d5c8243
AK
6414}
6415
6416static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6417{
6418 struct igb_adapter *adapter = netdev_priv(netdev);
6419 struct e1000_hw *hw = &adapter->hw;
4ae196df 6420 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6421
51466239
AD
6422 /* attempt to add filter to vlvf array */
6423 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6424
51466239
AD
6425 /* add the filter since PF can receive vlans w/o entry in vlvf */
6426 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6427
6428 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6429}
6430
6431static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6432{
6433 struct igb_adapter *adapter = netdev_priv(netdev);
6434 struct e1000_hw *hw = &adapter->hw;
4ae196df 6435 int pf_id = adapter->vfs_allocated_count;
51466239 6436 s32 err;
9d5c8243 6437
51466239
AD
6438 /* remove vlan from VLVF table array */
6439 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6440
51466239
AD
6441 /* if vid was not present in VLVF just remove it from table */
6442 if (err)
4ae196df 6443 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6444
6445 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6446}
6447
6448static void igb_restore_vlan(struct igb_adapter *adapter)
6449{
b2cb09b1 6450 u16 vid;
9d5c8243 6451
5faf030c
AD
6452 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6453
b2cb09b1
JP
6454 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6455 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6456}
6457
14ad2513 6458int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6459{
090b1795 6460 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6461 struct e1000_mac_info *mac = &adapter->hw.mac;
6462
6463 mac->autoneg = 0;
6464
14ad2513
DD
6465 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6466 * for the switch() below to work */
6467 if ((spd & 1) || (dplx & ~1))
6468 goto err_inval;
6469
cd2638a8
CW
6470 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6471 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6472 spd != SPEED_1000 &&
6473 dplx != DUPLEX_FULL)
6474 goto err_inval;
cd2638a8 6475
14ad2513 6476 switch (spd + dplx) {
9d5c8243
AK
6477 case SPEED_10 + DUPLEX_HALF:
6478 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6479 break;
6480 case SPEED_10 + DUPLEX_FULL:
6481 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6482 break;
6483 case SPEED_100 + DUPLEX_HALF:
6484 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6485 break;
6486 case SPEED_100 + DUPLEX_FULL:
6487 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6488 break;
6489 case SPEED_1000 + DUPLEX_FULL:
6490 mac->autoneg = 1;
6491 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6492 break;
6493 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6494 default:
14ad2513 6495 goto err_inval;
9d5c8243
AK
6496 }
6497 return 0;
14ad2513
DD
6498
6499err_inval:
6500 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6501 return -EINVAL;
9d5c8243
AK
6502}
6503
3fe7c4c9 6504static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6505{
6506 struct net_device *netdev = pci_get_drvdata(pdev);
6507 struct igb_adapter *adapter = netdev_priv(netdev);
6508 struct e1000_hw *hw = &adapter->hw;
2d064c06 6509 u32 ctrl, rctl, status;
9d5c8243
AK
6510 u32 wufc = adapter->wol;
6511#ifdef CONFIG_PM
6512 int retval = 0;
6513#endif
6514
6515 netif_device_detach(netdev);
6516
a88f10ec
AD
6517 if (netif_running(netdev))
6518 igb_close(netdev);
6519
047e0030 6520 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6521
6522#ifdef CONFIG_PM
6523 retval = pci_save_state(pdev);
6524 if (retval)
6525 return retval;
6526#endif
6527
6528 status = rd32(E1000_STATUS);
6529 if (status & E1000_STATUS_LU)
6530 wufc &= ~E1000_WUFC_LNKC;
6531
6532 if (wufc) {
6533 igb_setup_rctl(adapter);
ff41f8dc 6534 igb_set_rx_mode(netdev);
9d5c8243
AK
6535
6536 /* turn on all-multi mode if wake on multicast is enabled */
6537 if (wufc & E1000_WUFC_MC) {
6538 rctl = rd32(E1000_RCTL);
6539 rctl |= E1000_RCTL_MPE;
6540 wr32(E1000_RCTL, rctl);
6541 }
6542
6543 ctrl = rd32(E1000_CTRL);
6544 /* advertise wake from D3Cold */
6545 #define E1000_CTRL_ADVD3WUC 0x00100000
6546 /* phy power management enable */
6547 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6548 ctrl |= E1000_CTRL_ADVD3WUC;
6549 wr32(E1000_CTRL, ctrl);
6550
9d5c8243 6551 /* Allow time for pending master requests to run */
330a6d6a 6552 igb_disable_pcie_master(hw);
9d5c8243
AK
6553
6554 wr32(E1000_WUC, E1000_WUC_PME_EN);
6555 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6556 } else {
6557 wr32(E1000_WUC, 0);
6558 wr32(E1000_WUFC, 0);
9d5c8243
AK
6559 }
6560
3fe7c4c9
RW
6561 *enable_wake = wufc || adapter->en_mng_pt;
6562 if (!*enable_wake)
88a268c1
NN
6563 igb_power_down_link(adapter);
6564 else
6565 igb_power_up_link(adapter);
9d5c8243
AK
6566
6567 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6568 * would have already happened in close and is redundant. */
6569 igb_release_hw_control(adapter);
6570
6571 pci_disable_device(pdev);
6572
9d5c8243
AK
6573 return 0;
6574}
6575
6576#ifdef CONFIG_PM
3fe7c4c9
RW
6577static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6578{
6579 int retval;
6580 bool wake;
6581
6582 retval = __igb_shutdown(pdev, &wake);
6583 if (retval)
6584 return retval;
6585
6586 if (wake) {
6587 pci_prepare_to_sleep(pdev);
6588 } else {
6589 pci_wake_from_d3(pdev, false);
6590 pci_set_power_state(pdev, PCI_D3hot);
6591 }
6592
6593 return 0;
6594}
6595
9d5c8243
AK
6596static int igb_resume(struct pci_dev *pdev)
6597{
6598 struct net_device *netdev = pci_get_drvdata(pdev);
6599 struct igb_adapter *adapter = netdev_priv(netdev);
6600 struct e1000_hw *hw = &adapter->hw;
6601 u32 err;
6602
6603 pci_set_power_state(pdev, PCI_D0);
6604 pci_restore_state(pdev);
b94f2d77 6605 pci_save_state(pdev);
42bfd33a 6606
aed5dec3 6607 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6608 if (err) {
6609 dev_err(&pdev->dev,
6610 "igb: Cannot enable PCI device from suspend\n");
6611 return err;
6612 }
6613 pci_set_master(pdev);
6614
6615 pci_enable_wake(pdev, PCI_D3hot, 0);
6616 pci_enable_wake(pdev, PCI_D3cold, 0);
6617
047e0030 6618 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6619 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6620 return -ENOMEM;
9d5c8243
AK
6621 }
6622
9d5c8243 6623 igb_reset(adapter);
a8564f03
AD
6624
6625 /* let the f/w know that the h/w is now under the control of the
6626 * driver. */
6627 igb_get_hw_control(adapter);
6628
9d5c8243
AK
6629 wr32(E1000_WUS, ~0);
6630
a88f10ec
AD
6631 if (netif_running(netdev)) {
6632 err = igb_open(netdev);
6633 if (err)
6634 return err;
6635 }
9d5c8243
AK
6636
6637 netif_device_attach(netdev);
6638
9d5c8243
AK
6639 return 0;
6640}
6641#endif
6642
6643static void igb_shutdown(struct pci_dev *pdev)
6644{
3fe7c4c9
RW
6645 bool wake;
6646
6647 __igb_shutdown(pdev, &wake);
6648
6649 if (system_state == SYSTEM_POWER_OFF) {
6650 pci_wake_from_d3(pdev, wake);
6651 pci_set_power_state(pdev, PCI_D3hot);
6652 }
9d5c8243
AK
6653}
6654
6655#ifdef CONFIG_NET_POLL_CONTROLLER
6656/*
6657 * Polling 'interrupt' - used by things like netconsole to send skbs
6658 * without having to re-enable interrupts. It's not called while
6659 * the interrupt routine is executing.
6660 */
6661static void igb_netpoll(struct net_device *netdev)
6662{
6663 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6664 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6665 struct igb_q_vector *q_vector;
9d5c8243 6666 int i;
9d5c8243 6667
047e0030 6668 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6669 q_vector = adapter->q_vector[i];
6670 if (adapter->msix_entries)
6671 wr32(E1000_EIMC, q_vector->eims_value);
6672 else
6673 igb_irq_disable(adapter);
047e0030 6674 napi_schedule(&q_vector->napi);
eebbbdba 6675 }
9d5c8243
AK
6676}
6677#endif /* CONFIG_NET_POLL_CONTROLLER */
6678
6679/**
6680 * igb_io_error_detected - called when PCI error is detected
6681 * @pdev: Pointer to PCI device
6682 * @state: The current pci connection state
6683 *
6684 * This function is called after a PCI bus error affecting
6685 * this device has been detected.
6686 */
6687static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6688 pci_channel_state_t state)
6689{
6690 struct net_device *netdev = pci_get_drvdata(pdev);
6691 struct igb_adapter *adapter = netdev_priv(netdev);
6692
6693 netif_device_detach(netdev);
6694
59ed6eec
AD
6695 if (state == pci_channel_io_perm_failure)
6696 return PCI_ERS_RESULT_DISCONNECT;
6697
9d5c8243
AK
6698 if (netif_running(netdev))
6699 igb_down(adapter);
6700 pci_disable_device(pdev);
6701
6702 /* Request a slot slot reset. */
6703 return PCI_ERS_RESULT_NEED_RESET;
6704}
6705
6706/**
6707 * igb_io_slot_reset - called after the pci bus has been reset.
6708 * @pdev: Pointer to PCI device
6709 *
6710 * Restart the card from scratch, as if from a cold-boot. Implementation
6711 * resembles the first-half of the igb_resume routine.
6712 */
6713static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6714{
6715 struct net_device *netdev = pci_get_drvdata(pdev);
6716 struct igb_adapter *adapter = netdev_priv(netdev);
6717 struct e1000_hw *hw = &adapter->hw;
40a914fa 6718 pci_ers_result_t result;
42bfd33a 6719 int err;
9d5c8243 6720
aed5dec3 6721 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6722 dev_err(&pdev->dev,
6723 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6724 result = PCI_ERS_RESULT_DISCONNECT;
6725 } else {
6726 pci_set_master(pdev);
6727 pci_restore_state(pdev);
b94f2d77 6728 pci_save_state(pdev);
9d5c8243 6729
40a914fa
AD
6730 pci_enable_wake(pdev, PCI_D3hot, 0);
6731 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6732
40a914fa
AD
6733 igb_reset(adapter);
6734 wr32(E1000_WUS, ~0);
6735 result = PCI_ERS_RESULT_RECOVERED;
6736 }
9d5c8243 6737
ea943d41
JK
6738 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6739 if (err) {
6740 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6741 "failed 0x%0x\n", err);
6742 /* non-fatal, continue */
6743 }
40a914fa
AD
6744
6745 return result;
9d5c8243
AK
6746}
6747
6748/**
6749 * igb_io_resume - called when traffic can start flowing again.
6750 * @pdev: Pointer to PCI device
6751 *
6752 * This callback is called when the error recovery driver tells us that
6753 * its OK to resume normal operation. Implementation resembles the
6754 * second-half of the igb_resume routine.
6755 */
6756static void igb_io_resume(struct pci_dev *pdev)
6757{
6758 struct net_device *netdev = pci_get_drvdata(pdev);
6759 struct igb_adapter *adapter = netdev_priv(netdev);
6760
9d5c8243
AK
6761 if (netif_running(netdev)) {
6762 if (igb_up(adapter)) {
6763 dev_err(&pdev->dev, "igb_up failed after reset\n");
6764 return;
6765 }
6766 }
6767
6768 netif_device_attach(netdev);
6769
6770 /* let the f/w know that the h/w is now under the control of the
6771 * driver. */
6772 igb_get_hw_control(adapter);
9d5c8243
AK
6773}
6774
26ad9178
AD
6775static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6776 u8 qsel)
6777{
6778 u32 rar_low, rar_high;
6779 struct e1000_hw *hw = &adapter->hw;
6780
6781 /* HW expects these in little endian so we reverse the byte order
6782 * from network order (big endian) to little endian
6783 */
6784 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6785 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6786 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6787
6788 /* Indicate to hardware the Address is Valid. */
6789 rar_high |= E1000_RAH_AV;
6790
6791 if (hw->mac.type == e1000_82575)
6792 rar_high |= E1000_RAH_POOL_1 * qsel;
6793 else
6794 rar_high |= E1000_RAH_POOL_1 << qsel;
6795
6796 wr32(E1000_RAL(index), rar_low);
6797 wrfl();
6798 wr32(E1000_RAH(index), rar_high);
6799 wrfl();
6800}
6801
4ae196df
AD
6802static int igb_set_vf_mac(struct igb_adapter *adapter,
6803 int vf, unsigned char *mac_addr)
6804{
6805 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6806 /* VF MAC addresses start at end of receive addresses and moves
6807 * torwards the first, as a result a collision should not be possible */
6808 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6809
37680117 6810 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6811
26ad9178 6812 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6813
6814 return 0;
6815}
6816
8151d294
WM
6817static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6818{
6819 struct igb_adapter *adapter = netdev_priv(netdev);
6820 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6821 return -EINVAL;
6822 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6823 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6824 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6825 " change effective.");
6826 if (test_bit(__IGB_DOWN, &adapter->state)) {
6827 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6828 " but the PF device is not up.\n");
6829 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6830 " attempting to use the VF device.\n");
6831 }
6832 return igb_set_vf_mac(adapter, vf, mac);
6833}
6834
17dc566c
LL
6835static int igb_link_mbps(int internal_link_speed)
6836{
6837 switch (internal_link_speed) {
6838 case SPEED_100:
6839 return 100;
6840 case SPEED_1000:
6841 return 1000;
6842 default:
6843 return 0;
6844 }
6845}
6846
6847static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6848 int link_speed)
6849{
6850 int rf_dec, rf_int;
6851 u32 bcnrc_val;
6852
6853 if (tx_rate != 0) {
6854 /* Calculate the rate factor values to set */
6855 rf_int = link_speed / tx_rate;
6856 rf_dec = (link_speed - (rf_int * tx_rate));
6857 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6858
6859 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6860 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6861 E1000_RTTBCNRC_RF_INT_MASK);
6862 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6863 } else {
6864 bcnrc_val = 0;
6865 }
6866
6867 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6868 wr32(E1000_RTTBCNRC, bcnrc_val);
6869}
6870
6871static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6872{
6873 int actual_link_speed, i;
6874 bool reset_rate = false;
6875
6876 /* VF TX rate limit was not set or not supported */
6877 if ((adapter->vf_rate_link_speed == 0) ||
6878 (adapter->hw.mac.type != e1000_82576))
6879 return;
6880
6881 actual_link_speed = igb_link_mbps(adapter->link_speed);
6882 if (actual_link_speed != adapter->vf_rate_link_speed) {
6883 reset_rate = true;
6884 adapter->vf_rate_link_speed = 0;
6885 dev_info(&adapter->pdev->dev,
6886 "Link speed has been changed. VF Transmit "
6887 "rate is disabled\n");
6888 }
6889
6890 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6891 if (reset_rate)
6892 adapter->vf_data[i].tx_rate = 0;
6893
6894 igb_set_vf_rate_limit(&adapter->hw, i,
6895 adapter->vf_data[i].tx_rate,
6896 actual_link_speed);
6897 }
6898}
6899
8151d294
WM
6900static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6901{
17dc566c
LL
6902 struct igb_adapter *adapter = netdev_priv(netdev);
6903 struct e1000_hw *hw = &adapter->hw;
6904 int actual_link_speed;
6905
6906 if (hw->mac.type != e1000_82576)
6907 return -EOPNOTSUPP;
6908
6909 actual_link_speed = igb_link_mbps(adapter->link_speed);
6910 if ((vf >= adapter->vfs_allocated_count) ||
6911 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6912 (tx_rate < 0) || (tx_rate > actual_link_speed))
6913 return -EINVAL;
6914
6915 adapter->vf_rate_link_speed = actual_link_speed;
6916 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6917 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6918
6919 return 0;
8151d294
WM
6920}
6921
6922static int igb_ndo_get_vf_config(struct net_device *netdev,
6923 int vf, struct ifla_vf_info *ivi)
6924{
6925 struct igb_adapter *adapter = netdev_priv(netdev);
6926 if (vf >= adapter->vfs_allocated_count)
6927 return -EINVAL;
6928 ivi->vf = vf;
6929 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6930 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6931 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6932 ivi->qos = adapter->vf_data[vf].pf_qos;
6933 return 0;
6934}
6935
4ae196df
AD
6936static void igb_vmm_control(struct igb_adapter *adapter)
6937{
6938 struct e1000_hw *hw = &adapter->hw;
10d8e907 6939 u32 reg;
4ae196df 6940
52a1dd4d
AD
6941 switch (hw->mac.type) {
6942 case e1000_82575:
6943 default:
6944 /* replication is not supported for 82575 */
4ae196df 6945 return;
52a1dd4d
AD
6946 case e1000_82576:
6947 /* notify HW that the MAC is adding vlan tags */
6948 reg = rd32(E1000_DTXCTL);
6949 reg |= E1000_DTXCTL_VLAN_ADDED;
6950 wr32(E1000_DTXCTL, reg);
6951 case e1000_82580:
6952 /* enable replication vlan tag stripping */
6953 reg = rd32(E1000_RPLOLR);
6954 reg |= E1000_RPLOLR_STRVLAN;
6955 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6956 case e1000_i350:
6957 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6958 break;
6959 }
10d8e907 6960
d4960307
AD
6961 if (adapter->vfs_allocated_count) {
6962 igb_vmdq_set_loopback_pf(hw, true);
6963 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6964 igb_vmdq_set_anti_spoofing_pf(hw, true,
6965 adapter->vfs_allocated_count);
d4960307
AD
6966 } else {
6967 igb_vmdq_set_loopback_pf(hw, false);
6968 igb_vmdq_set_replication_pf(hw, false);
6969 }
4ae196df
AD
6970}
6971
9d5c8243 6972/* igb_main.c */
This page took 1.215689 seconds and 5 git commands to generate.