e1000e: Initial support for KabeLake
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
e52c0f96
CW
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
9d5c8243 23
876d2d6f
JK
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
9d5c8243
AK
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
b2cb09b1 29#include <linux/bitops.h>
9d5c8243
AK
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
9d5c8243 33#include <linux/ipv6.h>
5a0e3ad6 34#include <linux/slab.h>
9d5c8243
AK
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
01789349 40#include <linux/if.h>
9d5c8243
AK
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
7d13a7d0
AD
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
9d5c8243 49#include <linux/if_ether.h>
40a914fa 50#include <linux/aer.h>
70c71606 51#include <linux/prefetch.h>
749ab2cd 52#include <linux/pm_runtime.h>
421e02f0 53#ifdef CONFIG_IGB_DCA
fe4506b6
JC
54#include <linux/dca.h>
55#endif
441fc6fd 56#include <linux/i2c.h>
9d5c8243
AK
57#include "igb.h"
58
67b1b903 59#define MAJ 5
6fb46902
TF
60#define MIN 3
61#define BUILD 0
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 68static const char igb_copyright[] =
74cfb2e1 69 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 70
9d5c8243
AK
71static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73};
74
cd1631ce 75static const struct pci_device_id igb_pci_tbl[] = {
ceb5f13b
CW
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
9d5c8243
AK
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 121static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 123static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
53c7d064 127static void igb_configure(struct igb_adapter *);
9d5c8243
AK
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 134static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
cd392f5c 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
c502ea2e 140 struct rtnl_link_stats64 *stats);
9d5c8243
AK
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
bf456abb 143static void igb_set_uta(struct igb_adapter *adapter, bool set);
9d5c8243
AK
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
047e0030 147static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 148#ifdef CONFIG_IGB_DCA
047e0030 149static void igb_update_dca(struct igb_q_vector *);
fe4506b6 150static void igb_setup_dca(struct igb_adapter *);
421e02f0 151#endif /* CONFIG_IGB_DCA */
661086df 152static int igb_poll(struct napi_struct *, int);
13fde97a 153static bool igb_clean_tx_irq(struct igb_q_vector *);
32b3e08f 154static int igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
c502ea2e
CW
158static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
80d5c368
PM
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 162static void igb_restore_vlan(struct igb_adapter *);
26ad9178 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
4ae196df 166static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
ed616689 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
70ea4783
LL
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
8151d294
WM
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
17dc566c 177static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
178
179#ifdef CONFIG_PCI_IOV
0224d663 180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
ceee3450
TF
182static int igb_disable_sriov(struct pci_dev *dev);
183static int igb_pci_disable_sriov(struct pci_dev *dev);
46a01698 184#endif
9d5c8243 185
9d5c8243 186#ifdef CONFIG_PM
d9dd966d 187#ifdef CONFIG_PM_SLEEP
749ab2cd 188static int igb_suspend(struct device *);
d9dd966d 189#endif
749ab2cd 190static int igb_resume(struct device *);
749ab2cd
YZ
191static int igb_runtime_suspend(struct device *dev);
192static int igb_runtime_resume(struct device *dev);
193static int igb_runtime_idle(struct device *dev);
749ab2cd
YZ
194static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198};
9d5c8243
AK
199#endif
200static void igb_shutdown(struct pci_dev *);
fa44f2f1 201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 202#ifdef CONFIG_IGB_DCA
fe4506b6
JC
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208};
209#endif
9d5c8243
AK
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
37680117 214#ifdef CONFIG_PCI_IOV
6dd6d2b7 215static unsigned int max_vfs;
2a3abf6d 216module_param(max_vfs, uint, 0);
c75c4edf 217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
2a3abf6d
AD
218#endif /* CONFIG_PCI_IOV */
219
9d5c8243
AK
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
3646f0e5 225static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229};
230
b6e0c419 231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
232
233static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
9f9a12f8 237 .remove = igb_remove,
9d5c8243 238#ifdef CONFIG_PM
749ab2cd 239 .driver.pm = &igb_pm_ops,
9d5c8243
AK
240#endif
241 .shutdown = igb_shutdown,
fa44f2f1 242 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
243 .err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
b3f4d599 251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
c97ec42a
TI
256struct igb_reg_info {
257 u32 ofs;
258 char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295};
296
b980ac18 297/* igb_regdump - register printout routine */
c97ec42a
TI
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
876d2d6f 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
c97ec42a
TI
361}
362
b980ac18 363/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
364static void igb_dump(struct igb_adapter *adapter)
365{
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
c97ec42a
TI
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
6ad4edfc 375 u16 i, n;
c97ec42a
TI
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
c75c4edf 383 pr_info("Device Name state trans_start last_rx\n");
876d2d6f
JK
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 390 pr_info(" Register Name Value\n");
c97ec42a
TI
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 402 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 403 struct igb_tx_buffer *buffer_info;
c97ec42a 404 tx_ring = adapter->tx_ring[n];
06034649 405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
876d2d6f
JK
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
c97ec42a
TI
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
c75c4edf 436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
c97ec42a
TI
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 439 const char *next_desc;
06034649 440 struct igb_tx_buffer *buffer_info;
60136906 441 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 442 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 443 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
c75c4edf
CW
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
c97ec42a 456 le64_to_cpu(u0->b),
c9f14bf3
AD
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
c97ec42a
TI
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
876d2d6f 461 buffer_info->skb, next_desc);
c97ec42a 462
b669588a 463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
b669588a 466 16, 1, buffer_info->skb->data,
c9f14bf3
AD
467 dma_unmap_len(buffer_info, len),
468 true);
c97ec42a
TI
469 }
470 }
471
472 /* Print RX Rings Summary */
473rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 475 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
c75c4edf
CW
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
516
517 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 518 const char *next_desc;
06034649
AD
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 521 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
c97ec42a
TI
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
1a1c225b
AD
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
c97ec42a
TI
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
1a1c225b 538 next_desc);
c97ec42a 539 } else {
1a1c225b
AD
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
c97ec42a
TI
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
1a1c225b 545 next_desc);
c97ec42a 546
b669588a 547 if (netif_msg_pktdata(adapter) &&
1a1c225b 548 buffer_info->dma && buffer_info->page) {
44390ca6
AD
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
b669588a
ET
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
de78d1f9 554 IGB_RX_BUFSZ, true);
c97ec42a
TI
555 }
556 }
c97ec42a
TI
557 }
558 }
559
560exit:
561 return;
562}
563
b980ac18
JK
564/**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
b980ac18 570 **/
441fc6fd
CW
571static int igb_get_i2c_data(void *data)
572{
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
da1f1dfe 577 return !!(i2cctl & E1000_I2C_DATA_IN);
441fc6fd
CW
578}
579
b980ac18
JK
580/**
581 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
b980ac18 586 **/
441fc6fd
CW
587static void igb_set_i2c_data(void *data, int state)
588{
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603}
604
b980ac18
JK
605/**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
b980ac18 611 **/
441fc6fd
CW
612static void igb_set_i2c_clk(void *data, int state)
613{
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627}
628
b980ac18
JK
629/**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
b980ac18 634 **/
441fc6fd
CW
635static int igb_get_i2c_clk(void *data)
636{
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
da1f1dfe 641 return !!(i2cctl & E1000_I2C_CLK_IN);
441fc6fd
CW
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651};
652
9d5c8243 653/**
b980ac18
JK
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
9d5c8243 658 **/
c041076a 659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
660{
661 struct igb_adapter *adapter = hw->back;
c041076a 662 return adapter->netdev;
9d5c8243 663}
38c845c7 664
9d5c8243 665/**
b980ac18 666 * igb_init_module - Driver Registration Routine
9d5c8243 667 *
b980ac18
JK
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
670 **/
671static int __init igb_init_module(void)
672{
673 int ret;
9005df38 674
876d2d6f 675 pr_info("%s - version %s\n",
9d5c8243 676 igb_driver_string, igb_driver_version);
876d2d6f 677 pr_info("%s\n", igb_copyright);
9d5c8243 678
421e02f0 679#ifdef CONFIG_IGB_DCA
fe4506b6
JC
680 dca_register_notify(&dca_notifier);
681#endif
bbd98fe4 682 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
683 return ret;
684}
685
686module_init(igb_init_module);
687
688/**
b980ac18 689 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 690 *
b980ac18
JK
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
9d5c8243
AK
693 **/
694static void __exit igb_exit_module(void)
695{
421e02f0 696#ifdef CONFIG_IGB_DCA
fe4506b6
JC
697 dca_unregister_notify(&dca_notifier);
698#endif
9d5c8243
AK
699 pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
26bc19ec
AD
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
b980ac18
JK
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
26bc19ec 708 *
b980ac18
JK
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
ee1b9f06 714 int i = 0, j = 0;
047e0030 715 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
ee1b9f06 724 if (adapter->vfs_allocated_count) {
a99955fc 725 for (; i < adapter->rss_queues; i++)
3025a446 726 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 727 Q_IDX_82576(i);
ee1b9f06 728 }
b26141d4 729 /* Fall through */
26bc19ec 730 case e1000_82575:
55cac248 731 case e1000_82580:
d2ba2ed8 732 case e1000_i350:
ceb5f13b 733 case e1000_i354:
f96a8a0b
CW
734 case e1000_i210:
735 case e1000_i211:
b26141d4 736 /* Fall through */
26bc19ec 737 default:
ee1b9f06 738 for (; i < adapter->num_rx_queues; i++)
3025a446 739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 740 for (; j < adapter->num_tx_queues; j++)
3025a446 741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
742 break;
743 }
744}
745
22a8b291
FT
746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747{
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766}
767
4be000c8
AD
768/**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782{
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792}
793
9d5c8243 794#define IGB_N0_QUEUE -1
047e0030 795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 796{
047e0030 797 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 798 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
4be000c8 801 u32 msixbm = 0;
047e0030 802
0ba82994
AD
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
807
808 switch (hw->mac.type) {
809 case e1000_82575:
9d5c8243 810 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
047e0030 815 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 817 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 820 msixbm |= E1000_EIMS_OTHER;
9d5c8243 821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 822 q_vector->eims_value = msixbm;
2d064c06
AD
823 break;
824 case e1000_82576:
b980ac18 825 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
047e0030 838 q_vector->eims_value = 1 << msix_vector;
2d064c06 839 break;
55cac248 840 case e1000_82580:
d2ba2ed8 841 case e1000_i350:
ceb5f13b 842 case e1000_i354:
f96a8a0b
CW
843 case e1000_i210:
844 case e1000_i211:
b980ac18 845 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
859 q_vector->eims_value = 1 << msix_vector;
860 break;
2d064c06
AD
861 default:
862 BUG();
863 break;
864 }
26b39276
AD
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
9d5c8243
AK
871}
872
873/**
b980ac18
JK
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
9d5c8243 876 *
b980ac18
JK
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
9d5c8243
AK
879 **/
880static void igb_configure_msix(struct igb_adapter *adapter)
881{
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
9d5c8243
AK
887
888 /* set vector for other causes, i.e. link changes */
2d064c06
AD
889 switch (hw->mac.type) {
890 case e1000_82575:
9d5c8243
AK
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
900
901 /* enable msix_other interrupt */
b980ac18 902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 903 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 904
2d064c06
AD
905 break;
906
907 case e1000_82576:
55cac248 908 case e1000_82580:
d2ba2ed8 909 case e1000_i350:
ceb5f13b 910 case e1000_i354:
f96a8a0b
CW
911 case e1000_i210:
912 case e1000_i211:
047e0030 913 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
914 * won't stick. And it will take days to debug.
915 */
047e0030 916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
047e0030
AD
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
2d064c06 922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 923
047e0030 924 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
047e0030
AD
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
26b39276
AD
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 935
9d5c8243
AK
936 wrfl();
937}
938
939/**
b980ac18
JK
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
9d5c8243 942 *
b980ac18
JK
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
9d5c8243
AK
945 **/
946static int igb_request_msix(struct igb_adapter *adapter)
947{
948 struct net_device *netdev = adapter->netdev;
52285b76 949 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 950
047e0030 951 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 952 igb_msix_other, 0, netdev->name, adapter);
047e0030 953 if (err)
52285b76 954 goto err_out;
047e0030
AD
955
956 for (i = 0; i < adapter->num_q_vectors; i++) {
957 struct igb_q_vector *q_vector = adapter->q_vector[i];
958
52285b76
SA
959 vector++;
960
7b06a690 961 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
047e0030 962
0ba82994 963 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 964 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
965 q_vector->rx.ring->queue_index);
966 else if (q_vector->tx.ring)
047e0030 967 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
968 q_vector->tx.ring->queue_index);
969 else if (q_vector->rx.ring)
047e0030 970 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 971 q_vector->rx.ring->queue_index);
9d5c8243 972 else
047e0030
AD
973 sprintf(q_vector->name, "%s-unused", netdev->name);
974
9d5c8243 975 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
976 igb_msix_ring, 0, q_vector->name,
977 q_vector);
9d5c8243 978 if (err)
52285b76 979 goto err_free;
9d5c8243
AK
980 }
981
9d5c8243
AK
982 igb_configure_msix(adapter);
983 return 0;
52285b76
SA
984
985err_free:
986 /* free already assigned IRQs */
987 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988
989 vector--;
990 for (i = 0; i < vector; i++) {
991 free_irq(adapter->msix_entries[free_vector++].vector,
992 adapter->q_vector[i]);
993 }
994err_out:
9d5c8243
AK
995 return err;
996}
997
5536d210 998/**
b980ac18
JK
999 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1000 * @adapter: board private structure to initialize
1001 * @v_idx: Index of vector to be freed
5536d210 1002 *
02ef6e1d 1003 * This function frees the memory allocated to the q_vector.
5536d210
AD
1004 **/
1005static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006{
1007 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
02ef6e1d
CW
1009 adapter->q_vector[v_idx] = NULL;
1010
1011 /* igb_get_stats64() might access the rings on this vector,
1012 * we must wait a grace period before freeing it.
1013 */
17a402a0
CW
1014 if (q_vector)
1015 kfree_rcu(q_vector, rcu);
02ef6e1d
CW
1016}
1017
1018/**
1019 * igb_reset_q_vector - Reset config for interrupt vector
1020 * @adapter: board private structure to initialize
1021 * @v_idx: Index of vector to be reset
1022 *
1023 * If NAPI is enabled it will delete any references to the
1024 * NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
cb06d102
CP
1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 * allocated. So, q_vector is NULL so we should stop here.
1032 */
1033 if (!q_vector)
1034 return;
1035
5536d210
AD
1036 if (q_vector->tx.ring)
1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039 if (q_vector->rx.ring)
2439fc4d 1040 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
5536d210 1041
5536d210
AD
1042 netif_napi_del(&q_vector->napi);
1043
02ef6e1d
CW
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048 int v_idx = adapter->num_q_vectors;
1049
cd14ef54 1050 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1051 pci_disable_msix(adapter->pdev);
cd14ef54 1052 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1053 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1054
1055 while (v_idx--)
1056 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1057}
1058
047e0030 1059/**
b980ac18
JK
1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 * @adapter: board private structure to initialize
047e0030 1062 *
b980ac18
JK
1063 * This function frees the memory allocated to the q_vectors. In addition if
1064 * NAPI is enabled it will delete any references to the NAPI struct prior
1065 * to freeing the q_vector.
047e0030
AD
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
5536d210
AD
1069 int v_idx = adapter->num_q_vectors;
1070
1071 adapter->num_tx_queues = 0;
1072 adapter->num_rx_queues = 0;
047e0030 1073 adapter->num_q_vectors = 0;
5536d210 1074
02ef6e1d
CW
1075 while (v_idx--) {
1076 igb_reset_q_vector(adapter, v_idx);
5536d210 1077 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1078 }
047e0030
AD
1079}
1080
1081/**
b980ac18
JK
1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 * @adapter: board private structure to initialize
047e0030 1084 *
b980ac18
JK
1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 * MSI-X interrupts allocated.
047e0030
AD
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
047e0030
AD
1090 igb_free_q_vectors(adapter);
1091 igb_reset_interrupt_capability(adapter);
1092}
9d5c8243
AK
1093
1094/**
b980ac18
JK
1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 * @adapter: board private structure to initialize
1097 * @msix: boolean value of MSIX capability
9d5c8243 1098 *
b980ac18
JK
1099 * Attempt to configure interrupts using the best available
1100 * capabilities of the hardware and kernel.
9d5c8243 1101 **/
53c7d064 1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1103{
1104 int err;
1105 int numvecs, i;
1106
53c7d064
SA
1107 if (!msix)
1108 goto msi_only;
cd14ef54 1109 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1110
83b7180d 1111 /* Number of supported queues. */
a99955fc 1112 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1113 if (adapter->vfs_allocated_count)
1114 adapter->num_tx_queues = 1;
1115 else
1116 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1117
b980ac18 1118 /* start with one vector for every Rx queue */
047e0030
AD
1119 numvecs = adapter->num_rx_queues;
1120
b980ac18 1121 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 numvecs += adapter->num_tx_queues;
047e0030
AD
1124
1125 /* store the number of vectors reserved for queues */
1126 adapter->num_q_vectors = numvecs;
1127
1128 /* add 1 vector for link status interrupts */
1129 numvecs++;
9d5c8243
AK
1130 for (i = 0; i < numvecs; i++)
1131 adapter->msix_entries[i].entry = i;
1132
479d02df
AG
1133 err = pci_enable_msix_range(adapter->pdev,
1134 adapter->msix_entries,
1135 numvecs,
1136 numvecs);
1137 if (err > 0)
0c2cc02e 1138 return;
9d5c8243
AK
1139
1140 igb_reset_interrupt_capability(adapter);
1141
1142 /* If we can't do MSI-X, try MSI */
1143msi_only:
b709323d 1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1145#ifdef CONFIG_PCI_IOV
1146 /* disable SR-IOV for non MSI-X configurations */
1147 if (adapter->vf_data) {
1148 struct e1000_hw *hw = &adapter->hw;
1149 /* disable iov and allow time for transactions to clear */
1150 pci_disable_sriov(adapter->pdev);
1151 msleep(500);
1152
1153 kfree(adapter->vf_data);
1154 adapter->vf_data = NULL;
1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1156 wrfl();
2a3abf6d
AD
1157 msleep(100);
1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 }
1160#endif
4fc82adf 1161 adapter->vfs_allocated_count = 0;
a99955fc 1162 adapter->rss_queues = 1;
4fc82adf 1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1164 adapter->num_rx_queues = 1;
661086df 1165 adapter->num_tx_queues = 1;
047e0030 1166 adapter->num_q_vectors = 1;
9d5c8243 1167 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1168 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1169}
1170
5536d210
AD
1171static void igb_add_ring(struct igb_ring *ring,
1172 struct igb_ring_container *head)
1173{
1174 head->ring = ring;
1175 head->count++;
1176}
1177
047e0030 1178/**
b980ac18
JK
1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 * @adapter: board private structure to initialize
1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 * @v_idx: index of vector in adapter struct
1183 * @txr_count: total number of Tx rings to allocate
1184 * @txr_idx: index of first Tx ring to allocate
1185 * @rxr_count: total number of Rx rings to allocate
1186 * @rxr_idx: index of first Rx ring to allocate
047e0030 1187 *
b980ac18 1188 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1189 **/
5536d210
AD
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 int v_count, int v_idx,
1192 int txr_count, int txr_idx,
1193 int rxr_count, int rxr_idx)
047e0030
AD
1194{
1195 struct igb_q_vector *q_vector;
5536d210
AD
1196 struct igb_ring *ring;
1197 int ring_count, size;
047e0030 1198
5536d210
AD
1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 if (txr_count > 1 || rxr_count > 1)
1201 return -ENOMEM;
1202
1203 ring_count = txr_count + rxr_count;
1204 size = sizeof(struct igb_q_vector) +
1205 (sizeof(struct igb_ring) * ring_count);
1206
1207 /* allocate q_vector and rings */
02ef6e1d 1208 q_vector = adapter->q_vector[v_idx];
72ddef05 1209 if (!q_vector) {
02ef6e1d 1210 q_vector = kzalloc(size, GFP_KERNEL);
72ddef05
SS
1211 } else if (size > ksize(q_vector)) {
1212 kfree_rcu(q_vector, rcu);
1213 q_vector = kzalloc(size, GFP_KERNEL);
1214 } else {
c0a06ee1 1215 memset(q_vector, 0, size);
72ddef05 1216 }
5536d210
AD
1217 if (!q_vector)
1218 return -ENOMEM;
1219
1220 /* initialize NAPI */
1221 netif_napi_add(adapter->netdev, &q_vector->napi,
1222 igb_poll, 64);
1223
1224 /* tie q_vector and adapter together */
1225 adapter->q_vector[v_idx] = q_vector;
1226 q_vector->adapter = adapter;
1227
1228 /* initialize work limits */
1229 q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231 /* initialize ITR configuration */
7b06a690 1232 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
5536d210
AD
1233 q_vector->itr_val = IGB_START_ITR;
1234
1235 /* initialize pointer to rings */
1236 ring = q_vector->ring;
1237
4e227667
AD
1238 /* intialize ITR */
1239 if (rxr_count) {
1240 /* rx or rx/tx vector */
1241 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242 q_vector->itr_val = adapter->rx_itr_setting;
1243 } else {
1244 /* tx only vector */
1245 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246 q_vector->itr_val = adapter->tx_itr_setting;
1247 }
1248
5536d210
AD
1249 if (txr_count) {
1250 /* assign generic ring traits */
1251 ring->dev = &adapter->pdev->dev;
1252 ring->netdev = adapter->netdev;
1253
1254 /* configure backlink on ring */
1255 ring->q_vector = q_vector;
1256
1257 /* update q_vector Tx values */
1258 igb_add_ring(ring, &q_vector->tx);
1259
1260 /* For 82575, context index must be unique per ring. */
1261 if (adapter->hw.mac.type == e1000_82575)
1262 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264 /* apply Tx specific ring traits */
1265 ring->count = adapter->tx_ring_count;
1266 ring->queue_index = txr_idx;
1267
827da44c
JS
1268 u64_stats_init(&ring->tx_syncp);
1269 u64_stats_init(&ring->tx_syncp2);
1270
5536d210
AD
1271 /* assign ring to adapter */
1272 adapter->tx_ring[txr_idx] = ring;
1273
1274 /* push pointer to next ring */
1275 ring++;
047e0030 1276 }
81c2fc22 1277
5536d210
AD
1278 if (rxr_count) {
1279 /* assign generic ring traits */
1280 ring->dev = &adapter->pdev->dev;
1281 ring->netdev = adapter->netdev;
047e0030 1282
5536d210
AD
1283 /* configure backlink on ring */
1284 ring->q_vector = q_vector;
047e0030 1285
5536d210
AD
1286 /* update q_vector Rx values */
1287 igb_add_ring(ring, &q_vector->rx);
047e0030 1288
5536d210
AD
1289 /* set flag indicating ring supports SCTP checksum offload */
1290 if (adapter->hw.mac.type >= e1000_82576)
1291 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1292
e52c0f96 1293 /* On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1294 * have the tag byte-swapped.
b980ac18 1295 */
5536d210
AD
1296 if (adapter->hw.mac.type >= e1000_i350)
1297 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1298
5536d210
AD
1299 /* apply Rx specific ring traits */
1300 ring->count = adapter->rx_ring_count;
1301 ring->queue_index = rxr_idx;
1302
827da44c
JS
1303 u64_stats_init(&ring->rx_syncp);
1304
5536d210
AD
1305 /* assign ring to adapter */
1306 adapter->rx_ring[rxr_idx] = ring;
1307 }
1308
1309 return 0;
047e0030
AD
1310}
1311
5536d210 1312
047e0030 1313/**
b980ac18
JK
1314 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315 * @adapter: board private structure to initialize
047e0030 1316 *
b980ac18
JK
1317 * We allocate one q_vector per queue interrupt. If allocation fails we
1318 * return -ENOMEM.
047e0030 1319 **/
5536d210 1320static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1321{
5536d210
AD
1322 int q_vectors = adapter->num_q_vectors;
1323 int rxr_remaining = adapter->num_rx_queues;
1324 int txr_remaining = adapter->num_tx_queues;
1325 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326 int err;
047e0030 1327
5536d210
AD
1328 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329 for (; rxr_remaining; v_idx++) {
1330 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331 0, 0, 1, rxr_idx);
047e0030 1332
5536d210
AD
1333 if (err)
1334 goto err_out;
1335
1336 /* update counts and index */
1337 rxr_remaining--;
1338 rxr_idx++;
047e0030 1339 }
047e0030 1340 }
5536d210
AD
1341
1342 for (; v_idx < q_vectors; v_idx++) {
1343 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
9005df38 1345
5536d210
AD
1346 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347 tqpv, txr_idx, rqpv, rxr_idx);
1348
1349 if (err)
1350 goto err_out;
1351
1352 /* update counts and index */
1353 rxr_remaining -= rqpv;
1354 txr_remaining -= tqpv;
1355 rxr_idx++;
1356 txr_idx++;
1357 }
1358
047e0030 1359 return 0;
5536d210
AD
1360
1361err_out:
1362 adapter->num_tx_queues = 0;
1363 adapter->num_rx_queues = 0;
1364 adapter->num_q_vectors = 0;
1365
1366 while (v_idx--)
1367 igb_free_q_vector(adapter, v_idx);
1368
1369 return -ENOMEM;
047e0030
AD
1370}
1371
1372/**
b980ac18
JK
1373 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374 * @adapter: board private structure to initialize
1375 * @msix: boolean value of MSIX capability
047e0030 1376 *
b980ac18 1377 * This function initializes the interrupts and allocates all of the queues.
047e0030 1378 **/
53c7d064 1379static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1380{
1381 struct pci_dev *pdev = adapter->pdev;
1382 int err;
1383
53c7d064 1384 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1385
1386 err = igb_alloc_q_vectors(adapter);
1387 if (err) {
1388 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389 goto err_alloc_q_vectors;
1390 }
1391
5536d210 1392 igb_cache_ring_register(adapter);
047e0030
AD
1393
1394 return 0;
5536d210 1395
047e0030
AD
1396err_alloc_q_vectors:
1397 igb_reset_interrupt_capability(adapter);
1398 return err;
1399}
1400
9d5c8243 1401/**
b980ac18
JK
1402 * igb_request_irq - initialize interrupts
1403 * @adapter: board private structure to initialize
9d5c8243 1404 *
b980ac18
JK
1405 * Attempts to configure interrupts using the best available
1406 * capabilities of the hardware and kernel.
9d5c8243
AK
1407 **/
1408static int igb_request_irq(struct igb_adapter *adapter)
1409{
1410 struct net_device *netdev = adapter->netdev;
047e0030 1411 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1412 int err = 0;
1413
cd14ef54 1414 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1415 err = igb_request_msix(adapter);
844290e5 1416 if (!err)
9d5c8243 1417 goto request_done;
9d5c8243 1418 /* fall back to MSI */
5536d210
AD
1419 igb_free_all_tx_resources(adapter);
1420 igb_free_all_rx_resources(adapter);
53c7d064 1421
047e0030 1422 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1423 err = igb_init_interrupt_scheme(adapter, false);
1424 if (err)
047e0030 1425 goto request_done;
53c7d064 1426
047e0030
AD
1427 igb_setup_all_tx_resources(adapter);
1428 igb_setup_all_rx_resources(adapter);
53c7d064 1429 igb_configure(adapter);
9d5c8243 1430 }
844290e5 1431
c74d588e
AD
1432 igb_assign_vector(adapter->q_vector[0], 0);
1433
7dfc16fa 1434 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1435 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1436 netdev->name, adapter);
9d5c8243
AK
1437 if (!err)
1438 goto request_done;
047e0030 1439
9d5c8243
AK
1440 /* fall back to legacy interrupts */
1441 igb_reset_interrupt_capability(adapter);
7dfc16fa 1442 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1443 }
1444
c74d588e 1445 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1446 netdev->name, adapter);
9d5c8243 1447
6cb5e577 1448 if (err)
c74d588e 1449 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1450 err);
9d5c8243
AK
1451
1452request_done:
1453 return err;
1454}
1455
1456static void igb_free_irq(struct igb_adapter *adapter)
1457{
cd14ef54 1458 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1459 int vector = 0, i;
1460
047e0030 1461 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1462
0d1ae7f4 1463 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1464 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1465 adapter->q_vector[i]);
047e0030
AD
1466 } else {
1467 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1468 }
9d5c8243
AK
1469}
1470
1471/**
b980ac18
JK
1472 * igb_irq_disable - Mask off interrupt generation on the NIC
1473 * @adapter: board private structure
9d5c8243
AK
1474 **/
1475static void igb_irq_disable(struct igb_adapter *adapter)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478
b980ac18 1479 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1480 * mapped into these registers and so clearing the bits can cause
1481 * issues on the VF drivers so we only need to clear what we set
1482 */
cd14ef54 1483 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212 1484 u32 regval = rd32(E1000_EIAM);
9005df38 1485
2dfd1212
AD
1486 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487 wr32(E1000_EIMC, adapter->eims_enable_mask);
1488 regval = rd32(E1000_EIAC);
1489 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1490 }
844290e5
PW
1491
1492 wr32(E1000_IAM, 0);
9d5c8243
AK
1493 wr32(E1000_IMC, ~0);
1494 wrfl();
cd14ef54 1495 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859 1496 int i;
9005df38 1497
81a61859
ET
1498 for (i = 0; i < adapter->num_q_vectors; i++)
1499 synchronize_irq(adapter->msix_entries[i].vector);
1500 } else {
1501 synchronize_irq(adapter->pdev->irq);
1502 }
9d5c8243
AK
1503}
1504
1505/**
b980ac18
JK
1506 * igb_irq_enable - Enable default interrupt generation settings
1507 * @adapter: board private structure
9d5c8243
AK
1508 **/
1509static void igb_irq_enable(struct igb_adapter *adapter)
1510{
1511 struct e1000_hw *hw = &adapter->hw;
1512
cd14ef54 1513 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1514 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212 1515 u32 regval = rd32(E1000_EIAC);
9005df38 1516
2dfd1212
AD
1517 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518 regval = rd32(E1000_EIAM);
1519 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1520 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1521 if (adapter->vfs_allocated_count) {
4ae196df 1522 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1523 ims |= E1000_IMS_VMMB;
1524 }
1525 wr32(E1000_IMS, ims);
844290e5 1526 } else {
55cac248
AD
1527 wr32(E1000_IMS, IMS_ENABLE_MASK |
1528 E1000_IMS_DRSTA);
1529 wr32(E1000_IAM, IMS_ENABLE_MASK |
1530 E1000_IMS_DRSTA);
844290e5 1531 }
9d5c8243
AK
1532}
1533
1534static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535{
51466239 1536 struct e1000_hw *hw = &adapter->hw;
8b77c6b2 1537 u16 pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
1538 u16 vid = adapter->hw.mng_cookie.vlan_id;
1539 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1540
1541 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542 /* add VID to filter table */
8b77c6b2 1543 igb_vfta_set(hw, vid, pf_id, true, true);
51466239
AD
1544 adapter->mng_vlan_id = vid;
1545 } else {
1546 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547 }
1548
1549 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550 (vid != old_vid) &&
b2cb09b1 1551 !test_bit(old_vid, adapter->active_vlans)) {
51466239 1552 /* remove VID from filter table */
8b77c6b2 1553 igb_vfta_set(hw, vid, pf_id, false, true);
9d5c8243
AK
1554 }
1555}
1556
1557/**
b980ac18
JK
1558 * igb_release_hw_control - release control of the h/w to f/w
1559 * @adapter: address of board private structure
9d5c8243 1560 *
b980ac18
JK
1561 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562 * For ASF and Pass Through versions of f/w this means that the
1563 * driver is no longer loaded.
9d5c8243
AK
1564 **/
1565static void igb_release_hw_control(struct igb_adapter *adapter)
1566{
1567 struct e1000_hw *hw = &adapter->hw;
1568 u32 ctrl_ext;
1569
1570 /* Let firmware take over control of h/w */
1571 ctrl_ext = rd32(E1000_CTRL_EXT);
1572 wr32(E1000_CTRL_EXT,
1573 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574}
1575
9d5c8243 1576/**
b980ac18
JK
1577 * igb_get_hw_control - get control of the h/w from f/w
1578 * @adapter: address of board private structure
9d5c8243 1579 *
b980ac18
JK
1580 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581 * For ASF and Pass Through versions of f/w this means that
1582 * the driver is loaded.
9d5c8243
AK
1583 **/
1584static void igb_get_hw_control(struct igb_adapter *adapter)
1585{
1586 struct e1000_hw *hw = &adapter->hw;
1587 u32 ctrl_ext;
1588
1589 /* Let firmware know the driver has taken over */
1590 ctrl_ext = rd32(E1000_CTRL_EXT);
1591 wr32(E1000_CTRL_EXT,
1592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593}
1594
9d5c8243 1595/**
b980ac18
JK
1596 * igb_configure - configure the hardware for RX and TX
1597 * @adapter: private board structure
9d5c8243
AK
1598 **/
1599static void igb_configure(struct igb_adapter *adapter)
1600{
1601 struct net_device *netdev = adapter->netdev;
1602 int i;
1603
1604 igb_get_hw_control(adapter);
ff41f8dc 1605 igb_set_rx_mode(netdev);
9d5c8243
AK
1606
1607 igb_restore_vlan(adapter);
9d5c8243 1608
85b430b4 1609 igb_setup_tctl(adapter);
06cf2666 1610 igb_setup_mrqc(adapter);
9d5c8243 1611 igb_setup_rctl(adapter);
85b430b4
AD
1612
1613 igb_configure_tx(adapter);
9d5c8243 1614 igb_configure_rx(adapter);
662d7205
AD
1615
1616 igb_rx_fifo_flush_82575(&adapter->hw);
1617
c493ea45 1618 /* call igb_desc_unused which always leaves
9d5c8243 1619 * at least 1 descriptor unused to make sure
b980ac18
JK
1620 * next_to_use != next_to_clean
1621 */
9d5c8243 1622 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1623 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1624 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1625 }
9d5c8243
AK
1626}
1627
88a268c1 1628/**
b980ac18
JK
1629 * igb_power_up_link - Power up the phy/serdes link
1630 * @adapter: address of board private structure
88a268c1
NN
1631 **/
1632void igb_power_up_link(struct igb_adapter *adapter)
1633{
76886596
AA
1634 igb_reset_phy(&adapter->hw);
1635
88a268c1
NN
1636 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637 igb_power_up_phy_copper(&adapter->hw);
1638 else
1639 igb_power_up_serdes_link_82575(&adapter->hw);
aec653c4
TF
1640
1641 igb_setup_link(&adapter->hw);
88a268c1
NN
1642}
1643
1644/**
b980ac18
JK
1645 * igb_power_down_link - Power down the phy/serdes link
1646 * @adapter: address of board private structure
88a268c1
NN
1647 */
1648static void igb_power_down_link(struct igb_adapter *adapter)
1649{
1650 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651 igb_power_down_phy_copper_82575(&adapter->hw);
1652 else
1653 igb_shutdown_serdes_link_82575(&adapter->hw);
1654}
9d5c8243 1655
56cec249
CW
1656/**
1657 * Detect and switch function for Media Auto Sense
1658 * @adapter: address of the board private structure
1659 **/
1660static void igb_check_swap_media(struct igb_adapter *adapter)
1661{
1662 struct e1000_hw *hw = &adapter->hw;
1663 u32 ctrl_ext, connsw;
1664 bool swap_now = false;
1665
1666 ctrl_ext = rd32(E1000_CTRL_EXT);
1667 connsw = rd32(E1000_CONNSW);
1668
1669 /* need to live swap if current media is copper and we have fiber/serdes
1670 * to go to.
1671 */
1672
1673 if ((hw->phy.media_type == e1000_media_type_copper) &&
1674 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675 swap_now = true;
1676 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677 /* copper signal takes time to appear */
1678 if (adapter->copper_tries < 4) {
1679 adapter->copper_tries++;
1680 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681 wr32(E1000_CONNSW, connsw);
1682 return;
1683 } else {
1684 adapter->copper_tries = 0;
1685 if ((connsw & E1000_CONNSW_PHYSD) &&
1686 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687 swap_now = true;
1688 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689 wr32(E1000_CONNSW, connsw);
1690 }
1691 }
1692 }
1693
1694 if (!swap_now)
1695 return;
1696
1697 switch (hw->phy.media_type) {
1698 case e1000_media_type_copper:
1699 netdev_info(adapter->netdev,
1700 "MAS: changing media to fiber/serdes\n");
1701 ctrl_ext |=
1702 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 adapter->copper_tries = 0;
1705 break;
1706 case e1000_media_type_internal_serdes:
1707 case e1000_media_type_fiber:
1708 netdev_info(adapter->netdev,
1709 "MAS: changing media to copper\n");
1710 ctrl_ext &=
1711 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713 break;
1714 default:
1715 /* shouldn't get here during regular operation */
1716 netdev_err(adapter->netdev,
1717 "AMS: Invalid media type found, returning\n");
1718 break;
1719 }
1720 wr32(E1000_CTRL_EXT, ctrl_ext);
1721}
1722
9d5c8243 1723/**
b980ac18
JK
1724 * igb_up - Open the interface and prepare it to handle traffic
1725 * @adapter: board private structure
9d5c8243 1726 **/
9d5c8243
AK
1727int igb_up(struct igb_adapter *adapter)
1728{
1729 struct e1000_hw *hw = &adapter->hw;
1730 int i;
1731
1732 /* hardware has been reset, we need to reload some things */
1733 igb_configure(adapter);
1734
1735 clear_bit(__IGB_DOWN, &adapter->state);
1736
0d1ae7f4
AD
1737 for (i = 0; i < adapter->num_q_vectors; i++)
1738 napi_enable(&(adapter->q_vector[i]->napi));
1739
cd14ef54 1740 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 1741 igb_configure_msix(adapter);
feeb2721
AD
1742 else
1743 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1744
1745 /* Clear any pending interrupts. */
1746 rd32(E1000_ICR);
1747 igb_irq_enable(adapter);
1748
d4960307
AD
1749 /* notify VFs that reset has been completed */
1750 if (adapter->vfs_allocated_count) {
1751 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 1752
d4960307
AD
1753 reg_data |= E1000_CTRL_EXT_PFRSTD;
1754 wr32(E1000_CTRL_EXT, reg_data);
1755 }
1756
4cb9be7a
JB
1757 netif_tx_start_all_queues(adapter->netdev);
1758
25568a53
AD
1759 /* start the watchdog. */
1760 hw->mac.get_link_status = 1;
1761 schedule_work(&adapter->watchdog_task);
1762
f4c01e96
CW
1763 if ((adapter->flags & IGB_FLAG_EEE) &&
1764 (!hw->dev_spec._82575.eee_disable))
1765 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
9d5c8243
AK
1767 return 0;
1768}
1769
1770void igb_down(struct igb_adapter *adapter)
1771{
9d5c8243 1772 struct net_device *netdev = adapter->netdev;
330a6d6a 1773 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1774 u32 tctl, rctl;
1775 int i;
1776
1777 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1778 * reschedule our watchdog timer
1779 */
9d5c8243
AK
1780 set_bit(__IGB_DOWN, &adapter->state);
1781
1782 /* disable receives in the hardware */
1783 rctl = rd32(E1000_RCTL);
1784 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785 /* flush and sleep below */
1786
f28ea083 1787 netif_carrier_off(netdev);
fd2ea0a7 1788 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1789
1790 /* disable transmits in the hardware */
1791 tctl = rd32(E1000_TCTL);
1792 tctl &= ~E1000_TCTL_EN;
1793 wr32(E1000_TCTL, tctl);
1794 /* flush both disables and wait for them to finish */
1795 wrfl();
0d451e79 1796 usleep_range(10000, 11000);
9d5c8243 1797
41f149a2
CW
1798 igb_irq_disable(adapter);
1799
aa9b8cc4
AA
1800 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
41f149a2 1802 for (i = 0; i < adapter->num_q_vectors; i++) {
17a402a0
CW
1803 if (adapter->q_vector[i]) {
1804 napi_synchronize(&adapter->q_vector[i]->napi);
1805 napi_disable(&adapter->q_vector[i]->napi);
1806 }
41f149a2 1807 }
9d5c8243 1808
9d5c8243
AK
1809 del_timer_sync(&adapter->watchdog_timer);
1810 del_timer_sync(&adapter->phy_info_timer);
1811
04fe6358 1812 /* record the stats before reset*/
12dcd86b
ED
1813 spin_lock(&adapter->stats64_lock);
1814 igb_update_stats(adapter, &adapter->stats64);
1815 spin_unlock(&adapter->stats64_lock);
04fe6358 1816
9d5c8243
AK
1817 adapter->link_speed = 0;
1818 adapter->link_duplex = 0;
1819
3023682e
JK
1820 if (!pci_channel_offline(adapter->pdev))
1821 igb_reset(adapter);
16903caa
AD
1822
1823 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1824 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1825
9d5c8243
AK
1826 igb_clean_all_tx_rings(adapter);
1827 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1828#ifdef CONFIG_IGB_DCA
1829
1830 /* since we reset the hardware DCA settings were cleared */
1831 igb_setup_dca(adapter);
1832#endif
9d5c8243
AK
1833}
1834
1835void igb_reinit_locked(struct igb_adapter *adapter)
1836{
1837 WARN_ON(in_interrupt());
1838 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 1839 usleep_range(1000, 2000);
9d5c8243
AK
1840 igb_down(adapter);
1841 igb_up(adapter);
1842 clear_bit(__IGB_RESETTING, &adapter->state);
1843}
1844
56cec249
CW
1845/** igb_enable_mas - Media Autosense re-enable after swap
1846 *
1847 * @adapter: adapter struct
1848 **/
8cfb879d 1849static void igb_enable_mas(struct igb_adapter *adapter)
56cec249
CW
1850{
1851 struct e1000_hw *hw = &adapter->hw;
8cfb879d 1852 u32 connsw = rd32(E1000_CONNSW);
56cec249
CW
1853
1854 /* configure for SerDes media detect */
8cfb879d
TF
1855 if ((hw->phy.media_type == e1000_media_type_copper) &&
1856 (!(connsw & E1000_CONNSW_SERDESD))) {
56cec249
CW
1857 connsw |= E1000_CONNSW_ENRGSRC;
1858 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1859 wr32(E1000_CONNSW, connsw);
1860 wrfl();
56cec249 1861 }
56cec249
CW
1862}
1863
9d5c8243
AK
1864void igb_reset(struct igb_adapter *adapter)
1865{
090b1795 1866 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1867 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1868 struct e1000_mac_info *mac = &hw->mac;
1869 struct e1000_fc_info *fc = &hw->fc;
45693bcb 1870 u32 pba, hwm;
9d5c8243
AK
1871
1872 /* Repartition Pba for greater than 9k mtu
1873 * To take effect CTRL.RST is required.
1874 */
fa4dfae0 1875 switch (mac->type) {
d2ba2ed8 1876 case e1000_i350:
ceb5f13b 1877 case e1000_i354:
55cac248
AD
1878 case e1000_82580:
1879 pba = rd32(E1000_RXPBS);
1880 pba = igb_rxpbs_adjust_82580(pba);
1881 break;
fa4dfae0 1882 case e1000_82576:
d249be54
AD
1883 pba = rd32(E1000_RXPBS);
1884 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1885 break;
1886 case e1000_82575:
f96a8a0b
CW
1887 case e1000_i210:
1888 case e1000_i211:
fa4dfae0
AD
1889 default:
1890 pba = E1000_PBA_34K;
1891 break;
2d064c06 1892 }
9d5c8243 1893
45693bcb
AD
1894 if (mac->type == e1000_82575) {
1895 u32 min_rx_space, min_tx_space, needed_tx_space;
1896
1897 /* write Rx PBA so that hardware can report correct Tx PBA */
9d5c8243
AK
1898 wr32(E1000_PBA, pba);
1899
1900 /* To maintain wire speed transmits, the Tx FIFO should be
1901 * large enough to accommodate two full transmit packets,
1902 * rounded up to the next 1KB and expressed in KB. Likewise,
1903 * the Rx FIFO should be large enough to accommodate at least
1904 * one full receive packet and is similarly rounded up and
b980ac18
JK
1905 * expressed in KB.
1906 */
45693bcb
AD
1907 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1908
1909 /* The Tx FIFO also stores 16 bytes of information about the Tx
1910 * but don't include Ethernet FCS because hardware appends it.
1911 * We only need to round down to the nearest 512 byte block
1912 * count since the value we care about is 2 frames, not 1.
b980ac18 1913 */
45693bcb
AD
1914 min_tx_space = adapter->max_frame_size;
1915 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1916 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1917
1918 /* upper 16 bits has Tx packet buffer allocation size in KB */
1919 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
9d5c8243
AK
1920
1921 /* If current Tx allocation is less than the min Tx FIFO size,
1922 * and the min Tx FIFO size is less than the current Rx FIFO
45693bcb 1923 * allocation, take space away from current Rx allocation.
b980ac18 1924 */
45693bcb
AD
1925 if (needed_tx_space < pba) {
1926 pba -= needed_tx_space;
9d5c8243 1927
b980ac18
JK
1928 /* if short on Rx space, Rx wins and must trump Tx
1929 * adjustment
1930 */
9d5c8243
AK
1931 if (pba < min_rx_space)
1932 pba = min_rx_space;
1933 }
45693bcb
AD
1934
1935 /* adjust PBA for jumbo frames */
2d064c06 1936 wr32(E1000_PBA, pba);
9d5c8243 1937 }
9d5c8243 1938
45693bcb
AD
1939 /* flow control settings
1940 * The high water mark must be low enough to fit one full frame
1941 * after transmitting the pause frame. As such we must have enough
1942 * space to allow for us to complete our current transmit and then
1943 * receive the frame that is in progress from the link partner.
1944 * Set it to:
1945 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
b980ac18 1946 */
45693bcb 1947 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
9d5c8243 1948
d48507fe 1949 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1950 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1951 fc->pause_time = 0xFFFF;
1952 fc->send_xon = 1;
0cce119a 1953 fc->current_mode = fc->requested_mode;
9d5c8243 1954
4ae196df
AD
1955 /* disable receive for all VFs and wait one second */
1956 if (adapter->vfs_allocated_count) {
1957 int i;
9005df38 1958
4ae196df 1959 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1960 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1961
1962 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1963 igb_ping_all_vfs(adapter);
4ae196df
AD
1964
1965 /* disable transmits and receives */
1966 wr32(E1000_VFRE, 0);
1967 wr32(E1000_VFTE, 0);
1968 }
1969
9d5c8243 1970 /* Allow time for pending master requests to run */
330a6d6a 1971 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1972 wr32(E1000_WUC, 0);
1973
56cec249
CW
1974 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1975 /* need to resetup here after media swap */
1976 adapter->ei.get_invariants(hw);
1977 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1978 }
8cfb879d
TF
1979 if ((mac->type == e1000_82575) &&
1980 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1981 igb_enable_mas(adapter);
56cec249 1982 }
330a6d6a 1983 if (hw->mac.ops.init_hw(hw))
090b1795 1984 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1985
b980ac18 1986 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1987 * control is off when forcing speed.
1988 */
1989 if (!hw->mac.autoneg)
1990 igb_force_mac_fc(hw);
1991
b6e0c419 1992 igb_init_dmac(adapter, pba);
e428893b
CW
1993#ifdef CONFIG_IGB_HWMON
1994 /* Re-initialize the thermal sensor on i350 devices. */
1995 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997 /* If present, re-initialize the external thermal sensor
1998 * interface.
1999 */
2000 if (adapter->ets)
2001 mac->ops.init_thermal_sensor_thresh(hw);
2002 }
2003 }
2004#endif
b936136d 2005 /* Re-establish EEE setting */
f4c01e96
CW
2006 if (hw->phy.media_type == e1000_media_type_copper) {
2007 switch (mac->type) {
2008 case e1000_i350:
2009 case e1000_i210:
2010 case e1000_i211:
c4c112f1 2011 igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2012 break;
2013 case e1000_i354:
c4c112f1 2014 igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2015 break;
2016 default:
2017 break;
2018 }
2019 }
88a268c1
NN
2020 if (!netif_running(adapter->netdev))
2021 igb_power_down_link(adapter);
2022
9d5c8243
AK
2023 igb_update_mng_vlan(adapter);
2024
2025 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
1f6e8178
MV
2028 /* Re-enable PTP, where applicable. */
2029 igb_ptp_reset(adapter);
1f6e8178 2030
330a6d6a 2031 igb_get_phy_info(hw);
9d5c8243
AK
2032}
2033
c8f44aff
MM
2034static netdev_features_t igb_fix_features(struct net_device *netdev,
2035 netdev_features_t features)
b2cb09b1 2036{
b980ac18
JK
2037 /* Since there is no support for separate Rx/Tx vlan accel
2038 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2039 */
f646968f
PM
2040 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2042 else
f646968f 2043 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2044
2045 return features;
2046}
2047
c8f44aff
MM
2048static int igb_set_features(struct net_device *netdev,
2049 netdev_features_t features)
ac52caa3 2050{
c8f44aff 2051 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2052 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2053
f646968f 2054 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2055 igb_vlan_mode(netdev, features);
2056
16903caa 2057 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
89eaefb6
BG
2058 return 0;
2059
2060 netdev->features = features;
2061
2062 if (netif_running(netdev))
2063 igb_reinit_locked(adapter);
2064 else
2065 igb_reset(adapter);
2066
ac52caa3
MM
2067 return 0;
2068}
2069
268f9d33
AD
2070static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2071 struct net_device *dev,
2072 const unsigned char *addr, u16 vid,
2073 u16 flags)
2074{
2075 /* guarantee we can provide a unique filter for the unicast address */
2076 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2077 struct igb_adapter *adapter = netdev_priv(dev);
2078 struct e1000_hw *hw = &adapter->hw;
2079 int vfn = adapter->vfs_allocated_count;
2080 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2081
2082 if (netdev_uc_count(dev) >= rar_entries)
2083 return -ENOMEM;
2084 }
2085
2086 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2087}
2088
2e5c6922 2089static const struct net_device_ops igb_netdev_ops = {
559e9c49 2090 .ndo_open = igb_open,
2e5c6922 2091 .ndo_stop = igb_close,
cd392f5c 2092 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2093 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2094 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2095 .ndo_set_mac_address = igb_set_mac,
2096 .ndo_change_mtu = igb_change_mtu,
2097 .ndo_do_ioctl = igb_ioctl,
2098 .ndo_tx_timeout = igb_tx_timeout,
2099 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2100 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2101 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2102 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2103 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
ed616689 2104 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
70ea4783 2105 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2106 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2107#ifdef CONFIG_NET_POLL_CONTROLLER
2108 .ndo_poll_controller = igb_netpoll,
2109#endif
b2cb09b1
JP
2110 .ndo_fix_features = igb_fix_features,
2111 .ndo_set_features = igb_set_features,
268f9d33 2112 .ndo_fdb_add = igb_ndo_fdb_add,
1abbc98a 2113 .ndo_features_check = passthru_features_check,
2e5c6922
SH
2114};
2115
d67974f0
CW
2116/**
2117 * igb_set_fw_version - Configure version string for ethtool
2118 * @adapter: adapter struct
d67974f0
CW
2119 **/
2120void igb_set_fw_version(struct igb_adapter *adapter)
2121{
2122 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2123 struct e1000_fw_version fw;
2124
2125 igb_get_fw_version(hw, &fw);
2126
2127 switch (hw->mac.type) {
7dc98a62 2128 case e1000_i210:
0b1a6f2e 2129 case e1000_i211:
7dc98a62
CW
2130 if (!(igb_get_flash_presence_i210(hw))) {
2131 snprintf(adapter->fw_version,
2132 sizeof(adapter->fw_version),
2133 "%2d.%2d-%d",
2134 fw.invm_major, fw.invm_minor,
2135 fw.invm_img_type);
2136 break;
2137 }
2138 /* fall through */
0b1a6f2e
CW
2139 default:
2140 /* if option is rom valid, display its version too */
2141 if (fw.or_valid) {
2142 snprintf(adapter->fw_version,
2143 sizeof(adapter->fw_version),
2144 "%d.%d, 0x%08x, %d.%d.%d",
2145 fw.eep_major, fw.eep_minor, fw.etrack_id,
2146 fw.or_major, fw.or_build, fw.or_patch);
2147 /* no option rom */
7dc98a62 2148 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2149 snprintf(adapter->fw_version,
7dc98a62
CW
2150 sizeof(adapter->fw_version),
2151 "%d.%d, 0x%08x",
2152 fw.eep_major, fw.eep_minor, fw.etrack_id);
2153 } else {
2154 snprintf(adapter->fw_version,
2155 sizeof(adapter->fw_version),
2156 "%d.%d.%d",
2157 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2158 }
2159 break;
d67974f0 2160 }
d67974f0
CW
2161}
2162
56cec249
CW
2163/**
2164 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2165 *
2166 * @adapter: adapter struct
2167 **/
2168static void igb_init_mas(struct igb_adapter *adapter)
2169{
2170 struct e1000_hw *hw = &adapter->hw;
2171 u16 eeprom_data;
2172
2173 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2174 switch (hw->bus.func) {
2175 case E1000_FUNC_0:
2176 if (eeprom_data & IGB_MAS_ENABLE_0) {
2177 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178 netdev_info(adapter->netdev,
2179 "MAS: Enabling Media Autosense for port %d\n",
2180 hw->bus.func);
2181 }
2182 break;
2183 case E1000_FUNC_1:
2184 if (eeprom_data & IGB_MAS_ENABLE_1) {
2185 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186 netdev_info(adapter->netdev,
2187 "MAS: Enabling Media Autosense for port %d\n",
2188 hw->bus.func);
2189 }
2190 break;
2191 case E1000_FUNC_2:
2192 if (eeprom_data & IGB_MAS_ENABLE_2) {
2193 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2194 netdev_info(adapter->netdev,
2195 "MAS: Enabling Media Autosense for port %d\n",
2196 hw->bus.func);
2197 }
2198 break;
2199 case E1000_FUNC_3:
2200 if (eeprom_data & IGB_MAS_ENABLE_3) {
2201 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2202 netdev_info(adapter->netdev,
2203 "MAS: Enabling Media Autosense for port %d\n",
2204 hw->bus.func);
2205 }
2206 break;
2207 default:
2208 /* Shouldn't get here */
2209 netdev_err(adapter->netdev,
2210 "MAS: Invalid port configuration, returning\n");
2211 break;
2212 }
2213}
2214
b980ac18
JK
2215/**
2216 * igb_init_i2c - Init I2C interface
441fc6fd 2217 * @adapter: pointer to adapter structure
b980ac18 2218 **/
441fc6fd
CW
2219static s32 igb_init_i2c(struct igb_adapter *adapter)
2220{
23d87824 2221 s32 status = 0;
441fc6fd
CW
2222
2223 /* I2C interface supported on i350 devices */
2224 if (adapter->hw.mac.type != e1000_i350)
23d87824 2225 return 0;
441fc6fd
CW
2226
2227 /* Initialize the i2c bus which is controlled by the registers.
2228 * This bus will use the i2c_algo_bit structue that implements
2229 * the protocol through toggling of the 4 bits in the register.
2230 */
2231 adapter->i2c_adap.owner = THIS_MODULE;
2232 adapter->i2c_algo = igb_i2c_algo;
2233 adapter->i2c_algo.data = adapter;
2234 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2235 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2236 strlcpy(adapter->i2c_adap.name, "igb BB",
2237 sizeof(adapter->i2c_adap.name));
2238 status = i2c_bit_add_bus(&adapter->i2c_adap);
2239 return status;
2240}
2241
9d5c8243 2242/**
b980ac18
JK
2243 * igb_probe - Device Initialization Routine
2244 * @pdev: PCI device information struct
2245 * @ent: entry in igb_pci_tbl
9d5c8243 2246 *
b980ac18 2247 * Returns 0 on success, negative on failure
9d5c8243 2248 *
b980ac18
JK
2249 * igb_probe initializes an adapter identified by a pci_dev structure.
2250 * The OS initialization, configuring of the adapter private structure,
2251 * and a hardware reset occur.
9d5c8243 2252 **/
1dd06ae8 2253static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2254{
2255 struct net_device *netdev;
2256 struct igb_adapter *adapter;
2257 struct e1000_hw *hw;
4337e993 2258 u16 eeprom_data = 0;
9835fd73 2259 s32 ret_val;
4337e993 2260 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2261 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2262 int err, pci_using_dac;
9835fd73 2263 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2264
bded64a7
AG
2265 /* Catch broken hardware that put the wrong VF device ID in
2266 * the PCIe SR-IOV capability.
2267 */
2268 if (pdev->is_virtfn) {
2269 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2270 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2271 return -EINVAL;
2272 }
2273
aed5dec3 2274 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2275 if (err)
2276 return err;
2277
2278 pci_using_dac = 0;
dc4ff9bb 2279 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2280 if (!err) {
dc4ff9bb 2281 pci_using_dac = 1;
9d5c8243 2282 } else {
dc4ff9bb 2283 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2284 if (err) {
dc4ff9bb
RK
2285 dev_err(&pdev->dev,
2286 "No usable DMA configuration, aborting\n");
2287 goto err_dma;
9d5c8243
AK
2288 }
2289 }
2290
aed5dec3 2291 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2292 IORESOURCE_MEM),
2293 igb_driver_name);
9d5c8243
AK
2294 if (err)
2295 goto err_pci_reg;
2296
19d5afd4 2297 pci_enable_pcie_error_reporting(pdev);
40a914fa 2298
9d5c8243 2299 pci_set_master(pdev);
c682fc23 2300 pci_save_state(pdev);
9d5c8243
AK
2301
2302 err = -ENOMEM;
1bfaf07b 2303 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2304 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2305 if (!netdev)
2306 goto err_alloc_etherdev;
2307
2308 SET_NETDEV_DEV(netdev, &pdev->dev);
2309
2310 pci_set_drvdata(pdev, netdev);
2311 adapter = netdev_priv(netdev);
2312 adapter->netdev = netdev;
2313 adapter->pdev = pdev;
2314 hw = &adapter->hw;
2315 hw->back = adapter;
b3f4d599 2316 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2317
9d5c8243 2318 err = -EIO;
73bf8048
JW
2319 adapter->io_addr = pci_iomap(pdev, 0, 0);
2320 if (!adapter->io_addr)
9d5c8243 2321 goto err_ioremap;
73bf8048
JW
2322 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2323 hw->hw_addr = adapter->io_addr;
9d5c8243 2324
2e5c6922 2325 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2326 igb_set_ethtool_ops(netdev);
9d5c8243 2327 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2328
2329 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2330
89dbefb2
AS
2331 netdev->mem_start = pci_resource_start(pdev, 0);
2332 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2333
9d5c8243
AK
2334 /* PCI config space info */
2335 hw->vendor_id = pdev->vendor;
2336 hw->device_id = pdev->device;
2337 hw->revision_id = pdev->revision;
2338 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2339 hw->subsystem_device_id = pdev->subsystem_device;
2340
9d5c8243
AK
2341 /* Copy the default MAC, PHY and NVM function pointers */
2342 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2343 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2344 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2345 /* Initialize skew-specific constants */
2346 err = ei->get_invariants(hw);
2347 if (err)
450c87c8 2348 goto err_sw_init;
9d5c8243 2349
450c87c8 2350 /* setup the private structure */
9d5c8243
AK
2351 err = igb_sw_init(adapter);
2352 if (err)
2353 goto err_sw_init;
2354
2355 igb_get_bus_info_pcie(hw);
2356
2357 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2358
2359 /* Copper options */
2360 if (hw->phy.media_type == e1000_media_type_copper) {
2361 hw->phy.mdix = AUTO_ALL_MODES;
2362 hw->phy.disable_polarity_correction = false;
2363 hw->phy.ms_type = e1000_ms_hw_default;
2364 }
2365
2366 if (igb_check_reset_block(hw))
2367 dev_info(&pdev->dev,
2368 "PHY reset is blocked due to SOL/IDER session.\n");
2369
b980ac18 2370 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2371 * set by igb_sw_init so we should use an or instead of an
2372 * assignment.
2373 */
2374 netdev->features |= NETIF_F_SG |
2375 NETIF_F_IP_CSUM |
2376 NETIF_F_IPV6_CSUM |
2377 NETIF_F_TSO |
2378 NETIF_F_TSO6 |
2379 NETIF_F_RXHASH |
2380 NETIF_F_RXCSUM |
f646968f
PM
2381 NETIF_F_HW_VLAN_CTAG_RX |
2382 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2383
2384 /* copy netdev features into list of user selectable features */
2385 netdev->hw_features |= netdev->features;
89eaefb6 2386 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2387
2388 /* set this bit last since it cannot be part of hw_features */
f646968f 2389 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2390
2391 netdev->vlan_features |= NETIF_F_TSO |
2392 NETIF_F_TSO6 |
2393 NETIF_F_IP_CSUM |
2394 NETIF_F_IPV6_CSUM |
2395 NETIF_F_SG;
48f29ffc 2396
6b8f0922
BG
2397 netdev->priv_flags |= IFF_SUPP_NOFCS;
2398
7b872a55 2399 if (pci_using_dac) {
9d5c8243 2400 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2401 netdev->vlan_features |= NETIF_F_HIGHDMA;
2402 }
9d5c8243 2403
ac52caa3 2404 if (hw->mac.type >= e1000_82576) {
53692b1d
TH
2405 netdev->hw_features |= NETIF_F_SCTP_CRC;
2406 netdev->features |= NETIF_F_SCTP_CRC;
ac52caa3 2407 }
b9473560 2408
01789349
JP
2409 netdev->priv_flags |= IFF_UNICAST_FLT;
2410
330a6d6a 2411 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2412
2413 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2414 * known good starting state
2415 */
9d5c8243
AK
2416 hw->mac.ops.reset_hw(hw);
2417
ef3a0092
CW
2418 /* make sure the NVM is good , i211/i210 parts can have special NVM
2419 * that doesn't contain a checksum
f96a8a0b 2420 */
ef3a0092
CW
2421 switch (hw->mac.type) {
2422 case e1000_i210:
2423 case e1000_i211:
2424 if (igb_get_flash_presence_i210(hw)) {
2425 if (hw->nvm.ops.validate(hw) < 0) {
2426 dev_err(&pdev->dev,
2427 "The NVM Checksum Is Not Valid\n");
2428 err = -EIO;
2429 goto err_eeprom;
2430 }
2431 }
2432 break;
2433 default:
f96a8a0b
CW
2434 if (hw->nvm.ops.validate(hw) < 0) {
2435 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2436 err = -EIO;
2437 goto err_eeprom;
2438 }
ef3a0092 2439 break;
9d5c8243
AK
2440 }
2441
2442 /* copy the MAC address out of the NVM */
2443 if (hw->mac.ops.read_mac_addr(hw))
2444 dev_err(&pdev->dev, "NVM Read Error\n");
2445
2446 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2447
aaeb6cdf 2448 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2449 dev_err(&pdev->dev, "Invalid MAC Address\n");
2450 err = -EIO;
2451 goto err_eeprom;
2452 }
2453
d67974f0
CW
2454 /* get firmware version for ethtool -i */
2455 igb_set_fw_version(adapter);
2456
27dff8b2
TF
2457 /* configure RXPBSIZE and TXPBSIZE */
2458 if (hw->mac.type == e1000_i210) {
2459 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2460 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2461 }
2462
c061b18d 2463 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2464 (unsigned long) adapter);
c061b18d 2465 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2466 (unsigned long) adapter);
9d5c8243
AK
2467
2468 INIT_WORK(&adapter->reset_task, igb_reset_task);
2469 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2470
450c87c8 2471 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2472 adapter->fc_autoneg = true;
2473 hw->mac.autoneg = true;
2474 hw->phy.autoneg_advertised = 0x2f;
2475
0cce119a
AD
2476 hw->fc.requested_mode = e1000_fc_default;
2477 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2478
9d5c8243
AK
2479 igb_validate_mdi_setting(hw);
2480
63d4a8f9 2481 /* By default, support wake on port A */
a2cf8b6c 2482 if (hw->bus.func == 0)
63d4a8f9
MV
2483 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2484
2485 /* Check the NVM for wake support on non-port A ports */
2486 if (hw->mac.type >= e1000_82580)
55cac248 2487 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2488 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2489 &eeprom_data);
a2cf8b6c
AD
2490 else if (hw->bus.func == 1)
2491 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2492
63d4a8f9
MV
2493 if (eeprom_data & IGB_EEPROM_APME)
2494 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2495
2496 /* now that we have the eeprom settings, apply the special cases where
2497 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2498 * lan on a particular port
2499 */
9d5c8243
AK
2500 switch (pdev->device) {
2501 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2502 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2503 break;
2504 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2505 case E1000_DEV_ID_82576_FIBER:
2506 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2507 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2508 * regardless of eeprom setting
2509 */
9d5c8243 2510 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2511 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2512 break;
c8ea5ea9 2513 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2514 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2515 /* if quad port adapter, disable WoL on all but port A */
2516 if (global_quad_port_a != 0)
63d4a8f9 2517 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2518 else
2519 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2520 /* Reset for multiple quad port adapters */
2521 if (++global_quad_port_a == 4)
2522 global_quad_port_a = 0;
2523 break;
63d4a8f9
MV
2524 default:
2525 /* If the device can't wake, don't set software support */
2526 if (!device_can_wakeup(&adapter->pdev->dev))
2527 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2528 }
2529
2530 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2531 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2532 adapter->wol |= E1000_WUFC_MAG;
2533
2534 /* Some vendors want WoL disabled by default, but still supported */
2535 if ((hw->mac.type == e1000_i350) &&
2536 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2537 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2538 adapter->wol = 0;
2539 }
2540
2541 device_set_wakeup_enable(&adapter->pdev->dev,
2542 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2543
2544 /* reset the hardware with the new settings */
2545 igb_reset(adapter);
2546
441fc6fd
CW
2547 /* Init the I2C interface */
2548 err = igb_init_i2c(adapter);
2549 if (err) {
2550 dev_err(&pdev->dev, "failed to init i2c interface\n");
2551 goto err_eeprom;
2552 }
2553
9d5c8243 2554 /* let the f/w know that the h/w is now under the control of the
e52c0f96
CW
2555 * driver.
2556 */
9d5c8243
AK
2557 igb_get_hw_control(adapter);
2558
9d5c8243
AK
2559 strcpy(netdev->name, "eth%d");
2560 err = register_netdev(netdev);
2561 if (err)
2562 goto err_register;
2563
b168dfc5
JB
2564 /* carrier off reporting is important to ethtool even BEFORE open */
2565 netif_carrier_off(netdev);
2566
421e02f0 2567#ifdef CONFIG_IGB_DCA
bbd98fe4 2568 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2569 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2570 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2571 igb_setup_dca(adapter);
2572 }
fe4506b6 2573
38c845c7 2574#endif
e428893b
CW
2575#ifdef CONFIG_IGB_HWMON
2576 /* Initialize the thermal sensor on i350 devices. */
2577 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2578 u16 ets_word;
3c89f6d0 2579
b980ac18 2580 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2581 * external thermal sensor.
2582 */
2583 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2584 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2585 adapter->ets = true;
2586 else
2587 adapter->ets = false;
2588 if (igb_sysfs_init(adapter))
2589 dev_err(&pdev->dev,
2590 "failed to allocate sysfs resources\n");
2591 } else {
2592 adapter->ets = false;
2593 }
2594#endif
56cec249
CW
2595 /* Check if Media Autosense is enabled */
2596 adapter->ei = *ei;
2597 if (hw->dev_spec._82575.mas_capable)
2598 igb_init_mas(adapter);
2599
673b8b70 2600 /* do hw tstamp init after resetting */
7ebae817 2601 igb_ptp_init(adapter);
673b8b70 2602
9d5c8243 2603 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2604 /* print bus type/speed/width info, not applicable to i354 */
2605 if (hw->mac.type != e1000_i354) {
2606 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2607 netdev->name,
2608 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2609 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2610 "unknown"),
2611 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2612 "Width x4" :
2613 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2614 "Width x2" :
2615 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2616 "Width x1" : "unknown"), netdev->dev_addr);
2617 }
9d5c8243 2618
53ea6c7e
TF
2619 if ((hw->mac.type >= e1000_i210 ||
2620 igb_get_flash_presence_i210(hw))) {
2621 ret_val = igb_read_part_string(hw, part_str,
2622 E1000_PBANUM_LENGTH);
2623 } else {
2624 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2625 }
2626
9835fd73
CW
2627 if (ret_val)
2628 strcpy(part_str, "Unknown");
2629 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2630 dev_info(&pdev->dev,
2631 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 2632 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 2633 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2634 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
2635 if (hw->phy.media_type == e1000_media_type_copper) {
2636 switch (hw->mac.type) {
2637 case e1000_i350:
2638 case e1000_i210:
2639 case e1000_i211:
2640 /* Enable EEE for internal copper PHY devices */
c4c112f1 2641 err = igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2642 if ((!err) &&
2643 (!hw->dev_spec._82575.eee_disable)) {
2644 adapter->eee_advert =
2645 MDIO_EEE_100TX | MDIO_EEE_1000T;
2646 adapter->flags |= IGB_FLAG_EEE;
2647 }
2648 break;
2649 case e1000_i354:
ceb5f13b 2650 if ((rd32(E1000_CTRL_EXT) &
f4c01e96 2651 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
c4c112f1 2652 err = igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2653 if ((!err) &&
2654 (!hw->dev_spec._82575.eee_disable)) {
2655 adapter->eee_advert =
2656 MDIO_EEE_100TX | MDIO_EEE_1000T;
2657 adapter->flags |= IGB_FLAG_EEE;
2658 }
2659 }
2660 break;
2661 default:
2662 break;
ceb5f13b 2663 }
09b068d4 2664 }
749ab2cd 2665 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2666 return 0;
2667
2668err_register:
2669 igb_release_hw_control(adapter);
441fc6fd 2670 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2671err_eeprom:
2672 if (!igb_check_reset_block(hw))
f5f4cf08 2673 igb_reset_phy(hw);
9d5c8243
AK
2674
2675 if (hw->flash_address)
2676 iounmap(hw->flash_address);
9d5c8243 2677err_sw_init:
42ad1a03 2678 kfree(adapter->shadow_vfta);
047e0030 2679 igb_clear_interrupt_scheme(adapter);
ceee3450
TF
2680#ifdef CONFIG_PCI_IOV
2681 igb_disable_sriov(pdev);
2682#endif
73bf8048 2683 pci_iounmap(pdev, adapter->io_addr);
9d5c8243
AK
2684err_ioremap:
2685 free_netdev(netdev);
2686err_alloc_etherdev:
559e9c49 2687 pci_release_selected_regions(pdev,
b980ac18 2688 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2689err_pci_reg:
2690err_dma:
2691 pci_disable_device(pdev);
2692 return err;
2693}
2694
fa44f2f1 2695#ifdef CONFIG_PCI_IOV
781798a1 2696static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2697{
2698 struct net_device *netdev = pci_get_drvdata(pdev);
2699 struct igb_adapter *adapter = netdev_priv(netdev);
2700 struct e1000_hw *hw = &adapter->hw;
2701
2702 /* reclaim resources allocated to VFs */
2703 if (adapter->vf_data) {
2704 /* disable iov and allow time for transactions to clear */
b09186d2 2705 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2706 dev_warn(&pdev->dev,
2707 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2708 return -EPERM;
2709 } else {
2710 pci_disable_sriov(pdev);
2711 msleep(500);
2712 }
2713
2714 kfree(adapter->vf_data);
2715 adapter->vf_data = NULL;
2716 adapter->vfs_allocated_count = 0;
2717 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2718 wrfl();
2719 msleep(100);
2720 dev_info(&pdev->dev, "IOV Disabled\n");
2721
2722 /* Re-enable DMA Coalescing flag since IOV is turned off */
2723 adapter->flags |= IGB_FLAG_DMAC;
2724 }
2725
2726 return 0;
2727}
2728
2729static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2730{
2731 struct net_device *netdev = pci_get_drvdata(pdev);
2732 struct igb_adapter *adapter = netdev_priv(netdev);
2733 int old_vfs = pci_num_vf(pdev);
2734 int err = 0;
2735 int i;
2736
cd14ef54 2737 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
2738 err = -EPERM;
2739 goto out;
2740 }
fa44f2f1
GR
2741 if (!num_vfs)
2742 goto out;
fa44f2f1 2743
781798a1
SA
2744 if (old_vfs) {
2745 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2746 old_vfs, max_vfs);
2747 adapter->vfs_allocated_count = old_vfs;
2748 } else
2749 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2750
2751 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2752 sizeof(struct vf_data_storage), GFP_KERNEL);
2753
2754 /* if allocation failed then we do not support SR-IOV */
2755 if (!adapter->vf_data) {
2756 adapter->vfs_allocated_count = 0;
2757 dev_err(&pdev->dev,
2758 "Unable to allocate memory for VF Data Storage\n");
2759 err = -ENOMEM;
2760 goto out;
2761 }
2762
781798a1
SA
2763 /* only call pci_enable_sriov() if no VFs are allocated already */
2764 if (!old_vfs) {
2765 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2766 if (err)
2767 goto err_out;
2768 }
fa44f2f1
GR
2769 dev_info(&pdev->dev, "%d VFs allocated\n",
2770 adapter->vfs_allocated_count);
2771 for (i = 0; i < adapter->vfs_allocated_count; i++)
2772 igb_vf_configure(adapter, i);
2773
2774 /* DMA Coalescing is not supported in IOV mode. */
2775 adapter->flags &= ~IGB_FLAG_DMAC;
2776 goto out;
2777
2778err_out:
2779 kfree(adapter->vf_data);
2780 adapter->vf_data = NULL;
2781 adapter->vfs_allocated_count = 0;
2782out:
2783 return err;
2784}
2785
2786#endif
b980ac18 2787/**
441fc6fd
CW
2788 * igb_remove_i2c - Cleanup I2C interface
2789 * @adapter: pointer to adapter structure
b980ac18 2790 **/
441fc6fd
CW
2791static void igb_remove_i2c(struct igb_adapter *adapter)
2792{
441fc6fd
CW
2793 /* free the adapter bus structure */
2794 i2c_del_adapter(&adapter->i2c_adap);
2795}
2796
9d5c8243 2797/**
b980ac18
JK
2798 * igb_remove - Device Removal Routine
2799 * @pdev: PCI device information struct
9d5c8243 2800 *
b980ac18
JK
2801 * igb_remove is called by the PCI subsystem to alert the driver
2802 * that it should release a PCI device. The could be caused by a
2803 * Hot-Plug event, or because the driver is going to be removed from
2804 * memory.
9d5c8243 2805 **/
9f9a12f8 2806static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2807{
2808 struct net_device *netdev = pci_get_drvdata(pdev);
2809 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2810 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2811
749ab2cd 2812 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2813#ifdef CONFIG_IGB_HWMON
2814 igb_sysfs_exit(adapter);
2815#endif
441fc6fd 2816 igb_remove_i2c(adapter);
a79f4f88 2817 igb_ptp_stop(adapter);
b980ac18 2818 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2819 * disable watchdog from being rescheduled.
2820 */
9d5c8243
AK
2821 set_bit(__IGB_DOWN, &adapter->state);
2822 del_timer_sync(&adapter->watchdog_timer);
2823 del_timer_sync(&adapter->phy_info_timer);
2824
760141a5
TH
2825 cancel_work_sync(&adapter->reset_task);
2826 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2827
421e02f0 2828#ifdef CONFIG_IGB_DCA
7dfc16fa 2829 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2830 dev_info(&pdev->dev, "DCA disabled\n");
2831 dca_remove_requester(&pdev->dev);
7dfc16fa 2832 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2833 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2834 }
2835#endif
2836
9d5c8243 2837 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2838 * would have already happened in close and is redundant.
2839 */
9d5c8243
AK
2840 igb_release_hw_control(adapter);
2841
37680117 2842#ifdef CONFIG_PCI_IOV
fa44f2f1 2843 igb_disable_sriov(pdev);
37680117 2844#endif
559e9c49 2845
c23d92b8
AW
2846 unregister_netdev(netdev);
2847
2848 igb_clear_interrupt_scheme(adapter);
2849
73bf8048 2850 pci_iounmap(pdev, adapter->io_addr);
28b0759c
AD
2851 if (hw->flash_address)
2852 iounmap(hw->flash_address);
559e9c49 2853 pci_release_selected_regions(pdev,
b980ac18 2854 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2855
1128c756 2856 kfree(adapter->shadow_vfta);
9d5c8243
AK
2857 free_netdev(netdev);
2858
19d5afd4 2859 pci_disable_pcie_error_reporting(pdev);
40a914fa 2860
9d5c8243
AK
2861 pci_disable_device(pdev);
2862}
2863
a6b623e0 2864/**
b980ac18
JK
2865 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2866 * @adapter: board private structure to initialize
a6b623e0 2867 *
b980ac18
JK
2868 * This function initializes the vf specific data storage and then attempts to
2869 * allocate the VFs. The reason for ordering it this way is because it is much
2870 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2871 * the memory for the VFs.
a6b623e0 2872 **/
9f9a12f8 2873static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2874{
2875#ifdef CONFIG_PCI_IOV
2876 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2877 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2878
f96a8a0b
CW
2879 /* Virtualization features not supported on i210 family. */
2880 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2881 return;
2882
be06998f
JB
2883 /* Of the below we really only want the effect of getting
2884 * IGB_FLAG_HAS_MSIX set (if available), without which
2885 * igb_enable_sriov() has no effect.
2886 */
2887 igb_set_interrupt_capability(adapter, true);
2888 igb_reset_interrupt_capability(adapter);
2889
fa44f2f1 2890 pci_sriov_set_totalvfs(pdev, 7);
6423fc34 2891 igb_enable_sriov(pdev, max_vfs);
0224d663 2892
a6b623e0
AD
2893#endif /* CONFIG_PCI_IOV */
2894}
2895
fa44f2f1 2896static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2897{
2898 struct e1000_hw *hw = &adapter->hw;
374a542d 2899 u32 max_rss_queues;
9d5c8243 2900
374a542d 2901 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2902 switch (hw->mac.type) {
374a542d
MV
2903 case e1000_i211:
2904 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2905 break;
2906 case e1000_82575:
f96a8a0b 2907 case e1000_i210:
374a542d
MV
2908 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2909 break;
2910 case e1000_i350:
2911 /* I350 cannot do RSS and SR-IOV at the same time */
2912 if (!!adapter->vfs_allocated_count) {
2913 max_rss_queues = 1;
2914 break;
2915 }
2916 /* fall through */
2917 case e1000_82576:
2918 if (!!adapter->vfs_allocated_count) {
2919 max_rss_queues = 2;
2920 break;
2921 }
2922 /* fall through */
2923 case e1000_82580:
ceb5f13b 2924 case e1000_i354:
374a542d
MV
2925 default:
2926 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2927 break;
374a542d
MV
2928 }
2929
2930 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2931
72ddef05
SS
2932 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2933}
2934
2935void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2936 const u32 max_rss_queues)
2937{
2938 struct e1000_hw *hw = &adapter->hw;
2939
374a542d
MV
2940 /* Determine if we need to pair queues. */
2941 switch (hw->mac.type) {
2942 case e1000_82575:
f96a8a0b 2943 case e1000_i211:
374a542d 2944 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2945 break;
374a542d 2946 case e1000_82576:
374a542d
MV
2947 case e1000_82580:
2948 case e1000_i350:
ceb5f13b 2949 case e1000_i354:
374a542d 2950 case e1000_i210:
f96a8a0b 2951 default:
b980ac18 2952 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2953 * order to conserve interrupts due to limited supply.
2954 */
2955 if (adapter->rss_queues > (max_rss_queues / 2))
2956 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
37a5d163
SS
2957 else
2958 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2959 break;
2960 }
fa44f2f1
GR
2961}
2962
2963/**
b980ac18
JK
2964 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2965 * @adapter: board private structure to initialize
fa44f2f1 2966 *
b980ac18
JK
2967 * igb_sw_init initializes the Adapter private data structure.
2968 * Fields are initialized based on PCI device information and
2969 * OS network device settings (MTU size).
fa44f2f1
GR
2970 **/
2971static int igb_sw_init(struct igb_adapter *adapter)
2972{
2973 struct e1000_hw *hw = &adapter->hw;
2974 struct net_device *netdev = adapter->netdev;
2975 struct pci_dev *pdev = adapter->pdev;
2976
2977 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2978
2979 /* set default ring sizes */
2980 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2981 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2982
2983 /* set default ITR values */
2984 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2985 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2986
2987 /* set default work limits */
2988 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2989
2990 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2991 VLAN_HLEN;
2992 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2993
2994 spin_lock_init(&adapter->stats64_lock);
2995#ifdef CONFIG_PCI_IOV
2996 switch (hw->mac.type) {
2997 case e1000_82576:
2998 case e1000_i350:
2999 if (max_vfs > 7) {
3000 dev_warn(&pdev->dev,
3001 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 3002 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
3003 } else
3004 adapter->vfs_allocated_count = max_vfs;
3005 if (adapter->vfs_allocated_count)
3006 dev_warn(&pdev->dev,
3007 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3008 break;
3009 default:
3010 break;
3011 }
3012#endif /* CONFIG_PCI_IOV */
3013
cbfe360a
SA
3014 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3015 adapter->flags |= IGB_FLAG_HAS_MSIX;
3016
ceee3450
TF
3017 igb_probe_vfs(adapter);
3018
fa44f2f1 3019 igb_init_queue_configuration(adapter);
a99955fc 3020
1128c756 3021 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
3022 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3023 GFP_ATOMIC);
1128c756 3024
a6b623e0 3025 /* This call may decrease the number of queues */
53c7d064 3026 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
3027 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3028 return -ENOMEM;
3029 }
3030
3031 /* Explicitly disable IRQ since the NIC can be in any state. */
3032 igb_irq_disable(adapter);
3033
f96a8a0b 3034 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
3035 adapter->flags &= ~IGB_FLAG_DMAC;
3036
9d5c8243
AK
3037 set_bit(__IGB_DOWN, &adapter->state);
3038 return 0;
3039}
3040
3041/**
b980ac18
JK
3042 * igb_open - Called when a network interface is made active
3043 * @netdev: network interface device structure
9d5c8243 3044 *
b980ac18 3045 * Returns 0 on success, negative value on failure
9d5c8243 3046 *
b980ac18
JK
3047 * The open entry point is called when a network interface is made
3048 * active by the system (IFF_UP). At this point all resources needed
3049 * for transmit and receive operations are allocated, the interrupt
3050 * handler is registered with the OS, the watchdog timer is started,
3051 * and the stack is notified that the interface is ready.
9d5c8243 3052 **/
749ab2cd 3053static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3054{
3055 struct igb_adapter *adapter = netdev_priv(netdev);
3056 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3057 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3058 int err;
3059 int i;
3060
3061 /* disallow open during test */
749ab2cd
YZ
3062 if (test_bit(__IGB_TESTING, &adapter->state)) {
3063 WARN_ON(resuming);
9d5c8243 3064 return -EBUSY;
749ab2cd
YZ
3065 }
3066
3067 if (!resuming)
3068 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3069
b168dfc5
JB
3070 netif_carrier_off(netdev);
3071
9d5c8243
AK
3072 /* allocate transmit descriptors */
3073 err = igb_setup_all_tx_resources(adapter);
3074 if (err)
3075 goto err_setup_tx;
3076
3077 /* allocate receive descriptors */
3078 err = igb_setup_all_rx_resources(adapter);
3079 if (err)
3080 goto err_setup_rx;
3081
88a268c1 3082 igb_power_up_link(adapter);
9d5c8243 3083
9d5c8243
AK
3084 /* before we allocate an interrupt, we must be ready to handle it.
3085 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3086 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3087 * clean_rx handler before we do so.
3088 */
9d5c8243
AK
3089 igb_configure(adapter);
3090
3091 err = igb_request_irq(adapter);
3092 if (err)
3093 goto err_req_irq;
3094
0c2cc02e
AD
3095 /* Notify the stack of the actual queue counts. */
3096 err = netif_set_real_num_tx_queues(adapter->netdev,
3097 adapter->num_tx_queues);
3098 if (err)
3099 goto err_set_queues;
3100
3101 err = netif_set_real_num_rx_queues(adapter->netdev,
3102 adapter->num_rx_queues);
3103 if (err)
3104 goto err_set_queues;
3105
9d5c8243
AK
3106 /* From here on the code is the same as igb_up() */
3107 clear_bit(__IGB_DOWN, &adapter->state);
3108
0d1ae7f4
AD
3109 for (i = 0; i < adapter->num_q_vectors; i++)
3110 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3111
3112 /* Clear any pending interrupts. */
3113 rd32(E1000_ICR);
844290e5
PW
3114
3115 igb_irq_enable(adapter);
3116
d4960307
AD
3117 /* notify VFs that reset has been completed */
3118 if (adapter->vfs_allocated_count) {
3119 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 3120
d4960307
AD
3121 reg_data |= E1000_CTRL_EXT_PFRSTD;
3122 wr32(E1000_CTRL_EXT, reg_data);
3123 }
3124
d55b53ff
JK
3125 netif_tx_start_all_queues(netdev);
3126
749ab2cd
YZ
3127 if (!resuming)
3128 pm_runtime_put(&pdev->dev);
3129
25568a53
AD
3130 /* start the watchdog. */
3131 hw->mac.get_link_status = 1;
3132 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3133
3134 return 0;
3135
0c2cc02e
AD
3136err_set_queues:
3137 igb_free_irq(adapter);
9d5c8243
AK
3138err_req_irq:
3139 igb_release_hw_control(adapter);
88a268c1 3140 igb_power_down_link(adapter);
9d5c8243
AK
3141 igb_free_all_rx_resources(adapter);
3142err_setup_rx:
3143 igb_free_all_tx_resources(adapter);
3144err_setup_tx:
3145 igb_reset(adapter);
749ab2cd
YZ
3146 if (!resuming)
3147 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3148
3149 return err;
3150}
3151
749ab2cd
YZ
3152static int igb_open(struct net_device *netdev)
3153{
3154 return __igb_open(netdev, false);
3155}
3156
9d5c8243 3157/**
b980ac18
JK
3158 * igb_close - Disables a network interface
3159 * @netdev: network interface device structure
9d5c8243 3160 *
b980ac18 3161 * Returns 0, this is not allowed to fail
9d5c8243 3162 *
b980ac18
JK
3163 * The close entry point is called when an interface is de-activated
3164 * by the OS. The hardware is still under the driver's control, but
3165 * needs to be disabled. A global MAC reset is issued to stop the
3166 * hardware, and all transmit and receive resources are freed.
9d5c8243 3167 **/
749ab2cd 3168static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3169{
3170 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3171 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3172
3173 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3174
749ab2cd
YZ
3175 if (!suspending)
3176 pm_runtime_get_sync(&pdev->dev);
3177
3178 igb_down(adapter);
9d5c8243
AK
3179 igb_free_irq(adapter);
3180
3181 igb_free_all_tx_resources(adapter);
3182 igb_free_all_rx_resources(adapter);
3183
749ab2cd
YZ
3184 if (!suspending)
3185 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3186 return 0;
3187}
3188
749ab2cd
YZ
3189static int igb_close(struct net_device *netdev)
3190{
3191 return __igb_close(netdev, false);
3192}
3193
9d5c8243 3194/**
b980ac18
JK
3195 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3196 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3197 *
b980ac18 3198 * Return 0 on success, negative on failure
9d5c8243 3199 **/
80785298 3200int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3201{
59d71989 3202 struct device *dev = tx_ring->dev;
9d5c8243
AK
3203 int size;
3204
06034649 3205 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3206
3207 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3208 if (!tx_ring->tx_buffer_info)
9d5c8243 3209 goto err;
9d5c8243
AK
3210
3211 /* round up to nearest 4K */
85e8d004 3212 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3213 tx_ring->size = ALIGN(tx_ring->size, 4096);
3214
5536d210
AD
3215 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3216 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3217 if (!tx_ring->desc)
3218 goto err;
3219
9d5c8243
AK
3220 tx_ring->next_to_use = 0;
3221 tx_ring->next_to_clean = 0;
81c2fc22 3222
9d5c8243
AK
3223 return 0;
3224
3225err:
06034649 3226 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3227 tx_ring->tx_buffer_info = NULL;
3228 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3229 return -ENOMEM;
3230}
3231
3232/**
b980ac18
JK
3233 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3234 * (Descriptors) for all queues
3235 * @adapter: board private structure
9d5c8243 3236 *
b980ac18 3237 * Return 0 on success, negative on failure
9d5c8243
AK
3238 **/
3239static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3240{
439705e1 3241 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3242 int i, err = 0;
3243
3244 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3245 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3246 if (err) {
439705e1 3247 dev_err(&pdev->dev,
9d5c8243
AK
3248 "Allocation for Tx Queue %u failed\n", i);
3249 for (i--; i >= 0; i--)
3025a446 3250 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3251 break;
3252 }
3253 }
3254
3255 return err;
3256}
3257
3258/**
b980ac18
JK
3259 * igb_setup_tctl - configure the transmit control registers
3260 * @adapter: Board private structure
9d5c8243 3261 **/
d7ee5b3a 3262void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3263{
9d5c8243
AK
3264 struct e1000_hw *hw = &adapter->hw;
3265 u32 tctl;
9d5c8243 3266
85b430b4
AD
3267 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3268 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3269
3270 /* Program the Transmit Control Register */
9d5c8243
AK
3271 tctl = rd32(E1000_TCTL);
3272 tctl &= ~E1000_TCTL_CT;
3273 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3274 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3275
3276 igb_config_collision_dist(hw);
3277
9d5c8243
AK
3278 /* Enable transmits */
3279 tctl |= E1000_TCTL_EN;
3280
3281 wr32(E1000_TCTL, tctl);
3282}
3283
85b430b4 3284/**
b980ac18
JK
3285 * igb_configure_tx_ring - Configure transmit ring after Reset
3286 * @adapter: board private structure
3287 * @ring: tx ring to configure
85b430b4 3288 *
b980ac18 3289 * Configure a transmit ring after a reset.
85b430b4 3290 **/
d7ee5b3a 3291void igb_configure_tx_ring(struct igb_adapter *adapter,
9005df38 3292 struct igb_ring *ring)
85b430b4
AD
3293{
3294 struct e1000_hw *hw = &adapter->hw;
a74420e0 3295 u32 txdctl = 0;
85b430b4
AD
3296 u64 tdba = ring->dma;
3297 int reg_idx = ring->reg_idx;
3298
3299 /* disable the queue */
a74420e0 3300 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3301 wrfl();
3302 mdelay(10);
3303
3304 wr32(E1000_TDLEN(reg_idx),
b980ac18 3305 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3306 wr32(E1000_TDBAL(reg_idx),
b980ac18 3307 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3308 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3309
fce99e34 3310 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3311 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3312 writel(0, ring->tail);
85b430b4
AD
3313
3314 txdctl |= IGB_TX_PTHRESH;
3315 txdctl |= IGB_TX_HTHRESH << 8;
3316 txdctl |= IGB_TX_WTHRESH << 16;
3317
3318 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3319 wr32(E1000_TXDCTL(reg_idx), txdctl);
3320}
3321
3322/**
b980ac18
JK
3323 * igb_configure_tx - Configure transmit Unit after Reset
3324 * @adapter: board private structure
85b430b4 3325 *
b980ac18 3326 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3327 **/
3328static void igb_configure_tx(struct igb_adapter *adapter)
3329{
3330 int i;
3331
3332 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3333 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3334}
3335
9d5c8243 3336/**
b980ac18
JK
3337 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3338 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3339 *
b980ac18 3340 * Returns 0 on success, negative on failure
9d5c8243 3341 **/
80785298 3342int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3343{
59d71989 3344 struct device *dev = rx_ring->dev;
f33005a6 3345 int size;
9d5c8243 3346
06034649 3347 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3348
3349 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3350 if (!rx_ring->rx_buffer_info)
9d5c8243 3351 goto err;
9d5c8243 3352
9d5c8243 3353 /* Round up to nearest 4K */
f33005a6 3354 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3355 rx_ring->size = ALIGN(rx_ring->size, 4096);
3356
5536d210
AD
3357 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3358 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3359 if (!rx_ring->desc)
3360 goto err;
3361
cbc8e55f 3362 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3363 rx_ring->next_to_clean = 0;
3364 rx_ring->next_to_use = 0;
9d5c8243 3365
9d5c8243
AK
3366 return 0;
3367
3368err:
06034649
AD
3369 vfree(rx_ring->rx_buffer_info);
3370 rx_ring->rx_buffer_info = NULL;
f33005a6 3371 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3372 return -ENOMEM;
3373}
3374
3375/**
b980ac18
JK
3376 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3377 * (Descriptors) for all queues
3378 * @adapter: board private structure
9d5c8243 3379 *
b980ac18 3380 * Return 0 on success, negative on failure
9d5c8243
AK
3381 **/
3382static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3383{
439705e1 3384 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3385 int i, err = 0;
3386
3387 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3388 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3389 if (err) {
439705e1 3390 dev_err(&pdev->dev,
9d5c8243
AK
3391 "Allocation for Rx Queue %u failed\n", i);
3392 for (i--; i >= 0; i--)
3025a446 3393 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3394 break;
3395 }
3396 }
3397
3398 return err;
3399}
3400
06cf2666 3401/**
b980ac18
JK
3402 * igb_setup_mrqc - configure the multiple receive queue control registers
3403 * @adapter: Board private structure
06cf2666
AD
3404 **/
3405static void igb_setup_mrqc(struct igb_adapter *adapter)
3406{
3407 struct e1000_hw *hw = &adapter->hw;
3408 u32 mrqc, rxcsum;
ed12cc9a 3409 u32 j, num_rx_queues;
eb31f849 3410 u32 rss_key[10];
06cf2666 3411
eb31f849 3412 netdev_rss_key_fill(rss_key, sizeof(rss_key));
a57fe23e 3413 for (j = 0; j < 10; j++)
eb31f849 3414 wr32(E1000_RSSRK(j), rss_key[j]);
06cf2666 3415
a99955fc 3416 num_rx_queues = adapter->rss_queues;
06cf2666 3417
797fd4be 3418 switch (hw->mac.type) {
797fd4be
AD
3419 case e1000_82576:
3420 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3421 if (adapter->vfs_allocated_count)
06cf2666 3422 num_rx_queues = 2;
797fd4be
AD
3423 break;
3424 default:
3425 break;
06cf2666
AD
3426 }
3427
ed12cc9a
LMV
3428 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3429 for (j = 0; j < IGB_RETA_SIZE; j++)
c502ea2e
CW
3430 adapter->rss_indir_tbl[j] =
3431 (j * num_rx_queues) / IGB_RETA_SIZE;
ed12cc9a 3432 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3433 }
ed12cc9a 3434 igb_write_rss_indir_tbl(adapter);
06cf2666 3435
b980ac18 3436 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3437 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3438 * offloads as they are enabled by default
3439 */
3440 rxcsum = rd32(E1000_RXCSUM);
3441 rxcsum |= E1000_RXCSUM_PCSD;
3442
3443 if (adapter->hw.mac.type >= e1000_82576)
3444 /* Enable Receive Checksum Offload for SCTP */
3445 rxcsum |= E1000_RXCSUM_CRCOFL;
3446
3447 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3448 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3449
039454a8
AA
3450 /* Generate RSS hash based on packet types, TCP/UDP
3451 * port numbers and/or IPv4/v6 src and dst addresses
3452 */
f96a8a0b
CW
3453 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3454 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3455 E1000_MRQC_RSS_FIELD_IPV6 |
3456 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3457 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3458
039454a8
AA
3459 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3460 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3461 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3462 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3463
06cf2666
AD
3464 /* If VMDq is enabled then we set the appropriate mode for that, else
3465 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3466 * if we are only using one queue
3467 */
06cf2666
AD
3468 if (adapter->vfs_allocated_count) {
3469 if (hw->mac.type > e1000_82575) {
3470 /* Set the default pool for the PF's first queue */
3471 u32 vtctl = rd32(E1000_VT_CTL);
9005df38 3472
06cf2666
AD
3473 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3474 E1000_VT_CTL_DISABLE_DEF_POOL);
3475 vtctl |= adapter->vfs_allocated_count <<
3476 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3477 wr32(E1000_VT_CTL, vtctl);
3478 }
a99955fc 3479 if (adapter->rss_queues > 1)
f96a8a0b 3480 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3481 else
f96a8a0b 3482 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3483 } else {
f96a8a0b
CW
3484 if (hw->mac.type != e1000_i211)
3485 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3486 }
3487 igb_vmm_control(adapter);
3488
06cf2666
AD
3489 wr32(E1000_MRQC, mrqc);
3490}
3491
9d5c8243 3492/**
b980ac18
JK
3493 * igb_setup_rctl - configure the receive control registers
3494 * @adapter: Board private structure
9d5c8243 3495 **/
d7ee5b3a 3496void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3497{
3498 struct e1000_hw *hw = &adapter->hw;
3499 u32 rctl;
9d5c8243
AK
3500
3501 rctl = rd32(E1000_RCTL);
3502
3503 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3504 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3505
69d728ba 3506 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3507 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3508
b980ac18 3509 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3510 * redirection as it did with e1000. Newer features require
3511 * that the HW strips the CRC.
73cd78f1 3512 */
87cb7e8c 3513 rctl |= E1000_RCTL_SECRC;
9d5c8243 3514
559e9c49 3515 /* disable store bad packets and clear size bits. */
ec54d7d6 3516 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3517
45693bcb 3518 /* enable LPE to allow for reception of jumbo frames */
6ec43fe6 3519 rctl |= E1000_RCTL_LPE;
9d5c8243 3520
952f72a8
AD
3521 /* disable queue 0 to prevent tail write w/o re-config */
3522 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3523
e1739522
AD
3524 /* Attention!!! For SR-IOV PF driver operations you must enable
3525 * queue drop for all VF and PF queues to prevent head of line blocking
3526 * if an un-trusted VF does not provide descriptors to hardware.
3527 */
3528 if (adapter->vfs_allocated_count) {
e1739522
AD
3529 /* set all queue drop enable bits */
3530 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3531 }
3532
89eaefb6
BG
3533 /* This is useful for sniffing bad packets. */
3534 if (adapter->netdev->features & NETIF_F_RXALL) {
3535 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3536 * in e1000e_set_rx_mode
3537 */
89eaefb6
BG
3538 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3539 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3540 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3541
16903caa 3542 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
89eaefb6
BG
3543 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3544 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3545 * and that breaks VLANs.
3546 */
3547 }
3548
9d5c8243
AK
3549 wr32(E1000_RCTL, rctl);
3550}
3551
7d5753f0 3552static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
9005df38 3553 int vfn)
7d5753f0
AD
3554{
3555 struct e1000_hw *hw = &adapter->hw;
3556 u32 vmolr;
3557
d3836f8e
AD
3558 if (size > MAX_JUMBO_FRAME_SIZE)
3559 size = MAX_JUMBO_FRAME_SIZE;
7d5753f0
AD
3560
3561 vmolr = rd32(E1000_VMOLR(vfn));
3562 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3563 vmolr |= size | E1000_VMOLR_LPE;
3564 wr32(E1000_VMOLR(vfn), vmolr);
3565
3566 return 0;
3567}
3568
8151d294
WM
3569static inline void igb_set_vmolr(struct igb_adapter *adapter,
3570 int vfn, bool aupe)
7d5753f0
AD
3571{
3572 struct e1000_hw *hw = &adapter->hw;
3573 u32 vmolr;
3574
b980ac18 3575 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3576 * we should exit and do nothing
3577 */
3578 if (hw->mac.type < e1000_82576)
3579 return;
3580
3581 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3582 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
dc1edc67
SA
3583 if (hw->mac.type == e1000_i350) {
3584 u32 dvmolr;
3585
3586 dvmolr = rd32(E1000_DVMOLR(vfn));
3587 dvmolr |= E1000_DVMOLR_STRVLAN;
3588 wr32(E1000_DVMOLR(vfn), dvmolr);
3589 }
8151d294 3590 if (aupe)
b980ac18 3591 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3592 else
3593 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3594
3595 /* clear all bits that might not be set */
3596 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3597
a99955fc 3598 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3599 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3600 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3601 * multicast packets
3602 */
3603 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3604 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3605
3606 wr32(E1000_VMOLR(vfn), vmolr);
3607}
3608
85b430b4 3609/**
b980ac18
JK
3610 * igb_configure_rx_ring - Configure a receive ring after Reset
3611 * @adapter: board private structure
3612 * @ring: receive ring to be configured
85b430b4 3613 *
b980ac18 3614 * Configure the Rx unit of the MAC after a reset.
85b430b4 3615 **/
d7ee5b3a 3616void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3617 struct igb_ring *ring)
85b430b4
AD
3618{
3619 struct e1000_hw *hw = &adapter->hw;
3620 u64 rdba = ring->dma;
3621 int reg_idx = ring->reg_idx;
a74420e0 3622 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3623
3624 /* disable the queue */
a74420e0 3625 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3626
3627 /* Set DMA base address registers */
3628 wr32(E1000_RDBAL(reg_idx),
3629 rdba & 0x00000000ffffffffULL);
3630 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3631 wr32(E1000_RDLEN(reg_idx),
b980ac18 3632 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3633
3634 /* initialize head and tail */
fce99e34 3635 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3636 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3637 writel(0, ring->tail);
85b430b4 3638
952f72a8 3639 /* set descriptor configuration */
44390ca6 3640 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3641 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3642 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3643 if (hw->mac.type >= e1000_82580)
757b77e2 3644 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3645 /* Only set Drop Enable if we are supporting multiple queues */
3646 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3647 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3648
3649 wr32(E1000_SRRCTL(reg_idx), srrctl);
3650
7d5753f0 3651 /* set filtering for VMDQ pools */
8151d294 3652 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3653
85b430b4
AD
3654 rxdctl |= IGB_RX_PTHRESH;
3655 rxdctl |= IGB_RX_HTHRESH << 8;
3656 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3657
3658 /* enable receive descriptor fetching */
3659 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3660 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3661}
3662
9d5c8243 3663/**
b980ac18
JK
3664 * igb_configure_rx - Configure receive Unit after Reset
3665 * @adapter: board private structure
9d5c8243 3666 *
b980ac18 3667 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3668 **/
3669static void igb_configure_rx(struct igb_adapter *adapter)
3670{
9107584e 3671 int i;
9d5c8243 3672
26ad9178
AD
3673 /* set the correct pool for the PF default MAC address in entry 0 */
3674 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3675 adapter->vfs_allocated_count);
26ad9178 3676
06cf2666 3677 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3678 * the Base and Length of the Rx Descriptor Ring
3679 */
f9d40f6a
AD
3680 for (i = 0; i < adapter->num_rx_queues; i++)
3681 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3682}
3683
3684/**
b980ac18
JK
3685 * igb_free_tx_resources - Free Tx Resources per Queue
3686 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3687 *
b980ac18 3688 * Free all transmit software resources
9d5c8243 3689 **/
68fd9910 3690void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3691{
3b644cf6 3692 igb_clean_tx_ring(tx_ring);
9d5c8243 3693
06034649
AD
3694 vfree(tx_ring->tx_buffer_info);
3695 tx_ring->tx_buffer_info = NULL;
9d5c8243 3696
439705e1
AD
3697 /* if not set, then don't free */
3698 if (!tx_ring->desc)
3699 return;
3700
59d71989
AD
3701 dma_free_coherent(tx_ring->dev, tx_ring->size,
3702 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3703
3704 tx_ring->desc = NULL;
3705}
3706
3707/**
b980ac18
JK
3708 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3709 * @adapter: board private structure
9d5c8243 3710 *
b980ac18 3711 * Free all transmit software resources
9d5c8243
AK
3712 **/
3713static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3714{
3715 int i;
3716
3717 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3718 if (adapter->tx_ring[i])
3719 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3720}
3721
ebe42d16
AD
3722void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3723 struct igb_tx_buffer *tx_buffer)
3724{
3725 if (tx_buffer->skb) {
3726 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3727 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3728 dma_unmap_single(ring->dev,
c9f14bf3
AD
3729 dma_unmap_addr(tx_buffer, dma),
3730 dma_unmap_len(tx_buffer, len),
ebe42d16 3731 DMA_TO_DEVICE);
c9f14bf3 3732 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3733 dma_unmap_page(ring->dev,
c9f14bf3
AD
3734 dma_unmap_addr(tx_buffer, dma),
3735 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3736 DMA_TO_DEVICE);
3737 }
3738 tx_buffer->next_to_watch = NULL;
3739 tx_buffer->skb = NULL;
c9f14bf3 3740 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3741 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3742}
3743
3744/**
b980ac18
JK
3745 * igb_clean_tx_ring - Free Tx Buffers
3746 * @tx_ring: ring to be cleaned
9d5c8243 3747 **/
3b644cf6 3748static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3749{
06034649 3750 struct igb_tx_buffer *buffer_info;
9d5c8243 3751 unsigned long size;
6ad4edfc 3752 u16 i;
9d5c8243 3753
06034649 3754 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3755 return;
3756 /* Free all the Tx ring sk_buffs */
3757
3758 for (i = 0; i < tx_ring->count; i++) {
06034649 3759 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3760 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3761 }
3762
dad8a3b3
JF
3763 netdev_tx_reset_queue(txring_txq(tx_ring));
3764
06034649
AD
3765 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3766 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3767
3768 /* Zero out the descriptor ring */
9d5c8243
AK
3769 memset(tx_ring->desc, 0, tx_ring->size);
3770
3771 tx_ring->next_to_use = 0;
3772 tx_ring->next_to_clean = 0;
9d5c8243
AK
3773}
3774
3775/**
b980ac18
JK
3776 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3777 * @adapter: board private structure
9d5c8243
AK
3778 **/
3779static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3780{
3781 int i;
3782
3783 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3784 if (adapter->tx_ring[i])
3785 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3786}
3787
3788/**
b980ac18
JK
3789 * igb_free_rx_resources - Free Rx Resources
3790 * @rx_ring: ring to clean the resources from
9d5c8243 3791 *
b980ac18 3792 * Free all receive software resources
9d5c8243 3793 **/
68fd9910 3794void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3795{
3b644cf6 3796 igb_clean_rx_ring(rx_ring);
9d5c8243 3797
06034649
AD
3798 vfree(rx_ring->rx_buffer_info);
3799 rx_ring->rx_buffer_info = NULL;
9d5c8243 3800
439705e1
AD
3801 /* if not set, then don't free */
3802 if (!rx_ring->desc)
3803 return;
3804
59d71989
AD
3805 dma_free_coherent(rx_ring->dev, rx_ring->size,
3806 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3807
3808 rx_ring->desc = NULL;
3809}
3810
3811/**
b980ac18
JK
3812 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3813 * @adapter: board private structure
9d5c8243 3814 *
b980ac18 3815 * Free all receive software resources
9d5c8243
AK
3816 **/
3817static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3818{
3819 int i;
3820
3821 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3822 if (adapter->rx_ring[i])
3823 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3824}
3825
3826/**
b980ac18
JK
3827 * igb_clean_rx_ring - Free Rx Buffers per Queue
3828 * @rx_ring: ring to free buffers from
9d5c8243 3829 **/
3b644cf6 3830static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3831{
9d5c8243 3832 unsigned long size;
c023cd88 3833 u16 i;
9d5c8243 3834
1a1c225b
AD
3835 if (rx_ring->skb)
3836 dev_kfree_skb(rx_ring->skb);
3837 rx_ring->skb = NULL;
3838
06034649 3839 if (!rx_ring->rx_buffer_info)
9d5c8243 3840 return;
439705e1 3841
9d5c8243
AK
3842 /* Free all the Rx ring sk_buffs */
3843 for (i = 0; i < rx_ring->count; i++) {
06034649 3844 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3845
cbc8e55f
AD
3846 if (!buffer_info->page)
3847 continue;
3848
3849 dma_unmap_page(rx_ring->dev,
3850 buffer_info->dma,
3851 PAGE_SIZE,
3852 DMA_FROM_DEVICE);
3853 __free_page(buffer_info->page);
3854
1a1c225b 3855 buffer_info->page = NULL;
9d5c8243
AK
3856 }
3857
06034649
AD
3858 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3859 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3860
3861 /* Zero out the descriptor ring */
3862 memset(rx_ring->desc, 0, rx_ring->size);
3863
cbc8e55f 3864 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3865 rx_ring->next_to_clean = 0;
3866 rx_ring->next_to_use = 0;
9d5c8243
AK
3867}
3868
3869/**
b980ac18
JK
3870 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3871 * @adapter: board private structure
9d5c8243
AK
3872 **/
3873static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3874{
3875 int i;
3876
3877 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3878 if (adapter->rx_ring[i])
3879 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3880}
3881
3882/**
b980ac18
JK
3883 * igb_set_mac - Change the Ethernet Address of the NIC
3884 * @netdev: network interface device structure
3885 * @p: pointer to an address structure
9d5c8243 3886 *
b980ac18 3887 * Returns 0 on success, negative on failure
9d5c8243
AK
3888 **/
3889static int igb_set_mac(struct net_device *netdev, void *p)
3890{
3891 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3892 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3893 struct sockaddr *addr = p;
3894
3895 if (!is_valid_ether_addr(addr->sa_data))
3896 return -EADDRNOTAVAIL;
3897
3898 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3899 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3900
26ad9178
AD
3901 /* set the correct pool for the new PF MAC address in entry 0 */
3902 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3903 adapter->vfs_allocated_count);
e1739522 3904
9d5c8243
AK
3905 return 0;
3906}
3907
3908/**
b980ac18
JK
3909 * igb_write_mc_addr_list - write multicast addresses to MTA
3910 * @netdev: network interface device structure
9d5c8243 3911 *
b980ac18
JK
3912 * Writes multicast address list to the MTA hash table.
3913 * Returns: -ENOMEM on failure
3914 * 0 on no addresses written
3915 * X on writing X addresses to MTA
9d5c8243 3916 **/
68d480c4 3917static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3918{
3919 struct igb_adapter *adapter = netdev_priv(netdev);
3920 struct e1000_hw *hw = &adapter->hw;
22bedad3 3921 struct netdev_hw_addr *ha;
68d480c4 3922 u8 *mta_list;
9d5c8243
AK
3923 int i;
3924
4cd24eaf 3925 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3926 /* nothing to program, so clear mc list */
3927 igb_update_mc_addr_list(hw, NULL, 0);
3928 igb_restore_vf_multicasts(adapter);
3929 return 0;
3930 }
9d5c8243 3931
4cd24eaf 3932 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3933 if (!mta_list)
3934 return -ENOMEM;
ff41f8dc 3935
68d480c4 3936 /* The shared function expects a packed array of only addresses. */
48e2f183 3937 i = 0;
22bedad3
JP
3938 netdev_for_each_mc_addr(ha, netdev)
3939 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3940
68d480c4
AD
3941 igb_update_mc_addr_list(hw, mta_list, i);
3942 kfree(mta_list);
3943
4cd24eaf 3944 return netdev_mc_count(netdev);
68d480c4
AD
3945}
3946
3947/**
b980ac18
JK
3948 * igb_write_uc_addr_list - write unicast addresses to RAR table
3949 * @netdev: network interface device structure
68d480c4 3950 *
b980ac18
JK
3951 * Writes unicast address list to the RAR table.
3952 * Returns: -ENOMEM on failure/insufficient address space
3953 * 0 on no addresses written
3954 * X on writing X addresses to the RAR table
68d480c4
AD
3955 **/
3956static int igb_write_uc_addr_list(struct net_device *netdev)
3957{
3958 struct igb_adapter *adapter = netdev_priv(netdev);
3959 struct e1000_hw *hw = &adapter->hw;
3960 unsigned int vfn = adapter->vfs_allocated_count;
3961 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3962 int count = 0;
3963
3964 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3965 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3966 return -ENOMEM;
9d5c8243 3967
32e7bfc4 3968 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3969 struct netdev_hw_addr *ha;
32e7bfc4
JP
3970
3971 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3972 if (!rar_entries)
3973 break;
26ad9178 3974 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3975 rar_entries--,
3976 vfn);
68d480c4 3977 count++;
ff41f8dc
AD
3978 }
3979 }
3980 /* write the addresses in reverse order to avoid write combining */
3981 for (; rar_entries > 0 ; rar_entries--) {
3982 wr32(E1000_RAH(rar_entries), 0);
3983 wr32(E1000_RAL(rar_entries), 0);
3984 }
3985 wrfl();
3986
68d480c4
AD
3987 return count;
3988}
3989
16903caa
AD
3990static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
3991{
3992 struct e1000_hw *hw = &adapter->hw;
3993 u32 i, pf_id;
3994
3995 switch (hw->mac.type) {
3996 case e1000_i210:
3997 case e1000_i211:
3998 case e1000_i350:
3999 /* VLAN filtering needed for VLAN prio filter */
4000 if (adapter->netdev->features & NETIF_F_NTUPLE)
4001 break;
4002 /* fall through */
4003 case e1000_82576:
4004 case e1000_82580:
4005 case e1000_i354:
4006 /* VLAN filtering needed for pool filtering */
4007 if (adapter->vfs_allocated_count)
4008 break;
4009 /* fall through */
4010 default:
4011 return 1;
4012 }
4013
4014 /* We are already in VLAN promisc, nothing to do */
4015 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4016 return 0;
4017
4018 if (!adapter->vfs_allocated_count)
4019 goto set_vfta;
4020
4021 /* Add PF to all active pools */
4022 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4023
4024 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4025 u32 vlvf = rd32(E1000_VLVF(i));
4026
4027 vlvf |= 1 << pf_id;
4028 wr32(E1000_VLVF(i), vlvf);
4029 }
4030
4031set_vfta:
4032 /* Set all bits in the VLAN filter table array */
4033 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4034 hw->mac.ops.write_vfta(hw, i, ~0U);
4035
4036 /* Set flag so we don't redo unnecessary work */
4037 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4038
4039 return 0;
4040}
4041
4042#define VFTA_BLOCK_SIZE 8
4043static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4044{
4045 struct e1000_hw *hw = &adapter->hw;
4046 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4047 u32 vid_start = vfta_offset * 32;
4048 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4049 u32 i, vid, word, bits, pf_id;
4050
4051 /* guarantee that we don't scrub out management VLAN */
4052 vid = adapter->mng_vlan_id;
4053 if (vid >= vid_start && vid < vid_end)
4054 vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4055
4056 if (!adapter->vfs_allocated_count)
4057 goto set_vfta;
4058
4059 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4060
4061 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4062 u32 vlvf = rd32(E1000_VLVF(i));
4063
4064 /* pull VLAN ID from VLVF */
4065 vid = vlvf & VLAN_VID_MASK;
4066
4067 /* only concern ourselves with a certain range */
4068 if (vid < vid_start || vid >= vid_end)
4069 continue;
4070
4071 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4072 /* record VLAN ID in VFTA */
4073 vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4074
4075 /* if PF is part of this then continue */
4076 if (test_bit(vid, adapter->active_vlans))
4077 continue;
4078 }
4079
4080 /* remove PF from the pool */
4081 bits = ~(1 << pf_id);
4082 bits &= rd32(E1000_VLVF(i));
4083 wr32(E1000_VLVF(i), bits);
4084 }
4085
4086set_vfta:
4087 /* extract values from active_vlans and write back to VFTA */
4088 for (i = VFTA_BLOCK_SIZE; i--;) {
4089 vid = (vfta_offset + i) * 32;
4090 word = vid / BITS_PER_LONG;
4091 bits = vid % BITS_PER_LONG;
4092
4093 vfta[i] |= adapter->active_vlans[word] >> bits;
4094
4095 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4096 }
4097}
4098
4099static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4100{
4101 u32 i;
4102
4103 /* We are not in VLAN promisc, nothing to do */
4104 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4105 return;
4106
4107 /* Set flag so we don't redo unnecessary work */
4108 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4109
4110 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4111 igb_scrub_vfta(adapter, i);
4112}
4113
68d480c4 4114/**
b980ac18
JK
4115 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4116 * @netdev: network interface device structure
68d480c4 4117 *
b980ac18
JK
4118 * The set_rx_mode entry point is called whenever the unicast or multicast
4119 * address lists or the network interface flags are updated. This routine is
4120 * responsible for configuring the hardware for proper unicast, multicast,
4121 * promiscuous mode, and all-multi behavior.
68d480c4
AD
4122 **/
4123static void igb_set_rx_mode(struct net_device *netdev)
4124{
4125 struct igb_adapter *adapter = netdev_priv(netdev);
4126 struct e1000_hw *hw = &adapter->hw;
4127 unsigned int vfn = adapter->vfs_allocated_count;
16903caa 4128 u32 rctl = 0, vmolr = 0;
68d480c4
AD
4129 int count;
4130
4131 /* Check for Promiscuous and All Multicast modes */
68d480c4 4132 if (netdev->flags & IFF_PROMISC) {
16903caa 4133 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
bf456abb
AD
4134 vmolr |= E1000_VMOLR_MPME;
4135
4136 /* enable use of UTA filter to force packets to default pool */
4137 if (hw->mac.type == e1000_82576)
4138 vmolr |= E1000_VMOLR_ROPE;
68d480c4
AD
4139 } else {
4140 if (netdev->flags & IFF_ALLMULTI) {
4141 rctl |= E1000_RCTL_MPE;
4142 vmolr |= E1000_VMOLR_MPME;
4143 } else {
b980ac18 4144 /* Write addresses to the MTA, if the attempt fails
25985edc 4145 * then we should just turn on promiscuous mode so
68d480c4
AD
4146 * that we can at least receive multicast traffic
4147 */
4148 count = igb_write_mc_addr_list(netdev);
4149 if (count < 0) {
4150 rctl |= E1000_RCTL_MPE;
4151 vmolr |= E1000_VMOLR_MPME;
4152 } else if (count) {
4153 vmolr |= E1000_VMOLR_ROMPE;
4154 }
4155 }
268f9d33
AD
4156 }
4157
4158 /* Write addresses to available RAR registers, if there is not
4159 * sufficient space to store all the addresses then enable
4160 * unicast promiscuous mode
4161 */
4162 count = igb_write_uc_addr_list(netdev);
4163 if (count < 0) {
4164 rctl |= E1000_RCTL_UPE;
4165 vmolr |= E1000_VMOLR_ROPE;
28fc06f5 4166 }
16903caa
AD
4167
4168 /* enable VLAN filtering by default */
4169 rctl |= E1000_RCTL_VFE;
4170
4171 /* disable VLAN filtering for modes that require it */
4172 if ((netdev->flags & IFF_PROMISC) ||
4173 (netdev->features & NETIF_F_RXALL)) {
4174 /* if we fail to set all rules then just clear VFE */
4175 if (igb_vlan_promisc_enable(adapter))
4176 rctl &= ~E1000_RCTL_VFE;
4177 } else {
4178 igb_vlan_promisc_disable(adapter);
4179 }
4180
4181 /* update state of unicast, multicast, and VLAN filtering modes */
4182 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4183 E1000_RCTL_VFE);
68d480c4 4184 wr32(E1000_RCTL, rctl);
28fc06f5 4185
b980ac18 4186 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4187 * the VMOLR to enable the appropriate modes. Without this workaround
4188 * we will have issues with VLAN tag stripping not being done for frames
4189 * that are only arriving because we are the default pool
4190 */
f96a8a0b 4191 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4192 return;
9d5c8243 4193
bf456abb
AD
4194 /* set UTA to appropriate mode */
4195 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4196
68d480c4 4197 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4198 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
45693bcb
AD
4199
4200 /* enable Rx jumbo frames, no need for restriction */
4201 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4202 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4203
68d480c4 4204 wr32(E1000_VMOLR(vfn), vmolr);
45693bcb
AD
4205 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4206
28fc06f5 4207 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4208}
4209
13800469
GR
4210static void igb_check_wvbr(struct igb_adapter *adapter)
4211{
4212 struct e1000_hw *hw = &adapter->hw;
4213 u32 wvbr = 0;
4214
4215 switch (hw->mac.type) {
4216 case e1000_82576:
4217 case e1000_i350:
81ad807b
CW
4218 wvbr = rd32(E1000_WVBR);
4219 if (!wvbr)
13800469
GR
4220 return;
4221 break;
4222 default:
4223 break;
4224 }
4225
4226 adapter->wvbr |= wvbr;
4227}
4228
4229#define IGB_STAGGERED_QUEUE_OFFSET 8
4230
4231static void igb_spoof_check(struct igb_adapter *adapter)
4232{
4233 int j;
4234
4235 if (!adapter->wvbr)
4236 return;
4237
9005df38 4238 for (j = 0; j < adapter->vfs_allocated_count; j++) {
13800469
GR
4239 if (adapter->wvbr & (1 << j) ||
4240 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4241 dev_warn(&adapter->pdev->dev,
4242 "Spoof event(s) detected on VF %d\n", j);
4243 adapter->wvbr &=
4244 ~((1 << j) |
4245 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4246 }
4247 }
4248}
4249
9d5c8243 4250/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4251 * the phy
4252 */
9d5c8243
AK
4253static void igb_update_phy_info(unsigned long data)
4254{
4255 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4256 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4257}
4258
4d6b725e 4259/**
b980ac18
JK
4260 * igb_has_link - check shared code for link and determine up/down
4261 * @adapter: pointer to driver private info
4d6b725e 4262 **/
3145535a 4263bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4264{
4265 struct e1000_hw *hw = &adapter->hw;
4266 bool link_active = false;
4d6b725e
AD
4267
4268 /* get_link_status is set on LSC (link status) interrupt or
4269 * rx sequence error interrupt. get_link_status will stay
4270 * false until the e1000_check_for_link establishes link
4271 * for copper adapters ONLY
4272 */
4273 switch (hw->phy.media_type) {
4274 case e1000_media_type_copper:
e5c3370f
AA
4275 if (!hw->mac.get_link_status)
4276 return true;
4d6b725e 4277 case e1000_media_type_internal_serdes:
e5c3370f
AA
4278 hw->mac.ops.check_for_link(hw);
4279 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4280 break;
4281 default:
4282 case e1000_media_type_unknown:
4283 break;
4284 }
4285
aa9b8cc4
AA
4286 if (((hw->mac.type == e1000_i210) ||
4287 (hw->mac.type == e1000_i211)) &&
4288 (hw->phy.id == I210_I_PHY_ID)) {
4289 if (!netif_carrier_ok(adapter->netdev)) {
4290 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4291 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4292 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4293 adapter->link_check_timeout = jiffies;
4294 }
4295 }
4296
4d6b725e
AD
4297 return link_active;
4298}
4299
563988dc
SA
4300static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4301{
4302 bool ret = false;
4303 u32 ctrl_ext, thstat;
4304
f96a8a0b 4305 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4306 if (hw->mac.type == e1000_i350) {
4307 thstat = rd32(E1000_THSTAT);
4308 ctrl_ext = rd32(E1000_CTRL_EXT);
4309
4310 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4311 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4312 ret = !!(thstat & event);
563988dc
SA
4313 }
4314
4315 return ret;
4316}
4317
1516f0a6
CW
4318/**
4319 * igb_check_lvmmc - check for malformed packets received
4320 * and indicated in LVMMC register
4321 * @adapter: pointer to adapter
4322 **/
4323static void igb_check_lvmmc(struct igb_adapter *adapter)
4324{
4325 struct e1000_hw *hw = &adapter->hw;
4326 u32 lvmmc;
4327
4328 lvmmc = rd32(E1000_LVMMC);
4329 if (lvmmc) {
4330 if (unlikely(net_ratelimit())) {
4331 netdev_warn(adapter->netdev,
4332 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4333 lvmmc);
4334 }
4335 }
4336}
4337
9d5c8243 4338/**
b980ac18
JK
4339 * igb_watchdog - Timer Call-back
4340 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4341 **/
4342static void igb_watchdog(unsigned long data)
4343{
4344 struct igb_adapter *adapter = (struct igb_adapter *)data;
4345 /* Do the rest outside of interrupt context */
4346 schedule_work(&adapter->watchdog_task);
4347}
4348
4349static void igb_watchdog_task(struct work_struct *work)
4350{
4351 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4352 struct igb_adapter,
4353 watchdog_task);
9d5c8243 4354 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4355 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4356 struct net_device *netdev = adapter->netdev;
563988dc 4357 u32 link;
7a6ea550 4358 int i;
56cec249 4359 u32 connsw;
9d5c8243 4360
4d6b725e 4361 link = igb_has_link(adapter);
aa9b8cc4
AA
4362
4363 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4364 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4365 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4366 else
4367 link = false;
4368 }
4369
56cec249
CW
4370 /* Force link down if we have fiber to swap to */
4371 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4372 if (hw->phy.media_type == e1000_media_type_copper) {
4373 connsw = rd32(E1000_CONNSW);
4374 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4375 link = 0;
4376 }
4377 }
9d5c8243 4378 if (link) {
2bdfc4e2
CW
4379 /* Perform a reset if the media type changed. */
4380 if (hw->dev_spec._82575.media_changed) {
4381 hw->dev_spec._82575.media_changed = false;
4382 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4383 igb_reset(adapter);
4384 }
749ab2cd
YZ
4385 /* Cancel scheduled suspend requests. */
4386 pm_runtime_resume(netdev->dev.parent);
4387
9d5c8243
AK
4388 if (!netif_carrier_ok(netdev)) {
4389 u32 ctrl;
9005df38 4390
330a6d6a 4391 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4392 &adapter->link_speed,
4393 &adapter->link_duplex);
9d5c8243
AK
4394
4395 ctrl = rd32(E1000_CTRL);
527d47c1 4396 /* Links status message must follow this format */
c75c4edf
CW
4397 netdev_info(netdev,
4398 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
559e9c49
AD
4399 netdev->name,
4400 adapter->link_speed,
4401 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4402 "Full" : "Half",
4403 (ctrl & E1000_CTRL_TFCE) &&
4404 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4405 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4406 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4407
f4c01e96
CW
4408 /* disable EEE if enabled */
4409 if ((adapter->flags & IGB_FLAG_EEE) &&
4410 (adapter->link_duplex == HALF_DUPLEX)) {
4411 dev_info(&adapter->pdev->dev,
4412 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4413 adapter->hw.dev_spec._82575.eee_disable = true;
4414 adapter->flags &= ~IGB_FLAG_EEE;
4415 }
4416
c0ba4778
KS
4417 /* check if SmartSpeed worked */
4418 igb_check_downshift(hw);
4419 if (phy->speed_downgraded)
4420 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4421
563988dc 4422 /* check for thermal sensor event */
876d2d6f 4423 if (igb_thermal_sensor_event(hw,
d34a15ab 4424 E1000_THSTAT_LINK_THROTTLE))
c75c4edf 4425 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
563988dc 4426
d07f3e37 4427 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4428 adapter->tx_timeout_factor = 1;
4429 switch (adapter->link_speed) {
4430 case SPEED_10:
9d5c8243
AK
4431 adapter->tx_timeout_factor = 14;
4432 break;
4433 case SPEED_100:
9d5c8243
AK
4434 /* maybe add some timeout factor ? */
4435 break;
4436 }
4437
4438 netif_carrier_on(netdev);
9d5c8243 4439
4ae196df 4440 igb_ping_all_vfs(adapter);
17dc566c 4441 igb_check_vf_rate_limit(adapter);
4ae196df 4442
4b1a9877 4443 /* link state has changed, schedule phy info update */
9d5c8243
AK
4444 if (!test_bit(__IGB_DOWN, &adapter->state))
4445 mod_timer(&adapter->phy_info_timer,
4446 round_jiffies(jiffies + 2 * HZ));
4447 }
4448 } else {
4449 if (netif_carrier_ok(netdev)) {
4450 adapter->link_speed = 0;
4451 adapter->link_duplex = 0;
563988dc
SA
4452
4453 /* check for thermal sensor event */
876d2d6f
JK
4454 if (igb_thermal_sensor_event(hw,
4455 E1000_THSTAT_PWR_DOWN)) {
c75c4edf 4456 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
7ef5ed1c 4457 }
563988dc 4458
527d47c1 4459 /* Links status message must follow this format */
c75c4edf 4460 netdev_info(netdev, "igb: %s NIC Link is Down\n",
527d47c1 4461 netdev->name);
9d5c8243 4462 netif_carrier_off(netdev);
4b1a9877 4463
4ae196df
AD
4464 igb_ping_all_vfs(adapter);
4465
4b1a9877 4466 /* link state has changed, schedule phy info update */
9d5c8243
AK
4467 if (!test_bit(__IGB_DOWN, &adapter->state))
4468 mod_timer(&adapter->phy_info_timer,
4469 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4470
56cec249
CW
4471 /* link is down, time to check for alternate media */
4472 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4473 igb_check_swap_media(adapter);
4474 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4475 schedule_work(&adapter->reset_task);
4476 /* return immediately */
4477 return;
4478 }
4479 }
749ab2cd
YZ
4480 pm_schedule_suspend(netdev->dev.parent,
4481 MSEC_PER_SEC * 5);
56cec249
CW
4482
4483 /* also check for alternate media here */
4484 } else if (!netif_carrier_ok(netdev) &&
4485 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4486 igb_check_swap_media(adapter);
4487 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4488 schedule_work(&adapter->reset_task);
4489 /* return immediately */
4490 return;
4491 }
9d5c8243
AK
4492 }
4493 }
4494
12dcd86b
ED
4495 spin_lock(&adapter->stats64_lock);
4496 igb_update_stats(adapter, &adapter->stats64);
4497 spin_unlock(&adapter->stats64_lock);
9d5c8243 4498
dbabb065 4499 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4500 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4501 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4502 /* We've lost link, so the controller stops DMA,
4503 * but we've got queued Tx work that's never going
4504 * to get done, so reset controller to flush Tx.
b980ac18
JK
4505 * (Do the reset outside of interrupt context).
4506 */
dbabb065
AD
4507 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4508 adapter->tx_timeout_count++;
4509 schedule_work(&adapter->reset_task);
4510 /* return immediately since reset is imminent */
4511 return;
4512 }
9d5c8243 4513 }
9d5c8243 4514
dbabb065 4515 /* Force detection of hung controller every watchdog period */
6d095fa8 4516 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4517 }
f7ba205e 4518
b980ac18 4519 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 4520 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 4521 u32 eics = 0;
9005df38 4522
0d1ae7f4
AD
4523 for (i = 0; i < adapter->num_q_vectors; i++)
4524 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4525 wr32(E1000_EICS, eics);
4526 } else {
4527 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4528 }
9d5c8243 4529
13800469 4530 igb_spoof_check(adapter);
fc580751 4531 igb_ptp_rx_hang(adapter);
13800469 4532
1516f0a6
CW
4533 /* Check LVMMC register on i350/i354 only */
4534 if ((adapter->hw.mac.type == e1000_i350) ||
4535 (adapter->hw.mac.type == e1000_i354))
4536 igb_check_lvmmc(adapter);
4537
9d5c8243 4538 /* Reset the timer */
aa9b8cc4
AA
4539 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4540 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4541 mod_timer(&adapter->watchdog_timer,
4542 round_jiffies(jiffies + HZ));
4543 else
4544 mod_timer(&adapter->watchdog_timer,
4545 round_jiffies(jiffies + 2 * HZ));
4546 }
9d5c8243
AK
4547}
4548
4549enum latency_range {
4550 lowest_latency = 0,
4551 low_latency = 1,
4552 bulk_latency = 2,
4553 latency_invalid = 255
4554};
4555
6eb5a7f1 4556/**
b980ac18
JK
4557 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4558 * @q_vector: pointer to q_vector
6eb5a7f1 4559 *
b980ac18
JK
4560 * Stores a new ITR value based on strictly on packet size. This
4561 * algorithm is less sophisticated than that used in igb_update_itr,
4562 * due to the difficulty of synchronizing statistics across multiple
4563 * receive rings. The divisors and thresholds used by this function
4564 * were determined based on theoretical maximum wire speed and testing
4565 * data, in order to minimize response time while increasing bulk
4566 * throughput.
406d4965 4567 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4568 * NOTE: This function is called only when operating in a multiqueue
4569 * receive environment.
6eb5a7f1 4570 **/
047e0030 4571static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4572{
047e0030 4573 int new_val = q_vector->itr_val;
6eb5a7f1 4574 int avg_wire_size = 0;
047e0030 4575 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4576 unsigned int packets;
9d5c8243 4577
6eb5a7f1
AD
4578 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4579 * ints/sec - ITR timer value of 120 ticks.
4580 */
4581 if (adapter->link_speed != SPEED_1000) {
0ba82994 4582 new_val = IGB_4K_ITR;
6eb5a7f1 4583 goto set_itr_val;
9d5c8243 4584 }
047e0030 4585
0ba82994
AD
4586 packets = q_vector->rx.total_packets;
4587 if (packets)
4588 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4589
0ba82994
AD
4590 packets = q_vector->tx.total_packets;
4591 if (packets)
4592 avg_wire_size = max_t(u32, avg_wire_size,
4593 q_vector->tx.total_bytes / packets);
047e0030
AD
4594
4595 /* if avg_wire_size isn't set no work was done */
4596 if (!avg_wire_size)
4597 goto clear_counts;
9d5c8243 4598
6eb5a7f1
AD
4599 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4600 avg_wire_size += 24;
4601
4602 /* Don't starve jumbo frames */
4603 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4604
6eb5a7f1
AD
4605 /* Give a little boost to mid-size frames */
4606 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4607 new_val = avg_wire_size / 3;
4608 else
4609 new_val = avg_wire_size / 2;
9d5c8243 4610
0ba82994
AD
4611 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4612 if (new_val < IGB_20K_ITR &&
4613 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4614 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4615 new_val = IGB_20K_ITR;
abe1c363 4616
6eb5a7f1 4617set_itr_val:
047e0030
AD
4618 if (new_val != q_vector->itr_val) {
4619 q_vector->itr_val = new_val;
4620 q_vector->set_itr = 1;
9d5c8243 4621 }
6eb5a7f1 4622clear_counts:
0ba82994
AD
4623 q_vector->rx.total_bytes = 0;
4624 q_vector->rx.total_packets = 0;
4625 q_vector->tx.total_bytes = 0;
4626 q_vector->tx.total_packets = 0;
9d5c8243
AK
4627}
4628
4629/**
b980ac18
JK
4630 * igb_update_itr - update the dynamic ITR value based on statistics
4631 * @q_vector: pointer to q_vector
4632 * @ring_container: ring info to update the itr for
4633 *
4634 * Stores a new ITR value based on packets and byte
4635 * counts during the last interrupt. The advantage of per interrupt
4636 * computation is faster updates and more accurate ITR for the current
4637 * traffic pattern. Constants in this function were computed
4638 * based on theoretical maximum wire speed and thresholds were set based
4639 * on testing data as well as attempting to minimize response time
4640 * while increasing bulk throughput.
406d4965 4641 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4642 * NOTE: These calculations are only valid when operating in a single-
4643 * queue environment.
9d5c8243 4644 **/
0ba82994
AD
4645static void igb_update_itr(struct igb_q_vector *q_vector,
4646 struct igb_ring_container *ring_container)
9d5c8243 4647{
0ba82994
AD
4648 unsigned int packets = ring_container->total_packets;
4649 unsigned int bytes = ring_container->total_bytes;
4650 u8 itrval = ring_container->itr;
9d5c8243 4651
0ba82994 4652 /* no packets, exit with status unchanged */
9d5c8243 4653 if (packets == 0)
0ba82994 4654 return;
9d5c8243 4655
0ba82994 4656 switch (itrval) {
9d5c8243
AK
4657 case lowest_latency:
4658 /* handle TSO and jumbo frames */
4659 if (bytes/packets > 8000)
0ba82994 4660 itrval = bulk_latency;
9d5c8243 4661 else if ((packets < 5) && (bytes > 512))
0ba82994 4662 itrval = low_latency;
9d5c8243
AK
4663 break;
4664 case low_latency: /* 50 usec aka 20000 ints/s */
4665 if (bytes > 10000) {
4666 /* this if handles the TSO accounting */
d34a15ab 4667 if (bytes/packets > 8000)
0ba82994 4668 itrval = bulk_latency;
d34a15ab 4669 else if ((packets < 10) || ((bytes/packets) > 1200))
0ba82994 4670 itrval = bulk_latency;
d34a15ab 4671 else if ((packets > 35))
0ba82994 4672 itrval = lowest_latency;
9d5c8243 4673 } else if (bytes/packets > 2000) {
0ba82994 4674 itrval = bulk_latency;
9d5c8243 4675 } else if (packets <= 2 && bytes < 512) {
0ba82994 4676 itrval = lowest_latency;
9d5c8243
AK
4677 }
4678 break;
4679 case bulk_latency: /* 250 usec aka 4000 ints/s */
4680 if (bytes > 25000) {
4681 if (packets > 35)
0ba82994 4682 itrval = low_latency;
1e5c3d21 4683 } else if (bytes < 1500) {
0ba82994 4684 itrval = low_latency;
9d5c8243
AK
4685 }
4686 break;
4687 }
4688
0ba82994
AD
4689 /* clear work counters since we have the values we need */
4690 ring_container->total_bytes = 0;
4691 ring_container->total_packets = 0;
4692
4693 /* write updated itr to ring container */
4694 ring_container->itr = itrval;
9d5c8243
AK
4695}
4696
0ba82994 4697static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4698{
0ba82994 4699 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4700 u32 new_itr = q_vector->itr_val;
0ba82994 4701 u8 current_itr = 0;
9d5c8243
AK
4702
4703 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4704 if (adapter->link_speed != SPEED_1000) {
4705 current_itr = 0;
0ba82994 4706 new_itr = IGB_4K_ITR;
9d5c8243
AK
4707 goto set_itr_now;
4708 }
4709
0ba82994
AD
4710 igb_update_itr(q_vector, &q_vector->tx);
4711 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4712
0ba82994 4713 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4714
6eb5a7f1 4715 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4716 if (current_itr == lowest_latency &&
4717 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4718 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4719 current_itr = low_latency;
4720
9d5c8243
AK
4721 switch (current_itr) {
4722 /* counts and packets in update_itr are dependent on these numbers */
4723 case lowest_latency:
0ba82994 4724 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4725 break;
4726 case low_latency:
0ba82994 4727 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4728 break;
4729 case bulk_latency:
0ba82994 4730 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4731 break;
4732 default:
4733 break;
4734 }
4735
4736set_itr_now:
047e0030 4737 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4738 /* this attempts to bias the interrupt rate towards Bulk
4739 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4740 * increasing
4741 */
047e0030 4742 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4743 max((new_itr * q_vector->itr_val) /
4744 (new_itr + (q_vector->itr_val >> 2)),
4745 new_itr) : new_itr;
9d5c8243
AK
4746 /* Don't write the value here; it resets the adapter's
4747 * internal timer, and causes us to delay far longer than
4748 * we should between interrupts. Instead, we write the ITR
4749 * value at the beginning of the next interrupt so the timing
4750 * ends up being correct.
4751 */
047e0030
AD
4752 q_vector->itr_val = new_itr;
4753 q_vector->set_itr = 1;
9d5c8243 4754 }
9d5c8243
AK
4755}
4756
c50b52a0
SH
4757static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4758 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4759{
4760 struct e1000_adv_tx_context_desc *context_desc;
4761 u16 i = tx_ring->next_to_use;
4762
4763 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4764
4765 i++;
4766 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4767
4768 /* set bits to identify this as an advanced context descriptor */
4769 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4770
4771 /* For 82575, context index must be unique per ring. */
866cff06 4772 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4773 mss_l4len_idx |= tx_ring->reg_idx << 4;
4774
4775 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4776 context_desc->seqnum_seed = 0;
4777 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4778 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4779}
4780
7af40ad9
AD
4781static int igb_tso(struct igb_ring *tx_ring,
4782 struct igb_tx_buffer *first,
4783 u8 *hdr_len)
9d5c8243 4784{
7af40ad9 4785 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4786 u32 vlan_macip_lens, type_tucmd;
4787 u32 mss_l4len_idx, l4len;
06c14e5a 4788 int err;
7d13a7d0 4789
ed6aa105
AD
4790 if (skb->ip_summed != CHECKSUM_PARTIAL)
4791 return 0;
4792
7d13a7d0
AD
4793 if (!skb_is_gso(skb))
4794 return 0;
9d5c8243 4795
06c14e5a
FR
4796 err = skb_cow_head(skb, 0);
4797 if (err < 0)
4798 return err;
9d5c8243 4799
7d13a7d0
AD
4800 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4801 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4802
7c4d16ff 4803 if (first->protocol == htons(ETH_P_IP)) {
9d5c8243
AK
4804 struct iphdr *iph = ip_hdr(skb);
4805 iph->tot_len = 0;
4806 iph->check = 0;
4807 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4808 iph->daddr, 0,
4809 IPPROTO_TCP,
4810 0);
7d13a7d0 4811 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4812 first->tx_flags |= IGB_TX_FLAGS_TSO |
4813 IGB_TX_FLAGS_CSUM |
4814 IGB_TX_FLAGS_IPV4;
8e1e8a47 4815 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4816 ipv6_hdr(skb)->payload_len = 0;
4817 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4818 &ipv6_hdr(skb)->daddr,
4819 0, IPPROTO_TCP, 0);
7af40ad9
AD
4820 first->tx_flags |= IGB_TX_FLAGS_TSO |
4821 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4822 }
4823
7af40ad9 4824 /* compute header lengths */
7d13a7d0
AD
4825 l4len = tcp_hdrlen(skb);
4826 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4827
7af40ad9
AD
4828 /* update gso size and bytecount with header size */
4829 first->gso_segs = skb_shinfo(skb)->gso_segs;
4830 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4831
9d5c8243 4832 /* MSS L4LEN IDX */
7d13a7d0
AD
4833 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4834 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4835
7d13a7d0
AD
4836 /* VLAN MACLEN IPLEN */
4837 vlan_macip_lens = skb_network_header_len(skb);
4838 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4839 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4840
7d13a7d0 4841 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4842
7d13a7d0 4843 return 1;
9d5c8243
AK
4844}
4845
7af40ad9 4846static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4847{
7af40ad9 4848 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4849 u32 vlan_macip_lens = 0;
4850 u32 mss_l4len_idx = 0;
4851 u32 type_tucmd = 0;
9d5c8243 4852
7d13a7d0 4853 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4854 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4855 return;
7d13a7d0
AD
4856 } else {
4857 u8 l4_hdr = 0;
9005df38 4858
7af40ad9 4859 switch (first->protocol) {
7c4d16ff 4860 case htons(ETH_P_IP):
7d13a7d0
AD
4861 vlan_macip_lens |= skb_network_header_len(skb);
4862 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4863 l4_hdr = ip_hdr(skb)->protocol;
4864 break;
7c4d16ff 4865 case htons(ETH_P_IPV6):
7d13a7d0
AD
4866 vlan_macip_lens |= skb_network_header_len(skb);
4867 l4_hdr = ipv6_hdr(skb)->nexthdr;
4868 break;
4869 default:
4870 if (unlikely(net_ratelimit())) {
4871 dev_warn(tx_ring->dev,
b980ac18
JK
4872 "partial checksum but proto=%x!\n",
4873 first->protocol);
fa4a7ef3 4874 }
7d13a7d0
AD
4875 break;
4876 }
fa4a7ef3 4877
7d13a7d0
AD
4878 switch (l4_hdr) {
4879 case IPPROTO_TCP:
4880 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4881 mss_l4len_idx = tcp_hdrlen(skb) <<
4882 E1000_ADVTXD_L4LEN_SHIFT;
4883 break;
4884 case IPPROTO_SCTP:
4885 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4886 mss_l4len_idx = sizeof(struct sctphdr) <<
4887 E1000_ADVTXD_L4LEN_SHIFT;
4888 break;
4889 case IPPROTO_UDP:
4890 mss_l4len_idx = sizeof(struct udphdr) <<
4891 E1000_ADVTXD_L4LEN_SHIFT;
4892 break;
4893 default:
4894 if (unlikely(net_ratelimit())) {
4895 dev_warn(tx_ring->dev,
b980ac18
JK
4896 "partial checksum but l4 proto=%x!\n",
4897 l4_hdr);
44b0cda3 4898 }
7d13a7d0 4899 break;
9d5c8243 4900 }
7af40ad9
AD
4901
4902 /* update TX checksum flag */
4903 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4904 }
9d5c8243 4905
7d13a7d0 4906 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4907 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4908
7d13a7d0 4909 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4910}
4911
1d9daf45
AD
4912#define IGB_SET_FLAG(_input, _flag, _result) \
4913 ((_flag <= _result) ? \
4914 ((u32)(_input & _flag) * (_result / _flag)) : \
4915 ((u32)(_input & _flag) / (_flag / _result)))
4916
4917static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4918{
4919 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4920 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4921 E1000_ADVTXD_DCMD_DEXT |
4922 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4923
4924 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4925 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4926 (E1000_ADVTXD_DCMD_VLE));
4927
4928 /* set segmentation bits for TSO */
4929 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4930 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4931
4932 /* set timestamp bit if present */
1d9daf45
AD
4933 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4934 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4935
1d9daf45
AD
4936 /* insert frame checksum */
4937 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4938
4939 return cmd_type;
4940}
4941
7af40ad9
AD
4942static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4943 union e1000_adv_tx_desc *tx_desc,
4944 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4945{
4946 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4947
1d9daf45
AD
4948 /* 82575 requires a unique index per ring */
4949 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4950 olinfo_status |= tx_ring->reg_idx << 4;
4951
4952 /* insert L4 checksum */
1d9daf45
AD
4953 olinfo_status |= IGB_SET_FLAG(tx_flags,
4954 IGB_TX_FLAGS_CSUM,
4955 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4956
1d9daf45
AD
4957 /* insert IPv4 checksum */
4958 olinfo_status |= IGB_SET_FLAG(tx_flags,
4959 IGB_TX_FLAGS_IPV4,
4960 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4961
7af40ad9 4962 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4963}
4964
6f19e12f
DM
4965static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4966{
4967 struct net_device *netdev = tx_ring->netdev;
4968
4969 netif_stop_subqueue(netdev, tx_ring->queue_index);
4970
4971 /* Herbert's original patch had:
4972 * smp_mb__after_netif_stop_queue();
4973 * but since that doesn't exist yet, just open code it.
4974 */
4975 smp_mb();
4976
4977 /* We need to check again in a case another CPU has just
4978 * made room available.
4979 */
4980 if (igb_desc_unused(tx_ring) < size)
4981 return -EBUSY;
4982
4983 /* A reprieve! */
4984 netif_wake_subqueue(netdev, tx_ring->queue_index);
4985
4986 u64_stats_update_begin(&tx_ring->tx_syncp2);
4987 tx_ring->tx_stats.restart_queue2++;
4988 u64_stats_update_end(&tx_ring->tx_syncp2);
4989
4990 return 0;
4991}
4992
4993static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4994{
4995 if (igb_desc_unused(tx_ring) >= size)
4996 return 0;
4997 return __igb_maybe_stop_tx(tx_ring, size);
4998}
4999
7af40ad9
AD
5000static void igb_tx_map(struct igb_ring *tx_ring,
5001 struct igb_tx_buffer *first,
ebe42d16 5002 const u8 hdr_len)
9d5c8243 5003{
7af40ad9 5004 struct sk_buff *skb = first->skb;
c9f14bf3 5005 struct igb_tx_buffer *tx_buffer;
ebe42d16 5006 union e1000_adv_tx_desc *tx_desc;
80d0759e 5007 struct skb_frag_struct *frag;
ebe42d16 5008 dma_addr_t dma;
80d0759e 5009 unsigned int data_len, size;
7af40ad9 5010 u32 tx_flags = first->tx_flags;
1d9daf45 5011 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 5012 u16 i = tx_ring->next_to_use;
ebe42d16
AD
5013
5014 tx_desc = IGB_TX_DESC(tx_ring, i);
5015
80d0759e
AD
5016 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5017
5018 size = skb_headlen(skb);
5019 data_len = skb->data_len;
ebe42d16
AD
5020
5021 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 5022
80d0759e
AD
5023 tx_buffer = first;
5024
5025 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5026 if (dma_mapping_error(tx_ring->dev, dma))
5027 goto dma_error;
5028
5029 /* record length, and DMA address */
5030 dma_unmap_len_set(tx_buffer, len, size);
5031 dma_unmap_addr_set(tx_buffer, dma, dma);
5032
5033 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 5034
ebe42d16
AD
5035 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5036 tx_desc->read.cmd_type_len =
1d9daf45 5037 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
5038
5039 i++;
5040 tx_desc++;
5041 if (i == tx_ring->count) {
5042 tx_desc = IGB_TX_DESC(tx_ring, 0);
5043 i = 0;
5044 }
80d0759e 5045 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
5046
5047 dma += IGB_MAX_DATA_PER_TXD;
5048 size -= IGB_MAX_DATA_PER_TXD;
5049
ebe42d16
AD
5050 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5051 }
5052
5053 if (likely(!data_len))
5054 break;
2bbfebe2 5055
1d9daf45 5056 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 5057
65689fef 5058 i++;
ebe42d16
AD
5059 tx_desc++;
5060 if (i == tx_ring->count) {
5061 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 5062 i = 0;
ebe42d16 5063 }
80d0759e 5064 tx_desc->read.olinfo_status = 0;
65689fef 5065
9e903e08 5066 size = skb_frag_size(frag);
ebe42d16
AD
5067 data_len -= size;
5068
5069 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 5070 size, DMA_TO_DEVICE);
6366ad33 5071
c9f14bf3 5072 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
5073 }
5074
ebe42d16 5075 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
5076 cmd_type |= size | IGB_TXD_DCMD;
5077 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 5078
80d0759e
AD
5079 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5080
8542db05
AD
5081 /* set the timestamp */
5082 first->time_stamp = jiffies;
5083
b980ac18 5084 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
5085 * are new descriptors to fetch. (Only applicable for weak-ordered
5086 * memory model archs, such as IA-64).
5087 *
5088 * We also need this memory barrier to make certain all of the
5089 * status bits have been updated before next_to_watch is written.
5090 */
5091 wmb();
5092
8542db05 5093 /* set next_to_watch value indicating a packet is present */
ebe42d16 5094 first->next_to_watch = tx_desc;
9d5c8243 5095
ebe42d16
AD
5096 i++;
5097 if (i == tx_ring->count)
5098 i = 0;
6366ad33 5099
ebe42d16 5100 tx_ring->next_to_use = i;
6366ad33 5101
6f19e12f
DM
5102 /* Make sure there is space in the ring for the next send. */
5103 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5104
5105 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
0b725a2c
DM
5106 writel(i, tx_ring->tail);
5107
5108 /* we need this if more than one processor can write to our tail
5109 * at a time, it synchronizes IO on IA64/Altix systems
5110 */
5111 mmiowb();
5112 }
ebe42d16
AD
5113 return;
5114
5115dma_error:
5116 dev_err(tx_ring->dev, "TX DMA map failed\n");
5117
5118 /* clear dma mappings for failed tx_buffer_info map */
5119 for (;;) {
c9f14bf3
AD
5120 tx_buffer = &tx_ring->tx_buffer_info[i];
5121 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5122 if (tx_buffer == first)
ebe42d16 5123 break;
a77ff709
NN
5124 if (i == 0)
5125 i = tx_ring->count;
6366ad33 5126 i--;
6366ad33
AD
5127 }
5128
9d5c8243 5129 tx_ring->next_to_use = i;
9d5c8243
AK
5130}
5131
cd392f5c
AD
5132netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5133 struct igb_ring *tx_ring)
9d5c8243 5134{
8542db05 5135 struct igb_tx_buffer *first;
ebe42d16 5136 int tso;
91d4ee33 5137 u32 tx_flags = 0;
2ee52ad4 5138 unsigned short f;
21ba6fe1 5139 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 5140 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 5141 u8 hdr_len = 0;
9d5c8243 5142
21ba6fe1
AD
5143 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5144 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 5145 * + 2 desc gap to keep tail from touching head,
9d5c8243 5146 * + 1 desc for context descriptor,
21ba6fe1
AD
5147 * otherwise try next time
5148 */
2ee52ad4
AD
5149 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5150 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
21ba6fe1
AD
5151
5152 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 5153 /* this is a hard error */
9d5c8243
AK
5154 return NETDEV_TX_BUSY;
5155 }
33af6bcc 5156
7af40ad9
AD
5157 /* record the location of the first descriptor for this packet */
5158 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5159 first->skb = skb;
5160 first->bytecount = skb->len;
5161 first->gso_segs = 1;
5162
b646c22e
AD
5163 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5164 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 5165
ed4420a3
JK
5166 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5167 &adapter->state)) {
b646c22e
AD
5168 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5169 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5170
5171 adapter->ptp_tx_skb = skb_get(skb);
5172 adapter->ptp_tx_start = jiffies;
5173 if (adapter->hw.mac.type == e1000_82576)
5174 schedule_work(&adapter->ptp_tx_work);
5175 }
33af6bcc 5176 }
9d5c8243 5177
afc835d1
JK
5178 skb_tx_timestamp(skb);
5179
df8a39de 5180 if (skb_vlan_tag_present(skb)) {
9d5c8243 5181 tx_flags |= IGB_TX_FLAGS_VLAN;
df8a39de 5182 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
9d5c8243
AK
5183 }
5184
7af40ad9
AD
5185 /* record initial flags and protocol */
5186 first->tx_flags = tx_flags;
5187 first->protocol = protocol;
cdfd01fc 5188
7af40ad9
AD
5189 tso = igb_tso(tx_ring, first, &hdr_len);
5190 if (tso < 0)
7d13a7d0 5191 goto out_drop;
7af40ad9
AD
5192 else if (!tso)
5193 igb_tx_csum(tx_ring, first);
9d5c8243 5194
7af40ad9 5195 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2 5196
9d5c8243 5197 return NETDEV_TX_OK;
7d13a7d0
AD
5198
5199out_drop:
7af40ad9
AD
5200 igb_unmap_and_free_tx_resource(tx_ring, first);
5201
7d13a7d0 5202 return NETDEV_TX_OK;
9d5c8243
AK
5203}
5204
0b725a2c
DM
5205static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5206 struct sk_buff *skb)
1cc3bd87 5207{
0b725a2c
DM
5208 unsigned int r_idx = skb->queue_mapping;
5209
1cc3bd87
AD
5210 if (r_idx >= adapter->num_tx_queues)
5211 r_idx = r_idx % adapter->num_tx_queues;
5212
5213 return adapter->tx_ring[r_idx];
5214}
5215
cd392f5c
AD
5216static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5217 struct net_device *netdev)
9d5c8243
AK
5218{
5219 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3 5220
b980ac18 5221 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5222 * in order to meet this minimum size requirement.
5223 */
a94d9e22
AD
5224 if (skb_put_padto(skb, 17))
5225 return NETDEV_TX_OK;
9d5c8243 5226
1cc3bd87 5227 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5228}
5229
5230/**
b980ac18
JK
5231 * igb_tx_timeout - Respond to a Tx Hang
5232 * @netdev: network interface device structure
9d5c8243
AK
5233 **/
5234static void igb_tx_timeout(struct net_device *netdev)
5235{
5236 struct igb_adapter *adapter = netdev_priv(netdev);
5237 struct e1000_hw *hw = &adapter->hw;
5238
5239 /* Do the reset outside of interrupt context */
5240 adapter->tx_timeout_count++;
f7ba205e 5241
06218a8d 5242 if (hw->mac.type >= e1000_82580)
55cac248
AD
5243 hw->dev_spec._82575.global_device_reset = true;
5244
9d5c8243 5245 schedule_work(&adapter->reset_task);
265de409
AD
5246 wr32(E1000_EICS,
5247 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5248}
5249
5250static void igb_reset_task(struct work_struct *work)
5251{
5252 struct igb_adapter *adapter;
5253 adapter = container_of(work, struct igb_adapter, reset_task);
5254
c97ec42a
TI
5255 igb_dump(adapter);
5256 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5257 igb_reinit_locked(adapter);
5258}
5259
5260/**
b980ac18
JK
5261 * igb_get_stats64 - Get System Network Statistics
5262 * @netdev: network interface device structure
5263 * @stats: rtnl_link_stats64 pointer
9d5c8243 5264 **/
12dcd86b 5265static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5266 struct rtnl_link_stats64 *stats)
9d5c8243 5267{
12dcd86b
ED
5268 struct igb_adapter *adapter = netdev_priv(netdev);
5269
5270 spin_lock(&adapter->stats64_lock);
5271 igb_update_stats(adapter, &adapter->stats64);
5272 memcpy(stats, &adapter->stats64, sizeof(*stats));
5273 spin_unlock(&adapter->stats64_lock);
5274
5275 return stats;
9d5c8243
AK
5276}
5277
5278/**
b980ac18
JK
5279 * igb_change_mtu - Change the Maximum Transfer Unit
5280 * @netdev: network interface device structure
5281 * @new_mtu: new value for maximum frame size
9d5c8243 5282 *
b980ac18 5283 * Returns 0 on success, negative on failure
9d5c8243
AK
5284 **/
5285static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5286{
5287 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5288 struct pci_dev *pdev = adapter->pdev;
153285f9 5289 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5290
c809d227 5291 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 5292 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
5293 return -EINVAL;
5294 }
5295
153285f9 5296#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 5297 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 5298 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
5299 return -EINVAL;
5300 }
5301
2ccd994c
AD
5302 /* adjust max frame to be at least the size of a standard frame */
5303 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5304 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5305
9d5c8243 5306 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 5307 usleep_range(1000, 2000);
73cd78f1 5308
9d5c8243
AK
5309 /* igb_down has a dependency on max_frame_size */
5310 adapter->max_frame_size = max_frame;
559e9c49 5311
4c844851
AD
5312 if (netif_running(netdev))
5313 igb_down(adapter);
9d5c8243 5314
090b1795 5315 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5316 netdev->mtu, new_mtu);
5317 netdev->mtu = new_mtu;
5318
5319 if (netif_running(netdev))
5320 igb_up(adapter);
5321 else
5322 igb_reset(adapter);
5323
5324 clear_bit(__IGB_RESETTING, &adapter->state);
5325
5326 return 0;
5327}
5328
5329/**
b980ac18
JK
5330 * igb_update_stats - Update the board statistics counters
5331 * @adapter: board private structure
9d5c8243 5332 **/
12dcd86b
ED
5333void igb_update_stats(struct igb_adapter *adapter,
5334 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5335{
5336 struct e1000_hw *hw = &adapter->hw;
5337 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5338 u32 reg, mpc;
3f9c0164
AD
5339 int i;
5340 u64 bytes, packets;
12dcd86b
ED
5341 unsigned int start;
5342 u64 _bytes, _packets;
9d5c8243 5343
b980ac18 5344 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5345 * connection is down.
5346 */
5347 if (adapter->link_speed == 0)
5348 return;
5349 if (pci_channel_offline(pdev))
5350 return;
5351
3f9c0164
AD
5352 bytes = 0;
5353 packets = 0;
7f90128e
AA
5354
5355 rcu_read_lock();
3f9c0164 5356 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 5357 struct igb_ring *ring = adapter->rx_ring[i];
e66c083a
TF
5358 u32 rqdpc = rd32(E1000_RQDPC(i));
5359 if (hw->mac.type >= e1000_i210)
5360 wr32(E1000_RQDPC(i), 0);
12dcd86b 5361
ae1c07a6
AD
5362 if (rqdpc) {
5363 ring->rx_stats.drops += rqdpc;
5364 net_stats->rx_fifo_errors += rqdpc;
5365 }
12dcd86b
ED
5366
5367 do {
57a7744e 5368 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5369 _bytes = ring->rx_stats.bytes;
5370 _packets = ring->rx_stats.packets;
57a7744e 5371 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5372 bytes += _bytes;
5373 packets += _packets;
3f9c0164
AD
5374 }
5375
128e45eb
AD
5376 net_stats->rx_bytes = bytes;
5377 net_stats->rx_packets = packets;
3f9c0164
AD
5378
5379 bytes = 0;
5380 packets = 0;
5381 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5382 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5383 do {
57a7744e 5384 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5385 _bytes = ring->tx_stats.bytes;
5386 _packets = ring->tx_stats.packets;
57a7744e 5387 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5388 bytes += _bytes;
5389 packets += _packets;
3f9c0164 5390 }
128e45eb
AD
5391 net_stats->tx_bytes = bytes;
5392 net_stats->tx_packets = packets;
7f90128e 5393 rcu_read_unlock();
3f9c0164
AD
5394
5395 /* read stats registers */
9d5c8243
AK
5396 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5397 adapter->stats.gprc += rd32(E1000_GPRC);
5398 adapter->stats.gorc += rd32(E1000_GORCL);
5399 rd32(E1000_GORCH); /* clear GORCL */
5400 adapter->stats.bprc += rd32(E1000_BPRC);
5401 adapter->stats.mprc += rd32(E1000_MPRC);
5402 adapter->stats.roc += rd32(E1000_ROC);
5403
5404 adapter->stats.prc64 += rd32(E1000_PRC64);
5405 adapter->stats.prc127 += rd32(E1000_PRC127);
5406 adapter->stats.prc255 += rd32(E1000_PRC255);
5407 adapter->stats.prc511 += rd32(E1000_PRC511);
5408 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5409 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5410 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5411 adapter->stats.sec += rd32(E1000_SEC);
5412
fa3d9a6d
MW
5413 mpc = rd32(E1000_MPC);
5414 adapter->stats.mpc += mpc;
5415 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5416 adapter->stats.scc += rd32(E1000_SCC);
5417 adapter->stats.ecol += rd32(E1000_ECOL);
5418 adapter->stats.mcc += rd32(E1000_MCC);
5419 adapter->stats.latecol += rd32(E1000_LATECOL);
5420 adapter->stats.dc += rd32(E1000_DC);
5421 adapter->stats.rlec += rd32(E1000_RLEC);
5422 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5423 adapter->stats.xontxc += rd32(E1000_XONTXC);
5424 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5425 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5426 adapter->stats.fcruc += rd32(E1000_FCRUC);
5427 adapter->stats.gptc += rd32(E1000_GPTC);
5428 adapter->stats.gotc += rd32(E1000_GOTCL);
5429 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5430 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5431 adapter->stats.ruc += rd32(E1000_RUC);
5432 adapter->stats.rfc += rd32(E1000_RFC);
5433 adapter->stats.rjc += rd32(E1000_RJC);
5434 adapter->stats.tor += rd32(E1000_TORH);
5435 adapter->stats.tot += rd32(E1000_TOTH);
5436 adapter->stats.tpr += rd32(E1000_TPR);
5437
5438 adapter->stats.ptc64 += rd32(E1000_PTC64);
5439 adapter->stats.ptc127 += rd32(E1000_PTC127);
5440 adapter->stats.ptc255 += rd32(E1000_PTC255);
5441 adapter->stats.ptc511 += rd32(E1000_PTC511);
5442 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5443 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5444
5445 adapter->stats.mptc += rd32(E1000_MPTC);
5446 adapter->stats.bptc += rd32(E1000_BPTC);
5447
2d0b0f69
NN
5448 adapter->stats.tpt += rd32(E1000_TPT);
5449 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5450
5451 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5452 /* read internal phy specific stats */
5453 reg = rd32(E1000_CTRL_EXT);
5454 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5455 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5456
5457 /* this stat has invalid values on i210/i211 */
5458 if ((hw->mac.type != e1000_i210) &&
5459 (hw->mac.type != e1000_i211))
5460 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5461 }
5462
9d5c8243
AK
5463 adapter->stats.tsctc += rd32(E1000_TSCTC);
5464 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5465
5466 adapter->stats.iac += rd32(E1000_IAC);
5467 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5468 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5469 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5470 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5471 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5472 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5473 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5474 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5475
5476 /* Fill out the OS statistics structure */
128e45eb
AD
5477 net_stats->multicast = adapter->stats.mprc;
5478 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5479
5480 /* Rx Errors */
5481
5482 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5483 * our own version based on RUC and ROC
5484 */
128e45eb 5485 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5486 adapter->stats.crcerrs + adapter->stats.algnerrc +
5487 adapter->stats.ruc + adapter->stats.roc +
5488 adapter->stats.cexterr;
128e45eb
AD
5489 net_stats->rx_length_errors = adapter->stats.ruc +
5490 adapter->stats.roc;
5491 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5492 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5493 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5494
5495 /* Tx Errors */
128e45eb
AD
5496 net_stats->tx_errors = adapter->stats.ecol +
5497 adapter->stats.latecol;
5498 net_stats->tx_aborted_errors = adapter->stats.ecol;
5499 net_stats->tx_window_errors = adapter->stats.latecol;
5500 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5501
5502 /* Tx Dropped needs to be maintained elsewhere */
5503
9d5c8243
AK
5504 /* Management Stats */
5505 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5506 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5507 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5508
5509 /* OS2BMC Stats */
5510 reg = rd32(E1000_MANC);
5511 if (reg & E1000_MANC_EN_BMC2OS) {
5512 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5513 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5514 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5515 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5516 }
9d5c8243
AK
5517}
5518
61d7f75f
RC
5519static void igb_tsync_interrupt(struct igb_adapter *adapter)
5520{
5521 struct e1000_hw *hw = &adapter->hw;
00c65578 5522 struct ptp_clock_event event;
40c9b079 5523 struct timespec64 ts;
720db4ff 5524 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
00c65578
RC
5525
5526 if (tsicr & TSINTR_SYS_WRAP) {
5527 event.type = PTP_CLOCK_PPS;
5528 if (adapter->ptp_caps.pps)
5529 ptp_clock_event(adapter->ptp_clock, &event);
5530 else
5531 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5532 ack |= TSINTR_SYS_WRAP;
5533 }
61d7f75f
RC
5534
5535 if (tsicr & E1000_TSICR_TXTS) {
61d7f75f
RC
5536 /* retrieve hardware timestamp */
5537 schedule_work(&adapter->ptp_tx_work);
00c65578 5538 ack |= E1000_TSICR_TXTS;
61d7f75f 5539 }
00c65578 5540
720db4ff
RC
5541 if (tsicr & TSINTR_TT0) {
5542 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5543 ts = timespec64_add(adapter->perout[0].start,
5544 adapter->perout[0].period);
5545 /* u32 conversion of tv_sec is safe until y2106 */
720db4ff 5546 wr32(E1000_TRGTTIML0, ts.tv_nsec);
40c9b079 5547 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
720db4ff
RC
5548 tsauxc = rd32(E1000_TSAUXC);
5549 tsauxc |= TSAUXC_EN_TT0;
5550 wr32(E1000_TSAUXC, tsauxc);
5551 adapter->perout[0].start = ts;
5552 spin_unlock(&adapter->tmreg_lock);
5553 ack |= TSINTR_TT0;
5554 }
5555
5556 if (tsicr & TSINTR_TT1) {
5557 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5558 ts = timespec64_add(adapter->perout[1].start,
5559 adapter->perout[1].period);
720db4ff 5560 wr32(E1000_TRGTTIML1, ts.tv_nsec);
40c9b079 5561 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
720db4ff
RC
5562 tsauxc = rd32(E1000_TSAUXC);
5563 tsauxc |= TSAUXC_EN_TT1;
5564 wr32(E1000_TSAUXC, tsauxc);
5565 adapter->perout[1].start = ts;
5566 spin_unlock(&adapter->tmreg_lock);
5567 ack |= TSINTR_TT1;
5568 }
5569
5570 if (tsicr & TSINTR_AUTT0) {
5571 nsec = rd32(E1000_AUXSTMPL0);
5572 sec = rd32(E1000_AUXSTMPH0);
5573 event.type = PTP_CLOCK_EXTTS;
5574 event.index = 0;
5575 event.timestamp = sec * 1000000000ULL + nsec;
5576 ptp_clock_event(adapter->ptp_clock, &event);
5577 ack |= TSINTR_AUTT0;
5578 }
5579
5580 if (tsicr & TSINTR_AUTT1) {
5581 nsec = rd32(E1000_AUXSTMPL1);
5582 sec = rd32(E1000_AUXSTMPH1);
5583 event.type = PTP_CLOCK_EXTTS;
5584 event.index = 1;
5585 event.timestamp = sec * 1000000000ULL + nsec;
5586 ptp_clock_event(adapter->ptp_clock, &event);
5587 ack |= TSINTR_AUTT1;
5588 }
5589
00c65578
RC
5590 /* acknowledge the interrupts */
5591 wr32(E1000_TSICR, ack);
61d7f75f
RC
5592}
5593
9d5c8243
AK
5594static irqreturn_t igb_msix_other(int irq, void *data)
5595{
047e0030 5596 struct igb_adapter *adapter = data;
9d5c8243 5597 struct e1000_hw *hw = &adapter->hw;
844290e5 5598 u32 icr = rd32(E1000_ICR);
844290e5 5599 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5600
7f081d40
AD
5601 if (icr & E1000_ICR_DRSTA)
5602 schedule_work(&adapter->reset_task);
5603
047e0030 5604 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5605 /* HW is reporting DMA is out of sync */
5606 adapter->stats.doosync++;
13800469
GR
5607 /* The DMA Out of Sync is also indication of a spoof event
5608 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5609 * see if it is really a spoof event.
5610 */
13800469 5611 igb_check_wvbr(adapter);
dda0e083 5612 }
eebbbdba 5613
4ae196df
AD
5614 /* Check for a mailbox event */
5615 if (icr & E1000_ICR_VMMB)
5616 igb_msg_task(adapter);
5617
5618 if (icr & E1000_ICR_LSC) {
5619 hw->mac.get_link_status = 1;
5620 /* guard against interrupt when we're going down */
5621 if (!test_bit(__IGB_DOWN, &adapter->state))
5622 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5623 }
5624
61d7f75f
RC
5625 if (icr & E1000_ICR_TS)
5626 igb_tsync_interrupt(adapter);
1f6e8178 5627
844290e5 5628 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5629
5630 return IRQ_HANDLED;
5631}
5632
047e0030 5633static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5634{
26b39276 5635 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5636 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5637
047e0030
AD
5638 if (!q_vector->set_itr)
5639 return;
73cd78f1 5640
047e0030
AD
5641 if (!itr_val)
5642 itr_val = 0x4;
661086df 5643
26b39276
AD
5644 if (adapter->hw.mac.type == e1000_82575)
5645 itr_val |= itr_val << 16;
661086df 5646 else
0ba82994 5647 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5648
047e0030
AD
5649 writel(itr_val, q_vector->itr_register);
5650 q_vector->set_itr = 0;
6eb5a7f1
AD
5651}
5652
047e0030 5653static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5654{
047e0030 5655 struct igb_q_vector *q_vector = data;
9d5c8243 5656
047e0030
AD
5657 /* Write the ITR value calculated from the previous interrupt. */
5658 igb_write_itr(q_vector);
9d5c8243 5659
047e0030 5660 napi_schedule(&q_vector->napi);
844290e5 5661
047e0030 5662 return IRQ_HANDLED;
fe4506b6
JC
5663}
5664
421e02f0 5665#ifdef CONFIG_IGB_DCA
6a05004a
AD
5666static void igb_update_tx_dca(struct igb_adapter *adapter,
5667 struct igb_ring *tx_ring,
5668 int cpu)
5669{
5670 struct e1000_hw *hw = &adapter->hw;
5671 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5672
5673 if (hw->mac.type != e1000_82575)
5674 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5675
b980ac18 5676 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5677 * DCA is enabled. This is due to a known issue in some chipsets
5678 * which will cause the DCA tag to be cleared.
5679 */
5680 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5681 E1000_DCA_TXCTRL_DATA_RRO_EN |
5682 E1000_DCA_TXCTRL_DESC_DCA_EN;
5683
5684 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5685}
5686
5687static void igb_update_rx_dca(struct igb_adapter *adapter,
5688 struct igb_ring *rx_ring,
5689 int cpu)
5690{
5691 struct e1000_hw *hw = &adapter->hw;
5692 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5693
5694 if (hw->mac.type != e1000_82575)
5695 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5696
b980ac18 5697 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5698 * DCA is enabled. This is due to a known issue in some chipsets
5699 * which will cause the DCA tag to be cleared.
5700 */
5701 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5702 E1000_DCA_RXCTRL_DESC_DCA_EN;
5703
5704 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5705}
5706
047e0030 5707static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5708{
047e0030 5709 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5710 int cpu = get_cpu();
fe4506b6 5711
047e0030
AD
5712 if (q_vector->cpu == cpu)
5713 goto out_no_update;
5714
6a05004a
AD
5715 if (q_vector->tx.ring)
5716 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5717
5718 if (q_vector->rx.ring)
5719 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5720
047e0030
AD
5721 q_vector->cpu = cpu;
5722out_no_update:
fe4506b6
JC
5723 put_cpu();
5724}
5725
5726static void igb_setup_dca(struct igb_adapter *adapter)
5727{
7e0e99ef 5728 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5729 int i;
5730
7dfc16fa 5731 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5732 return;
5733
7e0e99ef
AD
5734 /* Always use CB2 mode, difference is masked in the CB driver. */
5735 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5736
047e0030 5737 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5738 adapter->q_vector[i]->cpu = -1;
5739 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5740 }
5741}
5742
5743static int __igb_notify_dca(struct device *dev, void *data)
5744{
5745 struct net_device *netdev = dev_get_drvdata(dev);
5746 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5747 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5748 struct e1000_hw *hw = &adapter->hw;
5749 unsigned long event = *(unsigned long *)data;
5750
5751 switch (event) {
5752 case DCA_PROVIDER_ADD:
5753 /* if already enabled, don't do it again */
7dfc16fa 5754 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5755 break;
fe4506b6 5756 if (dca_add_requester(dev) == 0) {
bbd98fe4 5757 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5758 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5759 igb_setup_dca(adapter);
5760 break;
5761 }
5762 /* Fall Through since DCA is disabled. */
5763 case DCA_PROVIDER_REMOVE:
7dfc16fa 5764 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5765 /* without this a class_device is left
b980ac18
JK
5766 * hanging around in the sysfs model
5767 */
fe4506b6 5768 dca_remove_requester(dev);
090b1795 5769 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5770 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5771 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5772 }
5773 break;
5774 }
bbd98fe4 5775
fe4506b6 5776 return 0;
9d5c8243
AK
5777}
5778
fe4506b6 5779static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5780 void *p)
fe4506b6
JC
5781{
5782 int ret_val;
5783
5784 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5785 __igb_notify_dca);
fe4506b6
JC
5786
5787 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5788}
421e02f0 5789#endif /* CONFIG_IGB_DCA */
9d5c8243 5790
0224d663
GR
5791#ifdef CONFIG_PCI_IOV
5792static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5793{
5794 unsigned char mac_addr[ETH_ALEN];
0224d663 5795
5ac6f91d 5796 eth_zero_addr(mac_addr);
0224d663
GR
5797 igb_set_vf_mac(adapter, vf, mac_addr);
5798
70ea4783
LL
5799 /* By default spoof check is enabled for all VFs */
5800 adapter->vf_data[vf].spoofchk_enabled = true;
5801
f557147c 5802 return 0;
0224d663
GR
5803}
5804
0224d663 5805#endif
4ae196df
AD
5806static void igb_ping_all_vfs(struct igb_adapter *adapter)
5807{
5808 struct e1000_hw *hw = &adapter->hw;
5809 u32 ping;
5810 int i;
5811
5812 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5813 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5814 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5815 ping |= E1000_VT_MSGTYPE_CTS;
5816 igb_write_mbx(hw, &ping, 1, i);
5817 }
5818}
5819
7d5753f0
AD
5820static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5821{
5822 struct e1000_hw *hw = &adapter->hw;
5823 u32 vmolr = rd32(E1000_VMOLR(vf));
5824 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5825
d85b9004 5826 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5827 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5828 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5829
5830 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5831 vmolr |= E1000_VMOLR_MPME;
d85b9004 5832 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5833 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5834 } else {
b980ac18 5835 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5836 * flag we need to write the hashes to the MTA as this step
5837 * was previously skipped
5838 */
5839 if (vf_data->num_vf_mc_hashes > 30) {
5840 vmolr |= E1000_VMOLR_MPME;
5841 } else if (vf_data->num_vf_mc_hashes) {
5842 int j;
9005df38 5843
7d5753f0
AD
5844 vmolr |= E1000_VMOLR_ROMPE;
5845 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5846 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5847 }
5848 }
5849
5850 wr32(E1000_VMOLR(vf), vmolr);
5851
5852 /* there are flags left unprocessed, likely not supported */
5853 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5854 return -EINVAL;
5855
5856 return 0;
7d5753f0
AD
5857}
5858
4ae196df
AD
5859static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5860 u32 *msgbuf, u32 vf)
5861{
5862 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5863 u16 *hash_list = (u16 *)&msgbuf[1];
5864 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5865 int i;
5866
7d5753f0 5867 /* salt away the number of multicast addresses assigned
4ae196df
AD
5868 * to this VF for later use to restore when the PF multi cast
5869 * list changes
5870 */
5871 vf_data->num_vf_mc_hashes = n;
5872
7d5753f0
AD
5873 /* only up to 30 hash values supported */
5874 if (n > 30)
5875 n = 30;
5876
5877 /* store the hashes for later use */
4ae196df 5878 for (i = 0; i < n; i++)
a419aef8 5879 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5880
5881 /* Flush and reset the mta with the new values */
ff41f8dc 5882 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5883
5884 return 0;
5885}
5886
5887static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5888{
5889 struct e1000_hw *hw = &adapter->hw;
5890 struct vf_data_storage *vf_data;
5891 int i, j;
5892
5893 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0 5894 u32 vmolr = rd32(E1000_VMOLR(i));
9005df38 5895
7d5753f0
AD
5896 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5897
4ae196df 5898 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5899
5900 if ((vf_data->num_vf_mc_hashes > 30) ||
5901 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5902 vmolr |= E1000_VMOLR_MPME;
5903 } else if (vf_data->num_vf_mc_hashes) {
5904 vmolr |= E1000_VMOLR_ROMPE;
5905 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5906 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5907 }
5908 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5909 }
5910}
5911
5912static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5913{
5914 struct e1000_hw *hw = &adapter->hw;
16903caa 5915 u32 pool_mask, vlvf_mask, i;
4ae196df 5916
16903caa
AD
5917 /* create mask for VF and other pools */
5918 pool_mask = E1000_VLVF_POOLSEL_MASK;
5919 vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5920
5921 /* drop PF from pool bits */
5922 pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
5923 adapter->vfs_allocated_count));
4ae196df
AD
5924
5925 /* Find the vlan filter for this id */
16903caa
AD
5926 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5927 u32 vlvf = rd32(E1000_VLVF(i));
5928 u32 vfta_mask, vid, vfta;
4ae196df
AD
5929
5930 /* remove the vf from the pool */
16903caa
AD
5931 if (!(vlvf & vlvf_mask))
5932 continue;
5933
5934 /* clear out bit from VLVF */
5935 vlvf ^= vlvf_mask;
5936
5937 /* if other pools are present, just remove ourselves */
5938 if (vlvf & pool_mask)
5939 goto update_vlvfb;
5940
5941 /* if PF is present, leave VFTA */
5942 if (vlvf & E1000_VLVF_POOLSEL_MASK)
5943 goto update_vlvf;
4ae196df 5944
16903caa
AD
5945 vid = vlvf & E1000_VLVF_VLANID_MASK;
5946 vfta_mask = 1 << (vid % 32);
5947
5948 /* clear bit from VFTA */
5949 vfta = adapter->shadow_vfta[vid / 32];
5950 if (vfta & vfta_mask)
5951 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5952update_vlvf:
5953 /* clear pool selection enable */
5954 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5955 vlvf &= E1000_VLVF_POOLSEL_MASK;
5956 else
5957 vlvf = 0;
5958update_vlvfb:
5959 /* clear pool bits */
5960 wr32(E1000_VLVF(i), vlvf);
4ae196df
AD
5961 }
5962}
5963
16903caa 5964static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6f3dc319 5965{
16903caa
AD
5966 u32 vlvf;
5967 int idx;
6f3dc319 5968
16903caa
AD
5969 /* short cut the special case */
5970 if (vlan == 0)
5971 return 0;
5972
5973 /* Search for the VLAN id in the VLVF entries */
5974 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
5975 vlvf = rd32(E1000_VLVF(idx));
5976 if ((vlvf & VLAN_VID_MASK) == vlan)
6f3dc319
GR
5977 break;
5978 }
5979
16903caa
AD
5980 return idx;
5981}
5982
5983void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
5984{
5985 struct e1000_hw *hw = &adapter->hw;
5986 u32 bits, pf_id;
5987 int idx;
5988
5989 idx = igb_find_vlvf_entry(hw, vid);
5990 if (!idx)
5991 return;
6f3dc319 5992
16903caa
AD
5993 /* See if any other pools are set for this VLAN filter
5994 * entry other than the PF.
5995 */
5996 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5997 bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
5998 bits &= rd32(E1000_VLVF(idx));
5999
6000 /* Disable the filter so this falls into the default pool. */
6001 if (!bits) {
6002 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6003 wr32(E1000_VLVF(idx), 1 << pf_id);
6004 else
6005 wr32(E1000_VLVF(idx), 0);
6006 }
6f3dc319
GR
6007}
6008
a15d9259
AD
6009static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6010 bool add, u32 vf)
4ae196df 6011{
a15d9259 6012 int pf_id = adapter->vfs_allocated_count;
6f3dc319 6013 struct e1000_hw *hw = &adapter->hw;
a15d9259 6014 int err;
4ae196df 6015
a15d9259
AD
6016 /* If VLAN overlaps with one the PF is currently monitoring make
6017 * sure that we are able to allocate a VLVF entry. This may be
6018 * redundant but it guarantees PF will maintain visibility to
6019 * the VLAN.
6f3dc319 6020 */
16903caa 6021 if (add && test_bit(vid, adapter->active_vlans)) {
a15d9259
AD
6022 err = igb_vfta_set(hw, vid, pf_id, true, false);
6023 if (err)
6024 return err;
6025 }
6f3dc319 6026
a15d9259 6027 err = igb_vfta_set(hw, vid, vf, add, false);
6f3dc319 6028
16903caa
AD
6029 if (add && !err)
6030 return err;
6f3dc319 6031
16903caa
AD
6032 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6033 * we may need to drop the PF pool bit in order to allow us to free
6034 * up the VLVF resources.
6f3dc319 6035 */
16903caa
AD
6036 if (test_bit(vid, adapter->active_vlans) ||
6037 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6038 igb_update_pf_vlvf(adapter, vid);
6f3dc319 6039
6f3dc319 6040 return err;
4ae196df
AD
6041}
6042
a15d9259 6043static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4ae196df 6044{
a15d9259
AD
6045 struct e1000_hw *hw = &adapter->hw;
6046
6047 if (vid)
6048 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6049 else
6050 wr32(E1000_VMVIR(vf), 0);
6051}
6052
6053static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6054 u16 vlan, u8 qos)
6055{
6056 int err;
6057
6058 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6059 if (err)
6060 return err;
6061
6062 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6063 igb_set_vmolr(adapter, vf, !vlan);
6064
6065 /* revoke access to previous VLAN */
6066 if (vlan != adapter->vf_data[vf].pf_vlan)
6067 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6068 false, vf);
6069
6070 adapter->vf_data[vf].pf_vlan = vlan;
6071 adapter->vf_data[vf].pf_qos = qos;
6072 dev_info(&adapter->pdev->dev,
6073 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6074 if (test_bit(__IGB_DOWN, &adapter->state)) {
6075 dev_warn(&adapter->pdev->dev,
6076 "The VF VLAN has been set, but the PF device is not up.\n");
6077 dev_warn(&adapter->pdev->dev,
6078 "Bring the PF device up before attempting to use the VF device.\n");
6079 }
6080
6081 return err;
6082}
4ae196df 6083
a15d9259
AD
6084static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6085{
6086 /* Restore tagless access via VLAN 0 */
6087 igb_set_vf_vlan(adapter, 0, true, vf);
6088
6089 igb_set_vmvir(adapter, 0, vf);
8151d294 6090 igb_set_vmolr(adapter, vf, true);
4ae196df 6091
a15d9259
AD
6092 /* Remove any PF assigned VLAN */
6093 if (adapter->vf_data[vf].pf_vlan)
6094 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6095 false, vf);
6096
6097 adapter->vf_data[vf].pf_vlan = 0;
6098 adapter->vf_data[vf].pf_qos = 0;
6099
6100 return 0;
6101}
6102
6103static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6104 int vf, u16 vlan, u8 qos)
6105{
6106 struct igb_adapter *adapter = netdev_priv(netdev);
6107
6108 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6109 return -EINVAL;
6110
6111 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6112 igb_disable_port_vlan(adapter, vf);
6113}
6114
6115static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6116{
6117 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6118 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6119
6120 if (adapter->vf_data[vf].pf_vlan)
6121 return -1;
6122
6123 /* VLAN 0 is a special case, don't allow it to be removed */
6124 if (!vid && !add)
6125 return 0;
6126
6127 return igb_set_vf_vlan(adapter, vid, !!add, vf);
6128}
6129
6130static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6131{
6132 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6133
6134 /* clear flags - except flag that indicates PF has set the MAC */
6135 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6136 vf_data->last_nack = jiffies;
6137
4ae196df
AD
6138 /* reset vlans for device */
6139 igb_clear_vf_vfta(adapter, vf);
a15d9259
AD
6140 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6141 igb_set_vmvir(adapter, vf_data->pf_vlan |
6142 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6143 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
4ae196df
AD
6144
6145 /* reset multicast table array for vf */
6146 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6147
6148 /* Flush and reset the mta with the new values */
ff41f8dc 6149 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6150}
6151
f2ca0dbe
AD
6152static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6153{
6154 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6155
5ac6f91d 6156 /* clear mac address as we were hotplug removed/added */
8151d294 6157 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 6158 eth_zero_addr(vf_mac);
f2ca0dbe
AD
6159
6160 /* process remaining reset events */
6161 igb_vf_reset(adapter, vf);
6162}
6163
6164static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
6165{
6166 struct e1000_hw *hw = &adapter->hw;
6167 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 6168 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
6169 u32 reg, msgbuf[3];
6170 u8 *addr = (u8 *)(&msgbuf[1]);
6171
6172 /* process all the same items cleared in a function level reset */
f2ca0dbe 6173 igb_vf_reset(adapter, vf);
4ae196df
AD
6174
6175 /* set vf mac address */
26ad9178 6176 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
6177
6178 /* enable transmit and receive for vf */
6179 reg = rd32(E1000_VFTE);
6180 wr32(E1000_VFTE, reg | (1 << vf));
6181 reg = rd32(E1000_VFRE);
6182 wr32(E1000_VFRE, reg | (1 << vf));
6183
8fa7e0f7 6184 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
6185
6186 /* reply to reset with ack and vf mac address */
6ddbc4cf
AG
6187 if (!is_zero_ether_addr(vf_mac)) {
6188 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6189 memcpy(addr, vf_mac, ETH_ALEN);
6190 } else {
6191 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6192 }
4ae196df
AD
6193 igb_write_mbx(hw, msgbuf, 3, vf);
6194}
6195
6196static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6197{
b980ac18 6198 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
6199 * starting at the second 32 bit word of the msg array
6200 */
f2ca0dbe
AD
6201 unsigned char *addr = (char *)&msg[1];
6202 int err = -1;
4ae196df 6203
f2ca0dbe
AD
6204 if (is_valid_ether_addr(addr))
6205 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 6206
f2ca0dbe 6207 return err;
4ae196df
AD
6208}
6209
6210static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6211{
6212 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6213 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6214 u32 msg = E1000_VT_MSGTYPE_NACK;
6215
6216 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
6217 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6218 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 6219 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 6220 vf_data->last_nack = jiffies;
4ae196df
AD
6221 }
6222}
6223
f2ca0dbe 6224static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 6225{
f2ca0dbe
AD
6226 struct pci_dev *pdev = adapter->pdev;
6227 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 6228 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6229 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6230 s32 retval;
6231
f2ca0dbe 6232 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 6233
fef45f4c
AD
6234 if (retval) {
6235 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 6236 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
6237 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6238 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6239 return;
6240 goto out;
6241 }
4ae196df
AD
6242
6243 /* this is a message we already processed, do nothing */
6244 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 6245 return;
4ae196df 6246
b980ac18 6247 /* until the vf completes a reset it should not be
4ae196df
AD
6248 * allowed to start any configuration.
6249 */
4ae196df
AD
6250 if (msgbuf[0] == E1000_VF_RESET) {
6251 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 6252 return;
4ae196df
AD
6253 }
6254
f2ca0dbe 6255 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
6256 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6257 return;
6258 retval = -1;
6259 goto out;
4ae196df
AD
6260 }
6261
6262 switch ((msgbuf[0] & 0xFFFF)) {
6263 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
6264 retval = -EINVAL;
6265 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6266 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6267 else
6268 dev_warn(&pdev->dev,
b980ac18
JK
6269 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6270 vf);
4ae196df 6271 break;
7d5753f0
AD
6272 case E1000_VF_SET_PROMISC:
6273 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6274 break;
4ae196df
AD
6275 case E1000_VF_SET_MULTICAST:
6276 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6277 break;
6278 case E1000_VF_SET_LPE:
6279 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6280 break;
6281 case E1000_VF_SET_VLAN:
a6b5ea35
GR
6282 retval = -1;
6283 if (vf_data->pf_vlan)
6284 dev_warn(&pdev->dev,
b980ac18
JK
6285 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6286 vf);
8151d294 6287 else
a15d9259 6288 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
4ae196df
AD
6289 break;
6290 default:
090b1795 6291 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6292 retval = -1;
6293 break;
6294 }
6295
fef45f4c
AD
6296 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6297out:
4ae196df
AD
6298 /* notify the VF of the results of what it sent us */
6299 if (retval)
6300 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6301 else
6302 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6303
4ae196df 6304 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6305}
4ae196df 6306
f2ca0dbe
AD
6307static void igb_msg_task(struct igb_adapter *adapter)
6308{
6309 struct e1000_hw *hw = &adapter->hw;
6310 u32 vf;
6311
6312 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6313 /* process any reset requests */
6314 if (!igb_check_for_rst(hw, vf))
6315 igb_vf_reset_event(adapter, vf);
6316
6317 /* process any messages pending */
6318 if (!igb_check_for_msg(hw, vf))
6319 igb_rcv_msg_from_vf(adapter, vf);
6320
6321 /* process any acks */
6322 if (!igb_check_for_ack(hw, vf))
6323 igb_rcv_ack_from_vf(adapter, vf);
6324 }
4ae196df
AD
6325}
6326
68d480c4
AD
6327/**
6328 * igb_set_uta - Set unicast filter table address
6329 * @adapter: board private structure
bf456abb 6330 * @set: boolean indicating if we are setting or clearing bits
68d480c4
AD
6331 *
6332 * The unicast table address is a register array of 32-bit registers.
6333 * The table is meant to be used in a way similar to how the MTA is used
6334 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6335 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6336 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4 6337 **/
bf456abb 6338static void igb_set_uta(struct igb_adapter *adapter, bool set)
68d480c4
AD
6339{
6340 struct e1000_hw *hw = &adapter->hw;
bf456abb 6341 u32 uta = set ? ~0 : 0;
68d480c4
AD
6342 int i;
6343
68d480c4
AD
6344 /* we only need to do this if VMDq is enabled */
6345 if (!adapter->vfs_allocated_count)
6346 return;
6347
bf456abb
AD
6348 for (i = hw->mac.uta_reg_count; i--;)
6349 array_wr32(E1000_UTA, i, uta);
68d480c4
AD
6350}
6351
9d5c8243 6352/**
b980ac18
JK
6353 * igb_intr_msi - Interrupt Handler
6354 * @irq: interrupt number
6355 * @data: pointer to a network interface device structure
9d5c8243
AK
6356 **/
6357static irqreturn_t igb_intr_msi(int irq, void *data)
6358{
047e0030
AD
6359 struct igb_adapter *adapter = data;
6360 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6361 struct e1000_hw *hw = &adapter->hw;
6362 /* read ICR disables interrupts using IAM */
6363 u32 icr = rd32(E1000_ICR);
6364
047e0030 6365 igb_write_itr(q_vector);
9d5c8243 6366
7f081d40
AD
6367 if (icr & E1000_ICR_DRSTA)
6368 schedule_work(&adapter->reset_task);
6369
047e0030 6370 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6371 /* HW is reporting DMA is out of sync */
6372 adapter->stats.doosync++;
6373 }
6374
9d5c8243
AK
6375 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6376 hw->mac.get_link_status = 1;
6377 if (!test_bit(__IGB_DOWN, &adapter->state))
6378 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6379 }
6380
61d7f75f
RC
6381 if (icr & E1000_ICR_TS)
6382 igb_tsync_interrupt(adapter);
1f6e8178 6383
047e0030 6384 napi_schedule(&q_vector->napi);
9d5c8243
AK
6385
6386 return IRQ_HANDLED;
6387}
6388
6389/**
b980ac18
JK
6390 * igb_intr - Legacy Interrupt Handler
6391 * @irq: interrupt number
6392 * @data: pointer to a network interface device structure
9d5c8243
AK
6393 **/
6394static irqreturn_t igb_intr(int irq, void *data)
6395{
047e0030
AD
6396 struct igb_adapter *adapter = data;
6397 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6398 struct e1000_hw *hw = &adapter->hw;
6399 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6400 * need for the IMC write
6401 */
9d5c8243 6402 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6403
6404 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6405 * not set, then the adapter didn't send an interrupt
6406 */
9d5c8243
AK
6407 if (!(icr & E1000_ICR_INT_ASSERTED))
6408 return IRQ_NONE;
6409
0ba82994
AD
6410 igb_write_itr(q_vector);
6411
7f081d40
AD
6412 if (icr & E1000_ICR_DRSTA)
6413 schedule_work(&adapter->reset_task);
6414
047e0030 6415 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6416 /* HW is reporting DMA is out of sync */
6417 adapter->stats.doosync++;
6418 }
6419
9d5c8243
AK
6420 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6421 hw->mac.get_link_status = 1;
6422 /* guard against interrupt when we're going down */
6423 if (!test_bit(__IGB_DOWN, &adapter->state))
6424 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6425 }
6426
61d7f75f
RC
6427 if (icr & E1000_ICR_TS)
6428 igb_tsync_interrupt(adapter);
1f6e8178 6429
047e0030 6430 napi_schedule(&q_vector->napi);
9d5c8243
AK
6431
6432 return IRQ_HANDLED;
6433}
6434
c50b52a0 6435static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6436{
047e0030 6437 struct igb_adapter *adapter = q_vector->adapter;
46544258 6438 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6439
0ba82994
AD
6440 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6441 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6442 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6443 igb_set_itr(q_vector);
46544258 6444 else
047e0030 6445 igb_update_ring_itr(q_vector);
9d5c8243
AK
6446 }
6447
46544258 6448 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 6449 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 6450 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6451 else
6452 igb_irq_enable(adapter);
6453 }
9d5c8243
AK
6454}
6455
46544258 6456/**
b980ac18
JK
6457 * igb_poll - NAPI Rx polling callback
6458 * @napi: napi polling structure
6459 * @budget: count of how many packets we should handle
46544258
AD
6460 **/
6461static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6462{
047e0030 6463 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6464 struct igb_q_vector,
6465 napi);
16eb8815 6466 bool clean_complete = true;
32b3e08f 6467 int work_done = 0;
9d5c8243 6468
421e02f0 6469#ifdef CONFIG_IGB_DCA
047e0030
AD
6470 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6471 igb_update_dca(q_vector);
fe4506b6 6472#endif
0ba82994 6473 if (q_vector->tx.ring)
13fde97a 6474 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 6475
32b3e08f
JB
6476 if (q_vector->rx.ring) {
6477 int cleaned = igb_clean_rx_irq(q_vector, budget);
6478
6479 work_done += cleaned;
6480 clean_complete &= (cleaned < budget);
6481 }
047e0030 6482
16eb8815
AD
6483 /* If all work not completed, return budget and keep polling */
6484 if (!clean_complete)
6485 return budget;
46544258 6486
9d5c8243 6487 /* If not enough Rx work done, exit the polling mode */
32b3e08f 6488 napi_complete_done(napi, work_done);
16eb8815 6489 igb_ring_irq_enable(q_vector);
9d5c8243 6490
16eb8815 6491 return 0;
9d5c8243 6492}
6d8126f9 6493
9d5c8243 6494/**
b980ac18
JK
6495 * igb_clean_tx_irq - Reclaim resources after transmit completes
6496 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 6497 *
b980ac18 6498 * returns true if ring is completely cleaned
9d5c8243 6499 **/
047e0030 6500static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 6501{
047e0030 6502 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6503 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6504 struct igb_tx_buffer *tx_buffer;
f4128785 6505 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6506 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6507 unsigned int budget = q_vector->tx.work_limit;
8542db05 6508 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6509
13fde97a
AD
6510 if (test_bit(__IGB_DOWN, &adapter->state))
6511 return true;
0e014cb1 6512
06034649 6513 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6514 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6515 i -= tx_ring->count;
9d5c8243 6516
f4128785
AD
6517 do {
6518 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6519
6520 /* if next_to_watch is not set then there is no work pending */
6521 if (!eop_desc)
6522 break;
13fde97a 6523
f4128785 6524 /* prevent any other reads prior to eop_desc */
70d289bc 6525 read_barrier_depends();
f4128785 6526
13fde97a
AD
6527 /* if DD is not set pending work has not been completed */
6528 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6529 break;
6530
8542db05
AD
6531 /* clear next_to_watch to prevent false hangs */
6532 tx_buffer->next_to_watch = NULL;
9d5c8243 6533
ebe42d16
AD
6534 /* update the statistics for this packet */
6535 total_bytes += tx_buffer->bytecount;
6536 total_packets += tx_buffer->gso_segs;
13fde97a 6537
ebe42d16 6538 /* free the skb */
a81fb049 6539 dev_consume_skb_any(tx_buffer->skb);
13fde97a 6540
ebe42d16
AD
6541 /* unmap skb header data */
6542 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6543 dma_unmap_addr(tx_buffer, dma),
6544 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6545 DMA_TO_DEVICE);
6546
c9f14bf3
AD
6547 /* clear tx_buffer data */
6548 tx_buffer->skb = NULL;
6549 dma_unmap_len_set(tx_buffer, len, 0);
6550
ebe42d16
AD
6551 /* clear last DMA location and unmap remaining buffers */
6552 while (tx_desc != eop_desc) {
13fde97a
AD
6553 tx_buffer++;
6554 tx_desc++;
9d5c8243 6555 i++;
8542db05
AD
6556 if (unlikely(!i)) {
6557 i -= tx_ring->count;
06034649 6558 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6559 tx_desc = IGB_TX_DESC(tx_ring, 0);
6560 }
ebe42d16
AD
6561
6562 /* unmap any remaining paged data */
c9f14bf3 6563 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6564 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6565 dma_unmap_addr(tx_buffer, dma),
6566 dma_unmap_len(tx_buffer, len),
ebe42d16 6567 DMA_TO_DEVICE);
c9f14bf3 6568 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6569 }
6570 }
6571
ebe42d16
AD
6572 /* move us one more past the eop_desc for start of next pkt */
6573 tx_buffer++;
6574 tx_desc++;
6575 i++;
6576 if (unlikely(!i)) {
6577 i -= tx_ring->count;
6578 tx_buffer = tx_ring->tx_buffer_info;
6579 tx_desc = IGB_TX_DESC(tx_ring, 0);
6580 }
f4128785
AD
6581
6582 /* issue prefetch for next Tx descriptor */
6583 prefetch(tx_desc);
6584
6585 /* update budget accounting */
6586 budget--;
6587 } while (likely(budget));
0e014cb1 6588
bdbc0631
ED
6589 netdev_tx_completed_queue(txring_txq(tx_ring),
6590 total_packets, total_bytes);
8542db05 6591 i += tx_ring->count;
9d5c8243 6592 tx_ring->next_to_clean = i;
13fde97a
AD
6593 u64_stats_update_begin(&tx_ring->tx_syncp);
6594 tx_ring->tx_stats.bytes += total_bytes;
6595 tx_ring->tx_stats.packets += total_packets;
6596 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6597 q_vector->tx.total_bytes += total_bytes;
6598 q_vector->tx.total_packets += total_packets;
9d5c8243 6599
6d095fa8 6600 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6601 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6602
9d5c8243 6603 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6604 * check with the clearing of time_stamp and movement of i
6605 */
6d095fa8 6606 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6607 if (tx_buffer->next_to_watch &&
8542db05 6608 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6609 (adapter->tx_timeout_factor * HZ)) &&
6610 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6611
9d5c8243 6612 /* detected Tx unit hang */
59d71989 6613 dev_err(tx_ring->dev,
9d5c8243 6614 "Detected Tx Unit Hang\n"
2d064c06 6615 " Tx Queue <%d>\n"
9d5c8243
AK
6616 " TDH <%x>\n"
6617 " TDT <%x>\n"
6618 " next_to_use <%x>\n"
6619 " next_to_clean <%x>\n"
9d5c8243
AK
6620 "buffer_info[next_to_clean]\n"
6621 " time_stamp <%lx>\n"
8542db05 6622 " next_to_watch <%p>\n"
9d5c8243
AK
6623 " jiffies <%lx>\n"
6624 " desc.status <%x>\n",
2d064c06 6625 tx_ring->queue_index,
238ac817 6626 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6627 readl(tx_ring->tail),
9d5c8243
AK
6628 tx_ring->next_to_use,
6629 tx_ring->next_to_clean,
8542db05 6630 tx_buffer->time_stamp,
f4128785 6631 tx_buffer->next_to_watch,
9d5c8243 6632 jiffies,
f4128785 6633 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6634 netif_stop_subqueue(tx_ring->netdev,
6635 tx_ring->queue_index);
6636
6637 /* we are about to reset, no point in enabling stuff */
6638 return true;
9d5c8243
AK
6639 }
6640 }
13fde97a 6641
21ba6fe1 6642#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6643 if (unlikely(total_packets &&
b980ac18
JK
6644 netif_carrier_ok(tx_ring->netdev) &&
6645 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6646 /* Make sure that anybody stopping the queue after this
6647 * sees the new next_to_clean.
6648 */
6649 smp_mb();
6650 if (__netif_subqueue_stopped(tx_ring->netdev,
6651 tx_ring->queue_index) &&
6652 !(test_bit(__IGB_DOWN, &adapter->state))) {
6653 netif_wake_subqueue(tx_ring->netdev,
6654 tx_ring->queue_index);
6655
6656 u64_stats_update_begin(&tx_ring->tx_syncp);
6657 tx_ring->tx_stats.restart_queue++;
6658 u64_stats_update_end(&tx_ring->tx_syncp);
6659 }
6660 }
6661
6662 return !!budget;
9d5c8243
AK
6663}
6664
cbc8e55f 6665/**
b980ac18
JK
6666 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6667 * @rx_ring: rx descriptor ring to store buffers on
6668 * @old_buff: donor buffer to have page reused
cbc8e55f 6669 *
b980ac18 6670 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6671 **/
6672static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6673 struct igb_rx_buffer *old_buff)
6674{
6675 struct igb_rx_buffer *new_buff;
6676 u16 nta = rx_ring->next_to_alloc;
6677
6678 new_buff = &rx_ring->rx_buffer_info[nta];
6679
6680 /* update, and store next to alloc */
6681 nta++;
6682 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6683
6684 /* transfer page from old buffer to new buffer */
a1f63473 6685 *new_buff = *old_buff;
cbc8e55f
AD
6686
6687 /* sync the buffer for use by the device */
6688 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6689 old_buff->page_offset,
de78d1f9 6690 IGB_RX_BUFSZ,
cbc8e55f
AD
6691 DMA_FROM_DEVICE);
6692}
6693
95dd44b4
AD
6694static inline bool igb_page_is_reserved(struct page *page)
6695{
2f064f34 6696 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
95dd44b4
AD
6697}
6698
74e238ea
AD
6699static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6700 struct page *page,
6701 unsigned int truesize)
6702{
6703 /* avoid re-using remote pages */
95dd44b4 6704 if (unlikely(igb_page_is_reserved(page)))
bc16e47f
RG
6705 return false;
6706
74e238ea
AD
6707#if (PAGE_SIZE < 8192)
6708 /* if we are only owner of page we can reuse it */
6709 if (unlikely(page_count(page) != 1))
6710 return false;
6711
6712 /* flip page offset to other buffer */
6713 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
74e238ea
AD
6714#else
6715 /* move offset up to the next cache line */
6716 rx_buffer->page_offset += truesize;
6717
6718 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6719 return false;
74e238ea
AD
6720#endif
6721
95dd44b4
AD
6722 /* Even if we own the page, we are not allowed to use atomic_set()
6723 * This would break get_page_unless_zero() users.
6724 */
6725 atomic_inc(&page->_count);
6726
74e238ea
AD
6727 return true;
6728}
6729
cbc8e55f 6730/**
b980ac18
JK
6731 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6732 * @rx_ring: rx descriptor ring to transact packets on
6733 * @rx_buffer: buffer containing page to add
6734 * @rx_desc: descriptor containing length of buffer written by hardware
6735 * @skb: sk_buff to place the data into
cbc8e55f 6736 *
b980ac18
JK
6737 * This function will add the data contained in rx_buffer->page to the skb.
6738 * This is done either through a direct copy if the data in the buffer is
6739 * less than the skb header size, otherwise it will just attach the page as
6740 * a frag to the skb.
cbc8e55f 6741 *
b980ac18
JK
6742 * The function will then update the page offset if necessary and return
6743 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6744 **/
6745static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6746 struct igb_rx_buffer *rx_buffer,
6747 union e1000_adv_rx_desc *rx_desc,
6748 struct sk_buff *skb)
6749{
6750 struct page *page = rx_buffer->page;
f56e7bba 6751 unsigned char *va = page_address(page) + rx_buffer->page_offset;
cbc8e55f 6752 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6753#if (PAGE_SIZE < 8192)
6754 unsigned int truesize = IGB_RX_BUFSZ;
6755#else
f56e7bba 6756 unsigned int truesize = SKB_DATA_ALIGN(size);
74e238ea 6757#endif
f56e7bba 6758 unsigned int pull_len;
cbc8e55f 6759
f56e7bba
AD
6760 if (unlikely(skb_is_nonlinear(skb)))
6761 goto add_tail_frag;
cbc8e55f 6762
f56e7bba
AD
6763 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6764 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6765 va += IGB_TS_HDR_LEN;
6766 size -= IGB_TS_HDR_LEN;
6767 }
cbc8e55f 6768
f56e7bba 6769 if (likely(size <= IGB_RX_HDR_LEN)) {
cbc8e55f
AD
6770 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6771
95dd44b4
AD
6772 /* page is not reserved, we can reuse buffer as-is */
6773 if (likely(!igb_page_is_reserved(page)))
cbc8e55f
AD
6774 return true;
6775
6776 /* this page cannot be reused so discard it */
95dd44b4 6777 __free_page(page);
cbc8e55f
AD
6778 return false;
6779 }
6780
f56e7bba
AD
6781 /* we need the header to contain the greater of either ETH_HLEN or
6782 * 60 bytes if the skb->len is less than 60 for skb_pad.
6783 */
6784 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6785
6786 /* align pull length to size of long to optimize memcpy performance */
6787 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6788
6789 /* update all of the pointers */
6790 va += pull_len;
6791 size -= pull_len;
6792
6793add_tail_frag:
cbc8e55f 6794 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
f56e7bba 6795 (unsigned long)va & ~PAGE_MASK, size, truesize);
cbc8e55f 6796
74e238ea
AD
6797 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6798}
cbc8e55f 6799
2e334eee
AD
6800static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6801 union e1000_adv_rx_desc *rx_desc,
6802 struct sk_buff *skb)
6803{
6804 struct igb_rx_buffer *rx_buffer;
6805 struct page *page;
6806
6807 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
2e334eee
AD
6808 page = rx_buffer->page;
6809 prefetchw(page);
6810
6811 if (likely(!skb)) {
6812 void *page_addr = page_address(page) +
6813 rx_buffer->page_offset;
6814
6815 /* prefetch first cache line of first page */
6816 prefetch(page_addr);
6817#if L1_CACHE_BYTES < 128
6818 prefetch(page_addr + L1_CACHE_BYTES);
6819#endif
6820
6821 /* allocate a skb to store the frags */
67fd893e 6822 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
2e334eee
AD
6823 if (unlikely(!skb)) {
6824 rx_ring->rx_stats.alloc_failed++;
6825 return NULL;
6826 }
6827
b980ac18 6828 /* we will be copying header into skb->data in
2e334eee
AD
6829 * pskb_may_pull so it is in our interest to prefetch
6830 * it now to avoid a possible cache miss
6831 */
6832 prefetchw(skb->data);
6833 }
6834
6835 /* we are reusing so sync this buffer for CPU use */
6836 dma_sync_single_range_for_cpu(rx_ring->dev,
6837 rx_buffer->dma,
6838 rx_buffer->page_offset,
de78d1f9 6839 IGB_RX_BUFSZ,
2e334eee
AD
6840 DMA_FROM_DEVICE);
6841
6842 /* pull page into skb */
6843 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6844 /* hand second half of page back to the ring */
6845 igb_reuse_rx_page(rx_ring, rx_buffer);
6846 } else {
6847 /* we are not reusing the buffer so unmap it */
6848 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6849 PAGE_SIZE, DMA_FROM_DEVICE);
6850 }
6851
6852 /* clear contents of rx_buffer */
6853 rx_buffer->page = NULL;
6854
6855 return skb;
6856}
6857
cd392f5c 6858static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6859 union e1000_adv_rx_desc *rx_desc,
6860 struct sk_buff *skb)
9d5c8243 6861{
bc8acf2c 6862 skb_checksum_none_assert(skb);
9d5c8243 6863
294e7d78 6864 /* Ignore Checksum bit is set */
3ceb90fd 6865 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6866 return;
6867
6868 /* Rx checksum disabled via ethtool */
6869 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6870 return;
85ad76b2 6871
9d5c8243 6872 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6873 if (igb_test_staterr(rx_desc,
6874 E1000_RXDEXT_STATERR_TCPE |
6875 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6876 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6877 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6878 * packets, (aka let the stack check the crc32c)
6879 */
866cff06
AD
6880 if (!((skb->len == 60) &&
6881 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6882 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6883 ring->rx_stats.csum_err++;
12dcd86b
ED
6884 u64_stats_update_end(&ring->rx_syncp);
6885 }
9d5c8243 6886 /* let the stack verify checksum errors */
9d5c8243
AK
6887 return;
6888 }
6889 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6890 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6891 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6892 skb->ip_summed = CHECKSUM_UNNECESSARY;
6893
3ceb90fd
AD
6894 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6895 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6896}
6897
077887c3
AD
6898static inline void igb_rx_hash(struct igb_ring *ring,
6899 union e1000_adv_rx_desc *rx_desc,
6900 struct sk_buff *skb)
6901{
6902 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
6903 skb_set_hash(skb,
6904 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6905 PKT_HASH_TYPE_L3);
077887c3
AD
6906}
6907
2e334eee 6908/**
b980ac18
JK
6909 * igb_is_non_eop - process handling of non-EOP buffers
6910 * @rx_ring: Rx ring being processed
6911 * @rx_desc: Rx descriptor for current buffer
6912 * @skb: current socket buffer containing buffer in progress
2e334eee 6913 *
b980ac18
JK
6914 * This function updates next to clean. If the buffer is an EOP buffer
6915 * this function exits returning false, otherwise it will place the
6916 * sk_buff in the next buffer to be chained and return true indicating
6917 * that this is in fact a non-EOP buffer.
2e334eee
AD
6918 **/
6919static bool igb_is_non_eop(struct igb_ring *rx_ring,
6920 union e1000_adv_rx_desc *rx_desc)
6921{
6922 u32 ntc = rx_ring->next_to_clean + 1;
6923
6924 /* fetch, update, and store next to clean */
6925 ntc = (ntc < rx_ring->count) ? ntc : 0;
6926 rx_ring->next_to_clean = ntc;
6927
6928 prefetch(IGB_RX_DESC(rx_ring, ntc));
6929
6930 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6931 return false;
6932
6933 return true;
6934}
6935
1a1c225b 6936/**
b980ac18
JK
6937 * igb_cleanup_headers - Correct corrupted or empty headers
6938 * @rx_ring: rx descriptor ring packet is being transacted on
6939 * @rx_desc: pointer to the EOP Rx descriptor
6940 * @skb: pointer to current skb being fixed
1a1c225b 6941 *
b980ac18
JK
6942 * Address the case where we are pulling data in on pages only
6943 * and as such no data is present in the skb header.
1a1c225b 6944 *
b980ac18
JK
6945 * In addition if skb is not at least 60 bytes we need to pad it so that
6946 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6947 *
b980ac18 6948 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6949 **/
6950static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6951 union e1000_adv_rx_desc *rx_desc,
6952 struct sk_buff *skb)
6953{
1a1c225b
AD
6954 if (unlikely((igb_test_staterr(rx_desc,
6955 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6956 struct net_device *netdev = rx_ring->netdev;
6957 if (!(netdev->features & NETIF_F_RXALL)) {
6958 dev_kfree_skb_any(skb);
6959 return true;
6960 }
6961 }
6962
a94d9e22
AD
6963 /* if eth_skb_pad returns an error the skb was freed */
6964 if (eth_skb_pad(skb))
6965 return true;
1a1c225b
AD
6966
6967 return false;
2d94d8ab
AD
6968}
6969
db2ee5bd 6970/**
b980ac18
JK
6971 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6972 * @rx_ring: rx descriptor ring packet is being transacted on
6973 * @rx_desc: pointer to the EOP Rx descriptor
6974 * @skb: pointer to current skb being populated
db2ee5bd 6975 *
b980ac18
JK
6976 * This function checks the ring, descriptor, and packet information in
6977 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6978 * other fields within the skb.
db2ee5bd
AD
6979 **/
6980static void igb_process_skb_fields(struct igb_ring *rx_ring,
6981 union e1000_adv_rx_desc *rx_desc,
6982 struct sk_buff *skb)
6983{
6984 struct net_device *dev = rx_ring->netdev;
6985
6986 igb_rx_hash(rx_ring, rx_desc, skb);
6987
6988 igb_rx_checksum(rx_ring, rx_desc, skb);
6989
5499a968
JK
6990 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6991 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6992 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
db2ee5bd 6993
f646968f 6994 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6995 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6996 u16 vid;
9005df38 6997
db2ee5bd
AD
6998 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6999 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7000 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7001 else
7002 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7003
86a9bad3 7004 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
7005 }
7006
7007 skb_record_rx_queue(skb, rx_ring->queue_index);
7008
7009 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7010}
7011
32b3e08f 7012static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 7013{
0ba82994 7014 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 7015 struct sk_buff *skb = rx_ring->skb;
9d5c8243 7016 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 7017 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 7018
57ba34c9 7019 while (likely(total_packets < budget)) {
2e334eee 7020 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 7021
2e334eee
AD
7022 /* return some buffers to hardware, one at a time is too slow */
7023 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7024 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7025 cleaned_count = 0;
7026 }
bf36c1a0 7027
2e334eee 7028 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 7029
124b74c1 7030 if (!rx_desc->wb.upper.status_error)
2e334eee 7031 break;
9d5c8243 7032
74e238ea
AD
7033 /* This memory barrier is needed to keep us from reading
7034 * any other fields out of the rx_desc until we know the
124b74c1 7035 * descriptor has been written back
74e238ea 7036 */
124b74c1 7037 dma_rmb();
74e238ea 7038
2e334eee 7039 /* retrieve a buffer from the ring */
f9d40f6a 7040 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 7041
2e334eee
AD
7042 /* exit if we failed to retrieve a buffer */
7043 if (!skb)
7044 break;
1a1c225b 7045
2e334eee 7046 cleaned_count++;
1a1c225b 7047
2e334eee
AD
7048 /* fetch next buffer in frame if non-eop */
7049 if (igb_is_non_eop(rx_ring, rx_desc))
7050 continue;
1a1c225b
AD
7051
7052 /* verify the packet layout is correct */
7053 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7054 skb = NULL;
7055 continue;
9d5c8243 7056 }
9d5c8243 7057
db2ee5bd 7058 /* probably a little skewed due to removing CRC */
3ceb90fd 7059 total_bytes += skb->len;
3ceb90fd 7060
db2ee5bd
AD
7061 /* populate checksum, timestamp, VLAN, and protocol */
7062 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 7063
b2cb09b1 7064 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 7065
1a1c225b
AD
7066 /* reset skb pointer */
7067 skb = NULL;
7068
2e334eee
AD
7069 /* update budget accounting */
7070 total_packets++;
57ba34c9 7071 }
bf36c1a0 7072
1a1c225b
AD
7073 /* place incomplete frames back on ring for completion */
7074 rx_ring->skb = skb;
7075
12dcd86b 7076 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
7077 rx_ring->rx_stats.packets += total_packets;
7078 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 7079 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
7080 q_vector->rx.total_packets += total_packets;
7081 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
7082
7083 if (cleaned_count)
cd392f5c 7084 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 7085
32b3e08f 7086 return total_packets;
9d5c8243
AK
7087}
7088
c023cd88 7089static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 7090 struct igb_rx_buffer *bi)
c023cd88
AD
7091{
7092 struct page *page = bi->page;
cbc8e55f 7093 dma_addr_t dma;
c023cd88 7094
cbc8e55f
AD
7095 /* since we are recycling buffers we should seldom need to alloc */
7096 if (likely(page))
c023cd88
AD
7097 return true;
7098
cbc8e55f 7099 /* alloc new page for storage */
42b17f09 7100 page = dev_alloc_page();
cbc8e55f
AD
7101 if (unlikely(!page)) {
7102 rx_ring->rx_stats.alloc_failed++;
7103 return false;
c023cd88
AD
7104 }
7105
cbc8e55f
AD
7106 /* map page for use */
7107 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 7108
b980ac18 7109 /* if mapping failed free memory back to system since
cbc8e55f
AD
7110 * there isn't much point in holding memory we can't use
7111 */
1a1c225b 7112 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
7113 __free_page(page);
7114
c023cd88
AD
7115 rx_ring->rx_stats.alloc_failed++;
7116 return false;
7117 }
7118
1a1c225b 7119 bi->dma = dma;
cbc8e55f
AD
7120 bi->page = page;
7121 bi->page_offset = 0;
1a1c225b 7122
c023cd88
AD
7123 return true;
7124}
7125
9d5c8243 7126/**
b980ac18
JK
7127 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7128 * @adapter: address of board private structure
9d5c8243 7129 **/
cd392f5c 7130void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7131{
9d5c8243 7132 union e1000_adv_rx_desc *rx_desc;
06034649 7133 struct igb_rx_buffer *bi;
c023cd88 7134 u16 i = rx_ring->next_to_use;
9d5c8243 7135
cbc8e55f
AD
7136 /* nothing to do */
7137 if (!cleaned_count)
7138 return;
7139
60136906 7140 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7141 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7142 i -= rx_ring->count;
9d5c8243 7143
cbc8e55f 7144 do {
1a1c225b 7145 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7146 break;
9d5c8243 7147
b980ac18 7148 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7149 * because each write-back erases this info.
7150 */
f9d40f6a 7151 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7152
c023cd88
AD
7153 rx_desc++;
7154 bi++;
9d5c8243 7155 i++;
c023cd88 7156 if (unlikely(!i)) {
60136906 7157 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7158 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7159 i -= rx_ring->count;
7160 }
7161
95dd44b4
AD
7162 /* clear the status bits for the next_to_use descriptor */
7163 rx_desc->wb.upper.status_error = 0;
cbc8e55f
AD
7164
7165 cleaned_count--;
7166 } while (cleaned_count);
9d5c8243 7167
c023cd88
AD
7168 i += rx_ring->count;
7169
9d5c8243 7170 if (rx_ring->next_to_use != i) {
cbc8e55f 7171 /* record the next descriptor to use */
9d5c8243 7172 rx_ring->next_to_use = i;
9d5c8243 7173
cbc8e55f
AD
7174 /* update next to alloc since we have filled the ring */
7175 rx_ring->next_to_alloc = i;
7176
b980ac18 7177 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7178 * know there are new descriptors to fetch. (Only
7179 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7180 * such as IA-64).
7181 */
9d5c8243 7182 wmb();
fce99e34 7183 writel(i, rx_ring->tail);
9d5c8243
AK
7184 }
7185}
7186
7187/**
7188 * igb_mii_ioctl -
7189 * @netdev:
7190 * @ifreq:
7191 * @cmd:
7192 **/
7193static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7194{
7195 struct igb_adapter *adapter = netdev_priv(netdev);
7196 struct mii_ioctl_data *data = if_mii(ifr);
7197
7198 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7199 return -EOPNOTSUPP;
7200
7201 switch (cmd) {
7202 case SIOCGMIIPHY:
7203 data->phy_id = adapter->hw.phy.addr;
7204 break;
7205 case SIOCGMIIREG:
f5f4cf08 7206 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9005df38 7207 &data->val_out))
9d5c8243
AK
7208 return -EIO;
7209 break;
7210 case SIOCSMIIREG:
7211 default:
7212 return -EOPNOTSUPP;
7213 }
7214 return 0;
7215}
7216
7217/**
7218 * igb_ioctl -
7219 * @netdev:
7220 * @ifreq:
7221 * @cmd:
7222 **/
7223static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7224{
7225 switch (cmd) {
7226 case SIOCGMIIPHY:
7227 case SIOCGMIIREG:
7228 case SIOCSMIIREG:
7229 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
7230 case SIOCGHWTSTAMP:
7231 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 7232 case SIOCSHWTSTAMP:
6ab5f7b2 7233 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
7234 default:
7235 return -EOPNOTSUPP;
7236 }
7237}
7238
94826487
TF
7239void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7240{
7241 struct igb_adapter *adapter = hw->back;
7242
7243 pci_read_config_word(adapter->pdev, reg, value);
7244}
7245
7246void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7247{
7248 struct igb_adapter *adapter = hw->back;
7249
7250 pci_write_config_word(adapter->pdev, reg, *value);
7251}
7252
009bc06e
AD
7253s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7254{
7255 struct igb_adapter *adapter = hw->back;
009bc06e 7256
23d028cc 7257 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7258 return -E1000_ERR_CONFIG;
7259
009bc06e
AD
7260 return 0;
7261}
7262
7263s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7264{
7265 struct igb_adapter *adapter = hw->back;
009bc06e 7266
23d028cc 7267 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7268 return -E1000_ERR_CONFIG;
7269
009bc06e
AD
7270 return 0;
7271}
7272
c8f44aff 7273static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7274{
7275 struct igb_adapter *adapter = netdev_priv(netdev);
7276 struct e1000_hw *hw = &adapter->hw;
7277 u32 ctrl, rctl;
f646968f 7278 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7279
5faf030c 7280 if (enable) {
9d5c8243
AK
7281 /* enable VLAN tag insert/strip */
7282 ctrl = rd32(E1000_CTRL);
7283 ctrl |= E1000_CTRL_VME;
7284 wr32(E1000_CTRL, ctrl);
7285
51466239 7286 /* Disable CFI check */
9d5c8243 7287 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7288 rctl &= ~E1000_RCTL_CFIEN;
7289 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7290 } else {
7291 /* disable VLAN tag insert/strip */
7292 ctrl = rd32(E1000_CTRL);
7293 ctrl &= ~E1000_CTRL_VME;
7294 wr32(E1000_CTRL, ctrl);
9d5c8243 7295 }
9d5c8243
AK
7296}
7297
80d5c368
PM
7298static int igb_vlan_rx_add_vid(struct net_device *netdev,
7299 __be16 proto, u16 vid)
9d5c8243
AK
7300{
7301 struct igb_adapter *adapter = netdev_priv(netdev);
7302 struct e1000_hw *hw = &adapter->hw;
4ae196df 7303 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7304
51466239 7305 /* add the filter since PF can receive vlans w/o entry in vlvf */
16903caa
AD
7306 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7307 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7308
b2cb09b1 7309 set_bit(vid, adapter->active_vlans);
8e586137
JP
7310
7311 return 0;
9d5c8243
AK
7312}
7313
80d5c368
PM
7314static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7315 __be16 proto, u16 vid)
9d5c8243
AK
7316{
7317 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 7318 int pf_id = adapter->vfs_allocated_count;
8b77c6b2 7319 struct e1000_hw *hw = &adapter->hw;
9d5c8243 7320
8b77c6b2 7321 /* remove VID from filter table */
16903caa
AD
7322 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7323 igb_vfta_set(hw, vid, pf_id, false, true);
b2cb09b1
JP
7324
7325 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7326
7327 return 0;
9d5c8243
AK
7328}
7329
7330static void igb_restore_vlan(struct igb_adapter *adapter)
7331{
5982a556 7332 u16 vid = 1;
9d5c8243 7333
5faf030c 7334 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
5982a556 7335 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
5faf030c 7336
5982a556 7337 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7338 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7339}
7340
14ad2513 7341int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7342{
090b1795 7343 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7344 struct e1000_mac_info *mac = &adapter->hw.mac;
7345
7346 mac->autoneg = 0;
7347
14ad2513 7348 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7349 * for the switch() below to work
7350 */
14ad2513
DD
7351 if ((spd & 1) || (dplx & ~1))
7352 goto err_inval;
7353
f502ef7d
AA
7354 /* Fiber NIC's only allow 1000 gbps Full duplex
7355 * and 100Mbps Full duplex for 100baseFx sfp
7356 */
7357 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7358 switch (spd + dplx) {
7359 case SPEED_10 + DUPLEX_HALF:
7360 case SPEED_10 + DUPLEX_FULL:
7361 case SPEED_100 + DUPLEX_HALF:
7362 goto err_inval;
7363 default:
7364 break;
7365 }
7366 }
cd2638a8 7367
14ad2513 7368 switch (spd + dplx) {
9d5c8243
AK
7369 case SPEED_10 + DUPLEX_HALF:
7370 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7371 break;
7372 case SPEED_10 + DUPLEX_FULL:
7373 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7374 break;
7375 case SPEED_100 + DUPLEX_HALF:
7376 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7377 break;
7378 case SPEED_100 + DUPLEX_FULL:
7379 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7380 break;
7381 case SPEED_1000 + DUPLEX_FULL:
7382 mac->autoneg = 1;
7383 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7384 break;
7385 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7386 default:
14ad2513 7387 goto err_inval;
9d5c8243 7388 }
8376dad0
JB
7389
7390 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7391 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7392
9d5c8243 7393 return 0;
14ad2513
DD
7394
7395err_inval:
7396 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7397 return -EINVAL;
9d5c8243
AK
7398}
7399
749ab2cd
YZ
7400static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7401 bool runtime)
9d5c8243
AK
7402{
7403 struct net_device *netdev = pci_get_drvdata(pdev);
7404 struct igb_adapter *adapter = netdev_priv(netdev);
7405 struct e1000_hw *hw = &adapter->hw;
2d064c06 7406 u32 ctrl, rctl, status;
749ab2cd 7407 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7408#ifdef CONFIG_PM
7409 int retval = 0;
7410#endif
7411
7412 netif_device_detach(netdev);
7413
a88f10ec 7414 if (netif_running(netdev))
749ab2cd 7415 __igb_close(netdev, true);
a88f10ec 7416
047e0030 7417 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7418
7419#ifdef CONFIG_PM
7420 retval = pci_save_state(pdev);
7421 if (retval)
7422 return retval;
7423#endif
7424
7425 status = rd32(E1000_STATUS);
7426 if (status & E1000_STATUS_LU)
7427 wufc &= ~E1000_WUFC_LNKC;
7428
7429 if (wufc) {
7430 igb_setup_rctl(adapter);
ff41f8dc 7431 igb_set_rx_mode(netdev);
9d5c8243
AK
7432
7433 /* turn on all-multi mode if wake on multicast is enabled */
7434 if (wufc & E1000_WUFC_MC) {
7435 rctl = rd32(E1000_RCTL);
7436 rctl |= E1000_RCTL_MPE;
7437 wr32(E1000_RCTL, rctl);
7438 }
7439
7440 ctrl = rd32(E1000_CTRL);
7441 /* advertise wake from D3Cold */
7442 #define E1000_CTRL_ADVD3WUC 0x00100000
7443 /* phy power management enable */
7444 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7445 ctrl |= E1000_CTRL_ADVD3WUC;
7446 wr32(E1000_CTRL, ctrl);
7447
9d5c8243 7448 /* Allow time for pending master requests to run */
330a6d6a 7449 igb_disable_pcie_master(hw);
9d5c8243
AK
7450
7451 wr32(E1000_WUC, E1000_WUC_PME_EN);
7452 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7453 } else {
7454 wr32(E1000_WUC, 0);
7455 wr32(E1000_WUFC, 0);
9d5c8243
AK
7456 }
7457
3fe7c4c9
RW
7458 *enable_wake = wufc || adapter->en_mng_pt;
7459 if (!*enable_wake)
88a268c1
NN
7460 igb_power_down_link(adapter);
7461 else
7462 igb_power_up_link(adapter);
9d5c8243
AK
7463
7464 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7465 * would have already happened in close and is redundant.
7466 */
9d5c8243
AK
7467 igb_release_hw_control(adapter);
7468
7469 pci_disable_device(pdev);
7470
9d5c8243
AK
7471 return 0;
7472}
7473
7474#ifdef CONFIG_PM
d9dd966d 7475#ifdef CONFIG_PM_SLEEP
749ab2cd 7476static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7477{
7478 int retval;
7479 bool wake;
749ab2cd 7480 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7481
749ab2cd 7482 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7483 if (retval)
7484 return retval;
7485
7486 if (wake) {
7487 pci_prepare_to_sleep(pdev);
7488 } else {
7489 pci_wake_from_d3(pdev, false);
7490 pci_set_power_state(pdev, PCI_D3hot);
7491 }
7492
7493 return 0;
7494}
d9dd966d 7495#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7496
749ab2cd 7497static int igb_resume(struct device *dev)
9d5c8243 7498{
749ab2cd 7499 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7500 struct net_device *netdev = pci_get_drvdata(pdev);
7501 struct igb_adapter *adapter = netdev_priv(netdev);
7502 struct e1000_hw *hw = &adapter->hw;
7503 u32 err;
7504
7505 pci_set_power_state(pdev, PCI_D0);
7506 pci_restore_state(pdev);
b94f2d77 7507 pci_save_state(pdev);
42bfd33a 7508
17a402a0
CW
7509 if (!pci_device_is_present(pdev))
7510 return -ENODEV;
aed5dec3 7511 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7512 if (err) {
7513 dev_err(&pdev->dev,
7514 "igb: Cannot enable PCI device from suspend\n");
7515 return err;
7516 }
7517 pci_set_master(pdev);
7518
7519 pci_enable_wake(pdev, PCI_D3hot, 0);
7520 pci_enable_wake(pdev, PCI_D3cold, 0);
7521
53c7d064 7522 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec 7523 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3eb14ea8 7524 rtnl_unlock();
a88f10ec 7525 return -ENOMEM;
9d5c8243
AK
7526 }
7527
9d5c8243 7528 igb_reset(adapter);
a8564f03
AD
7529
7530 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7531 * driver.
7532 */
a8564f03
AD
7533 igb_get_hw_control(adapter);
7534
9d5c8243
AK
7535 wr32(E1000_WUS, ~0);
7536
749ab2cd 7537 if (netdev->flags & IFF_UP) {
0c2cc02e 7538 rtnl_lock();
749ab2cd 7539 err = __igb_open(netdev, true);
0c2cc02e 7540 rtnl_unlock();
a88f10ec
AD
7541 if (err)
7542 return err;
7543 }
9d5c8243
AK
7544
7545 netif_device_attach(netdev);
749ab2cd
YZ
7546 return 0;
7547}
7548
749ab2cd
YZ
7549static int igb_runtime_idle(struct device *dev)
7550{
7551 struct pci_dev *pdev = to_pci_dev(dev);
7552 struct net_device *netdev = pci_get_drvdata(pdev);
7553 struct igb_adapter *adapter = netdev_priv(netdev);
7554
7555 if (!igb_has_link(adapter))
7556 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7557
7558 return -EBUSY;
7559}
7560
7561static int igb_runtime_suspend(struct device *dev)
7562{
7563 struct pci_dev *pdev = to_pci_dev(dev);
7564 int retval;
7565 bool wake;
7566
7567 retval = __igb_shutdown(pdev, &wake, 1);
7568 if (retval)
7569 return retval;
7570
7571 if (wake) {
7572 pci_prepare_to_sleep(pdev);
7573 } else {
7574 pci_wake_from_d3(pdev, false);
7575 pci_set_power_state(pdev, PCI_D3hot);
7576 }
9d5c8243 7577
9d5c8243
AK
7578 return 0;
7579}
749ab2cd
YZ
7580
7581static int igb_runtime_resume(struct device *dev)
7582{
7583 return igb_resume(dev);
7584}
d61c81cb 7585#endif /* CONFIG_PM */
9d5c8243
AK
7586
7587static void igb_shutdown(struct pci_dev *pdev)
7588{
3fe7c4c9
RW
7589 bool wake;
7590
749ab2cd 7591 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7592
7593 if (system_state == SYSTEM_POWER_OFF) {
7594 pci_wake_from_d3(pdev, wake);
7595 pci_set_power_state(pdev, PCI_D3hot);
7596 }
9d5c8243
AK
7597}
7598
fa44f2f1
GR
7599#ifdef CONFIG_PCI_IOV
7600static int igb_sriov_reinit(struct pci_dev *dev)
7601{
7602 struct net_device *netdev = pci_get_drvdata(dev);
7603 struct igb_adapter *adapter = netdev_priv(netdev);
7604 struct pci_dev *pdev = adapter->pdev;
7605
7606 rtnl_lock();
7607
7608 if (netif_running(netdev))
7609 igb_close(netdev);
76252723
SA
7610 else
7611 igb_reset(adapter);
fa44f2f1
GR
7612
7613 igb_clear_interrupt_scheme(adapter);
7614
7615 igb_init_queue_configuration(adapter);
7616
7617 if (igb_init_interrupt_scheme(adapter, true)) {
f468adc9 7618 rtnl_unlock();
fa44f2f1
GR
7619 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7620 return -ENOMEM;
7621 }
7622
7623 if (netif_running(netdev))
7624 igb_open(netdev);
7625
7626 rtnl_unlock();
7627
7628 return 0;
7629}
7630
7631static int igb_pci_disable_sriov(struct pci_dev *dev)
7632{
7633 int err = igb_disable_sriov(dev);
7634
7635 if (!err)
7636 err = igb_sriov_reinit(dev);
7637
7638 return err;
7639}
7640
7641static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7642{
7643 int err = igb_enable_sriov(dev, num_vfs);
7644
7645 if (err)
7646 goto out;
7647
7648 err = igb_sriov_reinit(dev);
7649 if (!err)
7650 return num_vfs;
7651
7652out:
7653 return err;
7654}
7655
7656#endif
7657static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7658{
7659#ifdef CONFIG_PCI_IOV
7660 if (num_vfs == 0)
7661 return igb_pci_disable_sriov(dev);
7662 else
7663 return igb_pci_enable_sriov(dev, num_vfs);
7664#endif
7665 return 0;
7666}
7667
9d5c8243 7668#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7669/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7670 * without having to re-enable interrupts. It's not called while
7671 * the interrupt routine is executing.
7672 */
7673static void igb_netpoll(struct net_device *netdev)
7674{
7675 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7676 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7677 struct igb_q_vector *q_vector;
9d5c8243 7678 int i;
9d5c8243 7679
047e0030 7680 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 7681 q_vector = adapter->q_vector[i];
cd14ef54 7682 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
7683 wr32(E1000_EIMC, q_vector->eims_value);
7684 else
7685 igb_irq_disable(adapter);
047e0030 7686 napi_schedule(&q_vector->napi);
eebbbdba 7687 }
9d5c8243
AK
7688}
7689#endif /* CONFIG_NET_POLL_CONTROLLER */
7690
7691/**
b980ac18
JK
7692 * igb_io_error_detected - called when PCI error is detected
7693 * @pdev: Pointer to PCI device
7694 * @state: The current pci connection state
9d5c8243 7695 *
b980ac18
JK
7696 * This function is called after a PCI bus error affecting
7697 * this device has been detected.
7698 **/
9d5c8243
AK
7699static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7700 pci_channel_state_t state)
7701{
7702 struct net_device *netdev = pci_get_drvdata(pdev);
7703 struct igb_adapter *adapter = netdev_priv(netdev);
7704
7705 netif_device_detach(netdev);
7706
59ed6eec
AD
7707 if (state == pci_channel_io_perm_failure)
7708 return PCI_ERS_RESULT_DISCONNECT;
7709
9d5c8243
AK
7710 if (netif_running(netdev))
7711 igb_down(adapter);
7712 pci_disable_device(pdev);
7713
7714 /* Request a slot slot reset. */
7715 return PCI_ERS_RESULT_NEED_RESET;
7716}
7717
7718/**
b980ac18
JK
7719 * igb_io_slot_reset - called after the pci bus has been reset.
7720 * @pdev: Pointer to PCI device
9d5c8243 7721 *
b980ac18
JK
7722 * Restart the card from scratch, as if from a cold-boot. Implementation
7723 * resembles the first-half of the igb_resume routine.
7724 **/
9d5c8243
AK
7725static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7726{
7727 struct net_device *netdev = pci_get_drvdata(pdev);
7728 struct igb_adapter *adapter = netdev_priv(netdev);
7729 struct e1000_hw *hw = &adapter->hw;
40a914fa 7730 pci_ers_result_t result;
42bfd33a 7731 int err;
9d5c8243 7732
aed5dec3 7733 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7734 dev_err(&pdev->dev,
7735 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7736 result = PCI_ERS_RESULT_DISCONNECT;
7737 } else {
7738 pci_set_master(pdev);
7739 pci_restore_state(pdev);
b94f2d77 7740 pci_save_state(pdev);
9d5c8243 7741
40a914fa
AD
7742 pci_enable_wake(pdev, PCI_D3hot, 0);
7743 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7744
40a914fa
AD
7745 igb_reset(adapter);
7746 wr32(E1000_WUS, ~0);
7747 result = PCI_ERS_RESULT_RECOVERED;
7748 }
9d5c8243 7749
ea943d41
JK
7750 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7751 if (err) {
b980ac18
JK
7752 dev_err(&pdev->dev,
7753 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7754 err);
ea943d41
JK
7755 /* non-fatal, continue */
7756 }
40a914fa
AD
7757
7758 return result;
9d5c8243
AK
7759}
7760
7761/**
b980ac18
JK
7762 * igb_io_resume - called when traffic can start flowing again.
7763 * @pdev: Pointer to PCI device
9d5c8243 7764 *
b980ac18
JK
7765 * This callback is called when the error recovery driver tells us that
7766 * its OK to resume normal operation. Implementation resembles the
7767 * second-half of the igb_resume routine.
9d5c8243
AK
7768 */
7769static void igb_io_resume(struct pci_dev *pdev)
7770{
7771 struct net_device *netdev = pci_get_drvdata(pdev);
7772 struct igb_adapter *adapter = netdev_priv(netdev);
7773
9d5c8243
AK
7774 if (netif_running(netdev)) {
7775 if (igb_up(adapter)) {
7776 dev_err(&pdev->dev, "igb_up failed after reset\n");
7777 return;
7778 }
7779 }
7780
7781 netif_device_attach(netdev);
7782
7783 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7784 * driver.
7785 */
9d5c8243 7786 igb_get_hw_control(adapter);
9d5c8243
AK
7787}
7788
26ad9178 7789static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7790 u8 qsel)
26ad9178 7791{
26ad9178 7792 struct e1000_hw *hw = &adapter->hw;
c3278587 7793 u32 rar_low, rar_high;
26ad9178
AD
7794
7795 /* HW expects these in little endian so we reverse the byte order
c3278587 7796 * from network order (big endian) to CPU endian
26ad9178 7797 */
c3278587
AD
7798 rar_low = le32_to_cpup((__be32 *)(addr));
7799 rar_high = le16_to_cpup((__be16 *)(addr + 4));
26ad9178
AD
7800
7801 /* Indicate to hardware the Address is Valid. */
7802 rar_high |= E1000_RAH_AV;
7803
7804 if (hw->mac.type == e1000_82575)
7805 rar_high |= E1000_RAH_POOL_1 * qsel;
7806 else
7807 rar_high |= E1000_RAH_POOL_1 << qsel;
7808
7809 wr32(E1000_RAL(index), rar_low);
7810 wrfl();
7811 wr32(E1000_RAH(index), rar_high);
7812 wrfl();
7813}
7814
4ae196df 7815static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7816 int vf, unsigned char *mac_addr)
4ae196df
AD
7817{
7818 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7819 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7820 * towards the first, as a result a collision should not be possible
7821 */
ff41f8dc 7822 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7823
37680117 7824 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7825
26ad9178 7826 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7827
7828 return 0;
7829}
7830
8151d294
WM
7831static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7832{
7833 struct igb_adapter *adapter = netdev_priv(netdev);
7834 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7835 return -EINVAL;
7836 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7837 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7838 dev_info(&adapter->pdev->dev,
7839 "Reload the VF driver to make this change effective.");
8151d294 7840 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7841 dev_warn(&adapter->pdev->dev,
7842 "The VF MAC address has been set, but the PF device is not up.\n");
7843 dev_warn(&adapter->pdev->dev,
7844 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7845 }
7846 return igb_set_vf_mac(adapter, vf, mac);
7847}
7848
17dc566c
LL
7849static int igb_link_mbps(int internal_link_speed)
7850{
7851 switch (internal_link_speed) {
7852 case SPEED_100:
7853 return 100;
7854 case SPEED_1000:
7855 return 1000;
7856 default:
7857 return 0;
7858 }
7859}
7860
7861static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7862 int link_speed)
7863{
7864 int rf_dec, rf_int;
7865 u32 bcnrc_val;
7866
7867 if (tx_rate != 0) {
7868 /* Calculate the rate factor values to set */
7869 rf_int = link_speed / tx_rate;
7870 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7871 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7872 tx_rate;
17dc566c
LL
7873
7874 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7875 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7876 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7877 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7878 } else {
7879 bcnrc_val = 0;
7880 }
7881
7882 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7883 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7884 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7885 */
7886 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7887 wr32(E1000_RTTBCNRC, bcnrc_val);
7888}
7889
7890static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7891{
7892 int actual_link_speed, i;
7893 bool reset_rate = false;
7894
7895 /* VF TX rate limit was not set or not supported */
7896 if ((adapter->vf_rate_link_speed == 0) ||
7897 (adapter->hw.mac.type != e1000_82576))
7898 return;
7899
7900 actual_link_speed = igb_link_mbps(adapter->link_speed);
7901 if (actual_link_speed != adapter->vf_rate_link_speed) {
7902 reset_rate = true;
7903 adapter->vf_rate_link_speed = 0;
7904 dev_info(&adapter->pdev->dev,
b980ac18 7905 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7906 }
7907
7908 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7909 if (reset_rate)
7910 adapter->vf_data[i].tx_rate = 0;
7911
7912 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7913 adapter->vf_data[i].tx_rate,
7914 actual_link_speed);
17dc566c
LL
7915 }
7916}
7917
ed616689
SC
7918static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7919 int min_tx_rate, int max_tx_rate)
8151d294 7920{
17dc566c
LL
7921 struct igb_adapter *adapter = netdev_priv(netdev);
7922 struct e1000_hw *hw = &adapter->hw;
7923 int actual_link_speed;
7924
7925 if (hw->mac.type != e1000_82576)
7926 return -EOPNOTSUPP;
7927
ed616689
SC
7928 if (min_tx_rate)
7929 return -EINVAL;
7930
17dc566c
LL
7931 actual_link_speed = igb_link_mbps(adapter->link_speed);
7932 if ((vf >= adapter->vfs_allocated_count) ||
7933 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
ed616689
SC
7934 (max_tx_rate < 0) ||
7935 (max_tx_rate > actual_link_speed))
17dc566c
LL
7936 return -EINVAL;
7937
7938 adapter->vf_rate_link_speed = actual_link_speed;
ed616689
SC
7939 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7940 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
17dc566c
LL
7941
7942 return 0;
8151d294
WM
7943}
7944
70ea4783
LL
7945static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7946 bool setting)
7947{
7948 struct igb_adapter *adapter = netdev_priv(netdev);
7949 struct e1000_hw *hw = &adapter->hw;
7950 u32 reg_val, reg_offset;
7951
7952 if (!adapter->vfs_allocated_count)
7953 return -EOPNOTSUPP;
7954
7955 if (vf >= adapter->vfs_allocated_count)
7956 return -EINVAL;
7957
7958 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7959 reg_val = rd32(reg_offset);
7960 if (setting)
7961 reg_val |= ((1 << vf) |
7962 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7963 else
7964 reg_val &= ~((1 << vf) |
7965 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7966 wr32(reg_offset, reg_val);
7967
7968 adapter->vf_data[vf].spoofchk_enabled = setting;
23d87824 7969 return 0;
70ea4783
LL
7970}
7971
8151d294
WM
7972static int igb_ndo_get_vf_config(struct net_device *netdev,
7973 int vf, struct ifla_vf_info *ivi)
7974{
7975 struct igb_adapter *adapter = netdev_priv(netdev);
7976 if (vf >= adapter->vfs_allocated_count)
7977 return -EINVAL;
7978 ivi->vf = vf;
7979 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ed616689
SC
7980 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7981 ivi->min_tx_rate = 0;
8151d294
WM
7982 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7983 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7984 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7985 return 0;
7986}
7987
4ae196df
AD
7988static void igb_vmm_control(struct igb_adapter *adapter)
7989{
7990 struct e1000_hw *hw = &adapter->hw;
10d8e907 7991 u32 reg;
4ae196df 7992
52a1dd4d
AD
7993 switch (hw->mac.type) {
7994 case e1000_82575:
f96a8a0b
CW
7995 case e1000_i210:
7996 case e1000_i211:
ceb5f13b 7997 case e1000_i354:
52a1dd4d
AD
7998 default:
7999 /* replication is not supported for 82575 */
4ae196df 8000 return;
52a1dd4d
AD
8001 case e1000_82576:
8002 /* notify HW that the MAC is adding vlan tags */
8003 reg = rd32(E1000_DTXCTL);
8004 reg |= E1000_DTXCTL_VLAN_ADDED;
8005 wr32(E1000_DTXCTL, reg);
b26141d4 8006 /* Fall through */
52a1dd4d
AD
8007 case e1000_82580:
8008 /* enable replication vlan tag stripping */
8009 reg = rd32(E1000_RPLOLR);
8010 reg |= E1000_RPLOLR_STRVLAN;
8011 wr32(E1000_RPLOLR, reg);
b26141d4 8012 /* Fall through */
d2ba2ed8
AD
8013 case e1000_i350:
8014 /* none of the above registers are supported by i350 */
52a1dd4d
AD
8015 break;
8016 }
10d8e907 8017
d4960307
AD
8018 if (adapter->vfs_allocated_count) {
8019 igb_vmdq_set_loopback_pf(hw, true);
8020 igb_vmdq_set_replication_pf(hw, true);
13800469 8021 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 8022 adapter->vfs_allocated_count);
d4960307
AD
8023 } else {
8024 igb_vmdq_set_loopback_pf(hw, false);
8025 igb_vmdq_set_replication_pf(hw, false);
8026 }
4ae196df
AD
8027}
8028
b6e0c419
CW
8029static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8030{
8031 struct e1000_hw *hw = &adapter->hw;
8032 u32 dmac_thr;
8033 u16 hwm;
8034
8035 if (hw->mac.type > e1000_82580) {
8036 if (adapter->flags & IGB_FLAG_DMAC) {
8037 u32 reg;
8038
8039 /* force threshold to 0. */
8040 wr32(E1000_DMCTXTH, 0);
8041
b980ac18 8042 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
8043 * than the Rx threshold. Set hwm to PBA - max frame
8044 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 8045 */
45693bcb 8046 hwm = 64 * (pba - 6);
e8c626e9
MV
8047 reg = rd32(E1000_FCRTC);
8048 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8049 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8050 & E1000_FCRTC_RTH_COAL_MASK);
8051 wr32(E1000_FCRTC, reg);
8052
b980ac18 8053 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
8054 * frame size, capping it at PBA - 10KB.
8055 */
45693bcb 8056 dmac_thr = pba - 10;
b6e0c419
CW
8057 reg = rd32(E1000_DMACR);
8058 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
8059 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8060 & E1000_DMACR_DMACTHR_MASK);
8061
8062 /* transition to L0x or L1 if available..*/
8063 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8064
8065 /* watchdog timer= +-1000 usec in 32usec intervals */
8066 reg |= (1000 >> 5);
0c02dd98
MV
8067
8068 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
8069 if (hw->mac.type != e1000_i354)
8070 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8071
b6e0c419
CW
8072 wr32(E1000_DMACR, reg);
8073
b980ac18 8074 /* no lower threshold to disable
b6e0c419
CW
8075 * coalescing(smart fifb)-UTRESH=0
8076 */
8077 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
8078
8079 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8080
8081 wr32(E1000_DMCTLX, reg);
8082
b980ac18 8083 /* free space in tx packet buffer to wake from
b6e0c419
CW
8084 * DMA coal
8085 */
8086 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8087 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8088
b980ac18 8089 /* make low power state decision controlled
b6e0c419
CW
8090 * by DMA coal
8091 */
8092 reg = rd32(E1000_PCIEMISC);
8093 reg &= ~E1000_PCIEMISC_LX_DECISION;
8094 wr32(E1000_PCIEMISC, reg);
8095 } /* endif adapter->dmac is not disabled */
8096 } else if (hw->mac.type == e1000_82580) {
8097 u32 reg = rd32(E1000_PCIEMISC);
9005df38 8098
b6e0c419
CW
8099 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8100 wr32(E1000_DMACR, 0);
8101 }
8102}
8103
b980ac18
JK
8104/**
8105 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
8106 * @hw: pointer to hardware structure
8107 * @byte_offset: byte offset to read
8108 * @dev_addr: device address
8109 * @data: value read
8110 *
8111 * Performs byte read operation over I2C interface at
8112 * a specified device address.
b980ac18 8113 **/
441fc6fd 8114s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8115 u8 dev_addr, u8 *data)
441fc6fd
CW
8116{
8117 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8118 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8119 s32 status;
8120 u16 swfw_mask = 0;
8121
8122 if (!this_client)
8123 return E1000_ERR_I2C;
8124
8125 swfw_mask = E1000_SWFW_PHY0_SM;
8126
23d87824 8127 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8128 return E1000_ERR_SWFW_SYNC;
8129
8130 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8131 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8132
8133 if (status < 0)
8134 return E1000_ERR_I2C;
8135 else {
8136 *data = status;
23d87824 8137 return 0;
441fc6fd
CW
8138 }
8139}
8140
b980ac18
JK
8141/**
8142 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8143 * @hw: pointer to hardware structure
8144 * @byte_offset: byte offset to write
8145 * @dev_addr: device address
8146 * @data: value to write
8147 *
8148 * Performs byte write operation over I2C interface at
8149 * a specified device address.
b980ac18 8150 **/
441fc6fd 8151s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8152 u8 dev_addr, u8 data)
441fc6fd
CW
8153{
8154 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8155 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8156 s32 status;
8157 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8158
8159 if (!this_client)
8160 return E1000_ERR_I2C;
8161
23d87824 8162 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8163 return E1000_ERR_SWFW_SYNC;
8164 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8165 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8166
8167 if (status)
8168 return E1000_ERR_I2C;
8169 else
23d87824 8170 return 0;
441fc6fd
CW
8171
8172}
907b7835
LMV
8173
8174int igb_reinit_queues(struct igb_adapter *adapter)
8175{
8176 struct net_device *netdev = adapter->netdev;
8177 struct pci_dev *pdev = adapter->pdev;
8178 int err = 0;
8179
8180 if (netif_running(netdev))
8181 igb_close(netdev);
8182
02ef6e1d 8183 igb_reset_interrupt_capability(adapter);
907b7835
LMV
8184
8185 if (igb_init_interrupt_scheme(adapter, true)) {
8186 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8187 return -ENOMEM;
8188 }
8189
8190 if (netif_running(netdev))
8191 err = igb_open(netdev);
8192
8193 return err;
8194}
9d5c8243 8195/* igb_main.c */
This page took 1.652414 seconds and 5 git commands to generate.