ixgbe: Start temperature sensor attribute index with 1
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
441fc6fd 60#include <linux/i2c.h>
9d5c8243
AK
61#include "igb.h"
62
67b1b903
CW
63#define MAJ 5
64#define MIN 0
66f40b8a 65#define BUILD 5
0d1fe82d 66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 67__stringify(BUILD) "-k"
9d5c8243
AK
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462
AA
72static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
9d5c8243 74
9d5c8243
AK
75static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77};
78
a3aa1884 79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
ceb5f13b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 /* required last entry */
116 {0, }
117};
118
119MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121void igb_reset(struct igb_adapter *);
122static int igb_setup_all_tx_resources(struct igb_adapter *);
123static int igb_setup_all_rx_resources(struct igb_adapter *);
124static void igb_free_all_tx_resources(struct igb_adapter *);
125static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 126static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 127static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 128static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
129static int igb_sw_init(struct igb_adapter *);
130static int igb_open(struct net_device *);
131static int igb_close(struct net_device *);
53c7d064 132static void igb_configure(struct igb_adapter *);
9d5c8243
AK
133static void igb_configure_tx(struct igb_adapter *);
134static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
135static void igb_clean_all_tx_rings(struct igb_adapter *);
136static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
137static void igb_clean_tx_ring(struct igb_ring *);
138static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 139static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
140static void igb_update_phy_info(unsigned long);
141static void igb_watchdog(unsigned long);
142static void igb_watchdog_task(struct work_struct *);
cd392f5c 143static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
144static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 struct rtnl_link_stats64 *stats);
9d5c8243
AK
146static int igb_change_mtu(struct net_device *, int);
147static int igb_set_mac(struct net_device *, void *);
68d480c4 148static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
149static irqreturn_t igb_intr(int irq, void *);
150static irqreturn_t igb_intr_msi(int irq, void *);
151static irqreturn_t igb_msix_other(int irq, void *);
047e0030 152static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 153#ifdef CONFIG_IGB_DCA
047e0030 154static void igb_update_dca(struct igb_q_vector *);
fe4506b6 155static void igb_setup_dca(struct igb_adapter *);
421e02f0 156#endif /* CONFIG_IGB_DCA */
661086df 157static int igb_poll(struct napi_struct *, int);
13fde97a 158static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 159static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
160static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161static void igb_tx_timeout(struct net_device *);
162static void igb_reset_task(struct work_struct *);
c8f44aff 163static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
80d5c368
PM
164static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 166static void igb_restore_vlan(struct igb_adapter *);
26ad9178 167static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
168static void igb_ping_all_vfs(struct igb_adapter *);
169static void igb_msg_task(struct igb_adapter *);
4ae196df 170static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 171static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 172static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
173static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 int vf, u16 vlan, u8 qos);
176static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
70ea4783
LL
177static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 bool setting);
8151d294
WM
179static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 struct ifla_vf_info *ivi);
17dc566c 181static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
182
183#ifdef CONFIG_PCI_IOV
0224d663 184static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 185static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
46a01698 186#endif
9d5c8243 187
9d5c8243 188#ifdef CONFIG_PM
d9dd966d 189#ifdef CONFIG_PM_SLEEP
749ab2cd 190static int igb_suspend(struct device *);
d9dd966d 191#endif
749ab2cd
YZ
192static int igb_resume(struct device *);
193#ifdef CONFIG_PM_RUNTIME
194static int igb_runtime_suspend(struct device *dev);
195static int igb_runtime_resume(struct device *dev);
196static int igb_runtime_idle(struct device *dev);
197#endif
198static const struct dev_pm_ops igb_pm_ops = {
199 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
200 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
201 igb_runtime_idle)
202};
9d5c8243
AK
203#endif
204static void igb_shutdown(struct pci_dev *);
fa44f2f1 205static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 206#ifdef CONFIG_IGB_DCA
fe4506b6
JC
207static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208static struct notifier_block dca_notifier = {
209 .notifier_call = igb_notify_dca,
210 .next = NULL,
211 .priority = 0
212};
213#endif
9d5c8243
AK
214#ifdef CONFIG_NET_POLL_CONTROLLER
215/* for netdump / net console */
216static void igb_netpoll(struct net_device *);
217#endif
37680117 218#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
219static unsigned int max_vfs = 0;
220module_param(max_vfs, uint, 0);
221MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
222 "per physical function");
223#endif /* CONFIG_PCI_IOV */
224
9d5c8243
AK
225static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
226 pci_channel_state_t);
227static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
228static void igb_io_resume(struct pci_dev *);
229
3646f0e5 230static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
231 .error_detected = igb_io_error_detected,
232 .slot_reset = igb_io_slot_reset,
233 .resume = igb_io_resume,
234};
235
b6e0c419 236static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
237
238static struct pci_driver igb_driver = {
239 .name = igb_driver_name,
240 .id_table = igb_pci_tbl,
241 .probe = igb_probe,
9f9a12f8 242 .remove = igb_remove,
9d5c8243 243#ifdef CONFIG_PM
749ab2cd 244 .driver.pm = &igb_pm_ops,
9d5c8243
AK
245#endif
246 .shutdown = igb_shutdown,
fa44f2f1 247 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
248 .err_handler = &igb_err_handler
249};
250
251MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
252MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
253MODULE_LICENSE("GPL");
254MODULE_VERSION(DRV_VERSION);
255
b3f4d599 256#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
257static int debug = -1;
258module_param(debug, int, 0);
259MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260
c97ec42a
TI
261struct igb_reg_info {
262 u32 ofs;
263 char *name;
264};
265
266static const struct igb_reg_info igb_reg_info_tbl[] = {
267
268 /* General Registers */
269 {E1000_CTRL, "CTRL"},
270 {E1000_STATUS, "STATUS"},
271 {E1000_CTRL_EXT, "CTRL_EXT"},
272
273 /* Interrupt Registers */
274 {E1000_ICR, "ICR"},
275
276 /* RX Registers */
277 {E1000_RCTL, "RCTL"},
278 {E1000_RDLEN(0), "RDLEN"},
279 {E1000_RDH(0), "RDH"},
280 {E1000_RDT(0), "RDT"},
281 {E1000_RXDCTL(0), "RXDCTL"},
282 {E1000_RDBAL(0), "RDBAL"},
283 {E1000_RDBAH(0), "RDBAH"},
284
285 /* TX Registers */
286 {E1000_TCTL, "TCTL"},
287 {E1000_TDBAL(0), "TDBAL"},
288 {E1000_TDBAH(0), "TDBAH"},
289 {E1000_TDLEN(0), "TDLEN"},
290 {E1000_TDH(0), "TDH"},
291 {E1000_TDT(0), "TDT"},
292 {E1000_TXDCTL(0), "TXDCTL"},
293 {E1000_TDFH, "TDFH"},
294 {E1000_TDFT, "TDFT"},
295 {E1000_TDFHS, "TDFHS"},
296 {E1000_TDFPC, "TDFPC"},
297
298 /* List Terminator */
299 {}
300};
301
b980ac18 302/* igb_regdump - register printout routine */
c97ec42a
TI
303static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
304{
305 int n = 0;
306 char rname[16];
307 u32 regs[8];
308
309 switch (reginfo->ofs) {
310 case E1000_RDLEN(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDLEN(n));
313 break;
314 case E1000_RDH(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDH(n));
317 break;
318 case E1000_RDT(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RDT(n));
321 break;
322 case E1000_RXDCTL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RXDCTL(n));
325 break;
326 case E1000_RDBAL(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAL(n));
329 break;
330 case E1000_RDBAH(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAH(n));
333 break;
334 case E1000_TDBAL(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_RDBAL(n));
337 break;
338 case E1000_TDBAH(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDBAH(n));
341 break;
342 case E1000_TDLEN(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDLEN(n));
345 break;
346 case E1000_TDH(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDH(n));
349 break;
350 case E1000_TDT(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TDT(n));
353 break;
354 case E1000_TXDCTL(0):
355 for (n = 0; n < 4; n++)
356 regs[n] = rd32(E1000_TXDCTL(n));
357 break;
358 default:
876d2d6f 359 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
360 return;
361 }
362
363 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
364 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
365 regs[2], regs[3]);
c97ec42a
TI
366}
367
b980ac18 368/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
369static void igb_dump(struct igb_adapter *adapter)
370{
371 struct net_device *netdev = adapter->netdev;
372 struct e1000_hw *hw = &adapter->hw;
373 struct igb_reg_info *reginfo;
c97ec42a
TI
374 struct igb_ring *tx_ring;
375 union e1000_adv_tx_desc *tx_desc;
376 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
377 struct igb_ring *rx_ring;
378 union e1000_adv_rx_desc *rx_desc;
379 u32 staterr;
6ad4edfc 380 u16 i, n;
c97ec42a
TI
381
382 if (!netif_msg_hw(adapter))
383 return;
384
385 /* Print netdevice Info */
386 if (netdev) {
387 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
388 pr_info("Device Name state trans_start "
389 "last_rx\n");
390 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
391 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
392 }
393
394 /* Print Registers */
395 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 396 pr_info(" Register Name Value\n");
c97ec42a
TI
397 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
398 reginfo->name; reginfo++) {
399 igb_regdump(hw, reginfo);
400 }
401
402 /* Print TX Ring Summary */
403 if (!netdev || !netif_running(netdev))
404 goto exit;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 407 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 408 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 409 struct igb_tx_buffer *buffer_info;
c97ec42a 410 tx_ring = adapter->tx_ring[n];
06034649 411 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
412 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
413 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
414 (u64)dma_unmap_addr(buffer_info, dma),
415 dma_unmap_len(buffer_info, len),
876d2d6f
JK
416 buffer_info->next_to_watch,
417 (u64)buffer_info->time_stamp);
c97ec42a
TI
418 }
419
420 /* Print TX Rings */
421 if (!netif_msg_tx_done(adapter))
422 goto rx_ring_summary;
423
424 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
425
426 /* Transmit Descriptor Formats
427 *
428 * Advanced Transmit Descriptor
429 * +--------------------------------------------------------------+
430 * 0 | Buffer Address [63:0] |
431 * +--------------------------------------------------------------+
432 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
433 * +--------------------------------------------------------------+
434 * 63 46 45 40 39 38 36 35 32 31 24 15 0
435 */
436
437 for (n = 0; n < adapter->num_tx_queues; n++) {
438 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
439 pr_info("------------------------------------\n");
440 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
441 pr_info("------------------------------------\n");
442 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
443 "[bi->dma ] leng ntw timestamp "
444 "bi->skb\n");
c97ec42a
TI
445
446 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 447 const char *next_desc;
06034649 448 struct igb_tx_buffer *buffer_info;
60136906 449 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 450 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 451 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
452 if (i == tx_ring->next_to_use &&
453 i == tx_ring->next_to_clean)
454 next_desc = " NTC/U";
455 else if (i == tx_ring->next_to_use)
456 next_desc = " NTU";
457 else if (i == tx_ring->next_to_clean)
458 next_desc = " NTC";
459 else
460 next_desc = "";
461
462 pr_info("T [0x%03X] %016llX %016llX %016llX"
463 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
464 le64_to_cpu(u0->a),
465 le64_to_cpu(u0->b),
c9f14bf3
AD
466 (u64)dma_unmap_addr(buffer_info, dma),
467 dma_unmap_len(buffer_info, len),
c97ec42a
TI
468 buffer_info->next_to_watch,
469 (u64)buffer_info->time_stamp,
876d2d6f 470 buffer_info->skb, next_desc);
c97ec42a 471
b669588a 472 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
473 print_hex_dump(KERN_INFO, "",
474 DUMP_PREFIX_ADDRESS,
b669588a 475 16, 1, buffer_info->skb->data,
c9f14bf3
AD
476 dma_unmap_len(buffer_info, len),
477 true);
c97ec42a
TI
478 }
479 }
480
481 /* Print RX Rings Summary */
482rx_ring_summary:
483 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 484 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
485 for (n = 0; n < adapter->num_rx_queues; n++) {
486 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
487 pr_info(" %5d %5X %5X\n",
488 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
489 }
490
491 /* Print RX Rings */
492 if (!netif_msg_rx_status(adapter))
493 goto exit;
494
495 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
496
497 /* Advanced Receive Descriptor (Read) Format
498 * 63 1 0
499 * +-----------------------------------------------------+
500 * 0 | Packet Buffer Address [63:1] |A0/NSE|
501 * +----------------------------------------------+------+
502 * 8 | Header Buffer Address [63:1] | DD |
503 * +-----------------------------------------------------+
504 *
505 *
506 * Advanced Receive Descriptor (Write-Back) Format
507 *
508 * 63 48 47 32 31 30 21 20 17 16 4 3 0
509 * +------------------------------------------------------+
510 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
511 * | Checksum Ident | | | | Type | Type |
512 * +------------------------------------------------------+
513 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
514 * +------------------------------------------------------+
515 * 63 48 47 32 31 20 19 0
516 */
517
518 for (n = 0; n < adapter->num_rx_queues; n++) {
519 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
520 pr_info("------------------------------------\n");
521 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
522 pr_info("------------------------------------\n");
523 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
524 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
525 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
526 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
527
528 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 529 const char *next_desc;
06034649
AD
530 struct igb_rx_buffer *buffer_info;
531 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 532 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
533 u0 = (struct my_u0 *)rx_desc;
534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
535
536 if (i == rx_ring->next_to_use)
537 next_desc = " NTU";
538 else if (i == rx_ring->next_to_clean)
539 next_desc = " NTC";
540 else
541 next_desc = "";
542
c97ec42a
TI
543 if (staterr & E1000_RXD_STAT_DD) {
544 /* Descriptor Done */
1a1c225b
AD
545 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
546 "RWB", i,
c97ec42a
TI
547 le64_to_cpu(u0->a),
548 le64_to_cpu(u0->b),
1a1c225b 549 next_desc);
c97ec42a 550 } else {
1a1c225b
AD
551 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
552 "R ", i,
c97ec42a
TI
553 le64_to_cpu(u0->a),
554 le64_to_cpu(u0->b),
555 (u64)buffer_info->dma,
1a1c225b 556 next_desc);
c97ec42a 557
b669588a 558 if (netif_msg_pktdata(adapter) &&
1a1c225b 559 buffer_info->dma && buffer_info->page) {
44390ca6
AD
560 print_hex_dump(KERN_INFO, "",
561 DUMP_PREFIX_ADDRESS,
562 16, 1,
b669588a
ET
563 page_address(buffer_info->page) +
564 buffer_info->page_offset,
de78d1f9 565 IGB_RX_BUFSZ, true);
c97ec42a
TI
566 }
567 }
c97ec42a
TI
568 }
569 }
570
571exit:
572 return;
573}
574
b980ac18
JK
575/**
576 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
577 * @hw: pointer to hardware structure
578 * @i2cctl: Current value of I2CCTL register
579 *
580 * Returns the I2C data bit value
b980ac18 581 **/
441fc6fd
CW
582static int igb_get_i2c_data(void *data)
583{
584 struct igb_adapter *adapter = (struct igb_adapter *)data;
585 struct e1000_hw *hw = &adapter->hw;
586 s32 i2cctl = rd32(E1000_I2CPARAMS);
587
588 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
589}
590
b980ac18
JK
591/**
592 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
593 * @data: pointer to hardware structure
594 * @state: I2C data value (0 or 1) to set
595 *
596 * Sets the I2C data bit
b980ac18 597 **/
441fc6fd
CW
598static void igb_set_i2c_data(void *data, int state)
599{
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state)
605 i2cctl |= E1000_I2C_DATA_OUT;
606 else
607 i2cctl &= ~E1000_I2C_DATA_OUT;
608
609 i2cctl &= ~E1000_I2C_DATA_OE_N;
610 i2cctl |= E1000_I2C_CLK_OE_N;
611 wr32(E1000_I2CPARAMS, i2cctl);
612 wrfl();
613
614}
615
b980ac18
JK
616/**
617 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
618 * @data: pointer to hardware structure
619 * @state: state to set clock
620 *
621 * Sets the I2C clock line to state
b980ac18 622 **/
441fc6fd
CW
623static void igb_set_i2c_clk(void *data, int state)
624{
625 struct igb_adapter *adapter = (struct igb_adapter *)data;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 i2cctl = rd32(E1000_I2CPARAMS);
628
629 if (state) {
630 i2cctl |= E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 } else {
633 i2cctl &= ~E1000_I2C_CLK_OUT;
634 i2cctl &= ~E1000_I2C_CLK_OE_N;
635 }
636 wr32(E1000_I2CPARAMS, i2cctl);
637 wrfl();
638}
639
b980ac18
JK
640/**
641 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
642 * @data: pointer to hardware structure
643 *
644 * Gets the I2C clock state
b980ac18 645 **/
441fc6fd
CW
646static int igb_get_i2c_clk(void *data)
647{
648 struct igb_adapter *adapter = (struct igb_adapter *)data;
649 struct e1000_hw *hw = &adapter->hw;
650 s32 i2cctl = rd32(E1000_I2CPARAMS);
651
652 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
653}
654
655static const struct i2c_algo_bit_data igb_i2c_algo = {
656 .setsda = igb_set_i2c_data,
657 .setscl = igb_set_i2c_clk,
658 .getsda = igb_get_i2c_data,
659 .getscl = igb_get_i2c_clk,
660 .udelay = 5,
661 .timeout = 20,
662};
663
9d5c8243 664/**
b980ac18
JK
665 * igb_get_hw_dev - return device
666 * @hw: pointer to hardware structure
667 *
668 * used by hardware layer to print debugging information
9d5c8243 669 **/
c041076a 670struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
671{
672 struct igb_adapter *adapter = hw->back;
c041076a 673 return adapter->netdev;
9d5c8243 674}
38c845c7 675
9d5c8243 676/**
b980ac18 677 * igb_init_module - Driver Registration Routine
9d5c8243 678 *
b980ac18
JK
679 * igb_init_module is the first routine called when the driver is
680 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
681 **/
682static int __init igb_init_module(void)
683{
684 int ret;
876d2d6f 685 pr_info("%s - version %s\n",
9d5c8243
AK
686 igb_driver_string, igb_driver_version);
687
876d2d6f 688 pr_info("%s\n", igb_copyright);
9d5c8243 689
421e02f0 690#ifdef CONFIG_IGB_DCA
fe4506b6
JC
691 dca_register_notify(&dca_notifier);
692#endif
bbd98fe4 693 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
694 return ret;
695}
696
697module_init(igb_init_module);
698
699/**
b980ac18 700 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 701 *
b980ac18
JK
702 * igb_exit_module is called just before the driver is removed
703 * from memory.
9d5c8243
AK
704 **/
705static void __exit igb_exit_module(void)
706{
421e02f0 707#ifdef CONFIG_IGB_DCA
fe4506b6
JC
708 dca_unregister_notify(&dca_notifier);
709#endif
9d5c8243
AK
710 pci_unregister_driver(&igb_driver);
711}
712
713module_exit(igb_exit_module);
714
26bc19ec
AD
715#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
716/**
b980ac18
JK
717 * igb_cache_ring_register - Descriptor ring to register mapping
718 * @adapter: board private structure to initialize
26bc19ec 719 *
b980ac18
JK
720 * Once we know the feature-set enabled for the device, we'll cache
721 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
722 **/
723static void igb_cache_ring_register(struct igb_adapter *adapter)
724{
ee1b9f06 725 int i = 0, j = 0;
047e0030 726 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
727
728 switch (adapter->hw.mac.type) {
729 case e1000_82576:
730 /* The queues are allocated for virtualization such that VF 0
731 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
732 * In order to avoid collision we start at the first free queue
733 * and continue consuming queues in the same sequence
734 */
ee1b9f06 735 if (adapter->vfs_allocated_count) {
a99955fc 736 for (; i < adapter->rss_queues; i++)
3025a446 737 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 738 Q_IDX_82576(i);
ee1b9f06 739 }
26bc19ec 740 case e1000_82575:
55cac248 741 case e1000_82580:
d2ba2ed8 742 case e1000_i350:
ceb5f13b 743 case e1000_i354:
f96a8a0b
CW
744 case e1000_i210:
745 case e1000_i211:
26bc19ec 746 default:
ee1b9f06 747 for (; i < adapter->num_rx_queues; i++)
3025a446 748 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 749 for (; j < adapter->num_tx_queues; j++)
3025a446 750 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
751 break;
752 }
753}
754
4be000c8
AD
755/**
756 * igb_write_ivar - configure ivar for given MSI-X vector
757 * @hw: pointer to the HW structure
758 * @msix_vector: vector number we are allocating to a given ring
759 * @index: row index of IVAR register to write within IVAR table
760 * @offset: column offset of in IVAR, should be multiple of 8
761 *
762 * This function is intended to handle the writing of the IVAR register
763 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
764 * each containing an cause allocation for an Rx and Tx ring, and a
765 * variable number of rows depending on the number of queues supported.
766 **/
767static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 int index, int offset)
769{
770 u32 ivar = array_rd32(E1000_IVAR0, index);
771
772 /* clear any bits that are currently set */
773 ivar &= ~((u32)0xFF << offset);
774
775 /* write vector and valid bit */
776 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778 array_wr32(E1000_IVAR0, index, ivar);
779}
780
9d5c8243 781#define IGB_N0_QUEUE -1
047e0030 782static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 783{
047e0030 784 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 785 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
786 int rx_queue = IGB_N0_QUEUE;
787 int tx_queue = IGB_N0_QUEUE;
4be000c8 788 u32 msixbm = 0;
047e0030 789
0ba82994
AD
790 if (q_vector->rx.ring)
791 rx_queue = q_vector->rx.ring->reg_idx;
792 if (q_vector->tx.ring)
793 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
794
795 switch (hw->mac.type) {
796 case e1000_82575:
9d5c8243 797 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
798 * bitmask for the EICR/EIMS/EIMC registers. To assign one
799 * or more queues to a vector, we write the appropriate bits
800 * into the MSIXBM register for that vector.
801 */
047e0030 802 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 803 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 804 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 805 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
806 if (!adapter->msix_entries && msix_vector == 0)
807 msixbm |= E1000_EIMS_OTHER;
9d5c8243 808 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 809 q_vector->eims_value = msixbm;
2d064c06
AD
810 break;
811 case e1000_82576:
b980ac18 812 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
813 * with 8 rows. The ordering is column-major so we use the
814 * lower 3 bits as the row index, and the 4th bit as the
815 * column offset.
816 */
817 if (rx_queue > IGB_N0_QUEUE)
818 igb_write_ivar(hw, msix_vector,
819 rx_queue & 0x7,
820 (rx_queue & 0x8) << 1);
821 if (tx_queue > IGB_N0_QUEUE)
822 igb_write_ivar(hw, msix_vector,
823 tx_queue & 0x7,
824 ((tx_queue & 0x8) << 1) + 8);
047e0030 825 q_vector->eims_value = 1 << msix_vector;
2d064c06 826 break;
55cac248 827 case e1000_82580:
d2ba2ed8 828 case e1000_i350:
ceb5f13b 829 case e1000_i354:
f96a8a0b
CW
830 case e1000_i210:
831 case e1000_i211:
b980ac18 832 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
833 * however instead of ordering column-major we have things
834 * ordered row-major. So we traverse the table by using
835 * bit 0 as the column offset, and the remaining bits as the
836 * row index.
837 */
838 if (rx_queue > IGB_N0_QUEUE)
839 igb_write_ivar(hw, msix_vector,
840 rx_queue >> 1,
841 (rx_queue & 0x1) << 4);
842 if (tx_queue > IGB_N0_QUEUE)
843 igb_write_ivar(hw, msix_vector,
844 tx_queue >> 1,
845 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
846 q_vector->eims_value = 1 << msix_vector;
847 break;
2d064c06
AD
848 default:
849 BUG();
850 break;
851 }
26b39276
AD
852
853 /* add q_vector eims value to global eims_enable_mask */
854 adapter->eims_enable_mask |= q_vector->eims_value;
855
856 /* configure q_vector to set itr on first interrupt */
857 q_vector->set_itr = 1;
9d5c8243
AK
858}
859
860/**
b980ac18
JK
861 * igb_configure_msix - Configure MSI-X hardware
862 * @adapter: board private structure to initialize
9d5c8243 863 *
b980ac18
JK
864 * igb_configure_msix sets up the hardware to properly
865 * generate MSI-X interrupts.
9d5c8243
AK
866 **/
867static void igb_configure_msix(struct igb_adapter *adapter)
868{
869 u32 tmp;
870 int i, vector = 0;
871 struct e1000_hw *hw = &adapter->hw;
872
873 adapter->eims_enable_mask = 0;
9d5c8243
AK
874
875 /* set vector for other causes, i.e. link changes */
2d064c06
AD
876 switch (hw->mac.type) {
877 case e1000_82575:
9d5c8243
AK
878 tmp = rd32(E1000_CTRL_EXT);
879 /* enable MSI-X PBA support*/
880 tmp |= E1000_CTRL_EXT_PBA_CLR;
881
882 /* Auto-Mask interrupts upon ICR read. */
883 tmp |= E1000_CTRL_EXT_EIAME;
884 tmp |= E1000_CTRL_EXT_IRCA;
885
886 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
887
888 /* enable msix_other interrupt */
b980ac18 889 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 890 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 891
2d064c06
AD
892 break;
893
894 case e1000_82576:
55cac248 895 case e1000_82580:
d2ba2ed8 896 case e1000_i350:
ceb5f13b 897 case e1000_i354:
f96a8a0b
CW
898 case e1000_i210:
899 case e1000_i211:
047e0030 900 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
901 * won't stick. And it will take days to debug.
902 */
047e0030 903 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
904 E1000_GPIE_PBA | E1000_GPIE_EIAME |
905 E1000_GPIE_NSICR);
047e0030
AD
906
907 /* enable msix_other interrupt */
908 adapter->eims_other = 1 << vector;
2d064c06 909 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 910
047e0030 911 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
912 break;
913 default:
914 /* do nothing, since nothing else supports MSI-X */
915 break;
916 } /* switch (hw->mac.type) */
047e0030
AD
917
918 adapter->eims_enable_mask |= adapter->eims_other;
919
26b39276
AD
920 for (i = 0; i < adapter->num_q_vectors; i++)
921 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 922
9d5c8243
AK
923 wrfl();
924}
925
926/**
b980ac18
JK
927 * igb_request_msix - Initialize MSI-X interrupts
928 * @adapter: board private structure to initialize
9d5c8243 929 *
b980ac18
JK
930 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
931 * kernel.
9d5c8243
AK
932 **/
933static int igb_request_msix(struct igb_adapter *adapter)
934{
935 struct net_device *netdev = adapter->netdev;
047e0030 936 struct e1000_hw *hw = &adapter->hw;
52285b76 937 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 938
047e0030 939 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 940 igb_msix_other, 0, netdev->name, adapter);
047e0030 941 if (err)
52285b76 942 goto err_out;
047e0030
AD
943
944 for (i = 0; i < adapter->num_q_vectors; i++) {
945 struct igb_q_vector *q_vector = adapter->q_vector[i];
946
52285b76
SA
947 vector++;
948
047e0030
AD
949 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950
0ba82994 951 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 952 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
953 q_vector->rx.ring->queue_index);
954 else if (q_vector->tx.ring)
047e0030 955 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
956 q_vector->tx.ring->queue_index);
957 else if (q_vector->rx.ring)
047e0030 958 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 959 q_vector->rx.ring->queue_index);
9d5c8243 960 else
047e0030
AD
961 sprintf(q_vector->name, "%s-unused", netdev->name);
962
9d5c8243 963 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
964 igb_msix_ring, 0, q_vector->name,
965 q_vector);
9d5c8243 966 if (err)
52285b76 967 goto err_free;
9d5c8243
AK
968 }
969
9d5c8243
AK
970 igb_configure_msix(adapter);
971 return 0;
52285b76
SA
972
973err_free:
974 /* free already assigned IRQs */
975 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
976
977 vector--;
978 for (i = 0; i < vector; i++) {
979 free_irq(adapter->msix_entries[free_vector++].vector,
980 adapter->q_vector[i]);
981 }
982err_out:
9d5c8243
AK
983 return err;
984}
985
986static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
987{
988 if (adapter->msix_entries) {
989 pci_disable_msix(adapter->pdev);
990 kfree(adapter->msix_entries);
991 adapter->msix_entries = NULL;
047e0030 992 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 993 pci_disable_msi(adapter->pdev);
047e0030 994 }
9d5c8243
AK
995}
996
5536d210 997/**
b980ac18
JK
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
5536d210 1001 *
b980ac18
JK
1002 * This function frees the memory allocated to the q_vector. In addition if
1003 * NAPI is enabled it will delete any references to the NAPI struct prior
1004 * to freeing the q_vector.
5536d210
AD
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 if (q_vector->tx.ring)
1011 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1012
1013 if (q_vector->rx.ring)
1014 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1015
1016 adapter->q_vector[v_idx] = NULL;
1017 netif_napi_del(&q_vector->napi);
1018
7f90128e 1019 /* igb_get_stats64() might access the rings on this vector,
5536d210
AD
1020 * we must wait a grace period before freeing it.
1021 */
1022 kfree_rcu(q_vector, rcu);
1023}
1024
047e0030 1025/**
b980ac18
JK
1026 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1027 * @adapter: board private structure to initialize
047e0030 1028 *
b980ac18
JK
1029 * This function frees the memory allocated to the q_vectors. In addition if
1030 * NAPI is enabled it will delete any references to the NAPI struct prior
1031 * to freeing the q_vector.
047e0030
AD
1032 **/
1033static void igb_free_q_vectors(struct igb_adapter *adapter)
1034{
5536d210
AD
1035 int v_idx = adapter->num_q_vectors;
1036
1037 adapter->num_tx_queues = 0;
1038 adapter->num_rx_queues = 0;
047e0030 1039 adapter->num_q_vectors = 0;
5536d210
AD
1040
1041 while (v_idx--)
1042 igb_free_q_vector(adapter, v_idx);
047e0030
AD
1043}
1044
1045/**
b980ac18
JK
1046 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047 * @adapter: board private structure to initialize
047e0030 1048 *
b980ac18
JK
1049 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1050 * MSI-X interrupts allocated.
047e0030
AD
1051 */
1052static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053{
047e0030
AD
1054 igb_free_q_vectors(adapter);
1055 igb_reset_interrupt_capability(adapter);
1056}
9d5c8243
AK
1057
1058/**
b980ac18
JK
1059 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1060 * @adapter: board private structure to initialize
1061 * @msix: boolean value of MSIX capability
9d5c8243 1062 *
b980ac18
JK
1063 * Attempt to configure interrupts using the best available
1064 * capabilities of the hardware and kernel.
9d5c8243 1065 **/
53c7d064 1066static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1067{
1068 int err;
1069 int numvecs, i;
1070
53c7d064
SA
1071 if (!msix)
1072 goto msi_only;
1073
83b7180d 1074 /* Number of supported queues. */
a99955fc 1075 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1076 if (adapter->vfs_allocated_count)
1077 adapter->num_tx_queues = 1;
1078 else
1079 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1080
b980ac18 1081 /* start with one vector for every Rx queue */
047e0030
AD
1082 numvecs = adapter->num_rx_queues;
1083
b980ac18 1084 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1085 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1086 numvecs += adapter->num_tx_queues;
047e0030
AD
1087
1088 /* store the number of vectors reserved for queues */
1089 adapter->num_q_vectors = numvecs;
1090
1091 /* add 1 vector for link status interrupts */
1092 numvecs++;
9d5c8243
AK
1093 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1094 GFP_KERNEL);
f96a8a0b 1095
9d5c8243
AK
1096 if (!adapter->msix_entries)
1097 goto msi_only;
1098
1099 for (i = 0; i < numvecs; i++)
1100 adapter->msix_entries[i].entry = i;
1101
1102 err = pci_enable_msix(adapter->pdev,
1103 adapter->msix_entries,
1104 numvecs);
1105 if (err == 0)
0c2cc02e 1106 return;
9d5c8243
AK
1107
1108 igb_reset_interrupt_capability(adapter);
1109
1110 /* If we can't do MSI-X, try MSI */
1111msi_only:
2a3abf6d
AD
1112#ifdef CONFIG_PCI_IOV
1113 /* disable SR-IOV for non MSI-X configurations */
1114 if (adapter->vf_data) {
1115 struct e1000_hw *hw = &adapter->hw;
1116 /* disable iov and allow time for transactions to clear */
1117 pci_disable_sriov(adapter->pdev);
1118 msleep(500);
1119
1120 kfree(adapter->vf_data);
1121 adapter->vf_data = NULL;
1122 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1123 wrfl();
2a3abf6d
AD
1124 msleep(100);
1125 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1126 }
1127#endif
4fc82adf 1128 adapter->vfs_allocated_count = 0;
a99955fc 1129 adapter->rss_queues = 1;
4fc82adf 1130 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1131 adapter->num_rx_queues = 1;
661086df 1132 adapter->num_tx_queues = 1;
047e0030 1133 adapter->num_q_vectors = 1;
9d5c8243 1134 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1135 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1136}
1137
5536d210
AD
1138static void igb_add_ring(struct igb_ring *ring,
1139 struct igb_ring_container *head)
1140{
1141 head->ring = ring;
1142 head->count++;
1143}
1144
047e0030 1145/**
b980ac18
JK
1146 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1147 * @adapter: board private structure to initialize
1148 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1149 * @v_idx: index of vector in adapter struct
1150 * @txr_count: total number of Tx rings to allocate
1151 * @txr_idx: index of first Tx ring to allocate
1152 * @rxr_count: total number of Rx rings to allocate
1153 * @rxr_idx: index of first Rx ring to allocate
047e0030 1154 *
b980ac18 1155 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1156 **/
5536d210
AD
1157static int igb_alloc_q_vector(struct igb_adapter *adapter,
1158 int v_count, int v_idx,
1159 int txr_count, int txr_idx,
1160 int rxr_count, int rxr_idx)
047e0030
AD
1161{
1162 struct igb_q_vector *q_vector;
5536d210
AD
1163 struct igb_ring *ring;
1164 int ring_count, size;
047e0030 1165
5536d210
AD
1166 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 if (txr_count > 1 || rxr_count > 1)
1168 return -ENOMEM;
1169
1170 ring_count = txr_count + rxr_count;
1171 size = sizeof(struct igb_q_vector) +
1172 (sizeof(struct igb_ring) * ring_count);
1173
1174 /* allocate q_vector and rings */
1175 q_vector = kzalloc(size, GFP_KERNEL);
1176 if (!q_vector)
1177 return -ENOMEM;
1178
1179 /* initialize NAPI */
1180 netif_napi_add(adapter->netdev, &q_vector->napi,
1181 igb_poll, 64);
1182
1183 /* tie q_vector and adapter together */
1184 adapter->q_vector[v_idx] = q_vector;
1185 q_vector->adapter = adapter;
1186
1187 /* initialize work limits */
1188 q_vector->tx.work_limit = adapter->tx_work_limit;
1189
1190 /* initialize ITR configuration */
1191 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1192 q_vector->itr_val = IGB_START_ITR;
1193
1194 /* initialize pointer to rings */
1195 ring = q_vector->ring;
1196
4e227667
AD
1197 /* intialize ITR */
1198 if (rxr_count) {
1199 /* rx or rx/tx vector */
1200 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1201 q_vector->itr_val = adapter->rx_itr_setting;
1202 } else {
1203 /* tx only vector */
1204 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1205 q_vector->itr_val = adapter->tx_itr_setting;
1206 }
1207
5536d210
AD
1208 if (txr_count) {
1209 /* assign generic ring traits */
1210 ring->dev = &adapter->pdev->dev;
1211 ring->netdev = adapter->netdev;
1212
1213 /* configure backlink on ring */
1214 ring->q_vector = q_vector;
1215
1216 /* update q_vector Tx values */
1217 igb_add_ring(ring, &q_vector->tx);
1218
1219 /* For 82575, context index must be unique per ring. */
1220 if (adapter->hw.mac.type == e1000_82575)
1221 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1222
1223 /* apply Tx specific ring traits */
1224 ring->count = adapter->tx_ring_count;
1225 ring->queue_index = txr_idx;
1226
827da44c
JS
1227 u64_stats_init(&ring->tx_syncp);
1228 u64_stats_init(&ring->tx_syncp2);
1229
5536d210
AD
1230 /* assign ring to adapter */
1231 adapter->tx_ring[txr_idx] = ring;
1232
1233 /* push pointer to next ring */
1234 ring++;
047e0030 1235 }
81c2fc22 1236
5536d210
AD
1237 if (rxr_count) {
1238 /* assign generic ring traits */
1239 ring->dev = &adapter->pdev->dev;
1240 ring->netdev = adapter->netdev;
047e0030 1241
5536d210
AD
1242 /* configure backlink on ring */
1243 ring->q_vector = q_vector;
047e0030 1244
5536d210
AD
1245 /* update q_vector Rx values */
1246 igb_add_ring(ring, &q_vector->rx);
047e0030 1247
5536d210
AD
1248 /* set flag indicating ring supports SCTP checksum offload */
1249 if (adapter->hw.mac.type >= e1000_82576)
1250 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1251
ceb5f13b
CW
1252 /*
1253 * On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1254 * have the tag byte-swapped.
b980ac18 1255 */
5536d210
AD
1256 if (adapter->hw.mac.type >= e1000_i350)
1257 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1258
5536d210
AD
1259 /* apply Rx specific ring traits */
1260 ring->count = adapter->rx_ring_count;
1261 ring->queue_index = rxr_idx;
1262
827da44c
JS
1263 u64_stats_init(&ring->rx_syncp);
1264
5536d210
AD
1265 /* assign ring to adapter */
1266 adapter->rx_ring[rxr_idx] = ring;
1267 }
1268
1269 return 0;
047e0030
AD
1270}
1271
5536d210 1272
047e0030 1273/**
b980ac18
JK
1274 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1275 * @adapter: board private structure to initialize
047e0030 1276 *
b980ac18
JK
1277 * We allocate one q_vector per queue interrupt. If allocation fails we
1278 * return -ENOMEM.
047e0030 1279 **/
5536d210 1280static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1281{
5536d210
AD
1282 int q_vectors = adapter->num_q_vectors;
1283 int rxr_remaining = adapter->num_rx_queues;
1284 int txr_remaining = adapter->num_tx_queues;
1285 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1286 int err;
047e0030 1287
5536d210
AD
1288 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1289 for (; rxr_remaining; v_idx++) {
1290 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1291 0, 0, 1, rxr_idx);
047e0030 1292
5536d210
AD
1293 if (err)
1294 goto err_out;
1295
1296 /* update counts and index */
1297 rxr_remaining--;
1298 rxr_idx++;
047e0030 1299 }
047e0030 1300 }
5536d210
AD
1301
1302 for (; v_idx < q_vectors; v_idx++) {
1303 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1304 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1305 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 tqpv, txr_idx, rqpv, rxr_idx);
1307
1308 if (err)
1309 goto err_out;
1310
1311 /* update counts and index */
1312 rxr_remaining -= rqpv;
1313 txr_remaining -= tqpv;
1314 rxr_idx++;
1315 txr_idx++;
1316 }
1317
047e0030 1318 return 0;
5536d210
AD
1319
1320err_out:
1321 adapter->num_tx_queues = 0;
1322 adapter->num_rx_queues = 0;
1323 adapter->num_q_vectors = 0;
1324
1325 while (v_idx--)
1326 igb_free_q_vector(adapter, v_idx);
1327
1328 return -ENOMEM;
047e0030
AD
1329}
1330
1331/**
b980ac18
JK
1332 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1333 * @adapter: board private structure to initialize
1334 * @msix: boolean value of MSIX capability
047e0030 1335 *
b980ac18 1336 * This function initializes the interrupts and allocates all of the queues.
047e0030 1337 **/
53c7d064 1338static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1339{
1340 struct pci_dev *pdev = adapter->pdev;
1341 int err;
1342
53c7d064 1343 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1344
1345 err = igb_alloc_q_vectors(adapter);
1346 if (err) {
1347 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1348 goto err_alloc_q_vectors;
1349 }
1350
5536d210 1351 igb_cache_ring_register(adapter);
047e0030
AD
1352
1353 return 0;
5536d210 1354
047e0030
AD
1355err_alloc_q_vectors:
1356 igb_reset_interrupt_capability(adapter);
1357 return err;
1358}
1359
9d5c8243 1360/**
b980ac18
JK
1361 * igb_request_irq - initialize interrupts
1362 * @adapter: board private structure to initialize
9d5c8243 1363 *
b980ac18
JK
1364 * Attempts to configure interrupts using the best available
1365 * capabilities of the hardware and kernel.
9d5c8243
AK
1366 **/
1367static int igb_request_irq(struct igb_adapter *adapter)
1368{
1369 struct net_device *netdev = adapter->netdev;
047e0030 1370 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1371 int err = 0;
1372
1373 if (adapter->msix_entries) {
1374 err = igb_request_msix(adapter);
844290e5 1375 if (!err)
9d5c8243 1376 goto request_done;
9d5c8243 1377 /* fall back to MSI */
5536d210
AD
1378 igb_free_all_tx_resources(adapter);
1379 igb_free_all_rx_resources(adapter);
53c7d064 1380
047e0030 1381 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1382 err = igb_init_interrupt_scheme(adapter, false);
1383 if (err)
047e0030 1384 goto request_done;
53c7d064 1385
047e0030
AD
1386 igb_setup_all_tx_resources(adapter);
1387 igb_setup_all_rx_resources(adapter);
53c7d064 1388 igb_configure(adapter);
9d5c8243 1389 }
844290e5 1390
c74d588e
AD
1391 igb_assign_vector(adapter->q_vector[0], 0);
1392
7dfc16fa 1393 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1394 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1395 netdev->name, adapter);
9d5c8243
AK
1396 if (!err)
1397 goto request_done;
047e0030 1398
9d5c8243
AK
1399 /* fall back to legacy interrupts */
1400 igb_reset_interrupt_capability(adapter);
7dfc16fa 1401 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1402 }
1403
c74d588e 1404 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1405 netdev->name, adapter);
9d5c8243 1406
6cb5e577 1407 if (err)
c74d588e 1408 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1409 err);
9d5c8243
AK
1410
1411request_done:
1412 return err;
1413}
1414
1415static void igb_free_irq(struct igb_adapter *adapter)
1416{
9d5c8243
AK
1417 if (adapter->msix_entries) {
1418 int vector = 0, i;
1419
047e0030 1420 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1421
0d1ae7f4 1422 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1423 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1424 adapter->q_vector[i]);
047e0030
AD
1425 } else {
1426 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1427 }
9d5c8243
AK
1428}
1429
1430/**
b980ac18
JK
1431 * igb_irq_disable - Mask off interrupt generation on the NIC
1432 * @adapter: board private structure
9d5c8243
AK
1433 **/
1434static void igb_irq_disable(struct igb_adapter *adapter)
1435{
1436 struct e1000_hw *hw = &adapter->hw;
1437
b980ac18 1438 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1439 * mapped into these registers and so clearing the bits can cause
1440 * issues on the VF drivers so we only need to clear what we set
1441 */
9d5c8243 1442 if (adapter->msix_entries) {
2dfd1212
AD
1443 u32 regval = rd32(E1000_EIAM);
1444 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1445 wr32(E1000_EIMC, adapter->eims_enable_mask);
1446 regval = rd32(E1000_EIAC);
1447 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1448 }
844290e5
PW
1449
1450 wr32(E1000_IAM, 0);
9d5c8243
AK
1451 wr32(E1000_IMC, ~0);
1452 wrfl();
81a61859
ET
1453 if (adapter->msix_entries) {
1454 int i;
1455 for (i = 0; i < adapter->num_q_vectors; i++)
1456 synchronize_irq(adapter->msix_entries[i].vector);
1457 } else {
1458 synchronize_irq(adapter->pdev->irq);
1459 }
9d5c8243
AK
1460}
1461
1462/**
b980ac18
JK
1463 * igb_irq_enable - Enable default interrupt generation settings
1464 * @adapter: board private structure
9d5c8243
AK
1465 **/
1466static void igb_irq_enable(struct igb_adapter *adapter)
1467{
1468 struct e1000_hw *hw = &adapter->hw;
1469
1470 if (adapter->msix_entries) {
06218a8d 1471 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1472 u32 regval = rd32(E1000_EIAC);
1473 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1474 regval = rd32(E1000_EIAM);
1475 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1476 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1477 if (adapter->vfs_allocated_count) {
4ae196df 1478 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1479 ims |= E1000_IMS_VMMB;
1480 }
1481 wr32(E1000_IMS, ims);
844290e5 1482 } else {
55cac248
AD
1483 wr32(E1000_IMS, IMS_ENABLE_MASK |
1484 E1000_IMS_DRSTA);
1485 wr32(E1000_IAM, IMS_ENABLE_MASK |
1486 E1000_IMS_DRSTA);
844290e5 1487 }
9d5c8243
AK
1488}
1489
1490static void igb_update_mng_vlan(struct igb_adapter *adapter)
1491{
51466239 1492 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1493 u16 vid = adapter->hw.mng_cookie.vlan_id;
1494 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1495
1496 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1497 /* add VID to filter table */
1498 igb_vfta_set(hw, vid, true);
1499 adapter->mng_vlan_id = vid;
1500 } else {
1501 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1502 }
1503
1504 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1505 (vid != old_vid) &&
b2cb09b1 1506 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1507 /* remove VID from filter table */
1508 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1509 }
1510}
1511
1512/**
b980ac18
JK
1513 * igb_release_hw_control - release control of the h/w to f/w
1514 * @adapter: address of board private structure
9d5c8243 1515 *
b980ac18
JK
1516 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1517 * For ASF and Pass Through versions of f/w this means that the
1518 * driver is no longer loaded.
9d5c8243
AK
1519 **/
1520static void igb_release_hw_control(struct igb_adapter *adapter)
1521{
1522 struct e1000_hw *hw = &adapter->hw;
1523 u32 ctrl_ext;
1524
1525 /* Let firmware take over control of h/w */
1526 ctrl_ext = rd32(E1000_CTRL_EXT);
1527 wr32(E1000_CTRL_EXT,
1528 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1529}
1530
9d5c8243 1531/**
b980ac18
JK
1532 * igb_get_hw_control - get control of the h/w from f/w
1533 * @adapter: address of board private structure
9d5c8243 1534 *
b980ac18
JK
1535 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1536 * For ASF and Pass Through versions of f/w this means that
1537 * the driver is loaded.
9d5c8243
AK
1538 **/
1539static void igb_get_hw_control(struct igb_adapter *adapter)
1540{
1541 struct e1000_hw *hw = &adapter->hw;
1542 u32 ctrl_ext;
1543
1544 /* Let firmware know the driver has taken over */
1545 ctrl_ext = rd32(E1000_CTRL_EXT);
1546 wr32(E1000_CTRL_EXT,
1547 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1548}
1549
9d5c8243 1550/**
b980ac18
JK
1551 * igb_configure - configure the hardware for RX and TX
1552 * @adapter: private board structure
9d5c8243
AK
1553 **/
1554static void igb_configure(struct igb_adapter *adapter)
1555{
1556 struct net_device *netdev = adapter->netdev;
1557 int i;
1558
1559 igb_get_hw_control(adapter);
ff41f8dc 1560 igb_set_rx_mode(netdev);
9d5c8243
AK
1561
1562 igb_restore_vlan(adapter);
9d5c8243 1563
85b430b4 1564 igb_setup_tctl(adapter);
06cf2666 1565 igb_setup_mrqc(adapter);
9d5c8243 1566 igb_setup_rctl(adapter);
85b430b4
AD
1567
1568 igb_configure_tx(adapter);
9d5c8243 1569 igb_configure_rx(adapter);
662d7205
AD
1570
1571 igb_rx_fifo_flush_82575(&adapter->hw);
1572
c493ea45 1573 /* call igb_desc_unused which always leaves
9d5c8243 1574 * at least 1 descriptor unused to make sure
b980ac18
JK
1575 * next_to_use != next_to_clean
1576 */
9d5c8243 1577 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1578 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1579 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1580 }
9d5c8243
AK
1581}
1582
88a268c1 1583/**
b980ac18
JK
1584 * igb_power_up_link - Power up the phy/serdes link
1585 * @adapter: address of board private structure
88a268c1
NN
1586 **/
1587void igb_power_up_link(struct igb_adapter *adapter)
1588{
76886596
AA
1589 igb_reset_phy(&adapter->hw);
1590
88a268c1
NN
1591 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1592 igb_power_up_phy_copper(&adapter->hw);
1593 else
1594 igb_power_up_serdes_link_82575(&adapter->hw);
1595}
1596
1597/**
b980ac18
JK
1598 * igb_power_down_link - Power down the phy/serdes link
1599 * @adapter: address of board private structure
88a268c1
NN
1600 */
1601static void igb_power_down_link(struct igb_adapter *adapter)
1602{
1603 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1604 igb_power_down_phy_copper_82575(&adapter->hw);
1605 else
1606 igb_shutdown_serdes_link_82575(&adapter->hw);
1607}
9d5c8243 1608
56cec249
CW
1609/**
1610 * Detect and switch function for Media Auto Sense
1611 * @adapter: address of the board private structure
1612 **/
1613static void igb_check_swap_media(struct igb_adapter *adapter)
1614{
1615 struct e1000_hw *hw = &adapter->hw;
1616 u32 ctrl_ext, connsw;
1617 bool swap_now = false;
1618
1619 ctrl_ext = rd32(E1000_CTRL_EXT);
1620 connsw = rd32(E1000_CONNSW);
1621
1622 /* need to live swap if current media is copper and we have fiber/serdes
1623 * to go to.
1624 */
1625
1626 if ((hw->phy.media_type == e1000_media_type_copper) &&
1627 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1628 swap_now = true;
1629 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1630 /* copper signal takes time to appear */
1631 if (adapter->copper_tries < 4) {
1632 adapter->copper_tries++;
1633 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1634 wr32(E1000_CONNSW, connsw);
1635 return;
1636 } else {
1637 adapter->copper_tries = 0;
1638 if ((connsw & E1000_CONNSW_PHYSD) &&
1639 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1640 swap_now = true;
1641 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1642 wr32(E1000_CONNSW, connsw);
1643 }
1644 }
1645 }
1646
1647 if (!swap_now)
1648 return;
1649
1650 switch (hw->phy.media_type) {
1651 case e1000_media_type_copper:
1652 netdev_info(adapter->netdev,
1653 "MAS: changing media to fiber/serdes\n");
1654 ctrl_ext |=
1655 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1656 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1657 adapter->copper_tries = 0;
1658 break;
1659 case e1000_media_type_internal_serdes:
1660 case e1000_media_type_fiber:
1661 netdev_info(adapter->netdev,
1662 "MAS: changing media to copper\n");
1663 ctrl_ext &=
1664 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1665 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1666 break;
1667 default:
1668 /* shouldn't get here during regular operation */
1669 netdev_err(adapter->netdev,
1670 "AMS: Invalid media type found, returning\n");
1671 break;
1672 }
1673 wr32(E1000_CTRL_EXT, ctrl_ext);
1674}
1675
9d5c8243 1676/**
b980ac18
JK
1677 * igb_up - Open the interface and prepare it to handle traffic
1678 * @adapter: board private structure
9d5c8243 1679 **/
9d5c8243
AK
1680int igb_up(struct igb_adapter *adapter)
1681{
1682 struct e1000_hw *hw = &adapter->hw;
1683 int i;
1684
1685 /* hardware has been reset, we need to reload some things */
1686 igb_configure(adapter);
1687
1688 clear_bit(__IGB_DOWN, &adapter->state);
1689
0d1ae7f4
AD
1690 for (i = 0; i < adapter->num_q_vectors; i++)
1691 napi_enable(&(adapter->q_vector[i]->napi));
1692
844290e5 1693 if (adapter->msix_entries)
9d5c8243 1694 igb_configure_msix(adapter);
feeb2721
AD
1695 else
1696 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1697
1698 /* Clear any pending interrupts. */
1699 rd32(E1000_ICR);
1700 igb_irq_enable(adapter);
1701
d4960307
AD
1702 /* notify VFs that reset has been completed */
1703 if (adapter->vfs_allocated_count) {
1704 u32 reg_data = rd32(E1000_CTRL_EXT);
1705 reg_data |= E1000_CTRL_EXT_PFRSTD;
1706 wr32(E1000_CTRL_EXT, reg_data);
1707 }
1708
4cb9be7a
JB
1709 netif_tx_start_all_queues(adapter->netdev);
1710
25568a53
AD
1711 /* start the watchdog. */
1712 hw->mac.get_link_status = 1;
1713 schedule_work(&adapter->watchdog_task);
1714
9d5c8243
AK
1715 return 0;
1716}
1717
1718void igb_down(struct igb_adapter *adapter)
1719{
9d5c8243 1720 struct net_device *netdev = adapter->netdev;
330a6d6a 1721 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1722 u32 tctl, rctl;
1723 int i;
1724
1725 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1726 * reschedule our watchdog timer
1727 */
9d5c8243
AK
1728 set_bit(__IGB_DOWN, &adapter->state);
1729
1730 /* disable receives in the hardware */
1731 rctl = rd32(E1000_RCTL);
1732 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1733 /* flush and sleep below */
1734
fd2ea0a7 1735 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1736
1737 /* disable transmits in the hardware */
1738 tctl = rd32(E1000_TCTL);
1739 tctl &= ~E1000_TCTL_EN;
1740 wr32(E1000_TCTL, tctl);
1741 /* flush both disables and wait for them to finish */
1742 wrfl();
1743 msleep(10);
1744
41f149a2
CW
1745 igb_irq_disable(adapter);
1746
aa9b8cc4
AA
1747 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1748
41f149a2
CW
1749 for (i = 0; i < adapter->num_q_vectors; i++) {
1750 napi_synchronize(&(adapter->q_vector[i]->napi));
0d1ae7f4 1751 napi_disable(&(adapter->q_vector[i]->napi));
41f149a2 1752 }
9d5c8243 1753
9d5c8243
AK
1754
1755 del_timer_sync(&adapter->watchdog_timer);
1756 del_timer_sync(&adapter->phy_info_timer);
1757
9d5c8243 1758 netif_carrier_off(netdev);
04fe6358
AD
1759
1760 /* record the stats before reset*/
12dcd86b
ED
1761 spin_lock(&adapter->stats64_lock);
1762 igb_update_stats(adapter, &adapter->stats64);
1763 spin_unlock(&adapter->stats64_lock);
04fe6358 1764
9d5c8243
AK
1765 adapter->link_speed = 0;
1766 adapter->link_duplex = 0;
1767
3023682e
JK
1768 if (!pci_channel_offline(adapter->pdev))
1769 igb_reset(adapter);
9d5c8243
AK
1770 igb_clean_all_tx_rings(adapter);
1771 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1772#ifdef CONFIG_IGB_DCA
1773
1774 /* since we reset the hardware DCA settings were cleared */
1775 igb_setup_dca(adapter);
1776#endif
9d5c8243
AK
1777}
1778
1779void igb_reinit_locked(struct igb_adapter *adapter)
1780{
1781 WARN_ON(in_interrupt());
1782 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1783 msleep(1);
1784 igb_down(adapter);
1785 igb_up(adapter);
1786 clear_bit(__IGB_RESETTING, &adapter->state);
1787}
1788
56cec249
CW
1789/** igb_enable_mas - Media Autosense re-enable after swap
1790 *
1791 * @adapter: adapter struct
1792 **/
1793static s32 igb_enable_mas(struct igb_adapter *adapter)
1794{
1795 struct e1000_hw *hw = &adapter->hw;
1796 u32 connsw;
1797 s32 ret_val = 0;
1798
1799 connsw = rd32(E1000_CONNSW);
1800 if (!(hw->phy.media_type == e1000_media_type_copper))
1801 return ret_val;
1802
1803 /* configure for SerDes media detect */
1804 if (!(connsw & E1000_CONNSW_SERDESD)) {
1805 connsw |= E1000_CONNSW_ENRGSRC;
1806 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1807 wr32(E1000_CONNSW, connsw);
1808 wrfl();
1809 } else if (connsw & E1000_CONNSW_SERDESD) {
1810 /* already SerDes, no need to enable anything */
1811 return ret_val;
1812 } else {
1813 netdev_info(adapter->netdev,
1814 "MAS: Unable to configure feature, disabling..\n");
1815 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1816 }
1817 return ret_val;
1818}
1819
9d5c8243
AK
1820void igb_reset(struct igb_adapter *adapter)
1821{
090b1795 1822 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1823 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1824 struct e1000_mac_info *mac = &hw->mac;
1825 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1826 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1827
1828 /* Repartition Pba for greater than 9k mtu
1829 * To take effect CTRL.RST is required.
1830 */
fa4dfae0 1831 switch (mac->type) {
d2ba2ed8 1832 case e1000_i350:
ceb5f13b 1833 case e1000_i354:
55cac248
AD
1834 case e1000_82580:
1835 pba = rd32(E1000_RXPBS);
1836 pba = igb_rxpbs_adjust_82580(pba);
1837 break;
fa4dfae0 1838 case e1000_82576:
d249be54
AD
1839 pba = rd32(E1000_RXPBS);
1840 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1841 break;
1842 case e1000_82575:
f96a8a0b
CW
1843 case e1000_i210:
1844 case e1000_i211:
fa4dfae0
AD
1845 default:
1846 pba = E1000_PBA_34K;
1847 break;
2d064c06 1848 }
9d5c8243 1849
2d064c06
AD
1850 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1851 (mac->type < e1000_82576)) {
9d5c8243
AK
1852 /* adjust PBA for jumbo frames */
1853 wr32(E1000_PBA, pba);
1854
1855 /* To maintain wire speed transmits, the Tx FIFO should be
1856 * large enough to accommodate two full transmit packets,
1857 * rounded up to the next 1KB and expressed in KB. Likewise,
1858 * the Rx FIFO should be large enough to accommodate at least
1859 * one full receive packet and is similarly rounded up and
b980ac18
JK
1860 * expressed in KB.
1861 */
9d5c8243
AK
1862 pba = rd32(E1000_PBA);
1863 /* upper 16 bits has Tx packet buffer allocation size in KB */
1864 tx_space = pba >> 16;
1865 /* lower 16 bits has Rx packet buffer allocation size in KB */
1866 pba &= 0xffff;
b980ac18
JK
1867 /* the Tx fifo also stores 16 bytes of information about the Tx
1868 * but don't include ethernet FCS because hardware appends it
1869 */
9d5c8243 1870 min_tx_space = (adapter->max_frame_size +
85e8d004 1871 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1872 ETH_FCS_LEN) * 2;
1873 min_tx_space = ALIGN(min_tx_space, 1024);
1874 min_tx_space >>= 10;
1875 /* software strips receive CRC, so leave room for it */
1876 min_rx_space = adapter->max_frame_size;
1877 min_rx_space = ALIGN(min_rx_space, 1024);
1878 min_rx_space >>= 10;
1879
1880 /* If current Tx allocation is less than the min Tx FIFO size,
1881 * and the min Tx FIFO size is less than the current Rx FIFO
b980ac18
JK
1882 * allocation, take space away from current Rx allocation
1883 */
9d5c8243
AK
1884 if (tx_space < min_tx_space &&
1885 ((min_tx_space - tx_space) < pba)) {
1886 pba = pba - (min_tx_space - tx_space);
1887
b980ac18
JK
1888 /* if short on Rx space, Rx wins and must trump Tx
1889 * adjustment
1890 */
9d5c8243
AK
1891 if (pba < min_rx_space)
1892 pba = min_rx_space;
1893 }
2d064c06 1894 wr32(E1000_PBA, pba);
9d5c8243 1895 }
9d5c8243
AK
1896
1897 /* flow control settings */
1898 /* The high water mark must be low enough to fit one full frame
1899 * (or the size used for early receive) above it in the Rx FIFO.
1900 * Set it to the lower of:
1901 * - 90% of the Rx FIFO size, or
b980ac18
JK
1902 * - the full Rx FIFO size minus one full frame
1903 */
9d5c8243 1904 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1905 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1906
d48507fe 1907 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1908 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1909 fc->pause_time = 0xFFFF;
1910 fc->send_xon = 1;
0cce119a 1911 fc->current_mode = fc->requested_mode;
9d5c8243 1912
4ae196df
AD
1913 /* disable receive for all VFs and wait one second */
1914 if (adapter->vfs_allocated_count) {
1915 int i;
1916 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1917 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1918
1919 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1920 igb_ping_all_vfs(adapter);
4ae196df
AD
1921
1922 /* disable transmits and receives */
1923 wr32(E1000_VFRE, 0);
1924 wr32(E1000_VFTE, 0);
1925 }
1926
9d5c8243 1927 /* Allow time for pending master requests to run */
330a6d6a 1928 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1929 wr32(E1000_WUC, 0);
1930
56cec249
CW
1931 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1932 /* need to resetup here after media swap */
1933 adapter->ei.get_invariants(hw);
1934 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1935 }
1936 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1937 if (igb_enable_mas(adapter))
1938 dev_err(&pdev->dev,
1939 "Error enabling Media Auto Sense\n");
1940 }
330a6d6a 1941 if (hw->mac.ops.init_hw(hw))
090b1795 1942 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1943
b980ac18 1944 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1945 * control is off when forcing speed.
1946 */
1947 if (!hw->mac.autoneg)
1948 igb_force_mac_fc(hw);
1949
b6e0c419 1950 igb_init_dmac(adapter, pba);
e428893b
CW
1951#ifdef CONFIG_IGB_HWMON
1952 /* Re-initialize the thermal sensor on i350 devices. */
1953 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1954 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1955 /* If present, re-initialize the external thermal sensor
1956 * interface.
1957 */
1958 if (adapter->ets)
1959 mac->ops.init_thermal_sensor_thresh(hw);
1960 }
1961 }
1962#endif
88a268c1
NN
1963 if (!netif_running(adapter->netdev))
1964 igb_power_down_link(adapter);
1965
9d5c8243
AK
1966 igb_update_mng_vlan(adapter);
1967
1968 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1969 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1970
1f6e8178
MV
1971 /* Re-enable PTP, where applicable. */
1972 igb_ptp_reset(adapter);
1f6e8178 1973
330a6d6a 1974 igb_get_phy_info(hw);
9d5c8243
AK
1975}
1976
c8f44aff
MM
1977static netdev_features_t igb_fix_features(struct net_device *netdev,
1978 netdev_features_t features)
b2cb09b1 1979{
b980ac18
JK
1980 /* Since there is no support for separate Rx/Tx vlan accel
1981 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 1982 */
f646968f
PM
1983 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1984 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 1985 else
f646968f 1986 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
1987
1988 return features;
1989}
1990
c8f44aff
MM
1991static int igb_set_features(struct net_device *netdev,
1992 netdev_features_t features)
ac52caa3 1993{
c8f44aff 1994 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1995 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1996
f646968f 1997 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
1998 igb_vlan_mode(netdev, features);
1999
89eaefb6
BG
2000 if (!(changed & NETIF_F_RXALL))
2001 return 0;
2002
2003 netdev->features = features;
2004
2005 if (netif_running(netdev))
2006 igb_reinit_locked(adapter);
2007 else
2008 igb_reset(adapter);
2009
ac52caa3
MM
2010 return 0;
2011}
2012
2e5c6922 2013static const struct net_device_ops igb_netdev_ops = {
559e9c49 2014 .ndo_open = igb_open,
2e5c6922 2015 .ndo_stop = igb_close,
cd392f5c 2016 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2017 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2018 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2019 .ndo_set_mac_address = igb_set_mac,
2020 .ndo_change_mtu = igb_change_mtu,
2021 .ndo_do_ioctl = igb_ioctl,
2022 .ndo_tx_timeout = igb_tx_timeout,
2023 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2024 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2025 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2026 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2027 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2028 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
70ea4783 2029 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2030 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2031#ifdef CONFIG_NET_POLL_CONTROLLER
2032 .ndo_poll_controller = igb_netpoll,
2033#endif
b2cb09b1
JP
2034 .ndo_fix_features = igb_fix_features,
2035 .ndo_set_features = igb_set_features,
2e5c6922
SH
2036};
2037
d67974f0
CW
2038/**
2039 * igb_set_fw_version - Configure version string for ethtool
2040 * @adapter: adapter struct
d67974f0
CW
2041 **/
2042void igb_set_fw_version(struct igb_adapter *adapter)
2043{
2044 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2045 struct e1000_fw_version fw;
2046
2047 igb_get_fw_version(hw, &fw);
2048
2049 switch (hw->mac.type) {
7dc98a62 2050 case e1000_i210:
0b1a6f2e 2051 case e1000_i211:
7dc98a62
CW
2052 if (!(igb_get_flash_presence_i210(hw))) {
2053 snprintf(adapter->fw_version,
2054 sizeof(adapter->fw_version),
2055 "%2d.%2d-%d",
2056 fw.invm_major, fw.invm_minor,
2057 fw.invm_img_type);
2058 break;
2059 }
2060 /* fall through */
0b1a6f2e
CW
2061 default:
2062 /* if option is rom valid, display its version too */
2063 if (fw.or_valid) {
2064 snprintf(adapter->fw_version,
2065 sizeof(adapter->fw_version),
2066 "%d.%d, 0x%08x, %d.%d.%d",
2067 fw.eep_major, fw.eep_minor, fw.etrack_id,
2068 fw.or_major, fw.or_build, fw.or_patch);
2069 /* no option rom */
7dc98a62 2070 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2071 snprintf(adapter->fw_version,
7dc98a62
CW
2072 sizeof(adapter->fw_version),
2073 "%d.%d, 0x%08x",
2074 fw.eep_major, fw.eep_minor, fw.etrack_id);
2075 } else {
2076 snprintf(adapter->fw_version,
2077 sizeof(adapter->fw_version),
2078 "%d.%d.%d",
2079 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2080 }
2081 break;
d67974f0 2082 }
d67974f0
CW
2083 return;
2084}
2085
56cec249
CW
2086/**
2087 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2088 *
2089 * @adapter: adapter struct
2090 **/
2091static void igb_init_mas(struct igb_adapter *adapter)
2092{
2093 struct e1000_hw *hw = &adapter->hw;
2094 u16 eeprom_data;
2095
2096 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2097 switch (hw->bus.func) {
2098 case E1000_FUNC_0:
2099 if (eeprom_data & IGB_MAS_ENABLE_0) {
2100 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2101 netdev_info(adapter->netdev,
2102 "MAS: Enabling Media Autosense for port %d\n",
2103 hw->bus.func);
2104 }
2105 break;
2106 case E1000_FUNC_1:
2107 if (eeprom_data & IGB_MAS_ENABLE_1) {
2108 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2109 netdev_info(adapter->netdev,
2110 "MAS: Enabling Media Autosense for port %d\n",
2111 hw->bus.func);
2112 }
2113 break;
2114 case E1000_FUNC_2:
2115 if (eeprom_data & IGB_MAS_ENABLE_2) {
2116 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2117 netdev_info(adapter->netdev,
2118 "MAS: Enabling Media Autosense for port %d\n",
2119 hw->bus.func);
2120 }
2121 break;
2122 case E1000_FUNC_3:
2123 if (eeprom_data & IGB_MAS_ENABLE_3) {
2124 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2125 netdev_info(adapter->netdev,
2126 "MAS: Enabling Media Autosense for port %d\n",
2127 hw->bus.func);
2128 }
2129 break;
2130 default:
2131 /* Shouldn't get here */
2132 netdev_err(adapter->netdev,
2133 "MAS: Invalid port configuration, returning\n");
2134 break;
2135 }
2136}
2137
b980ac18
JK
2138/**
2139 * igb_init_i2c - Init I2C interface
441fc6fd 2140 * @adapter: pointer to adapter structure
b980ac18 2141 **/
441fc6fd
CW
2142static s32 igb_init_i2c(struct igb_adapter *adapter)
2143{
2144 s32 status = E1000_SUCCESS;
2145
2146 /* I2C interface supported on i350 devices */
2147 if (adapter->hw.mac.type != e1000_i350)
2148 return E1000_SUCCESS;
2149
2150 /* Initialize the i2c bus which is controlled by the registers.
2151 * This bus will use the i2c_algo_bit structue that implements
2152 * the protocol through toggling of the 4 bits in the register.
2153 */
2154 adapter->i2c_adap.owner = THIS_MODULE;
2155 adapter->i2c_algo = igb_i2c_algo;
2156 adapter->i2c_algo.data = adapter;
2157 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2158 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2159 strlcpy(adapter->i2c_adap.name, "igb BB",
2160 sizeof(adapter->i2c_adap.name));
2161 status = i2c_bit_add_bus(&adapter->i2c_adap);
2162 return status;
2163}
2164
9d5c8243 2165/**
b980ac18
JK
2166 * igb_probe - Device Initialization Routine
2167 * @pdev: PCI device information struct
2168 * @ent: entry in igb_pci_tbl
9d5c8243 2169 *
b980ac18 2170 * Returns 0 on success, negative on failure
9d5c8243 2171 *
b980ac18
JK
2172 * igb_probe initializes an adapter identified by a pci_dev structure.
2173 * The OS initialization, configuring of the adapter private structure,
2174 * and a hardware reset occur.
9d5c8243 2175 **/
1dd06ae8 2176static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2177{
2178 struct net_device *netdev;
2179 struct igb_adapter *adapter;
2180 struct e1000_hw *hw;
4337e993 2181 u16 eeprom_data = 0;
9835fd73 2182 s32 ret_val;
4337e993 2183 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2184 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2185 int err, pci_using_dac;
9835fd73 2186 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2187
bded64a7
AG
2188 /* Catch broken hardware that put the wrong VF device ID in
2189 * the PCIe SR-IOV capability.
2190 */
2191 if (pdev->is_virtfn) {
2192 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2193 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2194 return -EINVAL;
2195 }
2196
aed5dec3 2197 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2198 if (err)
2199 return err;
2200
2201 pci_using_dac = 0;
dc4ff9bb 2202 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2203 if (!err) {
dc4ff9bb 2204 pci_using_dac = 1;
9d5c8243 2205 } else {
dc4ff9bb 2206 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2207 if (err) {
dc4ff9bb
RK
2208 dev_err(&pdev->dev,
2209 "No usable DMA configuration, aborting\n");
2210 goto err_dma;
9d5c8243
AK
2211 }
2212 }
2213
aed5dec3 2214 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2215 IORESOURCE_MEM),
2216 igb_driver_name);
9d5c8243
AK
2217 if (err)
2218 goto err_pci_reg;
2219
19d5afd4 2220 pci_enable_pcie_error_reporting(pdev);
40a914fa 2221
9d5c8243 2222 pci_set_master(pdev);
c682fc23 2223 pci_save_state(pdev);
9d5c8243
AK
2224
2225 err = -ENOMEM;
1bfaf07b 2226 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2227 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2228 if (!netdev)
2229 goto err_alloc_etherdev;
2230
2231 SET_NETDEV_DEV(netdev, &pdev->dev);
2232
2233 pci_set_drvdata(pdev, netdev);
2234 adapter = netdev_priv(netdev);
2235 adapter->netdev = netdev;
2236 adapter->pdev = pdev;
2237 hw = &adapter->hw;
2238 hw->back = adapter;
b3f4d599 2239 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2240
9d5c8243 2241 err = -EIO;
89dbefb2 2242 hw->hw_addr = pci_iomap(pdev, 0, 0);
28b0759c 2243 if (!hw->hw_addr)
9d5c8243
AK
2244 goto err_ioremap;
2245
2e5c6922 2246 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2247 igb_set_ethtool_ops(netdev);
9d5c8243 2248 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2249
2250 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2251
89dbefb2
AS
2252 netdev->mem_start = pci_resource_start(pdev, 0);
2253 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2254
9d5c8243
AK
2255 /* PCI config space info */
2256 hw->vendor_id = pdev->vendor;
2257 hw->device_id = pdev->device;
2258 hw->revision_id = pdev->revision;
2259 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2260 hw->subsystem_device_id = pdev->subsystem_device;
2261
9d5c8243
AK
2262 /* Copy the default MAC, PHY and NVM function pointers */
2263 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2264 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2265 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2266 /* Initialize skew-specific constants */
2267 err = ei->get_invariants(hw);
2268 if (err)
450c87c8 2269 goto err_sw_init;
9d5c8243 2270
450c87c8 2271 /* setup the private structure */
9d5c8243
AK
2272 err = igb_sw_init(adapter);
2273 if (err)
2274 goto err_sw_init;
2275
2276 igb_get_bus_info_pcie(hw);
2277
2278 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2279
2280 /* Copper options */
2281 if (hw->phy.media_type == e1000_media_type_copper) {
2282 hw->phy.mdix = AUTO_ALL_MODES;
2283 hw->phy.disable_polarity_correction = false;
2284 hw->phy.ms_type = e1000_ms_hw_default;
2285 }
2286
2287 if (igb_check_reset_block(hw))
2288 dev_info(&pdev->dev,
2289 "PHY reset is blocked due to SOL/IDER session.\n");
2290
b980ac18 2291 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2292 * set by igb_sw_init so we should use an or instead of an
2293 * assignment.
2294 */
2295 netdev->features |= NETIF_F_SG |
2296 NETIF_F_IP_CSUM |
2297 NETIF_F_IPV6_CSUM |
2298 NETIF_F_TSO |
2299 NETIF_F_TSO6 |
2300 NETIF_F_RXHASH |
2301 NETIF_F_RXCSUM |
f646968f
PM
2302 NETIF_F_HW_VLAN_CTAG_RX |
2303 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2304
2305 /* copy netdev features into list of user selectable features */
2306 netdev->hw_features |= netdev->features;
89eaefb6 2307 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2308
2309 /* set this bit last since it cannot be part of hw_features */
f646968f 2310 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2311
2312 netdev->vlan_features |= NETIF_F_TSO |
2313 NETIF_F_TSO6 |
2314 NETIF_F_IP_CSUM |
2315 NETIF_F_IPV6_CSUM |
2316 NETIF_F_SG;
48f29ffc 2317
6b8f0922
BG
2318 netdev->priv_flags |= IFF_SUPP_NOFCS;
2319
7b872a55 2320 if (pci_using_dac) {
9d5c8243 2321 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2322 netdev->vlan_features |= NETIF_F_HIGHDMA;
2323 }
9d5c8243 2324
ac52caa3
MM
2325 if (hw->mac.type >= e1000_82576) {
2326 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2327 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2328 }
b9473560 2329
01789349
JP
2330 netdev->priv_flags |= IFF_UNICAST_FLT;
2331
330a6d6a 2332 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2333
2334 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2335 * known good starting state
2336 */
9d5c8243
AK
2337 hw->mac.ops.reset_hw(hw);
2338
ef3a0092
CW
2339 /* make sure the NVM is good , i211/i210 parts can have special NVM
2340 * that doesn't contain a checksum
f96a8a0b 2341 */
ef3a0092
CW
2342 switch (hw->mac.type) {
2343 case e1000_i210:
2344 case e1000_i211:
2345 if (igb_get_flash_presence_i210(hw)) {
2346 if (hw->nvm.ops.validate(hw) < 0) {
2347 dev_err(&pdev->dev,
2348 "The NVM Checksum Is Not Valid\n");
2349 err = -EIO;
2350 goto err_eeprom;
2351 }
2352 }
2353 break;
2354 default:
f96a8a0b
CW
2355 if (hw->nvm.ops.validate(hw) < 0) {
2356 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2357 err = -EIO;
2358 goto err_eeprom;
2359 }
ef3a0092 2360 break;
9d5c8243
AK
2361 }
2362
2363 /* copy the MAC address out of the NVM */
2364 if (hw->mac.ops.read_mac_addr(hw))
2365 dev_err(&pdev->dev, "NVM Read Error\n");
2366
2367 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2368
aaeb6cdf 2369 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2370 dev_err(&pdev->dev, "Invalid MAC Address\n");
2371 err = -EIO;
2372 goto err_eeprom;
2373 }
2374
d67974f0
CW
2375 /* get firmware version for ethtool -i */
2376 igb_set_fw_version(adapter);
2377
c061b18d 2378 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2379 (unsigned long) adapter);
c061b18d 2380 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2381 (unsigned long) adapter);
9d5c8243
AK
2382
2383 INIT_WORK(&adapter->reset_task, igb_reset_task);
2384 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2385
450c87c8 2386 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2387 adapter->fc_autoneg = true;
2388 hw->mac.autoneg = true;
2389 hw->phy.autoneg_advertised = 0x2f;
2390
0cce119a
AD
2391 hw->fc.requested_mode = e1000_fc_default;
2392 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2393
9d5c8243
AK
2394 igb_validate_mdi_setting(hw);
2395
63d4a8f9 2396 /* By default, support wake on port A */
a2cf8b6c 2397 if (hw->bus.func == 0)
63d4a8f9
MV
2398 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2399
2400 /* Check the NVM for wake support on non-port A ports */
2401 if (hw->mac.type >= e1000_82580)
55cac248 2402 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2403 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2404 &eeprom_data);
a2cf8b6c
AD
2405 else if (hw->bus.func == 1)
2406 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2407
63d4a8f9
MV
2408 if (eeprom_data & IGB_EEPROM_APME)
2409 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2410
2411 /* now that we have the eeprom settings, apply the special cases where
2412 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2413 * lan on a particular port
2414 */
9d5c8243
AK
2415 switch (pdev->device) {
2416 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2417 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2418 break;
2419 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2420 case E1000_DEV_ID_82576_FIBER:
2421 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2422 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2423 * regardless of eeprom setting
2424 */
9d5c8243 2425 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2426 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2427 break;
c8ea5ea9 2428 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2429 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2430 /* if quad port adapter, disable WoL on all but port A */
2431 if (global_quad_port_a != 0)
63d4a8f9 2432 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2433 else
2434 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2435 /* Reset for multiple quad port adapters */
2436 if (++global_quad_port_a == 4)
2437 global_quad_port_a = 0;
2438 break;
63d4a8f9
MV
2439 default:
2440 /* If the device can't wake, don't set software support */
2441 if (!device_can_wakeup(&adapter->pdev->dev))
2442 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2443 }
2444
2445 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2446 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2447 adapter->wol |= E1000_WUFC_MAG;
2448
2449 /* Some vendors want WoL disabled by default, but still supported */
2450 if ((hw->mac.type == e1000_i350) &&
2451 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2452 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2453 adapter->wol = 0;
2454 }
2455
2456 device_set_wakeup_enable(&adapter->pdev->dev,
2457 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2458
2459 /* reset the hardware with the new settings */
2460 igb_reset(adapter);
2461
441fc6fd
CW
2462 /* Init the I2C interface */
2463 err = igb_init_i2c(adapter);
2464 if (err) {
2465 dev_err(&pdev->dev, "failed to init i2c interface\n");
2466 goto err_eeprom;
2467 }
2468
9d5c8243
AK
2469 /* let the f/w know that the h/w is now under the control of the
2470 * driver. */
2471 igb_get_hw_control(adapter);
2472
9d5c8243
AK
2473 strcpy(netdev->name, "eth%d");
2474 err = register_netdev(netdev);
2475 if (err)
2476 goto err_register;
2477
b168dfc5
JB
2478 /* carrier off reporting is important to ethtool even BEFORE open */
2479 netif_carrier_off(netdev);
2480
421e02f0 2481#ifdef CONFIG_IGB_DCA
bbd98fe4 2482 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2483 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2484 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2485 igb_setup_dca(adapter);
2486 }
fe4506b6 2487
38c845c7 2488#endif
e428893b
CW
2489#ifdef CONFIG_IGB_HWMON
2490 /* Initialize the thermal sensor on i350 devices. */
2491 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2492 u16 ets_word;
3c89f6d0 2493
b980ac18 2494 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2495 * external thermal sensor.
2496 */
2497 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2498 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2499 adapter->ets = true;
2500 else
2501 adapter->ets = false;
2502 if (igb_sysfs_init(adapter))
2503 dev_err(&pdev->dev,
2504 "failed to allocate sysfs resources\n");
2505 } else {
2506 adapter->ets = false;
2507 }
2508#endif
56cec249
CW
2509 /* Check if Media Autosense is enabled */
2510 adapter->ei = *ei;
2511 if (hw->dev_spec._82575.mas_capable)
2512 igb_init_mas(adapter);
2513
673b8b70 2514 /* do hw tstamp init after resetting */
7ebae817 2515 igb_ptp_init(adapter);
673b8b70 2516
9d5c8243 2517 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2518 /* print bus type/speed/width info, not applicable to i354 */
2519 if (hw->mac.type != e1000_i354) {
2520 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2521 netdev->name,
2522 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2523 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2524 "unknown"),
2525 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2526 "Width x4" :
2527 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2528 "Width x2" :
2529 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2530 "Width x1" : "unknown"), netdev->dev_addr);
2531 }
9d5c8243 2532
53ea6c7e
TF
2533 if ((hw->mac.type >= e1000_i210 ||
2534 igb_get_flash_presence_i210(hw))) {
2535 ret_val = igb_read_part_string(hw, part_str,
2536 E1000_PBANUM_LENGTH);
2537 } else {
2538 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2539 }
2540
9835fd73
CW
2541 if (ret_val)
2542 strcpy(part_str, "Unknown");
2543 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2544 dev_info(&pdev->dev,
2545 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2546 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2547 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2548 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2549 switch (hw->mac.type) {
2550 case e1000_i350:
f96a8a0b
CW
2551 case e1000_i210:
2552 case e1000_i211:
09b068d4
CW
2553 igb_set_eee_i350(hw);
2554 break;
ceb5f13b
CW
2555 case e1000_i354:
2556 if (hw->phy.media_type == e1000_media_type_copper) {
2557 if ((rd32(E1000_CTRL_EXT) &
2558 E1000_CTRL_EXT_LINK_MODE_SGMII))
2559 igb_set_eee_i354(hw);
2560 }
2561 break;
09b068d4
CW
2562 default:
2563 break;
2564 }
749ab2cd
YZ
2565
2566 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2567 return 0;
2568
2569err_register:
2570 igb_release_hw_control(adapter);
441fc6fd 2571 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2572err_eeprom:
2573 if (!igb_check_reset_block(hw))
f5f4cf08 2574 igb_reset_phy(hw);
9d5c8243
AK
2575
2576 if (hw->flash_address)
2577 iounmap(hw->flash_address);
9d5c8243 2578err_sw_init:
047e0030 2579 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2580 iounmap(hw->hw_addr);
2581err_ioremap:
2582 free_netdev(netdev);
2583err_alloc_etherdev:
559e9c49 2584 pci_release_selected_regions(pdev,
b980ac18 2585 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2586err_pci_reg:
2587err_dma:
2588 pci_disable_device(pdev);
2589 return err;
2590}
2591
fa44f2f1 2592#ifdef CONFIG_PCI_IOV
781798a1 2593static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2594{
2595 struct net_device *netdev = pci_get_drvdata(pdev);
2596 struct igb_adapter *adapter = netdev_priv(netdev);
2597 struct e1000_hw *hw = &adapter->hw;
2598
2599 /* reclaim resources allocated to VFs */
2600 if (adapter->vf_data) {
2601 /* disable iov and allow time for transactions to clear */
b09186d2 2602 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2603 dev_warn(&pdev->dev,
2604 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2605 return -EPERM;
2606 } else {
2607 pci_disable_sriov(pdev);
2608 msleep(500);
2609 }
2610
2611 kfree(adapter->vf_data);
2612 adapter->vf_data = NULL;
2613 adapter->vfs_allocated_count = 0;
2614 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2615 wrfl();
2616 msleep(100);
2617 dev_info(&pdev->dev, "IOV Disabled\n");
2618
2619 /* Re-enable DMA Coalescing flag since IOV is turned off */
2620 adapter->flags |= IGB_FLAG_DMAC;
2621 }
2622
2623 return 0;
2624}
2625
2626static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2627{
2628 struct net_device *netdev = pci_get_drvdata(pdev);
2629 struct igb_adapter *adapter = netdev_priv(netdev);
2630 int old_vfs = pci_num_vf(pdev);
2631 int err = 0;
2632 int i;
2633
781798a1 2634 if (!adapter->msix_entries || num_vfs > 7) {
50267196
MW
2635 err = -EPERM;
2636 goto out;
2637 }
fa44f2f1
GR
2638 if (!num_vfs)
2639 goto out;
fa44f2f1 2640
781798a1
SA
2641 if (old_vfs) {
2642 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2643 old_vfs, max_vfs);
2644 adapter->vfs_allocated_count = old_vfs;
2645 } else
2646 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2647
2648 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2649 sizeof(struct vf_data_storage), GFP_KERNEL);
2650
2651 /* if allocation failed then we do not support SR-IOV */
2652 if (!adapter->vf_data) {
2653 adapter->vfs_allocated_count = 0;
2654 dev_err(&pdev->dev,
2655 "Unable to allocate memory for VF Data Storage\n");
2656 err = -ENOMEM;
2657 goto out;
2658 }
2659
781798a1
SA
2660 /* only call pci_enable_sriov() if no VFs are allocated already */
2661 if (!old_vfs) {
2662 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2663 if (err)
2664 goto err_out;
2665 }
fa44f2f1
GR
2666 dev_info(&pdev->dev, "%d VFs allocated\n",
2667 adapter->vfs_allocated_count);
2668 for (i = 0; i < adapter->vfs_allocated_count; i++)
2669 igb_vf_configure(adapter, i);
2670
2671 /* DMA Coalescing is not supported in IOV mode. */
2672 adapter->flags &= ~IGB_FLAG_DMAC;
2673 goto out;
2674
2675err_out:
2676 kfree(adapter->vf_data);
2677 adapter->vf_data = NULL;
2678 adapter->vfs_allocated_count = 0;
2679out:
2680 return err;
2681}
2682
2683#endif
b980ac18 2684/**
441fc6fd
CW
2685 * igb_remove_i2c - Cleanup I2C interface
2686 * @adapter: pointer to adapter structure
b980ac18 2687 **/
441fc6fd
CW
2688static void igb_remove_i2c(struct igb_adapter *adapter)
2689{
441fc6fd
CW
2690 /* free the adapter bus structure */
2691 i2c_del_adapter(&adapter->i2c_adap);
2692}
2693
9d5c8243 2694/**
b980ac18
JK
2695 * igb_remove - Device Removal Routine
2696 * @pdev: PCI device information struct
9d5c8243 2697 *
b980ac18
JK
2698 * igb_remove is called by the PCI subsystem to alert the driver
2699 * that it should release a PCI device. The could be caused by a
2700 * Hot-Plug event, or because the driver is going to be removed from
2701 * memory.
9d5c8243 2702 **/
9f9a12f8 2703static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2704{
2705 struct net_device *netdev = pci_get_drvdata(pdev);
2706 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2707 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2708
749ab2cd 2709 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2710#ifdef CONFIG_IGB_HWMON
2711 igb_sysfs_exit(adapter);
2712#endif
441fc6fd 2713 igb_remove_i2c(adapter);
a79f4f88 2714 igb_ptp_stop(adapter);
b980ac18 2715 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2716 * disable watchdog from being rescheduled.
2717 */
9d5c8243
AK
2718 set_bit(__IGB_DOWN, &adapter->state);
2719 del_timer_sync(&adapter->watchdog_timer);
2720 del_timer_sync(&adapter->phy_info_timer);
2721
760141a5
TH
2722 cancel_work_sync(&adapter->reset_task);
2723 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2724
421e02f0 2725#ifdef CONFIG_IGB_DCA
7dfc16fa 2726 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2727 dev_info(&pdev->dev, "DCA disabled\n");
2728 dca_remove_requester(&pdev->dev);
7dfc16fa 2729 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2730 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2731 }
2732#endif
2733
9d5c8243 2734 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2735 * would have already happened in close and is redundant.
2736 */
9d5c8243
AK
2737 igb_release_hw_control(adapter);
2738
2739 unregister_netdev(netdev);
2740
047e0030 2741 igb_clear_interrupt_scheme(adapter);
9d5c8243 2742
37680117 2743#ifdef CONFIG_PCI_IOV
fa44f2f1 2744 igb_disable_sriov(pdev);
37680117 2745#endif
559e9c49 2746
28b0759c
AD
2747 iounmap(hw->hw_addr);
2748 if (hw->flash_address)
2749 iounmap(hw->flash_address);
559e9c49 2750 pci_release_selected_regions(pdev,
b980ac18 2751 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2752
1128c756 2753 kfree(adapter->shadow_vfta);
9d5c8243
AK
2754 free_netdev(netdev);
2755
19d5afd4 2756 pci_disable_pcie_error_reporting(pdev);
40a914fa 2757
9d5c8243
AK
2758 pci_disable_device(pdev);
2759}
2760
a6b623e0 2761/**
b980ac18
JK
2762 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2763 * @adapter: board private structure to initialize
a6b623e0 2764 *
b980ac18
JK
2765 * This function initializes the vf specific data storage and then attempts to
2766 * allocate the VFs. The reason for ordering it this way is because it is much
2767 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2768 * the memory for the VFs.
a6b623e0 2769 **/
9f9a12f8 2770static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2771{
2772#ifdef CONFIG_PCI_IOV
2773 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2774 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2775
f96a8a0b
CW
2776 /* Virtualization features not supported on i210 family. */
2777 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2778 return;
2779
fa44f2f1 2780 pci_sriov_set_totalvfs(pdev, 7);
781798a1 2781 igb_pci_enable_sriov(pdev, max_vfs);
0224d663 2782
a6b623e0
AD
2783#endif /* CONFIG_PCI_IOV */
2784}
2785
fa44f2f1 2786static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2787{
2788 struct e1000_hw *hw = &adapter->hw;
374a542d 2789 u32 max_rss_queues;
9d5c8243 2790
374a542d 2791 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2792 switch (hw->mac.type) {
374a542d
MV
2793 case e1000_i211:
2794 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2795 break;
2796 case e1000_82575:
f96a8a0b 2797 case e1000_i210:
374a542d
MV
2798 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2799 break;
2800 case e1000_i350:
2801 /* I350 cannot do RSS and SR-IOV at the same time */
2802 if (!!adapter->vfs_allocated_count) {
2803 max_rss_queues = 1;
2804 break;
2805 }
2806 /* fall through */
2807 case e1000_82576:
2808 if (!!adapter->vfs_allocated_count) {
2809 max_rss_queues = 2;
2810 break;
2811 }
2812 /* fall through */
2813 case e1000_82580:
ceb5f13b 2814 case e1000_i354:
374a542d
MV
2815 default:
2816 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2817 break;
374a542d
MV
2818 }
2819
2820 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2821
2822 /* Determine if we need to pair queues. */
2823 switch (hw->mac.type) {
2824 case e1000_82575:
f96a8a0b 2825 case e1000_i211:
374a542d 2826 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2827 break;
374a542d 2828 case e1000_82576:
b980ac18 2829 /* If VFs are going to be allocated with RSS queues then we
374a542d
MV
2830 * should pair the queues in order to conserve interrupts due
2831 * to limited supply.
2832 */
2833 if ((adapter->rss_queues > 1) &&
2834 (adapter->vfs_allocated_count > 6))
2835 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2836 /* fall through */
2837 case e1000_82580:
2838 case e1000_i350:
ceb5f13b 2839 case e1000_i354:
374a542d 2840 case e1000_i210:
f96a8a0b 2841 default:
b980ac18 2842 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2843 * order to conserve interrupts due to limited supply.
2844 */
2845 if (adapter->rss_queues > (max_rss_queues / 2))
2846 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2847 break;
2848 }
fa44f2f1
GR
2849}
2850
2851/**
b980ac18
JK
2852 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2853 * @adapter: board private structure to initialize
fa44f2f1 2854 *
b980ac18
JK
2855 * igb_sw_init initializes the Adapter private data structure.
2856 * Fields are initialized based on PCI device information and
2857 * OS network device settings (MTU size).
fa44f2f1
GR
2858 **/
2859static int igb_sw_init(struct igb_adapter *adapter)
2860{
2861 struct e1000_hw *hw = &adapter->hw;
2862 struct net_device *netdev = adapter->netdev;
2863 struct pci_dev *pdev = adapter->pdev;
2864
2865 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2866
2867 /* set default ring sizes */
2868 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2869 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2870
2871 /* set default ITR values */
2872 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2873 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2874
2875 /* set default work limits */
2876 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2877
2878 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2879 VLAN_HLEN;
2880 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2881
2882 spin_lock_init(&adapter->stats64_lock);
2883#ifdef CONFIG_PCI_IOV
2884 switch (hw->mac.type) {
2885 case e1000_82576:
2886 case e1000_i350:
2887 if (max_vfs > 7) {
2888 dev_warn(&pdev->dev,
2889 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2890 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2891 } else
2892 adapter->vfs_allocated_count = max_vfs;
2893 if (adapter->vfs_allocated_count)
2894 dev_warn(&pdev->dev,
2895 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2896 break;
2897 default:
2898 break;
2899 }
2900#endif /* CONFIG_PCI_IOV */
2901
2902 igb_init_queue_configuration(adapter);
a99955fc 2903
1128c756 2904 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2905 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2906 GFP_ATOMIC);
1128c756 2907
a6b623e0 2908 /* This call may decrease the number of queues */
53c7d064 2909 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2910 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2911 return -ENOMEM;
2912 }
2913
a6b623e0
AD
2914 igb_probe_vfs(adapter);
2915
9d5c8243
AK
2916 /* Explicitly disable IRQ since the NIC can be in any state. */
2917 igb_irq_disable(adapter);
2918
f96a8a0b 2919 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2920 adapter->flags &= ~IGB_FLAG_DMAC;
2921
9d5c8243
AK
2922 set_bit(__IGB_DOWN, &adapter->state);
2923 return 0;
2924}
2925
2926/**
b980ac18
JK
2927 * igb_open - Called when a network interface is made active
2928 * @netdev: network interface device structure
9d5c8243 2929 *
b980ac18 2930 * Returns 0 on success, negative value on failure
9d5c8243 2931 *
b980ac18
JK
2932 * The open entry point is called when a network interface is made
2933 * active by the system (IFF_UP). At this point all resources needed
2934 * for transmit and receive operations are allocated, the interrupt
2935 * handler is registered with the OS, the watchdog timer is started,
2936 * and the stack is notified that the interface is ready.
9d5c8243 2937 **/
749ab2cd 2938static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2939{
2940 struct igb_adapter *adapter = netdev_priv(netdev);
2941 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2942 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2943 int err;
2944 int i;
2945
2946 /* disallow open during test */
749ab2cd
YZ
2947 if (test_bit(__IGB_TESTING, &adapter->state)) {
2948 WARN_ON(resuming);
9d5c8243 2949 return -EBUSY;
749ab2cd
YZ
2950 }
2951
2952 if (!resuming)
2953 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2954
b168dfc5
JB
2955 netif_carrier_off(netdev);
2956
9d5c8243
AK
2957 /* allocate transmit descriptors */
2958 err = igb_setup_all_tx_resources(adapter);
2959 if (err)
2960 goto err_setup_tx;
2961
2962 /* allocate receive descriptors */
2963 err = igb_setup_all_rx_resources(adapter);
2964 if (err)
2965 goto err_setup_rx;
2966
88a268c1 2967 igb_power_up_link(adapter);
9d5c8243 2968
9d5c8243
AK
2969 /* before we allocate an interrupt, we must be ready to handle it.
2970 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2971 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
2972 * clean_rx handler before we do so.
2973 */
9d5c8243
AK
2974 igb_configure(adapter);
2975
2976 err = igb_request_irq(adapter);
2977 if (err)
2978 goto err_req_irq;
2979
0c2cc02e
AD
2980 /* Notify the stack of the actual queue counts. */
2981 err = netif_set_real_num_tx_queues(adapter->netdev,
2982 adapter->num_tx_queues);
2983 if (err)
2984 goto err_set_queues;
2985
2986 err = netif_set_real_num_rx_queues(adapter->netdev,
2987 adapter->num_rx_queues);
2988 if (err)
2989 goto err_set_queues;
2990
9d5c8243
AK
2991 /* From here on the code is the same as igb_up() */
2992 clear_bit(__IGB_DOWN, &adapter->state);
2993
0d1ae7f4
AD
2994 for (i = 0; i < adapter->num_q_vectors; i++)
2995 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2996
2997 /* Clear any pending interrupts. */
2998 rd32(E1000_ICR);
844290e5
PW
2999
3000 igb_irq_enable(adapter);
3001
d4960307
AD
3002 /* notify VFs that reset has been completed */
3003 if (adapter->vfs_allocated_count) {
3004 u32 reg_data = rd32(E1000_CTRL_EXT);
3005 reg_data |= E1000_CTRL_EXT_PFRSTD;
3006 wr32(E1000_CTRL_EXT, reg_data);
3007 }
3008
d55b53ff
JK
3009 netif_tx_start_all_queues(netdev);
3010
749ab2cd
YZ
3011 if (!resuming)
3012 pm_runtime_put(&pdev->dev);
3013
25568a53
AD
3014 /* start the watchdog. */
3015 hw->mac.get_link_status = 1;
3016 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3017
3018 return 0;
3019
0c2cc02e
AD
3020err_set_queues:
3021 igb_free_irq(adapter);
9d5c8243
AK
3022err_req_irq:
3023 igb_release_hw_control(adapter);
88a268c1 3024 igb_power_down_link(adapter);
9d5c8243
AK
3025 igb_free_all_rx_resources(adapter);
3026err_setup_rx:
3027 igb_free_all_tx_resources(adapter);
3028err_setup_tx:
3029 igb_reset(adapter);
749ab2cd
YZ
3030 if (!resuming)
3031 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3032
3033 return err;
3034}
3035
749ab2cd
YZ
3036static int igb_open(struct net_device *netdev)
3037{
3038 return __igb_open(netdev, false);
3039}
3040
9d5c8243 3041/**
b980ac18
JK
3042 * igb_close - Disables a network interface
3043 * @netdev: network interface device structure
9d5c8243 3044 *
b980ac18 3045 * Returns 0, this is not allowed to fail
9d5c8243 3046 *
b980ac18
JK
3047 * The close entry point is called when an interface is de-activated
3048 * by the OS. The hardware is still under the driver's control, but
3049 * needs to be disabled. A global MAC reset is issued to stop the
3050 * hardware, and all transmit and receive resources are freed.
9d5c8243 3051 **/
749ab2cd 3052static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3053{
3054 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3055 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3056
3057 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3058
749ab2cd
YZ
3059 if (!suspending)
3060 pm_runtime_get_sync(&pdev->dev);
3061
3062 igb_down(adapter);
9d5c8243
AK
3063 igb_free_irq(adapter);
3064
3065 igb_free_all_tx_resources(adapter);
3066 igb_free_all_rx_resources(adapter);
3067
749ab2cd
YZ
3068 if (!suspending)
3069 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3070 return 0;
3071}
3072
749ab2cd
YZ
3073static int igb_close(struct net_device *netdev)
3074{
3075 return __igb_close(netdev, false);
3076}
3077
9d5c8243 3078/**
b980ac18
JK
3079 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3080 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3081 *
b980ac18 3082 * Return 0 on success, negative on failure
9d5c8243 3083 **/
80785298 3084int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3085{
59d71989 3086 struct device *dev = tx_ring->dev;
9d5c8243
AK
3087 int size;
3088
06034649 3089 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3090
3091 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3092 if (!tx_ring->tx_buffer_info)
9d5c8243 3093 goto err;
9d5c8243
AK
3094
3095 /* round up to nearest 4K */
85e8d004 3096 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3097 tx_ring->size = ALIGN(tx_ring->size, 4096);
3098
5536d210
AD
3099 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3100 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3101 if (!tx_ring->desc)
3102 goto err;
3103
9d5c8243
AK
3104 tx_ring->next_to_use = 0;
3105 tx_ring->next_to_clean = 0;
81c2fc22 3106
9d5c8243
AK
3107 return 0;
3108
3109err:
06034649 3110 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3111 tx_ring->tx_buffer_info = NULL;
3112 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3113 return -ENOMEM;
3114}
3115
3116/**
b980ac18
JK
3117 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3118 * (Descriptors) for all queues
3119 * @adapter: board private structure
9d5c8243 3120 *
b980ac18 3121 * Return 0 on success, negative on failure
9d5c8243
AK
3122 **/
3123static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3124{
439705e1 3125 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3126 int i, err = 0;
3127
3128 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3129 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3130 if (err) {
439705e1 3131 dev_err(&pdev->dev,
9d5c8243
AK
3132 "Allocation for Tx Queue %u failed\n", i);
3133 for (i--; i >= 0; i--)
3025a446 3134 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3135 break;
3136 }
3137 }
3138
3139 return err;
3140}
3141
3142/**
b980ac18
JK
3143 * igb_setup_tctl - configure the transmit control registers
3144 * @adapter: Board private structure
9d5c8243 3145 **/
d7ee5b3a 3146void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3147{
9d5c8243
AK
3148 struct e1000_hw *hw = &adapter->hw;
3149 u32 tctl;
9d5c8243 3150
85b430b4
AD
3151 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3152 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3153
3154 /* Program the Transmit Control Register */
9d5c8243
AK
3155 tctl = rd32(E1000_TCTL);
3156 tctl &= ~E1000_TCTL_CT;
3157 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3158 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3159
3160 igb_config_collision_dist(hw);
3161
9d5c8243
AK
3162 /* Enable transmits */
3163 tctl |= E1000_TCTL_EN;
3164
3165 wr32(E1000_TCTL, tctl);
3166}
3167
85b430b4 3168/**
b980ac18
JK
3169 * igb_configure_tx_ring - Configure transmit ring after Reset
3170 * @adapter: board private structure
3171 * @ring: tx ring to configure
85b430b4 3172 *
b980ac18 3173 * Configure a transmit ring after a reset.
85b430b4 3174 **/
d7ee5b3a
AD
3175void igb_configure_tx_ring(struct igb_adapter *adapter,
3176 struct igb_ring *ring)
85b430b4
AD
3177{
3178 struct e1000_hw *hw = &adapter->hw;
a74420e0 3179 u32 txdctl = 0;
85b430b4
AD
3180 u64 tdba = ring->dma;
3181 int reg_idx = ring->reg_idx;
3182
3183 /* disable the queue */
a74420e0 3184 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3185 wrfl();
3186 mdelay(10);
3187
3188 wr32(E1000_TDLEN(reg_idx),
b980ac18 3189 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3190 wr32(E1000_TDBAL(reg_idx),
b980ac18 3191 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3192 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3193
fce99e34 3194 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3195 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3196 writel(0, ring->tail);
85b430b4
AD
3197
3198 txdctl |= IGB_TX_PTHRESH;
3199 txdctl |= IGB_TX_HTHRESH << 8;
3200 txdctl |= IGB_TX_WTHRESH << 16;
3201
3202 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3203 wr32(E1000_TXDCTL(reg_idx), txdctl);
3204}
3205
3206/**
b980ac18
JK
3207 * igb_configure_tx - Configure transmit Unit after Reset
3208 * @adapter: board private structure
85b430b4 3209 *
b980ac18 3210 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3211 **/
3212static void igb_configure_tx(struct igb_adapter *adapter)
3213{
3214 int i;
3215
3216 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3217 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3218}
3219
9d5c8243 3220/**
b980ac18
JK
3221 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3222 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3223 *
b980ac18 3224 * Returns 0 on success, negative on failure
9d5c8243 3225 **/
80785298 3226int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3227{
59d71989 3228 struct device *dev = rx_ring->dev;
f33005a6 3229 int size;
9d5c8243 3230
06034649 3231 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3232
3233 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3234 if (!rx_ring->rx_buffer_info)
9d5c8243 3235 goto err;
9d5c8243 3236
9d5c8243 3237 /* Round up to nearest 4K */
f33005a6 3238 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3239 rx_ring->size = ALIGN(rx_ring->size, 4096);
3240
5536d210
AD
3241 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3242 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3243 if (!rx_ring->desc)
3244 goto err;
3245
cbc8e55f 3246 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3247 rx_ring->next_to_clean = 0;
3248 rx_ring->next_to_use = 0;
9d5c8243 3249
9d5c8243
AK
3250 return 0;
3251
3252err:
06034649
AD
3253 vfree(rx_ring->rx_buffer_info);
3254 rx_ring->rx_buffer_info = NULL;
f33005a6 3255 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3256 return -ENOMEM;
3257}
3258
3259/**
b980ac18
JK
3260 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3261 * (Descriptors) for all queues
3262 * @adapter: board private structure
9d5c8243 3263 *
b980ac18 3264 * Return 0 on success, negative on failure
9d5c8243
AK
3265 **/
3266static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3267{
439705e1 3268 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3269 int i, err = 0;
3270
3271 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3272 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3273 if (err) {
439705e1 3274 dev_err(&pdev->dev,
9d5c8243
AK
3275 "Allocation for Rx Queue %u failed\n", i);
3276 for (i--; i >= 0; i--)
3025a446 3277 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3278 break;
3279 }
3280 }
3281
3282 return err;
3283}
3284
06cf2666 3285/**
b980ac18
JK
3286 * igb_setup_mrqc - configure the multiple receive queue control registers
3287 * @adapter: Board private structure
06cf2666
AD
3288 **/
3289static void igb_setup_mrqc(struct igb_adapter *adapter)
3290{
3291 struct e1000_hw *hw = &adapter->hw;
3292 u32 mrqc, rxcsum;
ed12cc9a 3293 u32 j, num_rx_queues;
a57fe23e
AD
3294 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3295 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3296 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3297 0xFA01ACBE };
06cf2666
AD
3298
3299 /* Fill out hash function seeds */
a57fe23e
AD
3300 for (j = 0; j < 10; j++)
3301 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3302
a99955fc 3303 num_rx_queues = adapter->rss_queues;
06cf2666 3304
797fd4be 3305 switch (hw->mac.type) {
797fd4be
AD
3306 case e1000_82576:
3307 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3308 if (adapter->vfs_allocated_count)
06cf2666 3309 num_rx_queues = 2;
797fd4be
AD
3310 break;
3311 default:
3312 break;
06cf2666
AD
3313 }
3314
ed12cc9a
LMV
3315 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3316 for (j = 0; j < IGB_RETA_SIZE; j++)
3317 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3318 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3319 }
ed12cc9a 3320 igb_write_rss_indir_tbl(adapter);
06cf2666 3321
b980ac18 3322 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3323 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3324 * offloads as they are enabled by default
3325 */
3326 rxcsum = rd32(E1000_RXCSUM);
3327 rxcsum |= E1000_RXCSUM_PCSD;
3328
3329 if (adapter->hw.mac.type >= e1000_82576)
3330 /* Enable Receive Checksum Offload for SCTP */
3331 rxcsum |= E1000_RXCSUM_CRCOFL;
3332
3333 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3334 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3335
039454a8
AA
3336 /* Generate RSS hash based on packet types, TCP/UDP
3337 * port numbers and/or IPv4/v6 src and dst addresses
3338 */
f96a8a0b
CW
3339 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3340 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3341 E1000_MRQC_RSS_FIELD_IPV6 |
3342 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3343 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3344
039454a8
AA
3345 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3346 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3347 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3348 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3349
06cf2666
AD
3350 /* If VMDq is enabled then we set the appropriate mode for that, else
3351 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3352 * if we are only using one queue
3353 */
06cf2666
AD
3354 if (adapter->vfs_allocated_count) {
3355 if (hw->mac.type > e1000_82575) {
3356 /* Set the default pool for the PF's first queue */
3357 u32 vtctl = rd32(E1000_VT_CTL);
3358 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3359 E1000_VT_CTL_DISABLE_DEF_POOL);
3360 vtctl |= adapter->vfs_allocated_count <<
3361 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3362 wr32(E1000_VT_CTL, vtctl);
3363 }
a99955fc 3364 if (adapter->rss_queues > 1)
f96a8a0b 3365 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3366 else
f96a8a0b 3367 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3368 } else {
f96a8a0b
CW
3369 if (hw->mac.type != e1000_i211)
3370 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3371 }
3372 igb_vmm_control(adapter);
3373
06cf2666
AD
3374 wr32(E1000_MRQC, mrqc);
3375}
3376
9d5c8243 3377/**
b980ac18
JK
3378 * igb_setup_rctl - configure the receive control registers
3379 * @adapter: Board private structure
9d5c8243 3380 **/
d7ee5b3a 3381void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3382{
3383 struct e1000_hw *hw = &adapter->hw;
3384 u32 rctl;
9d5c8243
AK
3385
3386 rctl = rd32(E1000_RCTL);
3387
3388 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3389 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3390
69d728ba 3391 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3392 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3393
b980ac18 3394 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3395 * redirection as it did with e1000. Newer features require
3396 * that the HW strips the CRC.
73cd78f1 3397 */
87cb7e8c 3398 rctl |= E1000_RCTL_SECRC;
9d5c8243 3399
559e9c49 3400 /* disable store bad packets and clear size bits. */
ec54d7d6 3401 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3402
6ec43fe6
AD
3403 /* enable LPE to prevent packets larger than max_frame_size */
3404 rctl |= E1000_RCTL_LPE;
9d5c8243 3405
952f72a8
AD
3406 /* disable queue 0 to prevent tail write w/o re-config */
3407 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3408
e1739522
AD
3409 /* Attention!!! For SR-IOV PF driver operations you must enable
3410 * queue drop for all VF and PF queues to prevent head of line blocking
3411 * if an un-trusted VF does not provide descriptors to hardware.
3412 */
3413 if (adapter->vfs_allocated_count) {
e1739522
AD
3414 /* set all queue drop enable bits */
3415 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3416 }
3417
89eaefb6
BG
3418 /* This is useful for sniffing bad packets. */
3419 if (adapter->netdev->features & NETIF_F_RXALL) {
3420 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3421 * in e1000e_set_rx_mode
3422 */
89eaefb6
BG
3423 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3424 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3425 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3426
3427 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3428 E1000_RCTL_DPF | /* Allow filtered pause */
3429 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3430 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3431 * and that breaks VLANs.
3432 */
3433 }
3434
9d5c8243
AK
3435 wr32(E1000_RCTL, rctl);
3436}
3437
7d5753f0
AD
3438static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3439 int vfn)
3440{
3441 struct e1000_hw *hw = &adapter->hw;
3442 u32 vmolr;
3443
3444 /* if it isn't the PF check to see if VFs are enabled and
b980ac18
JK
3445 * increase the size to support vlan tags
3446 */
7d5753f0
AD
3447 if (vfn < adapter->vfs_allocated_count &&
3448 adapter->vf_data[vfn].vlans_enabled)
3449 size += VLAN_TAG_SIZE;
3450
3451 vmolr = rd32(E1000_VMOLR(vfn));
3452 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3453 vmolr |= size | E1000_VMOLR_LPE;
3454 wr32(E1000_VMOLR(vfn), vmolr);
3455
3456 return 0;
3457}
3458
e1739522 3459/**
b980ac18
JK
3460 * igb_rlpml_set - set maximum receive packet size
3461 * @adapter: board private structure
e1739522 3462 *
b980ac18 3463 * Configure maximum receivable packet size.
e1739522
AD
3464 **/
3465static void igb_rlpml_set(struct igb_adapter *adapter)
3466{
153285f9 3467 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3468 struct e1000_hw *hw = &adapter->hw;
3469 u16 pf_id = adapter->vfs_allocated_count;
3470
e1739522
AD
3471 if (pf_id) {
3472 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
b980ac18 3473 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
153285f9
AD
3474 * to our max jumbo frame size, in case we need to enable
3475 * jumbo frames on one of the rings later.
3476 * This will not pass over-length frames into the default
3477 * queue because it's gated by the VMOLR.RLPML.
3478 */
7d5753f0 3479 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3480 }
3481
3482 wr32(E1000_RLPML, max_frame_size);
3483}
3484
8151d294
WM
3485static inline void igb_set_vmolr(struct igb_adapter *adapter,
3486 int vfn, bool aupe)
7d5753f0
AD
3487{
3488 struct e1000_hw *hw = &adapter->hw;
3489 u32 vmolr;
3490
b980ac18 3491 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3492 * we should exit and do nothing
3493 */
3494 if (hw->mac.type < e1000_82576)
3495 return;
3496
3497 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3498 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
8151d294 3499 if (aupe)
b980ac18 3500 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3501 else
3502 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3503
3504 /* clear all bits that might not be set */
3505 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3506
a99955fc 3507 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3508 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3509 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3510 * multicast packets
3511 */
3512 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3513 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3514
3515 wr32(E1000_VMOLR(vfn), vmolr);
3516}
3517
85b430b4 3518/**
b980ac18
JK
3519 * igb_configure_rx_ring - Configure a receive ring after Reset
3520 * @adapter: board private structure
3521 * @ring: receive ring to be configured
85b430b4 3522 *
b980ac18 3523 * Configure the Rx unit of the MAC after a reset.
85b430b4 3524 **/
d7ee5b3a 3525void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3526 struct igb_ring *ring)
85b430b4
AD
3527{
3528 struct e1000_hw *hw = &adapter->hw;
3529 u64 rdba = ring->dma;
3530 int reg_idx = ring->reg_idx;
a74420e0 3531 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3532
3533 /* disable the queue */
a74420e0 3534 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3535
3536 /* Set DMA base address registers */
3537 wr32(E1000_RDBAL(reg_idx),
3538 rdba & 0x00000000ffffffffULL);
3539 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3540 wr32(E1000_RDLEN(reg_idx),
b980ac18 3541 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3542
3543 /* initialize head and tail */
fce99e34 3544 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3545 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3546 writel(0, ring->tail);
85b430b4 3547
952f72a8 3548 /* set descriptor configuration */
44390ca6 3549 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3550 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3551 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3552 if (hw->mac.type >= e1000_82580)
757b77e2 3553 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3554 /* Only set Drop Enable if we are supporting multiple queues */
3555 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3556 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3557
3558 wr32(E1000_SRRCTL(reg_idx), srrctl);
3559
7d5753f0 3560 /* set filtering for VMDQ pools */
8151d294 3561 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3562
85b430b4
AD
3563 rxdctl |= IGB_RX_PTHRESH;
3564 rxdctl |= IGB_RX_HTHRESH << 8;
3565 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3566
3567 /* enable receive descriptor fetching */
3568 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3569 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3570}
3571
9d5c8243 3572/**
b980ac18
JK
3573 * igb_configure_rx - Configure receive Unit after Reset
3574 * @adapter: board private structure
9d5c8243 3575 *
b980ac18 3576 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3577 **/
3578static void igb_configure_rx(struct igb_adapter *adapter)
3579{
9107584e 3580 int i;
9d5c8243 3581
68d480c4
AD
3582 /* set UTA to appropriate mode */
3583 igb_set_uta(adapter);
3584
26ad9178
AD
3585 /* set the correct pool for the PF default MAC address in entry 0 */
3586 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3587 adapter->vfs_allocated_count);
26ad9178 3588
06cf2666 3589 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3590 * the Base and Length of the Rx Descriptor Ring
3591 */
f9d40f6a
AD
3592 for (i = 0; i < adapter->num_rx_queues; i++)
3593 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3594}
3595
3596/**
b980ac18
JK
3597 * igb_free_tx_resources - Free Tx Resources per Queue
3598 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3599 *
b980ac18 3600 * Free all transmit software resources
9d5c8243 3601 **/
68fd9910 3602void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3603{
3b644cf6 3604 igb_clean_tx_ring(tx_ring);
9d5c8243 3605
06034649
AD
3606 vfree(tx_ring->tx_buffer_info);
3607 tx_ring->tx_buffer_info = NULL;
9d5c8243 3608
439705e1
AD
3609 /* if not set, then don't free */
3610 if (!tx_ring->desc)
3611 return;
3612
59d71989
AD
3613 dma_free_coherent(tx_ring->dev, tx_ring->size,
3614 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3615
3616 tx_ring->desc = NULL;
3617}
3618
3619/**
b980ac18
JK
3620 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3621 * @adapter: board private structure
9d5c8243 3622 *
b980ac18 3623 * Free all transmit software resources
9d5c8243
AK
3624 **/
3625static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3626{
3627 int i;
3628
3629 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3630 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3631}
3632
ebe42d16
AD
3633void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3634 struct igb_tx_buffer *tx_buffer)
3635{
3636 if (tx_buffer->skb) {
3637 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3638 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3639 dma_unmap_single(ring->dev,
c9f14bf3
AD
3640 dma_unmap_addr(tx_buffer, dma),
3641 dma_unmap_len(tx_buffer, len),
ebe42d16 3642 DMA_TO_DEVICE);
c9f14bf3 3643 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3644 dma_unmap_page(ring->dev,
c9f14bf3
AD
3645 dma_unmap_addr(tx_buffer, dma),
3646 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3647 DMA_TO_DEVICE);
3648 }
3649 tx_buffer->next_to_watch = NULL;
3650 tx_buffer->skb = NULL;
c9f14bf3 3651 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3652 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3653}
3654
3655/**
b980ac18
JK
3656 * igb_clean_tx_ring - Free Tx Buffers
3657 * @tx_ring: ring to be cleaned
9d5c8243 3658 **/
3b644cf6 3659static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3660{
06034649 3661 struct igb_tx_buffer *buffer_info;
9d5c8243 3662 unsigned long size;
6ad4edfc 3663 u16 i;
9d5c8243 3664
06034649 3665 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3666 return;
3667 /* Free all the Tx ring sk_buffs */
3668
3669 for (i = 0; i < tx_ring->count; i++) {
06034649 3670 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3671 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3672 }
3673
dad8a3b3
JF
3674 netdev_tx_reset_queue(txring_txq(tx_ring));
3675
06034649
AD
3676 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3677 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3678
3679 /* Zero out the descriptor ring */
9d5c8243
AK
3680 memset(tx_ring->desc, 0, tx_ring->size);
3681
3682 tx_ring->next_to_use = 0;
3683 tx_ring->next_to_clean = 0;
9d5c8243
AK
3684}
3685
3686/**
b980ac18
JK
3687 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3688 * @adapter: board private structure
9d5c8243
AK
3689 **/
3690static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3691{
3692 int i;
3693
3694 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3695 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3696}
3697
3698/**
b980ac18
JK
3699 * igb_free_rx_resources - Free Rx Resources
3700 * @rx_ring: ring to clean the resources from
9d5c8243 3701 *
b980ac18 3702 * Free all receive software resources
9d5c8243 3703 **/
68fd9910 3704void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3705{
3b644cf6 3706 igb_clean_rx_ring(rx_ring);
9d5c8243 3707
06034649
AD
3708 vfree(rx_ring->rx_buffer_info);
3709 rx_ring->rx_buffer_info = NULL;
9d5c8243 3710
439705e1
AD
3711 /* if not set, then don't free */
3712 if (!rx_ring->desc)
3713 return;
3714
59d71989
AD
3715 dma_free_coherent(rx_ring->dev, rx_ring->size,
3716 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3717
3718 rx_ring->desc = NULL;
3719}
3720
3721/**
b980ac18
JK
3722 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3723 * @adapter: board private structure
9d5c8243 3724 *
b980ac18 3725 * Free all receive software resources
9d5c8243
AK
3726 **/
3727static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3728{
3729 int i;
3730
3731 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3732 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3733}
3734
3735/**
b980ac18
JK
3736 * igb_clean_rx_ring - Free Rx Buffers per Queue
3737 * @rx_ring: ring to free buffers from
9d5c8243 3738 **/
3b644cf6 3739static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3740{
9d5c8243 3741 unsigned long size;
c023cd88 3742 u16 i;
9d5c8243 3743
1a1c225b
AD
3744 if (rx_ring->skb)
3745 dev_kfree_skb(rx_ring->skb);
3746 rx_ring->skb = NULL;
3747
06034649 3748 if (!rx_ring->rx_buffer_info)
9d5c8243 3749 return;
439705e1 3750
9d5c8243
AK
3751 /* Free all the Rx ring sk_buffs */
3752 for (i = 0; i < rx_ring->count; i++) {
06034649 3753 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3754
cbc8e55f
AD
3755 if (!buffer_info->page)
3756 continue;
3757
3758 dma_unmap_page(rx_ring->dev,
3759 buffer_info->dma,
3760 PAGE_SIZE,
3761 DMA_FROM_DEVICE);
3762 __free_page(buffer_info->page);
3763
1a1c225b 3764 buffer_info->page = NULL;
9d5c8243
AK
3765 }
3766
06034649
AD
3767 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3768 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3769
3770 /* Zero out the descriptor ring */
3771 memset(rx_ring->desc, 0, rx_ring->size);
3772
cbc8e55f 3773 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3774 rx_ring->next_to_clean = 0;
3775 rx_ring->next_to_use = 0;
9d5c8243
AK
3776}
3777
3778/**
b980ac18
JK
3779 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3780 * @adapter: board private structure
9d5c8243
AK
3781 **/
3782static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3783{
3784 int i;
3785
3786 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3787 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3788}
3789
3790/**
b980ac18
JK
3791 * igb_set_mac - Change the Ethernet Address of the NIC
3792 * @netdev: network interface device structure
3793 * @p: pointer to an address structure
9d5c8243 3794 *
b980ac18 3795 * Returns 0 on success, negative on failure
9d5c8243
AK
3796 **/
3797static int igb_set_mac(struct net_device *netdev, void *p)
3798{
3799 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3800 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3801 struct sockaddr *addr = p;
3802
3803 if (!is_valid_ether_addr(addr->sa_data))
3804 return -EADDRNOTAVAIL;
3805
3806 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3807 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3808
26ad9178
AD
3809 /* set the correct pool for the new PF MAC address in entry 0 */
3810 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3811 adapter->vfs_allocated_count);
e1739522 3812
9d5c8243
AK
3813 return 0;
3814}
3815
3816/**
b980ac18
JK
3817 * igb_write_mc_addr_list - write multicast addresses to MTA
3818 * @netdev: network interface device structure
9d5c8243 3819 *
b980ac18
JK
3820 * Writes multicast address list to the MTA hash table.
3821 * Returns: -ENOMEM on failure
3822 * 0 on no addresses written
3823 * X on writing X addresses to MTA
9d5c8243 3824 **/
68d480c4 3825static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3826{
3827 struct igb_adapter *adapter = netdev_priv(netdev);
3828 struct e1000_hw *hw = &adapter->hw;
22bedad3 3829 struct netdev_hw_addr *ha;
68d480c4 3830 u8 *mta_list;
9d5c8243
AK
3831 int i;
3832
4cd24eaf 3833 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3834 /* nothing to program, so clear mc list */
3835 igb_update_mc_addr_list(hw, NULL, 0);
3836 igb_restore_vf_multicasts(adapter);
3837 return 0;
3838 }
9d5c8243 3839
4cd24eaf 3840 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3841 if (!mta_list)
3842 return -ENOMEM;
ff41f8dc 3843
68d480c4 3844 /* The shared function expects a packed array of only addresses. */
48e2f183 3845 i = 0;
22bedad3
JP
3846 netdev_for_each_mc_addr(ha, netdev)
3847 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3848
68d480c4
AD
3849 igb_update_mc_addr_list(hw, mta_list, i);
3850 kfree(mta_list);
3851
4cd24eaf 3852 return netdev_mc_count(netdev);
68d480c4
AD
3853}
3854
3855/**
b980ac18
JK
3856 * igb_write_uc_addr_list - write unicast addresses to RAR table
3857 * @netdev: network interface device structure
68d480c4 3858 *
b980ac18
JK
3859 * Writes unicast address list to the RAR table.
3860 * Returns: -ENOMEM on failure/insufficient address space
3861 * 0 on no addresses written
3862 * X on writing X addresses to the RAR table
68d480c4
AD
3863 **/
3864static int igb_write_uc_addr_list(struct net_device *netdev)
3865{
3866 struct igb_adapter *adapter = netdev_priv(netdev);
3867 struct e1000_hw *hw = &adapter->hw;
3868 unsigned int vfn = adapter->vfs_allocated_count;
3869 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3870 int count = 0;
3871
3872 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3873 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3874 return -ENOMEM;
9d5c8243 3875
32e7bfc4 3876 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3877 struct netdev_hw_addr *ha;
32e7bfc4
JP
3878
3879 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3880 if (!rar_entries)
3881 break;
26ad9178 3882 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3883 rar_entries--,
3884 vfn);
68d480c4 3885 count++;
ff41f8dc
AD
3886 }
3887 }
3888 /* write the addresses in reverse order to avoid write combining */
3889 for (; rar_entries > 0 ; rar_entries--) {
3890 wr32(E1000_RAH(rar_entries), 0);
3891 wr32(E1000_RAL(rar_entries), 0);
3892 }
3893 wrfl();
3894
68d480c4
AD
3895 return count;
3896}
3897
3898/**
b980ac18
JK
3899 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3900 * @netdev: network interface device structure
68d480c4 3901 *
b980ac18
JK
3902 * The set_rx_mode entry point is called whenever the unicast or multicast
3903 * address lists or the network interface flags are updated. This routine is
3904 * responsible for configuring the hardware for proper unicast, multicast,
3905 * promiscuous mode, and all-multi behavior.
68d480c4
AD
3906 **/
3907static void igb_set_rx_mode(struct net_device *netdev)
3908{
3909 struct igb_adapter *adapter = netdev_priv(netdev);
3910 struct e1000_hw *hw = &adapter->hw;
3911 unsigned int vfn = adapter->vfs_allocated_count;
3912 u32 rctl, vmolr = 0;
3913 int count;
3914
3915 /* Check for Promiscuous and All Multicast modes */
3916 rctl = rd32(E1000_RCTL);
3917
3918 /* clear the effected bits */
3919 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3920
3921 if (netdev->flags & IFF_PROMISC) {
6f3dc319 3922 /* retain VLAN HW filtering if in VT mode */
7e44892c 3923 if (adapter->vfs_allocated_count)
6f3dc319 3924 rctl |= E1000_RCTL_VFE;
68d480c4
AD
3925 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3926 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3927 } else {
3928 if (netdev->flags & IFF_ALLMULTI) {
3929 rctl |= E1000_RCTL_MPE;
3930 vmolr |= E1000_VMOLR_MPME;
3931 } else {
b980ac18 3932 /* Write addresses to the MTA, if the attempt fails
25985edc 3933 * then we should just turn on promiscuous mode so
68d480c4
AD
3934 * that we can at least receive multicast traffic
3935 */
3936 count = igb_write_mc_addr_list(netdev);
3937 if (count < 0) {
3938 rctl |= E1000_RCTL_MPE;
3939 vmolr |= E1000_VMOLR_MPME;
3940 } else if (count) {
3941 vmolr |= E1000_VMOLR_ROMPE;
3942 }
3943 }
b980ac18 3944 /* Write addresses to available RAR registers, if there is not
68d480c4 3945 * sufficient space to store all the addresses then enable
25985edc 3946 * unicast promiscuous mode
68d480c4
AD
3947 */
3948 count = igb_write_uc_addr_list(netdev);
3949 if (count < 0) {
3950 rctl |= E1000_RCTL_UPE;
3951 vmolr |= E1000_VMOLR_ROPE;
3952 }
3953 rctl |= E1000_RCTL_VFE;
28fc06f5 3954 }
68d480c4 3955 wr32(E1000_RCTL, rctl);
28fc06f5 3956
b980ac18 3957 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
3958 * the VMOLR to enable the appropriate modes. Without this workaround
3959 * we will have issues with VLAN tag stripping not being done for frames
3960 * that are only arriving because we are the default pool
3961 */
f96a8a0b 3962 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3963 return;
9d5c8243 3964
68d480c4 3965 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 3966 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
68d480c4 3967 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3968 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3969}
3970
13800469
GR
3971static void igb_check_wvbr(struct igb_adapter *adapter)
3972{
3973 struct e1000_hw *hw = &adapter->hw;
3974 u32 wvbr = 0;
3975
3976 switch (hw->mac.type) {
3977 case e1000_82576:
3978 case e1000_i350:
3979 if (!(wvbr = rd32(E1000_WVBR)))
3980 return;
3981 break;
3982 default:
3983 break;
3984 }
3985
3986 adapter->wvbr |= wvbr;
3987}
3988
3989#define IGB_STAGGERED_QUEUE_OFFSET 8
3990
3991static void igb_spoof_check(struct igb_adapter *adapter)
3992{
3993 int j;
3994
3995 if (!adapter->wvbr)
3996 return;
3997
3998 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3999 if (adapter->wvbr & (1 << j) ||
4000 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4001 dev_warn(&adapter->pdev->dev,
4002 "Spoof event(s) detected on VF %d\n", j);
4003 adapter->wvbr &=
4004 ~((1 << j) |
4005 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4006 }
4007 }
4008}
4009
9d5c8243 4010/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4011 * the phy
4012 */
9d5c8243
AK
4013static void igb_update_phy_info(unsigned long data)
4014{
4015 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4016 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4017}
4018
4d6b725e 4019/**
b980ac18
JK
4020 * igb_has_link - check shared code for link and determine up/down
4021 * @adapter: pointer to driver private info
4d6b725e 4022 **/
3145535a 4023bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4024{
4025 struct e1000_hw *hw = &adapter->hw;
4026 bool link_active = false;
4d6b725e
AD
4027
4028 /* get_link_status is set on LSC (link status) interrupt or
4029 * rx sequence error interrupt. get_link_status will stay
4030 * false until the e1000_check_for_link establishes link
4031 * for copper adapters ONLY
4032 */
4033 switch (hw->phy.media_type) {
4034 case e1000_media_type_copper:
e5c3370f
AA
4035 if (!hw->mac.get_link_status)
4036 return true;
4d6b725e 4037 case e1000_media_type_internal_serdes:
e5c3370f
AA
4038 hw->mac.ops.check_for_link(hw);
4039 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4040 break;
4041 default:
4042 case e1000_media_type_unknown:
4043 break;
4044 }
4045
aa9b8cc4
AA
4046 if (((hw->mac.type == e1000_i210) ||
4047 (hw->mac.type == e1000_i211)) &&
4048 (hw->phy.id == I210_I_PHY_ID)) {
4049 if (!netif_carrier_ok(adapter->netdev)) {
4050 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4051 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4052 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4053 adapter->link_check_timeout = jiffies;
4054 }
4055 }
4056
4d6b725e
AD
4057 return link_active;
4058}
4059
563988dc
SA
4060static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4061{
4062 bool ret = false;
4063 u32 ctrl_ext, thstat;
4064
f96a8a0b 4065 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4066 if (hw->mac.type == e1000_i350) {
4067 thstat = rd32(E1000_THSTAT);
4068 ctrl_ext = rd32(E1000_CTRL_EXT);
4069
4070 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4071 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4072 ret = !!(thstat & event);
563988dc
SA
4073 }
4074
4075 return ret;
4076}
4077
9d5c8243 4078/**
b980ac18
JK
4079 * igb_watchdog - Timer Call-back
4080 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4081 **/
4082static void igb_watchdog(unsigned long data)
4083{
4084 struct igb_adapter *adapter = (struct igb_adapter *)data;
4085 /* Do the rest outside of interrupt context */
4086 schedule_work(&adapter->watchdog_task);
4087}
4088
4089static void igb_watchdog_task(struct work_struct *work)
4090{
4091 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4092 struct igb_adapter,
4093 watchdog_task);
9d5c8243 4094 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4095 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4096 struct net_device *netdev = adapter->netdev;
563988dc 4097 u32 link;
7a6ea550 4098 int i;
56cec249 4099 u32 connsw;
9d5c8243 4100
4d6b725e 4101 link = igb_has_link(adapter);
aa9b8cc4
AA
4102
4103 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4104 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4105 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4106 else
4107 link = false;
4108 }
4109
56cec249
CW
4110 /* Force link down if we have fiber to swap to */
4111 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4112 if (hw->phy.media_type == e1000_media_type_copper) {
4113 connsw = rd32(E1000_CONNSW);
4114 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4115 link = 0;
4116 }
4117 }
9d5c8243 4118 if (link) {
2bdfc4e2
CW
4119 /* Perform a reset if the media type changed. */
4120 if (hw->dev_spec._82575.media_changed) {
4121 hw->dev_spec._82575.media_changed = false;
4122 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4123 igb_reset(adapter);
4124 }
749ab2cd
YZ
4125 /* Cancel scheduled suspend requests. */
4126 pm_runtime_resume(netdev->dev.parent);
4127
9d5c8243
AK
4128 if (!netif_carrier_ok(netdev)) {
4129 u32 ctrl;
330a6d6a 4130 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4131 &adapter->link_speed,
4132 &adapter->link_duplex);
9d5c8243
AK
4133
4134 ctrl = rd32(E1000_CTRL);
527d47c1 4135 /* Links status message must follow this format */
876d2d6f
JK
4136 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4137 "Duplex, Flow Control: %s\n",
559e9c49
AD
4138 netdev->name,
4139 adapter->link_speed,
4140 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4141 "Full" : "Half",
4142 (ctrl & E1000_CTRL_TFCE) &&
4143 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4144 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4145 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4146
c0ba4778
KS
4147 /* check if SmartSpeed worked */
4148 igb_check_downshift(hw);
4149 if (phy->speed_downgraded)
4150 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4151
563988dc 4152 /* check for thermal sensor event */
876d2d6f
JK
4153 if (igb_thermal_sensor_event(hw,
4154 E1000_THSTAT_LINK_THROTTLE)) {
4155 netdev_info(netdev, "The network adapter link "
4156 "speed was downshifted because it "
4157 "overheated\n");
7ef5ed1c 4158 }
563988dc 4159
d07f3e37 4160 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4161 adapter->tx_timeout_factor = 1;
4162 switch (adapter->link_speed) {
4163 case SPEED_10:
9d5c8243
AK
4164 adapter->tx_timeout_factor = 14;
4165 break;
4166 case SPEED_100:
9d5c8243
AK
4167 /* maybe add some timeout factor ? */
4168 break;
4169 }
4170
4171 netif_carrier_on(netdev);
9d5c8243 4172
4ae196df 4173 igb_ping_all_vfs(adapter);
17dc566c 4174 igb_check_vf_rate_limit(adapter);
4ae196df 4175
4b1a9877 4176 /* link state has changed, schedule phy info update */
9d5c8243
AK
4177 if (!test_bit(__IGB_DOWN, &adapter->state))
4178 mod_timer(&adapter->phy_info_timer,
4179 round_jiffies(jiffies + 2 * HZ));
4180 }
4181 } else {
4182 if (netif_carrier_ok(netdev)) {
4183 adapter->link_speed = 0;
4184 adapter->link_duplex = 0;
563988dc
SA
4185
4186 /* check for thermal sensor event */
876d2d6f
JK
4187 if (igb_thermal_sensor_event(hw,
4188 E1000_THSTAT_PWR_DOWN)) {
4189 netdev_err(netdev, "The network adapter was "
4190 "stopped because it overheated\n");
7ef5ed1c 4191 }
563988dc 4192
527d47c1
AD
4193 /* Links status message must follow this format */
4194 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4195 netdev->name);
9d5c8243 4196 netif_carrier_off(netdev);
4b1a9877 4197
4ae196df
AD
4198 igb_ping_all_vfs(adapter);
4199
4b1a9877 4200 /* link state has changed, schedule phy info update */
9d5c8243
AK
4201 if (!test_bit(__IGB_DOWN, &adapter->state))
4202 mod_timer(&adapter->phy_info_timer,
4203 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4204
56cec249
CW
4205 /* link is down, time to check for alternate media */
4206 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4207 igb_check_swap_media(adapter);
4208 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4209 schedule_work(&adapter->reset_task);
4210 /* return immediately */
4211 return;
4212 }
4213 }
749ab2cd
YZ
4214 pm_schedule_suspend(netdev->dev.parent,
4215 MSEC_PER_SEC * 5);
56cec249
CW
4216
4217 /* also check for alternate media here */
4218 } else if (!netif_carrier_ok(netdev) &&
4219 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4220 igb_check_swap_media(adapter);
4221 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4222 schedule_work(&adapter->reset_task);
4223 /* return immediately */
4224 return;
4225 }
9d5c8243
AK
4226 }
4227 }
4228
12dcd86b
ED
4229 spin_lock(&adapter->stats64_lock);
4230 igb_update_stats(adapter, &adapter->stats64);
4231 spin_unlock(&adapter->stats64_lock);
9d5c8243 4232
dbabb065 4233 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4234 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4235 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4236 /* We've lost link, so the controller stops DMA,
4237 * but we've got queued Tx work that's never going
4238 * to get done, so reset controller to flush Tx.
b980ac18
JK
4239 * (Do the reset outside of interrupt context).
4240 */
dbabb065
AD
4241 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4242 adapter->tx_timeout_count++;
4243 schedule_work(&adapter->reset_task);
4244 /* return immediately since reset is imminent */
4245 return;
4246 }
9d5c8243 4247 }
9d5c8243 4248
dbabb065 4249 /* Force detection of hung controller every watchdog period */
6d095fa8 4250 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4251 }
f7ba205e 4252
b980ac18 4253 /* Cause software interrupt to ensure Rx ring is cleaned */
7a6ea550 4254 if (adapter->msix_entries) {
047e0030 4255 u32 eics = 0;
0d1ae7f4
AD
4256 for (i = 0; i < adapter->num_q_vectors; i++)
4257 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4258 wr32(E1000_EICS, eics);
4259 } else {
4260 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4261 }
9d5c8243 4262
13800469 4263 igb_spoof_check(adapter);
fc580751 4264 igb_ptp_rx_hang(adapter);
13800469 4265
9d5c8243 4266 /* Reset the timer */
aa9b8cc4
AA
4267 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4268 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4269 mod_timer(&adapter->watchdog_timer,
4270 round_jiffies(jiffies + HZ));
4271 else
4272 mod_timer(&adapter->watchdog_timer,
4273 round_jiffies(jiffies + 2 * HZ));
4274 }
9d5c8243
AK
4275}
4276
4277enum latency_range {
4278 lowest_latency = 0,
4279 low_latency = 1,
4280 bulk_latency = 2,
4281 latency_invalid = 255
4282};
4283
6eb5a7f1 4284/**
b980ac18
JK
4285 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4286 * @q_vector: pointer to q_vector
6eb5a7f1 4287 *
b980ac18
JK
4288 * Stores a new ITR value based on strictly on packet size. This
4289 * algorithm is less sophisticated than that used in igb_update_itr,
4290 * due to the difficulty of synchronizing statistics across multiple
4291 * receive rings. The divisors and thresholds used by this function
4292 * were determined based on theoretical maximum wire speed and testing
4293 * data, in order to minimize response time while increasing bulk
4294 * throughput.
4295 * This functionality is controlled by the InterruptThrottleRate module
4296 * parameter (see igb_param.c)
4297 * NOTE: This function is called only when operating in a multiqueue
4298 * receive environment.
6eb5a7f1 4299 **/
047e0030 4300static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4301{
047e0030 4302 int new_val = q_vector->itr_val;
6eb5a7f1 4303 int avg_wire_size = 0;
047e0030 4304 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4305 unsigned int packets;
9d5c8243 4306
6eb5a7f1
AD
4307 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4308 * ints/sec - ITR timer value of 120 ticks.
4309 */
4310 if (adapter->link_speed != SPEED_1000) {
0ba82994 4311 new_val = IGB_4K_ITR;
6eb5a7f1 4312 goto set_itr_val;
9d5c8243 4313 }
047e0030 4314
0ba82994
AD
4315 packets = q_vector->rx.total_packets;
4316 if (packets)
4317 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4318
0ba82994
AD
4319 packets = q_vector->tx.total_packets;
4320 if (packets)
4321 avg_wire_size = max_t(u32, avg_wire_size,
4322 q_vector->tx.total_bytes / packets);
047e0030
AD
4323
4324 /* if avg_wire_size isn't set no work was done */
4325 if (!avg_wire_size)
4326 goto clear_counts;
9d5c8243 4327
6eb5a7f1
AD
4328 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4329 avg_wire_size += 24;
4330
4331 /* Don't starve jumbo frames */
4332 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4333
6eb5a7f1
AD
4334 /* Give a little boost to mid-size frames */
4335 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4336 new_val = avg_wire_size / 3;
4337 else
4338 new_val = avg_wire_size / 2;
9d5c8243 4339
0ba82994
AD
4340 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4341 if (new_val < IGB_20K_ITR &&
4342 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4343 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4344 new_val = IGB_20K_ITR;
abe1c363 4345
6eb5a7f1 4346set_itr_val:
047e0030
AD
4347 if (new_val != q_vector->itr_val) {
4348 q_vector->itr_val = new_val;
4349 q_vector->set_itr = 1;
9d5c8243 4350 }
6eb5a7f1 4351clear_counts:
0ba82994
AD
4352 q_vector->rx.total_bytes = 0;
4353 q_vector->rx.total_packets = 0;
4354 q_vector->tx.total_bytes = 0;
4355 q_vector->tx.total_packets = 0;
9d5c8243
AK
4356}
4357
4358/**
b980ac18
JK
4359 * igb_update_itr - update the dynamic ITR value based on statistics
4360 * @q_vector: pointer to q_vector
4361 * @ring_container: ring info to update the itr for
4362 *
4363 * Stores a new ITR value based on packets and byte
4364 * counts during the last interrupt. The advantage of per interrupt
4365 * computation is faster updates and more accurate ITR for the current
4366 * traffic pattern. Constants in this function were computed
4367 * based on theoretical maximum wire speed and thresholds were set based
4368 * on testing data as well as attempting to minimize response time
4369 * while increasing bulk throughput.
4370 * this functionality is controlled by the InterruptThrottleRate module
4371 * parameter (see igb_param.c)
4372 * NOTE: These calculations are only valid when operating in a single-
4373 * queue environment.
9d5c8243 4374 **/
0ba82994
AD
4375static void igb_update_itr(struct igb_q_vector *q_vector,
4376 struct igb_ring_container *ring_container)
9d5c8243 4377{
0ba82994
AD
4378 unsigned int packets = ring_container->total_packets;
4379 unsigned int bytes = ring_container->total_bytes;
4380 u8 itrval = ring_container->itr;
9d5c8243 4381
0ba82994 4382 /* no packets, exit with status unchanged */
9d5c8243 4383 if (packets == 0)
0ba82994 4384 return;
9d5c8243 4385
0ba82994 4386 switch (itrval) {
9d5c8243
AK
4387 case lowest_latency:
4388 /* handle TSO and jumbo frames */
4389 if (bytes/packets > 8000)
0ba82994 4390 itrval = bulk_latency;
9d5c8243 4391 else if ((packets < 5) && (bytes > 512))
0ba82994 4392 itrval = low_latency;
9d5c8243
AK
4393 break;
4394 case low_latency: /* 50 usec aka 20000 ints/s */
4395 if (bytes > 10000) {
4396 /* this if handles the TSO accounting */
4397 if (bytes/packets > 8000) {
0ba82994 4398 itrval = bulk_latency;
9d5c8243 4399 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4400 itrval = bulk_latency;
9d5c8243 4401 } else if ((packets > 35)) {
0ba82994 4402 itrval = lowest_latency;
9d5c8243
AK
4403 }
4404 } else if (bytes/packets > 2000) {
0ba82994 4405 itrval = bulk_latency;
9d5c8243 4406 } else if (packets <= 2 && bytes < 512) {
0ba82994 4407 itrval = lowest_latency;
9d5c8243
AK
4408 }
4409 break;
4410 case bulk_latency: /* 250 usec aka 4000 ints/s */
4411 if (bytes > 25000) {
4412 if (packets > 35)
0ba82994 4413 itrval = low_latency;
1e5c3d21 4414 } else if (bytes < 1500) {
0ba82994 4415 itrval = low_latency;
9d5c8243
AK
4416 }
4417 break;
4418 }
4419
0ba82994
AD
4420 /* clear work counters since we have the values we need */
4421 ring_container->total_bytes = 0;
4422 ring_container->total_packets = 0;
4423
4424 /* write updated itr to ring container */
4425 ring_container->itr = itrval;
9d5c8243
AK
4426}
4427
0ba82994 4428static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4429{
0ba82994 4430 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4431 u32 new_itr = q_vector->itr_val;
0ba82994 4432 u8 current_itr = 0;
9d5c8243
AK
4433
4434 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4435 if (adapter->link_speed != SPEED_1000) {
4436 current_itr = 0;
0ba82994 4437 new_itr = IGB_4K_ITR;
9d5c8243
AK
4438 goto set_itr_now;
4439 }
4440
0ba82994
AD
4441 igb_update_itr(q_vector, &q_vector->tx);
4442 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4443
0ba82994 4444 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4445
6eb5a7f1 4446 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4447 if (current_itr == lowest_latency &&
4448 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4449 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4450 current_itr = low_latency;
4451
9d5c8243
AK
4452 switch (current_itr) {
4453 /* counts and packets in update_itr are dependent on these numbers */
4454 case lowest_latency:
0ba82994 4455 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4456 break;
4457 case low_latency:
0ba82994 4458 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4459 break;
4460 case bulk_latency:
0ba82994 4461 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4462 break;
4463 default:
4464 break;
4465 }
4466
4467set_itr_now:
047e0030 4468 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4469 /* this attempts to bias the interrupt rate towards Bulk
4470 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4471 * increasing
4472 */
047e0030 4473 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4474 max((new_itr * q_vector->itr_val) /
4475 (new_itr + (q_vector->itr_val >> 2)),
4476 new_itr) : new_itr;
9d5c8243
AK
4477 /* Don't write the value here; it resets the adapter's
4478 * internal timer, and causes us to delay far longer than
4479 * we should between interrupts. Instead, we write the ITR
4480 * value at the beginning of the next interrupt so the timing
4481 * ends up being correct.
4482 */
047e0030
AD
4483 q_vector->itr_val = new_itr;
4484 q_vector->set_itr = 1;
9d5c8243 4485 }
9d5c8243
AK
4486}
4487
c50b52a0
SH
4488static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4489 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4490{
4491 struct e1000_adv_tx_context_desc *context_desc;
4492 u16 i = tx_ring->next_to_use;
4493
4494 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4495
4496 i++;
4497 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4498
4499 /* set bits to identify this as an advanced context descriptor */
4500 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4501
4502 /* For 82575, context index must be unique per ring. */
866cff06 4503 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4504 mss_l4len_idx |= tx_ring->reg_idx << 4;
4505
4506 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4507 context_desc->seqnum_seed = 0;
4508 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4509 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4510}
4511
7af40ad9
AD
4512static int igb_tso(struct igb_ring *tx_ring,
4513 struct igb_tx_buffer *first,
4514 u8 *hdr_len)
9d5c8243 4515{
7af40ad9 4516 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4517 u32 vlan_macip_lens, type_tucmd;
4518 u32 mss_l4len_idx, l4len;
4519
ed6aa105
AD
4520 if (skb->ip_summed != CHECKSUM_PARTIAL)
4521 return 0;
4522
7d13a7d0
AD
4523 if (!skb_is_gso(skb))
4524 return 0;
9d5c8243
AK
4525
4526 if (skb_header_cloned(skb)) {
7af40ad9 4527 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4528 if (err)
4529 return err;
4530 }
4531
7d13a7d0
AD
4532 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4533 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4534
7af40ad9 4535 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4536 struct iphdr *iph = ip_hdr(skb);
4537 iph->tot_len = 0;
4538 iph->check = 0;
4539 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4540 iph->daddr, 0,
4541 IPPROTO_TCP,
4542 0);
7d13a7d0 4543 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4544 first->tx_flags |= IGB_TX_FLAGS_TSO |
4545 IGB_TX_FLAGS_CSUM |
4546 IGB_TX_FLAGS_IPV4;
8e1e8a47 4547 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4548 ipv6_hdr(skb)->payload_len = 0;
4549 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4550 &ipv6_hdr(skb)->daddr,
4551 0, IPPROTO_TCP, 0);
7af40ad9
AD
4552 first->tx_flags |= IGB_TX_FLAGS_TSO |
4553 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4554 }
4555
7af40ad9 4556 /* compute header lengths */
7d13a7d0
AD
4557 l4len = tcp_hdrlen(skb);
4558 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4559
7af40ad9
AD
4560 /* update gso size and bytecount with header size */
4561 first->gso_segs = skb_shinfo(skb)->gso_segs;
4562 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4563
9d5c8243 4564 /* MSS L4LEN IDX */
7d13a7d0
AD
4565 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4566 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4567
7d13a7d0
AD
4568 /* VLAN MACLEN IPLEN */
4569 vlan_macip_lens = skb_network_header_len(skb);
4570 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4571 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4572
7d13a7d0 4573 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4574
7d13a7d0 4575 return 1;
9d5c8243
AK
4576}
4577
7af40ad9 4578static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4579{
7af40ad9 4580 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4581 u32 vlan_macip_lens = 0;
4582 u32 mss_l4len_idx = 0;
4583 u32 type_tucmd = 0;
9d5c8243 4584
7d13a7d0 4585 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4586 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4587 return;
7d13a7d0
AD
4588 } else {
4589 u8 l4_hdr = 0;
7af40ad9 4590 switch (first->protocol) {
7d13a7d0
AD
4591 case __constant_htons(ETH_P_IP):
4592 vlan_macip_lens |= skb_network_header_len(skb);
4593 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4594 l4_hdr = ip_hdr(skb)->protocol;
4595 break;
4596 case __constant_htons(ETH_P_IPV6):
4597 vlan_macip_lens |= skb_network_header_len(skb);
4598 l4_hdr = ipv6_hdr(skb)->nexthdr;
4599 break;
4600 default:
4601 if (unlikely(net_ratelimit())) {
4602 dev_warn(tx_ring->dev,
b980ac18
JK
4603 "partial checksum but proto=%x!\n",
4604 first->protocol);
fa4a7ef3 4605 }
7d13a7d0
AD
4606 break;
4607 }
fa4a7ef3 4608
7d13a7d0
AD
4609 switch (l4_hdr) {
4610 case IPPROTO_TCP:
4611 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4612 mss_l4len_idx = tcp_hdrlen(skb) <<
4613 E1000_ADVTXD_L4LEN_SHIFT;
4614 break;
4615 case IPPROTO_SCTP:
4616 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4617 mss_l4len_idx = sizeof(struct sctphdr) <<
4618 E1000_ADVTXD_L4LEN_SHIFT;
4619 break;
4620 case IPPROTO_UDP:
4621 mss_l4len_idx = sizeof(struct udphdr) <<
4622 E1000_ADVTXD_L4LEN_SHIFT;
4623 break;
4624 default:
4625 if (unlikely(net_ratelimit())) {
4626 dev_warn(tx_ring->dev,
b980ac18
JK
4627 "partial checksum but l4 proto=%x!\n",
4628 l4_hdr);
44b0cda3 4629 }
7d13a7d0 4630 break;
9d5c8243 4631 }
7af40ad9
AD
4632
4633 /* update TX checksum flag */
4634 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4635 }
9d5c8243 4636
7d13a7d0 4637 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4638 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4639
7d13a7d0 4640 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4641}
4642
1d9daf45
AD
4643#define IGB_SET_FLAG(_input, _flag, _result) \
4644 ((_flag <= _result) ? \
4645 ((u32)(_input & _flag) * (_result / _flag)) : \
4646 ((u32)(_input & _flag) / (_flag / _result)))
4647
4648static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4649{
4650 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4651 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4652 E1000_ADVTXD_DCMD_DEXT |
4653 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4654
4655 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4656 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4657 (E1000_ADVTXD_DCMD_VLE));
4658
4659 /* set segmentation bits for TSO */
4660 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4661 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4662
4663 /* set timestamp bit if present */
1d9daf45
AD
4664 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4665 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4666
1d9daf45
AD
4667 /* insert frame checksum */
4668 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4669
4670 return cmd_type;
4671}
4672
7af40ad9
AD
4673static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4674 union e1000_adv_tx_desc *tx_desc,
4675 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4676{
4677 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4678
1d9daf45
AD
4679 /* 82575 requires a unique index per ring */
4680 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4681 olinfo_status |= tx_ring->reg_idx << 4;
4682
4683 /* insert L4 checksum */
1d9daf45
AD
4684 olinfo_status |= IGB_SET_FLAG(tx_flags,
4685 IGB_TX_FLAGS_CSUM,
4686 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4687
1d9daf45
AD
4688 /* insert IPv4 checksum */
4689 olinfo_status |= IGB_SET_FLAG(tx_flags,
4690 IGB_TX_FLAGS_IPV4,
4691 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4692
7af40ad9 4693 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4694}
4695
7af40ad9
AD
4696static void igb_tx_map(struct igb_ring *tx_ring,
4697 struct igb_tx_buffer *first,
ebe42d16 4698 const u8 hdr_len)
9d5c8243 4699{
7af40ad9 4700 struct sk_buff *skb = first->skb;
c9f14bf3 4701 struct igb_tx_buffer *tx_buffer;
ebe42d16 4702 union e1000_adv_tx_desc *tx_desc;
80d0759e 4703 struct skb_frag_struct *frag;
ebe42d16 4704 dma_addr_t dma;
80d0759e 4705 unsigned int data_len, size;
7af40ad9 4706 u32 tx_flags = first->tx_flags;
1d9daf45 4707 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4708 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4709
4710 tx_desc = IGB_TX_DESC(tx_ring, i);
4711
80d0759e
AD
4712 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4713
4714 size = skb_headlen(skb);
4715 data_len = skb->data_len;
ebe42d16
AD
4716
4717 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4718
80d0759e
AD
4719 tx_buffer = first;
4720
4721 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4722 if (dma_mapping_error(tx_ring->dev, dma))
4723 goto dma_error;
4724
4725 /* record length, and DMA address */
4726 dma_unmap_len_set(tx_buffer, len, size);
4727 dma_unmap_addr_set(tx_buffer, dma, dma);
4728
4729 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4730
ebe42d16
AD
4731 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4732 tx_desc->read.cmd_type_len =
1d9daf45 4733 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4734
4735 i++;
4736 tx_desc++;
4737 if (i == tx_ring->count) {
4738 tx_desc = IGB_TX_DESC(tx_ring, 0);
4739 i = 0;
4740 }
80d0759e 4741 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4742
4743 dma += IGB_MAX_DATA_PER_TXD;
4744 size -= IGB_MAX_DATA_PER_TXD;
4745
ebe42d16
AD
4746 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4747 }
4748
4749 if (likely(!data_len))
4750 break;
2bbfebe2 4751
1d9daf45 4752 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4753
65689fef 4754 i++;
ebe42d16
AD
4755 tx_desc++;
4756 if (i == tx_ring->count) {
4757 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4758 i = 0;
ebe42d16 4759 }
80d0759e 4760 tx_desc->read.olinfo_status = 0;
65689fef 4761
9e903e08 4762 size = skb_frag_size(frag);
ebe42d16
AD
4763 data_len -= size;
4764
4765 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4766 size, DMA_TO_DEVICE);
6366ad33 4767
c9f14bf3 4768 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4769 }
4770
ebe42d16 4771 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4772 cmd_type |= size | IGB_TXD_DCMD;
4773 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4774
80d0759e
AD
4775 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4776
8542db05
AD
4777 /* set the timestamp */
4778 first->time_stamp = jiffies;
4779
b980ac18 4780 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
4781 * are new descriptors to fetch. (Only applicable for weak-ordered
4782 * memory model archs, such as IA-64).
4783 *
4784 * We also need this memory barrier to make certain all of the
4785 * status bits have been updated before next_to_watch is written.
4786 */
4787 wmb();
4788
8542db05 4789 /* set next_to_watch value indicating a packet is present */
ebe42d16 4790 first->next_to_watch = tx_desc;
9d5c8243 4791
ebe42d16
AD
4792 i++;
4793 if (i == tx_ring->count)
4794 i = 0;
6366ad33 4795
ebe42d16 4796 tx_ring->next_to_use = i;
6366ad33 4797
ebe42d16 4798 writel(i, tx_ring->tail);
6366ad33 4799
ebe42d16 4800 /* we need this if more than one processor can write to our tail
b980ac18
JK
4801 * at a time, it synchronizes IO on IA64/Altix systems
4802 */
ebe42d16
AD
4803 mmiowb();
4804
4805 return;
4806
4807dma_error:
4808 dev_err(tx_ring->dev, "TX DMA map failed\n");
4809
4810 /* clear dma mappings for failed tx_buffer_info map */
4811 for (;;) {
c9f14bf3
AD
4812 tx_buffer = &tx_ring->tx_buffer_info[i];
4813 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4814 if (tx_buffer == first)
ebe42d16 4815 break;
a77ff709
NN
4816 if (i == 0)
4817 i = tx_ring->count;
6366ad33 4818 i--;
6366ad33
AD
4819 }
4820
9d5c8243 4821 tx_ring->next_to_use = i;
9d5c8243
AK
4822}
4823
6ad4edfc 4824static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4825{
e694e964
AD
4826 struct net_device *netdev = tx_ring->netdev;
4827
661086df 4828 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4829
9d5c8243
AK
4830 /* Herbert's original patch had:
4831 * smp_mb__after_netif_stop_queue();
b980ac18
JK
4832 * but since that doesn't exist yet, just open code it.
4833 */
9d5c8243
AK
4834 smp_mb();
4835
4836 /* We need to check again in a case another CPU has just
b980ac18
JK
4837 * made room available.
4838 */
c493ea45 4839 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4840 return -EBUSY;
4841
4842 /* A reprieve! */
661086df 4843 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4844
4845 u64_stats_update_begin(&tx_ring->tx_syncp2);
4846 tx_ring->tx_stats.restart_queue2++;
4847 u64_stats_update_end(&tx_ring->tx_syncp2);
4848
9d5c8243
AK
4849 return 0;
4850}
4851
6ad4edfc 4852static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4853{
c493ea45 4854 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4855 return 0;
e694e964 4856 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4857}
4858
cd392f5c
AD
4859netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4860 struct igb_ring *tx_ring)
9d5c8243 4861{
8542db05 4862 struct igb_tx_buffer *first;
ebe42d16 4863 int tso;
91d4ee33 4864 u32 tx_flags = 0;
21ba6fe1 4865 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4866 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4867 u8 hdr_len = 0;
9d5c8243 4868
21ba6fe1
AD
4869 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4870 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4871 * + 2 desc gap to keep tail from touching head,
9d5c8243 4872 * + 1 desc for context descriptor,
21ba6fe1
AD
4873 * otherwise try next time
4874 */
4875 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4876 unsigned short f;
4877 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4878 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4879 } else {
4880 count += skb_shinfo(skb)->nr_frags;
4881 }
4882
4883 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4884 /* this is a hard error */
9d5c8243
AK
4885 return NETDEV_TX_BUSY;
4886 }
33af6bcc 4887
7af40ad9
AD
4888 /* record the location of the first descriptor for this packet */
4889 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4890 first->skb = skb;
4891 first->bytecount = skb->len;
4892 first->gso_segs = 1;
4893
b66e2397
MV
4894 skb_tx_timestamp(skb);
4895
b646c22e
AD
4896 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4897 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 4898
b646c22e
AD
4899 if (!(adapter->ptp_tx_skb)) {
4900 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4901 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4902
4903 adapter->ptp_tx_skb = skb_get(skb);
4904 adapter->ptp_tx_start = jiffies;
4905 if (adapter->hw.mac.type == e1000_82576)
4906 schedule_work(&adapter->ptp_tx_work);
4907 }
33af6bcc 4908 }
9d5c8243 4909
eab6d18d 4910 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4911 tx_flags |= IGB_TX_FLAGS_VLAN;
4912 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4913 }
4914
7af40ad9
AD
4915 /* record initial flags and protocol */
4916 first->tx_flags = tx_flags;
4917 first->protocol = protocol;
cdfd01fc 4918
7af40ad9
AD
4919 tso = igb_tso(tx_ring, first, &hdr_len);
4920 if (tso < 0)
7d13a7d0 4921 goto out_drop;
7af40ad9
AD
4922 else if (!tso)
4923 igb_tx_csum(tx_ring, first);
9d5c8243 4924
7af40ad9 4925 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4926
4927 /* Make sure there is space in the ring for the next send. */
21ba6fe1 4928 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 4929
9d5c8243 4930 return NETDEV_TX_OK;
7d13a7d0
AD
4931
4932out_drop:
7af40ad9
AD
4933 igb_unmap_and_free_tx_resource(tx_ring, first);
4934
7d13a7d0 4935 return NETDEV_TX_OK;
9d5c8243
AK
4936}
4937
1cc3bd87
AD
4938static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4939 struct sk_buff *skb)
4940{
4941 unsigned int r_idx = skb->queue_mapping;
4942
4943 if (r_idx >= adapter->num_tx_queues)
4944 r_idx = r_idx % adapter->num_tx_queues;
4945
4946 return adapter->tx_ring[r_idx];
4947}
4948
cd392f5c
AD
4949static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4950 struct net_device *netdev)
9d5c8243
AK
4951{
4952 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4953
4954 if (test_bit(__IGB_DOWN, &adapter->state)) {
4955 dev_kfree_skb_any(skb);
4956 return NETDEV_TX_OK;
4957 }
4958
4959 if (skb->len <= 0) {
4960 dev_kfree_skb_any(skb);
4961 return NETDEV_TX_OK;
4962 }
4963
b980ac18 4964 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
4965 * in order to meet this minimum size requirement.
4966 */
ea5ceeab
TD
4967 if (unlikely(skb->len < 17)) {
4968 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4969 return NETDEV_TX_OK;
4970 skb->len = 17;
ea5ceeab 4971 skb_set_tail_pointer(skb, 17);
1cc3bd87 4972 }
9d5c8243 4973
1cc3bd87 4974 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4975}
4976
4977/**
b980ac18
JK
4978 * igb_tx_timeout - Respond to a Tx Hang
4979 * @netdev: network interface device structure
9d5c8243
AK
4980 **/
4981static void igb_tx_timeout(struct net_device *netdev)
4982{
4983 struct igb_adapter *adapter = netdev_priv(netdev);
4984 struct e1000_hw *hw = &adapter->hw;
4985
4986 /* Do the reset outside of interrupt context */
4987 adapter->tx_timeout_count++;
f7ba205e 4988
06218a8d 4989 if (hw->mac.type >= e1000_82580)
55cac248
AD
4990 hw->dev_spec._82575.global_device_reset = true;
4991
9d5c8243 4992 schedule_work(&adapter->reset_task);
265de409
AD
4993 wr32(E1000_EICS,
4994 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4995}
4996
4997static void igb_reset_task(struct work_struct *work)
4998{
4999 struct igb_adapter *adapter;
5000 adapter = container_of(work, struct igb_adapter, reset_task);
5001
c97ec42a
TI
5002 igb_dump(adapter);
5003 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5004 igb_reinit_locked(adapter);
5005}
5006
5007/**
b980ac18
JK
5008 * igb_get_stats64 - Get System Network Statistics
5009 * @netdev: network interface device structure
5010 * @stats: rtnl_link_stats64 pointer
9d5c8243 5011 **/
12dcd86b 5012static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5013 struct rtnl_link_stats64 *stats)
9d5c8243 5014{
12dcd86b
ED
5015 struct igb_adapter *adapter = netdev_priv(netdev);
5016
5017 spin_lock(&adapter->stats64_lock);
5018 igb_update_stats(adapter, &adapter->stats64);
5019 memcpy(stats, &adapter->stats64, sizeof(*stats));
5020 spin_unlock(&adapter->stats64_lock);
5021
5022 return stats;
9d5c8243
AK
5023}
5024
5025/**
b980ac18
JK
5026 * igb_change_mtu - Change the Maximum Transfer Unit
5027 * @netdev: network interface device structure
5028 * @new_mtu: new value for maximum frame size
9d5c8243 5029 *
b980ac18 5030 * Returns 0 on success, negative on failure
9d5c8243
AK
5031 **/
5032static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5033{
5034 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5035 struct pci_dev *pdev = adapter->pdev;
153285f9 5036 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5037
c809d227 5038 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 5039 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
5040 return -EINVAL;
5041 }
5042
153285f9 5043#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 5044 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 5045 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
5046 return -EINVAL;
5047 }
5048
2ccd994c
AD
5049 /* adjust max frame to be at least the size of a standard frame */
5050 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5051 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5052
9d5c8243
AK
5053 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5054 msleep(1);
73cd78f1 5055
9d5c8243
AK
5056 /* igb_down has a dependency on max_frame_size */
5057 adapter->max_frame_size = max_frame;
559e9c49 5058
4c844851
AD
5059 if (netif_running(netdev))
5060 igb_down(adapter);
9d5c8243 5061
090b1795 5062 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5063 netdev->mtu, new_mtu);
5064 netdev->mtu = new_mtu;
5065
5066 if (netif_running(netdev))
5067 igb_up(adapter);
5068 else
5069 igb_reset(adapter);
5070
5071 clear_bit(__IGB_RESETTING, &adapter->state);
5072
5073 return 0;
5074}
5075
5076/**
b980ac18
JK
5077 * igb_update_stats - Update the board statistics counters
5078 * @adapter: board private structure
9d5c8243 5079 **/
12dcd86b
ED
5080void igb_update_stats(struct igb_adapter *adapter,
5081 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5082{
5083 struct e1000_hw *hw = &adapter->hw;
5084 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5085 u32 reg, mpc;
9d5c8243 5086 u16 phy_tmp;
3f9c0164
AD
5087 int i;
5088 u64 bytes, packets;
12dcd86b
ED
5089 unsigned int start;
5090 u64 _bytes, _packets;
9d5c8243
AK
5091
5092#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5093
b980ac18 5094 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5095 * connection is down.
5096 */
5097 if (adapter->link_speed == 0)
5098 return;
5099 if (pci_channel_offline(pdev))
5100 return;
5101
3f9c0164
AD
5102 bytes = 0;
5103 packets = 0;
7f90128e
AA
5104
5105 rcu_read_lock();
3f9c0164 5106 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 5107 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 5108 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 5109
ae1c07a6
AD
5110 if (rqdpc) {
5111 ring->rx_stats.drops += rqdpc;
5112 net_stats->rx_fifo_errors += rqdpc;
5113 }
12dcd86b
ED
5114
5115 do {
5116 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
5117 _bytes = ring->rx_stats.bytes;
5118 _packets = ring->rx_stats.packets;
5119 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
5120 bytes += _bytes;
5121 packets += _packets;
3f9c0164
AD
5122 }
5123
128e45eb
AD
5124 net_stats->rx_bytes = bytes;
5125 net_stats->rx_packets = packets;
3f9c0164
AD
5126
5127 bytes = 0;
5128 packets = 0;
5129 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5130 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
5131 do {
5132 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
5133 _bytes = ring->tx_stats.bytes;
5134 _packets = ring->tx_stats.packets;
5135 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
5136 bytes += _bytes;
5137 packets += _packets;
3f9c0164 5138 }
128e45eb
AD
5139 net_stats->tx_bytes = bytes;
5140 net_stats->tx_packets = packets;
7f90128e 5141 rcu_read_unlock();
3f9c0164
AD
5142
5143 /* read stats registers */
9d5c8243
AK
5144 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5145 adapter->stats.gprc += rd32(E1000_GPRC);
5146 adapter->stats.gorc += rd32(E1000_GORCL);
5147 rd32(E1000_GORCH); /* clear GORCL */
5148 adapter->stats.bprc += rd32(E1000_BPRC);
5149 adapter->stats.mprc += rd32(E1000_MPRC);
5150 adapter->stats.roc += rd32(E1000_ROC);
5151
5152 adapter->stats.prc64 += rd32(E1000_PRC64);
5153 adapter->stats.prc127 += rd32(E1000_PRC127);
5154 adapter->stats.prc255 += rd32(E1000_PRC255);
5155 adapter->stats.prc511 += rd32(E1000_PRC511);
5156 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5157 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5158 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5159 adapter->stats.sec += rd32(E1000_SEC);
5160
fa3d9a6d
MW
5161 mpc = rd32(E1000_MPC);
5162 adapter->stats.mpc += mpc;
5163 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5164 adapter->stats.scc += rd32(E1000_SCC);
5165 adapter->stats.ecol += rd32(E1000_ECOL);
5166 adapter->stats.mcc += rd32(E1000_MCC);
5167 adapter->stats.latecol += rd32(E1000_LATECOL);
5168 adapter->stats.dc += rd32(E1000_DC);
5169 adapter->stats.rlec += rd32(E1000_RLEC);
5170 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5171 adapter->stats.xontxc += rd32(E1000_XONTXC);
5172 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5173 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5174 adapter->stats.fcruc += rd32(E1000_FCRUC);
5175 adapter->stats.gptc += rd32(E1000_GPTC);
5176 adapter->stats.gotc += rd32(E1000_GOTCL);
5177 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5178 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5179 adapter->stats.ruc += rd32(E1000_RUC);
5180 adapter->stats.rfc += rd32(E1000_RFC);
5181 adapter->stats.rjc += rd32(E1000_RJC);
5182 adapter->stats.tor += rd32(E1000_TORH);
5183 adapter->stats.tot += rd32(E1000_TOTH);
5184 adapter->stats.tpr += rd32(E1000_TPR);
5185
5186 adapter->stats.ptc64 += rd32(E1000_PTC64);
5187 adapter->stats.ptc127 += rd32(E1000_PTC127);
5188 adapter->stats.ptc255 += rd32(E1000_PTC255);
5189 adapter->stats.ptc511 += rd32(E1000_PTC511);
5190 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5191 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5192
5193 adapter->stats.mptc += rd32(E1000_MPTC);
5194 adapter->stats.bptc += rd32(E1000_BPTC);
5195
2d0b0f69
NN
5196 adapter->stats.tpt += rd32(E1000_TPT);
5197 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5198
5199 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5200 /* read internal phy specific stats */
5201 reg = rd32(E1000_CTRL_EXT);
5202 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5203 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5204
5205 /* this stat has invalid values on i210/i211 */
5206 if ((hw->mac.type != e1000_i210) &&
5207 (hw->mac.type != e1000_i211))
5208 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5209 }
5210
9d5c8243
AK
5211 adapter->stats.tsctc += rd32(E1000_TSCTC);
5212 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5213
5214 adapter->stats.iac += rd32(E1000_IAC);
5215 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5216 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5217 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5218 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5219 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5220 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5221 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5222 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5223
5224 /* Fill out the OS statistics structure */
128e45eb
AD
5225 net_stats->multicast = adapter->stats.mprc;
5226 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5227
5228 /* Rx Errors */
5229
5230 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5231 * our own version based on RUC and ROC
5232 */
128e45eb 5233 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5234 adapter->stats.crcerrs + adapter->stats.algnerrc +
5235 adapter->stats.ruc + adapter->stats.roc +
5236 adapter->stats.cexterr;
128e45eb
AD
5237 net_stats->rx_length_errors = adapter->stats.ruc +
5238 adapter->stats.roc;
5239 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5240 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5241 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5242
5243 /* Tx Errors */
128e45eb
AD
5244 net_stats->tx_errors = adapter->stats.ecol +
5245 adapter->stats.latecol;
5246 net_stats->tx_aborted_errors = adapter->stats.ecol;
5247 net_stats->tx_window_errors = adapter->stats.latecol;
5248 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5249
5250 /* Tx Dropped needs to be maintained elsewhere */
5251
5252 /* Phy Stats */
5253 if (hw->phy.media_type == e1000_media_type_copper) {
5254 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 5255 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
5256 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5257 adapter->phy_stats.idle_errors += phy_tmp;
5258 }
5259 }
5260
5261 /* Management Stats */
5262 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5263 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5264 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5265
5266 /* OS2BMC Stats */
5267 reg = rd32(E1000_MANC);
5268 if (reg & E1000_MANC_EN_BMC2OS) {
5269 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5270 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5271 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5272 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5273 }
9d5c8243
AK
5274}
5275
9d5c8243
AK
5276static irqreturn_t igb_msix_other(int irq, void *data)
5277{
047e0030 5278 struct igb_adapter *adapter = data;
9d5c8243 5279 struct e1000_hw *hw = &adapter->hw;
844290e5 5280 u32 icr = rd32(E1000_ICR);
844290e5 5281 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5282
7f081d40
AD
5283 if (icr & E1000_ICR_DRSTA)
5284 schedule_work(&adapter->reset_task);
5285
047e0030 5286 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5287 /* HW is reporting DMA is out of sync */
5288 adapter->stats.doosync++;
13800469
GR
5289 /* The DMA Out of Sync is also indication of a spoof event
5290 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5291 * see if it is really a spoof event.
5292 */
13800469 5293 igb_check_wvbr(adapter);
dda0e083 5294 }
eebbbdba 5295
4ae196df
AD
5296 /* Check for a mailbox event */
5297 if (icr & E1000_ICR_VMMB)
5298 igb_msg_task(adapter);
5299
5300 if (icr & E1000_ICR_LSC) {
5301 hw->mac.get_link_status = 1;
5302 /* guard against interrupt when we're going down */
5303 if (!test_bit(__IGB_DOWN, &adapter->state))
5304 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5305 }
5306
1f6e8178
MV
5307 if (icr & E1000_ICR_TS) {
5308 u32 tsicr = rd32(E1000_TSICR);
5309
5310 if (tsicr & E1000_TSICR_TXTS) {
5311 /* acknowledge the interrupt */
5312 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5313 /* retrieve hardware timestamp */
5314 schedule_work(&adapter->ptp_tx_work);
5315 }
5316 }
1f6e8178 5317
844290e5 5318 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5319
5320 return IRQ_HANDLED;
5321}
5322
047e0030 5323static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5324{
26b39276 5325 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5326 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5327
047e0030
AD
5328 if (!q_vector->set_itr)
5329 return;
73cd78f1 5330
047e0030
AD
5331 if (!itr_val)
5332 itr_val = 0x4;
661086df 5333
26b39276
AD
5334 if (adapter->hw.mac.type == e1000_82575)
5335 itr_val |= itr_val << 16;
661086df 5336 else
0ba82994 5337 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5338
047e0030
AD
5339 writel(itr_val, q_vector->itr_register);
5340 q_vector->set_itr = 0;
6eb5a7f1
AD
5341}
5342
047e0030 5343static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5344{
047e0030 5345 struct igb_q_vector *q_vector = data;
9d5c8243 5346
047e0030
AD
5347 /* Write the ITR value calculated from the previous interrupt. */
5348 igb_write_itr(q_vector);
9d5c8243 5349
047e0030 5350 napi_schedule(&q_vector->napi);
844290e5 5351
047e0030 5352 return IRQ_HANDLED;
fe4506b6
JC
5353}
5354
421e02f0 5355#ifdef CONFIG_IGB_DCA
6a05004a
AD
5356static void igb_update_tx_dca(struct igb_adapter *adapter,
5357 struct igb_ring *tx_ring,
5358 int cpu)
5359{
5360 struct e1000_hw *hw = &adapter->hw;
5361 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5362
5363 if (hw->mac.type != e1000_82575)
5364 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5365
b980ac18 5366 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5367 * DCA is enabled. This is due to a known issue in some chipsets
5368 * which will cause the DCA tag to be cleared.
5369 */
5370 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5371 E1000_DCA_TXCTRL_DATA_RRO_EN |
5372 E1000_DCA_TXCTRL_DESC_DCA_EN;
5373
5374 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5375}
5376
5377static void igb_update_rx_dca(struct igb_adapter *adapter,
5378 struct igb_ring *rx_ring,
5379 int cpu)
5380{
5381 struct e1000_hw *hw = &adapter->hw;
5382 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5383
5384 if (hw->mac.type != e1000_82575)
5385 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5386
b980ac18 5387 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5388 * DCA is enabled. This is due to a known issue in some chipsets
5389 * which will cause the DCA tag to be cleared.
5390 */
5391 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5392 E1000_DCA_RXCTRL_DESC_DCA_EN;
5393
5394 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5395}
5396
047e0030 5397static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5398{
047e0030 5399 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5400 int cpu = get_cpu();
fe4506b6 5401
047e0030
AD
5402 if (q_vector->cpu == cpu)
5403 goto out_no_update;
5404
6a05004a
AD
5405 if (q_vector->tx.ring)
5406 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5407
5408 if (q_vector->rx.ring)
5409 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5410
047e0030
AD
5411 q_vector->cpu = cpu;
5412out_no_update:
fe4506b6
JC
5413 put_cpu();
5414}
5415
5416static void igb_setup_dca(struct igb_adapter *adapter)
5417{
7e0e99ef 5418 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5419 int i;
5420
7dfc16fa 5421 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5422 return;
5423
7e0e99ef
AD
5424 /* Always use CB2 mode, difference is masked in the CB driver. */
5425 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5426
047e0030 5427 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5428 adapter->q_vector[i]->cpu = -1;
5429 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5430 }
5431}
5432
5433static int __igb_notify_dca(struct device *dev, void *data)
5434{
5435 struct net_device *netdev = dev_get_drvdata(dev);
5436 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5437 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5438 struct e1000_hw *hw = &adapter->hw;
5439 unsigned long event = *(unsigned long *)data;
5440
5441 switch (event) {
5442 case DCA_PROVIDER_ADD:
5443 /* if already enabled, don't do it again */
7dfc16fa 5444 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5445 break;
fe4506b6 5446 if (dca_add_requester(dev) == 0) {
bbd98fe4 5447 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5448 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5449 igb_setup_dca(adapter);
5450 break;
5451 }
5452 /* Fall Through since DCA is disabled. */
5453 case DCA_PROVIDER_REMOVE:
7dfc16fa 5454 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5455 /* without this a class_device is left
b980ac18
JK
5456 * hanging around in the sysfs model
5457 */
fe4506b6 5458 dca_remove_requester(dev);
090b1795 5459 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5460 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5461 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5462 }
5463 break;
5464 }
bbd98fe4 5465
fe4506b6 5466 return 0;
9d5c8243
AK
5467}
5468
fe4506b6 5469static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5470 void *p)
fe4506b6
JC
5471{
5472 int ret_val;
5473
5474 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5475 __igb_notify_dca);
fe4506b6
JC
5476
5477 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5478}
421e02f0 5479#endif /* CONFIG_IGB_DCA */
9d5c8243 5480
0224d663
GR
5481#ifdef CONFIG_PCI_IOV
5482static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5483{
5484 unsigned char mac_addr[ETH_ALEN];
0224d663 5485
5ac6f91d 5486 eth_zero_addr(mac_addr);
0224d663
GR
5487 igb_set_vf_mac(adapter, vf, mac_addr);
5488
70ea4783
LL
5489 /* By default spoof check is enabled for all VFs */
5490 adapter->vf_data[vf].spoofchk_enabled = true;
5491
f557147c 5492 return 0;
0224d663
GR
5493}
5494
0224d663 5495#endif
4ae196df
AD
5496static void igb_ping_all_vfs(struct igb_adapter *adapter)
5497{
5498 struct e1000_hw *hw = &adapter->hw;
5499 u32 ping;
5500 int i;
5501
5502 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5503 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5504 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5505 ping |= E1000_VT_MSGTYPE_CTS;
5506 igb_write_mbx(hw, &ping, 1, i);
5507 }
5508}
5509
7d5753f0
AD
5510static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5511{
5512 struct e1000_hw *hw = &adapter->hw;
5513 u32 vmolr = rd32(E1000_VMOLR(vf));
5514 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5515
d85b9004 5516 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5517 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5518 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5519
5520 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5521 vmolr |= E1000_VMOLR_MPME;
d85b9004 5522 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5523 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5524 } else {
b980ac18 5525 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5526 * flag we need to write the hashes to the MTA as this step
5527 * was previously skipped
5528 */
5529 if (vf_data->num_vf_mc_hashes > 30) {
5530 vmolr |= E1000_VMOLR_MPME;
5531 } else if (vf_data->num_vf_mc_hashes) {
5532 int j;
5533 vmolr |= E1000_VMOLR_ROMPE;
5534 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5535 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5536 }
5537 }
5538
5539 wr32(E1000_VMOLR(vf), vmolr);
5540
5541 /* there are flags left unprocessed, likely not supported */
5542 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5543 return -EINVAL;
5544
5545 return 0;
7d5753f0
AD
5546}
5547
4ae196df
AD
5548static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5549 u32 *msgbuf, u32 vf)
5550{
5551 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5552 u16 *hash_list = (u16 *)&msgbuf[1];
5553 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5554 int i;
5555
7d5753f0 5556 /* salt away the number of multicast addresses assigned
4ae196df
AD
5557 * to this VF for later use to restore when the PF multi cast
5558 * list changes
5559 */
5560 vf_data->num_vf_mc_hashes = n;
5561
7d5753f0
AD
5562 /* only up to 30 hash values supported */
5563 if (n > 30)
5564 n = 30;
5565
5566 /* store the hashes for later use */
4ae196df 5567 for (i = 0; i < n; i++)
a419aef8 5568 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5569
5570 /* Flush and reset the mta with the new values */
ff41f8dc 5571 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5572
5573 return 0;
5574}
5575
5576static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5577{
5578 struct e1000_hw *hw = &adapter->hw;
5579 struct vf_data_storage *vf_data;
5580 int i, j;
5581
5582 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5583 u32 vmolr = rd32(E1000_VMOLR(i));
5584 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5585
4ae196df 5586 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5587
5588 if ((vf_data->num_vf_mc_hashes > 30) ||
5589 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5590 vmolr |= E1000_VMOLR_MPME;
5591 } else if (vf_data->num_vf_mc_hashes) {
5592 vmolr |= E1000_VMOLR_ROMPE;
5593 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5594 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5595 }
5596 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5597 }
5598}
5599
5600static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5601{
5602 struct e1000_hw *hw = &adapter->hw;
5603 u32 pool_mask, reg, vid;
5604 int i;
5605
5606 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5607
5608 /* Find the vlan filter for this id */
5609 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5610 reg = rd32(E1000_VLVF(i));
5611
5612 /* remove the vf from the pool */
5613 reg &= ~pool_mask;
5614
5615 /* if pool is empty then remove entry from vfta */
5616 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5617 (reg & E1000_VLVF_VLANID_ENABLE)) {
5618 reg = 0;
5619 vid = reg & E1000_VLVF_VLANID_MASK;
5620 igb_vfta_set(hw, vid, false);
5621 }
5622
5623 wr32(E1000_VLVF(i), reg);
5624 }
ae641bdc
AD
5625
5626 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5627}
5628
5629static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5630{
5631 struct e1000_hw *hw = &adapter->hw;
5632 u32 reg, i;
5633
51466239
AD
5634 /* The vlvf table only exists on 82576 hardware and newer */
5635 if (hw->mac.type < e1000_82576)
5636 return -1;
5637
5638 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5639 if (!adapter->vfs_allocated_count)
5640 return -1;
5641
5642 /* Find the vlan filter for this id */
5643 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5644 reg = rd32(E1000_VLVF(i));
5645 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5646 vid == (reg & E1000_VLVF_VLANID_MASK))
5647 break;
5648 }
5649
5650 if (add) {
5651 if (i == E1000_VLVF_ARRAY_SIZE) {
5652 /* Did not find a matching VLAN ID entry that was
5653 * enabled. Search for a free filter entry, i.e.
5654 * one without the enable bit set
5655 */
5656 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5657 reg = rd32(E1000_VLVF(i));
5658 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5659 break;
5660 }
5661 }
5662 if (i < E1000_VLVF_ARRAY_SIZE) {
5663 /* Found an enabled/available entry */
5664 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5665
5666 /* if !enabled we need to set this up in vfta */
5667 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5668 /* add VID to filter table */
5669 igb_vfta_set(hw, vid, true);
4ae196df
AD
5670 reg |= E1000_VLVF_VLANID_ENABLE;
5671 }
cad6d05f
AD
5672 reg &= ~E1000_VLVF_VLANID_MASK;
5673 reg |= vid;
4ae196df 5674 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5675
5676 /* do not modify RLPML for PF devices */
5677 if (vf >= adapter->vfs_allocated_count)
5678 return 0;
5679
5680 if (!adapter->vf_data[vf].vlans_enabled) {
5681 u32 size;
5682 reg = rd32(E1000_VMOLR(vf));
5683 size = reg & E1000_VMOLR_RLPML_MASK;
5684 size += 4;
5685 reg &= ~E1000_VMOLR_RLPML_MASK;
5686 reg |= size;
5687 wr32(E1000_VMOLR(vf), reg);
5688 }
ae641bdc 5689
51466239 5690 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5691 }
5692 } else {
5693 if (i < E1000_VLVF_ARRAY_SIZE) {
5694 /* remove vf from the pool */
5695 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5696 /* if pool is empty then remove entry from vfta */
5697 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5698 reg = 0;
5699 igb_vfta_set(hw, vid, false);
5700 }
5701 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5702
5703 /* do not modify RLPML for PF devices */
5704 if (vf >= adapter->vfs_allocated_count)
5705 return 0;
5706
5707 adapter->vf_data[vf].vlans_enabled--;
5708 if (!adapter->vf_data[vf].vlans_enabled) {
5709 u32 size;
5710 reg = rd32(E1000_VMOLR(vf));
5711 size = reg & E1000_VMOLR_RLPML_MASK;
5712 size -= 4;
5713 reg &= ~E1000_VMOLR_RLPML_MASK;
5714 reg |= size;
5715 wr32(E1000_VMOLR(vf), reg);
5716 }
4ae196df
AD
5717 }
5718 }
8151d294
WM
5719 return 0;
5720}
5721
5722static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5723{
5724 struct e1000_hw *hw = &adapter->hw;
5725
5726 if (vid)
5727 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5728 else
5729 wr32(E1000_VMVIR(vf), 0);
5730}
5731
5732static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5733 int vf, u16 vlan, u8 qos)
5734{
5735 int err = 0;
5736 struct igb_adapter *adapter = netdev_priv(netdev);
5737
5738 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5739 return -EINVAL;
5740 if (vlan || qos) {
5741 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5742 if (err)
5743 goto out;
5744 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5745 igb_set_vmolr(adapter, vf, !vlan);
5746 adapter->vf_data[vf].pf_vlan = vlan;
5747 adapter->vf_data[vf].pf_qos = qos;
5748 dev_info(&adapter->pdev->dev,
5749 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5750 if (test_bit(__IGB_DOWN, &adapter->state)) {
5751 dev_warn(&adapter->pdev->dev,
b980ac18 5752 "The VF VLAN has been set, but the PF device is not up.\n");
8151d294 5753 dev_warn(&adapter->pdev->dev,
b980ac18 5754 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
5755 }
5756 } else {
5757 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
b980ac18 5758 false, vf);
8151d294
WM
5759 igb_set_vmvir(adapter, vlan, vf);
5760 igb_set_vmolr(adapter, vf, true);
5761 adapter->vf_data[vf].pf_vlan = 0;
5762 adapter->vf_data[vf].pf_qos = 0;
b980ac18 5763 }
8151d294 5764out:
b980ac18 5765 return err;
4ae196df
AD
5766}
5767
6f3dc319
GR
5768static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5769{
5770 struct e1000_hw *hw = &adapter->hw;
5771 int i;
5772 u32 reg;
5773
5774 /* Find the vlan filter for this id */
5775 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5776 reg = rd32(E1000_VLVF(i));
5777 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5778 vid == (reg & E1000_VLVF_VLANID_MASK))
5779 break;
5780 }
5781
5782 if (i >= E1000_VLVF_ARRAY_SIZE)
5783 i = -1;
5784
5785 return i;
5786}
5787
4ae196df
AD
5788static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5789{
6f3dc319 5790 struct e1000_hw *hw = &adapter->hw;
4ae196df
AD
5791 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5792 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6f3dc319 5793 int err = 0;
4ae196df 5794
6f3dc319
GR
5795 /* If in promiscuous mode we need to make sure the PF also has
5796 * the VLAN filter set.
5797 */
5798 if (add && (adapter->netdev->flags & IFF_PROMISC))
5799 err = igb_vlvf_set(adapter, vid, add,
5800 adapter->vfs_allocated_count);
5801 if (err)
5802 goto out;
5803
5804 err = igb_vlvf_set(adapter, vid, add, vf);
5805
5806 if (err)
5807 goto out;
5808
5809 /* Go through all the checks to see if the VLAN filter should
5810 * be wiped completely.
5811 */
5812 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5813 u32 vlvf, bits;
5814
5815 int regndx = igb_find_vlvf_entry(adapter, vid);
5816 if (regndx < 0)
5817 goto out;
5818 /* See if any other pools are set for this VLAN filter
5819 * entry other than the PF.
5820 */
5821 vlvf = bits = rd32(E1000_VLVF(regndx));
5822 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5823 adapter->vfs_allocated_count);
5824 /* If the filter was removed then ensure PF pool bit
5825 * is cleared if the PF only added itself to the pool
5826 * because the PF is in promiscuous mode.
5827 */
5828 if ((vlvf & VLAN_VID_MASK) == vid &&
5829 !test_bit(vid, adapter->active_vlans) &&
5830 !bits)
5831 igb_vlvf_set(adapter, vid, add,
5832 adapter->vfs_allocated_count);
5833 }
5834
5835out:
5836 return err;
4ae196df
AD
5837}
5838
f2ca0dbe 5839static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5840{
8fa7e0f7
GR
5841 /* clear flags - except flag that indicates PF has set the MAC */
5842 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5843 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5844
5845 /* reset offloads to defaults */
8151d294 5846 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5847
5848 /* reset vlans for device */
5849 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5850 if (adapter->vf_data[vf].pf_vlan)
5851 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5852 adapter->vf_data[vf].pf_vlan,
5853 adapter->vf_data[vf].pf_qos);
5854 else
5855 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5856
5857 /* reset multicast table array for vf */
5858 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5859
5860 /* Flush and reset the mta with the new values */
ff41f8dc 5861 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5862}
5863
f2ca0dbe
AD
5864static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5865{
5866 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5867
5ac6f91d 5868 /* clear mac address as we were hotplug removed/added */
8151d294 5869 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5870 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5871
5872 /* process remaining reset events */
5873 igb_vf_reset(adapter, vf);
5874}
5875
5876static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5877{
5878 struct e1000_hw *hw = &adapter->hw;
5879 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5880 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5881 u32 reg, msgbuf[3];
5882 u8 *addr = (u8 *)(&msgbuf[1]);
5883
5884 /* process all the same items cleared in a function level reset */
f2ca0dbe 5885 igb_vf_reset(adapter, vf);
4ae196df
AD
5886
5887 /* set vf mac address */
26ad9178 5888 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5889
5890 /* enable transmit and receive for vf */
5891 reg = rd32(E1000_VFTE);
5892 wr32(E1000_VFTE, reg | (1 << vf));
5893 reg = rd32(E1000_VFRE);
5894 wr32(E1000_VFRE, reg | (1 << vf));
5895
8fa7e0f7 5896 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5897
5898 /* reply to reset with ack and vf mac address */
5899 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
d458cdf7 5900 memcpy(addr, vf_mac, ETH_ALEN);
4ae196df
AD
5901 igb_write_mbx(hw, msgbuf, 3, vf);
5902}
5903
5904static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5905{
b980ac18 5906 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
5907 * starting at the second 32 bit word of the msg array
5908 */
f2ca0dbe
AD
5909 unsigned char *addr = (char *)&msg[1];
5910 int err = -1;
4ae196df 5911
f2ca0dbe
AD
5912 if (is_valid_ether_addr(addr))
5913 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5914
f2ca0dbe 5915 return err;
4ae196df
AD
5916}
5917
5918static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5919{
5920 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5921 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5922 u32 msg = E1000_VT_MSGTYPE_NACK;
5923
5924 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5925 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5926 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5927 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5928 vf_data->last_nack = jiffies;
4ae196df
AD
5929 }
5930}
5931
f2ca0dbe 5932static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5933{
f2ca0dbe
AD
5934 struct pci_dev *pdev = adapter->pdev;
5935 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5936 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5937 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5938 s32 retval;
5939
f2ca0dbe 5940 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5941
fef45f4c
AD
5942 if (retval) {
5943 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5944 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5945 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5946 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5947 return;
5948 goto out;
5949 }
4ae196df
AD
5950
5951 /* this is a message we already processed, do nothing */
5952 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5953 return;
4ae196df 5954
b980ac18 5955 /* until the vf completes a reset it should not be
4ae196df
AD
5956 * allowed to start any configuration.
5957 */
4ae196df
AD
5958 if (msgbuf[0] == E1000_VF_RESET) {
5959 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5960 return;
4ae196df
AD
5961 }
5962
f2ca0dbe 5963 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5964 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5965 return;
5966 retval = -1;
5967 goto out;
4ae196df
AD
5968 }
5969
5970 switch ((msgbuf[0] & 0xFFFF)) {
5971 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5972 retval = -EINVAL;
5973 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5974 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5975 else
5976 dev_warn(&pdev->dev,
b980ac18
JK
5977 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5978 vf);
4ae196df 5979 break;
7d5753f0
AD
5980 case E1000_VF_SET_PROMISC:
5981 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5982 break;
4ae196df
AD
5983 case E1000_VF_SET_MULTICAST:
5984 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5985 break;
5986 case E1000_VF_SET_LPE:
5987 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5988 break;
5989 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5990 retval = -1;
5991 if (vf_data->pf_vlan)
5992 dev_warn(&pdev->dev,
b980ac18
JK
5993 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5994 vf);
8151d294
WM
5995 else
5996 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5997 break;
5998 default:
090b1795 5999 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6000 retval = -1;
6001 break;
6002 }
6003
fef45f4c
AD
6004 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6005out:
4ae196df
AD
6006 /* notify the VF of the results of what it sent us */
6007 if (retval)
6008 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6009 else
6010 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6011
4ae196df 6012 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6013}
4ae196df 6014
f2ca0dbe
AD
6015static void igb_msg_task(struct igb_adapter *adapter)
6016{
6017 struct e1000_hw *hw = &adapter->hw;
6018 u32 vf;
6019
6020 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6021 /* process any reset requests */
6022 if (!igb_check_for_rst(hw, vf))
6023 igb_vf_reset_event(adapter, vf);
6024
6025 /* process any messages pending */
6026 if (!igb_check_for_msg(hw, vf))
6027 igb_rcv_msg_from_vf(adapter, vf);
6028
6029 /* process any acks */
6030 if (!igb_check_for_ack(hw, vf))
6031 igb_rcv_ack_from_vf(adapter, vf);
6032 }
4ae196df
AD
6033}
6034
68d480c4
AD
6035/**
6036 * igb_set_uta - Set unicast filter table address
6037 * @adapter: board private structure
6038 *
6039 * The unicast table address is a register array of 32-bit registers.
6040 * The table is meant to be used in a way similar to how the MTA is used
6041 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6042 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6043 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
6044 **/
6045static void igb_set_uta(struct igb_adapter *adapter)
6046{
6047 struct e1000_hw *hw = &adapter->hw;
6048 int i;
6049
6050 /* The UTA table only exists on 82576 hardware and newer */
6051 if (hw->mac.type < e1000_82576)
6052 return;
6053
6054 /* we only need to do this if VMDq is enabled */
6055 if (!adapter->vfs_allocated_count)
6056 return;
6057
6058 for (i = 0; i < hw->mac.uta_reg_count; i++)
6059 array_wr32(E1000_UTA, i, ~0);
6060}
6061
9d5c8243 6062/**
b980ac18
JK
6063 * igb_intr_msi - Interrupt Handler
6064 * @irq: interrupt number
6065 * @data: pointer to a network interface device structure
9d5c8243
AK
6066 **/
6067static irqreturn_t igb_intr_msi(int irq, void *data)
6068{
047e0030
AD
6069 struct igb_adapter *adapter = data;
6070 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6071 struct e1000_hw *hw = &adapter->hw;
6072 /* read ICR disables interrupts using IAM */
6073 u32 icr = rd32(E1000_ICR);
6074
047e0030 6075 igb_write_itr(q_vector);
9d5c8243 6076
7f081d40
AD
6077 if (icr & E1000_ICR_DRSTA)
6078 schedule_work(&adapter->reset_task);
6079
047e0030 6080 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6081 /* HW is reporting DMA is out of sync */
6082 adapter->stats.doosync++;
6083 }
6084
9d5c8243
AK
6085 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6086 hw->mac.get_link_status = 1;
6087 if (!test_bit(__IGB_DOWN, &adapter->state))
6088 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6089 }
6090
1f6e8178
MV
6091 if (icr & E1000_ICR_TS) {
6092 u32 tsicr = rd32(E1000_TSICR);
6093
6094 if (tsicr & E1000_TSICR_TXTS) {
6095 /* acknowledge the interrupt */
6096 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6097 /* retrieve hardware timestamp */
6098 schedule_work(&adapter->ptp_tx_work);
6099 }
6100 }
1f6e8178 6101
047e0030 6102 napi_schedule(&q_vector->napi);
9d5c8243
AK
6103
6104 return IRQ_HANDLED;
6105}
6106
6107/**
b980ac18
JK
6108 * igb_intr - Legacy Interrupt Handler
6109 * @irq: interrupt number
6110 * @data: pointer to a network interface device structure
9d5c8243
AK
6111 **/
6112static irqreturn_t igb_intr(int irq, void *data)
6113{
047e0030
AD
6114 struct igb_adapter *adapter = data;
6115 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6116 struct e1000_hw *hw = &adapter->hw;
6117 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6118 * need for the IMC write
6119 */
9d5c8243 6120 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6121
6122 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6123 * not set, then the adapter didn't send an interrupt
6124 */
9d5c8243
AK
6125 if (!(icr & E1000_ICR_INT_ASSERTED))
6126 return IRQ_NONE;
6127
0ba82994
AD
6128 igb_write_itr(q_vector);
6129
7f081d40
AD
6130 if (icr & E1000_ICR_DRSTA)
6131 schedule_work(&adapter->reset_task);
6132
047e0030 6133 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6134 /* HW is reporting DMA is out of sync */
6135 adapter->stats.doosync++;
6136 }
6137
9d5c8243
AK
6138 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6139 hw->mac.get_link_status = 1;
6140 /* guard against interrupt when we're going down */
6141 if (!test_bit(__IGB_DOWN, &adapter->state))
6142 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6143 }
6144
1f6e8178
MV
6145 if (icr & E1000_ICR_TS) {
6146 u32 tsicr = rd32(E1000_TSICR);
6147
6148 if (tsicr & E1000_TSICR_TXTS) {
6149 /* acknowledge the interrupt */
6150 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6151 /* retrieve hardware timestamp */
6152 schedule_work(&adapter->ptp_tx_work);
6153 }
6154 }
1f6e8178 6155
047e0030 6156 napi_schedule(&q_vector->napi);
9d5c8243
AK
6157
6158 return IRQ_HANDLED;
6159}
6160
c50b52a0 6161static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6162{
047e0030 6163 struct igb_adapter *adapter = q_vector->adapter;
46544258 6164 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6165
0ba82994
AD
6166 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6167 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6168 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6169 igb_set_itr(q_vector);
46544258 6170 else
047e0030 6171 igb_update_ring_itr(q_vector);
9d5c8243
AK
6172 }
6173
46544258
AD
6174 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6175 if (adapter->msix_entries)
047e0030 6176 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6177 else
6178 igb_irq_enable(adapter);
6179 }
9d5c8243
AK
6180}
6181
46544258 6182/**
b980ac18
JK
6183 * igb_poll - NAPI Rx polling callback
6184 * @napi: napi polling structure
6185 * @budget: count of how many packets we should handle
46544258
AD
6186 **/
6187static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6188{
047e0030 6189 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6190 struct igb_q_vector,
6191 napi);
16eb8815 6192 bool clean_complete = true;
9d5c8243 6193
421e02f0 6194#ifdef CONFIG_IGB_DCA
047e0030
AD
6195 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6196 igb_update_dca(q_vector);
fe4506b6 6197#endif
0ba82994 6198 if (q_vector->tx.ring)
13fde97a 6199 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 6200
0ba82994 6201 if (q_vector->rx.ring)
cd392f5c 6202 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 6203
16eb8815
AD
6204 /* If all work not completed, return budget and keep polling */
6205 if (!clean_complete)
6206 return budget;
46544258 6207
9d5c8243 6208 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
6209 napi_complete(napi);
6210 igb_ring_irq_enable(q_vector);
9d5c8243 6211
16eb8815 6212 return 0;
9d5c8243 6213}
6d8126f9 6214
9d5c8243 6215/**
b980ac18
JK
6216 * igb_clean_tx_irq - Reclaim resources after transmit completes
6217 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 6218 *
b980ac18 6219 * returns true if ring is completely cleaned
9d5c8243 6220 **/
047e0030 6221static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 6222{
047e0030 6223 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6224 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6225 struct igb_tx_buffer *tx_buffer;
f4128785 6226 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6227 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6228 unsigned int budget = q_vector->tx.work_limit;
8542db05 6229 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6230
13fde97a
AD
6231 if (test_bit(__IGB_DOWN, &adapter->state))
6232 return true;
0e014cb1 6233
06034649 6234 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6235 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6236 i -= tx_ring->count;
9d5c8243 6237
f4128785
AD
6238 do {
6239 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6240
6241 /* if next_to_watch is not set then there is no work pending */
6242 if (!eop_desc)
6243 break;
13fde97a 6244
f4128785 6245 /* prevent any other reads prior to eop_desc */
70d289bc 6246 read_barrier_depends();
f4128785 6247
13fde97a
AD
6248 /* if DD is not set pending work has not been completed */
6249 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6250 break;
6251
8542db05
AD
6252 /* clear next_to_watch to prevent false hangs */
6253 tx_buffer->next_to_watch = NULL;
9d5c8243 6254
ebe42d16
AD
6255 /* update the statistics for this packet */
6256 total_bytes += tx_buffer->bytecount;
6257 total_packets += tx_buffer->gso_segs;
13fde97a 6258
ebe42d16
AD
6259 /* free the skb */
6260 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 6261
ebe42d16
AD
6262 /* unmap skb header data */
6263 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6264 dma_unmap_addr(tx_buffer, dma),
6265 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6266 DMA_TO_DEVICE);
6267
c9f14bf3
AD
6268 /* clear tx_buffer data */
6269 tx_buffer->skb = NULL;
6270 dma_unmap_len_set(tx_buffer, len, 0);
6271
ebe42d16
AD
6272 /* clear last DMA location and unmap remaining buffers */
6273 while (tx_desc != eop_desc) {
13fde97a
AD
6274 tx_buffer++;
6275 tx_desc++;
9d5c8243 6276 i++;
8542db05
AD
6277 if (unlikely(!i)) {
6278 i -= tx_ring->count;
06034649 6279 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6280 tx_desc = IGB_TX_DESC(tx_ring, 0);
6281 }
ebe42d16
AD
6282
6283 /* unmap any remaining paged data */
c9f14bf3 6284 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6285 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6286 dma_unmap_addr(tx_buffer, dma),
6287 dma_unmap_len(tx_buffer, len),
ebe42d16 6288 DMA_TO_DEVICE);
c9f14bf3 6289 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6290 }
6291 }
6292
ebe42d16
AD
6293 /* move us one more past the eop_desc for start of next pkt */
6294 tx_buffer++;
6295 tx_desc++;
6296 i++;
6297 if (unlikely(!i)) {
6298 i -= tx_ring->count;
6299 tx_buffer = tx_ring->tx_buffer_info;
6300 tx_desc = IGB_TX_DESC(tx_ring, 0);
6301 }
f4128785
AD
6302
6303 /* issue prefetch for next Tx descriptor */
6304 prefetch(tx_desc);
6305
6306 /* update budget accounting */
6307 budget--;
6308 } while (likely(budget));
0e014cb1 6309
bdbc0631
ED
6310 netdev_tx_completed_queue(txring_txq(tx_ring),
6311 total_packets, total_bytes);
8542db05 6312 i += tx_ring->count;
9d5c8243 6313 tx_ring->next_to_clean = i;
13fde97a
AD
6314 u64_stats_update_begin(&tx_ring->tx_syncp);
6315 tx_ring->tx_stats.bytes += total_bytes;
6316 tx_ring->tx_stats.packets += total_packets;
6317 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6318 q_vector->tx.total_bytes += total_bytes;
6319 q_vector->tx.total_packets += total_packets;
9d5c8243 6320
6d095fa8 6321 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6322 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6323
9d5c8243 6324 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6325 * check with the clearing of time_stamp and movement of i
6326 */
6d095fa8 6327 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6328 if (tx_buffer->next_to_watch &&
8542db05 6329 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6330 (adapter->tx_timeout_factor * HZ)) &&
6331 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6332
9d5c8243 6333 /* detected Tx unit hang */
59d71989 6334 dev_err(tx_ring->dev,
9d5c8243 6335 "Detected Tx Unit Hang\n"
2d064c06 6336 " Tx Queue <%d>\n"
9d5c8243
AK
6337 " TDH <%x>\n"
6338 " TDT <%x>\n"
6339 " next_to_use <%x>\n"
6340 " next_to_clean <%x>\n"
9d5c8243
AK
6341 "buffer_info[next_to_clean]\n"
6342 " time_stamp <%lx>\n"
8542db05 6343 " next_to_watch <%p>\n"
9d5c8243
AK
6344 " jiffies <%lx>\n"
6345 " desc.status <%x>\n",
2d064c06 6346 tx_ring->queue_index,
238ac817 6347 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6348 readl(tx_ring->tail),
9d5c8243
AK
6349 tx_ring->next_to_use,
6350 tx_ring->next_to_clean,
8542db05 6351 tx_buffer->time_stamp,
f4128785 6352 tx_buffer->next_to_watch,
9d5c8243 6353 jiffies,
f4128785 6354 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6355 netif_stop_subqueue(tx_ring->netdev,
6356 tx_ring->queue_index);
6357
6358 /* we are about to reset, no point in enabling stuff */
6359 return true;
9d5c8243
AK
6360 }
6361 }
13fde97a 6362
21ba6fe1 6363#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6364 if (unlikely(total_packets &&
b980ac18
JK
6365 netif_carrier_ok(tx_ring->netdev) &&
6366 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6367 /* Make sure that anybody stopping the queue after this
6368 * sees the new next_to_clean.
6369 */
6370 smp_mb();
6371 if (__netif_subqueue_stopped(tx_ring->netdev,
6372 tx_ring->queue_index) &&
6373 !(test_bit(__IGB_DOWN, &adapter->state))) {
6374 netif_wake_subqueue(tx_ring->netdev,
6375 tx_ring->queue_index);
6376
6377 u64_stats_update_begin(&tx_ring->tx_syncp);
6378 tx_ring->tx_stats.restart_queue++;
6379 u64_stats_update_end(&tx_ring->tx_syncp);
6380 }
6381 }
6382
6383 return !!budget;
9d5c8243
AK
6384}
6385
cbc8e55f 6386/**
b980ac18
JK
6387 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6388 * @rx_ring: rx descriptor ring to store buffers on
6389 * @old_buff: donor buffer to have page reused
cbc8e55f 6390 *
b980ac18 6391 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6392 **/
6393static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6394 struct igb_rx_buffer *old_buff)
6395{
6396 struct igb_rx_buffer *new_buff;
6397 u16 nta = rx_ring->next_to_alloc;
6398
6399 new_buff = &rx_ring->rx_buffer_info[nta];
6400
6401 /* update, and store next to alloc */
6402 nta++;
6403 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6404
6405 /* transfer page from old buffer to new buffer */
6406 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6407
6408 /* sync the buffer for use by the device */
6409 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6410 old_buff->page_offset,
de78d1f9 6411 IGB_RX_BUFSZ,
cbc8e55f
AD
6412 DMA_FROM_DEVICE);
6413}
6414
74e238ea
AD
6415static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6416 struct page *page,
6417 unsigned int truesize)
6418{
6419 /* avoid re-using remote pages */
6420 if (unlikely(page_to_nid(page) != numa_node_id()))
6421 return false;
6422
6423#if (PAGE_SIZE < 8192)
6424 /* if we are only owner of page we can reuse it */
6425 if (unlikely(page_count(page) != 1))
6426 return false;
6427
6428 /* flip page offset to other buffer */
6429 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6430
6431 /* since we are the only owner of the page and we need to
6432 * increment it, just set the value to 2 in order to avoid
6433 * an unnecessary locked operation
6434 */
6435 atomic_set(&page->_count, 2);
6436#else
6437 /* move offset up to the next cache line */
6438 rx_buffer->page_offset += truesize;
6439
6440 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6441 return false;
6442
6443 /* bump ref count on page before it is given to the stack */
6444 get_page(page);
6445#endif
6446
6447 return true;
6448}
6449
cbc8e55f 6450/**
b980ac18
JK
6451 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6452 * @rx_ring: rx descriptor ring to transact packets on
6453 * @rx_buffer: buffer containing page to add
6454 * @rx_desc: descriptor containing length of buffer written by hardware
6455 * @skb: sk_buff to place the data into
cbc8e55f 6456 *
b980ac18
JK
6457 * This function will add the data contained in rx_buffer->page to the skb.
6458 * This is done either through a direct copy if the data in the buffer is
6459 * less than the skb header size, otherwise it will just attach the page as
6460 * a frag to the skb.
cbc8e55f 6461 *
b980ac18
JK
6462 * The function will then update the page offset if necessary and return
6463 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6464 **/
6465static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6466 struct igb_rx_buffer *rx_buffer,
6467 union e1000_adv_rx_desc *rx_desc,
6468 struct sk_buff *skb)
6469{
6470 struct page *page = rx_buffer->page;
6471 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6472#if (PAGE_SIZE < 8192)
6473 unsigned int truesize = IGB_RX_BUFSZ;
6474#else
6475 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6476#endif
cbc8e55f
AD
6477
6478 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6479 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6480
cbc8e55f
AD
6481 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6482 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6483 va += IGB_TS_HDR_LEN;
6484 size -= IGB_TS_HDR_LEN;
6485 }
6486
cbc8e55f
AD
6487 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6488
6489 /* we can reuse buffer as-is, just make sure it is local */
6490 if (likely(page_to_nid(page) == numa_node_id()))
6491 return true;
6492
6493 /* this page cannot be reused so discard it */
6494 put_page(page);
6495 return false;
6496 }
6497
6498 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6499 rx_buffer->page_offset, size, truesize);
cbc8e55f 6500
74e238ea
AD
6501 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6502}
cbc8e55f 6503
2e334eee
AD
6504static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6505 union e1000_adv_rx_desc *rx_desc,
6506 struct sk_buff *skb)
6507{
6508 struct igb_rx_buffer *rx_buffer;
6509 struct page *page;
6510
6511 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6512
2e334eee
AD
6513 page = rx_buffer->page;
6514 prefetchw(page);
6515
6516 if (likely(!skb)) {
6517 void *page_addr = page_address(page) +
6518 rx_buffer->page_offset;
6519
6520 /* prefetch first cache line of first page */
6521 prefetch(page_addr);
6522#if L1_CACHE_BYTES < 128
6523 prefetch(page_addr + L1_CACHE_BYTES);
6524#endif
6525
6526 /* allocate a skb to store the frags */
6527 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6528 IGB_RX_HDR_LEN);
6529 if (unlikely(!skb)) {
6530 rx_ring->rx_stats.alloc_failed++;
6531 return NULL;
6532 }
6533
b980ac18 6534 /* we will be copying header into skb->data in
2e334eee
AD
6535 * pskb_may_pull so it is in our interest to prefetch
6536 * it now to avoid a possible cache miss
6537 */
6538 prefetchw(skb->data);
6539 }
6540
6541 /* we are reusing so sync this buffer for CPU use */
6542 dma_sync_single_range_for_cpu(rx_ring->dev,
6543 rx_buffer->dma,
6544 rx_buffer->page_offset,
de78d1f9 6545 IGB_RX_BUFSZ,
2e334eee
AD
6546 DMA_FROM_DEVICE);
6547
6548 /* pull page into skb */
6549 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6550 /* hand second half of page back to the ring */
6551 igb_reuse_rx_page(rx_ring, rx_buffer);
6552 } else {
6553 /* we are not reusing the buffer so unmap it */
6554 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6555 PAGE_SIZE, DMA_FROM_DEVICE);
6556 }
6557
6558 /* clear contents of rx_buffer */
6559 rx_buffer->page = NULL;
6560
6561 return skb;
6562}
6563
cd392f5c 6564static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6565 union e1000_adv_rx_desc *rx_desc,
6566 struct sk_buff *skb)
9d5c8243 6567{
bc8acf2c 6568 skb_checksum_none_assert(skb);
9d5c8243 6569
294e7d78 6570 /* Ignore Checksum bit is set */
3ceb90fd 6571 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6572 return;
6573
6574 /* Rx checksum disabled via ethtool */
6575 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6576 return;
85ad76b2 6577
9d5c8243 6578 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6579 if (igb_test_staterr(rx_desc,
6580 E1000_RXDEXT_STATERR_TCPE |
6581 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6582 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6583 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6584 * packets, (aka let the stack check the crc32c)
6585 */
866cff06
AD
6586 if (!((skb->len == 60) &&
6587 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6588 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6589 ring->rx_stats.csum_err++;
12dcd86b
ED
6590 u64_stats_update_end(&ring->rx_syncp);
6591 }
9d5c8243 6592 /* let the stack verify checksum errors */
9d5c8243
AK
6593 return;
6594 }
6595 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6596 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6597 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6598 skb->ip_summed = CHECKSUM_UNNECESSARY;
6599
3ceb90fd
AD
6600 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6601 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6602}
6603
077887c3
AD
6604static inline void igb_rx_hash(struct igb_ring *ring,
6605 union e1000_adv_rx_desc *rx_desc,
6606 struct sk_buff *skb)
6607{
6608 if (ring->netdev->features & NETIF_F_RXHASH)
6609 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6610}
6611
2e334eee 6612/**
b980ac18
JK
6613 * igb_is_non_eop - process handling of non-EOP buffers
6614 * @rx_ring: Rx ring being processed
6615 * @rx_desc: Rx descriptor for current buffer
6616 * @skb: current socket buffer containing buffer in progress
2e334eee 6617 *
b980ac18
JK
6618 * This function updates next to clean. If the buffer is an EOP buffer
6619 * this function exits returning false, otherwise it will place the
6620 * sk_buff in the next buffer to be chained and return true indicating
6621 * that this is in fact a non-EOP buffer.
2e334eee
AD
6622 **/
6623static bool igb_is_non_eop(struct igb_ring *rx_ring,
6624 union e1000_adv_rx_desc *rx_desc)
6625{
6626 u32 ntc = rx_ring->next_to_clean + 1;
6627
6628 /* fetch, update, and store next to clean */
6629 ntc = (ntc < rx_ring->count) ? ntc : 0;
6630 rx_ring->next_to_clean = ntc;
6631
6632 prefetch(IGB_RX_DESC(rx_ring, ntc));
6633
6634 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6635 return false;
6636
6637 return true;
6638}
6639
1a1c225b 6640/**
b980ac18
JK
6641 * igb_get_headlen - determine size of header for LRO/GRO
6642 * @data: pointer to the start of the headers
6643 * @max_len: total length of section to find headers in
1a1c225b 6644 *
b980ac18
JK
6645 * This function is meant to determine the length of headers that will
6646 * be recognized by hardware for LRO, and GRO offloads. The main
6647 * motivation of doing this is to only perform one pull for IPv4 TCP
6648 * packets so that we can do basic things like calculating the gso_size
6649 * based on the average data per packet.
1a1c225b
AD
6650 **/
6651static unsigned int igb_get_headlen(unsigned char *data,
6652 unsigned int max_len)
6653{
6654 union {
6655 unsigned char *network;
6656 /* l2 headers */
6657 struct ethhdr *eth;
6658 struct vlan_hdr *vlan;
6659 /* l3 headers */
6660 struct iphdr *ipv4;
6661 struct ipv6hdr *ipv6;
6662 } hdr;
6663 __be16 protocol;
6664 u8 nexthdr = 0; /* default to not TCP */
6665 u8 hlen;
6666
6667 /* this should never happen, but better safe than sorry */
6668 if (max_len < ETH_HLEN)
6669 return max_len;
6670
6671 /* initialize network frame pointer */
6672 hdr.network = data;
6673
6674 /* set first protocol and move network header forward */
6675 protocol = hdr.eth->h_proto;
6676 hdr.network += ETH_HLEN;
6677
6678 /* handle any vlan tag if present */
6679 if (protocol == __constant_htons(ETH_P_8021Q)) {
6680 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6681 return max_len;
6682
6683 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6684 hdr.network += VLAN_HLEN;
6685 }
6686
6687 /* handle L3 protocols */
6688 if (protocol == __constant_htons(ETH_P_IP)) {
6689 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6690 return max_len;
6691
6692 /* access ihl as a u8 to avoid unaligned access on ia64 */
6693 hlen = (hdr.network[0] & 0x0F) << 2;
6694
6695 /* verify hlen meets minimum size requirements */
6696 if (hlen < sizeof(struct iphdr))
6697 return hdr.network - data;
6698
f2fb4ab2 6699 /* record next protocol if header is present */
b9555f66 6700 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
f2fb4ab2 6701 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6702 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6703 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6704 return max_len;
6705
6706 /* record next protocol */
6707 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6708 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6709 } else {
6710 return hdr.network - data;
6711 }
6712
f2fb4ab2
AD
6713 /* relocate pointer to start of L4 header */
6714 hdr.network += hlen;
6715
1a1c225b
AD
6716 /* finally sort out TCP */
6717 if (nexthdr == IPPROTO_TCP) {
6718 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6719 return max_len;
6720
6721 /* access doff as a u8 to avoid unaligned access on ia64 */
6722 hlen = (hdr.network[12] & 0xF0) >> 2;
6723
6724 /* verify hlen meets minimum size requirements */
6725 if (hlen < sizeof(struct tcphdr))
6726 return hdr.network - data;
6727
6728 hdr.network += hlen;
6729 } else if (nexthdr == IPPROTO_UDP) {
6730 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6731 return max_len;
6732
6733 hdr.network += sizeof(struct udphdr);
6734 }
6735
b980ac18 6736 /* If everything has gone correctly hdr.network should be the
1a1c225b
AD
6737 * data section of the packet and will be the end of the header.
6738 * If not then it probably represents the end of the last recognized
6739 * header.
6740 */
6741 if ((hdr.network - data) < max_len)
6742 return hdr.network - data;
6743 else
6744 return max_len;
6745}
6746
6747/**
b980ac18
JK
6748 * igb_pull_tail - igb specific version of skb_pull_tail
6749 * @rx_ring: rx descriptor ring packet is being transacted on
6750 * @rx_desc: pointer to the EOP Rx descriptor
6751 * @skb: pointer to current skb being adjusted
1a1c225b 6752 *
b980ac18
JK
6753 * This function is an igb specific version of __pskb_pull_tail. The
6754 * main difference between this version and the original function is that
6755 * this function can make several assumptions about the state of things
6756 * that allow for significant optimizations versus the standard function.
6757 * As a result we can do things like drop a frag and maintain an accurate
6758 * truesize for the skb.
1a1c225b
AD
6759 */
6760static void igb_pull_tail(struct igb_ring *rx_ring,
6761 union e1000_adv_rx_desc *rx_desc,
6762 struct sk_buff *skb)
2d94d8ab 6763{
1a1c225b
AD
6764 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6765 unsigned char *va;
6766 unsigned int pull_len;
6767
b980ac18 6768 /* it is valid to use page_address instead of kmap since we are
1a1c225b
AD
6769 * working with pages allocated out of the lomem pool per
6770 * alloc_page(GFP_ATOMIC)
2d94d8ab 6771 */
1a1c225b
AD
6772 va = skb_frag_address(frag);
6773
1a1c225b
AD
6774 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6775 /* retrieve timestamp from buffer */
6776 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6777
6778 /* update pointers to remove timestamp header */
6779 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6780 frag->page_offset += IGB_TS_HDR_LEN;
6781 skb->data_len -= IGB_TS_HDR_LEN;
6782 skb->len -= IGB_TS_HDR_LEN;
6783
6784 /* move va to start of packet data */
6785 va += IGB_TS_HDR_LEN;
6786 }
6787
b980ac18 6788 /* we need the header to contain the greater of either ETH_HLEN or
1a1c225b
AD
6789 * 60 bytes if the skb->len is less than 60 for skb_pad.
6790 */
6791 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6792
6793 /* align pull length to size of long to optimize memcpy performance */
6794 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6795
6796 /* update all of the pointers */
6797 skb_frag_size_sub(frag, pull_len);
6798 frag->page_offset += pull_len;
6799 skb->data_len -= pull_len;
6800 skb->tail += pull_len;
6801}
6802
6803/**
b980ac18
JK
6804 * igb_cleanup_headers - Correct corrupted or empty headers
6805 * @rx_ring: rx descriptor ring packet is being transacted on
6806 * @rx_desc: pointer to the EOP Rx descriptor
6807 * @skb: pointer to current skb being fixed
1a1c225b 6808 *
b980ac18
JK
6809 * Address the case where we are pulling data in on pages only
6810 * and as such no data is present in the skb header.
1a1c225b 6811 *
b980ac18
JK
6812 * In addition if skb is not at least 60 bytes we need to pad it so that
6813 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6814 *
b980ac18 6815 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6816 **/
6817static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6818 union e1000_adv_rx_desc *rx_desc,
6819 struct sk_buff *skb)
6820{
1a1c225b
AD
6821 if (unlikely((igb_test_staterr(rx_desc,
6822 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6823 struct net_device *netdev = rx_ring->netdev;
6824 if (!(netdev->features & NETIF_F_RXALL)) {
6825 dev_kfree_skb_any(skb);
6826 return true;
6827 }
6828 }
6829
6830 /* place header in linear portion of buffer */
6831 if (skb_is_nonlinear(skb))
6832 igb_pull_tail(rx_ring, rx_desc, skb);
6833
6834 /* if skb_pad returns an error the skb was freed */
6835 if (unlikely(skb->len < 60)) {
6836 int pad_len = 60 - skb->len;
6837
6838 if (skb_pad(skb, pad_len))
6839 return true;
6840 __skb_put(skb, pad_len);
6841 }
6842
6843 return false;
2d94d8ab
AD
6844}
6845
db2ee5bd 6846/**
b980ac18
JK
6847 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6848 * @rx_ring: rx descriptor ring packet is being transacted on
6849 * @rx_desc: pointer to the EOP Rx descriptor
6850 * @skb: pointer to current skb being populated
db2ee5bd 6851 *
b980ac18
JK
6852 * This function checks the ring, descriptor, and packet information in
6853 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6854 * other fields within the skb.
db2ee5bd
AD
6855 **/
6856static void igb_process_skb_fields(struct igb_ring *rx_ring,
6857 union e1000_adv_rx_desc *rx_desc,
6858 struct sk_buff *skb)
6859{
6860 struct net_device *dev = rx_ring->netdev;
6861
6862 igb_rx_hash(rx_ring, rx_desc, skb);
6863
6864 igb_rx_checksum(rx_ring, rx_desc, skb);
6865
20a48412 6866 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
db2ee5bd 6867
f646968f 6868 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6869 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6870 u16 vid;
6871 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6872 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6873 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6874 else
6875 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6876
86a9bad3 6877 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
6878 }
6879
6880 skb_record_rx_queue(skb, rx_ring->queue_index);
6881
6882 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6883}
6884
2e334eee 6885static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6886{
0ba82994 6887 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6888 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6889 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6890 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6891
2e334eee
AD
6892 do {
6893 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6894
2e334eee
AD
6895 /* return some buffers to hardware, one at a time is too slow */
6896 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6897 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6898 cleaned_count = 0;
6899 }
bf36c1a0 6900
2e334eee 6901 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6902
2e334eee
AD
6903 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6904 break;
9d5c8243 6905
74e238ea
AD
6906 /* This memory barrier is needed to keep us from reading
6907 * any other fields out of the rx_desc until we know the
6908 * RXD_STAT_DD bit is set
6909 */
6910 rmb();
6911
2e334eee 6912 /* retrieve a buffer from the ring */
f9d40f6a 6913 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6914
2e334eee
AD
6915 /* exit if we failed to retrieve a buffer */
6916 if (!skb)
6917 break;
1a1c225b 6918
2e334eee 6919 cleaned_count++;
1a1c225b 6920
2e334eee
AD
6921 /* fetch next buffer in frame if non-eop */
6922 if (igb_is_non_eop(rx_ring, rx_desc))
6923 continue;
1a1c225b
AD
6924
6925 /* verify the packet layout is correct */
6926 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6927 skb = NULL;
6928 continue;
9d5c8243 6929 }
9d5c8243 6930
db2ee5bd 6931 /* probably a little skewed due to removing CRC */
3ceb90fd 6932 total_bytes += skb->len;
3ceb90fd 6933
db2ee5bd
AD
6934 /* populate checksum, timestamp, VLAN, and protocol */
6935 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6936
b2cb09b1 6937 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6938
1a1c225b
AD
6939 /* reset skb pointer */
6940 skb = NULL;
6941
2e334eee
AD
6942 /* update budget accounting */
6943 total_packets++;
6944 } while (likely(total_packets < budget));
bf36c1a0 6945
1a1c225b
AD
6946 /* place incomplete frames back on ring for completion */
6947 rx_ring->skb = skb;
6948
12dcd86b 6949 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6950 rx_ring->rx_stats.packets += total_packets;
6951 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6952 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6953 q_vector->rx.total_packets += total_packets;
6954 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6955
6956 if (cleaned_count)
cd392f5c 6957 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6958
2e334eee 6959 return (total_packets < budget);
9d5c8243
AK
6960}
6961
c023cd88 6962static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6963 struct igb_rx_buffer *bi)
c023cd88
AD
6964{
6965 struct page *page = bi->page;
cbc8e55f 6966 dma_addr_t dma;
c023cd88 6967
cbc8e55f
AD
6968 /* since we are recycling buffers we should seldom need to alloc */
6969 if (likely(page))
c023cd88
AD
6970 return true;
6971
cbc8e55f
AD
6972 /* alloc new page for storage */
6973 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6974 if (unlikely(!page)) {
6975 rx_ring->rx_stats.alloc_failed++;
6976 return false;
c023cd88
AD
6977 }
6978
cbc8e55f
AD
6979 /* map page for use */
6980 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6981
b980ac18 6982 /* if mapping failed free memory back to system since
cbc8e55f
AD
6983 * there isn't much point in holding memory we can't use
6984 */
1a1c225b 6985 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6986 __free_page(page);
6987
c023cd88
AD
6988 rx_ring->rx_stats.alloc_failed++;
6989 return false;
6990 }
6991
1a1c225b 6992 bi->dma = dma;
cbc8e55f
AD
6993 bi->page = page;
6994 bi->page_offset = 0;
1a1c225b 6995
c023cd88
AD
6996 return true;
6997}
6998
9d5c8243 6999/**
b980ac18
JK
7000 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7001 * @adapter: address of board private structure
9d5c8243 7002 **/
cd392f5c 7003void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7004{
9d5c8243 7005 union e1000_adv_rx_desc *rx_desc;
06034649 7006 struct igb_rx_buffer *bi;
c023cd88 7007 u16 i = rx_ring->next_to_use;
9d5c8243 7008
cbc8e55f
AD
7009 /* nothing to do */
7010 if (!cleaned_count)
7011 return;
7012
60136906 7013 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7014 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7015 i -= rx_ring->count;
9d5c8243 7016
cbc8e55f 7017 do {
1a1c225b 7018 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7019 break;
9d5c8243 7020
b980ac18 7021 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7022 * because each write-back erases this info.
7023 */
f9d40f6a 7024 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7025
c023cd88
AD
7026 rx_desc++;
7027 bi++;
9d5c8243 7028 i++;
c023cd88 7029 if (unlikely(!i)) {
60136906 7030 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7031 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7032 i -= rx_ring->count;
7033 }
7034
7035 /* clear the hdr_addr for the next_to_use descriptor */
7036 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
7037
7038 cleaned_count--;
7039 } while (cleaned_count);
9d5c8243 7040
c023cd88
AD
7041 i += rx_ring->count;
7042
9d5c8243 7043 if (rx_ring->next_to_use != i) {
cbc8e55f 7044 /* record the next descriptor to use */
9d5c8243 7045 rx_ring->next_to_use = i;
9d5c8243 7046
cbc8e55f
AD
7047 /* update next to alloc since we have filled the ring */
7048 rx_ring->next_to_alloc = i;
7049
b980ac18 7050 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7051 * know there are new descriptors to fetch. (Only
7052 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7053 * such as IA-64).
7054 */
9d5c8243 7055 wmb();
fce99e34 7056 writel(i, rx_ring->tail);
9d5c8243
AK
7057 }
7058}
7059
7060/**
7061 * igb_mii_ioctl -
7062 * @netdev:
7063 * @ifreq:
7064 * @cmd:
7065 **/
7066static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7067{
7068 struct igb_adapter *adapter = netdev_priv(netdev);
7069 struct mii_ioctl_data *data = if_mii(ifr);
7070
7071 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7072 return -EOPNOTSUPP;
7073
7074 switch (cmd) {
7075 case SIOCGMIIPHY:
7076 data->phy_id = adapter->hw.phy.addr;
7077 break;
7078 case SIOCGMIIREG:
f5f4cf08
AD
7079 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7080 &data->val_out))
9d5c8243
AK
7081 return -EIO;
7082 break;
7083 case SIOCSMIIREG:
7084 default:
7085 return -EOPNOTSUPP;
7086 }
7087 return 0;
7088}
7089
7090/**
7091 * igb_ioctl -
7092 * @netdev:
7093 * @ifreq:
7094 * @cmd:
7095 **/
7096static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7097{
7098 switch (cmd) {
7099 case SIOCGMIIPHY:
7100 case SIOCGMIIREG:
7101 case SIOCSMIIREG:
7102 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 7103 case SIOCSHWTSTAMP:
a79f4f88 7104 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
7105 default:
7106 return -EOPNOTSUPP;
7107 }
7108}
7109
009bc06e
AD
7110s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7111{
7112 struct igb_adapter *adapter = hw->back;
009bc06e 7113
23d028cc 7114 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7115 return -E1000_ERR_CONFIG;
7116
009bc06e
AD
7117 return 0;
7118}
7119
7120s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7121{
7122 struct igb_adapter *adapter = hw->back;
009bc06e 7123
23d028cc 7124 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7125 return -E1000_ERR_CONFIG;
7126
009bc06e
AD
7127 return 0;
7128}
7129
c8f44aff 7130static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7131{
7132 struct igb_adapter *adapter = netdev_priv(netdev);
7133 struct e1000_hw *hw = &adapter->hw;
7134 u32 ctrl, rctl;
f646968f 7135 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7136
5faf030c 7137 if (enable) {
9d5c8243
AK
7138 /* enable VLAN tag insert/strip */
7139 ctrl = rd32(E1000_CTRL);
7140 ctrl |= E1000_CTRL_VME;
7141 wr32(E1000_CTRL, ctrl);
7142
51466239 7143 /* Disable CFI check */
9d5c8243 7144 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7145 rctl &= ~E1000_RCTL_CFIEN;
7146 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7147 } else {
7148 /* disable VLAN tag insert/strip */
7149 ctrl = rd32(E1000_CTRL);
7150 ctrl &= ~E1000_CTRL_VME;
7151 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
7152 }
7153
e1739522 7154 igb_rlpml_set(adapter);
9d5c8243
AK
7155}
7156
80d5c368
PM
7157static int igb_vlan_rx_add_vid(struct net_device *netdev,
7158 __be16 proto, u16 vid)
9d5c8243
AK
7159{
7160 struct igb_adapter *adapter = netdev_priv(netdev);
7161 struct e1000_hw *hw = &adapter->hw;
4ae196df 7162 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7163
51466239
AD
7164 /* attempt to add filter to vlvf array */
7165 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 7166
51466239
AD
7167 /* add the filter since PF can receive vlans w/o entry in vlvf */
7168 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
7169
7170 set_bit(vid, adapter->active_vlans);
8e586137
JP
7171
7172 return 0;
9d5c8243
AK
7173}
7174
80d5c368
PM
7175static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7176 __be16 proto, u16 vid)
9d5c8243
AK
7177{
7178 struct igb_adapter *adapter = netdev_priv(netdev);
7179 struct e1000_hw *hw = &adapter->hw;
4ae196df 7180 int pf_id = adapter->vfs_allocated_count;
51466239 7181 s32 err;
9d5c8243 7182
51466239
AD
7183 /* remove vlan from VLVF table array */
7184 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 7185
51466239
AD
7186 /* if vid was not present in VLVF just remove it from table */
7187 if (err)
4ae196df 7188 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
7189
7190 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7191
7192 return 0;
9d5c8243
AK
7193}
7194
7195static void igb_restore_vlan(struct igb_adapter *adapter)
7196{
b2cb09b1 7197 u16 vid;
9d5c8243 7198
5faf030c
AD
7199 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7200
b2cb09b1 7201 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7202 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7203}
7204
14ad2513 7205int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7206{
090b1795 7207 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7208 struct e1000_mac_info *mac = &adapter->hw.mac;
7209
7210 mac->autoneg = 0;
7211
14ad2513 7212 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7213 * for the switch() below to work
7214 */
14ad2513
DD
7215 if ((spd & 1) || (dplx & ~1))
7216 goto err_inval;
7217
f502ef7d
AA
7218 /* Fiber NIC's only allow 1000 gbps Full duplex
7219 * and 100Mbps Full duplex for 100baseFx sfp
7220 */
7221 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7222 switch (spd + dplx) {
7223 case SPEED_10 + DUPLEX_HALF:
7224 case SPEED_10 + DUPLEX_FULL:
7225 case SPEED_100 + DUPLEX_HALF:
7226 goto err_inval;
7227 default:
7228 break;
7229 }
7230 }
cd2638a8 7231
14ad2513 7232 switch (spd + dplx) {
9d5c8243
AK
7233 case SPEED_10 + DUPLEX_HALF:
7234 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7235 break;
7236 case SPEED_10 + DUPLEX_FULL:
7237 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7238 break;
7239 case SPEED_100 + DUPLEX_HALF:
7240 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7241 break;
7242 case SPEED_100 + DUPLEX_FULL:
7243 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7244 break;
7245 case SPEED_1000 + DUPLEX_FULL:
7246 mac->autoneg = 1;
7247 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7248 break;
7249 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7250 default:
14ad2513 7251 goto err_inval;
9d5c8243 7252 }
8376dad0
JB
7253
7254 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7255 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7256
9d5c8243 7257 return 0;
14ad2513
DD
7258
7259err_inval:
7260 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7261 return -EINVAL;
9d5c8243
AK
7262}
7263
749ab2cd
YZ
7264static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7265 bool runtime)
9d5c8243
AK
7266{
7267 struct net_device *netdev = pci_get_drvdata(pdev);
7268 struct igb_adapter *adapter = netdev_priv(netdev);
7269 struct e1000_hw *hw = &adapter->hw;
2d064c06 7270 u32 ctrl, rctl, status;
749ab2cd 7271 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7272#ifdef CONFIG_PM
7273 int retval = 0;
7274#endif
7275
7276 netif_device_detach(netdev);
7277
a88f10ec 7278 if (netif_running(netdev))
749ab2cd 7279 __igb_close(netdev, true);
a88f10ec 7280
047e0030 7281 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7282
7283#ifdef CONFIG_PM
7284 retval = pci_save_state(pdev);
7285 if (retval)
7286 return retval;
7287#endif
7288
7289 status = rd32(E1000_STATUS);
7290 if (status & E1000_STATUS_LU)
7291 wufc &= ~E1000_WUFC_LNKC;
7292
7293 if (wufc) {
7294 igb_setup_rctl(adapter);
ff41f8dc 7295 igb_set_rx_mode(netdev);
9d5c8243
AK
7296
7297 /* turn on all-multi mode if wake on multicast is enabled */
7298 if (wufc & E1000_WUFC_MC) {
7299 rctl = rd32(E1000_RCTL);
7300 rctl |= E1000_RCTL_MPE;
7301 wr32(E1000_RCTL, rctl);
7302 }
7303
7304 ctrl = rd32(E1000_CTRL);
7305 /* advertise wake from D3Cold */
7306 #define E1000_CTRL_ADVD3WUC 0x00100000
7307 /* phy power management enable */
7308 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7309 ctrl |= E1000_CTRL_ADVD3WUC;
7310 wr32(E1000_CTRL, ctrl);
7311
9d5c8243 7312 /* Allow time for pending master requests to run */
330a6d6a 7313 igb_disable_pcie_master(hw);
9d5c8243
AK
7314
7315 wr32(E1000_WUC, E1000_WUC_PME_EN);
7316 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7317 } else {
7318 wr32(E1000_WUC, 0);
7319 wr32(E1000_WUFC, 0);
9d5c8243
AK
7320 }
7321
3fe7c4c9
RW
7322 *enable_wake = wufc || adapter->en_mng_pt;
7323 if (!*enable_wake)
88a268c1
NN
7324 igb_power_down_link(adapter);
7325 else
7326 igb_power_up_link(adapter);
9d5c8243
AK
7327
7328 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7329 * would have already happened in close and is redundant.
7330 */
9d5c8243
AK
7331 igb_release_hw_control(adapter);
7332
7333 pci_disable_device(pdev);
7334
9d5c8243
AK
7335 return 0;
7336}
7337
7338#ifdef CONFIG_PM
d9dd966d 7339#ifdef CONFIG_PM_SLEEP
749ab2cd 7340static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7341{
7342 int retval;
7343 bool wake;
749ab2cd 7344 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7345
749ab2cd 7346 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7347 if (retval)
7348 return retval;
7349
7350 if (wake) {
7351 pci_prepare_to_sleep(pdev);
7352 } else {
7353 pci_wake_from_d3(pdev, false);
7354 pci_set_power_state(pdev, PCI_D3hot);
7355 }
7356
7357 return 0;
7358}
d9dd966d 7359#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7360
749ab2cd 7361static int igb_resume(struct device *dev)
9d5c8243 7362{
749ab2cd 7363 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7364 struct net_device *netdev = pci_get_drvdata(pdev);
7365 struct igb_adapter *adapter = netdev_priv(netdev);
7366 struct e1000_hw *hw = &adapter->hw;
7367 u32 err;
7368
7369 pci_set_power_state(pdev, PCI_D0);
7370 pci_restore_state(pdev);
b94f2d77 7371 pci_save_state(pdev);
42bfd33a 7372
aed5dec3 7373 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7374 if (err) {
7375 dev_err(&pdev->dev,
7376 "igb: Cannot enable PCI device from suspend\n");
7377 return err;
7378 }
7379 pci_set_master(pdev);
7380
7381 pci_enable_wake(pdev, PCI_D3hot, 0);
7382 pci_enable_wake(pdev, PCI_D3cold, 0);
7383
53c7d064 7384 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7385 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7386 return -ENOMEM;
9d5c8243
AK
7387 }
7388
9d5c8243 7389 igb_reset(adapter);
a8564f03
AD
7390
7391 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7392 * driver.
7393 */
a8564f03
AD
7394 igb_get_hw_control(adapter);
7395
9d5c8243
AK
7396 wr32(E1000_WUS, ~0);
7397
749ab2cd 7398 if (netdev->flags & IFF_UP) {
0c2cc02e 7399 rtnl_lock();
749ab2cd 7400 err = __igb_open(netdev, true);
0c2cc02e 7401 rtnl_unlock();
a88f10ec
AD
7402 if (err)
7403 return err;
7404 }
9d5c8243
AK
7405
7406 netif_device_attach(netdev);
749ab2cd
YZ
7407 return 0;
7408}
7409
7410#ifdef CONFIG_PM_RUNTIME
7411static int igb_runtime_idle(struct device *dev)
7412{
7413 struct pci_dev *pdev = to_pci_dev(dev);
7414 struct net_device *netdev = pci_get_drvdata(pdev);
7415 struct igb_adapter *adapter = netdev_priv(netdev);
7416
7417 if (!igb_has_link(adapter))
7418 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7419
7420 return -EBUSY;
7421}
7422
7423static int igb_runtime_suspend(struct device *dev)
7424{
7425 struct pci_dev *pdev = to_pci_dev(dev);
7426 int retval;
7427 bool wake;
7428
7429 retval = __igb_shutdown(pdev, &wake, 1);
7430 if (retval)
7431 return retval;
7432
7433 if (wake) {
7434 pci_prepare_to_sleep(pdev);
7435 } else {
7436 pci_wake_from_d3(pdev, false);
7437 pci_set_power_state(pdev, PCI_D3hot);
7438 }
9d5c8243 7439
9d5c8243
AK
7440 return 0;
7441}
749ab2cd
YZ
7442
7443static int igb_runtime_resume(struct device *dev)
7444{
7445 return igb_resume(dev);
7446}
7447#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7448#endif
7449
7450static void igb_shutdown(struct pci_dev *pdev)
7451{
3fe7c4c9
RW
7452 bool wake;
7453
749ab2cd 7454 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7455
7456 if (system_state == SYSTEM_POWER_OFF) {
7457 pci_wake_from_d3(pdev, wake);
7458 pci_set_power_state(pdev, PCI_D3hot);
7459 }
9d5c8243
AK
7460}
7461
fa44f2f1
GR
7462#ifdef CONFIG_PCI_IOV
7463static int igb_sriov_reinit(struct pci_dev *dev)
7464{
7465 struct net_device *netdev = pci_get_drvdata(dev);
7466 struct igb_adapter *adapter = netdev_priv(netdev);
7467 struct pci_dev *pdev = adapter->pdev;
7468
7469 rtnl_lock();
7470
7471 if (netif_running(netdev))
7472 igb_close(netdev);
7473
7474 igb_clear_interrupt_scheme(adapter);
7475
7476 igb_init_queue_configuration(adapter);
7477
7478 if (igb_init_interrupt_scheme(adapter, true)) {
7479 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7480 return -ENOMEM;
7481 }
7482
7483 if (netif_running(netdev))
7484 igb_open(netdev);
7485
7486 rtnl_unlock();
7487
7488 return 0;
7489}
7490
7491static int igb_pci_disable_sriov(struct pci_dev *dev)
7492{
7493 int err = igb_disable_sriov(dev);
7494
7495 if (!err)
7496 err = igb_sriov_reinit(dev);
7497
7498 return err;
7499}
7500
7501static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7502{
7503 int err = igb_enable_sriov(dev, num_vfs);
7504
7505 if (err)
7506 goto out;
7507
7508 err = igb_sriov_reinit(dev);
7509 if (!err)
7510 return num_vfs;
7511
7512out:
7513 return err;
7514}
7515
7516#endif
7517static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7518{
7519#ifdef CONFIG_PCI_IOV
7520 if (num_vfs == 0)
7521 return igb_pci_disable_sriov(dev);
7522 else
7523 return igb_pci_enable_sriov(dev, num_vfs);
7524#endif
7525 return 0;
7526}
7527
9d5c8243 7528#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7529/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7530 * without having to re-enable interrupts. It's not called while
7531 * the interrupt routine is executing.
7532 */
7533static void igb_netpoll(struct net_device *netdev)
7534{
7535 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7536 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7537 struct igb_q_vector *q_vector;
9d5c8243 7538 int i;
9d5c8243 7539
047e0030 7540 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
7541 q_vector = adapter->q_vector[i];
7542 if (adapter->msix_entries)
7543 wr32(E1000_EIMC, q_vector->eims_value);
7544 else
7545 igb_irq_disable(adapter);
047e0030 7546 napi_schedule(&q_vector->napi);
eebbbdba 7547 }
9d5c8243
AK
7548}
7549#endif /* CONFIG_NET_POLL_CONTROLLER */
7550
7551/**
b980ac18
JK
7552 * igb_io_error_detected - called when PCI error is detected
7553 * @pdev: Pointer to PCI device
7554 * @state: The current pci connection state
9d5c8243 7555 *
b980ac18
JK
7556 * This function is called after a PCI bus error affecting
7557 * this device has been detected.
7558 **/
9d5c8243
AK
7559static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7560 pci_channel_state_t state)
7561{
7562 struct net_device *netdev = pci_get_drvdata(pdev);
7563 struct igb_adapter *adapter = netdev_priv(netdev);
7564
7565 netif_device_detach(netdev);
7566
59ed6eec
AD
7567 if (state == pci_channel_io_perm_failure)
7568 return PCI_ERS_RESULT_DISCONNECT;
7569
9d5c8243
AK
7570 if (netif_running(netdev))
7571 igb_down(adapter);
7572 pci_disable_device(pdev);
7573
7574 /* Request a slot slot reset. */
7575 return PCI_ERS_RESULT_NEED_RESET;
7576}
7577
7578/**
b980ac18
JK
7579 * igb_io_slot_reset - called after the pci bus has been reset.
7580 * @pdev: Pointer to PCI device
9d5c8243 7581 *
b980ac18
JK
7582 * Restart the card from scratch, as if from a cold-boot. Implementation
7583 * resembles the first-half of the igb_resume routine.
7584 **/
9d5c8243
AK
7585static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7586{
7587 struct net_device *netdev = pci_get_drvdata(pdev);
7588 struct igb_adapter *adapter = netdev_priv(netdev);
7589 struct e1000_hw *hw = &adapter->hw;
40a914fa 7590 pci_ers_result_t result;
42bfd33a 7591 int err;
9d5c8243 7592
aed5dec3 7593 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7594 dev_err(&pdev->dev,
7595 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7596 result = PCI_ERS_RESULT_DISCONNECT;
7597 } else {
7598 pci_set_master(pdev);
7599 pci_restore_state(pdev);
b94f2d77 7600 pci_save_state(pdev);
9d5c8243 7601
40a914fa
AD
7602 pci_enable_wake(pdev, PCI_D3hot, 0);
7603 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7604
40a914fa
AD
7605 igb_reset(adapter);
7606 wr32(E1000_WUS, ~0);
7607 result = PCI_ERS_RESULT_RECOVERED;
7608 }
9d5c8243 7609
ea943d41
JK
7610 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7611 if (err) {
b980ac18
JK
7612 dev_err(&pdev->dev,
7613 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7614 err);
ea943d41
JK
7615 /* non-fatal, continue */
7616 }
40a914fa
AD
7617
7618 return result;
9d5c8243
AK
7619}
7620
7621/**
b980ac18
JK
7622 * igb_io_resume - called when traffic can start flowing again.
7623 * @pdev: Pointer to PCI device
9d5c8243 7624 *
b980ac18
JK
7625 * This callback is called when the error recovery driver tells us that
7626 * its OK to resume normal operation. Implementation resembles the
7627 * second-half of the igb_resume routine.
9d5c8243
AK
7628 */
7629static void igb_io_resume(struct pci_dev *pdev)
7630{
7631 struct net_device *netdev = pci_get_drvdata(pdev);
7632 struct igb_adapter *adapter = netdev_priv(netdev);
7633
9d5c8243
AK
7634 if (netif_running(netdev)) {
7635 if (igb_up(adapter)) {
7636 dev_err(&pdev->dev, "igb_up failed after reset\n");
7637 return;
7638 }
7639 }
7640
7641 netif_device_attach(netdev);
7642
7643 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7644 * driver.
7645 */
9d5c8243 7646 igb_get_hw_control(adapter);
9d5c8243
AK
7647}
7648
26ad9178 7649static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7650 u8 qsel)
26ad9178
AD
7651{
7652 u32 rar_low, rar_high;
7653 struct e1000_hw *hw = &adapter->hw;
7654
7655 /* HW expects these in little endian so we reverse the byte order
7656 * from network order (big endian) to little endian
7657 */
7658 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
b980ac18 7659 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
26ad9178
AD
7660 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7661
7662 /* Indicate to hardware the Address is Valid. */
7663 rar_high |= E1000_RAH_AV;
7664
7665 if (hw->mac.type == e1000_82575)
7666 rar_high |= E1000_RAH_POOL_1 * qsel;
7667 else
7668 rar_high |= E1000_RAH_POOL_1 << qsel;
7669
7670 wr32(E1000_RAL(index), rar_low);
7671 wrfl();
7672 wr32(E1000_RAH(index), rar_high);
7673 wrfl();
7674}
7675
4ae196df 7676static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7677 int vf, unsigned char *mac_addr)
4ae196df
AD
7678{
7679 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7680 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7681 * towards the first, as a result a collision should not be possible
7682 */
ff41f8dc 7683 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7684
37680117 7685 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7686
26ad9178 7687 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7688
7689 return 0;
7690}
7691
8151d294
WM
7692static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7693{
7694 struct igb_adapter *adapter = netdev_priv(netdev);
7695 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7696 return -EINVAL;
7697 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7698 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7699 dev_info(&adapter->pdev->dev,
7700 "Reload the VF driver to make this change effective.");
8151d294 7701 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7702 dev_warn(&adapter->pdev->dev,
7703 "The VF MAC address has been set, but the PF device is not up.\n");
7704 dev_warn(&adapter->pdev->dev,
7705 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7706 }
7707 return igb_set_vf_mac(adapter, vf, mac);
7708}
7709
17dc566c
LL
7710static int igb_link_mbps(int internal_link_speed)
7711{
7712 switch (internal_link_speed) {
7713 case SPEED_100:
7714 return 100;
7715 case SPEED_1000:
7716 return 1000;
7717 default:
7718 return 0;
7719 }
7720}
7721
7722static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7723 int link_speed)
7724{
7725 int rf_dec, rf_int;
7726 u32 bcnrc_val;
7727
7728 if (tx_rate != 0) {
7729 /* Calculate the rate factor values to set */
7730 rf_int = link_speed / tx_rate;
7731 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7732 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7733 tx_rate;
17dc566c
LL
7734
7735 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7736 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7737 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7738 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7739 } else {
7740 bcnrc_val = 0;
7741 }
7742
7743 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7744 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7745 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7746 */
7747 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7748 wr32(E1000_RTTBCNRC, bcnrc_val);
7749}
7750
7751static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7752{
7753 int actual_link_speed, i;
7754 bool reset_rate = false;
7755
7756 /* VF TX rate limit was not set or not supported */
7757 if ((adapter->vf_rate_link_speed == 0) ||
7758 (adapter->hw.mac.type != e1000_82576))
7759 return;
7760
7761 actual_link_speed = igb_link_mbps(adapter->link_speed);
7762 if (actual_link_speed != adapter->vf_rate_link_speed) {
7763 reset_rate = true;
7764 adapter->vf_rate_link_speed = 0;
7765 dev_info(&adapter->pdev->dev,
b980ac18 7766 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7767 }
7768
7769 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7770 if (reset_rate)
7771 adapter->vf_data[i].tx_rate = 0;
7772
7773 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7774 adapter->vf_data[i].tx_rate,
7775 actual_link_speed);
17dc566c
LL
7776 }
7777}
7778
8151d294
WM
7779static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7780{
17dc566c
LL
7781 struct igb_adapter *adapter = netdev_priv(netdev);
7782 struct e1000_hw *hw = &adapter->hw;
7783 int actual_link_speed;
7784
7785 if (hw->mac.type != e1000_82576)
7786 return -EOPNOTSUPP;
7787
7788 actual_link_speed = igb_link_mbps(adapter->link_speed);
7789 if ((vf >= adapter->vfs_allocated_count) ||
7790 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7791 (tx_rate < 0) || (tx_rate > actual_link_speed))
7792 return -EINVAL;
7793
7794 adapter->vf_rate_link_speed = actual_link_speed;
7795 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7796 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7797
7798 return 0;
8151d294
WM
7799}
7800
70ea4783
LL
7801static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7802 bool setting)
7803{
7804 struct igb_adapter *adapter = netdev_priv(netdev);
7805 struct e1000_hw *hw = &adapter->hw;
7806 u32 reg_val, reg_offset;
7807
7808 if (!adapter->vfs_allocated_count)
7809 return -EOPNOTSUPP;
7810
7811 if (vf >= adapter->vfs_allocated_count)
7812 return -EINVAL;
7813
7814 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7815 reg_val = rd32(reg_offset);
7816 if (setting)
7817 reg_val |= ((1 << vf) |
7818 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7819 else
7820 reg_val &= ~((1 << vf) |
7821 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7822 wr32(reg_offset, reg_val);
7823
7824 adapter->vf_data[vf].spoofchk_enabled = setting;
7825 return E1000_SUCCESS;
7826}
7827
8151d294
WM
7828static int igb_ndo_get_vf_config(struct net_device *netdev,
7829 int vf, struct ifla_vf_info *ivi)
7830{
7831 struct igb_adapter *adapter = netdev_priv(netdev);
7832 if (vf >= adapter->vfs_allocated_count)
7833 return -EINVAL;
7834 ivi->vf = vf;
7835 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7836 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7837 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7838 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7839 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7840 return 0;
7841}
7842
4ae196df
AD
7843static void igb_vmm_control(struct igb_adapter *adapter)
7844{
7845 struct e1000_hw *hw = &adapter->hw;
10d8e907 7846 u32 reg;
4ae196df 7847
52a1dd4d
AD
7848 switch (hw->mac.type) {
7849 case e1000_82575:
f96a8a0b
CW
7850 case e1000_i210:
7851 case e1000_i211:
ceb5f13b 7852 case e1000_i354:
52a1dd4d
AD
7853 default:
7854 /* replication is not supported for 82575 */
4ae196df 7855 return;
52a1dd4d
AD
7856 case e1000_82576:
7857 /* notify HW that the MAC is adding vlan tags */
7858 reg = rd32(E1000_DTXCTL);
7859 reg |= E1000_DTXCTL_VLAN_ADDED;
7860 wr32(E1000_DTXCTL, reg);
7861 case e1000_82580:
7862 /* enable replication vlan tag stripping */
7863 reg = rd32(E1000_RPLOLR);
7864 reg |= E1000_RPLOLR_STRVLAN;
7865 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7866 case e1000_i350:
7867 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7868 break;
7869 }
10d8e907 7870
d4960307
AD
7871 if (adapter->vfs_allocated_count) {
7872 igb_vmdq_set_loopback_pf(hw, true);
7873 igb_vmdq_set_replication_pf(hw, true);
13800469 7874 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 7875 adapter->vfs_allocated_count);
d4960307
AD
7876 } else {
7877 igb_vmdq_set_loopback_pf(hw, false);
7878 igb_vmdq_set_replication_pf(hw, false);
7879 }
4ae196df
AD
7880}
7881
b6e0c419
CW
7882static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7883{
7884 struct e1000_hw *hw = &adapter->hw;
7885 u32 dmac_thr;
7886 u16 hwm;
7887
7888 if (hw->mac.type > e1000_82580) {
7889 if (adapter->flags & IGB_FLAG_DMAC) {
7890 u32 reg;
7891
7892 /* force threshold to 0. */
7893 wr32(E1000_DMCTXTH, 0);
7894
b980ac18 7895 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
7896 * than the Rx threshold. Set hwm to PBA - max frame
7897 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7898 */
e8c626e9
MV
7899 hwm = 64 * pba - adapter->max_frame_size / 16;
7900 if (hwm < 64 * (pba - 6))
7901 hwm = 64 * (pba - 6);
7902 reg = rd32(E1000_FCRTC);
7903 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7904 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7905 & E1000_FCRTC_RTH_COAL_MASK);
7906 wr32(E1000_FCRTC, reg);
7907
b980ac18 7908 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
7909 * frame size, capping it at PBA - 10KB.
7910 */
7911 dmac_thr = pba - adapter->max_frame_size / 512;
7912 if (dmac_thr < pba - 10)
7913 dmac_thr = pba - 10;
b6e0c419
CW
7914 reg = rd32(E1000_DMACR);
7915 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7916 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7917 & E1000_DMACR_DMACTHR_MASK);
7918
7919 /* transition to L0x or L1 if available..*/
7920 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7921
7922 /* watchdog timer= +-1000 usec in 32usec intervals */
7923 reg |= (1000 >> 5);
0c02dd98
MV
7924
7925 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
7926 if (hw->mac.type != e1000_i354)
7927 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7928
b6e0c419
CW
7929 wr32(E1000_DMACR, reg);
7930
b980ac18 7931 /* no lower threshold to disable
b6e0c419
CW
7932 * coalescing(smart fifb)-UTRESH=0
7933 */
7934 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7935
7936 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7937
7938 wr32(E1000_DMCTLX, reg);
7939
b980ac18 7940 /* free space in tx packet buffer to wake from
b6e0c419
CW
7941 * DMA coal
7942 */
7943 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7944 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7945
b980ac18 7946 /* make low power state decision controlled
b6e0c419
CW
7947 * by DMA coal
7948 */
7949 reg = rd32(E1000_PCIEMISC);
7950 reg &= ~E1000_PCIEMISC_LX_DECISION;
7951 wr32(E1000_PCIEMISC, reg);
7952 } /* endif adapter->dmac is not disabled */
7953 } else if (hw->mac.type == e1000_82580) {
7954 u32 reg = rd32(E1000_PCIEMISC);
7955 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7956 wr32(E1000_DMACR, 0);
7957 }
7958}
7959
b980ac18
JK
7960/**
7961 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
7962 * @hw: pointer to hardware structure
7963 * @byte_offset: byte offset to read
7964 * @dev_addr: device address
7965 * @data: value read
7966 *
7967 * Performs byte read operation over I2C interface at
7968 * a specified device address.
b980ac18 7969 **/
441fc6fd 7970s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 7971 u8 dev_addr, u8 *data)
441fc6fd
CW
7972{
7973 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7974 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7975 s32 status;
7976 u16 swfw_mask = 0;
7977
7978 if (!this_client)
7979 return E1000_ERR_I2C;
7980
7981 swfw_mask = E1000_SWFW_PHY0_SM;
7982
7983 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7984 != E1000_SUCCESS)
7985 return E1000_ERR_SWFW_SYNC;
7986
7987 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7988 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7989
7990 if (status < 0)
7991 return E1000_ERR_I2C;
7992 else {
7993 *data = status;
7994 return E1000_SUCCESS;
7995 }
7996}
7997
b980ac18
JK
7998/**
7999 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8000 * @hw: pointer to hardware structure
8001 * @byte_offset: byte offset to write
8002 * @dev_addr: device address
8003 * @data: value to write
8004 *
8005 * Performs byte write operation over I2C interface at
8006 * a specified device address.
b980ac18 8007 **/
441fc6fd 8008s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8009 u8 dev_addr, u8 data)
441fc6fd
CW
8010{
8011 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8012 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8013 s32 status;
8014 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8015
8016 if (!this_client)
8017 return E1000_ERR_I2C;
8018
8019 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8020 return E1000_ERR_SWFW_SYNC;
8021 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8022 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8023
8024 if (status)
8025 return E1000_ERR_I2C;
8026 else
8027 return E1000_SUCCESS;
8028
8029}
907b7835
LMV
8030
8031int igb_reinit_queues(struct igb_adapter *adapter)
8032{
8033 struct net_device *netdev = adapter->netdev;
8034 struct pci_dev *pdev = adapter->pdev;
8035 int err = 0;
8036
8037 if (netif_running(netdev))
8038 igb_close(netdev);
8039
8040 igb_clear_interrupt_scheme(adapter);
8041
8042 if (igb_init_interrupt_scheme(adapter, true)) {
8043 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8044 return -ENOMEM;
8045 }
8046
8047 if (netif_running(netdev))
8048 err = igb_open(netdev);
8049
8050 return err;
8051}
9d5c8243 8052/* igb_main.c */
This page took 1.388311 seconds and 5 git commands to generate.