e1000e: bad short packets received when jumbos enabled on 82579
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
48#include <linux/if_ether.h>
40a914fa 49#include <linux/aer.h>
70c71606 50#include <linux/prefetch.h>
421e02f0 51#ifdef CONFIG_IGB_DCA
fe4506b6
JC
52#include <linux/dca.h>
53#endif
9d5c8243
AK
54#include "igb.h"
55
0d1fe82d
CW
56#define MAJ 3
57#define MIN 0
58#define BUILD 6
0d1fe82d 59#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 60__stringify(BUILD) "-k"
9d5c8243
AK
61char igb_driver_name[] = "igb";
62char igb_driver_version[] = DRV_VERSION;
63static const char igb_driver_string[] =
64 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 65static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 66
9d5c8243
AK
67static const struct e1000_info *igb_info_tbl[] = {
68 [board_82575] = &e1000_82575_info,
69};
70
a3aa1884 71static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 /* required last entry */
98 {0, }
99};
100
101MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102
103void igb_reset(struct igb_adapter *);
104static int igb_setup_all_tx_resources(struct igb_adapter *);
105static int igb_setup_all_rx_resources(struct igb_adapter *);
106static void igb_free_all_tx_resources(struct igb_adapter *);
107static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 108static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 111static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
112static int igb_sw_init(struct igb_adapter *);
113static int igb_open(struct net_device *);
114static int igb_close(struct net_device *);
115static void igb_configure_tx(struct igb_adapter *);
116static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
117static void igb_clean_all_tx_rings(struct igb_adapter *);
118static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
119static void igb_clean_tx_ring(struct igb_ring *);
120static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 121static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
122static void igb_update_phy_info(unsigned long);
123static void igb_watchdog(unsigned long);
124static void igb_watchdog_task(struct work_struct *);
cd392f5c 125static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
126static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
127 struct rtnl_link_stats64 *stats);
9d5c8243
AK
128static int igb_change_mtu(struct net_device *, int);
129static int igb_set_mac(struct net_device *, void *);
68d480c4 130static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
131static irqreturn_t igb_intr(int irq, void *);
132static irqreturn_t igb_intr_msi(int irq, void *);
133static irqreturn_t igb_msix_other(int irq, void *);
047e0030 134static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 135#ifdef CONFIG_IGB_DCA
047e0030 136static void igb_update_dca(struct igb_q_vector *);
fe4506b6 137static void igb_setup_dca(struct igb_adapter *);
421e02f0 138#endif /* CONFIG_IGB_DCA */
047e0030 139static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 140static int igb_poll(struct napi_struct *, int);
cd392f5c 141static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
142static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143static void igb_tx_timeout(struct net_device *);
144static void igb_reset_task(struct work_struct *);
b2cb09b1 145static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
146static void igb_vlan_rx_add_vid(struct net_device *, u16);
147static void igb_vlan_rx_kill_vid(struct net_device *, u16);
148static void igb_restore_vlan(struct igb_adapter *);
26ad9178 149static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
150static void igb_ping_all_vfs(struct igb_adapter *);
151static void igb_msg_task(struct igb_adapter *);
4ae196df 152static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 153static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 154static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
155static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
156static int igb_ndo_set_vf_vlan(struct net_device *netdev,
157 int vf, u16 vlan, u8 qos);
158static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
159static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
160 struct ifla_vf_info *ivi);
17dc566c 161static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 162
9d5c8243 163#ifdef CONFIG_PM
3fe7c4c9 164static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
165static int igb_resume(struct pci_dev *);
166#endif
167static void igb_shutdown(struct pci_dev *);
421e02f0 168#ifdef CONFIG_IGB_DCA
fe4506b6
JC
169static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
170static struct notifier_block dca_notifier = {
171 .notifier_call = igb_notify_dca,
172 .next = NULL,
173 .priority = 0
174};
175#endif
9d5c8243
AK
176#ifdef CONFIG_NET_POLL_CONTROLLER
177/* for netdump / net console */
178static void igb_netpoll(struct net_device *);
179#endif
37680117 180#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
181static unsigned int max_vfs = 0;
182module_param(max_vfs, uint, 0);
183MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
184 "per physical function");
185#endif /* CONFIG_PCI_IOV */
186
9d5c8243
AK
187static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
188 pci_channel_state_t);
189static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
190static void igb_io_resume(struct pci_dev *);
191
192static struct pci_error_handlers igb_err_handler = {
193 .error_detected = igb_io_error_detected,
194 .slot_reset = igb_io_slot_reset,
195 .resume = igb_io_resume,
196};
197
198
199static struct pci_driver igb_driver = {
200 .name = igb_driver_name,
201 .id_table = igb_pci_tbl,
202 .probe = igb_probe,
203 .remove = __devexit_p(igb_remove),
204#ifdef CONFIG_PM
25985edc 205 /* Power Management Hooks */
9d5c8243
AK
206 .suspend = igb_suspend,
207 .resume = igb_resume,
208#endif
209 .shutdown = igb_shutdown,
210 .err_handler = &igb_err_handler
211};
212
213MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
214MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
215MODULE_LICENSE("GPL");
216MODULE_VERSION(DRV_VERSION);
217
c97ec42a
TI
218struct igb_reg_info {
219 u32 ofs;
220 char *name;
221};
222
223static const struct igb_reg_info igb_reg_info_tbl[] = {
224
225 /* General Registers */
226 {E1000_CTRL, "CTRL"},
227 {E1000_STATUS, "STATUS"},
228 {E1000_CTRL_EXT, "CTRL_EXT"},
229
230 /* Interrupt Registers */
231 {E1000_ICR, "ICR"},
232
233 /* RX Registers */
234 {E1000_RCTL, "RCTL"},
235 {E1000_RDLEN(0), "RDLEN"},
236 {E1000_RDH(0), "RDH"},
237 {E1000_RDT(0), "RDT"},
238 {E1000_RXDCTL(0), "RXDCTL"},
239 {E1000_RDBAL(0), "RDBAL"},
240 {E1000_RDBAH(0), "RDBAH"},
241
242 /* TX Registers */
243 {E1000_TCTL, "TCTL"},
244 {E1000_TDBAL(0), "TDBAL"},
245 {E1000_TDBAH(0), "TDBAH"},
246 {E1000_TDLEN(0), "TDLEN"},
247 {E1000_TDH(0), "TDH"},
248 {E1000_TDT(0), "TDT"},
249 {E1000_TXDCTL(0), "TXDCTL"},
250 {E1000_TDFH, "TDFH"},
251 {E1000_TDFT, "TDFT"},
252 {E1000_TDFHS, "TDFHS"},
253 {E1000_TDFPC, "TDFPC"},
254
255 /* List Terminator */
256 {}
257};
258
259/*
260 * igb_regdump - register printout routine
261 */
262static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
263{
264 int n = 0;
265 char rname[16];
266 u32 regs[8];
267
268 switch (reginfo->ofs) {
269 case E1000_RDLEN(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDLEN(n));
272 break;
273 case E1000_RDH(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDH(n));
276 break;
277 case E1000_RDT(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDT(n));
280 break;
281 case E1000_RXDCTL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RXDCTL(n));
284 break;
285 case E1000_RDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDBAL(n));
288 break;
289 case E1000_RDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_RDBAH(n));
292 break;
293 case E1000_TDBAL(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDBAL(n));
296 break;
297 case E1000_TDBAH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDBAH(n));
300 break;
301 case E1000_TDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDLEN(n));
304 break;
305 case E1000_TDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TDH(n));
308 break;
309 case E1000_TDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_TDT(n));
312 break;
313 case E1000_TXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_TXDCTL(n));
316 break;
317 default:
318 printk(KERN_INFO "%-15s %08x\n",
319 reginfo->name, rd32(reginfo->ofs));
320 return;
321 }
322
323 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
324 printk(KERN_INFO "%-15s ", rname);
325 for (n = 0; n < 4; n++)
326 printk(KERN_CONT "%08x ", regs[n]);
327 printk(KERN_CONT "\n");
328}
329
330/*
331 * igb_dump - Print registers, tx-rings and rx-rings
332 */
333static void igb_dump(struct igb_adapter *adapter)
334{
335 struct net_device *netdev = adapter->netdev;
336 struct e1000_hw *hw = &adapter->hw;
337 struct igb_reg_info *reginfo;
338 int n = 0;
339 struct igb_ring *tx_ring;
340 union e1000_adv_tx_desc *tx_desc;
341 struct my_u0 { u64 a; u64 b; } *u0;
342 struct igb_buffer *buffer_info;
343 struct igb_ring *rx_ring;
344 union e1000_adv_rx_desc *rx_desc;
345 u32 staterr;
346 int i = 0;
347
348 if (!netif_msg_hw(adapter))
349 return;
350
351 /* Print netdevice Info */
352 if (netdev) {
353 dev_info(&adapter->pdev->dev, "Net device Info\n");
354 printk(KERN_INFO "Device Name state "
355 "trans_start last_rx\n");
356 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
357 netdev->name,
358 netdev->state,
359 netdev->trans_start,
360 netdev->last_rx);
361 }
362
363 /* Print Registers */
364 dev_info(&adapter->pdev->dev, "Register Dump\n");
365 printk(KERN_INFO " Register Name Value\n");
366 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
367 reginfo->name; reginfo++) {
368 igb_regdump(hw, reginfo);
369 }
370
371 /* Print TX Ring Summary */
372 if (!netdev || !netif_running(netdev))
373 goto exit;
374
375 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
376 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
377 " leng ntw timestamp\n");
378 for (n = 0; n < adapter->num_tx_queues; n++) {
379 tx_ring = adapter->tx_ring[n];
380 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
381 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
382 n, tx_ring->next_to_use, tx_ring->next_to_clean,
383 (u64)buffer_info->dma,
384 buffer_info->length,
385 buffer_info->next_to_watch,
386 (u64)buffer_info->time_stamp);
387 }
388
389 /* Print TX Rings */
390 if (!netif_msg_tx_done(adapter))
391 goto rx_ring_summary;
392
393 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
394
395 /* Transmit Descriptor Formats
396 *
397 * Advanced Transmit Descriptor
398 * +--------------------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +--------------------------------------------------------------+
401 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
402 * +--------------------------------------------------------------+
403 * 63 46 45 40 39 38 36 35 32 31 24 15 0
404 */
405
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 tx_ring = adapter->tx_ring[n];
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "T [desc] [address 63:0 ] "
412 "[PlPOCIStDDM Ln] [bi->dma ] "
413 "leng ntw timestamp bi->skb\n");
414
415 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
60136906 416 tx_desc = IGB_TX_DESC(tx_ring, i);
c97ec42a
TI
417 buffer_info = &tx_ring->buffer_info[i];
418 u0 = (struct my_u0 *)tx_desc;
419 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
420 " %04X %3X %016llX %p", i,
421 le64_to_cpu(u0->a),
422 le64_to_cpu(u0->b),
423 (u64)buffer_info->dma,
424 buffer_info->length,
425 buffer_info->next_to_watch,
426 (u64)buffer_info->time_stamp,
427 buffer_info->skb);
428 if (i == tx_ring->next_to_use &&
429 i == tx_ring->next_to_clean)
430 printk(KERN_CONT " NTC/U\n");
431 else if (i == tx_ring->next_to_use)
432 printk(KERN_CONT " NTU\n");
433 else if (i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC\n");
435 else
436 printk(KERN_CONT "\n");
437
438 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
439 print_hex_dump(KERN_INFO, "",
440 DUMP_PREFIX_ADDRESS,
441 16, 1, phys_to_virt(buffer_info->dma),
442 buffer_info->length, true);
443 }
444 }
445
446 /* Print RX Rings Summary */
447rx_ring_summary:
448 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
449 printk(KERN_INFO "Queue [NTU] [NTC]\n");
450 for (n = 0; n < adapter->num_rx_queues; n++) {
451 rx_ring = adapter->rx_ring[n];
452 printk(KERN_INFO " %5d %5X %5X\n", n,
453 rx_ring->next_to_use, rx_ring->next_to_clean);
454 }
455
456 /* Print RX Rings */
457 if (!netif_msg_rx_status(adapter))
458 goto exit;
459
460 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
461
462 /* Advanced Receive Descriptor (Read) Format
463 * 63 1 0
464 * +-----------------------------------------------------+
465 * 0 | Packet Buffer Address [63:1] |A0/NSE|
466 * +----------------------------------------------+------+
467 * 8 | Header Buffer Address [63:1] | DD |
468 * +-----------------------------------------------------+
469 *
470 *
471 * Advanced Receive Descriptor (Write-Back) Format
472 *
473 * 63 48 47 32 31 30 21 20 17 16 4 3 0
474 * +------------------------------------------------------+
475 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
476 * | Checksum Ident | | | | Type | Type |
477 * +------------------------------------------------------+
478 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
479 * +------------------------------------------------------+
480 * 63 48 47 32 31 20 19 0
481 */
482
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
487 printk(KERN_INFO "------------------------------------\n");
488 printk(KERN_INFO "R [desc] [ PktBuf A0] "
489 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
490 "<-- Adv Rx Read format\n");
491 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
492 "[vl er S cks ln] ---------------- [bi->skb] "
493 "<-- Adv Rx Write-Back format\n");
494
495 for (i = 0; i < rx_ring->count; i++) {
496 buffer_info = &rx_ring->buffer_info[i];
60136906 497 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
498 u0 = (struct my_u0 *)rx_desc;
499 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
500 if (staterr & E1000_RXD_STAT_DD) {
501 /* Descriptor Done */
502 printk(KERN_INFO "RWB[0x%03X] %016llX "
503 "%016llX ---------------- %p", i,
504 le64_to_cpu(u0->a),
505 le64_to_cpu(u0->b),
506 buffer_info->skb);
507 } else {
508 printk(KERN_INFO "R [0x%03X] %016llX "
509 "%016llX %016llX %p", i,
510 le64_to_cpu(u0->a),
511 le64_to_cpu(u0->b),
512 (u64)buffer_info->dma,
513 buffer_info->skb);
514
515 if (netif_msg_pktdata(adapter)) {
516 print_hex_dump(KERN_INFO, "",
517 DUMP_PREFIX_ADDRESS,
518 16, 1,
519 phys_to_virt(buffer_info->dma),
44390ca6
AD
520 IGB_RX_HDR_LEN, true);
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(
525 buffer_info->page_dma +
526 buffer_info->page_offset),
527 PAGE_SIZE/2, true);
c97ec42a
TI
528 }
529 }
530
531 if (i == rx_ring->next_to_use)
532 printk(KERN_CONT " NTU\n");
533 else if (i == rx_ring->next_to_clean)
534 printk(KERN_CONT " NTC\n");
535 else
536 printk(KERN_CONT "\n");
537
538 }
539 }
540
541exit:
542 return;
543}
544
545
38c845c7
PO
546/**
547 * igb_read_clock - read raw cycle counter (to be used by time counter)
548 */
549static cycle_t igb_read_clock(const struct cyclecounter *tc)
550{
551 struct igb_adapter *adapter =
552 container_of(tc, struct igb_adapter, cycles);
553 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
554 u64 stamp = 0;
555 int shift = 0;
38c845c7 556
55cac248
AD
557 /*
558 * The timestamp latches on lowest register read. For the 82580
559 * the lowest register is SYSTIMR instead of SYSTIML. However we never
560 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
561 */
562 if (hw->mac.type == e1000_82580) {
563 stamp = rd32(E1000_SYSTIMR) >> 8;
564 shift = IGB_82580_TSYNC_SHIFT;
565 }
566
c5b9bd5e
AD
567 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
568 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
569 return stamp;
570}
571
9d5c8243 572/**
c041076a 573 * igb_get_hw_dev - return device
9d5c8243
AK
574 * used by hardware layer to print debugging information
575 **/
c041076a 576struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
577{
578 struct igb_adapter *adapter = hw->back;
c041076a 579 return adapter->netdev;
9d5c8243 580}
38c845c7 581
9d5c8243
AK
582/**
583 * igb_init_module - Driver Registration Routine
584 *
585 * igb_init_module is the first routine called when the driver is
586 * loaded. All it does is register with the PCI subsystem.
587 **/
588static int __init igb_init_module(void)
589{
590 int ret;
591 printk(KERN_INFO "%s - version %s\n",
592 igb_driver_string, igb_driver_version);
593
594 printk(KERN_INFO "%s\n", igb_copyright);
595
421e02f0 596#ifdef CONFIG_IGB_DCA
fe4506b6
JC
597 dca_register_notify(&dca_notifier);
598#endif
bbd98fe4 599 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
600 return ret;
601}
602
603module_init(igb_init_module);
604
605/**
606 * igb_exit_module - Driver Exit Cleanup Routine
607 *
608 * igb_exit_module is called just before the driver is removed
609 * from memory.
610 **/
611static void __exit igb_exit_module(void)
612{
421e02f0 613#ifdef CONFIG_IGB_DCA
fe4506b6
JC
614 dca_unregister_notify(&dca_notifier);
615#endif
9d5c8243
AK
616 pci_unregister_driver(&igb_driver);
617}
618
619module_exit(igb_exit_module);
620
26bc19ec
AD
621#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
622/**
623 * igb_cache_ring_register - Descriptor ring to register mapping
624 * @adapter: board private structure to initialize
625 *
626 * Once we know the feature-set enabled for the device, we'll cache
627 * the register offset the descriptor ring is assigned to.
628 **/
629static void igb_cache_ring_register(struct igb_adapter *adapter)
630{
ee1b9f06 631 int i = 0, j = 0;
047e0030 632 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
633
634 switch (adapter->hw.mac.type) {
635 case e1000_82576:
636 /* The queues are allocated for virtualization such that VF 0
637 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
638 * In order to avoid collision we start at the first free queue
639 * and continue consuming queues in the same sequence
640 */
ee1b9f06 641 if (adapter->vfs_allocated_count) {
a99955fc 642 for (; i < adapter->rss_queues; i++)
3025a446
AD
643 adapter->rx_ring[i]->reg_idx = rbase_offset +
644 Q_IDX_82576(i);
ee1b9f06 645 }
26bc19ec 646 case e1000_82575:
55cac248 647 case e1000_82580:
d2ba2ed8 648 case e1000_i350:
26bc19ec 649 default:
ee1b9f06 650 for (; i < adapter->num_rx_queues; i++)
3025a446 651 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 652 for (; j < adapter->num_tx_queues; j++)
3025a446 653 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
654 break;
655 }
656}
657
047e0030
AD
658static void igb_free_queues(struct igb_adapter *adapter)
659{
3025a446 660 int i;
047e0030 661
3025a446
AD
662 for (i = 0; i < adapter->num_tx_queues; i++) {
663 kfree(adapter->tx_ring[i]);
664 adapter->tx_ring[i] = NULL;
665 }
666 for (i = 0; i < adapter->num_rx_queues; i++) {
667 kfree(adapter->rx_ring[i]);
668 adapter->rx_ring[i] = NULL;
669 }
047e0030
AD
670 adapter->num_rx_queues = 0;
671 adapter->num_tx_queues = 0;
672}
673
9d5c8243
AK
674/**
675 * igb_alloc_queues - Allocate memory for all rings
676 * @adapter: board private structure to initialize
677 *
678 * We allocate one ring per queue at run-time since we don't know the
679 * number of queues at compile-time.
680 **/
681static int igb_alloc_queues(struct igb_adapter *adapter)
682{
3025a446 683 struct igb_ring *ring;
9d5c8243
AK
684 int i;
685
661086df 686 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
687 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
688 if (!ring)
689 goto err;
68fd9910 690 ring->count = adapter->tx_ring_count;
661086df 691 ring->queue_index = i;
59d71989 692 ring->dev = &adapter->pdev->dev;
e694e964 693 ring->netdev = adapter->netdev;
85ad76b2
AD
694 /* For 82575, context index must be unique per ring. */
695 if (adapter->hw.mac.type == e1000_82575)
696 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 697 adapter->tx_ring[i] = ring;
661086df 698 }
85ad76b2 699
9d5c8243 700 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->rx_ring_count;
844290e5 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
85ad76b2
AD
708 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
709 /* set flag indicating ring supports SCTP checksum offload */
710 if (adapter->hw.mac.type >= e1000_82576)
711 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 712 adapter->rx_ring[i] = ring;
9d5c8243 713 }
26bc19ec
AD
714
715 igb_cache_ring_register(adapter);
9d5c8243 716
047e0030 717 return 0;
a88f10ec 718
047e0030
AD
719err:
720 igb_free_queues(adapter);
d1a8c9e1 721
047e0030 722 return -ENOMEM;
a88f10ec
AD
723}
724
9d5c8243 725#define IGB_N0_QUEUE -1
047e0030 726static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
727{
728 u32 msixbm = 0;
047e0030 729 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 730 struct e1000_hw *hw = &adapter->hw;
2d064c06 731 u32 ivar, index;
047e0030
AD
732 int rx_queue = IGB_N0_QUEUE;
733 int tx_queue = IGB_N0_QUEUE;
734
735 if (q_vector->rx_ring)
736 rx_queue = q_vector->rx_ring->reg_idx;
737 if (q_vector->tx_ring)
738 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
739
740 switch (hw->mac.type) {
741 case e1000_82575:
9d5c8243
AK
742 /* The 82575 assigns vectors using a bitmask, which matches the
743 bitmask for the EICR/EIMS/EIMC registers. To assign one
744 or more queues to a vector, we write the appropriate bits
745 into the MSIXBM register for that vector. */
047e0030 746 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 747 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 748 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 749 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
750 if (!adapter->msix_entries && msix_vector == 0)
751 msixbm |= E1000_EIMS_OTHER;
9d5c8243 752 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 753 q_vector->eims_value = msixbm;
2d064c06
AD
754 break;
755 case e1000_82576:
26bc19ec 756 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
757 Each queue has a single entry in the table to which we write
758 a vector number along with a "valid" bit. Sadly, the layout
759 of the table is somewhat counterintuitive. */
760 if (rx_queue > IGB_N0_QUEUE) {
047e0030 761 index = (rx_queue & 0x7);
2d064c06 762 ivar = array_rd32(E1000_IVAR0, index);
047e0030 763 if (rx_queue < 8) {
26bc19ec
AD
764 /* vector goes into low byte of register */
765 ivar = ivar & 0xFFFFFF00;
766 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
767 } else {
768 /* vector goes into third byte of register */
769 ivar = ivar & 0xFF00FFFF;
770 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 771 }
2d064c06
AD
772 array_wr32(E1000_IVAR0, index, ivar);
773 }
774 if (tx_queue > IGB_N0_QUEUE) {
047e0030 775 index = (tx_queue & 0x7);
2d064c06 776 ivar = array_rd32(E1000_IVAR0, index);
047e0030 777 if (tx_queue < 8) {
26bc19ec
AD
778 /* vector goes into second byte of register */
779 ivar = ivar & 0xFFFF00FF;
780 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
781 } else {
782 /* vector goes into high byte of register */
783 ivar = ivar & 0x00FFFFFF;
784 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 785 }
2d064c06
AD
786 array_wr32(E1000_IVAR0, index, ivar);
787 }
047e0030 788 q_vector->eims_value = 1 << msix_vector;
2d064c06 789 break;
55cac248 790 case e1000_82580:
d2ba2ed8 791 case e1000_i350:
55cac248
AD
792 /* 82580 uses the same table-based approach as 82576 but has fewer
793 entries as a result we carry over for queues greater than 4. */
794 if (rx_queue > IGB_N0_QUEUE) {
795 index = (rx_queue >> 1);
796 ivar = array_rd32(E1000_IVAR0, index);
797 if (rx_queue & 0x1) {
798 /* vector goes into third byte of register */
799 ivar = ivar & 0xFF00FFFF;
800 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
801 } else {
802 /* vector goes into low byte of register */
803 ivar = ivar & 0xFFFFFF00;
804 ivar |= msix_vector | E1000_IVAR_VALID;
805 }
806 array_wr32(E1000_IVAR0, index, ivar);
807 }
808 if (tx_queue > IGB_N0_QUEUE) {
809 index = (tx_queue >> 1);
810 ivar = array_rd32(E1000_IVAR0, index);
811 if (tx_queue & 0x1) {
812 /* vector goes into high byte of register */
813 ivar = ivar & 0x00FFFFFF;
814 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
815 } else {
816 /* vector goes into second byte of register */
817 ivar = ivar & 0xFFFF00FF;
818 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
819 }
820 array_wr32(E1000_IVAR0, index, ivar);
821 }
822 q_vector->eims_value = 1 << msix_vector;
823 break;
2d064c06
AD
824 default:
825 BUG();
826 break;
827 }
26b39276
AD
828
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
831
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
9d5c8243
AK
834}
835
836/**
837 * igb_configure_msix - Configure MSI-X hardware
838 *
839 * igb_configure_msix sets up the hardware to properly
840 * generate MSI-X interrupts.
841 **/
842static void igb_configure_msix(struct igb_adapter *adapter)
843{
844 u32 tmp;
845 int i, vector = 0;
846 struct e1000_hw *hw = &adapter->hw;
847
848 adapter->eims_enable_mask = 0;
9d5c8243
AK
849
850 /* set vector for other causes, i.e. link changes */
2d064c06
AD
851 switch (hw->mac.type) {
852 case e1000_82575:
9d5c8243
AK
853 tmp = rd32(E1000_CTRL_EXT);
854 /* enable MSI-X PBA support*/
855 tmp |= E1000_CTRL_EXT_PBA_CLR;
856
857 /* Auto-Mask interrupts upon ICR read. */
858 tmp |= E1000_CTRL_EXT_EIAME;
859 tmp |= E1000_CTRL_EXT_IRCA;
860
861 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
862
863 /* enable msix_other interrupt */
864 array_wr32(E1000_MSIXBM(0), vector++,
865 E1000_EIMS_OTHER);
844290e5 866 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 867
2d064c06
AD
868 break;
869
870 case e1000_82576:
55cac248 871 case e1000_82580:
d2ba2ed8 872 case e1000_i350:
047e0030
AD
873 /* Turn on MSI-X capability first, or our settings
874 * won't stick. And it will take days to debug. */
875 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
876 E1000_GPIE_PBA | E1000_GPIE_EIAME |
877 E1000_GPIE_NSICR);
878
879 /* enable msix_other interrupt */
880 adapter->eims_other = 1 << vector;
2d064c06 881 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 882
047e0030 883 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
884 break;
885 default:
886 /* do nothing, since nothing else supports MSI-X */
887 break;
888 } /* switch (hw->mac.type) */
047e0030
AD
889
890 adapter->eims_enable_mask |= adapter->eims_other;
891
26b39276
AD
892 for (i = 0; i < adapter->num_q_vectors; i++)
893 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 894
9d5c8243
AK
895 wrfl();
896}
897
898/**
899 * igb_request_msix - Initialize MSI-X interrupts
900 *
901 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
902 * kernel.
903 **/
904static int igb_request_msix(struct igb_adapter *adapter)
905{
906 struct net_device *netdev = adapter->netdev;
047e0030 907 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
908 int i, err = 0, vector = 0;
909
047e0030 910 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 911 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
912 if (err)
913 goto out;
914 vector++;
915
916 for (i = 0; i < adapter->num_q_vectors; i++) {
917 struct igb_q_vector *q_vector = adapter->q_vector[i];
918
919 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
920
921 if (q_vector->rx_ring && q_vector->tx_ring)
922 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
923 q_vector->rx_ring->queue_index);
924 else if (q_vector->tx_ring)
925 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
926 q_vector->tx_ring->queue_index);
927 else if (q_vector->rx_ring)
928 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
929 q_vector->rx_ring->queue_index);
9d5c8243 930 else
047e0030
AD
931 sprintf(q_vector->name, "%s-unused", netdev->name);
932
9d5c8243 933 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 934 igb_msix_ring, 0, q_vector->name,
047e0030 935 q_vector);
9d5c8243
AK
936 if (err)
937 goto out;
9d5c8243
AK
938 vector++;
939 }
940
9d5c8243
AK
941 igb_configure_msix(adapter);
942 return 0;
943out:
944 return err;
945}
946
947static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
948{
949 if (adapter->msix_entries) {
950 pci_disable_msix(adapter->pdev);
951 kfree(adapter->msix_entries);
952 adapter->msix_entries = NULL;
047e0030 953 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 954 pci_disable_msi(adapter->pdev);
047e0030 955 }
9d5c8243
AK
956}
957
047e0030
AD
958/**
959 * igb_free_q_vectors - Free memory allocated for interrupt vectors
960 * @adapter: board private structure to initialize
961 *
962 * This function frees the memory allocated to the q_vectors. In addition if
963 * NAPI is enabled it will delete any references to the NAPI struct prior
964 * to freeing the q_vector.
965 **/
966static void igb_free_q_vectors(struct igb_adapter *adapter)
967{
968 int v_idx;
969
970 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
971 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
972 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
973 if (!q_vector)
974 continue;
047e0030
AD
975 netif_napi_del(&q_vector->napi);
976 kfree(q_vector);
977 }
978 adapter->num_q_vectors = 0;
979}
980
981/**
982 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
983 *
984 * This function resets the device so that it has 0 rx queues, tx queues, and
985 * MSI-X interrupts allocated.
986 */
987static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
988{
989 igb_free_queues(adapter);
990 igb_free_q_vectors(adapter);
991 igb_reset_interrupt_capability(adapter);
992}
9d5c8243
AK
993
994/**
995 * igb_set_interrupt_capability - set MSI or MSI-X if supported
996 *
997 * Attempt to configure interrupts using the best available
998 * capabilities of the hardware and kernel.
999 **/
21adef3e 1000static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1001{
1002 int err;
1003 int numvecs, i;
1004
83b7180d 1005 /* Number of supported queues. */
a99955fc 1006 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1007 if (adapter->vfs_allocated_count)
1008 adapter->num_tx_queues = 1;
1009 else
1010 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1011
047e0030
AD
1012 /* start with one vector for every rx queue */
1013 numvecs = adapter->num_rx_queues;
1014
3ad2f3fb 1015 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1016 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1017 numvecs += adapter->num_tx_queues;
047e0030
AD
1018
1019 /* store the number of vectors reserved for queues */
1020 adapter->num_q_vectors = numvecs;
1021
1022 /* add 1 vector for link status interrupts */
1023 numvecs++;
9d5c8243
AK
1024 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1025 GFP_KERNEL);
1026 if (!adapter->msix_entries)
1027 goto msi_only;
1028
1029 for (i = 0; i < numvecs; i++)
1030 adapter->msix_entries[i].entry = i;
1031
1032 err = pci_enable_msix(adapter->pdev,
1033 adapter->msix_entries,
1034 numvecs);
1035 if (err == 0)
34a20e89 1036 goto out;
9d5c8243
AK
1037
1038 igb_reset_interrupt_capability(adapter);
1039
1040 /* If we can't do MSI-X, try MSI */
1041msi_only:
2a3abf6d
AD
1042#ifdef CONFIG_PCI_IOV
1043 /* disable SR-IOV for non MSI-X configurations */
1044 if (adapter->vf_data) {
1045 struct e1000_hw *hw = &adapter->hw;
1046 /* disable iov and allow time for transactions to clear */
1047 pci_disable_sriov(adapter->pdev);
1048 msleep(500);
1049
1050 kfree(adapter->vf_data);
1051 adapter->vf_data = NULL;
1052 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1053 wrfl();
2a3abf6d
AD
1054 msleep(100);
1055 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1056 }
1057#endif
4fc82adf 1058 adapter->vfs_allocated_count = 0;
a99955fc 1059 adapter->rss_queues = 1;
4fc82adf 1060 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1061 adapter->num_rx_queues = 1;
661086df 1062 adapter->num_tx_queues = 1;
047e0030 1063 adapter->num_q_vectors = 1;
9d5c8243 1064 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1065 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1066out:
21adef3e
BH
1067 /* Notify the stack of the (possibly) reduced queue counts. */
1068 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1069 return netif_set_real_num_rx_queues(adapter->netdev,
1070 adapter->num_rx_queues);
9d5c8243
AK
1071}
1072
047e0030
AD
1073/**
1074 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1075 * @adapter: board private structure to initialize
1076 *
1077 * We allocate one q_vector per queue interrupt. If allocation fails we
1078 * return -ENOMEM.
1079 **/
1080static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1081{
1082 struct igb_q_vector *q_vector;
1083 struct e1000_hw *hw = &adapter->hw;
1084 int v_idx;
1085
1086 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1087 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1088 if (!q_vector)
1089 goto err_out;
1090 q_vector->adapter = adapter;
047e0030
AD
1091 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1092 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1093 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1094 adapter->q_vector[v_idx] = q_vector;
1095 }
1096 return 0;
1097
1098err_out:
fe0592b4 1099 igb_free_q_vectors(adapter);
047e0030
AD
1100 return -ENOMEM;
1101}
1102
1103static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105{
3025a446 1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1107
3025a446 1108 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1109 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1110 q_vector->itr_val = adapter->rx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1113}
1114
1115static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1116 int ring_idx, int v_idx)
1117{
3025a446 1118 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1119
3025a446 1120 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1121 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1122 q_vector->itr_val = adapter->tx_itr_setting;
1123 if (q_vector->itr_val && q_vector->itr_val <= 3)
1124 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1125}
1126
1127/**
1128 * igb_map_ring_to_vector - maps allocated queues to vectors
1129 *
1130 * This function maps the recently allocated queues to vectors.
1131 **/
1132static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1133{
1134 int i;
1135 int v_idx = 0;
1136
1137 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1138 (adapter->num_q_vectors < adapter->num_tx_queues))
1139 return -ENOMEM;
1140
1141 if (adapter->num_q_vectors >=
1142 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1143 for (i = 0; i < adapter->num_rx_queues; i++)
1144 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1145 for (i = 0; i < adapter->num_tx_queues; i++)
1146 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1147 } else {
1148 for (i = 0; i < adapter->num_rx_queues; i++) {
1149 if (i < adapter->num_tx_queues)
1150 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1151 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1152 }
1153 for (; i < adapter->num_tx_queues; i++)
1154 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1161 *
1162 * This function initializes the interrupts and allocates all of the queues.
1163 **/
1164static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1165{
1166 struct pci_dev *pdev = adapter->pdev;
1167 int err;
1168
21adef3e
BH
1169 err = igb_set_interrupt_capability(adapter);
1170 if (err)
1171 return err;
047e0030
AD
1172
1173 err = igb_alloc_q_vectors(adapter);
1174 if (err) {
1175 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1176 goto err_alloc_q_vectors;
1177 }
1178
1179 err = igb_alloc_queues(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1182 goto err_alloc_queues;
1183 }
1184
1185 err = igb_map_ring_to_vector(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1188 goto err_map_queues;
1189 }
1190
1191
1192 return 0;
1193err_map_queues:
1194 igb_free_queues(adapter);
1195err_alloc_queues:
1196 igb_free_q_vectors(adapter);
1197err_alloc_q_vectors:
1198 igb_reset_interrupt_capability(adapter);
1199 return err;
1200}
1201
9d5c8243
AK
1202/**
1203 * igb_request_irq - initialize interrupts
1204 *
1205 * Attempts to configure interrupts using the best available
1206 * capabilities of the hardware and kernel.
1207 **/
1208static int igb_request_irq(struct igb_adapter *adapter)
1209{
1210 struct net_device *netdev = adapter->netdev;
047e0030 1211 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1212 int err = 0;
1213
1214 if (adapter->msix_entries) {
1215 err = igb_request_msix(adapter);
844290e5 1216 if (!err)
9d5c8243 1217 goto request_done;
9d5c8243 1218 /* fall back to MSI */
047e0030 1219 igb_clear_interrupt_scheme(adapter);
9d5c8243 1220 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1221 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1222 igb_free_all_tx_resources(adapter);
1223 igb_free_all_rx_resources(adapter);
047e0030 1224 adapter->num_tx_queues = 1;
9d5c8243 1225 adapter->num_rx_queues = 1;
047e0030
AD
1226 adapter->num_q_vectors = 1;
1227 err = igb_alloc_q_vectors(adapter);
1228 if (err) {
1229 dev_err(&pdev->dev,
1230 "Unable to allocate memory for vectors\n");
1231 goto request_done;
1232 }
1233 err = igb_alloc_queues(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for queues\n");
1237 igb_free_q_vectors(adapter);
1238 goto request_done;
1239 }
1240 igb_setup_all_tx_resources(adapter);
1241 igb_setup_all_rx_resources(adapter);
844290e5 1242 } else {
feeb2721 1243 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1244 }
844290e5 1245
7dfc16fa 1246 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1247 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1248 netdev->name, adapter);
9d5c8243
AK
1249 if (!err)
1250 goto request_done;
047e0030 1251
9d5c8243
AK
1252 /* fall back to legacy interrupts */
1253 igb_reset_interrupt_capability(adapter);
7dfc16fa 1254 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1255 }
1256
a0607fd3 1257 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1258 netdev->name, adapter);
9d5c8243 1259
6cb5e577 1260 if (err)
9d5c8243
AK
1261 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1262 err);
9d5c8243
AK
1263
1264request_done:
1265 return err;
1266}
1267
1268static void igb_free_irq(struct igb_adapter *adapter)
1269{
9d5c8243
AK
1270 if (adapter->msix_entries) {
1271 int vector = 0, i;
1272
047e0030 1273 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1274
047e0030
AD
1275 for (i = 0; i < adapter->num_q_vectors; i++) {
1276 struct igb_q_vector *q_vector = adapter->q_vector[i];
1277 free_irq(adapter->msix_entries[vector++].vector,
1278 q_vector);
1279 }
1280 } else {
1281 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1282 }
9d5c8243
AK
1283}
1284
1285/**
1286 * igb_irq_disable - Mask off interrupt generation on the NIC
1287 * @adapter: board private structure
1288 **/
1289static void igb_irq_disable(struct igb_adapter *adapter)
1290{
1291 struct e1000_hw *hw = &adapter->hw;
1292
25568a53
AD
1293 /*
1294 * we need to be careful when disabling interrupts. The VFs are also
1295 * mapped into these registers and so clearing the bits can cause
1296 * issues on the VF drivers so we only need to clear what we set
1297 */
9d5c8243 1298 if (adapter->msix_entries) {
2dfd1212
AD
1299 u32 regval = rd32(E1000_EIAM);
1300 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1301 wr32(E1000_EIMC, adapter->eims_enable_mask);
1302 regval = rd32(E1000_EIAC);
1303 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1304 }
844290e5
PW
1305
1306 wr32(E1000_IAM, 0);
9d5c8243
AK
1307 wr32(E1000_IMC, ~0);
1308 wrfl();
81a61859
ET
1309 if (adapter->msix_entries) {
1310 int i;
1311 for (i = 0; i < adapter->num_q_vectors; i++)
1312 synchronize_irq(adapter->msix_entries[i].vector);
1313 } else {
1314 synchronize_irq(adapter->pdev->irq);
1315 }
9d5c8243
AK
1316}
1317
1318/**
1319 * igb_irq_enable - Enable default interrupt generation settings
1320 * @adapter: board private structure
1321 **/
1322static void igb_irq_enable(struct igb_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325
1326 if (adapter->msix_entries) {
25568a53 1327 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1328 u32 regval = rd32(E1000_EIAC);
1329 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1330 regval = rd32(E1000_EIAM);
1331 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1332 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1333 if (adapter->vfs_allocated_count) {
4ae196df 1334 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1335 ims |= E1000_IMS_VMMB;
1336 }
55cac248
AD
1337 if (adapter->hw.mac.type == e1000_82580)
1338 ims |= E1000_IMS_DRSTA;
1339
25568a53 1340 wr32(E1000_IMS, ims);
844290e5 1341 } else {
55cac248
AD
1342 wr32(E1000_IMS, IMS_ENABLE_MASK |
1343 E1000_IMS_DRSTA);
1344 wr32(E1000_IAM, IMS_ENABLE_MASK |
1345 E1000_IMS_DRSTA);
844290e5 1346 }
9d5c8243
AK
1347}
1348
1349static void igb_update_mng_vlan(struct igb_adapter *adapter)
1350{
51466239 1351 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1352 u16 vid = adapter->hw.mng_cookie.vlan_id;
1353 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1354
1355 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1356 /* add VID to filter table */
1357 igb_vfta_set(hw, vid, true);
1358 adapter->mng_vlan_id = vid;
1359 } else {
1360 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1361 }
1362
1363 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1364 (vid != old_vid) &&
b2cb09b1 1365 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1366 /* remove VID from filter table */
1367 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1368 }
1369}
1370
1371/**
1372 * igb_release_hw_control - release control of the h/w to f/w
1373 * @adapter: address of board private structure
1374 *
1375 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1376 * For ASF and Pass Through versions of f/w this means that the
1377 * driver is no longer loaded.
1378 *
1379 **/
1380static void igb_release_hw_control(struct igb_adapter *adapter)
1381{
1382 struct e1000_hw *hw = &adapter->hw;
1383 u32 ctrl_ext;
1384
1385 /* Let firmware take over control of h/w */
1386 ctrl_ext = rd32(E1000_CTRL_EXT);
1387 wr32(E1000_CTRL_EXT,
1388 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1389}
1390
9d5c8243
AK
1391/**
1392 * igb_get_hw_control - get control of the h/w from f/w
1393 * @adapter: address of board private structure
1394 *
1395 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1396 * For ASF and Pass Through versions of f/w this means that
1397 * the driver is loaded.
1398 *
1399 **/
1400static void igb_get_hw_control(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403 u32 ctrl_ext;
1404
1405 /* Let firmware know the driver has taken over */
1406 ctrl_ext = rd32(E1000_CTRL_EXT);
1407 wr32(E1000_CTRL_EXT,
1408 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1409}
1410
9d5c8243
AK
1411/**
1412 * igb_configure - configure the hardware for RX and TX
1413 * @adapter: private board structure
1414 **/
1415static void igb_configure(struct igb_adapter *adapter)
1416{
1417 struct net_device *netdev = adapter->netdev;
1418 int i;
1419
1420 igb_get_hw_control(adapter);
ff41f8dc 1421 igb_set_rx_mode(netdev);
9d5c8243
AK
1422
1423 igb_restore_vlan(adapter);
9d5c8243 1424
85b430b4 1425 igb_setup_tctl(adapter);
06cf2666 1426 igb_setup_mrqc(adapter);
9d5c8243 1427 igb_setup_rctl(adapter);
85b430b4
AD
1428
1429 igb_configure_tx(adapter);
9d5c8243 1430 igb_configure_rx(adapter);
662d7205
AD
1431
1432 igb_rx_fifo_flush_82575(&adapter->hw);
1433
c493ea45 1434 /* call igb_desc_unused which always leaves
9d5c8243
AK
1435 * at least 1 descriptor unused to make sure
1436 * next_to_use != next_to_clean */
1437 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1438 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1439 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1440 }
9d5c8243
AK
1441}
1442
88a268c1
NN
1443/**
1444 * igb_power_up_link - Power up the phy/serdes link
1445 * @adapter: address of board private structure
1446 **/
1447void igb_power_up_link(struct igb_adapter *adapter)
1448{
1449 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1450 igb_power_up_phy_copper(&adapter->hw);
1451 else
1452 igb_power_up_serdes_link_82575(&adapter->hw);
1453}
1454
1455/**
1456 * igb_power_down_link - Power down the phy/serdes link
1457 * @adapter: address of board private structure
1458 */
1459static void igb_power_down_link(struct igb_adapter *adapter)
1460{
1461 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462 igb_power_down_phy_copper_82575(&adapter->hw);
1463 else
1464 igb_shutdown_serdes_link_82575(&adapter->hw);
1465}
9d5c8243
AK
1466
1467/**
1468 * igb_up - Open the interface and prepare it to handle traffic
1469 * @adapter: board private structure
1470 **/
9d5c8243
AK
1471int igb_up(struct igb_adapter *adapter)
1472{
1473 struct e1000_hw *hw = &adapter->hw;
1474 int i;
1475
1476 /* hardware has been reset, we need to reload some things */
1477 igb_configure(adapter);
1478
1479 clear_bit(__IGB_DOWN, &adapter->state);
1480
047e0030
AD
1481 for (i = 0; i < adapter->num_q_vectors; i++) {
1482 struct igb_q_vector *q_vector = adapter->q_vector[i];
1483 napi_enable(&q_vector->napi);
1484 }
844290e5 1485 if (adapter->msix_entries)
9d5c8243 1486 igb_configure_msix(adapter);
feeb2721
AD
1487 else
1488 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1489
1490 /* Clear any pending interrupts. */
1491 rd32(E1000_ICR);
1492 igb_irq_enable(adapter);
1493
d4960307
AD
1494 /* notify VFs that reset has been completed */
1495 if (adapter->vfs_allocated_count) {
1496 u32 reg_data = rd32(E1000_CTRL_EXT);
1497 reg_data |= E1000_CTRL_EXT_PFRSTD;
1498 wr32(E1000_CTRL_EXT, reg_data);
1499 }
1500
4cb9be7a
JB
1501 netif_tx_start_all_queues(adapter->netdev);
1502
25568a53
AD
1503 /* start the watchdog. */
1504 hw->mac.get_link_status = 1;
1505 schedule_work(&adapter->watchdog_task);
1506
9d5c8243
AK
1507 return 0;
1508}
1509
1510void igb_down(struct igb_adapter *adapter)
1511{
9d5c8243 1512 struct net_device *netdev = adapter->netdev;
330a6d6a 1513 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1514 u32 tctl, rctl;
1515 int i;
1516
1517 /* signal that we're down so the interrupt handler does not
1518 * reschedule our watchdog timer */
1519 set_bit(__IGB_DOWN, &adapter->state);
1520
1521 /* disable receives in the hardware */
1522 rctl = rd32(E1000_RCTL);
1523 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1524 /* flush and sleep below */
1525
fd2ea0a7 1526 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1527
1528 /* disable transmits in the hardware */
1529 tctl = rd32(E1000_TCTL);
1530 tctl &= ~E1000_TCTL_EN;
1531 wr32(E1000_TCTL, tctl);
1532 /* flush both disables and wait for them to finish */
1533 wrfl();
1534 msleep(10);
1535
047e0030
AD
1536 for (i = 0; i < adapter->num_q_vectors; i++) {
1537 struct igb_q_vector *q_vector = adapter->q_vector[i];
1538 napi_disable(&q_vector->napi);
1539 }
9d5c8243 1540
9d5c8243
AK
1541 igb_irq_disable(adapter);
1542
1543 del_timer_sync(&adapter->watchdog_timer);
1544 del_timer_sync(&adapter->phy_info_timer);
1545
9d5c8243 1546 netif_carrier_off(netdev);
04fe6358
AD
1547
1548 /* record the stats before reset*/
12dcd86b
ED
1549 spin_lock(&adapter->stats64_lock);
1550 igb_update_stats(adapter, &adapter->stats64);
1551 spin_unlock(&adapter->stats64_lock);
04fe6358 1552
9d5c8243
AK
1553 adapter->link_speed = 0;
1554 adapter->link_duplex = 0;
1555
3023682e
JK
1556 if (!pci_channel_offline(adapter->pdev))
1557 igb_reset(adapter);
9d5c8243
AK
1558 igb_clean_all_tx_rings(adapter);
1559 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1560#ifdef CONFIG_IGB_DCA
1561
1562 /* since we reset the hardware DCA settings were cleared */
1563 igb_setup_dca(adapter);
1564#endif
9d5c8243
AK
1565}
1566
1567void igb_reinit_locked(struct igb_adapter *adapter)
1568{
1569 WARN_ON(in_interrupt());
1570 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1571 msleep(1);
1572 igb_down(adapter);
1573 igb_up(adapter);
1574 clear_bit(__IGB_RESETTING, &adapter->state);
1575}
1576
1577void igb_reset(struct igb_adapter *adapter)
1578{
090b1795 1579 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1580 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1581 struct e1000_mac_info *mac = &hw->mac;
1582 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1583 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1584 u16 hwm;
1585
1586 /* Repartition Pba for greater than 9k mtu
1587 * To take effect CTRL.RST is required.
1588 */
fa4dfae0 1589 switch (mac->type) {
d2ba2ed8 1590 case e1000_i350:
55cac248
AD
1591 case e1000_82580:
1592 pba = rd32(E1000_RXPBS);
1593 pba = igb_rxpbs_adjust_82580(pba);
1594 break;
fa4dfae0 1595 case e1000_82576:
d249be54
AD
1596 pba = rd32(E1000_RXPBS);
1597 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1598 break;
1599 case e1000_82575:
1600 default:
1601 pba = E1000_PBA_34K;
1602 break;
2d064c06 1603 }
9d5c8243 1604
2d064c06
AD
1605 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1606 (mac->type < e1000_82576)) {
9d5c8243
AK
1607 /* adjust PBA for jumbo frames */
1608 wr32(E1000_PBA, pba);
1609
1610 /* To maintain wire speed transmits, the Tx FIFO should be
1611 * large enough to accommodate two full transmit packets,
1612 * rounded up to the next 1KB and expressed in KB. Likewise,
1613 * the Rx FIFO should be large enough to accommodate at least
1614 * one full receive packet and is similarly rounded up and
1615 * expressed in KB. */
1616 pba = rd32(E1000_PBA);
1617 /* upper 16 bits has Tx packet buffer allocation size in KB */
1618 tx_space = pba >> 16;
1619 /* lower 16 bits has Rx packet buffer allocation size in KB */
1620 pba &= 0xffff;
1621 /* the tx fifo also stores 16 bytes of information about the tx
1622 * but don't include ethernet FCS because hardware appends it */
1623 min_tx_space = (adapter->max_frame_size +
85e8d004 1624 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1625 ETH_FCS_LEN) * 2;
1626 min_tx_space = ALIGN(min_tx_space, 1024);
1627 min_tx_space >>= 10;
1628 /* software strips receive CRC, so leave room for it */
1629 min_rx_space = adapter->max_frame_size;
1630 min_rx_space = ALIGN(min_rx_space, 1024);
1631 min_rx_space >>= 10;
1632
1633 /* If current Tx allocation is less than the min Tx FIFO size,
1634 * and the min Tx FIFO size is less than the current Rx FIFO
1635 * allocation, take space away from current Rx allocation */
1636 if (tx_space < min_tx_space &&
1637 ((min_tx_space - tx_space) < pba)) {
1638 pba = pba - (min_tx_space - tx_space);
1639
1640 /* if short on rx space, rx wins and must trump tx
1641 * adjustment */
1642 if (pba < min_rx_space)
1643 pba = min_rx_space;
1644 }
2d064c06 1645 wr32(E1000_PBA, pba);
9d5c8243 1646 }
9d5c8243
AK
1647
1648 /* flow control settings */
1649 /* The high water mark must be low enough to fit one full frame
1650 * (or the size used for early receive) above it in the Rx FIFO.
1651 * Set it to the lower of:
1652 * - 90% of the Rx FIFO size, or
1653 * - the full Rx FIFO size minus one full frame */
1654 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1655 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1656
d405ea3e
AD
1657 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1658 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1659 fc->pause_time = 0xFFFF;
1660 fc->send_xon = 1;
0cce119a 1661 fc->current_mode = fc->requested_mode;
9d5c8243 1662
4ae196df
AD
1663 /* disable receive for all VFs and wait one second */
1664 if (adapter->vfs_allocated_count) {
1665 int i;
1666 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1667 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1668
1669 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1670 igb_ping_all_vfs(adapter);
4ae196df
AD
1671
1672 /* disable transmits and receives */
1673 wr32(E1000_VFRE, 0);
1674 wr32(E1000_VFTE, 0);
1675 }
1676
9d5c8243 1677 /* Allow time for pending master requests to run */
330a6d6a 1678 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1679 wr32(E1000_WUC, 0);
1680
330a6d6a 1681 if (hw->mac.ops.init_hw(hw))
090b1795 1682 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1683 if (hw->mac.type > e1000_82580) {
1684 if (adapter->flags & IGB_FLAG_DMAC) {
1685 u32 reg;
1686
1687 /*
1688 * DMA Coalescing high water mark needs to be higher
1689 * than * the * Rx threshold. The Rx threshold is
1690 * currently * pba - 6, so we * should use a high water
1691 * mark of pba * - 4. */
1692 hwm = (pba - 4) << 10;
1693
1694 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1695 & E1000_DMACR_DMACTHR_MASK);
1696
1697 /* transition to L0x or L1 if available..*/
1698 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1699
1700 /* watchdog timer= +-1000 usec in 32usec intervals */
1701 reg |= (1000 >> 5);
1702 wr32(E1000_DMACR, reg);
1703
1704 /* no lower threshold to disable coalescing(smart fifb)
1705 * -UTRESH=0*/
1706 wr32(E1000_DMCRTRH, 0);
1707
1708 /* set hwm to PBA - 2 * max frame size */
1709 wr32(E1000_FCRTC, hwm);
1710
1711 /*
1712 * This sets the time to wait before requesting tran-
1713 * sition to * low power state to number of usecs needed
1714 * to receive 1 512 * byte frame at gigabit line rate
1715 */
1716 reg = rd32(E1000_DMCTLX);
1717 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1718
1719 /* Delay 255 usec before entering Lx state. */
1720 reg |= 0xFF;
1721 wr32(E1000_DMCTLX, reg);
1722
1723 /* free space in Tx packet buffer to wake from DMAC */
1724 wr32(E1000_DMCTXTH,
1725 (IGB_MIN_TXPBSIZE -
1726 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1727 >> 6);
1728
1729 /* make low power state decision controlled by DMAC */
1730 reg = rd32(E1000_PCIEMISC);
1731 reg |= E1000_PCIEMISC_LX_DECISION;
1732 wr32(E1000_PCIEMISC, reg);
1733 } /* end if IGB_FLAG_DMAC set */
1734 }
55cac248
AD
1735 if (hw->mac.type == e1000_82580) {
1736 u32 reg = rd32(E1000_PCIEMISC);
1737 wr32(E1000_PCIEMISC,
1738 reg & ~E1000_PCIEMISC_LX_DECISION);
1739 }
88a268c1
NN
1740 if (!netif_running(adapter->netdev))
1741 igb_power_down_link(adapter);
1742
9d5c8243
AK
1743 igb_update_mng_vlan(adapter);
1744
1745 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1747
330a6d6a 1748 igb_get_phy_info(hw);
9d5c8243
AK
1749}
1750
b2cb09b1
JP
1751static u32 igb_fix_features(struct net_device *netdev, u32 features)
1752{
1753 /*
1754 * Since there is no support for separate rx/tx vlan accel
1755 * enable/disable make sure tx flag is always in same state as rx.
1756 */
1757 if (features & NETIF_F_HW_VLAN_RX)
1758 features |= NETIF_F_HW_VLAN_TX;
1759 else
1760 features &= ~NETIF_F_HW_VLAN_TX;
1761
1762 return features;
1763}
1764
ac52caa3
MM
1765static int igb_set_features(struct net_device *netdev, u32 features)
1766{
1767 struct igb_adapter *adapter = netdev_priv(netdev);
1768 int i;
b2cb09b1 1769 u32 changed = netdev->features ^ features;
ac52caa3
MM
1770
1771 for (i = 0; i < adapter->num_rx_queues; i++) {
1772 if (features & NETIF_F_RXCSUM)
1773 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1774 else
1775 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1776 }
1777
b2cb09b1
JP
1778 if (changed & NETIF_F_HW_VLAN_RX)
1779 igb_vlan_mode(netdev, features);
1780
ac52caa3
MM
1781 return 0;
1782}
1783
2e5c6922 1784static const struct net_device_ops igb_netdev_ops = {
559e9c49 1785 .ndo_open = igb_open,
2e5c6922 1786 .ndo_stop = igb_close,
cd392f5c 1787 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1788 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1789 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1790 .ndo_set_mac_address = igb_set_mac,
1791 .ndo_change_mtu = igb_change_mtu,
1792 .ndo_do_ioctl = igb_ioctl,
1793 .ndo_tx_timeout = igb_tx_timeout,
1794 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1795 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1796 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1797 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1798 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1799 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1800 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1801#ifdef CONFIG_NET_POLL_CONTROLLER
1802 .ndo_poll_controller = igb_netpoll,
1803#endif
b2cb09b1
JP
1804 .ndo_fix_features = igb_fix_features,
1805 .ndo_set_features = igb_set_features,
2e5c6922
SH
1806};
1807
9d5c8243
AK
1808/**
1809 * igb_probe - Device Initialization Routine
1810 * @pdev: PCI device information struct
1811 * @ent: entry in igb_pci_tbl
1812 *
1813 * Returns 0 on success, negative on failure
1814 *
1815 * igb_probe initializes an adapter identified by a pci_dev structure.
1816 * The OS initialization, configuring of the adapter private structure,
1817 * and a hardware reset occur.
1818 **/
1819static int __devinit igb_probe(struct pci_dev *pdev,
1820 const struct pci_device_id *ent)
1821{
1822 struct net_device *netdev;
1823 struct igb_adapter *adapter;
1824 struct e1000_hw *hw;
4337e993 1825 u16 eeprom_data = 0;
9835fd73 1826 s32 ret_val;
4337e993 1827 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1828 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1829 unsigned long mmio_start, mmio_len;
2d6a5e95 1830 int err, pci_using_dac;
9d5c8243 1831 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1832 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1833
bded64a7
AG
1834 /* Catch broken hardware that put the wrong VF device ID in
1835 * the PCIe SR-IOV capability.
1836 */
1837 if (pdev->is_virtfn) {
1838 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1839 pci_name(pdev), pdev->vendor, pdev->device);
1840 return -EINVAL;
1841 }
1842
aed5dec3 1843 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1844 if (err)
1845 return err;
1846
1847 pci_using_dac = 0;
59d71989 1848 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1849 if (!err) {
59d71989 1850 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1851 if (!err)
1852 pci_using_dac = 1;
1853 } else {
59d71989 1854 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1855 if (err) {
59d71989 1856 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1857 if (err) {
1858 dev_err(&pdev->dev, "No usable DMA "
1859 "configuration, aborting\n");
1860 goto err_dma;
1861 }
1862 }
1863 }
1864
aed5dec3
AD
1865 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1866 IORESOURCE_MEM),
1867 igb_driver_name);
9d5c8243
AK
1868 if (err)
1869 goto err_pci_reg;
1870
19d5afd4 1871 pci_enable_pcie_error_reporting(pdev);
40a914fa 1872
9d5c8243 1873 pci_set_master(pdev);
c682fc23 1874 pci_save_state(pdev);
9d5c8243
AK
1875
1876 err = -ENOMEM;
1bfaf07b 1877 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1878 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1879 if (!netdev)
1880 goto err_alloc_etherdev;
1881
1882 SET_NETDEV_DEV(netdev, &pdev->dev);
1883
1884 pci_set_drvdata(pdev, netdev);
1885 adapter = netdev_priv(netdev);
1886 adapter->netdev = netdev;
1887 adapter->pdev = pdev;
1888 hw = &adapter->hw;
1889 hw->back = adapter;
1890 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1891
1892 mmio_start = pci_resource_start(pdev, 0);
1893 mmio_len = pci_resource_len(pdev, 0);
1894
1895 err = -EIO;
28b0759c
AD
1896 hw->hw_addr = ioremap(mmio_start, mmio_len);
1897 if (!hw->hw_addr)
9d5c8243
AK
1898 goto err_ioremap;
1899
2e5c6922 1900 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1901 igb_set_ethtool_ops(netdev);
9d5c8243 1902 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1903
1904 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1905
1906 netdev->mem_start = mmio_start;
1907 netdev->mem_end = mmio_start + mmio_len;
1908
9d5c8243
AK
1909 /* PCI config space info */
1910 hw->vendor_id = pdev->vendor;
1911 hw->device_id = pdev->device;
1912 hw->revision_id = pdev->revision;
1913 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1914 hw->subsystem_device_id = pdev->subsystem_device;
1915
9d5c8243
AK
1916 /* Copy the default MAC, PHY and NVM function pointers */
1917 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1918 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1919 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1920 /* Initialize skew-specific constants */
1921 err = ei->get_invariants(hw);
1922 if (err)
450c87c8 1923 goto err_sw_init;
9d5c8243 1924
450c87c8 1925 /* setup the private structure */
9d5c8243
AK
1926 err = igb_sw_init(adapter);
1927 if (err)
1928 goto err_sw_init;
1929
1930 igb_get_bus_info_pcie(hw);
1931
1932 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1933
1934 /* Copper options */
1935 if (hw->phy.media_type == e1000_media_type_copper) {
1936 hw->phy.mdix = AUTO_ALL_MODES;
1937 hw->phy.disable_polarity_correction = false;
1938 hw->phy.ms_type = e1000_ms_hw_default;
1939 }
1940
1941 if (igb_check_reset_block(hw))
1942 dev_info(&pdev->dev,
1943 "PHY reset is blocked due to SOL/IDER session.\n");
1944
ac52caa3 1945 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1946 NETIF_F_IP_CSUM |
ac52caa3
MM
1947 NETIF_F_IPV6_CSUM |
1948 NETIF_F_TSO |
1949 NETIF_F_TSO6 |
b2cb09b1
JP
1950 NETIF_F_RXCSUM |
1951 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1952
1953 netdev->features = netdev->hw_features |
9d5c8243 1954 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1955 NETIF_F_HW_VLAN_FILTER;
1956
48f29ffc
JK
1957 netdev->vlan_features |= NETIF_F_TSO;
1958 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1959 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1960 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1961 netdev->vlan_features |= NETIF_F_SG;
1962
7b872a55 1963 if (pci_using_dac) {
9d5c8243 1964 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1965 netdev->vlan_features |= NETIF_F_HIGHDMA;
1966 }
9d5c8243 1967
ac52caa3
MM
1968 if (hw->mac.type >= e1000_82576) {
1969 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1970 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1971 }
b9473560 1972
01789349
JP
1973 netdev->priv_flags |= IFF_UNICAST_FLT;
1974
330a6d6a 1975 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1976
1977 /* before reading the NVM, reset the controller to put the device in a
1978 * known good starting state */
1979 hw->mac.ops.reset_hw(hw);
1980
1981 /* make sure the NVM is good */
4322e561 1982 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1983 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1984 err = -EIO;
1985 goto err_eeprom;
1986 }
1987
1988 /* copy the MAC address out of the NVM */
1989 if (hw->mac.ops.read_mac_addr(hw))
1990 dev_err(&pdev->dev, "NVM Read Error\n");
1991
1992 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1993 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1994
1995 if (!is_valid_ether_addr(netdev->perm_addr)) {
1996 dev_err(&pdev->dev, "Invalid MAC Address\n");
1997 err = -EIO;
1998 goto err_eeprom;
1999 }
2000
c061b18d 2001 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2002 (unsigned long) adapter);
c061b18d 2003 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2004 (unsigned long) adapter);
9d5c8243
AK
2005
2006 INIT_WORK(&adapter->reset_task, igb_reset_task);
2007 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2008
450c87c8 2009 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2010 adapter->fc_autoneg = true;
2011 hw->mac.autoneg = true;
2012 hw->phy.autoneg_advertised = 0x2f;
2013
0cce119a
AD
2014 hw->fc.requested_mode = e1000_fc_default;
2015 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2016
9d5c8243
AK
2017 igb_validate_mdi_setting(hw);
2018
9d5c8243
AK
2019 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2020 * enable the ACPI Magic Packet filter
2021 */
2022
a2cf8b6c 2023 if (hw->bus.func == 0)
312c75ae 2024 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2025 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2026 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2027 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2028 &eeprom_data);
a2cf8b6c
AD
2029 else if (hw->bus.func == 1)
2030 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2031
2032 if (eeprom_data & eeprom_apme_mask)
2033 adapter->eeprom_wol |= E1000_WUFC_MAG;
2034
2035 /* now that we have the eeprom settings, apply the special cases where
2036 * the eeprom may be wrong or the board simply won't support wake on
2037 * lan on a particular port */
2038 switch (pdev->device) {
2039 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2040 adapter->eeprom_wol = 0;
2041 break;
2042 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2043 case E1000_DEV_ID_82576_FIBER:
2044 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2045 /* Wake events only supported on port A for dual fiber
2046 * regardless of eeprom setting */
2047 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2048 adapter->eeprom_wol = 0;
2049 break;
c8ea5ea9 2050 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2051 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2052 /* if quad port adapter, disable WoL on all but port A */
2053 if (global_quad_port_a != 0)
2054 adapter->eeprom_wol = 0;
2055 else
2056 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2057 /* Reset for multiple quad port adapters */
2058 if (++global_quad_port_a == 4)
2059 global_quad_port_a = 0;
2060 break;
9d5c8243
AK
2061 }
2062
2063 /* initialize the wol settings based on the eeprom settings */
2064 adapter->wol = adapter->eeprom_wol;
e1b86d84 2065 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2066
2067 /* reset the hardware with the new settings */
2068 igb_reset(adapter);
2069
2070 /* let the f/w know that the h/w is now under the control of the
2071 * driver. */
2072 igb_get_hw_control(adapter);
2073
9d5c8243
AK
2074 strcpy(netdev->name, "eth%d");
2075 err = register_netdev(netdev);
2076 if (err)
2077 goto err_register;
2078
b2cb09b1
JP
2079 igb_vlan_mode(netdev, netdev->features);
2080
b168dfc5
JB
2081 /* carrier off reporting is important to ethtool even BEFORE open */
2082 netif_carrier_off(netdev);
2083
421e02f0 2084#ifdef CONFIG_IGB_DCA
bbd98fe4 2085 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2086 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2087 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2088 igb_setup_dca(adapter);
2089 }
fe4506b6 2090
38c845c7 2091#endif
673b8b70
AB
2092 /* do hw tstamp init after resetting */
2093 igb_init_hw_timer(adapter);
2094
9d5c8243
AK
2095 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2096 /* print bus type/speed/width info */
7c510e4b 2097 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2098 netdev->name,
559e9c49 2099 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2100 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2101 "unknown"),
59c3de89
AD
2102 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2103 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2104 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2105 "unknown"),
7c510e4b 2106 netdev->dev_addr);
9d5c8243 2107
9835fd73
CW
2108 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2109 if (ret_val)
2110 strcpy(part_str, "Unknown");
2111 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2112 dev_info(&pdev->dev,
2113 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2114 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2115 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2116 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2117 switch (hw->mac.type) {
2118 case e1000_i350:
2119 igb_set_eee_i350(hw);
2120 break;
2121 default:
2122 break;
2123 }
9d5c8243
AK
2124 return 0;
2125
2126err_register:
2127 igb_release_hw_control(adapter);
2128err_eeprom:
2129 if (!igb_check_reset_block(hw))
f5f4cf08 2130 igb_reset_phy(hw);
9d5c8243
AK
2131
2132 if (hw->flash_address)
2133 iounmap(hw->flash_address);
9d5c8243 2134err_sw_init:
047e0030 2135 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2136 iounmap(hw->hw_addr);
2137err_ioremap:
2138 free_netdev(netdev);
2139err_alloc_etherdev:
559e9c49
AD
2140 pci_release_selected_regions(pdev,
2141 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2142err_pci_reg:
2143err_dma:
2144 pci_disable_device(pdev);
2145 return err;
2146}
2147
2148/**
2149 * igb_remove - Device Removal Routine
2150 * @pdev: PCI device information struct
2151 *
2152 * igb_remove is called by the PCI subsystem to alert the driver
2153 * that it should release a PCI device. The could be caused by a
2154 * Hot-Plug event, or because the driver is going to be removed from
2155 * memory.
2156 **/
2157static void __devexit igb_remove(struct pci_dev *pdev)
2158{
2159 struct net_device *netdev = pci_get_drvdata(pdev);
2160 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2161 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2162
760141a5
TH
2163 /*
2164 * The watchdog timer may be rescheduled, so explicitly
2165 * disable watchdog from being rescheduled.
2166 */
9d5c8243
AK
2167 set_bit(__IGB_DOWN, &adapter->state);
2168 del_timer_sync(&adapter->watchdog_timer);
2169 del_timer_sync(&adapter->phy_info_timer);
2170
760141a5
TH
2171 cancel_work_sync(&adapter->reset_task);
2172 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2173
421e02f0 2174#ifdef CONFIG_IGB_DCA
7dfc16fa 2175 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2176 dev_info(&pdev->dev, "DCA disabled\n");
2177 dca_remove_requester(&pdev->dev);
7dfc16fa 2178 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2179 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2180 }
2181#endif
2182
9d5c8243
AK
2183 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2184 * would have already happened in close and is redundant. */
2185 igb_release_hw_control(adapter);
2186
2187 unregister_netdev(netdev);
2188
047e0030 2189 igb_clear_interrupt_scheme(adapter);
9d5c8243 2190
37680117
AD
2191#ifdef CONFIG_PCI_IOV
2192 /* reclaim resources allocated to VFs */
2193 if (adapter->vf_data) {
2194 /* disable iov and allow time for transactions to clear */
2195 pci_disable_sriov(pdev);
2196 msleep(500);
2197
2198 kfree(adapter->vf_data);
2199 adapter->vf_data = NULL;
2200 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2201 wrfl();
37680117
AD
2202 msleep(100);
2203 dev_info(&pdev->dev, "IOV Disabled\n");
2204 }
2205#endif
559e9c49 2206
28b0759c
AD
2207 iounmap(hw->hw_addr);
2208 if (hw->flash_address)
2209 iounmap(hw->flash_address);
559e9c49
AD
2210 pci_release_selected_regions(pdev,
2211 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2212
2213 free_netdev(netdev);
2214
19d5afd4 2215 pci_disable_pcie_error_reporting(pdev);
40a914fa 2216
9d5c8243
AK
2217 pci_disable_device(pdev);
2218}
2219
a6b623e0
AD
2220/**
2221 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2222 * @adapter: board private structure to initialize
2223 *
2224 * This function initializes the vf specific data storage and then attempts to
2225 * allocate the VFs. The reason for ordering it this way is because it is much
2226 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2227 * the memory for the VFs.
2228 **/
2229static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2230{
2231#ifdef CONFIG_PCI_IOV
2232 struct pci_dev *pdev = adapter->pdev;
2233
a6b623e0
AD
2234 if (adapter->vfs_allocated_count) {
2235 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2236 sizeof(struct vf_data_storage),
2237 GFP_KERNEL);
2238 /* if allocation failed then we do not support SR-IOV */
2239 if (!adapter->vf_data) {
2240 adapter->vfs_allocated_count = 0;
2241 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2242 "Data Storage\n");
2243 }
2244 }
2245
2246 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2247 kfree(adapter->vf_data);
2248 adapter->vf_data = NULL;
2249#endif /* CONFIG_PCI_IOV */
2250 adapter->vfs_allocated_count = 0;
2251#ifdef CONFIG_PCI_IOV
2252 } else {
2253 unsigned char mac_addr[ETH_ALEN];
2254 int i;
2255 dev_info(&pdev->dev, "%d vfs allocated\n",
2256 adapter->vfs_allocated_count);
2257 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2258 random_ether_addr(mac_addr);
2259 igb_set_vf_mac(adapter, i, mac_addr);
2260 }
831ec0b4
CW
2261 /* DMA Coalescing is not supported in IOV mode. */
2262 if (adapter->flags & IGB_FLAG_DMAC)
2263 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2264 }
2265#endif /* CONFIG_PCI_IOV */
2266}
2267
115f459a
AD
2268
2269/**
2270 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2271 * @adapter: board private structure to initialize
2272 *
2273 * igb_init_hw_timer initializes the function pointer and values for the hw
2274 * timer found in hardware.
2275 **/
2276static void igb_init_hw_timer(struct igb_adapter *adapter)
2277{
2278 struct e1000_hw *hw = &adapter->hw;
2279
2280 switch (hw->mac.type) {
d2ba2ed8 2281 case e1000_i350:
55cac248
AD
2282 case e1000_82580:
2283 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2284 adapter->cycles.read = igb_read_clock;
2285 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2286 adapter->cycles.mult = 1;
2287 /*
2288 * The 82580 timesync updates the system timer every 8ns by 8ns
2289 * and the value cannot be shifted. Instead we need to shift
2290 * the registers to generate a 64bit timer value. As a result
2291 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2292 * 24 in order to generate a larger value for synchronization.
2293 */
2294 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2295 /* disable system timer temporarily by setting bit 31 */
2296 wr32(E1000_TSAUXC, 0x80000000);
2297 wrfl();
2298
2299 /* Set registers so that rollover occurs soon to test this. */
2300 wr32(E1000_SYSTIMR, 0x00000000);
2301 wr32(E1000_SYSTIML, 0x80000000);
2302 wr32(E1000_SYSTIMH, 0x000000FF);
2303 wrfl();
2304
2305 /* enable system timer by clearing bit 31 */
2306 wr32(E1000_TSAUXC, 0x0);
2307 wrfl();
2308
2309 timecounter_init(&adapter->clock,
2310 &adapter->cycles,
2311 ktime_to_ns(ktime_get_real()));
2312 /*
2313 * Synchronize our NIC clock against system wall clock. NIC
2314 * time stamp reading requires ~3us per sample, each sample
2315 * was pretty stable even under load => only require 10
2316 * samples for each offset comparison.
2317 */
2318 memset(&adapter->compare, 0, sizeof(adapter->compare));
2319 adapter->compare.source = &adapter->clock;
2320 adapter->compare.target = ktime_get_real;
2321 adapter->compare.num_samples = 10;
2322 timecompare_update(&adapter->compare, 0);
2323 break;
115f459a
AD
2324 case e1000_82576:
2325 /*
2326 * Initialize hardware timer: we keep it running just in case
2327 * that some program needs it later on.
2328 */
2329 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2330 adapter->cycles.read = igb_read_clock;
2331 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2332 adapter->cycles.mult = 1;
2333 /**
2334 * Scale the NIC clock cycle by a large factor so that
2335 * relatively small clock corrections can be added or
25985edc 2336 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2337 * factor are a) that the clock register overflows more quickly
2338 * (not such a big deal) and b) that the increment per tick has
2339 * to fit into 24 bits. As a result we need to use a shift of
2340 * 19 so we can fit a value of 16 into the TIMINCA register.
2341 */
2342 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2343 wr32(E1000_TIMINCA,
2344 (1 << E1000_TIMINCA_16NS_SHIFT) |
2345 (16 << IGB_82576_TSYNC_SHIFT));
2346
2347 /* Set registers so that rollover occurs soon to test this. */
2348 wr32(E1000_SYSTIML, 0x00000000);
2349 wr32(E1000_SYSTIMH, 0xFF800000);
2350 wrfl();
2351
2352 timecounter_init(&adapter->clock,
2353 &adapter->cycles,
2354 ktime_to_ns(ktime_get_real()));
2355 /*
2356 * Synchronize our NIC clock against system wall clock. NIC
2357 * time stamp reading requires ~3us per sample, each sample
2358 * was pretty stable even under load => only require 10
2359 * samples for each offset comparison.
2360 */
2361 memset(&adapter->compare, 0, sizeof(adapter->compare));
2362 adapter->compare.source = &adapter->clock;
2363 adapter->compare.target = ktime_get_real;
2364 adapter->compare.num_samples = 10;
2365 timecompare_update(&adapter->compare, 0);
2366 break;
2367 case e1000_82575:
2368 /* 82575 does not support timesync */
2369 default:
2370 break;
2371 }
2372
2373}
2374
9d5c8243
AK
2375/**
2376 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2377 * @adapter: board private structure to initialize
2378 *
2379 * igb_sw_init initializes the Adapter private data structure.
2380 * Fields are initialized based on PCI device information and
2381 * OS network device settings (MTU size).
2382 **/
2383static int __devinit igb_sw_init(struct igb_adapter *adapter)
2384{
2385 struct e1000_hw *hw = &adapter->hw;
2386 struct net_device *netdev = adapter->netdev;
2387 struct pci_dev *pdev = adapter->pdev;
2388
2389 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2390
68fd9910
AD
2391 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2392 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2393 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2394 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2395
153285f9
AD
2396 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2397 VLAN_HLEN;
9d5c8243
AK
2398 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2399
12dcd86b 2400 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2401#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2402 switch (hw->mac.type) {
2403 case e1000_82576:
2404 case e1000_i350:
9b082d73
SA
2405 if (max_vfs > 7) {
2406 dev_warn(&pdev->dev,
2407 "Maximum of 7 VFs per PF, using max\n");
2408 adapter->vfs_allocated_count = 7;
2409 } else
2410 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2411 break;
2412 default:
2413 break;
2414 }
a6b623e0 2415#endif /* CONFIG_PCI_IOV */
a99955fc 2416 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2417 /* i350 cannot do RSS and SR-IOV at the same time */
2418 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2419 adapter->rss_queues = 1;
a99955fc
AD
2420
2421 /*
2422 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2423 * then we should combine the queues into a queue pair in order to
2424 * conserve interrupts due to limited supply
2425 */
2426 if ((adapter->rss_queues > 4) ||
2427 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2428 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2429
a6b623e0 2430 /* This call may decrease the number of queues */
047e0030 2431 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2432 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2433 return -ENOMEM;
2434 }
2435
a6b623e0
AD
2436 igb_probe_vfs(adapter);
2437
9d5c8243
AK
2438 /* Explicitly disable IRQ since the NIC can be in any state. */
2439 igb_irq_disable(adapter);
2440
831ec0b4
CW
2441 if (hw->mac.type == e1000_i350)
2442 adapter->flags &= ~IGB_FLAG_DMAC;
2443
9d5c8243
AK
2444 set_bit(__IGB_DOWN, &adapter->state);
2445 return 0;
2446}
2447
2448/**
2449 * igb_open - Called when a network interface is made active
2450 * @netdev: network interface device structure
2451 *
2452 * Returns 0 on success, negative value on failure
2453 *
2454 * The open entry point is called when a network interface is made
2455 * active by the system (IFF_UP). At this point all resources needed
2456 * for transmit and receive operations are allocated, the interrupt
2457 * handler is registered with the OS, the watchdog timer is started,
2458 * and the stack is notified that the interface is ready.
2459 **/
2460static int igb_open(struct net_device *netdev)
2461{
2462 struct igb_adapter *adapter = netdev_priv(netdev);
2463 struct e1000_hw *hw = &adapter->hw;
2464 int err;
2465 int i;
2466
2467 /* disallow open during test */
2468 if (test_bit(__IGB_TESTING, &adapter->state))
2469 return -EBUSY;
2470
b168dfc5
JB
2471 netif_carrier_off(netdev);
2472
9d5c8243
AK
2473 /* allocate transmit descriptors */
2474 err = igb_setup_all_tx_resources(adapter);
2475 if (err)
2476 goto err_setup_tx;
2477
2478 /* allocate receive descriptors */
2479 err = igb_setup_all_rx_resources(adapter);
2480 if (err)
2481 goto err_setup_rx;
2482
88a268c1 2483 igb_power_up_link(adapter);
9d5c8243 2484
9d5c8243
AK
2485 /* before we allocate an interrupt, we must be ready to handle it.
2486 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2487 * as soon as we call pci_request_irq, so we have to setup our
2488 * clean_rx handler before we do so. */
2489 igb_configure(adapter);
2490
2491 err = igb_request_irq(adapter);
2492 if (err)
2493 goto err_req_irq;
2494
2495 /* From here on the code is the same as igb_up() */
2496 clear_bit(__IGB_DOWN, &adapter->state);
2497
047e0030
AD
2498 for (i = 0; i < adapter->num_q_vectors; i++) {
2499 struct igb_q_vector *q_vector = adapter->q_vector[i];
2500 napi_enable(&q_vector->napi);
2501 }
9d5c8243
AK
2502
2503 /* Clear any pending interrupts. */
2504 rd32(E1000_ICR);
844290e5
PW
2505
2506 igb_irq_enable(adapter);
2507
d4960307
AD
2508 /* notify VFs that reset has been completed */
2509 if (adapter->vfs_allocated_count) {
2510 u32 reg_data = rd32(E1000_CTRL_EXT);
2511 reg_data |= E1000_CTRL_EXT_PFRSTD;
2512 wr32(E1000_CTRL_EXT, reg_data);
2513 }
2514
d55b53ff
JK
2515 netif_tx_start_all_queues(netdev);
2516
25568a53
AD
2517 /* start the watchdog. */
2518 hw->mac.get_link_status = 1;
2519 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2520
2521 return 0;
2522
2523err_req_irq:
2524 igb_release_hw_control(adapter);
88a268c1 2525 igb_power_down_link(adapter);
9d5c8243
AK
2526 igb_free_all_rx_resources(adapter);
2527err_setup_rx:
2528 igb_free_all_tx_resources(adapter);
2529err_setup_tx:
2530 igb_reset(adapter);
2531
2532 return err;
2533}
2534
2535/**
2536 * igb_close - Disables a network interface
2537 * @netdev: network interface device structure
2538 *
2539 * Returns 0, this is not allowed to fail
2540 *
2541 * The close entry point is called when an interface is de-activated
2542 * by the OS. The hardware is still under the driver's control, but
2543 * needs to be disabled. A global MAC reset is issued to stop the
2544 * hardware, and all transmit and receive resources are freed.
2545 **/
2546static int igb_close(struct net_device *netdev)
2547{
2548 struct igb_adapter *adapter = netdev_priv(netdev);
2549
2550 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2551 igb_down(adapter);
2552
2553 igb_free_irq(adapter);
2554
2555 igb_free_all_tx_resources(adapter);
2556 igb_free_all_rx_resources(adapter);
2557
9d5c8243
AK
2558 return 0;
2559}
2560
2561/**
2562 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2563 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2564 *
2565 * Return 0 on success, negative on failure
2566 **/
80785298 2567int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2568{
59d71989 2569 struct device *dev = tx_ring->dev;
9d5c8243
AK
2570 int size;
2571
2572 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2573 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2574 if (!tx_ring->buffer_info)
2575 goto err;
9d5c8243
AK
2576
2577 /* round up to nearest 4K */
85e8d004 2578 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2579 tx_ring->size = ALIGN(tx_ring->size, 4096);
2580
59d71989
AD
2581 tx_ring->desc = dma_alloc_coherent(dev,
2582 tx_ring->size,
2583 &tx_ring->dma,
2584 GFP_KERNEL);
9d5c8243
AK
2585
2586 if (!tx_ring->desc)
2587 goto err;
2588
9d5c8243
AK
2589 tx_ring->next_to_use = 0;
2590 tx_ring->next_to_clean = 0;
9d5c8243
AK
2591 return 0;
2592
2593err:
2594 vfree(tx_ring->buffer_info);
59d71989 2595 dev_err(dev,
9d5c8243
AK
2596 "Unable to allocate memory for the transmit descriptor ring\n");
2597 return -ENOMEM;
2598}
2599
2600/**
2601 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2602 * (Descriptors) for all queues
2603 * @adapter: board private structure
2604 *
2605 * Return 0 on success, negative on failure
2606 **/
2607static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2608{
439705e1 2609 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2610 int i, err = 0;
2611
2612 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2613 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2614 if (err) {
439705e1 2615 dev_err(&pdev->dev,
9d5c8243
AK
2616 "Allocation for Tx Queue %u failed\n", i);
2617 for (i--; i >= 0; i--)
3025a446 2618 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2619 break;
2620 }
2621 }
2622
2623 return err;
2624}
2625
2626/**
85b430b4
AD
2627 * igb_setup_tctl - configure the transmit control registers
2628 * @adapter: Board private structure
9d5c8243 2629 **/
d7ee5b3a 2630void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2631{
9d5c8243
AK
2632 struct e1000_hw *hw = &adapter->hw;
2633 u32 tctl;
9d5c8243 2634
85b430b4
AD
2635 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2636 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2637
2638 /* Program the Transmit Control Register */
9d5c8243
AK
2639 tctl = rd32(E1000_TCTL);
2640 tctl &= ~E1000_TCTL_CT;
2641 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2642 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2643
2644 igb_config_collision_dist(hw);
2645
9d5c8243
AK
2646 /* Enable transmits */
2647 tctl |= E1000_TCTL_EN;
2648
2649 wr32(E1000_TCTL, tctl);
2650}
2651
85b430b4
AD
2652/**
2653 * igb_configure_tx_ring - Configure transmit ring after Reset
2654 * @adapter: board private structure
2655 * @ring: tx ring to configure
2656 *
2657 * Configure a transmit ring after a reset.
2658 **/
d7ee5b3a
AD
2659void igb_configure_tx_ring(struct igb_adapter *adapter,
2660 struct igb_ring *ring)
85b430b4
AD
2661{
2662 struct e1000_hw *hw = &adapter->hw;
a74420e0 2663 u32 txdctl = 0;
85b430b4
AD
2664 u64 tdba = ring->dma;
2665 int reg_idx = ring->reg_idx;
2666
2667 /* disable the queue */
a74420e0 2668 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2669 wrfl();
2670 mdelay(10);
2671
2672 wr32(E1000_TDLEN(reg_idx),
2673 ring->count * sizeof(union e1000_adv_tx_desc));
2674 wr32(E1000_TDBAL(reg_idx),
2675 tdba & 0x00000000ffffffffULL);
2676 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2677
fce99e34 2678 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2679 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2680 writel(0, ring->tail);
85b430b4
AD
2681
2682 txdctl |= IGB_TX_PTHRESH;
2683 txdctl |= IGB_TX_HTHRESH << 8;
2684 txdctl |= IGB_TX_WTHRESH << 16;
2685
2686 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2687 wr32(E1000_TXDCTL(reg_idx), txdctl);
2688}
2689
2690/**
2691 * igb_configure_tx - Configure transmit Unit after Reset
2692 * @adapter: board private structure
2693 *
2694 * Configure the Tx unit of the MAC after a reset.
2695 **/
2696static void igb_configure_tx(struct igb_adapter *adapter)
2697{
2698 int i;
2699
2700 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2701 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2702}
2703
9d5c8243
AK
2704/**
2705 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2706 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2707 *
2708 * Returns 0 on success, negative on failure
2709 **/
80785298 2710int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2711{
59d71989 2712 struct device *dev = rx_ring->dev;
9d5c8243
AK
2713 int size, desc_len;
2714
2715 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2716 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2717 if (!rx_ring->buffer_info)
2718 goto err;
9d5c8243
AK
2719
2720 desc_len = sizeof(union e1000_adv_rx_desc);
2721
2722 /* Round up to nearest 4K */
2723 rx_ring->size = rx_ring->count * desc_len;
2724 rx_ring->size = ALIGN(rx_ring->size, 4096);
2725
59d71989
AD
2726 rx_ring->desc = dma_alloc_coherent(dev,
2727 rx_ring->size,
2728 &rx_ring->dma,
2729 GFP_KERNEL);
9d5c8243
AK
2730
2731 if (!rx_ring->desc)
2732 goto err;
2733
2734 rx_ring->next_to_clean = 0;
2735 rx_ring->next_to_use = 0;
9d5c8243 2736
9d5c8243
AK
2737 return 0;
2738
2739err:
2740 vfree(rx_ring->buffer_info);
439705e1 2741 rx_ring->buffer_info = NULL;
59d71989
AD
2742 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2743 " ring\n");
9d5c8243
AK
2744 return -ENOMEM;
2745}
2746
2747/**
2748 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2749 * (Descriptors) for all queues
2750 * @adapter: board private structure
2751 *
2752 * Return 0 on success, negative on failure
2753 **/
2754static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2755{
439705e1 2756 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2757 int i, err = 0;
2758
2759 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2760 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2761 if (err) {
439705e1 2762 dev_err(&pdev->dev,
9d5c8243
AK
2763 "Allocation for Rx Queue %u failed\n", i);
2764 for (i--; i >= 0; i--)
3025a446 2765 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2766 break;
2767 }
2768 }
2769
2770 return err;
2771}
2772
06cf2666
AD
2773/**
2774 * igb_setup_mrqc - configure the multiple receive queue control registers
2775 * @adapter: Board private structure
2776 **/
2777static void igb_setup_mrqc(struct igb_adapter *adapter)
2778{
2779 struct e1000_hw *hw = &adapter->hw;
2780 u32 mrqc, rxcsum;
2781 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2782 union e1000_reta {
2783 u32 dword;
2784 u8 bytes[4];
2785 } reta;
2786 static const u8 rsshash[40] = {
2787 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2788 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2789 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2790 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2791
2792 /* Fill out hash function seeds */
2793 for (j = 0; j < 10; j++) {
2794 u32 rsskey = rsshash[(j * 4)];
2795 rsskey |= rsshash[(j * 4) + 1] << 8;
2796 rsskey |= rsshash[(j * 4) + 2] << 16;
2797 rsskey |= rsshash[(j * 4) + 3] << 24;
2798 array_wr32(E1000_RSSRK(0), j, rsskey);
2799 }
2800
a99955fc 2801 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2802
2803 if (adapter->vfs_allocated_count) {
2804 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2805 switch (hw->mac.type) {
d2ba2ed8 2806 case e1000_i350:
55cac248
AD
2807 case e1000_82580:
2808 num_rx_queues = 1;
2809 shift = 0;
2810 break;
06cf2666
AD
2811 case e1000_82576:
2812 shift = 3;
2813 num_rx_queues = 2;
2814 break;
2815 case e1000_82575:
2816 shift = 2;
2817 shift2 = 6;
2818 default:
2819 break;
2820 }
2821 } else {
2822 if (hw->mac.type == e1000_82575)
2823 shift = 6;
2824 }
2825
2826 for (j = 0; j < (32 * 4); j++) {
2827 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2828 if (shift2)
2829 reta.bytes[j & 3] |= num_rx_queues << shift2;
2830 if ((j & 3) == 3)
2831 wr32(E1000_RETA(j >> 2), reta.dword);
2832 }
2833
2834 /*
2835 * Disable raw packet checksumming so that RSS hash is placed in
2836 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2837 * offloads as they are enabled by default
2838 */
2839 rxcsum = rd32(E1000_RXCSUM);
2840 rxcsum |= E1000_RXCSUM_PCSD;
2841
2842 if (adapter->hw.mac.type >= e1000_82576)
2843 /* Enable Receive Checksum Offload for SCTP */
2844 rxcsum |= E1000_RXCSUM_CRCOFL;
2845
2846 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2847 wr32(E1000_RXCSUM, rxcsum);
2848
2849 /* If VMDq is enabled then we set the appropriate mode for that, else
2850 * we default to RSS so that an RSS hash is calculated per packet even
2851 * if we are only using one queue */
2852 if (adapter->vfs_allocated_count) {
2853 if (hw->mac.type > e1000_82575) {
2854 /* Set the default pool for the PF's first queue */
2855 u32 vtctl = rd32(E1000_VT_CTL);
2856 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2857 E1000_VT_CTL_DISABLE_DEF_POOL);
2858 vtctl |= adapter->vfs_allocated_count <<
2859 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2860 wr32(E1000_VT_CTL, vtctl);
2861 }
a99955fc 2862 if (adapter->rss_queues > 1)
06cf2666
AD
2863 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2864 else
2865 mrqc = E1000_MRQC_ENABLE_VMDQ;
2866 } else {
2867 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2868 }
2869 igb_vmm_control(adapter);
2870
4478a9cd
AD
2871 /*
2872 * Generate RSS hash based on TCP port numbers and/or
2873 * IPv4/v6 src and dst addresses since UDP cannot be
2874 * hashed reliably due to IP fragmentation
2875 */
2876 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2877 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2878 E1000_MRQC_RSS_FIELD_IPV6 |
2879 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2880 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2881
2882 wr32(E1000_MRQC, mrqc);
2883}
2884
9d5c8243
AK
2885/**
2886 * igb_setup_rctl - configure the receive control registers
2887 * @adapter: Board private structure
2888 **/
d7ee5b3a 2889void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2890{
2891 struct e1000_hw *hw = &adapter->hw;
2892 u32 rctl;
9d5c8243
AK
2893
2894 rctl = rd32(E1000_RCTL);
2895
2896 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2897 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2898
69d728ba 2899 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2900 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2901
87cb7e8c
AK
2902 /*
2903 * enable stripping of CRC. It's unlikely this will break BMC
2904 * redirection as it did with e1000. Newer features require
2905 * that the HW strips the CRC.
73cd78f1 2906 */
87cb7e8c 2907 rctl |= E1000_RCTL_SECRC;
9d5c8243 2908
559e9c49 2909 /* disable store bad packets and clear size bits. */
ec54d7d6 2910 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2911
6ec43fe6
AD
2912 /* enable LPE to prevent packets larger than max_frame_size */
2913 rctl |= E1000_RCTL_LPE;
9d5c8243 2914
952f72a8
AD
2915 /* disable queue 0 to prevent tail write w/o re-config */
2916 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2917
e1739522
AD
2918 /* Attention!!! For SR-IOV PF driver operations you must enable
2919 * queue drop for all VF and PF queues to prevent head of line blocking
2920 * if an un-trusted VF does not provide descriptors to hardware.
2921 */
2922 if (adapter->vfs_allocated_count) {
e1739522
AD
2923 /* set all queue drop enable bits */
2924 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2925 }
2926
9d5c8243
AK
2927 wr32(E1000_RCTL, rctl);
2928}
2929
7d5753f0
AD
2930static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2931 int vfn)
2932{
2933 struct e1000_hw *hw = &adapter->hw;
2934 u32 vmolr;
2935
2936 /* if it isn't the PF check to see if VFs are enabled and
2937 * increase the size to support vlan tags */
2938 if (vfn < adapter->vfs_allocated_count &&
2939 adapter->vf_data[vfn].vlans_enabled)
2940 size += VLAN_TAG_SIZE;
2941
2942 vmolr = rd32(E1000_VMOLR(vfn));
2943 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2944 vmolr |= size | E1000_VMOLR_LPE;
2945 wr32(E1000_VMOLR(vfn), vmolr);
2946
2947 return 0;
2948}
2949
e1739522
AD
2950/**
2951 * igb_rlpml_set - set maximum receive packet size
2952 * @adapter: board private structure
2953 *
2954 * Configure maximum receivable packet size.
2955 **/
2956static void igb_rlpml_set(struct igb_adapter *adapter)
2957{
153285f9 2958 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
2959 struct e1000_hw *hw = &adapter->hw;
2960 u16 pf_id = adapter->vfs_allocated_count;
2961
e1739522
AD
2962 if (pf_id) {
2963 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
2964 /*
2965 * If we're in VMDQ or SR-IOV mode, then set global RLPML
2966 * to our max jumbo frame size, in case we need to enable
2967 * jumbo frames on one of the rings later.
2968 * This will not pass over-length frames into the default
2969 * queue because it's gated by the VMOLR.RLPML.
2970 */
7d5753f0 2971 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2972 }
2973
2974 wr32(E1000_RLPML, max_frame_size);
2975}
2976
8151d294
WM
2977static inline void igb_set_vmolr(struct igb_adapter *adapter,
2978 int vfn, bool aupe)
7d5753f0
AD
2979{
2980 struct e1000_hw *hw = &adapter->hw;
2981 u32 vmolr;
2982
2983 /*
2984 * This register exists only on 82576 and newer so if we are older then
2985 * we should exit and do nothing
2986 */
2987 if (hw->mac.type < e1000_82576)
2988 return;
2989
2990 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2991 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2992 if (aupe)
2993 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2994 else
2995 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2996
2997 /* clear all bits that might not be set */
2998 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2999
a99955fc 3000 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3001 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3002 /*
3003 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3004 * multicast packets
3005 */
3006 if (vfn <= adapter->vfs_allocated_count)
3007 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3008
3009 wr32(E1000_VMOLR(vfn), vmolr);
3010}
3011
85b430b4
AD
3012/**
3013 * igb_configure_rx_ring - Configure a receive ring after Reset
3014 * @adapter: board private structure
3015 * @ring: receive ring to be configured
3016 *
3017 * Configure the Rx unit of the MAC after a reset.
3018 **/
d7ee5b3a
AD
3019void igb_configure_rx_ring(struct igb_adapter *adapter,
3020 struct igb_ring *ring)
85b430b4
AD
3021{
3022 struct e1000_hw *hw = &adapter->hw;
3023 u64 rdba = ring->dma;
3024 int reg_idx = ring->reg_idx;
a74420e0 3025 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3026
3027 /* disable the queue */
a74420e0 3028 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3029
3030 /* Set DMA base address registers */
3031 wr32(E1000_RDBAL(reg_idx),
3032 rdba & 0x00000000ffffffffULL);
3033 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3034 wr32(E1000_RDLEN(reg_idx),
3035 ring->count * sizeof(union e1000_adv_rx_desc));
3036
3037 /* initialize head and tail */
fce99e34 3038 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3039 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3040 writel(0, ring->tail);
85b430b4 3041
952f72a8 3042 /* set descriptor configuration */
44390ca6 3043 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3044#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3045 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3046#else
44390ca6 3047 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3048#endif
44390ca6 3049 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3050 if (hw->mac.type == e1000_82580)
3051 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3052 /* Only set Drop Enable if we are supporting multiple queues */
3053 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3054 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3055
3056 wr32(E1000_SRRCTL(reg_idx), srrctl);
3057
7d5753f0 3058 /* set filtering for VMDQ pools */
8151d294 3059 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3060
85b430b4
AD
3061 rxdctl |= IGB_RX_PTHRESH;
3062 rxdctl |= IGB_RX_HTHRESH << 8;
3063 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3064
3065 /* enable receive descriptor fetching */
3066 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3067 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3068}
3069
9d5c8243
AK
3070/**
3071 * igb_configure_rx - Configure receive Unit after Reset
3072 * @adapter: board private structure
3073 *
3074 * Configure the Rx unit of the MAC after a reset.
3075 **/
3076static void igb_configure_rx(struct igb_adapter *adapter)
3077{
9107584e 3078 int i;
9d5c8243 3079
68d480c4
AD
3080 /* set UTA to appropriate mode */
3081 igb_set_uta(adapter);
3082
26ad9178
AD
3083 /* set the correct pool for the PF default MAC address in entry 0 */
3084 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3085 adapter->vfs_allocated_count);
3086
06cf2666
AD
3087 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3088 * the Base and Length of the Rx Descriptor Ring */
3089 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3090 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3091}
3092
3093/**
3094 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3095 * @tx_ring: Tx descriptor ring for a specific queue
3096 *
3097 * Free all transmit software resources
3098 **/
68fd9910 3099void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3100{
3b644cf6 3101 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
3102
3103 vfree(tx_ring->buffer_info);
3104 tx_ring->buffer_info = NULL;
3105
439705e1
AD
3106 /* if not set, then don't free */
3107 if (!tx_ring->desc)
3108 return;
3109
59d71989
AD
3110 dma_free_coherent(tx_ring->dev, tx_ring->size,
3111 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3112
3113 tx_ring->desc = NULL;
3114}
3115
3116/**
3117 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3118 * @adapter: board private structure
3119 *
3120 * Free all transmit software resources
3121 **/
3122static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3123{
3124 int i;
3125
3126 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3127 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3128}
3129
b1a436c3
AD
3130void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3131 struct igb_buffer *buffer_info)
9d5c8243 3132{
6366ad33
AD
3133 if (buffer_info->dma) {
3134 if (buffer_info->mapped_as_page)
59d71989 3135 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3136 buffer_info->dma,
3137 buffer_info->length,
59d71989 3138 DMA_TO_DEVICE);
6366ad33 3139 else
59d71989 3140 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3141 buffer_info->dma,
3142 buffer_info->length,
59d71989 3143 DMA_TO_DEVICE);
6366ad33
AD
3144 buffer_info->dma = 0;
3145 }
9d5c8243
AK
3146 if (buffer_info->skb) {
3147 dev_kfree_skb_any(buffer_info->skb);
3148 buffer_info->skb = NULL;
3149 }
3150 buffer_info->time_stamp = 0;
6366ad33
AD
3151 buffer_info->length = 0;
3152 buffer_info->next_to_watch = 0;
3153 buffer_info->mapped_as_page = false;
9d5c8243
AK
3154}
3155
3156/**
3157 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3158 * @tx_ring: ring to be cleaned
3159 **/
3b644cf6 3160static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3161{
3162 struct igb_buffer *buffer_info;
3163 unsigned long size;
3164 unsigned int i;
3165
3166 if (!tx_ring->buffer_info)
3167 return;
3168 /* Free all the Tx ring sk_buffs */
3169
3170 for (i = 0; i < tx_ring->count; i++) {
3171 buffer_info = &tx_ring->buffer_info[i];
80785298 3172 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3173 }
3174
3175 size = sizeof(struct igb_buffer) * tx_ring->count;
3176 memset(tx_ring->buffer_info, 0, size);
3177
3178 /* Zero out the descriptor ring */
9d5c8243
AK
3179 memset(tx_ring->desc, 0, tx_ring->size);
3180
3181 tx_ring->next_to_use = 0;
3182 tx_ring->next_to_clean = 0;
9d5c8243
AK
3183}
3184
3185/**
3186 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3187 * @adapter: board private structure
3188 **/
3189static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3190{
3191 int i;
3192
3193 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3194 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3195}
3196
3197/**
3198 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3199 * @rx_ring: ring to clean the resources from
3200 *
3201 * Free all receive software resources
3202 **/
68fd9910 3203void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3204{
3b644cf6 3205 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3206
3207 vfree(rx_ring->buffer_info);
3208 rx_ring->buffer_info = NULL;
3209
439705e1
AD
3210 /* if not set, then don't free */
3211 if (!rx_ring->desc)
3212 return;
3213
59d71989
AD
3214 dma_free_coherent(rx_ring->dev, rx_ring->size,
3215 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3216
3217 rx_ring->desc = NULL;
3218}
3219
3220/**
3221 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3222 * @adapter: board private structure
3223 *
3224 * Free all receive software resources
3225 **/
3226static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3227{
3228 int i;
3229
3230 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3231 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3232}
3233
3234/**
3235 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3236 * @rx_ring: ring to free buffers from
3237 **/
3b644cf6 3238static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3239{
9d5c8243 3240 unsigned long size;
c023cd88 3241 u16 i;
9d5c8243
AK
3242
3243 if (!rx_ring->buffer_info)
3244 return;
439705e1 3245
9d5c8243
AK
3246 /* Free all the Rx ring sk_buffs */
3247 for (i = 0; i < rx_ring->count; i++) {
c023cd88 3248 struct igb_buffer *buffer_info = &rx_ring->buffer_info[i];
9d5c8243 3249 if (buffer_info->dma) {
59d71989 3250 dma_unmap_single(rx_ring->dev,
80785298 3251 buffer_info->dma,
44390ca6 3252 IGB_RX_HDR_LEN,
59d71989 3253 DMA_FROM_DEVICE);
9d5c8243
AK
3254 buffer_info->dma = 0;
3255 }
3256
3257 if (buffer_info->skb) {
3258 dev_kfree_skb(buffer_info->skb);
3259 buffer_info->skb = NULL;
3260 }
6ec43fe6 3261 if (buffer_info->page_dma) {
59d71989 3262 dma_unmap_page(rx_ring->dev,
80785298 3263 buffer_info->page_dma,
6ec43fe6 3264 PAGE_SIZE / 2,
59d71989 3265 DMA_FROM_DEVICE);
6ec43fe6
AD
3266 buffer_info->page_dma = 0;
3267 }
9d5c8243 3268 if (buffer_info->page) {
9d5c8243
AK
3269 put_page(buffer_info->page);
3270 buffer_info->page = NULL;
bf36c1a0 3271 buffer_info->page_offset = 0;
9d5c8243
AK
3272 }
3273 }
3274
9d5c8243
AK
3275 size = sizeof(struct igb_buffer) * rx_ring->count;
3276 memset(rx_ring->buffer_info, 0, size);
3277
3278 /* Zero out the descriptor ring */
3279 memset(rx_ring->desc, 0, rx_ring->size);
3280
3281 rx_ring->next_to_clean = 0;
3282 rx_ring->next_to_use = 0;
9d5c8243
AK
3283}
3284
3285/**
3286 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3287 * @adapter: board private structure
3288 **/
3289static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3290{
3291 int i;
3292
3293 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3294 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3295}
3296
3297/**
3298 * igb_set_mac - Change the Ethernet Address of the NIC
3299 * @netdev: network interface device structure
3300 * @p: pointer to an address structure
3301 *
3302 * Returns 0 on success, negative on failure
3303 **/
3304static int igb_set_mac(struct net_device *netdev, void *p)
3305{
3306 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3307 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3308 struct sockaddr *addr = p;
3309
3310 if (!is_valid_ether_addr(addr->sa_data))
3311 return -EADDRNOTAVAIL;
3312
3313 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3314 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3315
26ad9178
AD
3316 /* set the correct pool for the new PF MAC address in entry 0 */
3317 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3318 adapter->vfs_allocated_count);
e1739522 3319
9d5c8243
AK
3320 return 0;
3321}
3322
3323/**
68d480c4 3324 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3325 * @netdev: network interface device structure
3326 *
68d480c4
AD
3327 * Writes multicast address list to the MTA hash table.
3328 * Returns: -ENOMEM on failure
3329 * 0 on no addresses written
3330 * X on writing X addresses to MTA
9d5c8243 3331 **/
68d480c4 3332static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3333{
3334 struct igb_adapter *adapter = netdev_priv(netdev);
3335 struct e1000_hw *hw = &adapter->hw;
22bedad3 3336 struct netdev_hw_addr *ha;
68d480c4 3337 u8 *mta_list;
9d5c8243
AK
3338 int i;
3339
4cd24eaf 3340 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3341 /* nothing to program, so clear mc list */
3342 igb_update_mc_addr_list(hw, NULL, 0);
3343 igb_restore_vf_multicasts(adapter);
3344 return 0;
3345 }
9d5c8243 3346
4cd24eaf 3347 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3348 if (!mta_list)
3349 return -ENOMEM;
ff41f8dc 3350
68d480c4 3351 /* The shared function expects a packed array of only addresses. */
48e2f183 3352 i = 0;
22bedad3
JP
3353 netdev_for_each_mc_addr(ha, netdev)
3354 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3355
68d480c4
AD
3356 igb_update_mc_addr_list(hw, mta_list, i);
3357 kfree(mta_list);
3358
4cd24eaf 3359 return netdev_mc_count(netdev);
68d480c4
AD
3360}
3361
3362/**
3363 * igb_write_uc_addr_list - write unicast addresses to RAR table
3364 * @netdev: network interface device structure
3365 *
3366 * Writes unicast address list to the RAR table.
3367 * Returns: -ENOMEM on failure/insufficient address space
3368 * 0 on no addresses written
3369 * X on writing X addresses to the RAR table
3370 **/
3371static int igb_write_uc_addr_list(struct net_device *netdev)
3372{
3373 struct igb_adapter *adapter = netdev_priv(netdev);
3374 struct e1000_hw *hw = &adapter->hw;
3375 unsigned int vfn = adapter->vfs_allocated_count;
3376 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3377 int count = 0;
3378
3379 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3380 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3381 return -ENOMEM;
9d5c8243 3382
32e7bfc4 3383 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3384 struct netdev_hw_addr *ha;
32e7bfc4
JP
3385
3386 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3387 if (!rar_entries)
3388 break;
26ad9178
AD
3389 igb_rar_set_qsel(adapter, ha->addr,
3390 rar_entries--,
68d480c4
AD
3391 vfn);
3392 count++;
ff41f8dc
AD
3393 }
3394 }
3395 /* write the addresses in reverse order to avoid write combining */
3396 for (; rar_entries > 0 ; rar_entries--) {
3397 wr32(E1000_RAH(rar_entries), 0);
3398 wr32(E1000_RAL(rar_entries), 0);
3399 }
3400 wrfl();
3401
68d480c4
AD
3402 return count;
3403}
3404
3405/**
3406 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3407 * @netdev: network interface device structure
3408 *
3409 * The set_rx_mode entry point is called whenever the unicast or multicast
3410 * address lists or the network interface flags are updated. This routine is
3411 * responsible for configuring the hardware for proper unicast, multicast,
3412 * promiscuous mode, and all-multi behavior.
3413 **/
3414static void igb_set_rx_mode(struct net_device *netdev)
3415{
3416 struct igb_adapter *adapter = netdev_priv(netdev);
3417 struct e1000_hw *hw = &adapter->hw;
3418 unsigned int vfn = adapter->vfs_allocated_count;
3419 u32 rctl, vmolr = 0;
3420 int count;
3421
3422 /* Check for Promiscuous and All Multicast modes */
3423 rctl = rd32(E1000_RCTL);
3424
3425 /* clear the effected bits */
3426 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3427
3428 if (netdev->flags & IFF_PROMISC) {
3429 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3430 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3431 } else {
3432 if (netdev->flags & IFF_ALLMULTI) {
3433 rctl |= E1000_RCTL_MPE;
3434 vmolr |= E1000_VMOLR_MPME;
3435 } else {
3436 /*
3437 * Write addresses to the MTA, if the attempt fails
25985edc 3438 * then we should just turn on promiscuous mode so
68d480c4
AD
3439 * that we can at least receive multicast traffic
3440 */
3441 count = igb_write_mc_addr_list(netdev);
3442 if (count < 0) {
3443 rctl |= E1000_RCTL_MPE;
3444 vmolr |= E1000_VMOLR_MPME;
3445 } else if (count) {
3446 vmolr |= E1000_VMOLR_ROMPE;
3447 }
3448 }
3449 /*
3450 * Write addresses to available RAR registers, if there is not
3451 * sufficient space to store all the addresses then enable
25985edc 3452 * unicast promiscuous mode
68d480c4
AD
3453 */
3454 count = igb_write_uc_addr_list(netdev);
3455 if (count < 0) {
3456 rctl |= E1000_RCTL_UPE;
3457 vmolr |= E1000_VMOLR_ROPE;
3458 }
3459 rctl |= E1000_RCTL_VFE;
28fc06f5 3460 }
68d480c4 3461 wr32(E1000_RCTL, rctl);
28fc06f5 3462
68d480c4
AD
3463 /*
3464 * In order to support SR-IOV and eventually VMDq it is necessary to set
3465 * the VMOLR to enable the appropriate modes. Without this workaround
3466 * we will have issues with VLAN tag stripping not being done for frames
3467 * that are only arriving because we are the default pool
3468 */
3469 if (hw->mac.type < e1000_82576)
28fc06f5 3470 return;
9d5c8243 3471
68d480c4
AD
3472 vmolr |= rd32(E1000_VMOLR(vfn)) &
3473 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3474 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3475 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3476}
3477
13800469
GR
3478static void igb_check_wvbr(struct igb_adapter *adapter)
3479{
3480 struct e1000_hw *hw = &adapter->hw;
3481 u32 wvbr = 0;
3482
3483 switch (hw->mac.type) {
3484 case e1000_82576:
3485 case e1000_i350:
3486 if (!(wvbr = rd32(E1000_WVBR)))
3487 return;
3488 break;
3489 default:
3490 break;
3491 }
3492
3493 adapter->wvbr |= wvbr;
3494}
3495
3496#define IGB_STAGGERED_QUEUE_OFFSET 8
3497
3498static void igb_spoof_check(struct igb_adapter *adapter)
3499{
3500 int j;
3501
3502 if (!adapter->wvbr)
3503 return;
3504
3505 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3506 if (adapter->wvbr & (1 << j) ||
3507 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3508 dev_warn(&adapter->pdev->dev,
3509 "Spoof event(s) detected on VF %d\n", j);
3510 adapter->wvbr &=
3511 ~((1 << j) |
3512 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3513 }
3514 }
3515}
3516
9d5c8243
AK
3517/* Need to wait a few seconds after link up to get diagnostic information from
3518 * the phy */
3519static void igb_update_phy_info(unsigned long data)
3520{
3521 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3522 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3523}
3524
4d6b725e
AD
3525/**
3526 * igb_has_link - check shared code for link and determine up/down
3527 * @adapter: pointer to driver private info
3528 **/
3145535a 3529bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3530{
3531 struct e1000_hw *hw = &adapter->hw;
3532 bool link_active = false;
3533 s32 ret_val = 0;
3534
3535 /* get_link_status is set on LSC (link status) interrupt or
3536 * rx sequence error interrupt. get_link_status will stay
3537 * false until the e1000_check_for_link establishes link
3538 * for copper adapters ONLY
3539 */
3540 switch (hw->phy.media_type) {
3541 case e1000_media_type_copper:
3542 if (hw->mac.get_link_status) {
3543 ret_val = hw->mac.ops.check_for_link(hw);
3544 link_active = !hw->mac.get_link_status;
3545 } else {
3546 link_active = true;
3547 }
3548 break;
4d6b725e
AD
3549 case e1000_media_type_internal_serdes:
3550 ret_val = hw->mac.ops.check_for_link(hw);
3551 link_active = hw->mac.serdes_has_link;
3552 break;
3553 default:
3554 case e1000_media_type_unknown:
3555 break;
3556 }
3557
3558 return link_active;
3559}
3560
563988dc
SA
3561static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3562{
3563 bool ret = false;
3564 u32 ctrl_ext, thstat;
3565
3566 /* check for thermal sensor event on i350, copper only */
3567 if (hw->mac.type == e1000_i350) {
3568 thstat = rd32(E1000_THSTAT);
3569 ctrl_ext = rd32(E1000_CTRL_EXT);
3570
3571 if ((hw->phy.media_type == e1000_media_type_copper) &&
3572 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3573 ret = !!(thstat & event);
3574 }
3575 }
3576
3577 return ret;
3578}
3579
9d5c8243
AK
3580/**
3581 * igb_watchdog - Timer Call-back
3582 * @data: pointer to adapter cast into an unsigned long
3583 **/
3584static void igb_watchdog(unsigned long data)
3585{
3586 struct igb_adapter *adapter = (struct igb_adapter *)data;
3587 /* Do the rest outside of interrupt context */
3588 schedule_work(&adapter->watchdog_task);
3589}
3590
3591static void igb_watchdog_task(struct work_struct *work)
3592{
3593 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3594 struct igb_adapter,
3595 watchdog_task);
9d5c8243 3596 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3597 struct net_device *netdev = adapter->netdev;
563988dc 3598 u32 link;
7a6ea550 3599 int i;
9d5c8243 3600
4d6b725e 3601 link = igb_has_link(adapter);
9d5c8243
AK
3602 if (link) {
3603 if (!netif_carrier_ok(netdev)) {
3604 u32 ctrl;
330a6d6a
AD
3605 hw->mac.ops.get_speed_and_duplex(hw,
3606 &adapter->link_speed,
3607 &adapter->link_duplex);
9d5c8243
AK
3608
3609 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3610 /* Links status message must follow this format */
3611 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3612 "Flow Control: %s\n",
559e9c49
AD
3613 netdev->name,
3614 adapter->link_speed,
3615 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3616 "Full Duplex" : "Half Duplex",
559e9c49
AD
3617 ((ctrl & E1000_CTRL_TFCE) &&
3618 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3619 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3620 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3621
563988dc
SA
3622 /* check for thermal sensor event */
3623 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3624 printk(KERN_INFO "igb: %s The network adapter "
3625 "link speed was downshifted "
3626 "because it overheated.\n",
3627 netdev->name);
7ef5ed1c 3628 }
563988dc 3629
d07f3e37 3630 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3631 adapter->tx_timeout_factor = 1;
3632 switch (adapter->link_speed) {
3633 case SPEED_10:
9d5c8243
AK
3634 adapter->tx_timeout_factor = 14;
3635 break;
3636 case SPEED_100:
9d5c8243
AK
3637 /* maybe add some timeout factor ? */
3638 break;
3639 }
3640
3641 netif_carrier_on(netdev);
9d5c8243 3642
4ae196df 3643 igb_ping_all_vfs(adapter);
17dc566c 3644 igb_check_vf_rate_limit(adapter);
4ae196df 3645
4b1a9877 3646 /* link state has changed, schedule phy info update */
9d5c8243
AK
3647 if (!test_bit(__IGB_DOWN, &adapter->state))
3648 mod_timer(&adapter->phy_info_timer,
3649 round_jiffies(jiffies + 2 * HZ));
3650 }
3651 } else {
3652 if (netif_carrier_ok(netdev)) {
3653 adapter->link_speed = 0;
3654 adapter->link_duplex = 0;
563988dc
SA
3655
3656 /* check for thermal sensor event */
3657 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3658 printk(KERN_ERR "igb: %s The network adapter "
3659 "was stopped because it "
3660 "overheated.\n",
7ef5ed1c 3661 netdev->name);
7ef5ed1c 3662 }
563988dc 3663
527d47c1
AD
3664 /* Links status message must follow this format */
3665 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3666 netdev->name);
9d5c8243 3667 netif_carrier_off(netdev);
4b1a9877 3668
4ae196df
AD
3669 igb_ping_all_vfs(adapter);
3670
4b1a9877 3671 /* link state has changed, schedule phy info update */
9d5c8243
AK
3672 if (!test_bit(__IGB_DOWN, &adapter->state))
3673 mod_timer(&adapter->phy_info_timer,
3674 round_jiffies(jiffies + 2 * HZ));
3675 }
3676 }
3677
12dcd86b
ED
3678 spin_lock(&adapter->stats64_lock);
3679 igb_update_stats(adapter, &adapter->stats64);
3680 spin_unlock(&adapter->stats64_lock);
9d5c8243 3681
dbabb065 3682 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3683 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3684 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3685 /* We've lost link, so the controller stops DMA,
3686 * but we've got queued Tx work that's never going
3687 * to get done, so reset controller to flush Tx.
3688 * (Do the reset outside of interrupt context). */
dbabb065
AD
3689 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3690 adapter->tx_timeout_count++;
3691 schedule_work(&adapter->reset_task);
3692 /* return immediately since reset is imminent */
3693 return;
3694 }
9d5c8243 3695 }
9d5c8243 3696
dbabb065
AD
3697 /* Force detection of hung controller every watchdog period */
3698 tx_ring->detect_tx_hung = true;
3699 }
f7ba205e 3700
9d5c8243 3701 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3702 if (adapter->msix_entries) {
047e0030
AD
3703 u32 eics = 0;
3704 for (i = 0; i < adapter->num_q_vectors; i++) {
3705 struct igb_q_vector *q_vector = adapter->q_vector[i];
3706 eics |= q_vector->eims_value;
3707 }
7a6ea550
AD
3708 wr32(E1000_EICS, eics);
3709 } else {
3710 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3711 }
9d5c8243 3712
13800469
GR
3713 igb_spoof_check(adapter);
3714
9d5c8243
AK
3715 /* Reset the timer */
3716 if (!test_bit(__IGB_DOWN, &adapter->state))
3717 mod_timer(&adapter->watchdog_timer,
3718 round_jiffies(jiffies + 2 * HZ));
3719}
3720
3721enum latency_range {
3722 lowest_latency = 0,
3723 low_latency = 1,
3724 bulk_latency = 2,
3725 latency_invalid = 255
3726};
3727
6eb5a7f1
AD
3728/**
3729 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3730 *
3731 * Stores a new ITR value based on strictly on packet size. This
3732 * algorithm is less sophisticated than that used in igb_update_itr,
3733 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3734 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3735 * were determined based on theoretical maximum wire speed and testing
3736 * data, in order to minimize response time while increasing bulk
3737 * throughput.
3738 * This functionality is controlled by the InterruptThrottleRate module
3739 * parameter (see igb_param.c)
3740 * NOTE: This function is called only when operating in a multiqueue
3741 * receive environment.
047e0030 3742 * @q_vector: pointer to q_vector
6eb5a7f1 3743 **/
047e0030 3744static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3745{
047e0030 3746 int new_val = q_vector->itr_val;
6eb5a7f1 3747 int avg_wire_size = 0;
047e0030 3748 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3749 struct igb_ring *ring;
3750 unsigned int packets;
9d5c8243 3751
6eb5a7f1
AD
3752 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3753 * ints/sec - ITR timer value of 120 ticks.
3754 */
3755 if (adapter->link_speed != SPEED_1000) {
047e0030 3756 new_val = 976;
6eb5a7f1 3757 goto set_itr_val;
9d5c8243 3758 }
047e0030 3759
12dcd86b
ED
3760 ring = q_vector->rx_ring;
3761 if (ring) {
3762 packets = ACCESS_ONCE(ring->total_packets);
3763
3764 if (packets)
3765 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3766 }
3767
12dcd86b
ED
3768 ring = q_vector->tx_ring;
3769 if (ring) {
3770 packets = ACCESS_ONCE(ring->total_packets);
3771
3772 if (packets)
3773 avg_wire_size = max_t(u32, avg_wire_size,
3774 ring->total_bytes / packets);
047e0030
AD
3775 }
3776
3777 /* if avg_wire_size isn't set no work was done */
3778 if (!avg_wire_size)
3779 goto clear_counts;
9d5c8243 3780
6eb5a7f1
AD
3781 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3782 avg_wire_size += 24;
3783
3784 /* Don't starve jumbo frames */
3785 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3786
6eb5a7f1
AD
3787 /* Give a little boost to mid-size frames */
3788 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3789 new_val = avg_wire_size / 3;
3790 else
3791 new_val = avg_wire_size / 2;
9d5c8243 3792
abe1c363
NN
3793 /* when in itr mode 3 do not exceed 20K ints/sec */
3794 if (adapter->rx_itr_setting == 3 && new_val < 196)
3795 new_val = 196;
3796
6eb5a7f1 3797set_itr_val:
047e0030
AD
3798 if (new_val != q_vector->itr_val) {
3799 q_vector->itr_val = new_val;
3800 q_vector->set_itr = 1;
9d5c8243 3801 }
6eb5a7f1 3802clear_counts:
047e0030
AD
3803 if (q_vector->rx_ring) {
3804 q_vector->rx_ring->total_bytes = 0;
3805 q_vector->rx_ring->total_packets = 0;
3806 }
3807 if (q_vector->tx_ring) {
3808 q_vector->tx_ring->total_bytes = 0;
3809 q_vector->tx_ring->total_packets = 0;
3810 }
9d5c8243
AK
3811}
3812
3813/**
3814 * igb_update_itr - update the dynamic ITR value based on statistics
3815 * Stores a new ITR value based on packets and byte
3816 * counts during the last interrupt. The advantage of per interrupt
3817 * computation is faster updates and more accurate ITR for the current
3818 * traffic pattern. Constants in this function were computed
3819 * based on theoretical maximum wire speed and thresholds were set based
3820 * on testing data as well as attempting to minimize response time
3821 * while increasing bulk throughput.
3822 * this functionality is controlled by the InterruptThrottleRate module
3823 * parameter (see igb_param.c)
3824 * NOTE: These calculations are only valid when operating in a single-
3825 * queue environment.
3826 * @adapter: pointer to adapter
047e0030 3827 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3828 * @packets: the number of packets during this measurement interval
3829 * @bytes: the number of bytes during this measurement interval
3830 **/
3831static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3832 int packets, int bytes)
3833{
3834 unsigned int retval = itr_setting;
3835
3836 if (packets == 0)
3837 goto update_itr_done;
3838
3839 switch (itr_setting) {
3840 case lowest_latency:
3841 /* handle TSO and jumbo frames */
3842 if (bytes/packets > 8000)
3843 retval = bulk_latency;
3844 else if ((packets < 5) && (bytes > 512))
3845 retval = low_latency;
3846 break;
3847 case low_latency: /* 50 usec aka 20000 ints/s */
3848 if (bytes > 10000) {
3849 /* this if handles the TSO accounting */
3850 if (bytes/packets > 8000) {
3851 retval = bulk_latency;
3852 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3853 retval = bulk_latency;
3854 } else if ((packets > 35)) {
3855 retval = lowest_latency;
3856 }
3857 } else if (bytes/packets > 2000) {
3858 retval = bulk_latency;
3859 } else if (packets <= 2 && bytes < 512) {
3860 retval = lowest_latency;
3861 }
3862 break;
3863 case bulk_latency: /* 250 usec aka 4000 ints/s */
3864 if (bytes > 25000) {
3865 if (packets > 35)
3866 retval = low_latency;
1e5c3d21 3867 } else if (bytes < 1500) {
9d5c8243
AK
3868 retval = low_latency;
3869 }
3870 break;
3871 }
3872
3873update_itr_done:
3874 return retval;
3875}
3876
6eb5a7f1 3877static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3878{
047e0030 3879 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3880 u16 current_itr;
047e0030 3881 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3882
3883 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3884 if (adapter->link_speed != SPEED_1000) {
3885 current_itr = 0;
3886 new_itr = 4000;
3887 goto set_itr_now;
3888 }
3889
3890 adapter->rx_itr = igb_update_itr(adapter,
3891 adapter->rx_itr,
3025a446
AD
3892 q_vector->rx_ring->total_packets,
3893 q_vector->rx_ring->total_bytes);
9d5c8243 3894
047e0030
AD
3895 adapter->tx_itr = igb_update_itr(adapter,
3896 adapter->tx_itr,
3025a446
AD
3897 q_vector->tx_ring->total_packets,
3898 q_vector->tx_ring->total_bytes);
047e0030 3899 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3900
6eb5a7f1 3901 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3902 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3903 current_itr = low_latency;
3904
9d5c8243
AK
3905 switch (current_itr) {
3906 /* counts and packets in update_itr are dependent on these numbers */
3907 case lowest_latency:
78b1f607 3908 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3909 break;
3910 case low_latency:
78b1f607 3911 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3912 break;
3913 case bulk_latency:
78b1f607 3914 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3915 break;
3916 default:
3917 break;
3918 }
3919
3920set_itr_now:
3025a446
AD
3921 q_vector->rx_ring->total_bytes = 0;
3922 q_vector->rx_ring->total_packets = 0;
3923 q_vector->tx_ring->total_bytes = 0;
3924 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3925
047e0030 3926 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3927 /* this attempts to bias the interrupt rate towards Bulk
3928 * by adding intermediate steps when interrupt rate is
3929 * increasing */
047e0030
AD
3930 new_itr = new_itr > q_vector->itr_val ?
3931 max((new_itr * q_vector->itr_val) /
3932 (new_itr + (q_vector->itr_val >> 2)),
3933 new_itr) :
9d5c8243
AK
3934 new_itr;
3935 /* Don't write the value here; it resets the adapter's
3936 * internal timer, and causes us to delay far longer than
3937 * we should between interrupts. Instead, we write the ITR
3938 * value at the beginning of the next interrupt so the timing
3939 * ends up being correct.
3940 */
047e0030
AD
3941 q_vector->itr_val = new_itr;
3942 q_vector->set_itr = 1;
9d5c8243 3943 }
9d5c8243
AK
3944}
3945
9d5c8243
AK
3946#define IGB_TX_FLAGS_CSUM 0x00000001
3947#define IGB_TX_FLAGS_VLAN 0x00000002
3948#define IGB_TX_FLAGS_TSO 0x00000004
3949#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3950#define IGB_TX_FLAGS_TSTAMP 0x00000010
3951#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3952#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3953
cd392f5c
AD
3954static inline int igb_tso(struct igb_ring *tx_ring,
3955 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
9d5c8243
AK
3956{
3957 struct e1000_adv_tx_context_desc *context_desc;
3958 unsigned int i;
3959 int err;
3960 struct igb_buffer *buffer_info;
3961 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3962 u32 mss_l4len_idx;
3963 u8 l4len;
9d5c8243
AK
3964
3965 if (skb_header_cloned(skb)) {
3966 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3967 if (err)
3968 return err;
3969 }
3970
3971 l4len = tcp_hdrlen(skb);
3972 *hdr_len += l4len;
3973
3974 if (skb->protocol == htons(ETH_P_IP)) {
3975 struct iphdr *iph = ip_hdr(skb);
3976 iph->tot_len = 0;
3977 iph->check = 0;
3978 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3979 iph->daddr, 0,
3980 IPPROTO_TCP,
3981 0);
8e1e8a47 3982 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3983 ipv6_hdr(skb)->payload_len = 0;
3984 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3985 &ipv6_hdr(skb)->daddr,
3986 0, IPPROTO_TCP, 0);
3987 }
3988
3989 i = tx_ring->next_to_use;
3990
3991 buffer_info = &tx_ring->buffer_info[i];
60136906 3992 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
9d5c8243
AK
3993 /* VLAN MACLEN IPLEN */
3994 if (tx_flags & IGB_TX_FLAGS_VLAN)
3995 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3996 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3997 *hdr_len += skb_network_offset(skb);
3998 info |= skb_network_header_len(skb);
3999 *hdr_len += skb_network_header_len(skb);
4000 context_desc->vlan_macip_lens = cpu_to_le32(info);
4001
4002 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4003 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4004
4005 if (skb->protocol == htons(ETH_P_IP))
4006 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4007 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4008
4009 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4010
4011 /* MSS L4LEN IDX */
4012 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4013 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4014
73cd78f1 4015 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
4016 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4017 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
4018
4019 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4020 context_desc->seqnum_seed = 0;
4021
4022 buffer_info->time_stamp = jiffies;
0e014cb1 4023 buffer_info->next_to_watch = i;
9d5c8243
AK
4024 buffer_info->dma = 0;
4025 i++;
4026 if (i == tx_ring->count)
4027 i = 0;
4028
4029 tx_ring->next_to_use = i;
4030
4031 return true;
4032}
4033
cd392f5c
AD
4034static inline bool igb_tx_csum(struct igb_ring *tx_ring,
4035 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
4036{
4037 struct e1000_adv_tx_context_desc *context_desc;
59d71989 4038 struct device *dev = tx_ring->dev;
9d5c8243
AK
4039 struct igb_buffer *buffer_info;
4040 u32 info = 0, tu_cmd = 0;
80785298 4041 unsigned int i;
9d5c8243
AK
4042
4043 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4044 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4045 i = tx_ring->next_to_use;
4046 buffer_info = &tx_ring->buffer_info[i];
60136906 4047 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
9d5c8243
AK
4048
4049 if (tx_flags & IGB_TX_FLAGS_VLAN)
4050 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 4051
9d5c8243
AK
4052 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4053 if (skb->ip_summed == CHECKSUM_PARTIAL)
4054 info |= skb_network_header_len(skb);
4055
4056 context_desc->vlan_macip_lens = cpu_to_le32(info);
4057
4058 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4059
4060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
4061 __be16 protocol;
4062
4063 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4064 const struct vlan_ethhdr *vhdr =
4065 (const struct vlan_ethhdr*)skb->data;
4066
4067 protocol = vhdr->h_vlan_encapsulated_proto;
4068 } else {
4069 protocol = skb->protocol;
4070 }
4071
4072 switch (protocol) {
09640e63 4073 case cpu_to_be16(ETH_P_IP):
9d5c8243 4074 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
4075 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4076 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4077 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4078 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 4079 break;
09640e63 4080 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
4081 /* XXX what about other V6 headers?? */
4082 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4083 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4084 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4085 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
4086 break;
4087 default:
4088 if (unlikely(net_ratelimit()))
59d71989 4089 dev_warn(dev,
44b0cda3
MW
4090 "partial checksum but proto=%x!\n",
4091 skb->protocol);
4092 break;
4093 }
9d5c8243
AK
4094 }
4095
4096 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4097 context_desc->seqnum_seed = 0;
85ad76b2 4098 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 4099 context_desc->mss_l4len_idx =
85ad76b2 4100 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
4101
4102 buffer_info->time_stamp = jiffies;
0e014cb1 4103 buffer_info->next_to_watch = i;
9d5c8243
AK
4104 buffer_info->dma = 0;
4105
4106 i++;
4107 if (i == tx_ring->count)
4108 i = 0;
4109 tx_ring->next_to_use = i;
4110
4111 return true;
4112 }
9d5c8243
AK
4113 return false;
4114}
4115
4116#define IGB_MAX_TXD_PWR 16
4117#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4118
cd392f5c
AD
4119static inline int igb_tx_map(struct igb_ring *tx_ring, struct sk_buff *skb,
4120 unsigned int first)
9d5c8243
AK
4121{
4122 struct igb_buffer *buffer_info;
59d71989 4123 struct device *dev = tx_ring->dev;
2873957d 4124 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4125 unsigned int count = 0, i;
4126 unsigned int f;
2873957d 4127 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4128
4129 i = tx_ring->next_to_use;
4130
4131 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
4132 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4133 buffer_info->length = hlen;
9d5c8243
AK
4134 /* set time_stamp *before* dma to help avoid a possible race */
4135 buffer_info->time_stamp = jiffies;
0e014cb1 4136 buffer_info->next_to_watch = i;
2873957d 4137 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4138 DMA_TO_DEVICE);
4139 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4140 goto dma_error;
9d5c8243
AK
4141
4142 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4143 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4144 unsigned int len = frag->size;
9d5c8243 4145
8581145f 4146 count++;
65689fef
AD
4147 i++;
4148 if (i == tx_ring->count)
4149 i = 0;
4150
9d5c8243
AK
4151 buffer_info = &tx_ring->buffer_info[i];
4152 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4153 buffer_info->length = len;
4154 buffer_info->time_stamp = jiffies;
0e014cb1 4155 buffer_info->next_to_watch = i;
6366ad33 4156 buffer_info->mapped_as_page = true;
877749bf 4157 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
59d71989
AD
4158 DMA_TO_DEVICE);
4159 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4160 goto dma_error;
4161
9d5c8243
AK
4162 }
4163
9d5c8243 4164 tx_ring->buffer_info[i].skb = skb;
2244d07b 4165 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4166 /* multiply data chunks by size of headers */
4167 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4168 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4169 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4170
cdfd01fc 4171 return ++count;
6366ad33
AD
4172
4173dma_error:
59d71989 4174 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4175
4176 /* clear timestamp and dma mappings for failed buffer_info mapping */
4177 buffer_info->dma = 0;
4178 buffer_info->time_stamp = 0;
4179 buffer_info->length = 0;
4180 buffer_info->next_to_watch = 0;
4181 buffer_info->mapped_as_page = false;
6366ad33
AD
4182
4183 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4184 while (count--) {
4185 if (i == 0)
4186 i = tx_ring->count;
6366ad33 4187 i--;
6366ad33
AD
4188 buffer_info = &tx_ring->buffer_info[i];
4189 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4190 }
4191
4192 return 0;
9d5c8243
AK
4193}
4194
cd392f5c
AD
4195static inline void igb_tx_queue(struct igb_ring *tx_ring,
4196 u32 tx_flags, int count, u32 paylen,
4197 u8 hdr_len)
9d5c8243 4198{
cdfd01fc 4199 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4200 struct igb_buffer *buffer_info;
4201 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4202 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4203
4204 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4205 E1000_ADVTXD_DCMD_DEXT);
4206
4207 if (tx_flags & IGB_TX_FLAGS_VLAN)
4208 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4209
33af6bcc
PO
4210 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4211 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4212
9d5c8243
AK
4213 if (tx_flags & IGB_TX_FLAGS_TSO) {
4214 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4215
4216 /* insert tcp checksum */
4217 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4218
4219 /* insert ip checksum */
4220 if (tx_flags & IGB_TX_FLAGS_IPV4)
4221 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4222
4223 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4224 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4225 }
4226
85ad76b2
AD
4227 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4228 (tx_flags & (IGB_TX_FLAGS_CSUM |
4229 IGB_TX_FLAGS_TSO |
7dfc16fa 4230 IGB_TX_FLAGS_VLAN)))
85ad76b2 4231 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4232
4233 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4234
cdfd01fc 4235 do {
9d5c8243 4236 buffer_info = &tx_ring->buffer_info[i];
60136906 4237 tx_desc = IGB_TX_DESC(tx_ring, i);
9d5c8243
AK
4238 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4239 tx_desc->read.cmd_type_len =
4240 cpu_to_le32(cmd_type_len | buffer_info->length);
4241 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4242 count--;
9d5c8243
AK
4243 i++;
4244 if (i == tx_ring->count)
4245 i = 0;
cdfd01fc 4246 } while (count > 0);
9d5c8243 4247
85ad76b2 4248 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4249 /* Force memory writes to complete before letting h/w
4250 * know there are new descriptors to fetch. (Only
4251 * applicable for weak-ordered memory model archs,
4252 * such as IA-64). */
4253 wmb();
4254
4255 tx_ring->next_to_use = i;
fce99e34 4256 writel(i, tx_ring->tail);
9d5c8243
AK
4257 /* we need this if more than one processor can write to our tail
4258 * at a time, it syncronizes IO on IA64/Altix systems */
4259 mmiowb();
4260}
4261
e694e964 4262static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4263{
e694e964
AD
4264 struct net_device *netdev = tx_ring->netdev;
4265
661086df 4266 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4267
9d5c8243
AK
4268 /* Herbert's original patch had:
4269 * smp_mb__after_netif_stop_queue();
4270 * but since that doesn't exist yet, just open code it. */
4271 smp_mb();
4272
4273 /* We need to check again in a case another CPU has just
4274 * made room available. */
c493ea45 4275 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4276 return -EBUSY;
4277
4278 /* A reprieve! */
661086df 4279 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4280
4281 u64_stats_update_begin(&tx_ring->tx_syncp2);
4282 tx_ring->tx_stats.restart_queue2++;
4283 u64_stats_update_end(&tx_ring->tx_syncp2);
4284
9d5c8243
AK
4285 return 0;
4286}
4287
717ba089 4288static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4289{
c493ea45 4290 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4291 return 0;
e694e964 4292 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4293}
4294
cd392f5c
AD
4295netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4296 struct igb_ring *tx_ring)
9d5c8243 4297{
cdfd01fc 4298 int tso = 0, count;
91d4ee33
NN
4299 u32 tx_flags = 0;
4300 u16 first;
4301 u8 hdr_len = 0;
9d5c8243 4302
9d5c8243
AK
4303 /* need: 1 descriptor per page,
4304 * + 2 desc gap to keep tail from touching head,
4305 * + 1 desc for skb->data,
4306 * + 1 desc for context descriptor,
4307 * otherwise try next time */
e694e964 4308 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4309 /* this is a hard error */
9d5c8243
AK
4310 return NETDEV_TX_BUSY;
4311 }
33af6bcc 4312
2244d07b
OH
4313 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4314 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4315 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4316 }
9d5c8243 4317
eab6d18d 4318 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4319 tx_flags |= IGB_TX_FLAGS_VLAN;
4320 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4321 }
4322
661086df
PWJ
4323 if (skb->protocol == htons(ETH_P_IP))
4324 tx_flags |= IGB_TX_FLAGS_IPV4;
4325
0e014cb1 4326 first = tx_ring->next_to_use;
85ad76b2 4327 if (skb_is_gso(skb)) {
cd392f5c 4328 tso = igb_tso(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4329
85ad76b2
AD
4330 if (tso < 0) {
4331 dev_kfree_skb_any(skb);
4332 return NETDEV_TX_OK;
4333 }
9d5c8243
AK
4334 }
4335
4336 if (tso)
4337 tx_flags |= IGB_TX_FLAGS_TSO;
cd392f5c 4338 else if (igb_tx_csum(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4339 (skb->ip_summed == CHECKSUM_PARTIAL))
4340 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4341
65689fef 4342 /*
cdfd01fc 4343 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4344 * has occurred and we need to rewind the descriptor queue
65689fef 4345 */
cd392f5c 4346 count = igb_tx_map(tx_ring, skb, first);
6366ad33 4347 if (!count) {
65689fef
AD
4348 dev_kfree_skb_any(skb);
4349 tx_ring->buffer_info[first].time_stamp = 0;
4350 tx_ring->next_to_use = first;
85ad76b2 4351 return NETDEV_TX_OK;
65689fef 4352 }
9d5c8243 4353
cd392f5c 4354 igb_tx_queue(tx_ring, tx_flags, count, skb->len, hdr_len);
85ad76b2
AD
4355
4356 /* Make sure there is space in the ring for the next send. */
e694e964 4357 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4358
9d5c8243
AK
4359 return NETDEV_TX_OK;
4360}
4361
1cc3bd87
AD
4362static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4363 struct sk_buff *skb)
4364{
4365 unsigned int r_idx = skb->queue_mapping;
4366
4367 if (r_idx >= adapter->num_tx_queues)
4368 r_idx = r_idx % adapter->num_tx_queues;
4369
4370 return adapter->tx_ring[r_idx];
4371}
4372
cd392f5c
AD
4373static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4374 struct net_device *netdev)
9d5c8243
AK
4375{
4376 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4377
4378 if (test_bit(__IGB_DOWN, &adapter->state)) {
4379 dev_kfree_skb_any(skb);
4380 return NETDEV_TX_OK;
4381 }
4382
4383 if (skb->len <= 0) {
4384 dev_kfree_skb_any(skb);
4385 return NETDEV_TX_OK;
4386 }
4387
1cc3bd87
AD
4388 /*
4389 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4390 * in order to meet this minimum size requirement.
4391 */
4392 if (skb->len < 17) {
4393 if (skb_padto(skb, 17))
4394 return NETDEV_TX_OK;
4395 skb->len = 17;
4396 }
9d5c8243 4397
1cc3bd87 4398 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4399}
4400
4401/**
4402 * igb_tx_timeout - Respond to a Tx Hang
4403 * @netdev: network interface device structure
4404 **/
4405static void igb_tx_timeout(struct net_device *netdev)
4406{
4407 struct igb_adapter *adapter = netdev_priv(netdev);
4408 struct e1000_hw *hw = &adapter->hw;
4409
4410 /* Do the reset outside of interrupt context */
4411 adapter->tx_timeout_count++;
f7ba205e 4412
55cac248
AD
4413 if (hw->mac.type == e1000_82580)
4414 hw->dev_spec._82575.global_device_reset = true;
4415
9d5c8243 4416 schedule_work(&adapter->reset_task);
265de409
AD
4417 wr32(E1000_EICS,
4418 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4419}
4420
4421static void igb_reset_task(struct work_struct *work)
4422{
4423 struct igb_adapter *adapter;
4424 adapter = container_of(work, struct igb_adapter, reset_task);
4425
c97ec42a
TI
4426 igb_dump(adapter);
4427 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4428 igb_reinit_locked(adapter);
4429}
4430
4431/**
12dcd86b 4432 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4433 * @netdev: network interface device structure
12dcd86b 4434 * @stats: rtnl_link_stats64 pointer
9d5c8243 4435 *
9d5c8243 4436 **/
12dcd86b
ED
4437static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4438 struct rtnl_link_stats64 *stats)
9d5c8243 4439{
12dcd86b
ED
4440 struct igb_adapter *adapter = netdev_priv(netdev);
4441
4442 spin_lock(&adapter->stats64_lock);
4443 igb_update_stats(adapter, &adapter->stats64);
4444 memcpy(stats, &adapter->stats64, sizeof(*stats));
4445 spin_unlock(&adapter->stats64_lock);
4446
4447 return stats;
9d5c8243
AK
4448}
4449
4450/**
4451 * igb_change_mtu - Change the Maximum Transfer Unit
4452 * @netdev: network interface device structure
4453 * @new_mtu: new value for maximum frame size
4454 *
4455 * Returns 0 on success, negative on failure
4456 **/
4457static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4458{
4459 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4460 struct pci_dev *pdev = adapter->pdev;
153285f9 4461 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4462
c809d227 4463 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4464 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4465 return -EINVAL;
4466 }
4467
153285f9 4468#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4469 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4470 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4471 return -EINVAL;
4472 }
4473
4474 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4475 msleep(1);
73cd78f1 4476
9d5c8243
AK
4477 /* igb_down has a dependency on max_frame_size */
4478 adapter->max_frame_size = max_frame;
559e9c49 4479
4c844851
AD
4480 if (netif_running(netdev))
4481 igb_down(adapter);
9d5c8243 4482
090b1795 4483 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4484 netdev->mtu, new_mtu);
4485 netdev->mtu = new_mtu;
4486
4487 if (netif_running(netdev))
4488 igb_up(adapter);
4489 else
4490 igb_reset(adapter);
4491
4492 clear_bit(__IGB_RESETTING, &adapter->state);
4493
4494 return 0;
4495}
4496
4497/**
4498 * igb_update_stats - Update the board statistics counters
4499 * @adapter: board private structure
4500 **/
4501
12dcd86b
ED
4502void igb_update_stats(struct igb_adapter *adapter,
4503 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4504{
4505 struct e1000_hw *hw = &adapter->hw;
4506 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4507 u32 reg, mpc;
9d5c8243 4508 u16 phy_tmp;
3f9c0164
AD
4509 int i;
4510 u64 bytes, packets;
12dcd86b
ED
4511 unsigned int start;
4512 u64 _bytes, _packets;
9d5c8243
AK
4513
4514#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4515
4516 /*
4517 * Prevent stats update while adapter is being reset, or if the pci
4518 * connection is down.
4519 */
4520 if (adapter->link_speed == 0)
4521 return;
4522 if (pci_channel_offline(pdev))
4523 return;
4524
3f9c0164
AD
4525 bytes = 0;
4526 packets = 0;
4527 for (i = 0; i < adapter->num_rx_queues; i++) {
4528 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4529 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4530
3025a446 4531 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4532 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4533
4534 do {
4535 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4536 _bytes = ring->rx_stats.bytes;
4537 _packets = ring->rx_stats.packets;
4538 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4539 bytes += _bytes;
4540 packets += _packets;
3f9c0164
AD
4541 }
4542
128e45eb
AD
4543 net_stats->rx_bytes = bytes;
4544 net_stats->rx_packets = packets;
3f9c0164
AD
4545
4546 bytes = 0;
4547 packets = 0;
4548 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4549 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4550 do {
4551 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4552 _bytes = ring->tx_stats.bytes;
4553 _packets = ring->tx_stats.packets;
4554 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4555 bytes += _bytes;
4556 packets += _packets;
3f9c0164 4557 }
128e45eb
AD
4558 net_stats->tx_bytes = bytes;
4559 net_stats->tx_packets = packets;
3f9c0164
AD
4560
4561 /* read stats registers */
9d5c8243
AK
4562 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4563 adapter->stats.gprc += rd32(E1000_GPRC);
4564 adapter->stats.gorc += rd32(E1000_GORCL);
4565 rd32(E1000_GORCH); /* clear GORCL */
4566 adapter->stats.bprc += rd32(E1000_BPRC);
4567 adapter->stats.mprc += rd32(E1000_MPRC);
4568 adapter->stats.roc += rd32(E1000_ROC);
4569
4570 adapter->stats.prc64 += rd32(E1000_PRC64);
4571 adapter->stats.prc127 += rd32(E1000_PRC127);
4572 adapter->stats.prc255 += rd32(E1000_PRC255);
4573 adapter->stats.prc511 += rd32(E1000_PRC511);
4574 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4575 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4576 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4577 adapter->stats.sec += rd32(E1000_SEC);
4578
fa3d9a6d
MW
4579 mpc = rd32(E1000_MPC);
4580 adapter->stats.mpc += mpc;
4581 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4582 adapter->stats.scc += rd32(E1000_SCC);
4583 adapter->stats.ecol += rd32(E1000_ECOL);
4584 adapter->stats.mcc += rd32(E1000_MCC);
4585 adapter->stats.latecol += rd32(E1000_LATECOL);
4586 adapter->stats.dc += rd32(E1000_DC);
4587 adapter->stats.rlec += rd32(E1000_RLEC);
4588 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4589 adapter->stats.xontxc += rd32(E1000_XONTXC);
4590 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4591 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4592 adapter->stats.fcruc += rd32(E1000_FCRUC);
4593 adapter->stats.gptc += rd32(E1000_GPTC);
4594 adapter->stats.gotc += rd32(E1000_GOTCL);
4595 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4596 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4597 adapter->stats.ruc += rd32(E1000_RUC);
4598 adapter->stats.rfc += rd32(E1000_RFC);
4599 adapter->stats.rjc += rd32(E1000_RJC);
4600 adapter->stats.tor += rd32(E1000_TORH);
4601 adapter->stats.tot += rd32(E1000_TOTH);
4602 adapter->stats.tpr += rd32(E1000_TPR);
4603
4604 adapter->stats.ptc64 += rd32(E1000_PTC64);
4605 adapter->stats.ptc127 += rd32(E1000_PTC127);
4606 adapter->stats.ptc255 += rd32(E1000_PTC255);
4607 adapter->stats.ptc511 += rd32(E1000_PTC511);
4608 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4609 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4610
4611 adapter->stats.mptc += rd32(E1000_MPTC);
4612 adapter->stats.bptc += rd32(E1000_BPTC);
4613
2d0b0f69
NN
4614 adapter->stats.tpt += rd32(E1000_TPT);
4615 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4616
4617 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4618 /* read internal phy specific stats */
4619 reg = rd32(E1000_CTRL_EXT);
4620 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4621 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4622 adapter->stats.tncrs += rd32(E1000_TNCRS);
4623 }
4624
9d5c8243
AK
4625 adapter->stats.tsctc += rd32(E1000_TSCTC);
4626 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4627
4628 adapter->stats.iac += rd32(E1000_IAC);
4629 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4630 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4631 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4632 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4633 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4634 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4635 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4636 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4637
4638 /* Fill out the OS statistics structure */
128e45eb
AD
4639 net_stats->multicast = adapter->stats.mprc;
4640 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4641
4642 /* Rx Errors */
4643
4644 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4645 * our own version based on RUC and ROC */
128e45eb 4646 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4647 adapter->stats.crcerrs + adapter->stats.algnerrc +
4648 adapter->stats.ruc + adapter->stats.roc +
4649 adapter->stats.cexterr;
128e45eb
AD
4650 net_stats->rx_length_errors = adapter->stats.ruc +
4651 adapter->stats.roc;
4652 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4653 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4654 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4655
4656 /* Tx Errors */
128e45eb
AD
4657 net_stats->tx_errors = adapter->stats.ecol +
4658 adapter->stats.latecol;
4659 net_stats->tx_aborted_errors = adapter->stats.ecol;
4660 net_stats->tx_window_errors = adapter->stats.latecol;
4661 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4662
4663 /* Tx Dropped needs to be maintained elsewhere */
4664
4665 /* Phy Stats */
4666 if (hw->phy.media_type == e1000_media_type_copper) {
4667 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4668 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4669 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4670 adapter->phy_stats.idle_errors += phy_tmp;
4671 }
4672 }
4673
4674 /* Management Stats */
4675 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4676 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4677 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4678
4679 /* OS2BMC Stats */
4680 reg = rd32(E1000_MANC);
4681 if (reg & E1000_MANC_EN_BMC2OS) {
4682 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4683 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4684 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4685 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4686 }
9d5c8243
AK
4687}
4688
9d5c8243
AK
4689static irqreturn_t igb_msix_other(int irq, void *data)
4690{
047e0030 4691 struct igb_adapter *adapter = data;
9d5c8243 4692 struct e1000_hw *hw = &adapter->hw;
844290e5 4693 u32 icr = rd32(E1000_ICR);
844290e5 4694 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4695
7f081d40
AD
4696 if (icr & E1000_ICR_DRSTA)
4697 schedule_work(&adapter->reset_task);
4698
047e0030 4699 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4700 /* HW is reporting DMA is out of sync */
4701 adapter->stats.doosync++;
13800469
GR
4702 /* The DMA Out of Sync is also indication of a spoof event
4703 * in IOV mode. Check the Wrong VM Behavior register to
4704 * see if it is really a spoof event. */
4705 igb_check_wvbr(adapter);
dda0e083 4706 }
eebbbdba 4707
4ae196df
AD
4708 /* Check for a mailbox event */
4709 if (icr & E1000_ICR_VMMB)
4710 igb_msg_task(adapter);
4711
4712 if (icr & E1000_ICR_LSC) {
4713 hw->mac.get_link_status = 1;
4714 /* guard against interrupt when we're going down */
4715 if (!test_bit(__IGB_DOWN, &adapter->state))
4716 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4717 }
4718
25568a53
AD
4719 if (adapter->vfs_allocated_count)
4720 wr32(E1000_IMS, E1000_IMS_LSC |
4721 E1000_IMS_VMMB |
4722 E1000_IMS_DOUTSYNC);
4723 else
4724 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4725 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4726
4727 return IRQ_HANDLED;
4728}
4729
047e0030 4730static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4731{
26b39276 4732 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4733 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4734
047e0030
AD
4735 if (!q_vector->set_itr)
4736 return;
73cd78f1 4737
047e0030
AD
4738 if (!itr_val)
4739 itr_val = 0x4;
661086df 4740
26b39276
AD
4741 if (adapter->hw.mac.type == e1000_82575)
4742 itr_val |= itr_val << 16;
661086df 4743 else
047e0030 4744 itr_val |= 0x8000000;
661086df 4745
047e0030
AD
4746 writel(itr_val, q_vector->itr_register);
4747 q_vector->set_itr = 0;
6eb5a7f1
AD
4748}
4749
047e0030 4750static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4751{
047e0030 4752 struct igb_q_vector *q_vector = data;
9d5c8243 4753
047e0030
AD
4754 /* Write the ITR value calculated from the previous interrupt. */
4755 igb_write_itr(q_vector);
9d5c8243 4756
047e0030 4757 napi_schedule(&q_vector->napi);
844290e5 4758
047e0030 4759 return IRQ_HANDLED;
fe4506b6
JC
4760}
4761
421e02f0 4762#ifdef CONFIG_IGB_DCA
047e0030 4763static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4764{
047e0030 4765 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4766 struct e1000_hw *hw = &adapter->hw;
4767 int cpu = get_cpu();
fe4506b6 4768
047e0030
AD
4769 if (q_vector->cpu == cpu)
4770 goto out_no_update;
4771
4772 if (q_vector->tx_ring) {
4773 int q = q_vector->tx_ring->reg_idx;
4774 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4775 if (hw->mac.type == e1000_82575) {
4776 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4777 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4778 } else {
047e0030
AD
4779 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4780 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4781 E1000_DCA_TXCTRL_CPUID_SHIFT;
4782 }
4783 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4784 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4785 }
4786 if (q_vector->rx_ring) {
4787 int q = q_vector->rx_ring->reg_idx;
4788 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4789 if (hw->mac.type == e1000_82575) {
2d064c06 4790 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4791 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4792 } else {
4793 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4794 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4795 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4796 }
fe4506b6
JC
4797 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4798 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4799 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4800 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4801 }
047e0030
AD
4802 q_vector->cpu = cpu;
4803out_no_update:
fe4506b6
JC
4804 put_cpu();
4805}
4806
4807static void igb_setup_dca(struct igb_adapter *adapter)
4808{
7e0e99ef 4809 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4810 int i;
4811
7dfc16fa 4812 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4813 return;
4814
7e0e99ef
AD
4815 /* Always use CB2 mode, difference is masked in the CB driver. */
4816 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4817
047e0030 4818 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4819 adapter->q_vector[i]->cpu = -1;
4820 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4821 }
4822}
4823
4824static int __igb_notify_dca(struct device *dev, void *data)
4825{
4826 struct net_device *netdev = dev_get_drvdata(dev);
4827 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4828 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4829 struct e1000_hw *hw = &adapter->hw;
4830 unsigned long event = *(unsigned long *)data;
4831
4832 switch (event) {
4833 case DCA_PROVIDER_ADD:
4834 /* if already enabled, don't do it again */
7dfc16fa 4835 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4836 break;
fe4506b6 4837 if (dca_add_requester(dev) == 0) {
bbd98fe4 4838 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4839 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4840 igb_setup_dca(adapter);
4841 break;
4842 }
4843 /* Fall Through since DCA is disabled. */
4844 case DCA_PROVIDER_REMOVE:
7dfc16fa 4845 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4846 /* without this a class_device is left
047e0030 4847 * hanging around in the sysfs model */
fe4506b6 4848 dca_remove_requester(dev);
090b1795 4849 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4850 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4851 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4852 }
4853 break;
4854 }
bbd98fe4 4855
fe4506b6 4856 return 0;
9d5c8243
AK
4857}
4858
fe4506b6
JC
4859static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4860 void *p)
4861{
4862 int ret_val;
4863
4864 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4865 __igb_notify_dca);
4866
4867 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4868}
421e02f0 4869#endif /* CONFIG_IGB_DCA */
9d5c8243 4870
4ae196df
AD
4871static void igb_ping_all_vfs(struct igb_adapter *adapter)
4872{
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 ping;
4875 int i;
4876
4877 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4878 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4879 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4880 ping |= E1000_VT_MSGTYPE_CTS;
4881 igb_write_mbx(hw, &ping, 1, i);
4882 }
4883}
4884
7d5753f0
AD
4885static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4886{
4887 struct e1000_hw *hw = &adapter->hw;
4888 u32 vmolr = rd32(E1000_VMOLR(vf));
4889 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4890
d85b9004 4891 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4892 IGB_VF_FLAG_MULTI_PROMISC);
4893 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4894
4895 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4896 vmolr |= E1000_VMOLR_MPME;
d85b9004 4897 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4898 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4899 } else {
4900 /*
4901 * if we have hashes and we are clearing a multicast promisc
4902 * flag we need to write the hashes to the MTA as this step
4903 * was previously skipped
4904 */
4905 if (vf_data->num_vf_mc_hashes > 30) {
4906 vmolr |= E1000_VMOLR_MPME;
4907 } else if (vf_data->num_vf_mc_hashes) {
4908 int j;
4909 vmolr |= E1000_VMOLR_ROMPE;
4910 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4911 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4912 }
4913 }
4914
4915 wr32(E1000_VMOLR(vf), vmolr);
4916
4917 /* there are flags left unprocessed, likely not supported */
4918 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4919 return -EINVAL;
4920
4921 return 0;
4922
4923}
4924
4ae196df
AD
4925static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4926 u32 *msgbuf, u32 vf)
4927{
4928 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4929 u16 *hash_list = (u16 *)&msgbuf[1];
4930 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4931 int i;
4932
7d5753f0 4933 /* salt away the number of multicast addresses assigned
4ae196df
AD
4934 * to this VF for later use to restore when the PF multi cast
4935 * list changes
4936 */
4937 vf_data->num_vf_mc_hashes = n;
4938
7d5753f0
AD
4939 /* only up to 30 hash values supported */
4940 if (n > 30)
4941 n = 30;
4942
4943 /* store the hashes for later use */
4ae196df 4944 for (i = 0; i < n; i++)
a419aef8 4945 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4946
4947 /* Flush and reset the mta with the new values */
ff41f8dc 4948 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4949
4950 return 0;
4951}
4952
4953static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4954{
4955 struct e1000_hw *hw = &adapter->hw;
4956 struct vf_data_storage *vf_data;
4957 int i, j;
4958
4959 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4960 u32 vmolr = rd32(E1000_VMOLR(i));
4961 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4962
4ae196df 4963 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4964
4965 if ((vf_data->num_vf_mc_hashes > 30) ||
4966 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4967 vmolr |= E1000_VMOLR_MPME;
4968 } else if (vf_data->num_vf_mc_hashes) {
4969 vmolr |= E1000_VMOLR_ROMPE;
4970 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4971 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4972 }
4973 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4974 }
4975}
4976
4977static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4978{
4979 struct e1000_hw *hw = &adapter->hw;
4980 u32 pool_mask, reg, vid;
4981 int i;
4982
4983 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4984
4985 /* Find the vlan filter for this id */
4986 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4987 reg = rd32(E1000_VLVF(i));
4988
4989 /* remove the vf from the pool */
4990 reg &= ~pool_mask;
4991
4992 /* if pool is empty then remove entry from vfta */
4993 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4994 (reg & E1000_VLVF_VLANID_ENABLE)) {
4995 reg = 0;
4996 vid = reg & E1000_VLVF_VLANID_MASK;
4997 igb_vfta_set(hw, vid, false);
4998 }
4999
5000 wr32(E1000_VLVF(i), reg);
5001 }
ae641bdc
AD
5002
5003 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5004}
5005
5006static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5007{
5008 struct e1000_hw *hw = &adapter->hw;
5009 u32 reg, i;
5010
51466239
AD
5011 /* The vlvf table only exists on 82576 hardware and newer */
5012 if (hw->mac.type < e1000_82576)
5013 return -1;
5014
5015 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5016 if (!adapter->vfs_allocated_count)
5017 return -1;
5018
5019 /* Find the vlan filter for this id */
5020 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5021 reg = rd32(E1000_VLVF(i));
5022 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5023 vid == (reg & E1000_VLVF_VLANID_MASK))
5024 break;
5025 }
5026
5027 if (add) {
5028 if (i == E1000_VLVF_ARRAY_SIZE) {
5029 /* Did not find a matching VLAN ID entry that was
5030 * enabled. Search for a free filter entry, i.e.
5031 * one without the enable bit set
5032 */
5033 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5034 reg = rd32(E1000_VLVF(i));
5035 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5036 break;
5037 }
5038 }
5039 if (i < E1000_VLVF_ARRAY_SIZE) {
5040 /* Found an enabled/available entry */
5041 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5042
5043 /* if !enabled we need to set this up in vfta */
5044 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5045 /* add VID to filter table */
5046 igb_vfta_set(hw, vid, true);
4ae196df
AD
5047 reg |= E1000_VLVF_VLANID_ENABLE;
5048 }
cad6d05f
AD
5049 reg &= ~E1000_VLVF_VLANID_MASK;
5050 reg |= vid;
4ae196df 5051 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5052
5053 /* do not modify RLPML for PF devices */
5054 if (vf >= adapter->vfs_allocated_count)
5055 return 0;
5056
5057 if (!adapter->vf_data[vf].vlans_enabled) {
5058 u32 size;
5059 reg = rd32(E1000_VMOLR(vf));
5060 size = reg & E1000_VMOLR_RLPML_MASK;
5061 size += 4;
5062 reg &= ~E1000_VMOLR_RLPML_MASK;
5063 reg |= size;
5064 wr32(E1000_VMOLR(vf), reg);
5065 }
ae641bdc 5066
51466239 5067 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5068 return 0;
5069 }
5070 } else {
5071 if (i < E1000_VLVF_ARRAY_SIZE) {
5072 /* remove vf from the pool */
5073 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5074 /* if pool is empty then remove entry from vfta */
5075 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5076 reg = 0;
5077 igb_vfta_set(hw, vid, false);
5078 }
5079 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5080
5081 /* do not modify RLPML for PF devices */
5082 if (vf >= adapter->vfs_allocated_count)
5083 return 0;
5084
5085 adapter->vf_data[vf].vlans_enabled--;
5086 if (!adapter->vf_data[vf].vlans_enabled) {
5087 u32 size;
5088 reg = rd32(E1000_VMOLR(vf));
5089 size = reg & E1000_VMOLR_RLPML_MASK;
5090 size -= 4;
5091 reg &= ~E1000_VMOLR_RLPML_MASK;
5092 reg |= size;
5093 wr32(E1000_VMOLR(vf), reg);
5094 }
4ae196df
AD
5095 }
5096 }
8151d294
WM
5097 return 0;
5098}
5099
5100static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5101{
5102 struct e1000_hw *hw = &adapter->hw;
5103
5104 if (vid)
5105 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5106 else
5107 wr32(E1000_VMVIR(vf), 0);
5108}
5109
5110static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5111 int vf, u16 vlan, u8 qos)
5112{
5113 int err = 0;
5114 struct igb_adapter *adapter = netdev_priv(netdev);
5115
5116 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5117 return -EINVAL;
5118 if (vlan || qos) {
5119 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5120 if (err)
5121 goto out;
5122 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5123 igb_set_vmolr(adapter, vf, !vlan);
5124 adapter->vf_data[vf].pf_vlan = vlan;
5125 adapter->vf_data[vf].pf_qos = qos;
5126 dev_info(&adapter->pdev->dev,
5127 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5128 if (test_bit(__IGB_DOWN, &adapter->state)) {
5129 dev_warn(&adapter->pdev->dev,
5130 "The VF VLAN has been set,"
5131 " but the PF device is not up.\n");
5132 dev_warn(&adapter->pdev->dev,
5133 "Bring the PF device up before"
5134 " attempting to use the VF device.\n");
5135 }
5136 } else {
5137 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5138 false, vf);
5139 igb_set_vmvir(adapter, vlan, vf);
5140 igb_set_vmolr(adapter, vf, true);
5141 adapter->vf_data[vf].pf_vlan = 0;
5142 adapter->vf_data[vf].pf_qos = 0;
5143 }
5144out:
5145 return err;
4ae196df
AD
5146}
5147
5148static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5149{
5150 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5151 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5152
5153 return igb_vlvf_set(adapter, vid, add, vf);
5154}
5155
f2ca0dbe 5156static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5157{
8fa7e0f7
GR
5158 /* clear flags - except flag that indicates PF has set the MAC */
5159 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5160 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5161
5162 /* reset offloads to defaults */
8151d294 5163 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5164
5165 /* reset vlans for device */
5166 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5167 if (adapter->vf_data[vf].pf_vlan)
5168 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5169 adapter->vf_data[vf].pf_vlan,
5170 adapter->vf_data[vf].pf_qos);
5171 else
5172 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5173
5174 /* reset multicast table array for vf */
5175 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5176
5177 /* Flush and reset the mta with the new values */
ff41f8dc 5178 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5179}
5180
f2ca0dbe
AD
5181static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5182{
5183 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5184
5185 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5186 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5187 random_ether_addr(vf_mac);
f2ca0dbe
AD
5188
5189 /* process remaining reset events */
5190 igb_vf_reset(adapter, vf);
5191}
5192
5193static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5194{
5195 struct e1000_hw *hw = &adapter->hw;
5196 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5197 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5198 u32 reg, msgbuf[3];
5199 u8 *addr = (u8 *)(&msgbuf[1]);
5200
5201 /* process all the same items cleared in a function level reset */
f2ca0dbe 5202 igb_vf_reset(adapter, vf);
4ae196df
AD
5203
5204 /* set vf mac address */
26ad9178 5205 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5206
5207 /* enable transmit and receive for vf */
5208 reg = rd32(E1000_VFTE);
5209 wr32(E1000_VFTE, reg | (1 << vf));
5210 reg = rd32(E1000_VFRE);
5211 wr32(E1000_VFRE, reg | (1 << vf));
5212
8fa7e0f7 5213 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5214
5215 /* reply to reset with ack and vf mac address */
5216 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5217 memcpy(addr, vf_mac, 6);
5218 igb_write_mbx(hw, msgbuf, 3, vf);
5219}
5220
5221static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5222{
de42edde
GR
5223 /*
5224 * The VF MAC Address is stored in a packed array of bytes
5225 * starting at the second 32 bit word of the msg array
5226 */
f2ca0dbe
AD
5227 unsigned char *addr = (char *)&msg[1];
5228 int err = -1;
4ae196df 5229
f2ca0dbe
AD
5230 if (is_valid_ether_addr(addr))
5231 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5232
f2ca0dbe 5233 return err;
4ae196df
AD
5234}
5235
5236static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5237{
5238 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5239 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5240 u32 msg = E1000_VT_MSGTYPE_NACK;
5241
5242 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5243 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5244 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5245 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5246 vf_data->last_nack = jiffies;
4ae196df
AD
5247 }
5248}
5249
f2ca0dbe 5250static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5251{
f2ca0dbe
AD
5252 struct pci_dev *pdev = adapter->pdev;
5253 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5254 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5255 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5256 s32 retval;
5257
f2ca0dbe 5258 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5259
fef45f4c
AD
5260 if (retval) {
5261 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5262 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5263 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5264 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5265 return;
5266 goto out;
5267 }
4ae196df
AD
5268
5269 /* this is a message we already processed, do nothing */
5270 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5271 return;
4ae196df
AD
5272
5273 /*
5274 * until the vf completes a reset it should not be
5275 * allowed to start any configuration.
5276 */
5277
5278 if (msgbuf[0] == E1000_VF_RESET) {
5279 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5280 return;
4ae196df
AD
5281 }
5282
f2ca0dbe 5283 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5284 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5285 return;
5286 retval = -1;
5287 goto out;
4ae196df
AD
5288 }
5289
5290 switch ((msgbuf[0] & 0xFFFF)) {
5291 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5292 retval = -EINVAL;
5293 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5294 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5295 else
5296 dev_warn(&pdev->dev,
5297 "VF %d attempted to override administratively "
5298 "set MAC address\nReload the VF driver to "
5299 "resume operations\n", vf);
4ae196df 5300 break;
7d5753f0
AD
5301 case E1000_VF_SET_PROMISC:
5302 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5303 break;
4ae196df
AD
5304 case E1000_VF_SET_MULTICAST:
5305 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5306 break;
5307 case E1000_VF_SET_LPE:
5308 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5309 break;
5310 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5311 retval = -1;
5312 if (vf_data->pf_vlan)
5313 dev_warn(&pdev->dev,
5314 "VF %d attempted to override administratively "
5315 "set VLAN tag\nReload the VF driver to "
5316 "resume operations\n", vf);
8151d294
WM
5317 else
5318 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5319 break;
5320 default:
090b1795 5321 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5322 retval = -1;
5323 break;
5324 }
5325
fef45f4c
AD
5326 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5327out:
4ae196df
AD
5328 /* notify the VF of the results of what it sent us */
5329 if (retval)
5330 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5331 else
5332 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5333
4ae196df 5334 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5335}
4ae196df 5336
f2ca0dbe
AD
5337static void igb_msg_task(struct igb_adapter *adapter)
5338{
5339 struct e1000_hw *hw = &adapter->hw;
5340 u32 vf;
5341
5342 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5343 /* process any reset requests */
5344 if (!igb_check_for_rst(hw, vf))
5345 igb_vf_reset_event(adapter, vf);
5346
5347 /* process any messages pending */
5348 if (!igb_check_for_msg(hw, vf))
5349 igb_rcv_msg_from_vf(adapter, vf);
5350
5351 /* process any acks */
5352 if (!igb_check_for_ack(hw, vf))
5353 igb_rcv_ack_from_vf(adapter, vf);
5354 }
4ae196df
AD
5355}
5356
68d480c4
AD
5357/**
5358 * igb_set_uta - Set unicast filter table address
5359 * @adapter: board private structure
5360 *
5361 * The unicast table address is a register array of 32-bit registers.
5362 * The table is meant to be used in a way similar to how the MTA is used
5363 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5364 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5365 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5366 **/
5367static void igb_set_uta(struct igb_adapter *adapter)
5368{
5369 struct e1000_hw *hw = &adapter->hw;
5370 int i;
5371
5372 /* The UTA table only exists on 82576 hardware and newer */
5373 if (hw->mac.type < e1000_82576)
5374 return;
5375
5376 /* we only need to do this if VMDq is enabled */
5377 if (!adapter->vfs_allocated_count)
5378 return;
5379
5380 for (i = 0; i < hw->mac.uta_reg_count; i++)
5381 array_wr32(E1000_UTA, i, ~0);
5382}
5383
9d5c8243
AK
5384/**
5385 * igb_intr_msi - Interrupt Handler
5386 * @irq: interrupt number
5387 * @data: pointer to a network interface device structure
5388 **/
5389static irqreturn_t igb_intr_msi(int irq, void *data)
5390{
047e0030
AD
5391 struct igb_adapter *adapter = data;
5392 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5393 struct e1000_hw *hw = &adapter->hw;
5394 /* read ICR disables interrupts using IAM */
5395 u32 icr = rd32(E1000_ICR);
5396
047e0030 5397 igb_write_itr(q_vector);
9d5c8243 5398
7f081d40
AD
5399 if (icr & E1000_ICR_DRSTA)
5400 schedule_work(&adapter->reset_task);
5401
047e0030 5402 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5403 /* HW is reporting DMA is out of sync */
5404 adapter->stats.doosync++;
5405 }
5406
9d5c8243
AK
5407 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5408 hw->mac.get_link_status = 1;
5409 if (!test_bit(__IGB_DOWN, &adapter->state))
5410 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5411 }
5412
047e0030 5413 napi_schedule(&q_vector->napi);
9d5c8243
AK
5414
5415 return IRQ_HANDLED;
5416}
5417
5418/**
4a3c6433 5419 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5420 * @irq: interrupt number
5421 * @data: pointer to a network interface device structure
5422 **/
5423static irqreturn_t igb_intr(int irq, void *data)
5424{
047e0030
AD
5425 struct igb_adapter *adapter = data;
5426 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5427 struct e1000_hw *hw = &adapter->hw;
5428 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5429 * need for the IMC write */
5430 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5431 if (!icr)
5432 return IRQ_NONE; /* Not our interrupt */
5433
047e0030 5434 igb_write_itr(q_vector);
9d5c8243
AK
5435
5436 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5437 * not set, then the adapter didn't send an interrupt */
5438 if (!(icr & E1000_ICR_INT_ASSERTED))
5439 return IRQ_NONE;
5440
7f081d40
AD
5441 if (icr & E1000_ICR_DRSTA)
5442 schedule_work(&adapter->reset_task);
5443
047e0030 5444 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5445 /* HW is reporting DMA is out of sync */
5446 adapter->stats.doosync++;
5447 }
5448
9d5c8243
AK
5449 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5450 hw->mac.get_link_status = 1;
5451 /* guard against interrupt when we're going down */
5452 if (!test_bit(__IGB_DOWN, &adapter->state))
5453 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5454 }
5455
047e0030 5456 napi_schedule(&q_vector->napi);
9d5c8243
AK
5457
5458 return IRQ_HANDLED;
5459}
5460
047e0030 5461static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5462{
047e0030 5463 struct igb_adapter *adapter = q_vector->adapter;
46544258 5464 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5465
4fc82adf
AD
5466 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5467 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5468 if (!adapter->msix_entries)
6eb5a7f1 5469 igb_set_itr(adapter);
46544258 5470 else
047e0030 5471 igb_update_ring_itr(q_vector);
9d5c8243
AK
5472 }
5473
46544258
AD
5474 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5475 if (adapter->msix_entries)
047e0030 5476 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5477 else
5478 igb_irq_enable(adapter);
5479 }
9d5c8243
AK
5480}
5481
46544258
AD
5482/**
5483 * igb_poll - NAPI Rx polling callback
5484 * @napi: napi polling structure
5485 * @budget: count of how many packets we should handle
5486 **/
5487static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5488{
047e0030
AD
5489 struct igb_q_vector *q_vector = container_of(napi,
5490 struct igb_q_vector,
5491 napi);
16eb8815 5492 bool clean_complete = true;
9d5c8243 5493
421e02f0 5494#ifdef CONFIG_IGB_DCA
047e0030
AD
5495 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5496 igb_update_dca(q_vector);
fe4506b6 5497#endif
047e0030 5498 if (q_vector->tx_ring)
16eb8815 5499 clean_complete = !!igb_clean_tx_irq(q_vector);
9d5c8243 5500
047e0030 5501 if (q_vector->rx_ring)
cd392f5c 5502 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5503
16eb8815
AD
5504 /* If all work not completed, return budget and keep polling */
5505 if (!clean_complete)
5506 return budget;
46544258 5507
9d5c8243 5508 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5509 napi_complete(napi);
5510 igb_ring_irq_enable(q_vector);
9d5c8243 5511
16eb8815 5512 return 0;
9d5c8243 5513}
6d8126f9 5514
33af6bcc 5515/**
c5b9bd5e 5516 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5517 * @adapter: board private structure
c5b9bd5e
AD
5518 * @shhwtstamps: timestamp structure to update
5519 * @regval: unsigned 64bit system time value.
5520 *
5521 * We need to convert the system time value stored in the RX/TXSTMP registers
5522 * into a hwtstamp which can be used by the upper level timestamping functions
5523 */
5524static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5525 struct skb_shared_hwtstamps *shhwtstamps,
5526 u64 regval)
5527{
5528 u64 ns;
5529
55cac248
AD
5530 /*
5531 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5532 * 24 to match clock shift we setup earlier.
5533 */
5534 if (adapter->hw.mac.type == e1000_82580)
5535 regval <<= IGB_82580_TSYNC_SHIFT;
5536
c5b9bd5e
AD
5537 ns = timecounter_cyc2time(&adapter->clock, regval);
5538 timecompare_update(&adapter->compare, ns);
5539 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5540 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5541 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5542}
5543
5544/**
5545 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5546 * @q_vector: pointer to q_vector containing needed info
2873957d 5547 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5548 *
5549 * If we were asked to do hardware stamping and such a time stamp is
5550 * available, then it must have been for this skb here because we only
5551 * allow only one such packet into the queue.
5552 */
2873957d 5553static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5554{
c5b9bd5e 5555 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5556 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5557 struct skb_shared_hwtstamps shhwtstamps;
5558 u64 regval;
33af6bcc 5559
c5b9bd5e 5560 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5561 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5562 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5563 return;
5564
5565 regval = rd32(E1000_TXSTMPL);
5566 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5567
5568 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5569 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5570}
5571
9d5c8243
AK
5572/**
5573 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5574 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5575 * returns true if ring is completely cleaned
5576 **/
047e0030 5577static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5578{
047e0030
AD
5579 struct igb_adapter *adapter = q_vector->adapter;
5580 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5581 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5582 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5583 struct igb_buffer *buffer_info;
0e014cb1 5584 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5585 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5586 unsigned int i, eop, count = 0;
5587 bool cleaned = false;
9d5c8243 5588
9d5c8243 5589 i = tx_ring->next_to_clean;
0e014cb1 5590 eop = tx_ring->buffer_info[i].next_to_watch;
60136906 5591 eop_desc = IGB_TX_DESC(tx_ring, eop);
0e014cb1
AD
5592
5593 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5594 (count < tx_ring->count)) {
2d0bb1c1 5595 rmb(); /* read buffer_info after eop_desc status */
0e014cb1 5596 for (cleaned = false; !cleaned; count++) {
60136906 5597 tx_desc = IGB_TX_DESC(tx_ring, i);
9d5c8243 5598 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5599 cleaned = (i == eop);
9d5c8243 5600
2873957d
NN
5601 if (buffer_info->skb) {
5602 total_bytes += buffer_info->bytecount;
9d5c8243 5603 /* gso_segs is currently only valid for tcp */
2873957d
NN
5604 total_packets += buffer_info->gso_segs;
5605 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5606 }
5607
80785298 5608 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5609 tx_desc->wb.status = 0;
9d5c8243
AK
5610
5611 i++;
5612 if (i == tx_ring->count)
5613 i = 0;
9d5c8243 5614 }
0e014cb1 5615 eop = tx_ring->buffer_info[i].next_to_watch;
60136906 5616 eop_desc = IGB_TX_DESC(tx_ring, eop);
0e014cb1
AD
5617 }
5618
9d5c8243
AK
5619 tx_ring->next_to_clean = i;
5620
fc7d345d 5621 if (unlikely(count &&
9d5c8243 5622 netif_carrier_ok(netdev) &&
c493ea45 5623 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5624 /* Make sure that anybody stopping the queue after this
5625 * sees the new next_to_clean.
5626 */
5627 smp_mb();
661086df
PWJ
5628 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5629 !(test_bit(__IGB_DOWN, &adapter->state))) {
5630 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5631
5632 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5633 tx_ring->tx_stats.restart_queue++;
12dcd86b 5634 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5635 }
9d5c8243
AK
5636 }
5637
5638 if (tx_ring->detect_tx_hung) {
5639 /* Detect a transmit hang in hardware, this serializes the
5640 * check with the clearing of time_stamp and movement of i */
5641 tx_ring->detect_tx_hung = false;
5642 if (tx_ring->buffer_info[i].time_stamp &&
5643 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5644 (adapter->tx_timeout_factor * HZ)) &&
5645 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5646
9d5c8243 5647 /* detected Tx unit hang */
59d71989 5648 dev_err(tx_ring->dev,
9d5c8243 5649 "Detected Tx Unit Hang\n"
2d064c06 5650 " Tx Queue <%d>\n"
9d5c8243
AK
5651 " TDH <%x>\n"
5652 " TDT <%x>\n"
5653 " next_to_use <%x>\n"
5654 " next_to_clean <%x>\n"
9d5c8243
AK
5655 "buffer_info[next_to_clean]\n"
5656 " time_stamp <%lx>\n"
0e014cb1 5657 " next_to_watch <%x>\n"
9d5c8243
AK
5658 " jiffies <%lx>\n"
5659 " desc.status <%x>\n",
2d064c06 5660 tx_ring->queue_index,
238ac817 5661 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5662 readl(tx_ring->tail),
9d5c8243
AK
5663 tx_ring->next_to_use,
5664 tx_ring->next_to_clean,
f7ba205e 5665 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5666 eop,
9d5c8243 5667 jiffies,
0e014cb1 5668 eop_desc->wb.status);
661086df 5669 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5670 }
5671 }
5672 tx_ring->total_bytes += total_bytes;
5673 tx_ring->total_packets += total_packets;
12dcd86b 5674 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5675 tx_ring->tx_stats.bytes += total_bytes;
5676 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5677 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5678 return count < tx_ring->count;
9d5c8243
AK
5679}
5680
cd392f5c
AD
5681static inline void igb_rx_checksum(struct igb_ring *ring,
5682 u32 status_err, struct sk_buff *skb)
9d5c8243 5683{
bc8acf2c 5684 skb_checksum_none_assert(skb);
9d5c8243
AK
5685
5686 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5687 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5688 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5689 return;
85ad76b2 5690
9d5c8243
AK
5691 /* TCP/UDP checksum error bit is set */
5692 if (status_err &
5693 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5694 /*
5695 * work around errata with sctp packets where the TCPE aka
5696 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5697 * packets, (aka let the stack check the crc32c)
5698 */
85ad76b2 5699 if ((skb->len == 60) &&
12dcd86b
ED
5700 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5701 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5702 ring->rx_stats.csum_err++;
12dcd86b
ED
5703 u64_stats_update_end(&ring->rx_syncp);
5704 }
9d5c8243 5705 /* let the stack verify checksum errors */
9d5c8243
AK
5706 return;
5707 }
5708 /* It must be a TCP or UDP packet with a valid checksum */
5709 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5710 skb->ip_summed = CHECKSUM_UNNECESSARY;
5711
59d71989 5712 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5713}
5714
757b77e2 5715static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5716 struct sk_buff *skb)
5717{
5718 struct igb_adapter *adapter = q_vector->adapter;
5719 struct e1000_hw *hw = &adapter->hw;
5720 u64 regval;
5721
5722 /*
5723 * If this bit is set, then the RX registers contain the time stamp. No
5724 * other packet will be time stamped until we read these registers, so
5725 * read the registers to make them available again. Because only one
5726 * packet can be time stamped at a time, we know that the register
5727 * values must belong to this one here and therefore we don't need to
5728 * compare any of the additional attributes stored for it.
5729 *
2244d07b 5730 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5731 * can turn into a skb_shared_hwtstamps.
5732 */
757b77e2
NN
5733 if (staterr & E1000_RXDADV_STAT_TSIP) {
5734 u32 *stamp = (u32 *)skb->data;
5735 regval = le32_to_cpu(*(stamp + 2));
5736 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5737 skb_pull(skb, IGB_TS_HDR_LEN);
5738 } else {
5739 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5740 return;
c5b9bd5e 5741
757b77e2
NN
5742 regval = rd32(E1000_RXSTMPL);
5743 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5744 }
c5b9bd5e
AD
5745
5746 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5747}
44390ca6 5748static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5749{
5750 /* HW will not DMA in data larger than the given buffer, even if it
5751 * parses the (NFS, of course) header to be larger. In that case, it
5752 * fills the header buffer and spills the rest into the page.
5753 */
5754 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5755 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5756 if (hlen > IGB_RX_HDR_LEN)
5757 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5758 return hlen;
5759}
5760
cd392f5c 5761static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5762{
047e0030 5763 struct igb_ring *rx_ring = q_vector->rx_ring;
16eb8815
AD
5764 union e1000_adv_rx_desc *rx_desc;
5765 const int current_node = numa_node_id();
9d5c8243 5766 unsigned int total_bytes = 0, total_packets = 0;
2d94d8ab 5767 u32 staterr;
16eb8815
AD
5768 u16 cleaned_count = igb_desc_unused(rx_ring);
5769 u16 i = rx_ring->next_to_clean;
9d5c8243 5770
60136906 5771 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243
AK
5772 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5773
5774 while (staterr & E1000_RXD_STAT_DD) {
16eb8815
AD
5775 struct igb_buffer *buffer_info = &rx_ring->buffer_info[i];
5776 struct sk_buff *skb = buffer_info->skb;
5777 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5778
69d3ca53 5779 buffer_info->skb = NULL;
16eb8815 5780 prefetch(skb->data);
69d3ca53
AD
5781
5782 i++;
5783 if (i == rx_ring->count)
5784 i = 0;
42d0781a 5785
60136906 5786 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5787 prefetch(next_rxd);
9d5c8243 5788
16eb8815
AD
5789 /*
5790 * This memory barrier is needed to keep us from reading
5791 * any other fields out of the rx_desc until we know the
5792 * RXD_STAT_DD bit is set
5793 */
5794 rmb();
9d5c8243 5795
16eb8815
AD
5796 if (!skb_is_nonlinear(skb)) {
5797 __skb_put(skb, igb_get_hlen(rx_desc));
5798 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5799 IGB_RX_HDR_LEN,
59d71989 5800 DMA_FROM_DEVICE);
91615f76 5801 buffer_info->dma = 0;
bf36c1a0
AD
5802 }
5803
16eb8815
AD
5804 if (rx_desc->wb.upper.length) {
5805 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5806
aa913403 5807 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5808 buffer_info->page,
5809 buffer_info->page_offset,
5810 length);
5811
16eb8815
AD
5812 skb->len += length;
5813 skb->data_len += length;
5814 skb->truesize += length;
5815
d1eff350
AD
5816 if ((page_count(buffer_info->page) != 1) ||
5817 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5818 buffer_info->page = NULL;
5819 else
5820 get_page(buffer_info->page);
9d5c8243 5821
16eb8815
AD
5822 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5823 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5824 buffer_info->page_dma = 0;
9d5c8243 5825 }
9d5c8243 5826
bf36c1a0 5827 if (!(staterr & E1000_RXD_STAT_EOP)) {
16eb8815
AD
5828 struct igb_buffer *next_buffer;
5829 next_buffer = &rx_ring->buffer_info[i];
b2d56536
AD
5830 buffer_info->skb = next_buffer->skb;
5831 buffer_info->dma = next_buffer->dma;
5832 next_buffer->skb = skb;
5833 next_buffer->dma = 0;
bf36c1a0
AD
5834 goto next_desc;
5835 }
44390ca6 5836
9d5c8243 5837 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
16eb8815 5838 dev_kfree_skb_any(skb);
9d5c8243
AK
5839 goto next_desc;
5840 }
9d5c8243 5841
757b77e2
NN
5842 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5843 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5844 total_bytes += skb->len;
5845 total_packets++;
5846
cd392f5c 5847 igb_rx_checksum(rx_ring, staterr, skb);
9d5c8243 5848
16eb8815 5849 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
047e0030 5850
b2cb09b1
JP
5851 if (staterr & E1000_RXD_STAT_VP) {
5852 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5853
b2cb09b1
JP
5854 __vlan_hwaccel_put_tag(skb, vid);
5855 }
5856 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5857
16eb8815 5858 budget--;
9d5c8243 5859next_desc:
16eb8815
AD
5860 if (!budget)
5861 break;
5862
5863 cleaned_count++;
9d5c8243
AK
5864 /* return some buffers to hardware, one at a time is too slow */
5865 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5866 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5867 cleaned_count = 0;
5868 }
5869
5870 /* use prefetched values */
5871 rx_desc = next_rxd;
9d5c8243
AK
5872 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5873 }
bf36c1a0 5874
9d5c8243 5875 rx_ring->next_to_clean = i;
12dcd86b 5876 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5877 rx_ring->rx_stats.packets += total_packets;
5878 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5879 u64_stats_update_end(&rx_ring->rx_syncp);
c023cd88
AD
5880 rx_ring->total_packets += total_packets;
5881 rx_ring->total_bytes += total_bytes;
5882
5883 if (cleaned_count)
cd392f5c 5884 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 5885
16eb8815 5886 return !!budget;
9d5c8243
AK
5887}
5888
c023cd88
AD
5889static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
5890 struct igb_buffer *bi)
5891{
5892 struct sk_buff *skb = bi->skb;
5893 dma_addr_t dma = bi->dma;
5894
5895 if (dma)
5896 return true;
5897
5898 if (likely(!skb)) {
5899 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5900 IGB_RX_HDR_LEN);
5901 bi->skb = skb;
5902 if (!skb) {
5903 rx_ring->rx_stats.alloc_failed++;
5904 return false;
5905 }
5906
5907 /* initialize skb for ring */
5908 skb_record_rx_queue(skb, rx_ring->queue_index);
5909 }
5910
5911 dma = dma_map_single(rx_ring->dev, skb->data,
5912 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
5913
5914 if (dma_mapping_error(rx_ring->dev, dma)) {
5915 rx_ring->rx_stats.alloc_failed++;
5916 return false;
5917 }
5918
5919 bi->dma = dma;
5920 return true;
5921}
5922
5923static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
5924 struct igb_buffer *bi)
5925{
5926 struct page *page = bi->page;
5927 dma_addr_t page_dma = bi->page_dma;
5928 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
5929
5930 if (page_dma)
5931 return true;
5932
5933 if (!page) {
5934 page = netdev_alloc_page(rx_ring->netdev);
5935 bi->page = page;
5936 if (unlikely(!page)) {
5937 rx_ring->rx_stats.alloc_failed++;
5938 return false;
5939 }
5940 }
5941
5942 page_dma = dma_map_page(rx_ring->dev, page,
5943 page_offset, PAGE_SIZE / 2,
5944 DMA_FROM_DEVICE);
5945
5946 if (dma_mapping_error(rx_ring->dev, page_dma)) {
5947 rx_ring->rx_stats.alloc_failed++;
5948 return false;
5949 }
5950
5951 bi->page_dma = page_dma;
5952 bi->page_offset = page_offset;
5953 return true;
5954}
5955
9d5c8243 5956/**
cd392f5c 5957 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
5958 * @adapter: address of board private structure
5959 **/
cd392f5c 5960void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 5961{
9d5c8243 5962 union e1000_adv_rx_desc *rx_desc;
c023cd88
AD
5963 struct igb_buffer *bi;
5964 u16 i = rx_ring->next_to_use;
9d5c8243 5965
60136906 5966 rx_desc = IGB_RX_DESC(rx_ring, i);
c023cd88
AD
5967 bi = &rx_ring->buffer_info[i];
5968 i -= rx_ring->count;
9d5c8243
AK
5969
5970 while (cleaned_count--) {
c023cd88
AD
5971 if (!igb_alloc_mapped_skb(rx_ring, bi))
5972 break;
9d5c8243 5973
c023cd88
AD
5974 /* Refresh the desc even if buffer_addrs didn't change
5975 * because each write-back erases this info. */
5976 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 5977
c023cd88
AD
5978 if (!igb_alloc_mapped_page(rx_ring, bi))
5979 break;
5980
5981 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 5982
c023cd88
AD
5983 rx_desc++;
5984 bi++;
9d5c8243 5985 i++;
c023cd88 5986 if (unlikely(!i)) {
60136906 5987 rx_desc = IGB_RX_DESC(rx_ring, 0);
c023cd88
AD
5988 bi = rx_ring->buffer_info;
5989 i -= rx_ring->count;
5990 }
5991
5992 /* clear the hdr_addr for the next_to_use descriptor */
5993 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
5994 }
5995
c023cd88
AD
5996 i += rx_ring->count;
5997
9d5c8243
AK
5998 if (rx_ring->next_to_use != i) {
5999 rx_ring->next_to_use = i;
9d5c8243
AK
6000
6001 /* Force memory writes to complete before letting h/w
6002 * know there are new descriptors to fetch. (Only
6003 * applicable for weak-ordered memory model archs,
6004 * such as IA-64). */
6005 wmb();
fce99e34 6006 writel(i, rx_ring->tail);
9d5c8243
AK
6007 }
6008}
6009
6010/**
6011 * igb_mii_ioctl -
6012 * @netdev:
6013 * @ifreq:
6014 * @cmd:
6015 **/
6016static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6017{
6018 struct igb_adapter *adapter = netdev_priv(netdev);
6019 struct mii_ioctl_data *data = if_mii(ifr);
6020
6021 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6022 return -EOPNOTSUPP;
6023
6024 switch (cmd) {
6025 case SIOCGMIIPHY:
6026 data->phy_id = adapter->hw.phy.addr;
6027 break;
6028 case SIOCGMIIREG:
f5f4cf08
AD
6029 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6030 &data->val_out))
9d5c8243
AK
6031 return -EIO;
6032 break;
6033 case SIOCSMIIREG:
6034 default:
6035 return -EOPNOTSUPP;
6036 }
6037 return 0;
6038}
6039
c6cb090b
PO
6040/**
6041 * igb_hwtstamp_ioctl - control hardware time stamping
6042 * @netdev:
6043 * @ifreq:
6044 * @cmd:
6045 *
33af6bcc
PO
6046 * Outgoing time stamping can be enabled and disabled. Play nice and
6047 * disable it when requested, although it shouldn't case any overhead
6048 * when no packet needs it. At most one packet in the queue may be
6049 * marked for time stamping, otherwise it would be impossible to tell
6050 * for sure to which packet the hardware time stamp belongs.
6051 *
6052 * Incoming time stamping has to be configured via the hardware
6053 * filters. Not all combinations are supported, in particular event
6054 * type has to be specified. Matching the kind of event packet is
6055 * not supported, with the exception of "all V2 events regardless of
6056 * level 2 or 4".
6057 *
c6cb090b
PO
6058 **/
6059static int igb_hwtstamp_ioctl(struct net_device *netdev,
6060 struct ifreq *ifr, int cmd)
6061{
33af6bcc
PO
6062 struct igb_adapter *adapter = netdev_priv(netdev);
6063 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6064 struct hwtstamp_config config;
c5b9bd5e
AD
6065 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6066 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6067 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6068 bool is_l4 = false;
6069 bool is_l2 = false;
33af6bcc 6070 u32 regval;
c6cb090b
PO
6071
6072 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6073 return -EFAULT;
6074
6075 /* reserved for future extensions */
6076 if (config.flags)
6077 return -EINVAL;
6078
33af6bcc
PO
6079 switch (config.tx_type) {
6080 case HWTSTAMP_TX_OFF:
c5b9bd5e 6081 tsync_tx_ctl = 0;
33af6bcc 6082 case HWTSTAMP_TX_ON:
33af6bcc
PO
6083 break;
6084 default:
6085 return -ERANGE;
6086 }
6087
6088 switch (config.rx_filter) {
6089 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6090 tsync_rx_ctl = 0;
33af6bcc
PO
6091 break;
6092 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6093 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6094 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6095 case HWTSTAMP_FILTER_ALL:
6096 /*
6097 * register TSYNCRXCFG must be set, therefore it is not
6098 * possible to time stamp both Sync and Delay_Req messages
6099 * => fall back to time stamping all packets
6100 */
c5b9bd5e 6101 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6102 config.rx_filter = HWTSTAMP_FILTER_ALL;
6103 break;
6104 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6105 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6106 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6107 is_l4 = true;
33af6bcc
PO
6108 break;
6109 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6110 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6111 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6112 is_l4 = true;
33af6bcc
PO
6113 break;
6114 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6115 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6116 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6117 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6118 is_l2 = true;
6119 is_l4 = true;
33af6bcc
PO
6120 config.rx_filter = HWTSTAMP_FILTER_SOME;
6121 break;
6122 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6123 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6124 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6125 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6126 is_l2 = true;
6127 is_l4 = true;
33af6bcc
PO
6128 config.rx_filter = HWTSTAMP_FILTER_SOME;
6129 break;
6130 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6131 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6132 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6133 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6134 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6135 is_l2 = true;
33af6bcc
PO
6136 break;
6137 default:
6138 return -ERANGE;
6139 }
6140
c5b9bd5e
AD
6141 if (hw->mac.type == e1000_82575) {
6142 if (tsync_rx_ctl | tsync_tx_ctl)
6143 return -EINVAL;
6144 return 0;
6145 }
6146
757b77e2
NN
6147 /*
6148 * Per-packet timestamping only works if all packets are
6149 * timestamped, so enable timestamping in all packets as
6150 * long as one rx filter was configured.
6151 */
6152 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6153 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6154 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6155 }
6156
33af6bcc
PO
6157 /* enable/disable TX */
6158 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6159 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6160 regval |= tsync_tx_ctl;
33af6bcc
PO
6161 wr32(E1000_TSYNCTXCTL, regval);
6162
c5b9bd5e 6163 /* enable/disable RX */
33af6bcc 6164 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6165 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6166 regval |= tsync_rx_ctl;
33af6bcc 6167 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6168
c5b9bd5e
AD
6169 /* define which PTP packets are time stamped */
6170 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6171
c5b9bd5e
AD
6172 /* define ethertype filter for timestamped packets */
6173 if (is_l2)
6174 wr32(E1000_ETQF(3),
6175 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6176 E1000_ETQF_1588 | /* enable timestamping */
6177 ETH_P_1588)); /* 1588 eth protocol type */
6178 else
6179 wr32(E1000_ETQF(3), 0);
6180
6181#define PTP_PORT 319
6182 /* L4 Queue Filter[3]: filter by destination port and protocol */
6183 if (is_l4) {
6184 u32 ftqf = (IPPROTO_UDP /* UDP */
6185 | E1000_FTQF_VF_BP /* VF not compared */
6186 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6187 | E1000_FTQF_MASK); /* mask all inputs */
6188 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6189
6190 wr32(E1000_IMIR(3), htons(PTP_PORT));
6191 wr32(E1000_IMIREXT(3),
6192 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6193 if (hw->mac.type == e1000_82576) {
6194 /* enable source port check */
6195 wr32(E1000_SPQF(3), htons(PTP_PORT));
6196 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6197 }
6198 wr32(E1000_FTQF(3), ftqf);
6199 } else {
6200 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6201 }
33af6bcc
PO
6202 wrfl();
6203
6204 adapter->hwtstamp_config = config;
6205
6206 /* clear TX/RX time stamp registers, just to be sure */
6207 regval = rd32(E1000_TXSTMPH);
6208 regval = rd32(E1000_RXSTMPH);
c6cb090b 6209
33af6bcc
PO
6210 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6211 -EFAULT : 0;
c6cb090b
PO
6212}
6213
9d5c8243
AK
6214/**
6215 * igb_ioctl -
6216 * @netdev:
6217 * @ifreq:
6218 * @cmd:
6219 **/
6220static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6221{
6222 switch (cmd) {
6223 case SIOCGMIIPHY:
6224 case SIOCGMIIREG:
6225 case SIOCSMIIREG:
6226 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6227 case SIOCSHWTSTAMP:
6228 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6229 default:
6230 return -EOPNOTSUPP;
6231 }
6232}
6233
009bc06e
AD
6234s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6235{
6236 struct igb_adapter *adapter = hw->back;
6237 u16 cap_offset;
6238
bdaae04c 6239 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6240 if (!cap_offset)
6241 return -E1000_ERR_CONFIG;
6242
6243 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6244
6245 return 0;
6246}
6247
6248s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6249{
6250 struct igb_adapter *adapter = hw->back;
6251 u16 cap_offset;
6252
bdaae04c 6253 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6254 if (!cap_offset)
6255 return -E1000_ERR_CONFIG;
6256
6257 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6258
6259 return 0;
6260}
6261
b2cb09b1 6262static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6263{
6264 struct igb_adapter *adapter = netdev_priv(netdev);
6265 struct e1000_hw *hw = &adapter->hw;
6266 u32 ctrl, rctl;
6267
6268 igb_irq_disable(adapter);
9d5c8243 6269
b2cb09b1 6270 if (features & NETIF_F_HW_VLAN_RX) {
9d5c8243
AK
6271 /* enable VLAN tag insert/strip */
6272 ctrl = rd32(E1000_CTRL);
6273 ctrl |= E1000_CTRL_VME;
6274 wr32(E1000_CTRL, ctrl);
6275
51466239 6276 /* Disable CFI check */
9d5c8243 6277 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6278 rctl &= ~E1000_RCTL_CFIEN;
6279 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6280 } else {
6281 /* disable VLAN tag insert/strip */
6282 ctrl = rd32(E1000_CTRL);
6283 ctrl &= ~E1000_CTRL_VME;
6284 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6285 }
6286
e1739522
AD
6287 igb_rlpml_set(adapter);
6288
9d5c8243
AK
6289 if (!test_bit(__IGB_DOWN, &adapter->state))
6290 igb_irq_enable(adapter);
6291}
6292
6293static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6294{
6295 struct igb_adapter *adapter = netdev_priv(netdev);
6296 struct e1000_hw *hw = &adapter->hw;
4ae196df 6297 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6298
51466239
AD
6299 /* attempt to add filter to vlvf array */
6300 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6301
51466239
AD
6302 /* add the filter since PF can receive vlans w/o entry in vlvf */
6303 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6304
6305 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6306}
6307
6308static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6309{
6310 struct igb_adapter *adapter = netdev_priv(netdev);
6311 struct e1000_hw *hw = &adapter->hw;
4ae196df 6312 int pf_id = adapter->vfs_allocated_count;
51466239 6313 s32 err;
9d5c8243
AK
6314
6315 igb_irq_disable(adapter);
9d5c8243
AK
6316
6317 if (!test_bit(__IGB_DOWN, &adapter->state))
6318 igb_irq_enable(adapter);
6319
51466239
AD
6320 /* remove vlan from VLVF table array */
6321 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6322
51466239
AD
6323 /* if vid was not present in VLVF just remove it from table */
6324 if (err)
4ae196df 6325 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6326
6327 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6328}
6329
6330static void igb_restore_vlan(struct igb_adapter *adapter)
6331{
b2cb09b1 6332 u16 vid;
9d5c8243 6333
b2cb09b1
JP
6334 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6335 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6336}
6337
14ad2513 6338int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6339{
090b1795 6340 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6341 struct e1000_mac_info *mac = &adapter->hw.mac;
6342
6343 mac->autoneg = 0;
6344
14ad2513
DD
6345 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6346 * for the switch() below to work */
6347 if ((spd & 1) || (dplx & ~1))
6348 goto err_inval;
6349
cd2638a8
CW
6350 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6351 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6352 spd != SPEED_1000 &&
6353 dplx != DUPLEX_FULL)
6354 goto err_inval;
cd2638a8 6355
14ad2513 6356 switch (spd + dplx) {
9d5c8243
AK
6357 case SPEED_10 + DUPLEX_HALF:
6358 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6359 break;
6360 case SPEED_10 + DUPLEX_FULL:
6361 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6362 break;
6363 case SPEED_100 + DUPLEX_HALF:
6364 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6365 break;
6366 case SPEED_100 + DUPLEX_FULL:
6367 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6368 break;
6369 case SPEED_1000 + DUPLEX_FULL:
6370 mac->autoneg = 1;
6371 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6372 break;
6373 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6374 default:
14ad2513 6375 goto err_inval;
9d5c8243
AK
6376 }
6377 return 0;
14ad2513
DD
6378
6379err_inval:
6380 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6381 return -EINVAL;
9d5c8243
AK
6382}
6383
3fe7c4c9 6384static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6385{
6386 struct net_device *netdev = pci_get_drvdata(pdev);
6387 struct igb_adapter *adapter = netdev_priv(netdev);
6388 struct e1000_hw *hw = &adapter->hw;
2d064c06 6389 u32 ctrl, rctl, status;
9d5c8243
AK
6390 u32 wufc = adapter->wol;
6391#ifdef CONFIG_PM
6392 int retval = 0;
6393#endif
6394
6395 netif_device_detach(netdev);
6396
a88f10ec
AD
6397 if (netif_running(netdev))
6398 igb_close(netdev);
6399
047e0030 6400 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6401
6402#ifdef CONFIG_PM
6403 retval = pci_save_state(pdev);
6404 if (retval)
6405 return retval;
6406#endif
6407
6408 status = rd32(E1000_STATUS);
6409 if (status & E1000_STATUS_LU)
6410 wufc &= ~E1000_WUFC_LNKC;
6411
6412 if (wufc) {
6413 igb_setup_rctl(adapter);
ff41f8dc 6414 igb_set_rx_mode(netdev);
9d5c8243
AK
6415
6416 /* turn on all-multi mode if wake on multicast is enabled */
6417 if (wufc & E1000_WUFC_MC) {
6418 rctl = rd32(E1000_RCTL);
6419 rctl |= E1000_RCTL_MPE;
6420 wr32(E1000_RCTL, rctl);
6421 }
6422
6423 ctrl = rd32(E1000_CTRL);
6424 /* advertise wake from D3Cold */
6425 #define E1000_CTRL_ADVD3WUC 0x00100000
6426 /* phy power management enable */
6427 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6428 ctrl |= E1000_CTRL_ADVD3WUC;
6429 wr32(E1000_CTRL, ctrl);
6430
9d5c8243 6431 /* Allow time for pending master requests to run */
330a6d6a 6432 igb_disable_pcie_master(hw);
9d5c8243
AK
6433
6434 wr32(E1000_WUC, E1000_WUC_PME_EN);
6435 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6436 } else {
6437 wr32(E1000_WUC, 0);
6438 wr32(E1000_WUFC, 0);
9d5c8243
AK
6439 }
6440
3fe7c4c9
RW
6441 *enable_wake = wufc || adapter->en_mng_pt;
6442 if (!*enable_wake)
88a268c1
NN
6443 igb_power_down_link(adapter);
6444 else
6445 igb_power_up_link(adapter);
9d5c8243
AK
6446
6447 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6448 * would have already happened in close and is redundant. */
6449 igb_release_hw_control(adapter);
6450
6451 pci_disable_device(pdev);
6452
9d5c8243
AK
6453 return 0;
6454}
6455
6456#ifdef CONFIG_PM
3fe7c4c9
RW
6457static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6458{
6459 int retval;
6460 bool wake;
6461
6462 retval = __igb_shutdown(pdev, &wake);
6463 if (retval)
6464 return retval;
6465
6466 if (wake) {
6467 pci_prepare_to_sleep(pdev);
6468 } else {
6469 pci_wake_from_d3(pdev, false);
6470 pci_set_power_state(pdev, PCI_D3hot);
6471 }
6472
6473 return 0;
6474}
6475
9d5c8243
AK
6476static int igb_resume(struct pci_dev *pdev)
6477{
6478 struct net_device *netdev = pci_get_drvdata(pdev);
6479 struct igb_adapter *adapter = netdev_priv(netdev);
6480 struct e1000_hw *hw = &adapter->hw;
6481 u32 err;
6482
6483 pci_set_power_state(pdev, PCI_D0);
6484 pci_restore_state(pdev);
b94f2d77 6485 pci_save_state(pdev);
42bfd33a 6486
aed5dec3 6487 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6488 if (err) {
6489 dev_err(&pdev->dev,
6490 "igb: Cannot enable PCI device from suspend\n");
6491 return err;
6492 }
6493 pci_set_master(pdev);
6494
6495 pci_enable_wake(pdev, PCI_D3hot, 0);
6496 pci_enable_wake(pdev, PCI_D3cold, 0);
6497
047e0030 6498 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6499 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6500 return -ENOMEM;
9d5c8243
AK
6501 }
6502
9d5c8243 6503 igb_reset(adapter);
a8564f03
AD
6504
6505 /* let the f/w know that the h/w is now under the control of the
6506 * driver. */
6507 igb_get_hw_control(adapter);
6508
9d5c8243
AK
6509 wr32(E1000_WUS, ~0);
6510
a88f10ec
AD
6511 if (netif_running(netdev)) {
6512 err = igb_open(netdev);
6513 if (err)
6514 return err;
6515 }
9d5c8243
AK
6516
6517 netif_device_attach(netdev);
6518
9d5c8243
AK
6519 return 0;
6520}
6521#endif
6522
6523static void igb_shutdown(struct pci_dev *pdev)
6524{
3fe7c4c9
RW
6525 bool wake;
6526
6527 __igb_shutdown(pdev, &wake);
6528
6529 if (system_state == SYSTEM_POWER_OFF) {
6530 pci_wake_from_d3(pdev, wake);
6531 pci_set_power_state(pdev, PCI_D3hot);
6532 }
9d5c8243
AK
6533}
6534
6535#ifdef CONFIG_NET_POLL_CONTROLLER
6536/*
6537 * Polling 'interrupt' - used by things like netconsole to send skbs
6538 * without having to re-enable interrupts. It's not called while
6539 * the interrupt routine is executing.
6540 */
6541static void igb_netpoll(struct net_device *netdev)
6542{
6543 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6544 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6545 int i;
9d5c8243 6546
eebbbdba 6547 if (!adapter->msix_entries) {
047e0030 6548 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6549 igb_irq_disable(adapter);
047e0030 6550 napi_schedule(&q_vector->napi);
eebbbdba
AD
6551 return;
6552 }
9d5c8243 6553
047e0030
AD
6554 for (i = 0; i < adapter->num_q_vectors; i++) {
6555 struct igb_q_vector *q_vector = adapter->q_vector[i];
6556 wr32(E1000_EIMC, q_vector->eims_value);
6557 napi_schedule(&q_vector->napi);
eebbbdba 6558 }
9d5c8243
AK
6559}
6560#endif /* CONFIG_NET_POLL_CONTROLLER */
6561
6562/**
6563 * igb_io_error_detected - called when PCI error is detected
6564 * @pdev: Pointer to PCI device
6565 * @state: The current pci connection state
6566 *
6567 * This function is called after a PCI bus error affecting
6568 * this device has been detected.
6569 */
6570static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6571 pci_channel_state_t state)
6572{
6573 struct net_device *netdev = pci_get_drvdata(pdev);
6574 struct igb_adapter *adapter = netdev_priv(netdev);
6575
6576 netif_device_detach(netdev);
6577
59ed6eec
AD
6578 if (state == pci_channel_io_perm_failure)
6579 return PCI_ERS_RESULT_DISCONNECT;
6580
9d5c8243
AK
6581 if (netif_running(netdev))
6582 igb_down(adapter);
6583 pci_disable_device(pdev);
6584
6585 /* Request a slot slot reset. */
6586 return PCI_ERS_RESULT_NEED_RESET;
6587}
6588
6589/**
6590 * igb_io_slot_reset - called after the pci bus has been reset.
6591 * @pdev: Pointer to PCI device
6592 *
6593 * Restart the card from scratch, as if from a cold-boot. Implementation
6594 * resembles the first-half of the igb_resume routine.
6595 */
6596static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6597{
6598 struct net_device *netdev = pci_get_drvdata(pdev);
6599 struct igb_adapter *adapter = netdev_priv(netdev);
6600 struct e1000_hw *hw = &adapter->hw;
40a914fa 6601 pci_ers_result_t result;
42bfd33a 6602 int err;
9d5c8243 6603
aed5dec3 6604 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6605 dev_err(&pdev->dev,
6606 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6607 result = PCI_ERS_RESULT_DISCONNECT;
6608 } else {
6609 pci_set_master(pdev);
6610 pci_restore_state(pdev);
b94f2d77 6611 pci_save_state(pdev);
9d5c8243 6612
40a914fa
AD
6613 pci_enable_wake(pdev, PCI_D3hot, 0);
6614 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6615
40a914fa
AD
6616 igb_reset(adapter);
6617 wr32(E1000_WUS, ~0);
6618 result = PCI_ERS_RESULT_RECOVERED;
6619 }
9d5c8243 6620
ea943d41
JK
6621 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6622 if (err) {
6623 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6624 "failed 0x%0x\n", err);
6625 /* non-fatal, continue */
6626 }
40a914fa
AD
6627
6628 return result;
9d5c8243
AK
6629}
6630
6631/**
6632 * igb_io_resume - called when traffic can start flowing again.
6633 * @pdev: Pointer to PCI device
6634 *
6635 * This callback is called when the error recovery driver tells us that
6636 * its OK to resume normal operation. Implementation resembles the
6637 * second-half of the igb_resume routine.
6638 */
6639static void igb_io_resume(struct pci_dev *pdev)
6640{
6641 struct net_device *netdev = pci_get_drvdata(pdev);
6642 struct igb_adapter *adapter = netdev_priv(netdev);
6643
9d5c8243
AK
6644 if (netif_running(netdev)) {
6645 if (igb_up(adapter)) {
6646 dev_err(&pdev->dev, "igb_up failed after reset\n");
6647 return;
6648 }
6649 }
6650
6651 netif_device_attach(netdev);
6652
6653 /* let the f/w know that the h/w is now under the control of the
6654 * driver. */
6655 igb_get_hw_control(adapter);
9d5c8243
AK
6656}
6657
26ad9178
AD
6658static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6659 u8 qsel)
6660{
6661 u32 rar_low, rar_high;
6662 struct e1000_hw *hw = &adapter->hw;
6663
6664 /* HW expects these in little endian so we reverse the byte order
6665 * from network order (big endian) to little endian
6666 */
6667 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6668 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6669 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6670
6671 /* Indicate to hardware the Address is Valid. */
6672 rar_high |= E1000_RAH_AV;
6673
6674 if (hw->mac.type == e1000_82575)
6675 rar_high |= E1000_RAH_POOL_1 * qsel;
6676 else
6677 rar_high |= E1000_RAH_POOL_1 << qsel;
6678
6679 wr32(E1000_RAL(index), rar_low);
6680 wrfl();
6681 wr32(E1000_RAH(index), rar_high);
6682 wrfl();
6683}
6684
4ae196df
AD
6685static int igb_set_vf_mac(struct igb_adapter *adapter,
6686 int vf, unsigned char *mac_addr)
6687{
6688 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6689 /* VF MAC addresses start at end of receive addresses and moves
6690 * torwards the first, as a result a collision should not be possible */
6691 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6692
37680117 6693 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6694
26ad9178 6695 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6696
6697 return 0;
6698}
6699
8151d294
WM
6700static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6701{
6702 struct igb_adapter *adapter = netdev_priv(netdev);
6703 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6704 return -EINVAL;
6705 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6706 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6707 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6708 " change effective.");
6709 if (test_bit(__IGB_DOWN, &adapter->state)) {
6710 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6711 " but the PF device is not up.\n");
6712 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6713 " attempting to use the VF device.\n");
6714 }
6715 return igb_set_vf_mac(adapter, vf, mac);
6716}
6717
17dc566c
LL
6718static int igb_link_mbps(int internal_link_speed)
6719{
6720 switch (internal_link_speed) {
6721 case SPEED_100:
6722 return 100;
6723 case SPEED_1000:
6724 return 1000;
6725 default:
6726 return 0;
6727 }
6728}
6729
6730static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6731 int link_speed)
6732{
6733 int rf_dec, rf_int;
6734 u32 bcnrc_val;
6735
6736 if (tx_rate != 0) {
6737 /* Calculate the rate factor values to set */
6738 rf_int = link_speed / tx_rate;
6739 rf_dec = (link_speed - (rf_int * tx_rate));
6740 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6741
6742 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6743 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6744 E1000_RTTBCNRC_RF_INT_MASK);
6745 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6746 } else {
6747 bcnrc_val = 0;
6748 }
6749
6750 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6751 wr32(E1000_RTTBCNRC, bcnrc_val);
6752}
6753
6754static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6755{
6756 int actual_link_speed, i;
6757 bool reset_rate = false;
6758
6759 /* VF TX rate limit was not set or not supported */
6760 if ((adapter->vf_rate_link_speed == 0) ||
6761 (adapter->hw.mac.type != e1000_82576))
6762 return;
6763
6764 actual_link_speed = igb_link_mbps(adapter->link_speed);
6765 if (actual_link_speed != adapter->vf_rate_link_speed) {
6766 reset_rate = true;
6767 adapter->vf_rate_link_speed = 0;
6768 dev_info(&adapter->pdev->dev,
6769 "Link speed has been changed. VF Transmit "
6770 "rate is disabled\n");
6771 }
6772
6773 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6774 if (reset_rate)
6775 adapter->vf_data[i].tx_rate = 0;
6776
6777 igb_set_vf_rate_limit(&adapter->hw, i,
6778 adapter->vf_data[i].tx_rate,
6779 actual_link_speed);
6780 }
6781}
6782
8151d294
WM
6783static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6784{
17dc566c
LL
6785 struct igb_adapter *adapter = netdev_priv(netdev);
6786 struct e1000_hw *hw = &adapter->hw;
6787 int actual_link_speed;
6788
6789 if (hw->mac.type != e1000_82576)
6790 return -EOPNOTSUPP;
6791
6792 actual_link_speed = igb_link_mbps(adapter->link_speed);
6793 if ((vf >= adapter->vfs_allocated_count) ||
6794 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6795 (tx_rate < 0) || (tx_rate > actual_link_speed))
6796 return -EINVAL;
6797
6798 adapter->vf_rate_link_speed = actual_link_speed;
6799 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6800 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6801
6802 return 0;
8151d294
WM
6803}
6804
6805static int igb_ndo_get_vf_config(struct net_device *netdev,
6806 int vf, struct ifla_vf_info *ivi)
6807{
6808 struct igb_adapter *adapter = netdev_priv(netdev);
6809 if (vf >= adapter->vfs_allocated_count)
6810 return -EINVAL;
6811 ivi->vf = vf;
6812 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6813 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6814 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6815 ivi->qos = adapter->vf_data[vf].pf_qos;
6816 return 0;
6817}
6818
4ae196df
AD
6819static void igb_vmm_control(struct igb_adapter *adapter)
6820{
6821 struct e1000_hw *hw = &adapter->hw;
10d8e907 6822 u32 reg;
4ae196df 6823
52a1dd4d
AD
6824 switch (hw->mac.type) {
6825 case e1000_82575:
6826 default:
6827 /* replication is not supported for 82575 */
4ae196df 6828 return;
52a1dd4d
AD
6829 case e1000_82576:
6830 /* notify HW that the MAC is adding vlan tags */
6831 reg = rd32(E1000_DTXCTL);
6832 reg |= E1000_DTXCTL_VLAN_ADDED;
6833 wr32(E1000_DTXCTL, reg);
6834 case e1000_82580:
6835 /* enable replication vlan tag stripping */
6836 reg = rd32(E1000_RPLOLR);
6837 reg |= E1000_RPLOLR_STRVLAN;
6838 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6839 case e1000_i350:
6840 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6841 break;
6842 }
10d8e907 6843
d4960307
AD
6844 if (adapter->vfs_allocated_count) {
6845 igb_vmdq_set_loopback_pf(hw, true);
6846 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6847 igb_vmdq_set_anti_spoofing_pf(hw, true,
6848 adapter->vfs_allocated_count);
d4960307
AD
6849 } else {
6850 igb_vmdq_set_loopback_pf(hw, false);
6851 igb_vmdq_set_replication_pf(hw, false);
6852 }
4ae196df
AD
6853}
6854
9d5c8243 6855/* igb_main.c */
This page took 0.997872 seconds and 5 git commands to generate.