igb: Update DMA Coalescing threshold calculation.
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
421e02f0 56#ifdef CONFIG_IGB_DCA
fe4506b6
JC
57#include <linux/dca.h>
58#endif
9d5c8243
AK
59#include "igb.h"
60
0d1fe82d 61#define MAJ 3
a28dc43f
CW
62#define MIN 2
63#define BUILD 10
0d1fe82d 64#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 65__stringify(BUILD) "-k"
9d5c8243
AK
66char igb_driver_name[] = "igb";
67char igb_driver_version[] = DRV_VERSION;
68static const char igb_driver_string[] =
69 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 70static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 71
9d5c8243
AK
72static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74};
75
a3aa1884 76static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
102 /* required last entry */
103 {0, }
104};
105
106MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
107
108void igb_reset(struct igb_adapter *);
109static int igb_setup_all_tx_resources(struct igb_adapter *);
110static int igb_setup_all_rx_resources(struct igb_adapter *);
111static void igb_free_all_tx_resources(struct igb_adapter *);
112static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 113static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
114static int igb_probe(struct pci_dev *, const struct pci_device_id *);
115static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 116static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
117static int igb_sw_init(struct igb_adapter *);
118static int igb_open(struct net_device *);
119static int igb_close(struct net_device *);
120static void igb_configure_tx(struct igb_adapter *);
121static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
122static void igb_clean_all_tx_rings(struct igb_adapter *);
123static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
124static void igb_clean_tx_ring(struct igb_ring *);
125static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 126static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
127static void igb_update_phy_info(unsigned long);
128static void igb_watchdog(unsigned long);
129static void igb_watchdog_task(struct work_struct *);
cd392f5c 130static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
131static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
132 struct rtnl_link_stats64 *stats);
9d5c8243
AK
133static int igb_change_mtu(struct net_device *, int);
134static int igb_set_mac(struct net_device *, void *);
68d480c4 135static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
136static irqreturn_t igb_intr(int irq, void *);
137static irqreturn_t igb_intr_msi(int irq, void *);
138static irqreturn_t igb_msix_other(int irq, void *);
047e0030 139static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 140#ifdef CONFIG_IGB_DCA
047e0030 141static void igb_update_dca(struct igb_q_vector *);
fe4506b6 142static void igb_setup_dca(struct igb_adapter *);
421e02f0 143#endif /* CONFIG_IGB_DCA */
661086df 144static int igb_poll(struct napi_struct *, int);
13fde97a 145static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 146static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
147static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
148static void igb_tx_timeout(struct net_device *);
149static void igb_reset_task(struct work_struct *);
c8f44aff 150static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
9d5c8243
AK
151static void igb_vlan_rx_add_vid(struct net_device *, u16);
152static void igb_vlan_rx_kill_vid(struct net_device *, u16);
153static void igb_restore_vlan(struct igb_adapter *);
26ad9178 154static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
155static void igb_ping_all_vfs(struct igb_adapter *);
156static void igb_msg_task(struct igb_adapter *);
4ae196df 157static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 158static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 159static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
160static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162 int vf, u16 vlan, u8 qos);
163static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
164static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
165 struct ifla_vf_info *ivi);
17dc566c 166static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
167
168#ifdef CONFIG_PCI_IOV
0224d663
GR
169static int igb_vf_configure(struct igb_adapter *adapter, int vf);
170static int igb_find_enabled_vfs(struct igb_adapter *adapter);
171static int igb_check_vf_assignment(struct igb_adapter *adapter);
46a01698 172#endif
9d5c8243 173
9d5c8243 174#ifdef CONFIG_PM
3fe7c4c9 175static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
176static int igb_resume(struct pci_dev *);
177#endif
178static void igb_shutdown(struct pci_dev *);
421e02f0 179#ifdef CONFIG_IGB_DCA
fe4506b6
JC
180static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
181static struct notifier_block dca_notifier = {
182 .notifier_call = igb_notify_dca,
183 .next = NULL,
184 .priority = 0
185};
186#endif
9d5c8243
AK
187#ifdef CONFIG_NET_POLL_CONTROLLER
188/* for netdump / net console */
189static void igb_netpoll(struct net_device *);
190#endif
37680117 191#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
192static unsigned int max_vfs = 0;
193module_param(max_vfs, uint, 0);
194MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
195 "per physical function");
196#endif /* CONFIG_PCI_IOV */
197
9d5c8243
AK
198static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
199 pci_channel_state_t);
200static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
201static void igb_io_resume(struct pci_dev *);
202
203static struct pci_error_handlers igb_err_handler = {
204 .error_detected = igb_io_error_detected,
205 .slot_reset = igb_io_slot_reset,
206 .resume = igb_io_resume,
207};
208
b6e0c419 209static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
210
211static struct pci_driver igb_driver = {
212 .name = igb_driver_name,
213 .id_table = igb_pci_tbl,
214 .probe = igb_probe,
215 .remove = __devexit_p(igb_remove),
216#ifdef CONFIG_PM
25985edc 217 /* Power Management Hooks */
9d5c8243
AK
218 .suspend = igb_suspend,
219 .resume = igb_resume,
220#endif
221 .shutdown = igb_shutdown,
222 .err_handler = &igb_err_handler
223};
224
225MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
226MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
227MODULE_LICENSE("GPL");
228MODULE_VERSION(DRV_VERSION);
229
c97ec42a
TI
230struct igb_reg_info {
231 u32 ofs;
232 char *name;
233};
234
235static const struct igb_reg_info igb_reg_info_tbl[] = {
236
237 /* General Registers */
238 {E1000_CTRL, "CTRL"},
239 {E1000_STATUS, "STATUS"},
240 {E1000_CTRL_EXT, "CTRL_EXT"},
241
242 /* Interrupt Registers */
243 {E1000_ICR, "ICR"},
244
245 /* RX Registers */
246 {E1000_RCTL, "RCTL"},
247 {E1000_RDLEN(0), "RDLEN"},
248 {E1000_RDH(0), "RDH"},
249 {E1000_RDT(0), "RDT"},
250 {E1000_RXDCTL(0), "RXDCTL"},
251 {E1000_RDBAL(0), "RDBAL"},
252 {E1000_RDBAH(0), "RDBAH"},
253
254 /* TX Registers */
255 {E1000_TCTL, "TCTL"},
256 {E1000_TDBAL(0), "TDBAL"},
257 {E1000_TDBAH(0), "TDBAH"},
258 {E1000_TDLEN(0), "TDLEN"},
259 {E1000_TDH(0), "TDH"},
260 {E1000_TDT(0), "TDT"},
261 {E1000_TXDCTL(0), "TXDCTL"},
262 {E1000_TDFH, "TDFH"},
263 {E1000_TDFT, "TDFT"},
264 {E1000_TDFHS, "TDFHS"},
265 {E1000_TDFPC, "TDFPC"},
266
267 /* List Terminator */
268 {}
269};
270
271/*
272 * igb_regdump - register printout routine
273 */
274static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
275{
276 int n = 0;
277 char rname[16];
278 u32 regs[8];
279
280 switch (reginfo->ofs) {
281 case E1000_RDLEN(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDLEN(n));
284 break;
285 case E1000_RDH(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDH(n));
288 break;
289 case E1000_RDT(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_RDT(n));
292 break;
293 case E1000_RXDCTL(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RXDCTL(n));
296 break;
297 case E1000_RDBAL(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDBAL(n));
300 break;
301 case E1000_RDBAH(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDBAH(n));
304 break;
305 case E1000_TDBAL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDBAL(n));
308 break;
309 case E1000_TDBAH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_TDBAH(n));
312 break;
313 case E1000_TDLEN(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_TDLEN(n));
316 break;
317 case E1000_TDH(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDH(n));
320 break;
321 case E1000_TDT(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDT(n));
324 break;
325 case E1000_TXDCTL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TXDCTL(n));
328 break;
329 default:
876d2d6f 330 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
331 return;
332 }
333
334 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
335 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
336 regs[2], regs[3]);
c97ec42a
TI
337}
338
339/*
340 * igb_dump - Print registers, tx-rings and rx-rings
341 */
342static void igb_dump(struct igb_adapter *adapter)
343{
344 struct net_device *netdev = adapter->netdev;
345 struct e1000_hw *hw = &adapter->hw;
346 struct igb_reg_info *reginfo;
c97ec42a
TI
347 struct igb_ring *tx_ring;
348 union e1000_adv_tx_desc *tx_desc;
349 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
350 struct igb_ring *rx_ring;
351 union e1000_adv_rx_desc *rx_desc;
352 u32 staterr;
6ad4edfc 353 u16 i, n;
c97ec42a
TI
354
355 if (!netif_msg_hw(adapter))
356 return;
357
358 /* Print netdevice Info */
359 if (netdev) {
360 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
361 pr_info("Device Name state trans_start "
362 "last_rx\n");
363 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
364 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
365 }
366
367 /* Print Registers */
368 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 369 pr_info(" Register Name Value\n");
c97ec42a
TI
370 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
371 reginfo->name; reginfo++) {
372 igb_regdump(hw, reginfo);
373 }
374
375 /* Print TX Ring Summary */
376 if (!netdev || !netif_running(netdev))
377 goto exit;
378
379 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 380 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 381 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 382 struct igb_tx_buffer *buffer_info;
c97ec42a 383 tx_ring = adapter->tx_ring[n];
06034649 384 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
385 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
386 n, tx_ring->next_to_use, tx_ring->next_to_clean,
387 (u64)buffer_info->dma,
388 buffer_info->length,
389 buffer_info->next_to_watch,
390 (u64)buffer_info->time_stamp);
c97ec42a
TI
391 }
392
393 /* Print TX Rings */
394 if (!netif_msg_tx_done(adapter))
395 goto rx_ring_summary;
396
397 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
398
399 /* Transmit Descriptor Formats
400 *
401 * Advanced Transmit Descriptor
402 * +--------------------------------------------------------------+
403 * 0 | Buffer Address [63:0] |
404 * +--------------------------------------------------------------+
405 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
406 * +--------------------------------------------------------------+
407 * 63 46 45 40 39 38 36 35 32 31 24 15 0
408 */
409
410 for (n = 0; n < adapter->num_tx_queues; n++) {
411 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
412 pr_info("------------------------------------\n");
413 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
414 pr_info("------------------------------------\n");
415 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
416 "[bi->dma ] leng ntw timestamp "
417 "bi->skb\n");
c97ec42a
TI
418
419 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 420 const char *next_desc;
06034649 421 struct igb_tx_buffer *buffer_info;
60136906 422 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 423 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 424 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
425 if (i == tx_ring->next_to_use &&
426 i == tx_ring->next_to_clean)
427 next_desc = " NTC/U";
428 else if (i == tx_ring->next_to_use)
429 next_desc = " NTU";
430 else if (i == tx_ring->next_to_clean)
431 next_desc = " NTC";
432 else
433 next_desc = "";
434
435 pr_info("T [0x%03X] %016llX %016llX %016llX"
436 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
437 le64_to_cpu(u0->a),
438 le64_to_cpu(u0->b),
439 (u64)buffer_info->dma,
440 buffer_info->length,
441 buffer_info->next_to_watch,
442 (u64)buffer_info->time_stamp,
876d2d6f 443 buffer_info->skb, next_desc);
c97ec42a
TI
444
445 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
446 print_hex_dump(KERN_INFO, "",
447 DUMP_PREFIX_ADDRESS,
448 16, 1, phys_to_virt(buffer_info->dma),
449 buffer_info->length, true);
450 }
451 }
452
453 /* Print RX Rings Summary */
454rx_ring_summary:
455 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 456 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
457 for (n = 0; n < adapter->num_rx_queues; n++) {
458 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
459 pr_info(" %5d %5X %5X\n",
460 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
461 }
462
463 /* Print RX Rings */
464 if (!netif_msg_rx_status(adapter))
465 goto exit;
466
467 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
468
469 /* Advanced Receive Descriptor (Read) Format
470 * 63 1 0
471 * +-----------------------------------------------------+
472 * 0 | Packet Buffer Address [63:1] |A0/NSE|
473 * +----------------------------------------------+------+
474 * 8 | Header Buffer Address [63:1] | DD |
475 * +-----------------------------------------------------+
476 *
477 *
478 * Advanced Receive Descriptor (Write-Back) Format
479 *
480 * 63 48 47 32 31 30 21 20 17 16 4 3 0
481 * +------------------------------------------------------+
482 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
483 * | Checksum Ident | | | | Type | Type |
484 * +------------------------------------------------------+
485 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
486 * +------------------------------------------------------+
487 * 63 48 47 32 31 20 19 0
488 */
489
490 for (n = 0; n < adapter->num_rx_queues; n++) {
491 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
492 pr_info("------------------------------------\n");
493 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
494 pr_info("------------------------------------\n");
495 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
496 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
497 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
498 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
499
500 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 501 const char *next_desc;
06034649
AD
502 struct igb_rx_buffer *buffer_info;
503 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 504 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
505 u0 = (struct my_u0 *)rx_desc;
506 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
507
508 if (i == rx_ring->next_to_use)
509 next_desc = " NTU";
510 else if (i == rx_ring->next_to_clean)
511 next_desc = " NTC";
512 else
513 next_desc = "";
514
c97ec42a
TI
515 if (staterr & E1000_RXD_STAT_DD) {
516 /* Descriptor Done */
876d2d6f
JK
517 pr_info("%s[0x%03X] %016llX %016llX -------"
518 "--------- %p%s\n", "RWB", i,
c97ec42a
TI
519 le64_to_cpu(u0->a),
520 le64_to_cpu(u0->b),
876d2d6f 521 buffer_info->skb, next_desc);
c97ec42a 522 } else {
876d2d6f
JK
523 pr_info("%s[0x%03X] %016llX %016llX %016llX"
524 " %p%s\n", "R ", i,
c97ec42a
TI
525 le64_to_cpu(u0->a),
526 le64_to_cpu(u0->b),
527 (u64)buffer_info->dma,
876d2d6f 528 buffer_info->skb, next_desc);
c97ec42a
TI
529
530 if (netif_msg_pktdata(adapter)) {
531 print_hex_dump(KERN_INFO, "",
532 DUMP_PREFIX_ADDRESS,
533 16, 1,
534 phys_to_virt(buffer_info->dma),
44390ca6
AD
535 IGB_RX_HDR_LEN, true);
536 print_hex_dump(KERN_INFO, "",
537 DUMP_PREFIX_ADDRESS,
538 16, 1,
539 phys_to_virt(
540 buffer_info->page_dma +
541 buffer_info->page_offset),
542 PAGE_SIZE/2, true);
c97ec42a
TI
543 }
544 }
c97ec42a
TI
545 }
546 }
547
548exit:
549 return;
550}
551
552
38c845c7
PO
553/**
554 * igb_read_clock - read raw cycle counter (to be used by time counter)
555 */
556static cycle_t igb_read_clock(const struct cyclecounter *tc)
557{
558 struct igb_adapter *adapter =
559 container_of(tc, struct igb_adapter, cycles);
560 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
561 u64 stamp = 0;
562 int shift = 0;
38c845c7 563
55cac248
AD
564 /*
565 * The timestamp latches on lowest register read. For the 82580
566 * the lowest register is SYSTIMR instead of SYSTIML. However we never
567 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
568 */
06218a8d 569 if (hw->mac.type >= e1000_82580) {
55cac248
AD
570 stamp = rd32(E1000_SYSTIMR) >> 8;
571 shift = IGB_82580_TSYNC_SHIFT;
572 }
573
c5b9bd5e
AD
574 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
575 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
576 return stamp;
577}
578
9d5c8243 579/**
c041076a 580 * igb_get_hw_dev - return device
9d5c8243
AK
581 * used by hardware layer to print debugging information
582 **/
c041076a 583struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
584{
585 struct igb_adapter *adapter = hw->back;
c041076a 586 return adapter->netdev;
9d5c8243 587}
38c845c7 588
9d5c8243
AK
589/**
590 * igb_init_module - Driver Registration Routine
591 *
592 * igb_init_module is the first routine called when the driver is
593 * loaded. All it does is register with the PCI subsystem.
594 **/
595static int __init igb_init_module(void)
596{
597 int ret;
876d2d6f 598 pr_info("%s - version %s\n",
9d5c8243
AK
599 igb_driver_string, igb_driver_version);
600
876d2d6f 601 pr_info("%s\n", igb_copyright);
9d5c8243 602
421e02f0 603#ifdef CONFIG_IGB_DCA
fe4506b6
JC
604 dca_register_notify(&dca_notifier);
605#endif
bbd98fe4 606 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
607 return ret;
608}
609
610module_init(igb_init_module);
611
612/**
613 * igb_exit_module - Driver Exit Cleanup Routine
614 *
615 * igb_exit_module is called just before the driver is removed
616 * from memory.
617 **/
618static void __exit igb_exit_module(void)
619{
421e02f0 620#ifdef CONFIG_IGB_DCA
fe4506b6
JC
621 dca_unregister_notify(&dca_notifier);
622#endif
9d5c8243
AK
623 pci_unregister_driver(&igb_driver);
624}
625
626module_exit(igb_exit_module);
627
26bc19ec
AD
628#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
629/**
630 * igb_cache_ring_register - Descriptor ring to register mapping
631 * @adapter: board private structure to initialize
632 *
633 * Once we know the feature-set enabled for the device, we'll cache
634 * the register offset the descriptor ring is assigned to.
635 **/
636static void igb_cache_ring_register(struct igb_adapter *adapter)
637{
ee1b9f06 638 int i = 0, j = 0;
047e0030 639 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
640
641 switch (adapter->hw.mac.type) {
642 case e1000_82576:
643 /* The queues are allocated for virtualization such that VF 0
644 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
645 * In order to avoid collision we start at the first free queue
646 * and continue consuming queues in the same sequence
647 */
ee1b9f06 648 if (adapter->vfs_allocated_count) {
a99955fc 649 for (; i < adapter->rss_queues; i++)
3025a446
AD
650 adapter->rx_ring[i]->reg_idx = rbase_offset +
651 Q_IDX_82576(i);
ee1b9f06 652 }
26bc19ec 653 case e1000_82575:
55cac248 654 case e1000_82580:
d2ba2ed8 655 case e1000_i350:
26bc19ec 656 default:
ee1b9f06 657 for (; i < adapter->num_rx_queues; i++)
3025a446 658 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 659 for (; j < adapter->num_tx_queues; j++)
3025a446 660 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
661 break;
662 }
663}
664
047e0030
AD
665static void igb_free_queues(struct igb_adapter *adapter)
666{
3025a446 667 int i;
047e0030 668
3025a446
AD
669 for (i = 0; i < adapter->num_tx_queues; i++) {
670 kfree(adapter->tx_ring[i]);
671 adapter->tx_ring[i] = NULL;
672 }
673 for (i = 0; i < adapter->num_rx_queues; i++) {
674 kfree(adapter->rx_ring[i]);
675 adapter->rx_ring[i] = NULL;
676 }
047e0030
AD
677 adapter->num_rx_queues = 0;
678 adapter->num_tx_queues = 0;
679}
680
9d5c8243
AK
681/**
682 * igb_alloc_queues - Allocate memory for all rings
683 * @adapter: board private structure to initialize
684 *
685 * We allocate one ring per queue at run-time since we don't know the
686 * number of queues at compile-time.
687 **/
688static int igb_alloc_queues(struct igb_adapter *adapter)
689{
3025a446 690 struct igb_ring *ring;
9d5c8243 691 int i;
81c2fc22 692 int orig_node = adapter->node;
9d5c8243 693
661086df 694 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
695 if (orig_node == -1) {
696 int cur_node = next_online_node(adapter->node);
697 if (cur_node == MAX_NUMNODES)
698 cur_node = first_online_node;
699 adapter->node = cur_node;
700 }
701 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
702 adapter->node);
703 if (!ring)
704 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
705 if (!ring)
706 goto err;
68fd9910 707 ring->count = adapter->tx_ring_count;
661086df 708 ring->queue_index = i;
59d71989 709 ring->dev = &adapter->pdev->dev;
e694e964 710 ring->netdev = adapter->netdev;
81c2fc22 711 ring->numa_node = adapter->node;
85ad76b2
AD
712 /* For 82575, context index must be unique per ring. */
713 if (adapter->hw.mac.type == e1000_82575)
866cff06 714 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 715 adapter->tx_ring[i] = ring;
661086df 716 }
81c2fc22
AD
717 /* Restore the adapter's original node */
718 adapter->node = orig_node;
85ad76b2 719
9d5c8243 720 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
721 if (orig_node == -1) {
722 int cur_node = next_online_node(adapter->node);
723 if (cur_node == MAX_NUMNODES)
724 cur_node = first_online_node;
725 adapter->node = cur_node;
726 }
727 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
728 adapter->node);
729 if (!ring)
730 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
731 if (!ring)
732 goto err;
68fd9910 733 ring->count = adapter->rx_ring_count;
844290e5 734 ring->queue_index = i;
59d71989 735 ring->dev = &adapter->pdev->dev;
e694e964 736 ring->netdev = adapter->netdev;
81c2fc22 737 ring->numa_node = adapter->node;
85ad76b2
AD
738 /* set flag indicating ring supports SCTP checksum offload */
739 if (adapter->hw.mac.type >= e1000_82576)
866cff06 740 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
8be10e91
AD
741
742 /* On i350, loopback VLAN packets have the tag byte-swapped. */
743 if (adapter->hw.mac.type == e1000_i350)
744 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
745
3025a446 746 adapter->rx_ring[i] = ring;
9d5c8243 747 }
81c2fc22
AD
748 /* Restore the adapter's original node */
749 adapter->node = orig_node;
26bc19ec
AD
750
751 igb_cache_ring_register(adapter);
9d5c8243 752
047e0030 753 return 0;
a88f10ec 754
047e0030 755err:
81c2fc22
AD
756 /* Restore the adapter's original node */
757 adapter->node = orig_node;
047e0030 758 igb_free_queues(adapter);
d1a8c9e1 759
047e0030 760 return -ENOMEM;
a88f10ec
AD
761}
762
4be000c8
AD
763/**
764 * igb_write_ivar - configure ivar for given MSI-X vector
765 * @hw: pointer to the HW structure
766 * @msix_vector: vector number we are allocating to a given ring
767 * @index: row index of IVAR register to write within IVAR table
768 * @offset: column offset of in IVAR, should be multiple of 8
769 *
770 * This function is intended to handle the writing of the IVAR register
771 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
772 * each containing an cause allocation for an Rx and Tx ring, and a
773 * variable number of rows depending on the number of queues supported.
774 **/
775static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
776 int index, int offset)
777{
778 u32 ivar = array_rd32(E1000_IVAR0, index);
779
780 /* clear any bits that are currently set */
781 ivar &= ~((u32)0xFF << offset);
782
783 /* write vector and valid bit */
784 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
785
786 array_wr32(E1000_IVAR0, index, ivar);
787}
788
9d5c8243 789#define IGB_N0_QUEUE -1
047e0030 790static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 791{
047e0030 792 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 793 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
794 int rx_queue = IGB_N0_QUEUE;
795 int tx_queue = IGB_N0_QUEUE;
4be000c8 796 u32 msixbm = 0;
047e0030 797
0ba82994
AD
798 if (q_vector->rx.ring)
799 rx_queue = q_vector->rx.ring->reg_idx;
800 if (q_vector->tx.ring)
801 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
802
803 switch (hw->mac.type) {
804 case e1000_82575:
9d5c8243
AK
805 /* The 82575 assigns vectors using a bitmask, which matches the
806 bitmask for the EICR/EIMS/EIMC registers. To assign one
807 or more queues to a vector, we write the appropriate bits
808 into the MSIXBM register for that vector. */
047e0030 809 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 810 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 811 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 812 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
813 if (!adapter->msix_entries && msix_vector == 0)
814 msixbm |= E1000_EIMS_OTHER;
9d5c8243 815 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 816 q_vector->eims_value = msixbm;
2d064c06
AD
817 break;
818 case e1000_82576:
4be000c8
AD
819 /*
820 * 82576 uses a table that essentially consists of 2 columns
821 * with 8 rows. The ordering is column-major so we use the
822 * lower 3 bits as the row index, and the 4th bit as the
823 * column offset.
824 */
825 if (rx_queue > IGB_N0_QUEUE)
826 igb_write_ivar(hw, msix_vector,
827 rx_queue & 0x7,
828 (rx_queue & 0x8) << 1);
829 if (tx_queue > IGB_N0_QUEUE)
830 igb_write_ivar(hw, msix_vector,
831 tx_queue & 0x7,
832 ((tx_queue & 0x8) << 1) + 8);
047e0030 833 q_vector->eims_value = 1 << msix_vector;
2d064c06 834 break;
55cac248 835 case e1000_82580:
d2ba2ed8 836 case e1000_i350:
4be000c8
AD
837 /*
838 * On 82580 and newer adapters the scheme is similar to 82576
839 * however instead of ordering column-major we have things
840 * ordered row-major. So we traverse the table by using
841 * bit 0 as the column offset, and the remaining bits as the
842 * row index.
843 */
844 if (rx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
846 rx_queue >> 1,
847 (rx_queue & 0x1) << 4);
848 if (tx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 tx_queue >> 1,
851 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
852 q_vector->eims_value = 1 << msix_vector;
853 break;
2d064c06
AD
854 default:
855 BUG();
856 break;
857 }
26b39276
AD
858
859 /* add q_vector eims value to global eims_enable_mask */
860 adapter->eims_enable_mask |= q_vector->eims_value;
861
862 /* configure q_vector to set itr on first interrupt */
863 q_vector->set_itr = 1;
9d5c8243
AK
864}
865
866/**
867 * igb_configure_msix - Configure MSI-X hardware
868 *
869 * igb_configure_msix sets up the hardware to properly
870 * generate MSI-X interrupts.
871 **/
872static void igb_configure_msix(struct igb_adapter *adapter)
873{
874 u32 tmp;
875 int i, vector = 0;
876 struct e1000_hw *hw = &adapter->hw;
877
878 adapter->eims_enable_mask = 0;
9d5c8243
AK
879
880 /* set vector for other causes, i.e. link changes */
2d064c06
AD
881 switch (hw->mac.type) {
882 case e1000_82575:
9d5c8243
AK
883 tmp = rd32(E1000_CTRL_EXT);
884 /* enable MSI-X PBA support*/
885 tmp |= E1000_CTRL_EXT_PBA_CLR;
886
887 /* Auto-Mask interrupts upon ICR read. */
888 tmp |= E1000_CTRL_EXT_EIAME;
889 tmp |= E1000_CTRL_EXT_IRCA;
890
891 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
892
893 /* enable msix_other interrupt */
894 array_wr32(E1000_MSIXBM(0), vector++,
895 E1000_EIMS_OTHER);
844290e5 896 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 897
2d064c06
AD
898 break;
899
900 case e1000_82576:
55cac248 901 case e1000_82580:
d2ba2ed8 902 case e1000_i350:
047e0030
AD
903 /* Turn on MSI-X capability first, or our settings
904 * won't stick. And it will take days to debug. */
905 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
906 E1000_GPIE_PBA | E1000_GPIE_EIAME |
907 E1000_GPIE_NSICR);
908
909 /* enable msix_other interrupt */
910 adapter->eims_other = 1 << vector;
2d064c06 911 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 912
047e0030 913 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
914 break;
915 default:
916 /* do nothing, since nothing else supports MSI-X */
917 break;
918 } /* switch (hw->mac.type) */
047e0030
AD
919
920 adapter->eims_enable_mask |= adapter->eims_other;
921
26b39276
AD
922 for (i = 0; i < adapter->num_q_vectors; i++)
923 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 924
9d5c8243
AK
925 wrfl();
926}
927
928/**
929 * igb_request_msix - Initialize MSI-X interrupts
930 *
931 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
932 * kernel.
933 **/
934static int igb_request_msix(struct igb_adapter *adapter)
935{
936 struct net_device *netdev = adapter->netdev;
047e0030 937 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
938 int i, err = 0, vector = 0;
939
047e0030 940 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 941 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
942 if (err)
943 goto out;
944 vector++;
945
946 for (i = 0; i < adapter->num_q_vectors; i++) {
947 struct igb_q_vector *q_vector = adapter->q_vector[i];
948
949 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950
0ba82994 951 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 952 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
953 q_vector->rx.ring->queue_index);
954 else if (q_vector->tx.ring)
047e0030 955 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
956 q_vector->tx.ring->queue_index);
957 else if (q_vector->rx.ring)
047e0030 958 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 959 q_vector->rx.ring->queue_index);
9d5c8243 960 else
047e0030
AD
961 sprintf(q_vector->name, "%s-unused", netdev->name);
962
9d5c8243 963 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 964 igb_msix_ring, 0, q_vector->name,
047e0030 965 q_vector);
9d5c8243
AK
966 if (err)
967 goto out;
9d5c8243
AK
968 vector++;
969 }
970
9d5c8243
AK
971 igb_configure_msix(adapter);
972 return 0;
973out:
974 return err;
975}
976
977static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
978{
979 if (adapter->msix_entries) {
980 pci_disable_msix(adapter->pdev);
981 kfree(adapter->msix_entries);
982 adapter->msix_entries = NULL;
047e0030 983 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 984 pci_disable_msi(adapter->pdev);
047e0030 985 }
9d5c8243
AK
986}
987
047e0030
AD
988/**
989 * igb_free_q_vectors - Free memory allocated for interrupt vectors
990 * @adapter: board private structure to initialize
991 *
992 * This function frees the memory allocated to the q_vectors. In addition if
993 * NAPI is enabled it will delete any references to the NAPI struct prior
994 * to freeing the q_vector.
995 **/
996static void igb_free_q_vectors(struct igb_adapter *adapter)
997{
998 int v_idx;
999
1000 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1001 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
1003 if (!q_vector)
1004 continue;
047e0030
AD
1005 netif_napi_del(&q_vector->napi);
1006 kfree(q_vector);
1007 }
1008 adapter->num_q_vectors = 0;
1009}
1010
1011/**
1012 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1013 *
1014 * This function resets the device so that it has 0 rx queues, tx queues, and
1015 * MSI-X interrupts allocated.
1016 */
1017static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1018{
1019 igb_free_queues(adapter);
1020 igb_free_q_vectors(adapter);
1021 igb_reset_interrupt_capability(adapter);
1022}
9d5c8243
AK
1023
1024/**
1025 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1026 *
1027 * Attempt to configure interrupts using the best available
1028 * capabilities of the hardware and kernel.
1029 **/
21adef3e 1030static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1031{
1032 int err;
1033 int numvecs, i;
1034
83b7180d 1035 /* Number of supported queues. */
a99955fc 1036 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1037 if (adapter->vfs_allocated_count)
1038 adapter->num_tx_queues = 1;
1039 else
1040 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1041
047e0030
AD
1042 /* start with one vector for every rx queue */
1043 numvecs = adapter->num_rx_queues;
1044
3ad2f3fb 1045 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1046 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1047 numvecs += adapter->num_tx_queues;
047e0030
AD
1048
1049 /* store the number of vectors reserved for queues */
1050 adapter->num_q_vectors = numvecs;
1051
1052 /* add 1 vector for link status interrupts */
1053 numvecs++;
9d5c8243
AK
1054 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1055 GFP_KERNEL);
1056 if (!adapter->msix_entries)
1057 goto msi_only;
1058
1059 for (i = 0; i < numvecs; i++)
1060 adapter->msix_entries[i].entry = i;
1061
1062 err = pci_enable_msix(adapter->pdev,
1063 adapter->msix_entries,
1064 numvecs);
1065 if (err == 0)
34a20e89 1066 goto out;
9d5c8243
AK
1067
1068 igb_reset_interrupt_capability(adapter);
1069
1070 /* If we can't do MSI-X, try MSI */
1071msi_only:
2a3abf6d
AD
1072#ifdef CONFIG_PCI_IOV
1073 /* disable SR-IOV for non MSI-X configurations */
1074 if (adapter->vf_data) {
1075 struct e1000_hw *hw = &adapter->hw;
1076 /* disable iov and allow time for transactions to clear */
1077 pci_disable_sriov(adapter->pdev);
1078 msleep(500);
1079
1080 kfree(adapter->vf_data);
1081 adapter->vf_data = NULL;
1082 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1083 wrfl();
2a3abf6d
AD
1084 msleep(100);
1085 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1086 }
1087#endif
4fc82adf 1088 adapter->vfs_allocated_count = 0;
a99955fc 1089 adapter->rss_queues = 1;
4fc82adf 1090 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1091 adapter->num_rx_queues = 1;
661086df 1092 adapter->num_tx_queues = 1;
047e0030 1093 adapter->num_q_vectors = 1;
9d5c8243 1094 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1095 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1096out:
21adef3e
BH
1097 /* Notify the stack of the (possibly) reduced queue counts. */
1098 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1099 return netif_set_real_num_rx_queues(adapter->netdev,
1100 adapter->num_rx_queues);
9d5c8243
AK
1101}
1102
047e0030
AD
1103/**
1104 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1105 * @adapter: board private structure to initialize
1106 *
1107 * We allocate one q_vector per queue interrupt. If allocation fails we
1108 * return -ENOMEM.
1109 **/
1110static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1111{
1112 struct igb_q_vector *q_vector;
1113 struct e1000_hw *hw = &adapter->hw;
1114 int v_idx;
81c2fc22 1115 int orig_node = adapter->node;
047e0030
AD
1116
1117 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1118 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1119 adapter->num_tx_queues)) &&
1120 (adapter->num_rx_queues == v_idx))
1121 adapter->node = orig_node;
1122 if (orig_node == -1) {
1123 int cur_node = next_online_node(adapter->node);
1124 if (cur_node == MAX_NUMNODES)
1125 cur_node = first_online_node;
1126 adapter->node = cur_node;
1127 }
1128 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1129 adapter->node);
1130 if (!q_vector)
1131 q_vector = kzalloc(sizeof(struct igb_q_vector),
1132 GFP_KERNEL);
047e0030
AD
1133 if (!q_vector)
1134 goto err_out;
1135 q_vector->adapter = adapter;
047e0030
AD
1136 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1137 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1138 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1139 adapter->q_vector[v_idx] = q_vector;
1140 }
81c2fc22
AD
1141 /* Restore the adapter's original node */
1142 adapter->node = orig_node;
1143
047e0030
AD
1144 return 0;
1145
1146err_out:
81c2fc22
AD
1147 /* Restore the adapter's original node */
1148 adapter->node = orig_node;
fe0592b4 1149 igb_free_q_vectors(adapter);
047e0030
AD
1150 return -ENOMEM;
1151}
1152
1153static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1154 int ring_idx, int v_idx)
1155{
3025a446 1156 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1157
0ba82994
AD
1158 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1159 q_vector->rx.ring->q_vector = q_vector;
1160 q_vector->rx.count++;
4fc82adf
AD
1161 q_vector->itr_val = adapter->rx_itr_setting;
1162 if (q_vector->itr_val && q_vector->itr_val <= 3)
1163 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1164}
1165
1166static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1167 int ring_idx, int v_idx)
1168{
3025a446 1169 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1170
0ba82994
AD
1171 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1172 q_vector->tx.ring->q_vector = q_vector;
1173 q_vector->tx.count++;
4fc82adf 1174 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1175 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1176 if (q_vector->itr_val && q_vector->itr_val <= 3)
1177 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1178}
1179
1180/**
1181 * igb_map_ring_to_vector - maps allocated queues to vectors
1182 *
1183 * This function maps the recently allocated queues to vectors.
1184 **/
1185static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1186{
1187 int i;
1188 int v_idx = 0;
1189
1190 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1191 (adapter->num_q_vectors < adapter->num_tx_queues))
1192 return -ENOMEM;
1193
1194 if (adapter->num_q_vectors >=
1195 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1196 for (i = 0; i < adapter->num_rx_queues; i++)
1197 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1198 for (i = 0; i < adapter->num_tx_queues; i++)
1199 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1200 } else {
1201 for (i = 0; i < adapter->num_rx_queues; i++) {
1202 if (i < adapter->num_tx_queues)
1203 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1204 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1205 }
1206 for (; i < adapter->num_tx_queues; i++)
1207 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1208 }
1209 return 0;
1210}
1211
1212/**
1213 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1214 *
1215 * This function initializes the interrupts and allocates all of the queues.
1216 **/
1217static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1218{
1219 struct pci_dev *pdev = adapter->pdev;
1220 int err;
1221
21adef3e
BH
1222 err = igb_set_interrupt_capability(adapter);
1223 if (err)
1224 return err;
047e0030
AD
1225
1226 err = igb_alloc_q_vectors(adapter);
1227 if (err) {
1228 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1229 goto err_alloc_q_vectors;
1230 }
1231
1232 err = igb_alloc_queues(adapter);
1233 if (err) {
1234 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1235 goto err_alloc_queues;
1236 }
1237
1238 err = igb_map_ring_to_vector(adapter);
1239 if (err) {
1240 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1241 goto err_map_queues;
1242 }
1243
1244
1245 return 0;
1246err_map_queues:
1247 igb_free_queues(adapter);
1248err_alloc_queues:
1249 igb_free_q_vectors(adapter);
1250err_alloc_q_vectors:
1251 igb_reset_interrupt_capability(adapter);
1252 return err;
1253}
1254
9d5c8243
AK
1255/**
1256 * igb_request_irq - initialize interrupts
1257 *
1258 * Attempts to configure interrupts using the best available
1259 * capabilities of the hardware and kernel.
1260 **/
1261static int igb_request_irq(struct igb_adapter *adapter)
1262{
1263 struct net_device *netdev = adapter->netdev;
047e0030 1264 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1265 int err = 0;
1266
1267 if (adapter->msix_entries) {
1268 err = igb_request_msix(adapter);
844290e5 1269 if (!err)
9d5c8243 1270 goto request_done;
9d5c8243 1271 /* fall back to MSI */
047e0030 1272 igb_clear_interrupt_scheme(adapter);
c74d588e 1273 if (!pci_enable_msi(pdev))
7dfc16fa 1274 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1275 igb_free_all_tx_resources(adapter);
1276 igb_free_all_rx_resources(adapter);
047e0030 1277 adapter->num_tx_queues = 1;
9d5c8243 1278 adapter->num_rx_queues = 1;
047e0030
AD
1279 adapter->num_q_vectors = 1;
1280 err = igb_alloc_q_vectors(adapter);
1281 if (err) {
1282 dev_err(&pdev->dev,
1283 "Unable to allocate memory for vectors\n");
1284 goto request_done;
1285 }
1286 err = igb_alloc_queues(adapter);
1287 if (err) {
1288 dev_err(&pdev->dev,
1289 "Unable to allocate memory for queues\n");
1290 igb_free_q_vectors(adapter);
1291 goto request_done;
1292 }
1293 igb_setup_all_tx_resources(adapter);
1294 igb_setup_all_rx_resources(adapter);
9d5c8243 1295 }
844290e5 1296
c74d588e
AD
1297 igb_assign_vector(adapter->q_vector[0], 0);
1298
7dfc16fa 1299 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1300 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1301 netdev->name, adapter);
9d5c8243
AK
1302 if (!err)
1303 goto request_done;
047e0030 1304
9d5c8243
AK
1305 /* fall back to legacy interrupts */
1306 igb_reset_interrupt_capability(adapter);
7dfc16fa 1307 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1308 }
1309
c74d588e 1310 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1311 netdev->name, adapter);
9d5c8243 1312
6cb5e577 1313 if (err)
c74d588e 1314 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1315 err);
9d5c8243
AK
1316
1317request_done:
1318 return err;
1319}
1320
1321static void igb_free_irq(struct igb_adapter *adapter)
1322{
9d5c8243
AK
1323 if (adapter->msix_entries) {
1324 int vector = 0, i;
1325
047e0030 1326 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1327
0d1ae7f4 1328 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1329 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1330 adapter->q_vector[i]);
047e0030
AD
1331 } else {
1332 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1333 }
9d5c8243
AK
1334}
1335
1336/**
1337 * igb_irq_disable - Mask off interrupt generation on the NIC
1338 * @adapter: board private structure
1339 **/
1340static void igb_irq_disable(struct igb_adapter *adapter)
1341{
1342 struct e1000_hw *hw = &adapter->hw;
1343
25568a53
AD
1344 /*
1345 * we need to be careful when disabling interrupts. The VFs are also
1346 * mapped into these registers and so clearing the bits can cause
1347 * issues on the VF drivers so we only need to clear what we set
1348 */
9d5c8243 1349 if (adapter->msix_entries) {
2dfd1212
AD
1350 u32 regval = rd32(E1000_EIAM);
1351 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1352 wr32(E1000_EIMC, adapter->eims_enable_mask);
1353 regval = rd32(E1000_EIAC);
1354 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1355 }
844290e5
PW
1356
1357 wr32(E1000_IAM, 0);
9d5c8243
AK
1358 wr32(E1000_IMC, ~0);
1359 wrfl();
81a61859
ET
1360 if (adapter->msix_entries) {
1361 int i;
1362 for (i = 0; i < adapter->num_q_vectors; i++)
1363 synchronize_irq(adapter->msix_entries[i].vector);
1364 } else {
1365 synchronize_irq(adapter->pdev->irq);
1366 }
9d5c8243
AK
1367}
1368
1369/**
1370 * igb_irq_enable - Enable default interrupt generation settings
1371 * @adapter: board private structure
1372 **/
1373static void igb_irq_enable(struct igb_adapter *adapter)
1374{
1375 struct e1000_hw *hw = &adapter->hw;
1376
1377 if (adapter->msix_entries) {
06218a8d 1378 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1379 u32 regval = rd32(E1000_EIAC);
1380 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1381 regval = rd32(E1000_EIAM);
1382 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1383 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1384 if (adapter->vfs_allocated_count) {
4ae196df 1385 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1386 ims |= E1000_IMS_VMMB;
1387 }
1388 wr32(E1000_IMS, ims);
844290e5 1389 } else {
55cac248
AD
1390 wr32(E1000_IMS, IMS_ENABLE_MASK |
1391 E1000_IMS_DRSTA);
1392 wr32(E1000_IAM, IMS_ENABLE_MASK |
1393 E1000_IMS_DRSTA);
844290e5 1394 }
9d5c8243
AK
1395}
1396
1397static void igb_update_mng_vlan(struct igb_adapter *adapter)
1398{
51466239 1399 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1400 u16 vid = adapter->hw.mng_cookie.vlan_id;
1401 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1402
1403 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1404 /* add VID to filter table */
1405 igb_vfta_set(hw, vid, true);
1406 adapter->mng_vlan_id = vid;
1407 } else {
1408 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1409 }
1410
1411 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1412 (vid != old_vid) &&
b2cb09b1 1413 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1414 /* remove VID from filter table */
1415 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1416 }
1417}
1418
1419/**
1420 * igb_release_hw_control - release control of the h/w to f/w
1421 * @adapter: address of board private structure
1422 *
1423 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1424 * For ASF and Pass Through versions of f/w this means that the
1425 * driver is no longer loaded.
1426 *
1427 **/
1428static void igb_release_hw_control(struct igb_adapter *adapter)
1429{
1430 struct e1000_hw *hw = &adapter->hw;
1431 u32 ctrl_ext;
1432
1433 /* Let firmware take over control of h/w */
1434 ctrl_ext = rd32(E1000_CTRL_EXT);
1435 wr32(E1000_CTRL_EXT,
1436 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1437}
1438
9d5c8243
AK
1439/**
1440 * igb_get_hw_control - get control of the h/w from f/w
1441 * @adapter: address of board private structure
1442 *
1443 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1444 * For ASF and Pass Through versions of f/w this means that
1445 * the driver is loaded.
1446 *
1447 **/
1448static void igb_get_hw_control(struct igb_adapter *adapter)
1449{
1450 struct e1000_hw *hw = &adapter->hw;
1451 u32 ctrl_ext;
1452
1453 /* Let firmware know the driver has taken over */
1454 ctrl_ext = rd32(E1000_CTRL_EXT);
1455 wr32(E1000_CTRL_EXT,
1456 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1457}
1458
9d5c8243
AK
1459/**
1460 * igb_configure - configure the hardware for RX and TX
1461 * @adapter: private board structure
1462 **/
1463static void igb_configure(struct igb_adapter *adapter)
1464{
1465 struct net_device *netdev = adapter->netdev;
1466 int i;
1467
1468 igb_get_hw_control(adapter);
ff41f8dc 1469 igb_set_rx_mode(netdev);
9d5c8243
AK
1470
1471 igb_restore_vlan(adapter);
9d5c8243 1472
85b430b4 1473 igb_setup_tctl(adapter);
06cf2666 1474 igb_setup_mrqc(adapter);
9d5c8243 1475 igb_setup_rctl(adapter);
85b430b4
AD
1476
1477 igb_configure_tx(adapter);
9d5c8243 1478 igb_configure_rx(adapter);
662d7205
AD
1479
1480 igb_rx_fifo_flush_82575(&adapter->hw);
1481
c493ea45 1482 /* call igb_desc_unused which always leaves
9d5c8243
AK
1483 * at least 1 descriptor unused to make sure
1484 * next_to_use != next_to_clean */
1485 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1486 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1487 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1488 }
9d5c8243
AK
1489}
1490
88a268c1
NN
1491/**
1492 * igb_power_up_link - Power up the phy/serdes link
1493 * @adapter: address of board private structure
1494 **/
1495void igb_power_up_link(struct igb_adapter *adapter)
1496{
1497 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1498 igb_power_up_phy_copper(&adapter->hw);
1499 else
1500 igb_power_up_serdes_link_82575(&adapter->hw);
1501}
1502
1503/**
1504 * igb_power_down_link - Power down the phy/serdes link
1505 * @adapter: address of board private structure
1506 */
1507static void igb_power_down_link(struct igb_adapter *adapter)
1508{
1509 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1510 igb_power_down_phy_copper_82575(&adapter->hw);
1511 else
1512 igb_shutdown_serdes_link_82575(&adapter->hw);
1513}
9d5c8243
AK
1514
1515/**
1516 * igb_up - Open the interface and prepare it to handle traffic
1517 * @adapter: board private structure
1518 **/
9d5c8243
AK
1519int igb_up(struct igb_adapter *adapter)
1520{
1521 struct e1000_hw *hw = &adapter->hw;
1522 int i;
1523
1524 /* hardware has been reset, we need to reload some things */
1525 igb_configure(adapter);
1526
1527 clear_bit(__IGB_DOWN, &adapter->state);
1528
0d1ae7f4
AD
1529 for (i = 0; i < adapter->num_q_vectors; i++)
1530 napi_enable(&(adapter->q_vector[i]->napi));
1531
844290e5 1532 if (adapter->msix_entries)
9d5c8243 1533 igb_configure_msix(adapter);
feeb2721
AD
1534 else
1535 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1536
1537 /* Clear any pending interrupts. */
1538 rd32(E1000_ICR);
1539 igb_irq_enable(adapter);
1540
d4960307
AD
1541 /* notify VFs that reset has been completed */
1542 if (adapter->vfs_allocated_count) {
1543 u32 reg_data = rd32(E1000_CTRL_EXT);
1544 reg_data |= E1000_CTRL_EXT_PFRSTD;
1545 wr32(E1000_CTRL_EXT, reg_data);
1546 }
1547
4cb9be7a
JB
1548 netif_tx_start_all_queues(adapter->netdev);
1549
25568a53
AD
1550 /* start the watchdog. */
1551 hw->mac.get_link_status = 1;
1552 schedule_work(&adapter->watchdog_task);
1553
9d5c8243
AK
1554 return 0;
1555}
1556
1557void igb_down(struct igb_adapter *adapter)
1558{
9d5c8243 1559 struct net_device *netdev = adapter->netdev;
330a6d6a 1560 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1561 u32 tctl, rctl;
1562 int i;
1563
1564 /* signal that we're down so the interrupt handler does not
1565 * reschedule our watchdog timer */
1566 set_bit(__IGB_DOWN, &adapter->state);
1567
1568 /* disable receives in the hardware */
1569 rctl = rd32(E1000_RCTL);
1570 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1571 /* flush and sleep below */
1572
fd2ea0a7 1573 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1574
1575 /* disable transmits in the hardware */
1576 tctl = rd32(E1000_TCTL);
1577 tctl &= ~E1000_TCTL_EN;
1578 wr32(E1000_TCTL, tctl);
1579 /* flush both disables and wait for them to finish */
1580 wrfl();
1581 msleep(10);
1582
0d1ae7f4
AD
1583 for (i = 0; i < adapter->num_q_vectors; i++)
1584 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1585
9d5c8243
AK
1586 igb_irq_disable(adapter);
1587
1588 del_timer_sync(&adapter->watchdog_timer);
1589 del_timer_sync(&adapter->phy_info_timer);
1590
9d5c8243 1591 netif_carrier_off(netdev);
04fe6358
AD
1592
1593 /* record the stats before reset*/
12dcd86b
ED
1594 spin_lock(&adapter->stats64_lock);
1595 igb_update_stats(adapter, &adapter->stats64);
1596 spin_unlock(&adapter->stats64_lock);
04fe6358 1597
9d5c8243
AK
1598 adapter->link_speed = 0;
1599 adapter->link_duplex = 0;
1600
3023682e
JK
1601 if (!pci_channel_offline(adapter->pdev))
1602 igb_reset(adapter);
9d5c8243
AK
1603 igb_clean_all_tx_rings(adapter);
1604 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1605#ifdef CONFIG_IGB_DCA
1606
1607 /* since we reset the hardware DCA settings were cleared */
1608 igb_setup_dca(adapter);
1609#endif
9d5c8243
AK
1610}
1611
1612void igb_reinit_locked(struct igb_adapter *adapter)
1613{
1614 WARN_ON(in_interrupt());
1615 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1616 msleep(1);
1617 igb_down(adapter);
1618 igb_up(adapter);
1619 clear_bit(__IGB_RESETTING, &adapter->state);
1620}
1621
1622void igb_reset(struct igb_adapter *adapter)
1623{
090b1795 1624 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1625 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1626 struct e1000_mac_info *mac = &hw->mac;
1627 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1628 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1629 u16 hwm;
1630
1631 /* Repartition Pba for greater than 9k mtu
1632 * To take effect CTRL.RST is required.
1633 */
fa4dfae0 1634 switch (mac->type) {
d2ba2ed8 1635 case e1000_i350:
55cac248
AD
1636 case e1000_82580:
1637 pba = rd32(E1000_RXPBS);
1638 pba = igb_rxpbs_adjust_82580(pba);
1639 break;
fa4dfae0 1640 case e1000_82576:
d249be54
AD
1641 pba = rd32(E1000_RXPBS);
1642 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1643 break;
1644 case e1000_82575:
1645 default:
1646 pba = E1000_PBA_34K;
1647 break;
2d064c06 1648 }
9d5c8243 1649
2d064c06
AD
1650 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1651 (mac->type < e1000_82576)) {
9d5c8243
AK
1652 /* adjust PBA for jumbo frames */
1653 wr32(E1000_PBA, pba);
1654
1655 /* To maintain wire speed transmits, the Tx FIFO should be
1656 * large enough to accommodate two full transmit packets,
1657 * rounded up to the next 1KB and expressed in KB. Likewise,
1658 * the Rx FIFO should be large enough to accommodate at least
1659 * one full receive packet and is similarly rounded up and
1660 * expressed in KB. */
1661 pba = rd32(E1000_PBA);
1662 /* upper 16 bits has Tx packet buffer allocation size in KB */
1663 tx_space = pba >> 16;
1664 /* lower 16 bits has Rx packet buffer allocation size in KB */
1665 pba &= 0xffff;
1666 /* the tx fifo also stores 16 bytes of information about the tx
1667 * but don't include ethernet FCS because hardware appends it */
1668 min_tx_space = (adapter->max_frame_size +
85e8d004 1669 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1670 ETH_FCS_LEN) * 2;
1671 min_tx_space = ALIGN(min_tx_space, 1024);
1672 min_tx_space >>= 10;
1673 /* software strips receive CRC, so leave room for it */
1674 min_rx_space = adapter->max_frame_size;
1675 min_rx_space = ALIGN(min_rx_space, 1024);
1676 min_rx_space >>= 10;
1677
1678 /* If current Tx allocation is less than the min Tx FIFO size,
1679 * and the min Tx FIFO size is less than the current Rx FIFO
1680 * allocation, take space away from current Rx allocation */
1681 if (tx_space < min_tx_space &&
1682 ((min_tx_space - tx_space) < pba)) {
1683 pba = pba - (min_tx_space - tx_space);
1684
1685 /* if short on rx space, rx wins and must trump tx
1686 * adjustment */
1687 if (pba < min_rx_space)
1688 pba = min_rx_space;
1689 }
2d064c06 1690 wr32(E1000_PBA, pba);
9d5c8243 1691 }
9d5c8243
AK
1692
1693 /* flow control settings */
1694 /* The high water mark must be low enough to fit one full frame
1695 * (or the size used for early receive) above it in the Rx FIFO.
1696 * Set it to the lower of:
1697 * - 90% of the Rx FIFO size, or
1698 * - the full Rx FIFO size minus one full frame */
1699 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1700 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1701
d405ea3e
AD
1702 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1703 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1704 fc->pause_time = 0xFFFF;
1705 fc->send_xon = 1;
0cce119a 1706 fc->current_mode = fc->requested_mode;
9d5c8243 1707
4ae196df
AD
1708 /* disable receive for all VFs and wait one second */
1709 if (adapter->vfs_allocated_count) {
1710 int i;
1711 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1712 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1713
1714 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1715 igb_ping_all_vfs(adapter);
4ae196df
AD
1716
1717 /* disable transmits and receives */
1718 wr32(E1000_VFRE, 0);
1719 wr32(E1000_VFTE, 0);
1720 }
1721
9d5c8243 1722 /* Allow time for pending master requests to run */
330a6d6a 1723 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1724 wr32(E1000_WUC, 0);
1725
330a6d6a 1726 if (hw->mac.ops.init_hw(hw))
090b1795 1727 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1728
b6e0c419 1729 igb_init_dmac(adapter, pba);
88a268c1
NN
1730 if (!netif_running(adapter->netdev))
1731 igb_power_down_link(adapter);
1732
9d5c8243
AK
1733 igb_update_mng_vlan(adapter);
1734
1735 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1736 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1737
330a6d6a 1738 igb_get_phy_info(hw);
9d5c8243
AK
1739}
1740
c8f44aff
MM
1741static netdev_features_t igb_fix_features(struct net_device *netdev,
1742 netdev_features_t features)
b2cb09b1
JP
1743{
1744 /*
1745 * Since there is no support for separate rx/tx vlan accel
1746 * enable/disable make sure tx flag is always in same state as rx.
1747 */
1748 if (features & NETIF_F_HW_VLAN_RX)
1749 features |= NETIF_F_HW_VLAN_TX;
1750 else
1751 features &= ~NETIF_F_HW_VLAN_TX;
1752
1753 return features;
1754}
1755
c8f44aff
MM
1756static int igb_set_features(struct net_device *netdev,
1757 netdev_features_t features)
ac52caa3 1758{
c8f44aff 1759 netdev_features_t changed = netdev->features ^ features;
ac52caa3 1760
b2cb09b1
JP
1761 if (changed & NETIF_F_HW_VLAN_RX)
1762 igb_vlan_mode(netdev, features);
1763
ac52caa3
MM
1764 return 0;
1765}
1766
2e5c6922 1767static const struct net_device_ops igb_netdev_ops = {
559e9c49 1768 .ndo_open = igb_open,
2e5c6922 1769 .ndo_stop = igb_close,
cd392f5c 1770 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1771 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1772 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1773 .ndo_set_mac_address = igb_set_mac,
1774 .ndo_change_mtu = igb_change_mtu,
1775 .ndo_do_ioctl = igb_ioctl,
1776 .ndo_tx_timeout = igb_tx_timeout,
1777 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1778 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1779 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1780 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1781 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1782 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1783 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1784#ifdef CONFIG_NET_POLL_CONTROLLER
1785 .ndo_poll_controller = igb_netpoll,
1786#endif
b2cb09b1
JP
1787 .ndo_fix_features = igb_fix_features,
1788 .ndo_set_features = igb_set_features,
2e5c6922
SH
1789};
1790
9d5c8243
AK
1791/**
1792 * igb_probe - Device Initialization Routine
1793 * @pdev: PCI device information struct
1794 * @ent: entry in igb_pci_tbl
1795 *
1796 * Returns 0 on success, negative on failure
1797 *
1798 * igb_probe initializes an adapter identified by a pci_dev structure.
1799 * The OS initialization, configuring of the adapter private structure,
1800 * and a hardware reset occur.
1801 **/
1802static int __devinit igb_probe(struct pci_dev *pdev,
1803 const struct pci_device_id *ent)
1804{
1805 struct net_device *netdev;
1806 struct igb_adapter *adapter;
1807 struct e1000_hw *hw;
4337e993 1808 u16 eeprom_data = 0;
9835fd73 1809 s32 ret_val;
4337e993 1810 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1811 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1812 unsigned long mmio_start, mmio_len;
2d6a5e95 1813 int err, pci_using_dac;
9d5c8243 1814 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1815 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1816
bded64a7
AG
1817 /* Catch broken hardware that put the wrong VF device ID in
1818 * the PCIe SR-IOV capability.
1819 */
1820 if (pdev->is_virtfn) {
1821 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1822 pci_name(pdev), pdev->vendor, pdev->device);
1823 return -EINVAL;
1824 }
1825
aed5dec3 1826 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1827 if (err)
1828 return err;
1829
1830 pci_using_dac = 0;
59d71989 1831 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1832 if (!err) {
59d71989 1833 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1834 if (!err)
1835 pci_using_dac = 1;
1836 } else {
59d71989 1837 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1838 if (err) {
59d71989 1839 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1840 if (err) {
1841 dev_err(&pdev->dev, "No usable DMA "
1842 "configuration, aborting\n");
1843 goto err_dma;
1844 }
1845 }
1846 }
1847
aed5dec3
AD
1848 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1849 IORESOURCE_MEM),
1850 igb_driver_name);
9d5c8243
AK
1851 if (err)
1852 goto err_pci_reg;
1853
19d5afd4 1854 pci_enable_pcie_error_reporting(pdev);
40a914fa 1855
9d5c8243 1856 pci_set_master(pdev);
c682fc23 1857 pci_save_state(pdev);
9d5c8243
AK
1858
1859 err = -ENOMEM;
1bfaf07b 1860 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1861 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1862 if (!netdev)
1863 goto err_alloc_etherdev;
1864
1865 SET_NETDEV_DEV(netdev, &pdev->dev);
1866
1867 pci_set_drvdata(pdev, netdev);
1868 adapter = netdev_priv(netdev);
1869 adapter->netdev = netdev;
1870 adapter->pdev = pdev;
1871 hw = &adapter->hw;
1872 hw->back = adapter;
1873 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1874
1875 mmio_start = pci_resource_start(pdev, 0);
1876 mmio_len = pci_resource_len(pdev, 0);
1877
1878 err = -EIO;
28b0759c
AD
1879 hw->hw_addr = ioremap(mmio_start, mmio_len);
1880 if (!hw->hw_addr)
9d5c8243
AK
1881 goto err_ioremap;
1882
2e5c6922 1883 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1884 igb_set_ethtool_ops(netdev);
9d5c8243 1885 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1886
1887 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1888
1889 netdev->mem_start = mmio_start;
1890 netdev->mem_end = mmio_start + mmio_len;
1891
9d5c8243
AK
1892 /* PCI config space info */
1893 hw->vendor_id = pdev->vendor;
1894 hw->device_id = pdev->device;
1895 hw->revision_id = pdev->revision;
1896 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1897 hw->subsystem_device_id = pdev->subsystem_device;
1898
9d5c8243
AK
1899 /* Copy the default MAC, PHY and NVM function pointers */
1900 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1901 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1902 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1903 /* Initialize skew-specific constants */
1904 err = ei->get_invariants(hw);
1905 if (err)
450c87c8 1906 goto err_sw_init;
9d5c8243 1907
450c87c8 1908 /* setup the private structure */
9d5c8243
AK
1909 err = igb_sw_init(adapter);
1910 if (err)
1911 goto err_sw_init;
1912
1913 igb_get_bus_info_pcie(hw);
1914
1915 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1916
1917 /* Copper options */
1918 if (hw->phy.media_type == e1000_media_type_copper) {
1919 hw->phy.mdix = AUTO_ALL_MODES;
1920 hw->phy.disable_polarity_correction = false;
1921 hw->phy.ms_type = e1000_ms_hw_default;
1922 }
1923
1924 if (igb_check_reset_block(hw))
1925 dev_info(&pdev->dev,
1926 "PHY reset is blocked due to SOL/IDER session.\n");
1927
077887c3
AD
1928 /*
1929 * features is initialized to 0 in allocation, it might have bits
1930 * set by igb_sw_init so we should use an or instead of an
1931 * assignment.
1932 */
1933 netdev->features |= NETIF_F_SG |
1934 NETIF_F_IP_CSUM |
1935 NETIF_F_IPV6_CSUM |
1936 NETIF_F_TSO |
1937 NETIF_F_TSO6 |
1938 NETIF_F_RXHASH |
1939 NETIF_F_RXCSUM |
1940 NETIF_F_HW_VLAN_RX |
1941 NETIF_F_HW_VLAN_TX;
1942
1943 /* copy netdev features into list of user selectable features */
1944 netdev->hw_features |= netdev->features;
1945
1946 /* set this bit last since it cannot be part of hw_features */
1947 netdev->features |= NETIF_F_HW_VLAN_FILTER;
1948
1949 netdev->vlan_features |= NETIF_F_TSO |
1950 NETIF_F_TSO6 |
1951 NETIF_F_IP_CSUM |
1952 NETIF_F_IPV6_CSUM |
1953 NETIF_F_SG;
48f29ffc 1954
7b872a55 1955 if (pci_using_dac) {
9d5c8243 1956 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1957 netdev->vlan_features |= NETIF_F_HIGHDMA;
1958 }
9d5c8243 1959
ac52caa3
MM
1960 if (hw->mac.type >= e1000_82576) {
1961 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1962 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1963 }
b9473560 1964
01789349
JP
1965 netdev->priv_flags |= IFF_UNICAST_FLT;
1966
330a6d6a 1967 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1968
1969 /* before reading the NVM, reset the controller to put the device in a
1970 * known good starting state */
1971 hw->mac.ops.reset_hw(hw);
1972
1973 /* make sure the NVM is good */
4322e561 1974 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1975 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1976 err = -EIO;
1977 goto err_eeprom;
1978 }
1979
1980 /* copy the MAC address out of the NVM */
1981 if (hw->mac.ops.read_mac_addr(hw))
1982 dev_err(&pdev->dev, "NVM Read Error\n");
1983
1984 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1985 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1986
1987 if (!is_valid_ether_addr(netdev->perm_addr)) {
1988 dev_err(&pdev->dev, "Invalid MAC Address\n");
1989 err = -EIO;
1990 goto err_eeprom;
1991 }
1992
c061b18d 1993 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1994 (unsigned long) adapter);
c061b18d 1995 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1996 (unsigned long) adapter);
9d5c8243
AK
1997
1998 INIT_WORK(&adapter->reset_task, igb_reset_task);
1999 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2000
450c87c8 2001 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2002 adapter->fc_autoneg = true;
2003 hw->mac.autoneg = true;
2004 hw->phy.autoneg_advertised = 0x2f;
2005
0cce119a
AD
2006 hw->fc.requested_mode = e1000_fc_default;
2007 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2008
9d5c8243
AK
2009 igb_validate_mdi_setting(hw);
2010
9d5c8243
AK
2011 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2012 * enable the ACPI Magic Packet filter
2013 */
2014
a2cf8b6c 2015 if (hw->bus.func == 0)
312c75ae 2016 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2017 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2018 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2019 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2020 &eeprom_data);
a2cf8b6c
AD
2021 else if (hw->bus.func == 1)
2022 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2023
2024 if (eeprom_data & eeprom_apme_mask)
2025 adapter->eeprom_wol |= E1000_WUFC_MAG;
2026
2027 /* now that we have the eeprom settings, apply the special cases where
2028 * the eeprom may be wrong or the board simply won't support wake on
2029 * lan on a particular port */
2030 switch (pdev->device) {
2031 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2032 adapter->eeprom_wol = 0;
2033 break;
2034 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2035 case E1000_DEV_ID_82576_FIBER:
2036 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2037 /* Wake events only supported on port A for dual fiber
2038 * regardless of eeprom setting */
2039 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2040 adapter->eeprom_wol = 0;
2041 break;
c8ea5ea9 2042 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2043 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2044 /* if quad port adapter, disable WoL on all but port A */
2045 if (global_quad_port_a != 0)
2046 adapter->eeprom_wol = 0;
2047 else
2048 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2049 /* Reset for multiple quad port adapters */
2050 if (++global_quad_port_a == 4)
2051 global_quad_port_a = 0;
2052 break;
9d5c8243
AK
2053 }
2054
2055 /* initialize the wol settings based on the eeprom settings */
2056 adapter->wol = adapter->eeprom_wol;
e1b86d84 2057 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2058
2059 /* reset the hardware with the new settings */
2060 igb_reset(adapter);
2061
2062 /* let the f/w know that the h/w is now under the control of the
2063 * driver. */
2064 igb_get_hw_control(adapter);
2065
9d5c8243
AK
2066 strcpy(netdev->name, "eth%d");
2067 err = register_netdev(netdev);
2068 if (err)
2069 goto err_register;
2070
b168dfc5
JB
2071 /* carrier off reporting is important to ethtool even BEFORE open */
2072 netif_carrier_off(netdev);
2073
421e02f0 2074#ifdef CONFIG_IGB_DCA
bbd98fe4 2075 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2076 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2077 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2078 igb_setup_dca(adapter);
2079 }
fe4506b6 2080
38c845c7 2081#endif
673b8b70
AB
2082 /* do hw tstamp init after resetting */
2083 igb_init_hw_timer(adapter);
2084
9d5c8243
AK
2085 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2086 /* print bus type/speed/width info */
7c510e4b 2087 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2088 netdev->name,
559e9c49 2089 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2090 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2091 "unknown"),
59c3de89
AD
2092 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2093 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2094 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2095 "unknown"),
7c510e4b 2096 netdev->dev_addr);
9d5c8243 2097
9835fd73
CW
2098 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2099 if (ret_val)
2100 strcpy(part_str, "Unknown");
2101 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2102 dev_info(&pdev->dev,
2103 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2104 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2105 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2106 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2107 switch (hw->mac.type) {
2108 case e1000_i350:
2109 igb_set_eee_i350(hw);
2110 break;
2111 default:
2112 break;
2113 }
9d5c8243
AK
2114 return 0;
2115
2116err_register:
2117 igb_release_hw_control(adapter);
2118err_eeprom:
2119 if (!igb_check_reset_block(hw))
f5f4cf08 2120 igb_reset_phy(hw);
9d5c8243
AK
2121
2122 if (hw->flash_address)
2123 iounmap(hw->flash_address);
9d5c8243 2124err_sw_init:
047e0030 2125 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2126 iounmap(hw->hw_addr);
2127err_ioremap:
2128 free_netdev(netdev);
2129err_alloc_etherdev:
559e9c49
AD
2130 pci_release_selected_regions(pdev,
2131 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2132err_pci_reg:
2133err_dma:
2134 pci_disable_device(pdev);
2135 return err;
2136}
2137
2138/**
2139 * igb_remove - Device Removal Routine
2140 * @pdev: PCI device information struct
2141 *
2142 * igb_remove is called by the PCI subsystem to alert the driver
2143 * that it should release a PCI device. The could be caused by a
2144 * Hot-Plug event, or because the driver is going to be removed from
2145 * memory.
2146 **/
2147static void __devexit igb_remove(struct pci_dev *pdev)
2148{
2149 struct net_device *netdev = pci_get_drvdata(pdev);
2150 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2151 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2152
760141a5
TH
2153 /*
2154 * The watchdog timer may be rescheduled, so explicitly
2155 * disable watchdog from being rescheduled.
2156 */
9d5c8243
AK
2157 set_bit(__IGB_DOWN, &adapter->state);
2158 del_timer_sync(&adapter->watchdog_timer);
2159 del_timer_sync(&adapter->phy_info_timer);
2160
760141a5
TH
2161 cancel_work_sync(&adapter->reset_task);
2162 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2163
421e02f0 2164#ifdef CONFIG_IGB_DCA
7dfc16fa 2165 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2166 dev_info(&pdev->dev, "DCA disabled\n");
2167 dca_remove_requester(&pdev->dev);
7dfc16fa 2168 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2169 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2170 }
2171#endif
2172
9d5c8243
AK
2173 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2174 * would have already happened in close and is redundant. */
2175 igb_release_hw_control(adapter);
2176
2177 unregister_netdev(netdev);
2178
047e0030 2179 igb_clear_interrupt_scheme(adapter);
9d5c8243 2180
37680117
AD
2181#ifdef CONFIG_PCI_IOV
2182 /* reclaim resources allocated to VFs */
2183 if (adapter->vf_data) {
2184 /* disable iov and allow time for transactions to clear */
0224d663
GR
2185 if (!igb_check_vf_assignment(adapter)) {
2186 pci_disable_sriov(pdev);
2187 msleep(500);
2188 } else {
2189 dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
2190 }
37680117
AD
2191
2192 kfree(adapter->vf_data);
2193 adapter->vf_data = NULL;
2194 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2195 wrfl();
37680117
AD
2196 msleep(100);
2197 dev_info(&pdev->dev, "IOV Disabled\n");
2198 }
2199#endif
559e9c49 2200
28b0759c
AD
2201 iounmap(hw->hw_addr);
2202 if (hw->flash_address)
2203 iounmap(hw->flash_address);
559e9c49
AD
2204 pci_release_selected_regions(pdev,
2205 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2206
1128c756 2207 kfree(adapter->shadow_vfta);
9d5c8243
AK
2208 free_netdev(netdev);
2209
19d5afd4 2210 pci_disable_pcie_error_reporting(pdev);
40a914fa 2211
9d5c8243
AK
2212 pci_disable_device(pdev);
2213}
2214
a6b623e0
AD
2215/**
2216 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2217 * @adapter: board private structure to initialize
2218 *
2219 * This function initializes the vf specific data storage and then attempts to
2220 * allocate the VFs. The reason for ordering it this way is because it is much
2221 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2222 * the memory for the VFs.
2223 **/
2224static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2225{
2226#ifdef CONFIG_PCI_IOV
2227 struct pci_dev *pdev = adapter->pdev;
0224d663
GR
2228 int old_vfs = igb_find_enabled_vfs(adapter);
2229 int i;
a6b623e0 2230
0224d663
GR
2231 if (old_vfs) {
2232 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2233 "max_vfs setting of %d\n", old_vfs, max_vfs);
2234 adapter->vfs_allocated_count = old_vfs;
a6b623e0
AD
2235 }
2236
0224d663
GR
2237 if (!adapter->vfs_allocated_count)
2238 return;
2239
2240 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2241 sizeof(struct vf_data_storage), GFP_KERNEL);
2242 /* if allocation failed then we do not support SR-IOV */
2243 if (!adapter->vf_data) {
a6b623e0 2244 adapter->vfs_allocated_count = 0;
0224d663
GR
2245 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2246 "Data Storage\n");
2247 goto out;
a6b623e0 2248 }
0224d663
GR
2249
2250 if (!old_vfs) {
2251 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2252 goto err_out;
2253 }
2254 dev_info(&pdev->dev, "%d VFs allocated\n",
2255 adapter->vfs_allocated_count);
2256 for (i = 0; i < adapter->vfs_allocated_count; i++)
2257 igb_vf_configure(adapter, i);
2258
2259 /* DMA Coalescing is not supported in IOV mode. */
2260 adapter->flags &= ~IGB_FLAG_DMAC;
2261 goto out;
2262err_out:
2263 kfree(adapter->vf_data);
2264 adapter->vf_data = NULL;
2265 adapter->vfs_allocated_count = 0;
2266out:
2267 return;
a6b623e0
AD
2268#endif /* CONFIG_PCI_IOV */
2269}
2270
115f459a
AD
2271/**
2272 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2273 * @adapter: board private structure to initialize
2274 *
2275 * igb_init_hw_timer initializes the function pointer and values for the hw
2276 * timer found in hardware.
2277 **/
2278static void igb_init_hw_timer(struct igb_adapter *adapter)
2279{
2280 struct e1000_hw *hw = &adapter->hw;
2281
2282 switch (hw->mac.type) {
d2ba2ed8 2283 case e1000_i350:
55cac248
AD
2284 case e1000_82580:
2285 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2286 adapter->cycles.read = igb_read_clock;
2287 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2288 adapter->cycles.mult = 1;
2289 /*
2290 * The 82580 timesync updates the system timer every 8ns by 8ns
2291 * and the value cannot be shifted. Instead we need to shift
2292 * the registers to generate a 64bit timer value. As a result
2293 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2294 * 24 in order to generate a larger value for synchronization.
2295 */
2296 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2297 /* disable system timer temporarily by setting bit 31 */
2298 wr32(E1000_TSAUXC, 0x80000000);
2299 wrfl();
2300
2301 /* Set registers so that rollover occurs soon to test this. */
2302 wr32(E1000_SYSTIMR, 0x00000000);
2303 wr32(E1000_SYSTIML, 0x80000000);
2304 wr32(E1000_SYSTIMH, 0x000000FF);
2305 wrfl();
2306
2307 /* enable system timer by clearing bit 31 */
2308 wr32(E1000_TSAUXC, 0x0);
2309 wrfl();
2310
2311 timecounter_init(&adapter->clock,
2312 &adapter->cycles,
2313 ktime_to_ns(ktime_get_real()));
2314 /*
2315 * Synchronize our NIC clock against system wall clock. NIC
2316 * time stamp reading requires ~3us per sample, each sample
2317 * was pretty stable even under load => only require 10
2318 * samples for each offset comparison.
2319 */
2320 memset(&adapter->compare, 0, sizeof(adapter->compare));
2321 adapter->compare.source = &adapter->clock;
2322 adapter->compare.target = ktime_get_real;
2323 adapter->compare.num_samples = 10;
2324 timecompare_update(&adapter->compare, 0);
2325 break;
115f459a
AD
2326 case e1000_82576:
2327 /*
2328 * Initialize hardware timer: we keep it running just in case
2329 * that some program needs it later on.
2330 */
2331 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2332 adapter->cycles.read = igb_read_clock;
2333 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2334 adapter->cycles.mult = 1;
2335 /**
2336 * Scale the NIC clock cycle by a large factor so that
2337 * relatively small clock corrections can be added or
25985edc 2338 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2339 * factor are a) that the clock register overflows more quickly
2340 * (not such a big deal) and b) that the increment per tick has
2341 * to fit into 24 bits. As a result we need to use a shift of
2342 * 19 so we can fit a value of 16 into the TIMINCA register.
2343 */
2344 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2345 wr32(E1000_TIMINCA,
2346 (1 << E1000_TIMINCA_16NS_SHIFT) |
2347 (16 << IGB_82576_TSYNC_SHIFT));
2348
2349 /* Set registers so that rollover occurs soon to test this. */
2350 wr32(E1000_SYSTIML, 0x00000000);
2351 wr32(E1000_SYSTIMH, 0xFF800000);
2352 wrfl();
2353
2354 timecounter_init(&adapter->clock,
2355 &adapter->cycles,
2356 ktime_to_ns(ktime_get_real()));
2357 /*
2358 * Synchronize our NIC clock against system wall clock. NIC
2359 * time stamp reading requires ~3us per sample, each sample
2360 * was pretty stable even under load => only require 10
2361 * samples for each offset comparison.
2362 */
2363 memset(&adapter->compare, 0, sizeof(adapter->compare));
2364 adapter->compare.source = &adapter->clock;
2365 adapter->compare.target = ktime_get_real;
2366 adapter->compare.num_samples = 10;
2367 timecompare_update(&adapter->compare, 0);
2368 break;
2369 case e1000_82575:
2370 /* 82575 does not support timesync */
2371 default:
2372 break;
2373 }
2374
2375}
2376
9d5c8243
AK
2377/**
2378 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2379 * @adapter: board private structure to initialize
2380 *
2381 * igb_sw_init initializes the Adapter private data structure.
2382 * Fields are initialized based on PCI device information and
2383 * OS network device settings (MTU size).
2384 **/
2385static int __devinit igb_sw_init(struct igb_adapter *adapter)
2386{
2387 struct e1000_hw *hw = &adapter->hw;
2388 struct net_device *netdev = adapter->netdev;
2389 struct pci_dev *pdev = adapter->pdev;
2390
2391 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2392
13fde97a 2393 /* set default ring sizes */
68fd9910
AD
2394 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2395 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2396
2397 /* set default ITR values */
4fc82adf
AD
2398 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2399 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2400
13fde97a
AD
2401 /* set default work limits */
2402 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2403
153285f9
AD
2404 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2405 VLAN_HLEN;
9d5c8243
AK
2406 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2407
81c2fc22
AD
2408 adapter->node = -1;
2409
12dcd86b 2410 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2411#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2412 switch (hw->mac.type) {
2413 case e1000_82576:
2414 case e1000_i350:
9b082d73
SA
2415 if (max_vfs > 7) {
2416 dev_warn(&pdev->dev,
2417 "Maximum of 7 VFs per PF, using max\n");
2418 adapter->vfs_allocated_count = 7;
2419 } else
2420 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2421 break;
2422 default:
2423 break;
2424 }
a6b623e0 2425#endif /* CONFIG_PCI_IOV */
a99955fc 2426 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2427 /* i350 cannot do RSS and SR-IOV at the same time */
2428 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2429 adapter->rss_queues = 1;
a99955fc
AD
2430
2431 /*
2432 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2433 * then we should combine the queues into a queue pair in order to
2434 * conserve interrupts due to limited supply
2435 */
2436 if ((adapter->rss_queues > 4) ||
2437 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2438 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2439
1128c756
CW
2440 /* Setup and initialize a copy of the hw vlan table array */
2441 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2442 E1000_VLAN_FILTER_TBL_SIZE,
2443 GFP_ATOMIC);
2444
a6b623e0 2445 /* This call may decrease the number of queues */
047e0030 2446 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2447 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2448 return -ENOMEM;
2449 }
2450
a6b623e0
AD
2451 igb_probe_vfs(adapter);
2452
9d5c8243
AK
2453 /* Explicitly disable IRQ since the NIC can be in any state. */
2454 igb_irq_disable(adapter);
2455
831ec0b4
CW
2456 if (hw->mac.type == e1000_i350)
2457 adapter->flags &= ~IGB_FLAG_DMAC;
2458
9d5c8243
AK
2459 set_bit(__IGB_DOWN, &adapter->state);
2460 return 0;
2461}
2462
2463/**
2464 * igb_open - Called when a network interface is made active
2465 * @netdev: network interface device structure
2466 *
2467 * Returns 0 on success, negative value on failure
2468 *
2469 * The open entry point is called when a network interface is made
2470 * active by the system (IFF_UP). At this point all resources needed
2471 * for transmit and receive operations are allocated, the interrupt
2472 * handler is registered with the OS, the watchdog timer is started,
2473 * and the stack is notified that the interface is ready.
2474 **/
2475static int igb_open(struct net_device *netdev)
2476{
2477 struct igb_adapter *adapter = netdev_priv(netdev);
2478 struct e1000_hw *hw = &adapter->hw;
2479 int err;
2480 int i;
2481
2482 /* disallow open during test */
2483 if (test_bit(__IGB_TESTING, &adapter->state))
2484 return -EBUSY;
2485
b168dfc5
JB
2486 netif_carrier_off(netdev);
2487
9d5c8243
AK
2488 /* allocate transmit descriptors */
2489 err = igb_setup_all_tx_resources(adapter);
2490 if (err)
2491 goto err_setup_tx;
2492
2493 /* allocate receive descriptors */
2494 err = igb_setup_all_rx_resources(adapter);
2495 if (err)
2496 goto err_setup_rx;
2497
88a268c1 2498 igb_power_up_link(adapter);
9d5c8243 2499
9d5c8243
AK
2500 /* before we allocate an interrupt, we must be ready to handle it.
2501 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2502 * as soon as we call pci_request_irq, so we have to setup our
2503 * clean_rx handler before we do so. */
2504 igb_configure(adapter);
2505
2506 err = igb_request_irq(adapter);
2507 if (err)
2508 goto err_req_irq;
2509
2510 /* From here on the code is the same as igb_up() */
2511 clear_bit(__IGB_DOWN, &adapter->state);
2512
0d1ae7f4
AD
2513 for (i = 0; i < adapter->num_q_vectors; i++)
2514 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2515
2516 /* Clear any pending interrupts. */
2517 rd32(E1000_ICR);
844290e5
PW
2518
2519 igb_irq_enable(adapter);
2520
d4960307
AD
2521 /* notify VFs that reset has been completed */
2522 if (adapter->vfs_allocated_count) {
2523 u32 reg_data = rd32(E1000_CTRL_EXT);
2524 reg_data |= E1000_CTRL_EXT_PFRSTD;
2525 wr32(E1000_CTRL_EXT, reg_data);
2526 }
2527
d55b53ff
JK
2528 netif_tx_start_all_queues(netdev);
2529
25568a53
AD
2530 /* start the watchdog. */
2531 hw->mac.get_link_status = 1;
2532 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2533
2534 return 0;
2535
2536err_req_irq:
2537 igb_release_hw_control(adapter);
88a268c1 2538 igb_power_down_link(adapter);
9d5c8243
AK
2539 igb_free_all_rx_resources(adapter);
2540err_setup_rx:
2541 igb_free_all_tx_resources(adapter);
2542err_setup_tx:
2543 igb_reset(adapter);
2544
2545 return err;
2546}
2547
2548/**
2549 * igb_close - Disables a network interface
2550 * @netdev: network interface device structure
2551 *
2552 * Returns 0, this is not allowed to fail
2553 *
2554 * The close entry point is called when an interface is de-activated
2555 * by the OS. The hardware is still under the driver's control, but
2556 * needs to be disabled. A global MAC reset is issued to stop the
2557 * hardware, and all transmit and receive resources are freed.
2558 **/
2559static int igb_close(struct net_device *netdev)
2560{
2561 struct igb_adapter *adapter = netdev_priv(netdev);
2562
2563 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2564 igb_down(adapter);
2565
2566 igb_free_irq(adapter);
2567
2568 igb_free_all_tx_resources(adapter);
2569 igb_free_all_rx_resources(adapter);
2570
9d5c8243
AK
2571 return 0;
2572}
2573
2574/**
2575 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2576 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2577 *
2578 * Return 0 on success, negative on failure
2579 **/
80785298 2580int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2581{
59d71989 2582 struct device *dev = tx_ring->dev;
81c2fc22 2583 int orig_node = dev_to_node(dev);
9d5c8243
AK
2584 int size;
2585
06034649 2586 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2587 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2588 if (!tx_ring->tx_buffer_info)
2589 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2590 if (!tx_ring->tx_buffer_info)
9d5c8243 2591 goto err;
9d5c8243
AK
2592
2593 /* round up to nearest 4K */
85e8d004 2594 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2595 tx_ring->size = ALIGN(tx_ring->size, 4096);
2596
81c2fc22 2597 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2598 tx_ring->desc = dma_alloc_coherent(dev,
2599 tx_ring->size,
2600 &tx_ring->dma,
2601 GFP_KERNEL);
81c2fc22
AD
2602 set_dev_node(dev, orig_node);
2603 if (!tx_ring->desc)
2604 tx_ring->desc = dma_alloc_coherent(dev,
2605 tx_ring->size,
2606 &tx_ring->dma,
2607 GFP_KERNEL);
9d5c8243
AK
2608
2609 if (!tx_ring->desc)
2610 goto err;
2611
9d5c8243
AK
2612 tx_ring->next_to_use = 0;
2613 tx_ring->next_to_clean = 0;
81c2fc22 2614
9d5c8243
AK
2615 return 0;
2616
2617err:
06034649 2618 vfree(tx_ring->tx_buffer_info);
59d71989 2619 dev_err(dev,
9d5c8243
AK
2620 "Unable to allocate memory for the transmit descriptor ring\n");
2621 return -ENOMEM;
2622}
2623
2624/**
2625 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2626 * (Descriptors) for all queues
2627 * @adapter: board private structure
2628 *
2629 * Return 0 on success, negative on failure
2630 **/
2631static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2632{
439705e1 2633 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2634 int i, err = 0;
2635
2636 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2637 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2638 if (err) {
439705e1 2639 dev_err(&pdev->dev,
9d5c8243
AK
2640 "Allocation for Tx Queue %u failed\n", i);
2641 for (i--; i >= 0; i--)
3025a446 2642 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2643 break;
2644 }
2645 }
2646
2647 return err;
2648}
2649
2650/**
85b430b4
AD
2651 * igb_setup_tctl - configure the transmit control registers
2652 * @adapter: Board private structure
9d5c8243 2653 **/
d7ee5b3a 2654void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2655{
9d5c8243
AK
2656 struct e1000_hw *hw = &adapter->hw;
2657 u32 tctl;
9d5c8243 2658
85b430b4
AD
2659 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2660 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2661
2662 /* Program the Transmit Control Register */
9d5c8243
AK
2663 tctl = rd32(E1000_TCTL);
2664 tctl &= ~E1000_TCTL_CT;
2665 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2666 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2667
2668 igb_config_collision_dist(hw);
2669
9d5c8243
AK
2670 /* Enable transmits */
2671 tctl |= E1000_TCTL_EN;
2672
2673 wr32(E1000_TCTL, tctl);
2674}
2675
85b430b4
AD
2676/**
2677 * igb_configure_tx_ring - Configure transmit ring after Reset
2678 * @adapter: board private structure
2679 * @ring: tx ring to configure
2680 *
2681 * Configure a transmit ring after a reset.
2682 **/
d7ee5b3a
AD
2683void igb_configure_tx_ring(struct igb_adapter *adapter,
2684 struct igb_ring *ring)
85b430b4
AD
2685{
2686 struct e1000_hw *hw = &adapter->hw;
a74420e0 2687 u32 txdctl = 0;
85b430b4
AD
2688 u64 tdba = ring->dma;
2689 int reg_idx = ring->reg_idx;
2690
2691 /* disable the queue */
a74420e0 2692 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2693 wrfl();
2694 mdelay(10);
2695
2696 wr32(E1000_TDLEN(reg_idx),
2697 ring->count * sizeof(union e1000_adv_tx_desc));
2698 wr32(E1000_TDBAL(reg_idx),
2699 tdba & 0x00000000ffffffffULL);
2700 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2701
fce99e34 2702 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2703 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2704 writel(0, ring->tail);
85b430b4
AD
2705
2706 txdctl |= IGB_TX_PTHRESH;
2707 txdctl |= IGB_TX_HTHRESH << 8;
2708 txdctl |= IGB_TX_WTHRESH << 16;
2709
2710 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2711 wr32(E1000_TXDCTL(reg_idx), txdctl);
2712}
2713
2714/**
2715 * igb_configure_tx - Configure transmit Unit after Reset
2716 * @adapter: board private structure
2717 *
2718 * Configure the Tx unit of the MAC after a reset.
2719 **/
2720static void igb_configure_tx(struct igb_adapter *adapter)
2721{
2722 int i;
2723
2724 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2725 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2726}
2727
9d5c8243
AK
2728/**
2729 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2730 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2731 *
2732 * Returns 0 on success, negative on failure
2733 **/
80785298 2734int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2735{
59d71989 2736 struct device *dev = rx_ring->dev;
81c2fc22 2737 int orig_node = dev_to_node(dev);
9d5c8243
AK
2738 int size, desc_len;
2739
06034649 2740 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2741 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2742 if (!rx_ring->rx_buffer_info)
2743 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2744 if (!rx_ring->rx_buffer_info)
9d5c8243 2745 goto err;
9d5c8243
AK
2746
2747 desc_len = sizeof(union e1000_adv_rx_desc);
2748
2749 /* Round up to nearest 4K */
2750 rx_ring->size = rx_ring->count * desc_len;
2751 rx_ring->size = ALIGN(rx_ring->size, 4096);
2752
81c2fc22 2753 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2754 rx_ring->desc = dma_alloc_coherent(dev,
2755 rx_ring->size,
2756 &rx_ring->dma,
2757 GFP_KERNEL);
81c2fc22
AD
2758 set_dev_node(dev, orig_node);
2759 if (!rx_ring->desc)
2760 rx_ring->desc = dma_alloc_coherent(dev,
2761 rx_ring->size,
2762 &rx_ring->dma,
2763 GFP_KERNEL);
9d5c8243
AK
2764
2765 if (!rx_ring->desc)
2766 goto err;
2767
2768 rx_ring->next_to_clean = 0;
2769 rx_ring->next_to_use = 0;
9d5c8243 2770
9d5c8243
AK
2771 return 0;
2772
2773err:
06034649
AD
2774 vfree(rx_ring->rx_buffer_info);
2775 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2776 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2777 " ring\n");
9d5c8243
AK
2778 return -ENOMEM;
2779}
2780
2781/**
2782 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2783 * (Descriptors) for all queues
2784 * @adapter: board private structure
2785 *
2786 * Return 0 on success, negative on failure
2787 **/
2788static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2789{
439705e1 2790 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2791 int i, err = 0;
2792
2793 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2794 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2795 if (err) {
439705e1 2796 dev_err(&pdev->dev,
9d5c8243
AK
2797 "Allocation for Rx Queue %u failed\n", i);
2798 for (i--; i >= 0; i--)
3025a446 2799 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2800 break;
2801 }
2802 }
2803
2804 return err;
2805}
2806
06cf2666
AD
2807/**
2808 * igb_setup_mrqc - configure the multiple receive queue control registers
2809 * @adapter: Board private structure
2810 **/
2811static void igb_setup_mrqc(struct igb_adapter *adapter)
2812{
2813 struct e1000_hw *hw = &adapter->hw;
2814 u32 mrqc, rxcsum;
2815 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2816 union e1000_reta {
2817 u32 dword;
2818 u8 bytes[4];
2819 } reta;
2820 static const u8 rsshash[40] = {
2821 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2822 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2823 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2824 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2825
2826 /* Fill out hash function seeds */
2827 for (j = 0; j < 10; j++) {
2828 u32 rsskey = rsshash[(j * 4)];
2829 rsskey |= rsshash[(j * 4) + 1] << 8;
2830 rsskey |= rsshash[(j * 4) + 2] << 16;
2831 rsskey |= rsshash[(j * 4) + 3] << 24;
2832 array_wr32(E1000_RSSRK(0), j, rsskey);
2833 }
2834
a99955fc 2835 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2836
2837 if (adapter->vfs_allocated_count) {
2838 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2839 switch (hw->mac.type) {
d2ba2ed8 2840 case e1000_i350:
55cac248
AD
2841 case e1000_82580:
2842 num_rx_queues = 1;
2843 shift = 0;
2844 break;
06cf2666
AD
2845 case e1000_82576:
2846 shift = 3;
2847 num_rx_queues = 2;
2848 break;
2849 case e1000_82575:
2850 shift = 2;
2851 shift2 = 6;
2852 default:
2853 break;
2854 }
2855 } else {
2856 if (hw->mac.type == e1000_82575)
2857 shift = 6;
2858 }
2859
2860 for (j = 0; j < (32 * 4); j++) {
2861 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2862 if (shift2)
2863 reta.bytes[j & 3] |= num_rx_queues << shift2;
2864 if ((j & 3) == 3)
2865 wr32(E1000_RETA(j >> 2), reta.dword);
2866 }
2867
2868 /*
2869 * Disable raw packet checksumming so that RSS hash is placed in
2870 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2871 * offloads as they are enabled by default
2872 */
2873 rxcsum = rd32(E1000_RXCSUM);
2874 rxcsum |= E1000_RXCSUM_PCSD;
2875
2876 if (adapter->hw.mac.type >= e1000_82576)
2877 /* Enable Receive Checksum Offload for SCTP */
2878 rxcsum |= E1000_RXCSUM_CRCOFL;
2879
2880 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2881 wr32(E1000_RXCSUM, rxcsum);
2882
2883 /* If VMDq is enabled then we set the appropriate mode for that, else
2884 * we default to RSS so that an RSS hash is calculated per packet even
2885 * if we are only using one queue */
2886 if (adapter->vfs_allocated_count) {
2887 if (hw->mac.type > e1000_82575) {
2888 /* Set the default pool for the PF's first queue */
2889 u32 vtctl = rd32(E1000_VT_CTL);
2890 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2891 E1000_VT_CTL_DISABLE_DEF_POOL);
2892 vtctl |= adapter->vfs_allocated_count <<
2893 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2894 wr32(E1000_VT_CTL, vtctl);
2895 }
a99955fc 2896 if (adapter->rss_queues > 1)
06cf2666
AD
2897 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2898 else
2899 mrqc = E1000_MRQC_ENABLE_VMDQ;
2900 } else {
2901 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2902 }
2903 igb_vmm_control(adapter);
2904
4478a9cd
AD
2905 /*
2906 * Generate RSS hash based on TCP port numbers and/or
2907 * IPv4/v6 src and dst addresses since UDP cannot be
2908 * hashed reliably due to IP fragmentation
2909 */
2910 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2911 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2912 E1000_MRQC_RSS_FIELD_IPV6 |
2913 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2914 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2915
2916 wr32(E1000_MRQC, mrqc);
2917}
2918
9d5c8243
AK
2919/**
2920 * igb_setup_rctl - configure the receive control registers
2921 * @adapter: Board private structure
2922 **/
d7ee5b3a 2923void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2924{
2925 struct e1000_hw *hw = &adapter->hw;
2926 u32 rctl;
9d5c8243
AK
2927
2928 rctl = rd32(E1000_RCTL);
2929
2930 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2931 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2932
69d728ba 2933 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2934 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2935
87cb7e8c
AK
2936 /*
2937 * enable stripping of CRC. It's unlikely this will break BMC
2938 * redirection as it did with e1000. Newer features require
2939 * that the HW strips the CRC.
73cd78f1 2940 */
87cb7e8c 2941 rctl |= E1000_RCTL_SECRC;
9d5c8243 2942
559e9c49 2943 /* disable store bad packets and clear size bits. */
ec54d7d6 2944 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2945
6ec43fe6
AD
2946 /* enable LPE to prevent packets larger than max_frame_size */
2947 rctl |= E1000_RCTL_LPE;
9d5c8243 2948
952f72a8
AD
2949 /* disable queue 0 to prevent tail write w/o re-config */
2950 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2951
e1739522
AD
2952 /* Attention!!! For SR-IOV PF driver operations you must enable
2953 * queue drop for all VF and PF queues to prevent head of line blocking
2954 * if an un-trusted VF does not provide descriptors to hardware.
2955 */
2956 if (adapter->vfs_allocated_count) {
e1739522
AD
2957 /* set all queue drop enable bits */
2958 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2959 }
2960
9d5c8243
AK
2961 wr32(E1000_RCTL, rctl);
2962}
2963
7d5753f0
AD
2964static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2965 int vfn)
2966{
2967 struct e1000_hw *hw = &adapter->hw;
2968 u32 vmolr;
2969
2970 /* if it isn't the PF check to see if VFs are enabled and
2971 * increase the size to support vlan tags */
2972 if (vfn < adapter->vfs_allocated_count &&
2973 adapter->vf_data[vfn].vlans_enabled)
2974 size += VLAN_TAG_SIZE;
2975
2976 vmolr = rd32(E1000_VMOLR(vfn));
2977 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2978 vmolr |= size | E1000_VMOLR_LPE;
2979 wr32(E1000_VMOLR(vfn), vmolr);
2980
2981 return 0;
2982}
2983
e1739522
AD
2984/**
2985 * igb_rlpml_set - set maximum receive packet size
2986 * @adapter: board private structure
2987 *
2988 * Configure maximum receivable packet size.
2989 **/
2990static void igb_rlpml_set(struct igb_adapter *adapter)
2991{
153285f9 2992 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
2993 struct e1000_hw *hw = &adapter->hw;
2994 u16 pf_id = adapter->vfs_allocated_count;
2995
e1739522
AD
2996 if (pf_id) {
2997 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
2998 /*
2999 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3000 * to our max jumbo frame size, in case we need to enable
3001 * jumbo frames on one of the rings later.
3002 * This will not pass over-length frames into the default
3003 * queue because it's gated by the VMOLR.RLPML.
3004 */
7d5753f0 3005 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3006 }
3007
3008 wr32(E1000_RLPML, max_frame_size);
3009}
3010
8151d294
WM
3011static inline void igb_set_vmolr(struct igb_adapter *adapter,
3012 int vfn, bool aupe)
7d5753f0
AD
3013{
3014 struct e1000_hw *hw = &adapter->hw;
3015 u32 vmolr;
3016
3017 /*
3018 * This register exists only on 82576 and newer so if we are older then
3019 * we should exit and do nothing
3020 */
3021 if (hw->mac.type < e1000_82576)
3022 return;
3023
3024 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3025 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3026 if (aupe)
3027 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3028 else
3029 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3030
3031 /* clear all bits that might not be set */
3032 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3033
a99955fc 3034 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3035 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3036 /*
3037 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3038 * multicast packets
3039 */
3040 if (vfn <= adapter->vfs_allocated_count)
3041 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3042
3043 wr32(E1000_VMOLR(vfn), vmolr);
3044}
3045
85b430b4
AD
3046/**
3047 * igb_configure_rx_ring - Configure a receive ring after Reset
3048 * @adapter: board private structure
3049 * @ring: receive ring to be configured
3050 *
3051 * Configure the Rx unit of the MAC after a reset.
3052 **/
d7ee5b3a
AD
3053void igb_configure_rx_ring(struct igb_adapter *adapter,
3054 struct igb_ring *ring)
85b430b4
AD
3055{
3056 struct e1000_hw *hw = &adapter->hw;
3057 u64 rdba = ring->dma;
3058 int reg_idx = ring->reg_idx;
a74420e0 3059 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3060
3061 /* disable the queue */
a74420e0 3062 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3063
3064 /* Set DMA base address registers */
3065 wr32(E1000_RDBAL(reg_idx),
3066 rdba & 0x00000000ffffffffULL);
3067 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3068 wr32(E1000_RDLEN(reg_idx),
3069 ring->count * sizeof(union e1000_adv_rx_desc));
3070
3071 /* initialize head and tail */
fce99e34 3072 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3073 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3074 writel(0, ring->tail);
85b430b4 3075
952f72a8 3076 /* set descriptor configuration */
44390ca6 3077 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3078#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3079 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3080#else
44390ca6 3081 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3082#endif
44390ca6 3083 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
06218a8d 3084 if (hw->mac.type >= e1000_82580)
757b77e2 3085 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3086 /* Only set Drop Enable if we are supporting multiple queues */
3087 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3088 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3089
3090 wr32(E1000_SRRCTL(reg_idx), srrctl);
3091
7d5753f0 3092 /* set filtering for VMDQ pools */
8151d294 3093 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3094
85b430b4
AD
3095 rxdctl |= IGB_RX_PTHRESH;
3096 rxdctl |= IGB_RX_HTHRESH << 8;
3097 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3098
3099 /* enable receive descriptor fetching */
3100 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3101 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3102}
3103
9d5c8243
AK
3104/**
3105 * igb_configure_rx - Configure receive Unit after Reset
3106 * @adapter: board private structure
3107 *
3108 * Configure the Rx unit of the MAC after a reset.
3109 **/
3110static void igb_configure_rx(struct igb_adapter *adapter)
3111{
9107584e 3112 int i;
9d5c8243 3113
68d480c4
AD
3114 /* set UTA to appropriate mode */
3115 igb_set_uta(adapter);
3116
26ad9178
AD
3117 /* set the correct pool for the PF default MAC address in entry 0 */
3118 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3119 adapter->vfs_allocated_count);
3120
06cf2666
AD
3121 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3122 * the Base and Length of the Rx Descriptor Ring */
3123 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3124 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3125}
3126
3127/**
3128 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3129 * @tx_ring: Tx descriptor ring for a specific queue
3130 *
3131 * Free all transmit software resources
3132 **/
68fd9910 3133void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3134{
3b644cf6 3135 igb_clean_tx_ring(tx_ring);
9d5c8243 3136
06034649
AD
3137 vfree(tx_ring->tx_buffer_info);
3138 tx_ring->tx_buffer_info = NULL;
9d5c8243 3139
439705e1
AD
3140 /* if not set, then don't free */
3141 if (!tx_ring->desc)
3142 return;
3143
59d71989
AD
3144 dma_free_coherent(tx_ring->dev, tx_ring->size,
3145 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3146
3147 tx_ring->desc = NULL;
3148}
3149
3150/**
3151 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3152 * @adapter: board private structure
3153 *
3154 * Free all transmit software resources
3155 **/
3156static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3157{
3158 int i;
3159
3160 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3161 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3162}
3163
ebe42d16
AD
3164void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3165 struct igb_tx_buffer *tx_buffer)
3166{
3167 if (tx_buffer->skb) {
3168 dev_kfree_skb_any(tx_buffer->skb);
3169 if (tx_buffer->dma)
3170 dma_unmap_single(ring->dev,
3171 tx_buffer->dma,
3172 tx_buffer->length,
3173 DMA_TO_DEVICE);
3174 } else if (tx_buffer->dma) {
3175 dma_unmap_page(ring->dev,
3176 tx_buffer->dma,
3177 tx_buffer->length,
3178 DMA_TO_DEVICE);
3179 }
3180 tx_buffer->next_to_watch = NULL;
3181 tx_buffer->skb = NULL;
3182 tx_buffer->dma = 0;
3183 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3184}
3185
3186/**
3187 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3188 * @tx_ring: ring to be cleaned
3189 **/
3b644cf6 3190static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3191{
06034649 3192 struct igb_tx_buffer *buffer_info;
9d5c8243 3193 unsigned long size;
6ad4edfc 3194 u16 i;
9d5c8243 3195
06034649 3196 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3197 return;
3198 /* Free all the Tx ring sk_buffs */
3199
3200 for (i = 0; i < tx_ring->count; i++) {
06034649 3201 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3202 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3203 }
3204
06034649
AD
3205 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3206 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3207
3208 /* Zero out the descriptor ring */
9d5c8243
AK
3209 memset(tx_ring->desc, 0, tx_ring->size);
3210
3211 tx_ring->next_to_use = 0;
3212 tx_ring->next_to_clean = 0;
9d5c8243
AK
3213}
3214
3215/**
3216 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3217 * @adapter: board private structure
3218 **/
3219static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3220{
3221 int i;
3222
3223 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3224 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3225}
3226
3227/**
3228 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3229 * @rx_ring: ring to clean the resources from
3230 *
3231 * Free all receive software resources
3232 **/
68fd9910 3233void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3234{
3b644cf6 3235 igb_clean_rx_ring(rx_ring);
9d5c8243 3236
06034649
AD
3237 vfree(rx_ring->rx_buffer_info);
3238 rx_ring->rx_buffer_info = NULL;
9d5c8243 3239
439705e1
AD
3240 /* if not set, then don't free */
3241 if (!rx_ring->desc)
3242 return;
3243
59d71989
AD
3244 dma_free_coherent(rx_ring->dev, rx_ring->size,
3245 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3246
3247 rx_ring->desc = NULL;
3248}
3249
3250/**
3251 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3252 * @adapter: board private structure
3253 *
3254 * Free all receive software resources
3255 **/
3256static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3257{
3258 int i;
3259
3260 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3261 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3262}
3263
3264/**
3265 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3266 * @rx_ring: ring to free buffers from
3267 **/
3b644cf6 3268static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3269{
9d5c8243 3270 unsigned long size;
c023cd88 3271 u16 i;
9d5c8243 3272
06034649 3273 if (!rx_ring->rx_buffer_info)
9d5c8243 3274 return;
439705e1 3275
9d5c8243
AK
3276 /* Free all the Rx ring sk_buffs */
3277 for (i = 0; i < rx_ring->count; i++) {
06034649 3278 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3279 if (buffer_info->dma) {
59d71989 3280 dma_unmap_single(rx_ring->dev,
80785298 3281 buffer_info->dma,
44390ca6 3282 IGB_RX_HDR_LEN,
59d71989 3283 DMA_FROM_DEVICE);
9d5c8243
AK
3284 buffer_info->dma = 0;
3285 }
3286
3287 if (buffer_info->skb) {
3288 dev_kfree_skb(buffer_info->skb);
3289 buffer_info->skb = NULL;
3290 }
6ec43fe6 3291 if (buffer_info->page_dma) {
59d71989 3292 dma_unmap_page(rx_ring->dev,
80785298 3293 buffer_info->page_dma,
6ec43fe6 3294 PAGE_SIZE / 2,
59d71989 3295 DMA_FROM_DEVICE);
6ec43fe6
AD
3296 buffer_info->page_dma = 0;
3297 }
9d5c8243 3298 if (buffer_info->page) {
9d5c8243
AK
3299 put_page(buffer_info->page);
3300 buffer_info->page = NULL;
bf36c1a0 3301 buffer_info->page_offset = 0;
9d5c8243
AK
3302 }
3303 }
3304
06034649
AD
3305 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3306 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3307
3308 /* Zero out the descriptor ring */
3309 memset(rx_ring->desc, 0, rx_ring->size);
3310
3311 rx_ring->next_to_clean = 0;
3312 rx_ring->next_to_use = 0;
9d5c8243
AK
3313}
3314
3315/**
3316 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3317 * @adapter: board private structure
3318 **/
3319static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3320{
3321 int i;
3322
3323 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3324 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3325}
3326
3327/**
3328 * igb_set_mac - Change the Ethernet Address of the NIC
3329 * @netdev: network interface device structure
3330 * @p: pointer to an address structure
3331 *
3332 * Returns 0 on success, negative on failure
3333 **/
3334static int igb_set_mac(struct net_device *netdev, void *p)
3335{
3336 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3337 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3338 struct sockaddr *addr = p;
3339
3340 if (!is_valid_ether_addr(addr->sa_data))
3341 return -EADDRNOTAVAIL;
3342
3343 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3344 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3345
26ad9178
AD
3346 /* set the correct pool for the new PF MAC address in entry 0 */
3347 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3348 adapter->vfs_allocated_count);
e1739522 3349
9d5c8243
AK
3350 return 0;
3351}
3352
3353/**
68d480c4 3354 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3355 * @netdev: network interface device structure
3356 *
68d480c4
AD
3357 * Writes multicast address list to the MTA hash table.
3358 * Returns: -ENOMEM on failure
3359 * 0 on no addresses written
3360 * X on writing X addresses to MTA
9d5c8243 3361 **/
68d480c4 3362static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3363{
3364 struct igb_adapter *adapter = netdev_priv(netdev);
3365 struct e1000_hw *hw = &adapter->hw;
22bedad3 3366 struct netdev_hw_addr *ha;
68d480c4 3367 u8 *mta_list;
9d5c8243
AK
3368 int i;
3369
4cd24eaf 3370 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3371 /* nothing to program, so clear mc list */
3372 igb_update_mc_addr_list(hw, NULL, 0);
3373 igb_restore_vf_multicasts(adapter);
3374 return 0;
3375 }
9d5c8243 3376
4cd24eaf 3377 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3378 if (!mta_list)
3379 return -ENOMEM;
ff41f8dc 3380
68d480c4 3381 /* The shared function expects a packed array of only addresses. */
48e2f183 3382 i = 0;
22bedad3
JP
3383 netdev_for_each_mc_addr(ha, netdev)
3384 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3385
68d480c4
AD
3386 igb_update_mc_addr_list(hw, mta_list, i);
3387 kfree(mta_list);
3388
4cd24eaf 3389 return netdev_mc_count(netdev);
68d480c4
AD
3390}
3391
3392/**
3393 * igb_write_uc_addr_list - write unicast addresses to RAR table
3394 * @netdev: network interface device structure
3395 *
3396 * Writes unicast address list to the RAR table.
3397 * Returns: -ENOMEM on failure/insufficient address space
3398 * 0 on no addresses written
3399 * X on writing X addresses to the RAR table
3400 **/
3401static int igb_write_uc_addr_list(struct net_device *netdev)
3402{
3403 struct igb_adapter *adapter = netdev_priv(netdev);
3404 struct e1000_hw *hw = &adapter->hw;
3405 unsigned int vfn = adapter->vfs_allocated_count;
3406 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3407 int count = 0;
3408
3409 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3410 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3411 return -ENOMEM;
9d5c8243 3412
32e7bfc4 3413 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3414 struct netdev_hw_addr *ha;
32e7bfc4
JP
3415
3416 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3417 if (!rar_entries)
3418 break;
26ad9178
AD
3419 igb_rar_set_qsel(adapter, ha->addr,
3420 rar_entries--,
68d480c4
AD
3421 vfn);
3422 count++;
ff41f8dc
AD
3423 }
3424 }
3425 /* write the addresses in reverse order to avoid write combining */
3426 for (; rar_entries > 0 ; rar_entries--) {
3427 wr32(E1000_RAH(rar_entries), 0);
3428 wr32(E1000_RAL(rar_entries), 0);
3429 }
3430 wrfl();
3431
68d480c4
AD
3432 return count;
3433}
3434
3435/**
3436 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3437 * @netdev: network interface device structure
3438 *
3439 * The set_rx_mode entry point is called whenever the unicast or multicast
3440 * address lists or the network interface flags are updated. This routine is
3441 * responsible for configuring the hardware for proper unicast, multicast,
3442 * promiscuous mode, and all-multi behavior.
3443 **/
3444static void igb_set_rx_mode(struct net_device *netdev)
3445{
3446 struct igb_adapter *adapter = netdev_priv(netdev);
3447 struct e1000_hw *hw = &adapter->hw;
3448 unsigned int vfn = adapter->vfs_allocated_count;
3449 u32 rctl, vmolr = 0;
3450 int count;
3451
3452 /* Check for Promiscuous and All Multicast modes */
3453 rctl = rd32(E1000_RCTL);
3454
3455 /* clear the effected bits */
3456 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3457
3458 if (netdev->flags & IFF_PROMISC) {
3459 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3460 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3461 } else {
3462 if (netdev->flags & IFF_ALLMULTI) {
3463 rctl |= E1000_RCTL_MPE;
3464 vmolr |= E1000_VMOLR_MPME;
3465 } else {
3466 /*
3467 * Write addresses to the MTA, if the attempt fails
25985edc 3468 * then we should just turn on promiscuous mode so
68d480c4
AD
3469 * that we can at least receive multicast traffic
3470 */
3471 count = igb_write_mc_addr_list(netdev);
3472 if (count < 0) {
3473 rctl |= E1000_RCTL_MPE;
3474 vmolr |= E1000_VMOLR_MPME;
3475 } else if (count) {
3476 vmolr |= E1000_VMOLR_ROMPE;
3477 }
3478 }
3479 /*
3480 * Write addresses to available RAR registers, if there is not
3481 * sufficient space to store all the addresses then enable
25985edc 3482 * unicast promiscuous mode
68d480c4
AD
3483 */
3484 count = igb_write_uc_addr_list(netdev);
3485 if (count < 0) {
3486 rctl |= E1000_RCTL_UPE;
3487 vmolr |= E1000_VMOLR_ROPE;
3488 }
3489 rctl |= E1000_RCTL_VFE;
28fc06f5 3490 }
68d480c4 3491 wr32(E1000_RCTL, rctl);
28fc06f5 3492
68d480c4
AD
3493 /*
3494 * In order to support SR-IOV and eventually VMDq it is necessary to set
3495 * the VMOLR to enable the appropriate modes. Without this workaround
3496 * we will have issues with VLAN tag stripping not being done for frames
3497 * that are only arriving because we are the default pool
3498 */
3499 if (hw->mac.type < e1000_82576)
28fc06f5 3500 return;
9d5c8243 3501
68d480c4
AD
3502 vmolr |= rd32(E1000_VMOLR(vfn)) &
3503 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3504 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3505 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3506}
3507
13800469
GR
3508static void igb_check_wvbr(struct igb_adapter *adapter)
3509{
3510 struct e1000_hw *hw = &adapter->hw;
3511 u32 wvbr = 0;
3512
3513 switch (hw->mac.type) {
3514 case e1000_82576:
3515 case e1000_i350:
3516 if (!(wvbr = rd32(E1000_WVBR)))
3517 return;
3518 break;
3519 default:
3520 break;
3521 }
3522
3523 adapter->wvbr |= wvbr;
3524}
3525
3526#define IGB_STAGGERED_QUEUE_OFFSET 8
3527
3528static void igb_spoof_check(struct igb_adapter *adapter)
3529{
3530 int j;
3531
3532 if (!adapter->wvbr)
3533 return;
3534
3535 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3536 if (adapter->wvbr & (1 << j) ||
3537 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3538 dev_warn(&adapter->pdev->dev,
3539 "Spoof event(s) detected on VF %d\n", j);
3540 adapter->wvbr &=
3541 ~((1 << j) |
3542 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3543 }
3544 }
3545}
3546
9d5c8243
AK
3547/* Need to wait a few seconds after link up to get diagnostic information from
3548 * the phy */
3549static void igb_update_phy_info(unsigned long data)
3550{
3551 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3552 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3553}
3554
4d6b725e
AD
3555/**
3556 * igb_has_link - check shared code for link and determine up/down
3557 * @adapter: pointer to driver private info
3558 **/
3145535a 3559bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3560{
3561 struct e1000_hw *hw = &adapter->hw;
3562 bool link_active = false;
3563 s32 ret_val = 0;
3564
3565 /* get_link_status is set on LSC (link status) interrupt or
3566 * rx sequence error interrupt. get_link_status will stay
3567 * false until the e1000_check_for_link establishes link
3568 * for copper adapters ONLY
3569 */
3570 switch (hw->phy.media_type) {
3571 case e1000_media_type_copper:
3572 if (hw->mac.get_link_status) {
3573 ret_val = hw->mac.ops.check_for_link(hw);
3574 link_active = !hw->mac.get_link_status;
3575 } else {
3576 link_active = true;
3577 }
3578 break;
4d6b725e
AD
3579 case e1000_media_type_internal_serdes:
3580 ret_val = hw->mac.ops.check_for_link(hw);
3581 link_active = hw->mac.serdes_has_link;
3582 break;
3583 default:
3584 case e1000_media_type_unknown:
3585 break;
3586 }
3587
3588 return link_active;
3589}
3590
563988dc
SA
3591static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3592{
3593 bool ret = false;
3594 u32 ctrl_ext, thstat;
3595
3596 /* check for thermal sensor event on i350, copper only */
3597 if (hw->mac.type == e1000_i350) {
3598 thstat = rd32(E1000_THSTAT);
3599 ctrl_ext = rd32(E1000_CTRL_EXT);
3600
3601 if ((hw->phy.media_type == e1000_media_type_copper) &&
3602 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3603 ret = !!(thstat & event);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
9d5c8243
AK
3610/**
3611 * igb_watchdog - Timer Call-back
3612 * @data: pointer to adapter cast into an unsigned long
3613 **/
3614static void igb_watchdog(unsigned long data)
3615{
3616 struct igb_adapter *adapter = (struct igb_adapter *)data;
3617 /* Do the rest outside of interrupt context */
3618 schedule_work(&adapter->watchdog_task);
3619}
3620
3621static void igb_watchdog_task(struct work_struct *work)
3622{
3623 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3624 struct igb_adapter,
3625 watchdog_task);
9d5c8243 3626 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3627 struct net_device *netdev = adapter->netdev;
563988dc 3628 u32 link;
7a6ea550 3629 int i;
9d5c8243 3630
4d6b725e 3631 link = igb_has_link(adapter);
9d5c8243
AK
3632 if (link) {
3633 if (!netif_carrier_ok(netdev)) {
3634 u32 ctrl;
330a6d6a
AD
3635 hw->mac.ops.get_speed_and_duplex(hw,
3636 &adapter->link_speed,
3637 &adapter->link_duplex);
9d5c8243
AK
3638
3639 ctrl = rd32(E1000_CTRL);
527d47c1 3640 /* Links status message must follow this format */
876d2d6f
JK
3641 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3642 "Duplex, Flow Control: %s\n",
559e9c49
AD
3643 netdev->name,
3644 adapter->link_speed,
3645 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3646 "Full" : "Half",
3647 (ctrl & E1000_CTRL_TFCE) &&
3648 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3649 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3650 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3651
563988dc 3652 /* check for thermal sensor event */
876d2d6f
JK
3653 if (igb_thermal_sensor_event(hw,
3654 E1000_THSTAT_LINK_THROTTLE)) {
3655 netdev_info(netdev, "The network adapter link "
3656 "speed was downshifted because it "
3657 "overheated\n");
7ef5ed1c 3658 }
563988dc 3659
d07f3e37 3660 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3661 adapter->tx_timeout_factor = 1;
3662 switch (adapter->link_speed) {
3663 case SPEED_10:
9d5c8243
AK
3664 adapter->tx_timeout_factor = 14;
3665 break;
3666 case SPEED_100:
9d5c8243
AK
3667 /* maybe add some timeout factor ? */
3668 break;
3669 }
3670
3671 netif_carrier_on(netdev);
9d5c8243 3672
4ae196df 3673 igb_ping_all_vfs(adapter);
17dc566c 3674 igb_check_vf_rate_limit(adapter);
4ae196df 3675
4b1a9877 3676 /* link state has changed, schedule phy info update */
9d5c8243
AK
3677 if (!test_bit(__IGB_DOWN, &adapter->state))
3678 mod_timer(&adapter->phy_info_timer,
3679 round_jiffies(jiffies + 2 * HZ));
3680 }
3681 } else {
3682 if (netif_carrier_ok(netdev)) {
3683 adapter->link_speed = 0;
3684 adapter->link_duplex = 0;
563988dc
SA
3685
3686 /* check for thermal sensor event */
876d2d6f
JK
3687 if (igb_thermal_sensor_event(hw,
3688 E1000_THSTAT_PWR_DOWN)) {
3689 netdev_err(netdev, "The network adapter was "
3690 "stopped because it overheated\n");
7ef5ed1c 3691 }
563988dc 3692
527d47c1
AD
3693 /* Links status message must follow this format */
3694 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3695 netdev->name);
9d5c8243 3696 netif_carrier_off(netdev);
4b1a9877 3697
4ae196df
AD
3698 igb_ping_all_vfs(adapter);
3699
4b1a9877 3700 /* link state has changed, schedule phy info update */
9d5c8243
AK
3701 if (!test_bit(__IGB_DOWN, &adapter->state))
3702 mod_timer(&adapter->phy_info_timer,
3703 round_jiffies(jiffies + 2 * HZ));
3704 }
3705 }
3706
12dcd86b
ED
3707 spin_lock(&adapter->stats64_lock);
3708 igb_update_stats(adapter, &adapter->stats64);
3709 spin_unlock(&adapter->stats64_lock);
9d5c8243 3710
dbabb065 3711 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3712 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3713 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3714 /* We've lost link, so the controller stops DMA,
3715 * but we've got queued Tx work that's never going
3716 * to get done, so reset controller to flush Tx.
3717 * (Do the reset outside of interrupt context). */
dbabb065
AD
3718 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3719 adapter->tx_timeout_count++;
3720 schedule_work(&adapter->reset_task);
3721 /* return immediately since reset is imminent */
3722 return;
3723 }
9d5c8243 3724 }
9d5c8243 3725
dbabb065 3726 /* Force detection of hung controller every watchdog period */
6d095fa8 3727 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3728 }
f7ba205e 3729
9d5c8243 3730 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3731 if (adapter->msix_entries) {
047e0030 3732 u32 eics = 0;
0d1ae7f4
AD
3733 for (i = 0; i < adapter->num_q_vectors; i++)
3734 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3735 wr32(E1000_EICS, eics);
3736 } else {
3737 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3738 }
9d5c8243 3739
13800469
GR
3740 igb_spoof_check(adapter);
3741
9d5c8243
AK
3742 /* Reset the timer */
3743 if (!test_bit(__IGB_DOWN, &adapter->state))
3744 mod_timer(&adapter->watchdog_timer,
3745 round_jiffies(jiffies + 2 * HZ));
3746}
3747
3748enum latency_range {
3749 lowest_latency = 0,
3750 low_latency = 1,
3751 bulk_latency = 2,
3752 latency_invalid = 255
3753};
3754
6eb5a7f1
AD
3755/**
3756 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3757 *
3758 * Stores a new ITR value based on strictly on packet size. This
3759 * algorithm is less sophisticated than that used in igb_update_itr,
3760 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3761 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3762 * were determined based on theoretical maximum wire speed and testing
3763 * data, in order to minimize response time while increasing bulk
3764 * throughput.
3765 * This functionality is controlled by the InterruptThrottleRate module
3766 * parameter (see igb_param.c)
3767 * NOTE: This function is called only when operating in a multiqueue
3768 * receive environment.
047e0030 3769 * @q_vector: pointer to q_vector
6eb5a7f1 3770 **/
047e0030 3771static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3772{
047e0030 3773 int new_val = q_vector->itr_val;
6eb5a7f1 3774 int avg_wire_size = 0;
047e0030 3775 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3776 unsigned int packets;
9d5c8243 3777
6eb5a7f1
AD
3778 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3779 * ints/sec - ITR timer value of 120 ticks.
3780 */
3781 if (adapter->link_speed != SPEED_1000) {
0ba82994 3782 new_val = IGB_4K_ITR;
6eb5a7f1 3783 goto set_itr_val;
9d5c8243 3784 }
047e0030 3785
0ba82994
AD
3786 packets = q_vector->rx.total_packets;
3787 if (packets)
3788 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3789
0ba82994
AD
3790 packets = q_vector->tx.total_packets;
3791 if (packets)
3792 avg_wire_size = max_t(u32, avg_wire_size,
3793 q_vector->tx.total_bytes / packets);
047e0030
AD
3794
3795 /* if avg_wire_size isn't set no work was done */
3796 if (!avg_wire_size)
3797 goto clear_counts;
9d5c8243 3798
6eb5a7f1
AD
3799 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3800 avg_wire_size += 24;
3801
3802 /* Don't starve jumbo frames */
3803 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3804
6eb5a7f1
AD
3805 /* Give a little boost to mid-size frames */
3806 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3807 new_val = avg_wire_size / 3;
3808 else
3809 new_val = avg_wire_size / 2;
9d5c8243 3810
0ba82994
AD
3811 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3812 if (new_val < IGB_20K_ITR &&
3813 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3814 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3815 new_val = IGB_20K_ITR;
abe1c363 3816
6eb5a7f1 3817set_itr_val:
047e0030
AD
3818 if (new_val != q_vector->itr_val) {
3819 q_vector->itr_val = new_val;
3820 q_vector->set_itr = 1;
9d5c8243 3821 }
6eb5a7f1 3822clear_counts:
0ba82994
AD
3823 q_vector->rx.total_bytes = 0;
3824 q_vector->rx.total_packets = 0;
3825 q_vector->tx.total_bytes = 0;
3826 q_vector->tx.total_packets = 0;
9d5c8243
AK
3827}
3828
3829/**
3830 * igb_update_itr - update the dynamic ITR value based on statistics
3831 * Stores a new ITR value based on packets and byte
3832 * counts during the last interrupt. The advantage of per interrupt
3833 * computation is faster updates and more accurate ITR for the current
3834 * traffic pattern. Constants in this function were computed
3835 * based on theoretical maximum wire speed and thresholds were set based
3836 * on testing data as well as attempting to minimize response time
3837 * while increasing bulk throughput.
3838 * this functionality is controlled by the InterruptThrottleRate module
3839 * parameter (see igb_param.c)
3840 * NOTE: These calculations are only valid when operating in a single-
3841 * queue environment.
0ba82994
AD
3842 * @q_vector: pointer to q_vector
3843 * @ring_container: ring info to update the itr for
9d5c8243 3844 **/
0ba82994
AD
3845static void igb_update_itr(struct igb_q_vector *q_vector,
3846 struct igb_ring_container *ring_container)
9d5c8243 3847{
0ba82994
AD
3848 unsigned int packets = ring_container->total_packets;
3849 unsigned int bytes = ring_container->total_bytes;
3850 u8 itrval = ring_container->itr;
9d5c8243 3851
0ba82994 3852 /* no packets, exit with status unchanged */
9d5c8243 3853 if (packets == 0)
0ba82994 3854 return;
9d5c8243 3855
0ba82994 3856 switch (itrval) {
9d5c8243
AK
3857 case lowest_latency:
3858 /* handle TSO and jumbo frames */
3859 if (bytes/packets > 8000)
0ba82994 3860 itrval = bulk_latency;
9d5c8243 3861 else if ((packets < 5) && (bytes > 512))
0ba82994 3862 itrval = low_latency;
9d5c8243
AK
3863 break;
3864 case low_latency: /* 50 usec aka 20000 ints/s */
3865 if (bytes > 10000) {
3866 /* this if handles the TSO accounting */
3867 if (bytes/packets > 8000) {
0ba82994 3868 itrval = bulk_latency;
9d5c8243 3869 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3870 itrval = bulk_latency;
9d5c8243 3871 } else if ((packets > 35)) {
0ba82994 3872 itrval = lowest_latency;
9d5c8243
AK
3873 }
3874 } else if (bytes/packets > 2000) {
0ba82994 3875 itrval = bulk_latency;
9d5c8243 3876 } else if (packets <= 2 && bytes < 512) {
0ba82994 3877 itrval = lowest_latency;
9d5c8243
AK
3878 }
3879 break;
3880 case bulk_latency: /* 250 usec aka 4000 ints/s */
3881 if (bytes > 25000) {
3882 if (packets > 35)
0ba82994 3883 itrval = low_latency;
1e5c3d21 3884 } else if (bytes < 1500) {
0ba82994 3885 itrval = low_latency;
9d5c8243
AK
3886 }
3887 break;
3888 }
3889
0ba82994
AD
3890 /* clear work counters since we have the values we need */
3891 ring_container->total_bytes = 0;
3892 ring_container->total_packets = 0;
3893
3894 /* write updated itr to ring container */
3895 ring_container->itr = itrval;
9d5c8243
AK
3896}
3897
0ba82994 3898static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3899{
0ba82994 3900 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3901 u32 new_itr = q_vector->itr_val;
0ba82994 3902 u8 current_itr = 0;
9d5c8243
AK
3903
3904 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3905 if (adapter->link_speed != SPEED_1000) {
3906 current_itr = 0;
0ba82994 3907 new_itr = IGB_4K_ITR;
9d5c8243
AK
3908 goto set_itr_now;
3909 }
3910
0ba82994
AD
3911 igb_update_itr(q_vector, &q_vector->tx);
3912 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3913
0ba82994 3914 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3915
6eb5a7f1 3916 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3917 if (current_itr == lowest_latency &&
3918 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3919 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3920 current_itr = low_latency;
3921
9d5c8243
AK
3922 switch (current_itr) {
3923 /* counts and packets in update_itr are dependent on these numbers */
3924 case lowest_latency:
0ba82994 3925 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3926 break;
3927 case low_latency:
0ba82994 3928 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3929 break;
3930 case bulk_latency:
0ba82994 3931 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3932 break;
3933 default:
3934 break;
3935 }
3936
3937set_itr_now:
047e0030 3938 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3939 /* this attempts to bias the interrupt rate towards Bulk
3940 * by adding intermediate steps when interrupt rate is
3941 * increasing */
047e0030
AD
3942 new_itr = new_itr > q_vector->itr_val ?
3943 max((new_itr * q_vector->itr_val) /
3944 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3945 new_itr) :
9d5c8243
AK
3946 new_itr;
3947 /* Don't write the value here; it resets the adapter's
3948 * internal timer, and causes us to delay far longer than
3949 * we should between interrupts. Instead, we write the ITR
3950 * value at the beginning of the next interrupt so the timing
3951 * ends up being correct.
3952 */
047e0030
AD
3953 q_vector->itr_val = new_itr;
3954 q_vector->set_itr = 1;
9d5c8243 3955 }
9d5c8243
AK
3956}
3957
7d13a7d0
AD
3958void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3959 u32 type_tucmd, u32 mss_l4len_idx)
3960{
3961 struct e1000_adv_tx_context_desc *context_desc;
3962 u16 i = tx_ring->next_to_use;
3963
3964 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3965
3966 i++;
3967 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3968
3969 /* set bits to identify this as an advanced context descriptor */
3970 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3971
3972 /* For 82575, context index must be unique per ring. */
866cff06 3973 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
3974 mss_l4len_idx |= tx_ring->reg_idx << 4;
3975
3976 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3977 context_desc->seqnum_seed = 0;
3978 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3979 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3980}
3981
7af40ad9
AD
3982static int igb_tso(struct igb_ring *tx_ring,
3983 struct igb_tx_buffer *first,
3984 u8 *hdr_len)
9d5c8243 3985{
7af40ad9 3986 struct sk_buff *skb = first->skb;
7d13a7d0
AD
3987 u32 vlan_macip_lens, type_tucmd;
3988 u32 mss_l4len_idx, l4len;
3989
3990 if (!skb_is_gso(skb))
3991 return 0;
9d5c8243
AK
3992
3993 if (skb_header_cloned(skb)) {
7af40ad9 3994 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
3995 if (err)
3996 return err;
3997 }
3998
7d13a7d0
AD
3999 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4000 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4001
7af40ad9 4002 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4003 struct iphdr *iph = ip_hdr(skb);
4004 iph->tot_len = 0;
4005 iph->check = 0;
4006 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4007 iph->daddr, 0,
4008 IPPROTO_TCP,
4009 0);
7d13a7d0 4010 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4011 first->tx_flags |= IGB_TX_FLAGS_TSO |
4012 IGB_TX_FLAGS_CSUM |
4013 IGB_TX_FLAGS_IPV4;
8e1e8a47 4014 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4015 ipv6_hdr(skb)->payload_len = 0;
4016 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4017 &ipv6_hdr(skb)->daddr,
4018 0, IPPROTO_TCP, 0);
7af40ad9
AD
4019 first->tx_flags |= IGB_TX_FLAGS_TSO |
4020 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4021 }
4022
7af40ad9 4023 /* compute header lengths */
7d13a7d0
AD
4024 l4len = tcp_hdrlen(skb);
4025 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4026
7af40ad9
AD
4027 /* update gso size and bytecount with header size */
4028 first->gso_segs = skb_shinfo(skb)->gso_segs;
4029 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4030
9d5c8243 4031 /* MSS L4LEN IDX */
7d13a7d0
AD
4032 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4033 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4034
7d13a7d0
AD
4035 /* VLAN MACLEN IPLEN */
4036 vlan_macip_lens = skb_network_header_len(skb);
4037 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4038 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4039
7d13a7d0 4040 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4041
7d13a7d0 4042 return 1;
9d5c8243
AK
4043}
4044
7af40ad9 4045static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4046{
7af40ad9 4047 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4048 u32 vlan_macip_lens = 0;
4049 u32 mss_l4len_idx = 0;
4050 u32 type_tucmd = 0;
9d5c8243 4051
7d13a7d0 4052 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4053 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4054 return;
7d13a7d0
AD
4055 } else {
4056 u8 l4_hdr = 0;
7af40ad9 4057 switch (first->protocol) {
7d13a7d0
AD
4058 case __constant_htons(ETH_P_IP):
4059 vlan_macip_lens |= skb_network_header_len(skb);
4060 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4061 l4_hdr = ip_hdr(skb)->protocol;
4062 break;
4063 case __constant_htons(ETH_P_IPV6):
4064 vlan_macip_lens |= skb_network_header_len(skb);
4065 l4_hdr = ipv6_hdr(skb)->nexthdr;
4066 break;
4067 default:
4068 if (unlikely(net_ratelimit())) {
4069 dev_warn(tx_ring->dev,
4070 "partial checksum but proto=%x!\n",
7af40ad9 4071 first->protocol);
fa4a7ef3 4072 }
7d13a7d0
AD
4073 break;
4074 }
fa4a7ef3 4075
7d13a7d0
AD
4076 switch (l4_hdr) {
4077 case IPPROTO_TCP:
4078 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4079 mss_l4len_idx = tcp_hdrlen(skb) <<
4080 E1000_ADVTXD_L4LEN_SHIFT;
4081 break;
4082 case IPPROTO_SCTP:
4083 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4084 mss_l4len_idx = sizeof(struct sctphdr) <<
4085 E1000_ADVTXD_L4LEN_SHIFT;
4086 break;
4087 case IPPROTO_UDP:
4088 mss_l4len_idx = sizeof(struct udphdr) <<
4089 E1000_ADVTXD_L4LEN_SHIFT;
4090 break;
4091 default:
4092 if (unlikely(net_ratelimit())) {
4093 dev_warn(tx_ring->dev,
4094 "partial checksum but l4 proto=%x!\n",
4095 l4_hdr);
44b0cda3 4096 }
7d13a7d0 4097 break;
9d5c8243 4098 }
7af40ad9
AD
4099
4100 /* update TX checksum flag */
4101 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4102 }
9d5c8243 4103
7d13a7d0 4104 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4105 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4106
7d13a7d0 4107 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4108}
4109
e032afc8
AD
4110static __le32 igb_tx_cmd_type(u32 tx_flags)
4111{
4112 /* set type for advanced descriptor with frame checksum insertion */
4113 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4114 E1000_ADVTXD_DCMD_IFCS |
4115 E1000_ADVTXD_DCMD_DEXT);
4116
4117 /* set HW vlan bit if vlan is present */
4118 if (tx_flags & IGB_TX_FLAGS_VLAN)
4119 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4120
4121 /* set timestamp bit if present */
4122 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4123 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4124
4125 /* set segmentation bits for TSO */
4126 if (tx_flags & IGB_TX_FLAGS_TSO)
4127 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4128
4129 return cmd_type;
4130}
4131
7af40ad9
AD
4132static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4133 union e1000_adv_tx_desc *tx_desc,
4134 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4135{
4136 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4137
4138 /* 82575 requires a unique index per ring if any offload is enabled */
4139 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4140 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4141 olinfo_status |= tx_ring->reg_idx << 4;
4142
4143 /* insert L4 checksum */
4144 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4145 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4146
4147 /* insert IPv4 checksum */
4148 if (tx_flags & IGB_TX_FLAGS_IPV4)
4149 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4150 }
4151
7af40ad9 4152 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4153}
4154
ebe42d16
AD
4155/*
4156 * The largest size we can write to the descriptor is 65535. In order to
4157 * maintain a power of two alignment we have to limit ourselves to 32K.
4158 */
4159#define IGB_MAX_TXD_PWR 15
7af40ad9 4160#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4161
7af40ad9
AD
4162static void igb_tx_map(struct igb_ring *tx_ring,
4163 struct igb_tx_buffer *first,
ebe42d16 4164 const u8 hdr_len)
9d5c8243 4165{
7af40ad9 4166 struct sk_buff *skb = first->skb;
ebe42d16
AD
4167 struct igb_tx_buffer *tx_buffer_info;
4168 union e1000_adv_tx_desc *tx_desc;
4169 dma_addr_t dma;
4170 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4171 unsigned int data_len = skb->data_len;
4172 unsigned int size = skb_headlen(skb);
4173 unsigned int paylen = skb->len - hdr_len;
4174 __le32 cmd_type;
7af40ad9 4175 u32 tx_flags = first->tx_flags;
ebe42d16 4176 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4177
4178 tx_desc = IGB_TX_DESC(tx_ring, i);
4179
7af40ad9 4180 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4181 cmd_type = igb_tx_cmd_type(tx_flags);
4182
4183 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4184 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4185 goto dma_error;
9d5c8243 4186
ebe42d16
AD
4187 /* record length, and DMA address */
4188 first->length = size;
4189 first->dma = dma;
ebe42d16
AD
4190 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4191
4192 for (;;) {
4193 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4194 tx_desc->read.cmd_type_len =
4195 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4196
4197 i++;
4198 tx_desc++;
4199 if (i == tx_ring->count) {
4200 tx_desc = IGB_TX_DESC(tx_ring, 0);
4201 i = 0;
4202 }
4203
4204 dma += IGB_MAX_DATA_PER_TXD;
4205 size -= IGB_MAX_DATA_PER_TXD;
4206
4207 tx_desc->read.olinfo_status = 0;
4208 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4209 }
4210
4211 if (likely(!data_len))
4212 break;
2bbfebe2 4213
ebe42d16 4214 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4215
65689fef 4216 i++;
ebe42d16
AD
4217 tx_desc++;
4218 if (i == tx_ring->count) {
4219 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4220 i = 0;
ebe42d16 4221 }
65689fef 4222
9e903e08 4223 size = skb_frag_size(frag);
ebe42d16
AD
4224 data_len -= size;
4225
4226 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4227 size, DMA_TO_DEVICE);
4228 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4229 goto dma_error;
4230
ebe42d16
AD
4231 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4232 tx_buffer_info->length = size;
4233 tx_buffer_info->dma = dma;
4234
4235 tx_desc->read.olinfo_status = 0;
4236 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4237
4238 frag++;
9d5c8243
AK
4239 }
4240
ebe42d16
AD
4241 /* write last descriptor with RS and EOP bits */
4242 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4243 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4244
4245 /* set the timestamp */
4246 first->time_stamp = jiffies;
4247
ebe42d16
AD
4248 /*
4249 * Force memory writes to complete before letting h/w know there
4250 * are new descriptors to fetch. (Only applicable for weak-ordered
4251 * memory model archs, such as IA-64).
4252 *
4253 * We also need this memory barrier to make certain all of the
4254 * status bits have been updated before next_to_watch is written.
4255 */
4256 wmb();
4257
8542db05 4258 /* set next_to_watch value indicating a packet is present */
ebe42d16 4259 first->next_to_watch = tx_desc;
9d5c8243 4260
ebe42d16
AD
4261 i++;
4262 if (i == tx_ring->count)
4263 i = 0;
6366ad33 4264
ebe42d16 4265 tx_ring->next_to_use = i;
6366ad33 4266
ebe42d16 4267 writel(i, tx_ring->tail);
6366ad33 4268
ebe42d16
AD
4269 /* we need this if more than one processor can write to our tail
4270 * at a time, it syncronizes IO on IA64/Altix systems */
4271 mmiowb();
4272
4273 return;
4274
4275dma_error:
4276 dev_err(tx_ring->dev, "TX DMA map failed\n");
4277
4278 /* clear dma mappings for failed tx_buffer_info map */
4279 for (;;) {
4280 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4281 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4282 if (tx_buffer_info == first)
4283 break;
a77ff709
NN
4284 if (i == 0)
4285 i = tx_ring->count;
6366ad33 4286 i--;
6366ad33
AD
4287 }
4288
9d5c8243 4289 tx_ring->next_to_use = i;
9d5c8243
AK
4290}
4291
6ad4edfc 4292static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4293{
e694e964
AD
4294 struct net_device *netdev = tx_ring->netdev;
4295
661086df 4296 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4297
9d5c8243
AK
4298 /* Herbert's original patch had:
4299 * smp_mb__after_netif_stop_queue();
4300 * but since that doesn't exist yet, just open code it. */
4301 smp_mb();
4302
4303 /* We need to check again in a case another CPU has just
4304 * made room available. */
c493ea45 4305 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4306 return -EBUSY;
4307
4308 /* A reprieve! */
661086df 4309 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4310
4311 u64_stats_update_begin(&tx_ring->tx_syncp2);
4312 tx_ring->tx_stats.restart_queue2++;
4313 u64_stats_update_end(&tx_ring->tx_syncp2);
4314
9d5c8243
AK
4315 return 0;
4316}
4317
6ad4edfc 4318static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4319{
c493ea45 4320 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4321 return 0;
e694e964 4322 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4323}
4324
cd392f5c
AD
4325netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4326 struct igb_ring *tx_ring)
9d5c8243 4327{
8542db05 4328 struct igb_tx_buffer *first;
ebe42d16 4329 int tso;
91d4ee33 4330 u32 tx_flags = 0;
31f6adbb 4331 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4332 u8 hdr_len = 0;
9d5c8243 4333
9d5c8243
AK
4334 /* need: 1 descriptor per page,
4335 * + 2 desc gap to keep tail from touching head,
4336 * + 1 desc for skb->data,
4337 * + 1 desc for context descriptor,
4338 * otherwise try next time */
e694e964 4339 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4340 /* this is a hard error */
9d5c8243
AK
4341 return NETDEV_TX_BUSY;
4342 }
33af6bcc 4343
7af40ad9
AD
4344 /* record the location of the first descriptor for this packet */
4345 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4346 first->skb = skb;
4347 first->bytecount = skb->len;
4348 first->gso_segs = 1;
4349
2244d07b
OH
4350 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4351 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4352 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4353 }
9d5c8243 4354
eab6d18d 4355 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4356 tx_flags |= IGB_TX_FLAGS_VLAN;
4357 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4358 }
4359
7af40ad9
AD
4360 /* record initial flags and protocol */
4361 first->tx_flags = tx_flags;
4362 first->protocol = protocol;
cdfd01fc 4363
7af40ad9
AD
4364 tso = igb_tso(tx_ring, first, &hdr_len);
4365 if (tso < 0)
7d13a7d0 4366 goto out_drop;
7af40ad9
AD
4367 else if (!tso)
4368 igb_tx_csum(tx_ring, first);
9d5c8243 4369
7af40ad9 4370 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4371
4372 /* Make sure there is space in the ring for the next send. */
e694e964 4373 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4374
9d5c8243 4375 return NETDEV_TX_OK;
7d13a7d0
AD
4376
4377out_drop:
7af40ad9
AD
4378 igb_unmap_and_free_tx_resource(tx_ring, first);
4379
7d13a7d0 4380 return NETDEV_TX_OK;
9d5c8243
AK
4381}
4382
1cc3bd87
AD
4383static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4384 struct sk_buff *skb)
4385{
4386 unsigned int r_idx = skb->queue_mapping;
4387
4388 if (r_idx >= adapter->num_tx_queues)
4389 r_idx = r_idx % adapter->num_tx_queues;
4390
4391 return adapter->tx_ring[r_idx];
4392}
4393
cd392f5c
AD
4394static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4395 struct net_device *netdev)
9d5c8243
AK
4396{
4397 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4398
4399 if (test_bit(__IGB_DOWN, &adapter->state)) {
4400 dev_kfree_skb_any(skb);
4401 return NETDEV_TX_OK;
4402 }
4403
4404 if (skb->len <= 0) {
4405 dev_kfree_skb_any(skb);
4406 return NETDEV_TX_OK;
4407 }
4408
1cc3bd87
AD
4409 /*
4410 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4411 * in order to meet this minimum size requirement.
4412 */
4413 if (skb->len < 17) {
4414 if (skb_padto(skb, 17))
4415 return NETDEV_TX_OK;
4416 skb->len = 17;
4417 }
9d5c8243 4418
1cc3bd87 4419 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4420}
4421
4422/**
4423 * igb_tx_timeout - Respond to a Tx Hang
4424 * @netdev: network interface device structure
4425 **/
4426static void igb_tx_timeout(struct net_device *netdev)
4427{
4428 struct igb_adapter *adapter = netdev_priv(netdev);
4429 struct e1000_hw *hw = &adapter->hw;
4430
4431 /* Do the reset outside of interrupt context */
4432 adapter->tx_timeout_count++;
f7ba205e 4433
06218a8d 4434 if (hw->mac.type >= e1000_82580)
55cac248
AD
4435 hw->dev_spec._82575.global_device_reset = true;
4436
9d5c8243 4437 schedule_work(&adapter->reset_task);
265de409
AD
4438 wr32(E1000_EICS,
4439 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4440}
4441
4442static void igb_reset_task(struct work_struct *work)
4443{
4444 struct igb_adapter *adapter;
4445 adapter = container_of(work, struct igb_adapter, reset_task);
4446
c97ec42a
TI
4447 igb_dump(adapter);
4448 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4449 igb_reinit_locked(adapter);
4450}
4451
4452/**
12dcd86b 4453 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4454 * @netdev: network interface device structure
12dcd86b 4455 * @stats: rtnl_link_stats64 pointer
9d5c8243 4456 *
9d5c8243 4457 **/
12dcd86b
ED
4458static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4459 struct rtnl_link_stats64 *stats)
9d5c8243 4460{
12dcd86b
ED
4461 struct igb_adapter *adapter = netdev_priv(netdev);
4462
4463 spin_lock(&adapter->stats64_lock);
4464 igb_update_stats(adapter, &adapter->stats64);
4465 memcpy(stats, &adapter->stats64, sizeof(*stats));
4466 spin_unlock(&adapter->stats64_lock);
4467
4468 return stats;
9d5c8243
AK
4469}
4470
4471/**
4472 * igb_change_mtu - Change the Maximum Transfer Unit
4473 * @netdev: network interface device structure
4474 * @new_mtu: new value for maximum frame size
4475 *
4476 * Returns 0 on success, negative on failure
4477 **/
4478static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4479{
4480 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4481 struct pci_dev *pdev = adapter->pdev;
153285f9 4482 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4483
c809d227 4484 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4485 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4486 return -EINVAL;
4487 }
4488
153285f9 4489#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4490 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4491 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4492 return -EINVAL;
4493 }
4494
4495 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4496 msleep(1);
73cd78f1 4497
9d5c8243
AK
4498 /* igb_down has a dependency on max_frame_size */
4499 adapter->max_frame_size = max_frame;
559e9c49 4500
4c844851
AD
4501 if (netif_running(netdev))
4502 igb_down(adapter);
9d5c8243 4503
090b1795 4504 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4505 netdev->mtu, new_mtu);
4506 netdev->mtu = new_mtu;
4507
4508 if (netif_running(netdev))
4509 igb_up(adapter);
4510 else
4511 igb_reset(adapter);
4512
4513 clear_bit(__IGB_RESETTING, &adapter->state);
4514
4515 return 0;
4516}
4517
4518/**
4519 * igb_update_stats - Update the board statistics counters
4520 * @adapter: board private structure
4521 **/
4522
12dcd86b
ED
4523void igb_update_stats(struct igb_adapter *adapter,
4524 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4525{
4526 struct e1000_hw *hw = &adapter->hw;
4527 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4528 u32 reg, mpc;
9d5c8243 4529 u16 phy_tmp;
3f9c0164
AD
4530 int i;
4531 u64 bytes, packets;
12dcd86b
ED
4532 unsigned int start;
4533 u64 _bytes, _packets;
9d5c8243
AK
4534
4535#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4536
4537 /*
4538 * Prevent stats update while adapter is being reset, or if the pci
4539 * connection is down.
4540 */
4541 if (adapter->link_speed == 0)
4542 return;
4543 if (pci_channel_offline(pdev))
4544 return;
4545
3f9c0164
AD
4546 bytes = 0;
4547 packets = 0;
4548 for (i = 0; i < adapter->num_rx_queues; i++) {
4549 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4550 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4551
3025a446 4552 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4553 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4554
4555 do {
4556 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4557 _bytes = ring->rx_stats.bytes;
4558 _packets = ring->rx_stats.packets;
4559 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4560 bytes += _bytes;
4561 packets += _packets;
3f9c0164
AD
4562 }
4563
128e45eb
AD
4564 net_stats->rx_bytes = bytes;
4565 net_stats->rx_packets = packets;
3f9c0164
AD
4566
4567 bytes = 0;
4568 packets = 0;
4569 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4570 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4571 do {
4572 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4573 _bytes = ring->tx_stats.bytes;
4574 _packets = ring->tx_stats.packets;
4575 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4576 bytes += _bytes;
4577 packets += _packets;
3f9c0164 4578 }
128e45eb
AD
4579 net_stats->tx_bytes = bytes;
4580 net_stats->tx_packets = packets;
3f9c0164
AD
4581
4582 /* read stats registers */
9d5c8243
AK
4583 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4584 adapter->stats.gprc += rd32(E1000_GPRC);
4585 adapter->stats.gorc += rd32(E1000_GORCL);
4586 rd32(E1000_GORCH); /* clear GORCL */
4587 adapter->stats.bprc += rd32(E1000_BPRC);
4588 adapter->stats.mprc += rd32(E1000_MPRC);
4589 adapter->stats.roc += rd32(E1000_ROC);
4590
4591 adapter->stats.prc64 += rd32(E1000_PRC64);
4592 adapter->stats.prc127 += rd32(E1000_PRC127);
4593 adapter->stats.prc255 += rd32(E1000_PRC255);
4594 adapter->stats.prc511 += rd32(E1000_PRC511);
4595 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4596 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4597 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4598 adapter->stats.sec += rd32(E1000_SEC);
4599
fa3d9a6d
MW
4600 mpc = rd32(E1000_MPC);
4601 adapter->stats.mpc += mpc;
4602 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4603 adapter->stats.scc += rd32(E1000_SCC);
4604 adapter->stats.ecol += rd32(E1000_ECOL);
4605 adapter->stats.mcc += rd32(E1000_MCC);
4606 adapter->stats.latecol += rd32(E1000_LATECOL);
4607 adapter->stats.dc += rd32(E1000_DC);
4608 adapter->stats.rlec += rd32(E1000_RLEC);
4609 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4610 adapter->stats.xontxc += rd32(E1000_XONTXC);
4611 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4612 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4613 adapter->stats.fcruc += rd32(E1000_FCRUC);
4614 adapter->stats.gptc += rd32(E1000_GPTC);
4615 adapter->stats.gotc += rd32(E1000_GOTCL);
4616 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4617 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4618 adapter->stats.ruc += rd32(E1000_RUC);
4619 adapter->stats.rfc += rd32(E1000_RFC);
4620 adapter->stats.rjc += rd32(E1000_RJC);
4621 adapter->stats.tor += rd32(E1000_TORH);
4622 adapter->stats.tot += rd32(E1000_TOTH);
4623 adapter->stats.tpr += rd32(E1000_TPR);
4624
4625 adapter->stats.ptc64 += rd32(E1000_PTC64);
4626 adapter->stats.ptc127 += rd32(E1000_PTC127);
4627 adapter->stats.ptc255 += rd32(E1000_PTC255);
4628 adapter->stats.ptc511 += rd32(E1000_PTC511);
4629 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4630 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4631
4632 adapter->stats.mptc += rd32(E1000_MPTC);
4633 adapter->stats.bptc += rd32(E1000_BPTC);
4634
2d0b0f69
NN
4635 adapter->stats.tpt += rd32(E1000_TPT);
4636 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4637
4638 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4639 /* read internal phy specific stats */
4640 reg = rd32(E1000_CTRL_EXT);
4641 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4642 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4643 adapter->stats.tncrs += rd32(E1000_TNCRS);
4644 }
4645
9d5c8243
AK
4646 adapter->stats.tsctc += rd32(E1000_TSCTC);
4647 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4648
4649 adapter->stats.iac += rd32(E1000_IAC);
4650 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4651 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4652 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4653 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4654 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4655 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4656 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4657 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4658
4659 /* Fill out the OS statistics structure */
128e45eb
AD
4660 net_stats->multicast = adapter->stats.mprc;
4661 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4662
4663 /* Rx Errors */
4664
4665 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4666 * our own version based on RUC and ROC */
128e45eb 4667 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4668 adapter->stats.crcerrs + adapter->stats.algnerrc +
4669 adapter->stats.ruc + adapter->stats.roc +
4670 adapter->stats.cexterr;
128e45eb
AD
4671 net_stats->rx_length_errors = adapter->stats.ruc +
4672 adapter->stats.roc;
4673 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4674 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4675 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4676
4677 /* Tx Errors */
128e45eb
AD
4678 net_stats->tx_errors = adapter->stats.ecol +
4679 adapter->stats.latecol;
4680 net_stats->tx_aborted_errors = adapter->stats.ecol;
4681 net_stats->tx_window_errors = adapter->stats.latecol;
4682 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4683
4684 /* Tx Dropped needs to be maintained elsewhere */
4685
4686 /* Phy Stats */
4687 if (hw->phy.media_type == e1000_media_type_copper) {
4688 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4689 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4690 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4691 adapter->phy_stats.idle_errors += phy_tmp;
4692 }
4693 }
4694
4695 /* Management Stats */
4696 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4697 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4698 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4699
4700 /* OS2BMC Stats */
4701 reg = rd32(E1000_MANC);
4702 if (reg & E1000_MANC_EN_BMC2OS) {
4703 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4704 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4705 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4706 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4707 }
9d5c8243
AK
4708}
4709
9d5c8243
AK
4710static irqreturn_t igb_msix_other(int irq, void *data)
4711{
047e0030 4712 struct igb_adapter *adapter = data;
9d5c8243 4713 struct e1000_hw *hw = &adapter->hw;
844290e5 4714 u32 icr = rd32(E1000_ICR);
844290e5 4715 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4716
7f081d40
AD
4717 if (icr & E1000_ICR_DRSTA)
4718 schedule_work(&adapter->reset_task);
4719
047e0030 4720 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4721 /* HW is reporting DMA is out of sync */
4722 adapter->stats.doosync++;
13800469
GR
4723 /* The DMA Out of Sync is also indication of a spoof event
4724 * in IOV mode. Check the Wrong VM Behavior register to
4725 * see if it is really a spoof event. */
4726 igb_check_wvbr(adapter);
dda0e083 4727 }
eebbbdba 4728
4ae196df
AD
4729 /* Check for a mailbox event */
4730 if (icr & E1000_ICR_VMMB)
4731 igb_msg_task(adapter);
4732
4733 if (icr & E1000_ICR_LSC) {
4734 hw->mac.get_link_status = 1;
4735 /* guard against interrupt when we're going down */
4736 if (!test_bit(__IGB_DOWN, &adapter->state))
4737 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4738 }
4739
844290e5 4740 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4741
4742 return IRQ_HANDLED;
4743}
4744
047e0030 4745static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4746{
26b39276 4747 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4748 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4749
047e0030
AD
4750 if (!q_vector->set_itr)
4751 return;
73cd78f1 4752
047e0030
AD
4753 if (!itr_val)
4754 itr_val = 0x4;
661086df 4755
26b39276
AD
4756 if (adapter->hw.mac.type == e1000_82575)
4757 itr_val |= itr_val << 16;
661086df 4758 else
0ba82994 4759 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4760
047e0030
AD
4761 writel(itr_val, q_vector->itr_register);
4762 q_vector->set_itr = 0;
6eb5a7f1
AD
4763}
4764
047e0030 4765static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4766{
047e0030 4767 struct igb_q_vector *q_vector = data;
9d5c8243 4768
047e0030
AD
4769 /* Write the ITR value calculated from the previous interrupt. */
4770 igb_write_itr(q_vector);
9d5c8243 4771
047e0030 4772 napi_schedule(&q_vector->napi);
844290e5 4773
047e0030 4774 return IRQ_HANDLED;
fe4506b6
JC
4775}
4776
421e02f0 4777#ifdef CONFIG_IGB_DCA
047e0030 4778static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4779{
047e0030 4780 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4781 struct e1000_hw *hw = &adapter->hw;
4782 int cpu = get_cpu();
fe4506b6 4783
047e0030
AD
4784 if (q_vector->cpu == cpu)
4785 goto out_no_update;
4786
0ba82994
AD
4787 if (q_vector->tx.ring) {
4788 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4789 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4790 if (hw->mac.type == e1000_82575) {
4791 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4792 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4793 } else {
047e0030
AD
4794 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4795 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4796 E1000_DCA_TXCTRL_CPUID_SHIFT;
4797 }
4798 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4799 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4800 }
0ba82994
AD
4801 if (q_vector->rx.ring) {
4802 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4803 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4804 if (hw->mac.type == e1000_82575) {
2d064c06 4805 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4806 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4807 } else {
4808 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4809 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4810 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4811 }
fe4506b6
JC
4812 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4813 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4814 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4815 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4816 }
047e0030
AD
4817 q_vector->cpu = cpu;
4818out_no_update:
fe4506b6
JC
4819 put_cpu();
4820}
4821
4822static void igb_setup_dca(struct igb_adapter *adapter)
4823{
7e0e99ef 4824 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4825 int i;
4826
7dfc16fa 4827 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4828 return;
4829
7e0e99ef
AD
4830 /* Always use CB2 mode, difference is masked in the CB driver. */
4831 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4832
047e0030 4833 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4834 adapter->q_vector[i]->cpu = -1;
4835 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4836 }
4837}
4838
4839static int __igb_notify_dca(struct device *dev, void *data)
4840{
4841 struct net_device *netdev = dev_get_drvdata(dev);
4842 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4843 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4844 struct e1000_hw *hw = &adapter->hw;
4845 unsigned long event = *(unsigned long *)data;
4846
4847 switch (event) {
4848 case DCA_PROVIDER_ADD:
4849 /* if already enabled, don't do it again */
7dfc16fa 4850 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4851 break;
fe4506b6 4852 if (dca_add_requester(dev) == 0) {
bbd98fe4 4853 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4854 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4855 igb_setup_dca(adapter);
4856 break;
4857 }
4858 /* Fall Through since DCA is disabled. */
4859 case DCA_PROVIDER_REMOVE:
7dfc16fa 4860 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4861 /* without this a class_device is left
047e0030 4862 * hanging around in the sysfs model */
fe4506b6 4863 dca_remove_requester(dev);
090b1795 4864 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4865 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4866 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4867 }
4868 break;
4869 }
bbd98fe4 4870
fe4506b6 4871 return 0;
9d5c8243
AK
4872}
4873
fe4506b6
JC
4874static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4875 void *p)
4876{
4877 int ret_val;
4878
4879 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4880 __igb_notify_dca);
4881
4882 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4883}
421e02f0 4884#endif /* CONFIG_IGB_DCA */
9d5c8243 4885
0224d663
GR
4886#ifdef CONFIG_PCI_IOV
4887static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4888{
4889 unsigned char mac_addr[ETH_ALEN];
4890 struct pci_dev *pdev = adapter->pdev;
4891 struct e1000_hw *hw = &adapter->hw;
4892 struct pci_dev *pvfdev;
4893 unsigned int device_id;
4894 u16 thisvf_devfn;
4895
4896 random_ether_addr(mac_addr);
4897 igb_set_vf_mac(adapter, vf, mac_addr);
4898
4899 switch (adapter->hw.mac.type) {
4900 case e1000_82576:
4901 device_id = IGB_82576_VF_DEV_ID;
4902 /* VF Stride for 82576 is 2 */
4903 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
4904 (pdev->devfn & 1);
4905 break;
4906 case e1000_i350:
4907 device_id = IGB_I350_VF_DEV_ID;
4908 /* VF Stride for I350 is 4 */
4909 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
4910 (pdev->devfn & 3);
4911 break;
4912 default:
4913 device_id = 0;
4914 thisvf_devfn = 0;
4915 break;
4916 }
4917
4918 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
4919 while (pvfdev) {
4920 if (pvfdev->devfn == thisvf_devfn)
4921 break;
4922 pvfdev = pci_get_device(hw->vendor_id,
4923 device_id, pvfdev);
4924 }
4925
4926 if (pvfdev)
4927 adapter->vf_data[vf].vfdev = pvfdev;
4928 else
4929 dev_err(&pdev->dev,
4930 "Couldn't find pci dev ptr for VF %4.4x\n",
4931 thisvf_devfn);
4932 return pvfdev != NULL;
4933}
4934
4935static int igb_find_enabled_vfs(struct igb_adapter *adapter)
4936{
4937 struct e1000_hw *hw = &adapter->hw;
4938 struct pci_dev *pdev = adapter->pdev;
4939 struct pci_dev *pvfdev;
4940 u16 vf_devfn = 0;
4941 u16 vf_stride;
4942 unsigned int device_id;
4943 int vfs_found = 0;
4944
4945 switch (adapter->hw.mac.type) {
4946 case e1000_82576:
4947 device_id = IGB_82576_VF_DEV_ID;
4948 /* VF Stride for 82576 is 2 */
4949 vf_stride = 2;
4950 break;
4951 case e1000_i350:
4952 device_id = IGB_I350_VF_DEV_ID;
4953 /* VF Stride for I350 is 4 */
4954 vf_stride = 4;
4955 break;
4956 default:
4957 device_id = 0;
4958 vf_stride = 0;
4959 break;
4960 }
4961
4962 vf_devfn = pdev->devfn + 0x80;
4963 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
4964 while (pvfdev) {
4965 if (pvfdev->devfn == vf_devfn)
4966 vfs_found++;
4967 vf_devfn += vf_stride;
4968 pvfdev = pci_get_device(hw->vendor_id,
4969 device_id, pvfdev);
4970 }
4971
4972 return vfs_found;
4973}
4974
4975static int igb_check_vf_assignment(struct igb_adapter *adapter)
4976{
4977 int i;
4978 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4979 if (adapter->vf_data[i].vfdev) {
4980 if (adapter->vf_data[i].vfdev->dev_flags &
4981 PCI_DEV_FLAGS_ASSIGNED)
4982 return true;
4983 }
4984 }
4985 return false;
4986}
4987
4988#endif
4ae196df
AD
4989static void igb_ping_all_vfs(struct igb_adapter *adapter)
4990{
4991 struct e1000_hw *hw = &adapter->hw;
4992 u32 ping;
4993 int i;
4994
4995 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4996 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4997 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4998 ping |= E1000_VT_MSGTYPE_CTS;
4999 igb_write_mbx(hw, &ping, 1, i);
5000 }
5001}
5002
7d5753f0
AD
5003static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5004{
5005 struct e1000_hw *hw = &adapter->hw;
5006 u32 vmolr = rd32(E1000_VMOLR(vf));
5007 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5008
d85b9004 5009 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5010 IGB_VF_FLAG_MULTI_PROMISC);
5011 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5012
5013 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5014 vmolr |= E1000_VMOLR_MPME;
d85b9004 5015 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5016 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5017 } else {
5018 /*
5019 * if we have hashes and we are clearing a multicast promisc
5020 * flag we need to write the hashes to the MTA as this step
5021 * was previously skipped
5022 */
5023 if (vf_data->num_vf_mc_hashes > 30) {
5024 vmolr |= E1000_VMOLR_MPME;
5025 } else if (vf_data->num_vf_mc_hashes) {
5026 int j;
5027 vmolr |= E1000_VMOLR_ROMPE;
5028 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5029 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5030 }
5031 }
5032
5033 wr32(E1000_VMOLR(vf), vmolr);
5034
5035 /* there are flags left unprocessed, likely not supported */
5036 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5037 return -EINVAL;
5038
5039 return 0;
5040
5041}
5042
4ae196df
AD
5043static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5044 u32 *msgbuf, u32 vf)
5045{
5046 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5047 u16 *hash_list = (u16 *)&msgbuf[1];
5048 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5049 int i;
5050
7d5753f0 5051 /* salt away the number of multicast addresses assigned
4ae196df
AD
5052 * to this VF for later use to restore when the PF multi cast
5053 * list changes
5054 */
5055 vf_data->num_vf_mc_hashes = n;
5056
7d5753f0
AD
5057 /* only up to 30 hash values supported */
5058 if (n > 30)
5059 n = 30;
5060
5061 /* store the hashes for later use */
4ae196df 5062 for (i = 0; i < n; i++)
a419aef8 5063 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5064
5065 /* Flush and reset the mta with the new values */
ff41f8dc 5066 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5067
5068 return 0;
5069}
5070
5071static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5072{
5073 struct e1000_hw *hw = &adapter->hw;
5074 struct vf_data_storage *vf_data;
5075 int i, j;
5076
5077 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5078 u32 vmolr = rd32(E1000_VMOLR(i));
5079 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5080
4ae196df 5081 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5082
5083 if ((vf_data->num_vf_mc_hashes > 30) ||
5084 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5085 vmolr |= E1000_VMOLR_MPME;
5086 } else if (vf_data->num_vf_mc_hashes) {
5087 vmolr |= E1000_VMOLR_ROMPE;
5088 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5089 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5090 }
5091 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5092 }
5093}
5094
5095static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5096{
5097 struct e1000_hw *hw = &adapter->hw;
5098 u32 pool_mask, reg, vid;
5099 int i;
5100
5101 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5102
5103 /* Find the vlan filter for this id */
5104 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5105 reg = rd32(E1000_VLVF(i));
5106
5107 /* remove the vf from the pool */
5108 reg &= ~pool_mask;
5109
5110 /* if pool is empty then remove entry from vfta */
5111 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5112 (reg & E1000_VLVF_VLANID_ENABLE)) {
5113 reg = 0;
5114 vid = reg & E1000_VLVF_VLANID_MASK;
5115 igb_vfta_set(hw, vid, false);
5116 }
5117
5118 wr32(E1000_VLVF(i), reg);
5119 }
ae641bdc
AD
5120
5121 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5122}
5123
5124static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5125{
5126 struct e1000_hw *hw = &adapter->hw;
5127 u32 reg, i;
5128
51466239
AD
5129 /* The vlvf table only exists on 82576 hardware and newer */
5130 if (hw->mac.type < e1000_82576)
5131 return -1;
5132
5133 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5134 if (!adapter->vfs_allocated_count)
5135 return -1;
5136
5137 /* Find the vlan filter for this id */
5138 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5139 reg = rd32(E1000_VLVF(i));
5140 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5141 vid == (reg & E1000_VLVF_VLANID_MASK))
5142 break;
5143 }
5144
5145 if (add) {
5146 if (i == E1000_VLVF_ARRAY_SIZE) {
5147 /* Did not find a matching VLAN ID entry that was
5148 * enabled. Search for a free filter entry, i.e.
5149 * one without the enable bit set
5150 */
5151 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5152 reg = rd32(E1000_VLVF(i));
5153 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5154 break;
5155 }
5156 }
5157 if (i < E1000_VLVF_ARRAY_SIZE) {
5158 /* Found an enabled/available entry */
5159 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5160
5161 /* if !enabled we need to set this up in vfta */
5162 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5163 /* add VID to filter table */
5164 igb_vfta_set(hw, vid, true);
4ae196df
AD
5165 reg |= E1000_VLVF_VLANID_ENABLE;
5166 }
cad6d05f
AD
5167 reg &= ~E1000_VLVF_VLANID_MASK;
5168 reg |= vid;
4ae196df 5169 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5170
5171 /* do not modify RLPML for PF devices */
5172 if (vf >= adapter->vfs_allocated_count)
5173 return 0;
5174
5175 if (!adapter->vf_data[vf].vlans_enabled) {
5176 u32 size;
5177 reg = rd32(E1000_VMOLR(vf));
5178 size = reg & E1000_VMOLR_RLPML_MASK;
5179 size += 4;
5180 reg &= ~E1000_VMOLR_RLPML_MASK;
5181 reg |= size;
5182 wr32(E1000_VMOLR(vf), reg);
5183 }
ae641bdc 5184
51466239 5185 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5186 }
5187 } else {
5188 if (i < E1000_VLVF_ARRAY_SIZE) {
5189 /* remove vf from the pool */
5190 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5191 /* if pool is empty then remove entry from vfta */
5192 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5193 reg = 0;
5194 igb_vfta_set(hw, vid, false);
5195 }
5196 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5197
5198 /* do not modify RLPML for PF devices */
5199 if (vf >= adapter->vfs_allocated_count)
5200 return 0;
5201
5202 adapter->vf_data[vf].vlans_enabled--;
5203 if (!adapter->vf_data[vf].vlans_enabled) {
5204 u32 size;
5205 reg = rd32(E1000_VMOLR(vf));
5206 size = reg & E1000_VMOLR_RLPML_MASK;
5207 size -= 4;
5208 reg &= ~E1000_VMOLR_RLPML_MASK;
5209 reg |= size;
5210 wr32(E1000_VMOLR(vf), reg);
5211 }
4ae196df
AD
5212 }
5213 }
8151d294
WM
5214 return 0;
5215}
5216
5217static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5218{
5219 struct e1000_hw *hw = &adapter->hw;
5220
5221 if (vid)
5222 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5223 else
5224 wr32(E1000_VMVIR(vf), 0);
5225}
5226
5227static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5228 int vf, u16 vlan, u8 qos)
5229{
5230 int err = 0;
5231 struct igb_adapter *adapter = netdev_priv(netdev);
5232
5233 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5234 return -EINVAL;
5235 if (vlan || qos) {
5236 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5237 if (err)
5238 goto out;
5239 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5240 igb_set_vmolr(adapter, vf, !vlan);
5241 adapter->vf_data[vf].pf_vlan = vlan;
5242 adapter->vf_data[vf].pf_qos = qos;
5243 dev_info(&adapter->pdev->dev,
5244 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5245 if (test_bit(__IGB_DOWN, &adapter->state)) {
5246 dev_warn(&adapter->pdev->dev,
5247 "The VF VLAN has been set,"
5248 " but the PF device is not up.\n");
5249 dev_warn(&adapter->pdev->dev,
5250 "Bring the PF device up before"
5251 " attempting to use the VF device.\n");
5252 }
5253 } else {
5254 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5255 false, vf);
5256 igb_set_vmvir(adapter, vlan, vf);
5257 igb_set_vmolr(adapter, vf, true);
5258 adapter->vf_data[vf].pf_vlan = 0;
5259 adapter->vf_data[vf].pf_qos = 0;
5260 }
5261out:
5262 return err;
4ae196df
AD
5263}
5264
5265static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5266{
5267 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5268 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5269
5270 return igb_vlvf_set(adapter, vid, add, vf);
5271}
5272
f2ca0dbe 5273static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5274{
8fa7e0f7
GR
5275 /* clear flags - except flag that indicates PF has set the MAC */
5276 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5277 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5278
5279 /* reset offloads to defaults */
8151d294 5280 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5281
5282 /* reset vlans for device */
5283 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5284 if (adapter->vf_data[vf].pf_vlan)
5285 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5286 adapter->vf_data[vf].pf_vlan,
5287 adapter->vf_data[vf].pf_qos);
5288 else
5289 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5290
5291 /* reset multicast table array for vf */
5292 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5293
5294 /* Flush and reset the mta with the new values */
ff41f8dc 5295 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5296}
5297
f2ca0dbe
AD
5298static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5299{
5300 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5301
5302 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5303 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5304 random_ether_addr(vf_mac);
f2ca0dbe
AD
5305
5306 /* process remaining reset events */
5307 igb_vf_reset(adapter, vf);
5308}
5309
5310static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5311{
5312 struct e1000_hw *hw = &adapter->hw;
5313 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5314 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5315 u32 reg, msgbuf[3];
5316 u8 *addr = (u8 *)(&msgbuf[1]);
5317
5318 /* process all the same items cleared in a function level reset */
f2ca0dbe 5319 igb_vf_reset(adapter, vf);
4ae196df
AD
5320
5321 /* set vf mac address */
26ad9178 5322 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5323
5324 /* enable transmit and receive for vf */
5325 reg = rd32(E1000_VFTE);
5326 wr32(E1000_VFTE, reg | (1 << vf));
5327 reg = rd32(E1000_VFRE);
5328 wr32(E1000_VFRE, reg | (1 << vf));
5329
8fa7e0f7 5330 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5331
5332 /* reply to reset with ack and vf mac address */
5333 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5334 memcpy(addr, vf_mac, 6);
5335 igb_write_mbx(hw, msgbuf, 3, vf);
5336}
5337
5338static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5339{
de42edde
GR
5340 /*
5341 * The VF MAC Address is stored in a packed array of bytes
5342 * starting at the second 32 bit word of the msg array
5343 */
f2ca0dbe
AD
5344 unsigned char *addr = (char *)&msg[1];
5345 int err = -1;
4ae196df 5346
f2ca0dbe
AD
5347 if (is_valid_ether_addr(addr))
5348 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5349
f2ca0dbe 5350 return err;
4ae196df
AD
5351}
5352
5353static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5354{
5355 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5356 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5357 u32 msg = E1000_VT_MSGTYPE_NACK;
5358
5359 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5360 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5361 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5362 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5363 vf_data->last_nack = jiffies;
4ae196df
AD
5364 }
5365}
5366
f2ca0dbe 5367static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5368{
f2ca0dbe
AD
5369 struct pci_dev *pdev = adapter->pdev;
5370 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5371 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5372 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5373 s32 retval;
5374
f2ca0dbe 5375 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5376
fef45f4c
AD
5377 if (retval) {
5378 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5379 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5380 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5381 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5382 return;
5383 goto out;
5384 }
4ae196df
AD
5385
5386 /* this is a message we already processed, do nothing */
5387 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5388 return;
4ae196df
AD
5389
5390 /*
5391 * until the vf completes a reset it should not be
5392 * allowed to start any configuration.
5393 */
5394
5395 if (msgbuf[0] == E1000_VF_RESET) {
5396 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5397 return;
4ae196df
AD
5398 }
5399
f2ca0dbe 5400 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5401 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5402 return;
5403 retval = -1;
5404 goto out;
4ae196df
AD
5405 }
5406
5407 switch ((msgbuf[0] & 0xFFFF)) {
5408 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5409 retval = -EINVAL;
5410 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5411 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5412 else
5413 dev_warn(&pdev->dev,
5414 "VF %d attempted to override administratively "
5415 "set MAC address\nReload the VF driver to "
5416 "resume operations\n", vf);
4ae196df 5417 break;
7d5753f0
AD
5418 case E1000_VF_SET_PROMISC:
5419 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5420 break;
4ae196df
AD
5421 case E1000_VF_SET_MULTICAST:
5422 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5423 break;
5424 case E1000_VF_SET_LPE:
5425 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5426 break;
5427 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5428 retval = -1;
5429 if (vf_data->pf_vlan)
5430 dev_warn(&pdev->dev,
5431 "VF %d attempted to override administratively "
5432 "set VLAN tag\nReload the VF driver to "
5433 "resume operations\n", vf);
8151d294
WM
5434 else
5435 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5436 break;
5437 default:
090b1795 5438 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5439 retval = -1;
5440 break;
5441 }
5442
fef45f4c
AD
5443 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5444out:
4ae196df
AD
5445 /* notify the VF of the results of what it sent us */
5446 if (retval)
5447 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5448 else
5449 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5450
4ae196df 5451 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5452}
4ae196df 5453
f2ca0dbe
AD
5454static void igb_msg_task(struct igb_adapter *adapter)
5455{
5456 struct e1000_hw *hw = &adapter->hw;
5457 u32 vf;
5458
5459 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5460 /* process any reset requests */
5461 if (!igb_check_for_rst(hw, vf))
5462 igb_vf_reset_event(adapter, vf);
5463
5464 /* process any messages pending */
5465 if (!igb_check_for_msg(hw, vf))
5466 igb_rcv_msg_from_vf(adapter, vf);
5467
5468 /* process any acks */
5469 if (!igb_check_for_ack(hw, vf))
5470 igb_rcv_ack_from_vf(adapter, vf);
5471 }
4ae196df
AD
5472}
5473
68d480c4
AD
5474/**
5475 * igb_set_uta - Set unicast filter table address
5476 * @adapter: board private structure
5477 *
5478 * The unicast table address is a register array of 32-bit registers.
5479 * The table is meant to be used in a way similar to how the MTA is used
5480 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5481 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5482 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5483 **/
5484static void igb_set_uta(struct igb_adapter *adapter)
5485{
5486 struct e1000_hw *hw = &adapter->hw;
5487 int i;
5488
5489 /* The UTA table only exists on 82576 hardware and newer */
5490 if (hw->mac.type < e1000_82576)
5491 return;
5492
5493 /* we only need to do this if VMDq is enabled */
5494 if (!adapter->vfs_allocated_count)
5495 return;
5496
5497 for (i = 0; i < hw->mac.uta_reg_count; i++)
5498 array_wr32(E1000_UTA, i, ~0);
5499}
5500
9d5c8243
AK
5501/**
5502 * igb_intr_msi - Interrupt Handler
5503 * @irq: interrupt number
5504 * @data: pointer to a network interface device structure
5505 **/
5506static irqreturn_t igb_intr_msi(int irq, void *data)
5507{
047e0030
AD
5508 struct igb_adapter *adapter = data;
5509 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5510 struct e1000_hw *hw = &adapter->hw;
5511 /* read ICR disables interrupts using IAM */
5512 u32 icr = rd32(E1000_ICR);
5513
047e0030 5514 igb_write_itr(q_vector);
9d5c8243 5515
7f081d40
AD
5516 if (icr & E1000_ICR_DRSTA)
5517 schedule_work(&adapter->reset_task);
5518
047e0030 5519 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5520 /* HW is reporting DMA is out of sync */
5521 adapter->stats.doosync++;
5522 }
5523
9d5c8243
AK
5524 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5525 hw->mac.get_link_status = 1;
5526 if (!test_bit(__IGB_DOWN, &adapter->state))
5527 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5528 }
5529
047e0030 5530 napi_schedule(&q_vector->napi);
9d5c8243
AK
5531
5532 return IRQ_HANDLED;
5533}
5534
5535/**
4a3c6433 5536 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5537 * @irq: interrupt number
5538 * @data: pointer to a network interface device structure
5539 **/
5540static irqreturn_t igb_intr(int irq, void *data)
5541{
047e0030
AD
5542 struct igb_adapter *adapter = data;
5543 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5544 struct e1000_hw *hw = &adapter->hw;
5545 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5546 * need for the IMC write */
5547 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5548
5549 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5550 * not set, then the adapter didn't send an interrupt */
5551 if (!(icr & E1000_ICR_INT_ASSERTED))
5552 return IRQ_NONE;
5553
0ba82994
AD
5554 igb_write_itr(q_vector);
5555
7f081d40
AD
5556 if (icr & E1000_ICR_DRSTA)
5557 schedule_work(&adapter->reset_task);
5558
047e0030 5559 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5560 /* HW is reporting DMA is out of sync */
5561 adapter->stats.doosync++;
5562 }
5563
9d5c8243
AK
5564 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5565 hw->mac.get_link_status = 1;
5566 /* guard against interrupt when we're going down */
5567 if (!test_bit(__IGB_DOWN, &adapter->state))
5568 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5569 }
5570
047e0030 5571 napi_schedule(&q_vector->napi);
9d5c8243
AK
5572
5573 return IRQ_HANDLED;
5574}
5575
0ba82994 5576void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5577{
047e0030 5578 struct igb_adapter *adapter = q_vector->adapter;
46544258 5579 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5580
0ba82994
AD
5581 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5582 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5583 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5584 igb_set_itr(q_vector);
46544258 5585 else
047e0030 5586 igb_update_ring_itr(q_vector);
9d5c8243
AK
5587 }
5588
46544258
AD
5589 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5590 if (adapter->msix_entries)
047e0030 5591 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5592 else
5593 igb_irq_enable(adapter);
5594 }
9d5c8243
AK
5595}
5596
46544258
AD
5597/**
5598 * igb_poll - NAPI Rx polling callback
5599 * @napi: napi polling structure
5600 * @budget: count of how many packets we should handle
5601 **/
5602static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5603{
047e0030
AD
5604 struct igb_q_vector *q_vector = container_of(napi,
5605 struct igb_q_vector,
5606 napi);
16eb8815 5607 bool clean_complete = true;
9d5c8243 5608
421e02f0 5609#ifdef CONFIG_IGB_DCA
047e0030
AD
5610 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5611 igb_update_dca(q_vector);
fe4506b6 5612#endif
0ba82994 5613 if (q_vector->tx.ring)
13fde97a 5614 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5615
0ba82994 5616 if (q_vector->rx.ring)
cd392f5c 5617 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5618
16eb8815
AD
5619 /* If all work not completed, return budget and keep polling */
5620 if (!clean_complete)
5621 return budget;
46544258 5622
9d5c8243 5623 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5624 napi_complete(napi);
5625 igb_ring_irq_enable(q_vector);
9d5c8243 5626
16eb8815 5627 return 0;
9d5c8243 5628}
6d8126f9 5629
33af6bcc 5630/**
c5b9bd5e 5631 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5632 * @adapter: board private structure
c5b9bd5e
AD
5633 * @shhwtstamps: timestamp structure to update
5634 * @regval: unsigned 64bit system time value.
5635 *
5636 * We need to convert the system time value stored in the RX/TXSTMP registers
5637 * into a hwtstamp which can be used by the upper level timestamping functions
5638 */
5639static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5640 struct skb_shared_hwtstamps *shhwtstamps,
5641 u64 regval)
5642{
5643 u64 ns;
5644
55cac248
AD
5645 /*
5646 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5647 * 24 to match clock shift we setup earlier.
5648 */
06218a8d 5649 if (adapter->hw.mac.type >= e1000_82580)
55cac248
AD
5650 regval <<= IGB_82580_TSYNC_SHIFT;
5651
c5b9bd5e
AD
5652 ns = timecounter_cyc2time(&adapter->clock, regval);
5653 timecompare_update(&adapter->compare, ns);
5654 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5655 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5656 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5657}
5658
5659/**
5660 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5661 * @q_vector: pointer to q_vector containing needed info
06034649 5662 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5663 *
5664 * If we were asked to do hardware stamping and such a time stamp is
5665 * available, then it must have been for this skb here because we only
5666 * allow only one such packet into the queue.
5667 */
06034649
AD
5668static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5669 struct igb_tx_buffer *buffer_info)
33af6bcc 5670{
c5b9bd5e 5671 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5672 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5673 struct skb_shared_hwtstamps shhwtstamps;
5674 u64 regval;
33af6bcc 5675
c5b9bd5e 5676 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5677 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5678 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5679 return;
5680
5681 regval = rd32(E1000_TXSTMPL);
5682 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5683
5684 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5685 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5686}
5687
9d5c8243
AK
5688/**
5689 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5690 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5691 * returns true if ring is completely cleaned
5692 **/
047e0030 5693static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5694{
047e0030 5695 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5696 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5697 struct igb_tx_buffer *tx_buffer;
8542db05 5698 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5699 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5700 unsigned int budget = q_vector->tx.work_limit;
8542db05 5701 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5702
13fde97a
AD
5703 if (test_bit(__IGB_DOWN, &adapter->state))
5704 return true;
0e014cb1 5705
06034649 5706 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5707 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5708 i -= tx_ring->count;
9d5c8243 5709
13fde97a 5710 for (; budget; budget--) {
8542db05 5711 eop_desc = tx_buffer->next_to_watch;
13fde97a 5712
8542db05
AD
5713 /* prevent any other reads prior to eop_desc */
5714 rmb();
5715
5716 /* if next_to_watch is not set then there is no work pending */
5717 if (!eop_desc)
5718 break;
13fde97a
AD
5719
5720 /* if DD is not set pending work has not been completed */
5721 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5722 break;
5723
8542db05
AD
5724 /* clear next_to_watch to prevent false hangs */
5725 tx_buffer->next_to_watch = NULL;
9d5c8243 5726
ebe42d16
AD
5727 /* update the statistics for this packet */
5728 total_bytes += tx_buffer->bytecount;
5729 total_packets += tx_buffer->gso_segs;
13fde97a 5730
ebe42d16
AD
5731 /* retrieve hardware timestamp */
5732 igb_tx_hwtstamp(q_vector, tx_buffer);
5733
5734 /* free the skb */
5735 dev_kfree_skb_any(tx_buffer->skb);
5736 tx_buffer->skb = NULL;
13fde97a 5737
ebe42d16
AD
5738 /* unmap skb header data */
5739 dma_unmap_single(tx_ring->dev,
5740 tx_buffer->dma,
5741 tx_buffer->length,
5742 DMA_TO_DEVICE);
5743
5744 /* clear last DMA location and unmap remaining buffers */
5745 while (tx_desc != eop_desc) {
5746 tx_buffer->dma = 0;
9d5c8243 5747
13fde97a
AD
5748 tx_buffer++;
5749 tx_desc++;
9d5c8243 5750 i++;
8542db05
AD
5751 if (unlikely(!i)) {
5752 i -= tx_ring->count;
06034649 5753 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5754 tx_desc = IGB_TX_DESC(tx_ring, 0);
5755 }
ebe42d16
AD
5756
5757 /* unmap any remaining paged data */
5758 if (tx_buffer->dma) {
5759 dma_unmap_page(tx_ring->dev,
5760 tx_buffer->dma,
5761 tx_buffer->length,
5762 DMA_TO_DEVICE);
5763 }
5764 }
5765
5766 /* clear last DMA location */
5767 tx_buffer->dma = 0;
5768
5769 /* move us one more past the eop_desc for start of next pkt */
5770 tx_buffer++;
5771 tx_desc++;
5772 i++;
5773 if (unlikely(!i)) {
5774 i -= tx_ring->count;
5775 tx_buffer = tx_ring->tx_buffer_info;
5776 tx_desc = IGB_TX_DESC(tx_ring, 0);
5777 }
0e014cb1
AD
5778 }
5779
8542db05 5780 i += tx_ring->count;
9d5c8243 5781 tx_ring->next_to_clean = i;
13fde97a
AD
5782 u64_stats_update_begin(&tx_ring->tx_syncp);
5783 tx_ring->tx_stats.bytes += total_bytes;
5784 tx_ring->tx_stats.packets += total_packets;
5785 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5786 q_vector->tx.total_bytes += total_bytes;
5787 q_vector->tx.total_packets += total_packets;
9d5c8243 5788
6d095fa8 5789 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5790 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5791
8542db05 5792 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5793
9d5c8243
AK
5794 /* Detect a transmit hang in hardware, this serializes the
5795 * check with the clearing of time_stamp and movement of i */
6d095fa8 5796 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8542db05
AD
5797 if (eop_desc &&
5798 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5799 (adapter->tx_timeout_factor * HZ)) &&
5800 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5801
9d5c8243 5802 /* detected Tx unit hang */
59d71989 5803 dev_err(tx_ring->dev,
9d5c8243 5804 "Detected Tx Unit Hang\n"
2d064c06 5805 " Tx Queue <%d>\n"
9d5c8243
AK
5806 " TDH <%x>\n"
5807 " TDT <%x>\n"
5808 " next_to_use <%x>\n"
5809 " next_to_clean <%x>\n"
9d5c8243
AK
5810 "buffer_info[next_to_clean]\n"
5811 " time_stamp <%lx>\n"
8542db05 5812 " next_to_watch <%p>\n"
9d5c8243
AK
5813 " jiffies <%lx>\n"
5814 " desc.status <%x>\n",
2d064c06 5815 tx_ring->queue_index,
238ac817 5816 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5817 readl(tx_ring->tail),
9d5c8243
AK
5818 tx_ring->next_to_use,
5819 tx_ring->next_to_clean,
8542db05
AD
5820 tx_buffer->time_stamp,
5821 eop_desc,
9d5c8243 5822 jiffies,
0e014cb1 5823 eop_desc->wb.status);
13fde97a
AD
5824 netif_stop_subqueue(tx_ring->netdev,
5825 tx_ring->queue_index);
5826
5827 /* we are about to reset, no point in enabling stuff */
5828 return true;
9d5c8243
AK
5829 }
5830 }
13fde97a
AD
5831
5832 if (unlikely(total_packets &&
5833 netif_carrier_ok(tx_ring->netdev) &&
5834 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5835 /* Make sure that anybody stopping the queue after this
5836 * sees the new next_to_clean.
5837 */
5838 smp_mb();
5839 if (__netif_subqueue_stopped(tx_ring->netdev,
5840 tx_ring->queue_index) &&
5841 !(test_bit(__IGB_DOWN, &adapter->state))) {
5842 netif_wake_subqueue(tx_ring->netdev,
5843 tx_ring->queue_index);
5844
5845 u64_stats_update_begin(&tx_ring->tx_syncp);
5846 tx_ring->tx_stats.restart_queue++;
5847 u64_stats_update_end(&tx_ring->tx_syncp);
5848 }
5849 }
5850
5851 return !!budget;
9d5c8243
AK
5852}
5853
cd392f5c 5854static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5855 union e1000_adv_rx_desc *rx_desc,
5856 struct sk_buff *skb)
9d5c8243 5857{
bc8acf2c 5858 skb_checksum_none_assert(skb);
9d5c8243 5859
294e7d78 5860 /* Ignore Checksum bit is set */
3ceb90fd 5861 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5862 return;
5863
5864 /* Rx checksum disabled via ethtool */
5865 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5866 return;
85ad76b2 5867
9d5c8243 5868 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5869 if (igb_test_staterr(rx_desc,
5870 E1000_RXDEXT_STATERR_TCPE |
5871 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5872 /*
5873 * work around errata with sctp packets where the TCPE aka
5874 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5875 * packets, (aka let the stack check the crc32c)
5876 */
866cff06
AD
5877 if (!((skb->len == 60) &&
5878 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5879 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5880 ring->rx_stats.csum_err++;
12dcd86b
ED
5881 u64_stats_update_end(&ring->rx_syncp);
5882 }
9d5c8243 5883 /* let the stack verify checksum errors */
9d5c8243
AK
5884 return;
5885 }
5886 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5887 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5888 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5889 skb->ip_summed = CHECKSUM_UNNECESSARY;
5890
3ceb90fd
AD
5891 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5892 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5893}
5894
077887c3
AD
5895static inline void igb_rx_hash(struct igb_ring *ring,
5896 union e1000_adv_rx_desc *rx_desc,
5897 struct sk_buff *skb)
5898{
5899 if (ring->netdev->features & NETIF_F_RXHASH)
5900 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5901}
5902
3ceb90fd
AD
5903static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5904 union e1000_adv_rx_desc *rx_desc,
5905 struct sk_buff *skb)
c5b9bd5e
AD
5906{
5907 struct igb_adapter *adapter = q_vector->adapter;
5908 struct e1000_hw *hw = &adapter->hw;
5909 u64 regval;
5910
3ceb90fd
AD
5911 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
5912 E1000_RXDADV_STAT_TS))
5913 return;
5914
c5b9bd5e
AD
5915 /*
5916 * If this bit is set, then the RX registers contain the time stamp. No
5917 * other packet will be time stamped until we read these registers, so
5918 * read the registers to make them available again. Because only one
5919 * packet can be time stamped at a time, we know that the register
5920 * values must belong to this one here and therefore we don't need to
5921 * compare any of the additional attributes stored for it.
5922 *
2244d07b 5923 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5924 * can turn into a skb_shared_hwtstamps.
5925 */
3ceb90fd 5926 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
5927 u32 *stamp = (u32 *)skb->data;
5928 regval = le32_to_cpu(*(stamp + 2));
5929 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5930 skb_pull(skb, IGB_TS_HDR_LEN);
5931 } else {
5932 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5933 return;
c5b9bd5e 5934
757b77e2
NN
5935 regval = rd32(E1000_RXSTMPL);
5936 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5937 }
c5b9bd5e
AD
5938
5939 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5940}
8be10e91
AD
5941
5942static void igb_rx_vlan(struct igb_ring *ring,
5943 union e1000_adv_rx_desc *rx_desc,
5944 struct sk_buff *skb)
5945{
5946 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
5947 u16 vid;
5948 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
5949 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
5950 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
5951 else
5952 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5953
5954 __vlan_hwaccel_put_tag(skb, vid);
5955 }
5956}
5957
44390ca6 5958static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5959{
5960 /* HW will not DMA in data larger than the given buffer, even if it
5961 * parses the (NFS, of course) header to be larger. In that case, it
5962 * fills the header buffer and spills the rest into the page.
5963 */
5964 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5965 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5966 if (hlen > IGB_RX_HDR_LEN)
5967 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5968 return hlen;
5969}
5970
cd392f5c 5971static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5972{
0ba82994 5973 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
5974 union e1000_adv_rx_desc *rx_desc;
5975 const int current_node = numa_node_id();
9d5c8243 5976 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
5977 u16 cleaned_count = igb_desc_unused(rx_ring);
5978 u16 i = rx_ring->next_to_clean;
9d5c8243 5979
60136906 5980 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 5981
3ceb90fd 5982 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 5983 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5984 struct sk_buff *skb = buffer_info->skb;
5985 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5986
69d3ca53 5987 buffer_info->skb = NULL;
16eb8815 5988 prefetch(skb->data);
69d3ca53
AD
5989
5990 i++;
5991 if (i == rx_ring->count)
5992 i = 0;
42d0781a 5993
60136906 5994 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5995 prefetch(next_rxd);
9d5c8243 5996
16eb8815
AD
5997 /*
5998 * This memory barrier is needed to keep us from reading
5999 * any other fields out of the rx_desc until we know the
6000 * RXD_STAT_DD bit is set
6001 */
6002 rmb();
9d5c8243 6003
16eb8815
AD
6004 if (!skb_is_nonlinear(skb)) {
6005 __skb_put(skb, igb_get_hlen(rx_desc));
6006 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 6007 IGB_RX_HDR_LEN,
59d71989 6008 DMA_FROM_DEVICE);
91615f76 6009 buffer_info->dma = 0;
bf36c1a0
AD
6010 }
6011
16eb8815
AD
6012 if (rx_desc->wb.upper.length) {
6013 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 6014
aa913403 6015 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
6016 buffer_info->page,
6017 buffer_info->page_offset,
6018 length);
6019
16eb8815
AD
6020 skb->len += length;
6021 skb->data_len += length;
95b9c1df 6022 skb->truesize += PAGE_SIZE / 2;
16eb8815 6023
d1eff350
AD
6024 if ((page_count(buffer_info->page) != 1) ||
6025 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
6026 buffer_info->page = NULL;
6027 else
6028 get_page(buffer_info->page);
9d5c8243 6029
16eb8815
AD
6030 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
6031 PAGE_SIZE / 2, DMA_FROM_DEVICE);
6032 buffer_info->page_dma = 0;
9d5c8243 6033 }
9d5c8243 6034
3ceb90fd 6035 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
6036 struct igb_rx_buffer *next_buffer;
6037 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
6038 buffer_info->skb = next_buffer->skb;
6039 buffer_info->dma = next_buffer->dma;
6040 next_buffer->skb = skb;
6041 next_buffer->dma = 0;
bf36c1a0
AD
6042 goto next_desc;
6043 }
44390ca6 6044
3ceb90fd
AD
6045 if (igb_test_staterr(rx_desc,
6046 E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
16eb8815 6047 dev_kfree_skb_any(skb);
9d5c8243
AK
6048 goto next_desc;
6049 }
9d5c8243 6050
3ceb90fd 6051 igb_rx_hwtstamp(q_vector, rx_desc, skb);
077887c3 6052 igb_rx_hash(rx_ring, rx_desc, skb);
3ceb90fd 6053 igb_rx_checksum(rx_ring, rx_desc, skb);
8be10e91 6054 igb_rx_vlan(rx_ring, rx_desc, skb);
3ceb90fd
AD
6055
6056 total_bytes += skb->len;
6057 total_packets++;
6058
6059 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6060
b2cb09b1 6061 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6062
16eb8815 6063 budget--;
9d5c8243 6064next_desc:
16eb8815
AD
6065 if (!budget)
6066 break;
6067
6068 cleaned_count++;
9d5c8243
AK
6069 /* return some buffers to hardware, one at a time is too slow */
6070 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 6071 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
6072 cleaned_count = 0;
6073 }
6074
6075 /* use prefetched values */
6076 rx_desc = next_rxd;
9d5c8243 6077 }
bf36c1a0 6078
9d5c8243 6079 rx_ring->next_to_clean = i;
12dcd86b 6080 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6081 rx_ring->rx_stats.packets += total_packets;
6082 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6083 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6084 q_vector->rx.total_packets += total_packets;
6085 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6086
6087 if (cleaned_count)
cd392f5c 6088 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6089
16eb8815 6090 return !!budget;
9d5c8243
AK
6091}
6092
c023cd88 6093static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6094 struct igb_rx_buffer *bi)
c023cd88
AD
6095{
6096 struct sk_buff *skb = bi->skb;
6097 dma_addr_t dma = bi->dma;
6098
6099 if (dma)
6100 return true;
6101
6102 if (likely(!skb)) {
6103 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6104 IGB_RX_HDR_LEN);
6105 bi->skb = skb;
6106 if (!skb) {
6107 rx_ring->rx_stats.alloc_failed++;
6108 return false;
6109 }
6110
6111 /* initialize skb for ring */
6112 skb_record_rx_queue(skb, rx_ring->queue_index);
6113 }
6114
6115 dma = dma_map_single(rx_ring->dev, skb->data,
6116 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6117
6118 if (dma_mapping_error(rx_ring->dev, dma)) {
6119 rx_ring->rx_stats.alloc_failed++;
6120 return false;
6121 }
6122
6123 bi->dma = dma;
6124 return true;
6125}
6126
6127static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6128 struct igb_rx_buffer *bi)
c023cd88
AD
6129{
6130 struct page *page = bi->page;
6131 dma_addr_t page_dma = bi->page_dma;
6132 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6133
6134 if (page_dma)
6135 return true;
6136
6137 if (!page) {
1f2149c1 6138 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
c023cd88
AD
6139 bi->page = page;
6140 if (unlikely(!page)) {
6141 rx_ring->rx_stats.alloc_failed++;
6142 return false;
6143 }
6144 }
6145
6146 page_dma = dma_map_page(rx_ring->dev, page,
6147 page_offset, PAGE_SIZE / 2,
6148 DMA_FROM_DEVICE);
6149
6150 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6151 rx_ring->rx_stats.alloc_failed++;
6152 return false;
6153 }
6154
6155 bi->page_dma = page_dma;
6156 bi->page_offset = page_offset;
6157 return true;
6158}
6159
9d5c8243 6160/**
cd392f5c 6161 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6162 * @adapter: address of board private structure
6163 **/
cd392f5c 6164void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6165{
9d5c8243 6166 union e1000_adv_rx_desc *rx_desc;
06034649 6167 struct igb_rx_buffer *bi;
c023cd88 6168 u16 i = rx_ring->next_to_use;
9d5c8243 6169
60136906 6170 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6171 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6172 i -= rx_ring->count;
9d5c8243
AK
6173
6174 while (cleaned_count--) {
c023cd88
AD
6175 if (!igb_alloc_mapped_skb(rx_ring, bi))
6176 break;
9d5c8243 6177
c023cd88
AD
6178 /* Refresh the desc even if buffer_addrs didn't change
6179 * because each write-back erases this info. */
6180 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6181
c023cd88
AD
6182 if (!igb_alloc_mapped_page(rx_ring, bi))
6183 break;
6184
6185 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6186
c023cd88
AD
6187 rx_desc++;
6188 bi++;
9d5c8243 6189 i++;
c023cd88 6190 if (unlikely(!i)) {
60136906 6191 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6192 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6193 i -= rx_ring->count;
6194 }
6195
6196 /* clear the hdr_addr for the next_to_use descriptor */
6197 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6198 }
6199
c023cd88
AD
6200 i += rx_ring->count;
6201
9d5c8243
AK
6202 if (rx_ring->next_to_use != i) {
6203 rx_ring->next_to_use = i;
9d5c8243
AK
6204
6205 /* Force memory writes to complete before letting h/w
6206 * know there are new descriptors to fetch. (Only
6207 * applicable for weak-ordered memory model archs,
6208 * such as IA-64). */
6209 wmb();
fce99e34 6210 writel(i, rx_ring->tail);
9d5c8243
AK
6211 }
6212}
6213
6214/**
6215 * igb_mii_ioctl -
6216 * @netdev:
6217 * @ifreq:
6218 * @cmd:
6219 **/
6220static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6221{
6222 struct igb_adapter *adapter = netdev_priv(netdev);
6223 struct mii_ioctl_data *data = if_mii(ifr);
6224
6225 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6226 return -EOPNOTSUPP;
6227
6228 switch (cmd) {
6229 case SIOCGMIIPHY:
6230 data->phy_id = adapter->hw.phy.addr;
6231 break;
6232 case SIOCGMIIREG:
f5f4cf08
AD
6233 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6234 &data->val_out))
9d5c8243
AK
6235 return -EIO;
6236 break;
6237 case SIOCSMIIREG:
6238 default:
6239 return -EOPNOTSUPP;
6240 }
6241 return 0;
6242}
6243
c6cb090b
PO
6244/**
6245 * igb_hwtstamp_ioctl - control hardware time stamping
6246 * @netdev:
6247 * @ifreq:
6248 * @cmd:
6249 *
33af6bcc
PO
6250 * Outgoing time stamping can be enabled and disabled. Play nice and
6251 * disable it when requested, although it shouldn't case any overhead
6252 * when no packet needs it. At most one packet in the queue may be
6253 * marked for time stamping, otherwise it would be impossible to tell
6254 * for sure to which packet the hardware time stamp belongs.
6255 *
6256 * Incoming time stamping has to be configured via the hardware
6257 * filters. Not all combinations are supported, in particular event
6258 * type has to be specified. Matching the kind of event packet is
6259 * not supported, with the exception of "all V2 events regardless of
6260 * level 2 or 4".
6261 *
c6cb090b
PO
6262 **/
6263static int igb_hwtstamp_ioctl(struct net_device *netdev,
6264 struct ifreq *ifr, int cmd)
6265{
33af6bcc
PO
6266 struct igb_adapter *adapter = netdev_priv(netdev);
6267 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6268 struct hwtstamp_config config;
c5b9bd5e
AD
6269 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6270 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6271 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6272 bool is_l4 = false;
6273 bool is_l2 = false;
33af6bcc 6274 u32 regval;
c6cb090b
PO
6275
6276 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6277 return -EFAULT;
6278
6279 /* reserved for future extensions */
6280 if (config.flags)
6281 return -EINVAL;
6282
33af6bcc
PO
6283 switch (config.tx_type) {
6284 case HWTSTAMP_TX_OFF:
c5b9bd5e 6285 tsync_tx_ctl = 0;
33af6bcc 6286 case HWTSTAMP_TX_ON:
33af6bcc
PO
6287 break;
6288 default:
6289 return -ERANGE;
6290 }
6291
6292 switch (config.rx_filter) {
6293 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6294 tsync_rx_ctl = 0;
33af6bcc
PO
6295 break;
6296 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6297 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6298 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6299 case HWTSTAMP_FILTER_ALL:
6300 /*
6301 * register TSYNCRXCFG must be set, therefore it is not
6302 * possible to time stamp both Sync and Delay_Req messages
6303 * => fall back to time stamping all packets
6304 */
c5b9bd5e 6305 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6306 config.rx_filter = HWTSTAMP_FILTER_ALL;
6307 break;
6308 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6309 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6310 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6311 is_l4 = true;
33af6bcc
PO
6312 break;
6313 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6314 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6315 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6316 is_l4 = true;
33af6bcc
PO
6317 break;
6318 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6319 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6320 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6321 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6322 is_l2 = true;
6323 is_l4 = true;
33af6bcc
PO
6324 config.rx_filter = HWTSTAMP_FILTER_SOME;
6325 break;
6326 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6327 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6328 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6329 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6330 is_l2 = true;
6331 is_l4 = true;
33af6bcc
PO
6332 config.rx_filter = HWTSTAMP_FILTER_SOME;
6333 break;
6334 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6335 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6336 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6337 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6338 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6339 is_l2 = true;
11ba69e8 6340 is_l4 = true;
33af6bcc
PO
6341 break;
6342 default:
6343 return -ERANGE;
6344 }
6345
c5b9bd5e
AD
6346 if (hw->mac.type == e1000_82575) {
6347 if (tsync_rx_ctl | tsync_tx_ctl)
6348 return -EINVAL;
6349 return 0;
6350 }
6351
757b77e2
NN
6352 /*
6353 * Per-packet timestamping only works if all packets are
6354 * timestamped, so enable timestamping in all packets as
6355 * long as one rx filter was configured.
6356 */
06218a8d 6357 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
757b77e2
NN
6358 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6359 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6360 }
6361
33af6bcc
PO
6362 /* enable/disable TX */
6363 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6364 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6365 regval |= tsync_tx_ctl;
33af6bcc
PO
6366 wr32(E1000_TSYNCTXCTL, regval);
6367
c5b9bd5e 6368 /* enable/disable RX */
33af6bcc 6369 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6370 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6371 regval |= tsync_rx_ctl;
33af6bcc 6372 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6373
c5b9bd5e
AD
6374 /* define which PTP packets are time stamped */
6375 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6376
c5b9bd5e
AD
6377 /* define ethertype filter for timestamped packets */
6378 if (is_l2)
6379 wr32(E1000_ETQF(3),
6380 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6381 E1000_ETQF_1588 | /* enable timestamping */
6382 ETH_P_1588)); /* 1588 eth protocol type */
6383 else
6384 wr32(E1000_ETQF(3), 0);
6385
6386#define PTP_PORT 319
6387 /* L4 Queue Filter[3]: filter by destination port and protocol */
6388 if (is_l4) {
6389 u32 ftqf = (IPPROTO_UDP /* UDP */
6390 | E1000_FTQF_VF_BP /* VF not compared */
6391 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6392 | E1000_FTQF_MASK); /* mask all inputs */
6393 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6394
6395 wr32(E1000_IMIR(3), htons(PTP_PORT));
6396 wr32(E1000_IMIREXT(3),
6397 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6398 if (hw->mac.type == e1000_82576) {
6399 /* enable source port check */
6400 wr32(E1000_SPQF(3), htons(PTP_PORT));
6401 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6402 }
6403 wr32(E1000_FTQF(3), ftqf);
6404 } else {
6405 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6406 }
33af6bcc
PO
6407 wrfl();
6408
6409 adapter->hwtstamp_config = config;
6410
6411 /* clear TX/RX time stamp registers, just to be sure */
6412 regval = rd32(E1000_TXSTMPH);
6413 regval = rd32(E1000_RXSTMPH);
c6cb090b 6414
33af6bcc
PO
6415 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6416 -EFAULT : 0;
c6cb090b
PO
6417}
6418
9d5c8243
AK
6419/**
6420 * igb_ioctl -
6421 * @netdev:
6422 * @ifreq:
6423 * @cmd:
6424 **/
6425static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6426{
6427 switch (cmd) {
6428 case SIOCGMIIPHY:
6429 case SIOCGMIIREG:
6430 case SIOCSMIIREG:
6431 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6432 case SIOCSHWTSTAMP:
6433 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6434 default:
6435 return -EOPNOTSUPP;
6436 }
6437}
6438
009bc06e
AD
6439s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6440{
6441 struct igb_adapter *adapter = hw->back;
6442 u16 cap_offset;
6443
bdaae04c 6444 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6445 if (!cap_offset)
6446 return -E1000_ERR_CONFIG;
6447
6448 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6449
6450 return 0;
6451}
6452
6453s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6454{
6455 struct igb_adapter *adapter = hw->back;
6456 u16 cap_offset;
6457
bdaae04c 6458 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6459 if (!cap_offset)
6460 return -E1000_ERR_CONFIG;
6461
6462 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6463
6464 return 0;
6465}
6466
c8f44aff 6467static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6468{
6469 struct igb_adapter *adapter = netdev_priv(netdev);
6470 struct e1000_hw *hw = &adapter->hw;
6471 u32 ctrl, rctl;
5faf030c 6472 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6473
5faf030c 6474 if (enable) {
9d5c8243
AK
6475 /* enable VLAN tag insert/strip */
6476 ctrl = rd32(E1000_CTRL);
6477 ctrl |= E1000_CTRL_VME;
6478 wr32(E1000_CTRL, ctrl);
6479
51466239 6480 /* Disable CFI check */
9d5c8243 6481 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6482 rctl &= ~E1000_RCTL_CFIEN;
6483 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6484 } else {
6485 /* disable VLAN tag insert/strip */
6486 ctrl = rd32(E1000_CTRL);
6487 ctrl &= ~E1000_CTRL_VME;
6488 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6489 }
6490
e1739522 6491 igb_rlpml_set(adapter);
9d5c8243
AK
6492}
6493
6494static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6495{
6496 struct igb_adapter *adapter = netdev_priv(netdev);
6497 struct e1000_hw *hw = &adapter->hw;
4ae196df 6498 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6499
51466239
AD
6500 /* attempt to add filter to vlvf array */
6501 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6502
51466239
AD
6503 /* add the filter since PF can receive vlans w/o entry in vlvf */
6504 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6505
6506 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6507}
6508
6509static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6510{
6511 struct igb_adapter *adapter = netdev_priv(netdev);
6512 struct e1000_hw *hw = &adapter->hw;
4ae196df 6513 int pf_id = adapter->vfs_allocated_count;
51466239 6514 s32 err;
9d5c8243 6515
51466239
AD
6516 /* remove vlan from VLVF table array */
6517 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6518
51466239
AD
6519 /* if vid was not present in VLVF just remove it from table */
6520 if (err)
4ae196df 6521 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6522
6523 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6524}
6525
6526static void igb_restore_vlan(struct igb_adapter *adapter)
6527{
b2cb09b1 6528 u16 vid;
9d5c8243 6529
5faf030c
AD
6530 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6531
b2cb09b1
JP
6532 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6533 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6534}
6535
14ad2513 6536int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6537{
090b1795 6538 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6539 struct e1000_mac_info *mac = &adapter->hw.mac;
6540
6541 mac->autoneg = 0;
6542
14ad2513
DD
6543 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6544 * for the switch() below to work */
6545 if ((spd & 1) || (dplx & ~1))
6546 goto err_inval;
6547
cd2638a8
CW
6548 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6549 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6550 spd != SPEED_1000 &&
6551 dplx != DUPLEX_FULL)
6552 goto err_inval;
cd2638a8 6553
14ad2513 6554 switch (spd + dplx) {
9d5c8243
AK
6555 case SPEED_10 + DUPLEX_HALF:
6556 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6557 break;
6558 case SPEED_10 + DUPLEX_FULL:
6559 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6560 break;
6561 case SPEED_100 + DUPLEX_HALF:
6562 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6563 break;
6564 case SPEED_100 + DUPLEX_FULL:
6565 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6566 break;
6567 case SPEED_1000 + DUPLEX_FULL:
6568 mac->autoneg = 1;
6569 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6570 break;
6571 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6572 default:
14ad2513 6573 goto err_inval;
9d5c8243
AK
6574 }
6575 return 0;
14ad2513
DD
6576
6577err_inval:
6578 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6579 return -EINVAL;
9d5c8243
AK
6580}
6581
3fe7c4c9 6582static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6583{
6584 struct net_device *netdev = pci_get_drvdata(pdev);
6585 struct igb_adapter *adapter = netdev_priv(netdev);
6586 struct e1000_hw *hw = &adapter->hw;
2d064c06 6587 u32 ctrl, rctl, status;
9d5c8243
AK
6588 u32 wufc = adapter->wol;
6589#ifdef CONFIG_PM
6590 int retval = 0;
6591#endif
6592
6593 netif_device_detach(netdev);
6594
a88f10ec
AD
6595 if (netif_running(netdev))
6596 igb_close(netdev);
6597
047e0030 6598 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6599
6600#ifdef CONFIG_PM
6601 retval = pci_save_state(pdev);
6602 if (retval)
6603 return retval;
6604#endif
6605
6606 status = rd32(E1000_STATUS);
6607 if (status & E1000_STATUS_LU)
6608 wufc &= ~E1000_WUFC_LNKC;
6609
6610 if (wufc) {
6611 igb_setup_rctl(adapter);
ff41f8dc 6612 igb_set_rx_mode(netdev);
9d5c8243
AK
6613
6614 /* turn on all-multi mode if wake on multicast is enabled */
6615 if (wufc & E1000_WUFC_MC) {
6616 rctl = rd32(E1000_RCTL);
6617 rctl |= E1000_RCTL_MPE;
6618 wr32(E1000_RCTL, rctl);
6619 }
6620
6621 ctrl = rd32(E1000_CTRL);
6622 /* advertise wake from D3Cold */
6623 #define E1000_CTRL_ADVD3WUC 0x00100000
6624 /* phy power management enable */
6625 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6626 ctrl |= E1000_CTRL_ADVD3WUC;
6627 wr32(E1000_CTRL, ctrl);
6628
9d5c8243 6629 /* Allow time for pending master requests to run */
330a6d6a 6630 igb_disable_pcie_master(hw);
9d5c8243
AK
6631
6632 wr32(E1000_WUC, E1000_WUC_PME_EN);
6633 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6634 } else {
6635 wr32(E1000_WUC, 0);
6636 wr32(E1000_WUFC, 0);
9d5c8243
AK
6637 }
6638
3fe7c4c9
RW
6639 *enable_wake = wufc || adapter->en_mng_pt;
6640 if (!*enable_wake)
88a268c1
NN
6641 igb_power_down_link(adapter);
6642 else
6643 igb_power_up_link(adapter);
9d5c8243
AK
6644
6645 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6646 * would have already happened in close and is redundant. */
6647 igb_release_hw_control(adapter);
6648
6649 pci_disable_device(pdev);
6650
9d5c8243
AK
6651 return 0;
6652}
6653
6654#ifdef CONFIG_PM
3fe7c4c9
RW
6655static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6656{
6657 int retval;
6658 bool wake;
6659
6660 retval = __igb_shutdown(pdev, &wake);
6661 if (retval)
6662 return retval;
6663
6664 if (wake) {
6665 pci_prepare_to_sleep(pdev);
6666 } else {
6667 pci_wake_from_d3(pdev, false);
6668 pci_set_power_state(pdev, PCI_D3hot);
6669 }
6670
6671 return 0;
6672}
6673
9d5c8243
AK
6674static int igb_resume(struct pci_dev *pdev)
6675{
6676 struct net_device *netdev = pci_get_drvdata(pdev);
6677 struct igb_adapter *adapter = netdev_priv(netdev);
6678 struct e1000_hw *hw = &adapter->hw;
6679 u32 err;
6680
6681 pci_set_power_state(pdev, PCI_D0);
6682 pci_restore_state(pdev);
b94f2d77 6683 pci_save_state(pdev);
42bfd33a 6684
aed5dec3 6685 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6686 if (err) {
6687 dev_err(&pdev->dev,
6688 "igb: Cannot enable PCI device from suspend\n");
6689 return err;
6690 }
6691 pci_set_master(pdev);
6692
6693 pci_enable_wake(pdev, PCI_D3hot, 0);
6694 pci_enable_wake(pdev, PCI_D3cold, 0);
6695
047e0030 6696 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6697 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6698 return -ENOMEM;
9d5c8243
AK
6699 }
6700
9d5c8243 6701 igb_reset(adapter);
a8564f03
AD
6702
6703 /* let the f/w know that the h/w is now under the control of the
6704 * driver. */
6705 igb_get_hw_control(adapter);
6706
9d5c8243
AK
6707 wr32(E1000_WUS, ~0);
6708
a88f10ec
AD
6709 if (netif_running(netdev)) {
6710 err = igb_open(netdev);
6711 if (err)
6712 return err;
6713 }
9d5c8243
AK
6714
6715 netif_device_attach(netdev);
6716
9d5c8243
AK
6717 return 0;
6718}
6719#endif
6720
6721static void igb_shutdown(struct pci_dev *pdev)
6722{
3fe7c4c9
RW
6723 bool wake;
6724
6725 __igb_shutdown(pdev, &wake);
6726
6727 if (system_state == SYSTEM_POWER_OFF) {
6728 pci_wake_from_d3(pdev, wake);
6729 pci_set_power_state(pdev, PCI_D3hot);
6730 }
9d5c8243
AK
6731}
6732
6733#ifdef CONFIG_NET_POLL_CONTROLLER
6734/*
6735 * Polling 'interrupt' - used by things like netconsole to send skbs
6736 * without having to re-enable interrupts. It's not called while
6737 * the interrupt routine is executing.
6738 */
6739static void igb_netpoll(struct net_device *netdev)
6740{
6741 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6742 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6743 struct igb_q_vector *q_vector;
9d5c8243 6744 int i;
9d5c8243 6745
047e0030 6746 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6747 q_vector = adapter->q_vector[i];
6748 if (adapter->msix_entries)
6749 wr32(E1000_EIMC, q_vector->eims_value);
6750 else
6751 igb_irq_disable(adapter);
047e0030 6752 napi_schedule(&q_vector->napi);
eebbbdba 6753 }
9d5c8243
AK
6754}
6755#endif /* CONFIG_NET_POLL_CONTROLLER */
6756
6757/**
6758 * igb_io_error_detected - called when PCI error is detected
6759 * @pdev: Pointer to PCI device
6760 * @state: The current pci connection state
6761 *
6762 * This function is called after a PCI bus error affecting
6763 * this device has been detected.
6764 */
6765static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6766 pci_channel_state_t state)
6767{
6768 struct net_device *netdev = pci_get_drvdata(pdev);
6769 struct igb_adapter *adapter = netdev_priv(netdev);
6770
6771 netif_device_detach(netdev);
6772
59ed6eec
AD
6773 if (state == pci_channel_io_perm_failure)
6774 return PCI_ERS_RESULT_DISCONNECT;
6775
9d5c8243
AK
6776 if (netif_running(netdev))
6777 igb_down(adapter);
6778 pci_disable_device(pdev);
6779
6780 /* Request a slot slot reset. */
6781 return PCI_ERS_RESULT_NEED_RESET;
6782}
6783
6784/**
6785 * igb_io_slot_reset - called after the pci bus has been reset.
6786 * @pdev: Pointer to PCI device
6787 *
6788 * Restart the card from scratch, as if from a cold-boot. Implementation
6789 * resembles the first-half of the igb_resume routine.
6790 */
6791static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6792{
6793 struct net_device *netdev = pci_get_drvdata(pdev);
6794 struct igb_adapter *adapter = netdev_priv(netdev);
6795 struct e1000_hw *hw = &adapter->hw;
40a914fa 6796 pci_ers_result_t result;
42bfd33a 6797 int err;
9d5c8243 6798
aed5dec3 6799 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6800 dev_err(&pdev->dev,
6801 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6802 result = PCI_ERS_RESULT_DISCONNECT;
6803 } else {
6804 pci_set_master(pdev);
6805 pci_restore_state(pdev);
b94f2d77 6806 pci_save_state(pdev);
9d5c8243 6807
40a914fa
AD
6808 pci_enable_wake(pdev, PCI_D3hot, 0);
6809 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6810
40a914fa
AD
6811 igb_reset(adapter);
6812 wr32(E1000_WUS, ~0);
6813 result = PCI_ERS_RESULT_RECOVERED;
6814 }
9d5c8243 6815
ea943d41
JK
6816 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6817 if (err) {
6818 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6819 "failed 0x%0x\n", err);
6820 /* non-fatal, continue */
6821 }
40a914fa
AD
6822
6823 return result;
9d5c8243
AK
6824}
6825
6826/**
6827 * igb_io_resume - called when traffic can start flowing again.
6828 * @pdev: Pointer to PCI device
6829 *
6830 * This callback is called when the error recovery driver tells us that
6831 * its OK to resume normal operation. Implementation resembles the
6832 * second-half of the igb_resume routine.
6833 */
6834static void igb_io_resume(struct pci_dev *pdev)
6835{
6836 struct net_device *netdev = pci_get_drvdata(pdev);
6837 struct igb_adapter *adapter = netdev_priv(netdev);
6838
9d5c8243
AK
6839 if (netif_running(netdev)) {
6840 if (igb_up(adapter)) {
6841 dev_err(&pdev->dev, "igb_up failed after reset\n");
6842 return;
6843 }
6844 }
6845
6846 netif_device_attach(netdev);
6847
6848 /* let the f/w know that the h/w is now under the control of the
6849 * driver. */
6850 igb_get_hw_control(adapter);
9d5c8243
AK
6851}
6852
26ad9178
AD
6853static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6854 u8 qsel)
6855{
6856 u32 rar_low, rar_high;
6857 struct e1000_hw *hw = &adapter->hw;
6858
6859 /* HW expects these in little endian so we reverse the byte order
6860 * from network order (big endian) to little endian
6861 */
6862 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6863 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6864 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6865
6866 /* Indicate to hardware the Address is Valid. */
6867 rar_high |= E1000_RAH_AV;
6868
6869 if (hw->mac.type == e1000_82575)
6870 rar_high |= E1000_RAH_POOL_1 * qsel;
6871 else
6872 rar_high |= E1000_RAH_POOL_1 << qsel;
6873
6874 wr32(E1000_RAL(index), rar_low);
6875 wrfl();
6876 wr32(E1000_RAH(index), rar_high);
6877 wrfl();
6878}
6879
4ae196df
AD
6880static int igb_set_vf_mac(struct igb_adapter *adapter,
6881 int vf, unsigned char *mac_addr)
6882{
6883 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6884 /* VF MAC addresses start at end of receive addresses and moves
6885 * torwards the first, as a result a collision should not be possible */
6886 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6887
37680117 6888 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6889
26ad9178 6890 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6891
6892 return 0;
6893}
6894
8151d294
WM
6895static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6896{
6897 struct igb_adapter *adapter = netdev_priv(netdev);
6898 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6899 return -EINVAL;
6900 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6901 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6902 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6903 " change effective.");
6904 if (test_bit(__IGB_DOWN, &adapter->state)) {
6905 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6906 " but the PF device is not up.\n");
6907 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6908 " attempting to use the VF device.\n");
6909 }
6910 return igb_set_vf_mac(adapter, vf, mac);
6911}
6912
17dc566c
LL
6913static int igb_link_mbps(int internal_link_speed)
6914{
6915 switch (internal_link_speed) {
6916 case SPEED_100:
6917 return 100;
6918 case SPEED_1000:
6919 return 1000;
6920 default:
6921 return 0;
6922 }
6923}
6924
6925static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6926 int link_speed)
6927{
6928 int rf_dec, rf_int;
6929 u32 bcnrc_val;
6930
6931 if (tx_rate != 0) {
6932 /* Calculate the rate factor values to set */
6933 rf_int = link_speed / tx_rate;
6934 rf_dec = (link_speed - (rf_int * tx_rate));
6935 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6936
6937 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6938 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6939 E1000_RTTBCNRC_RF_INT_MASK);
6940 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6941 } else {
6942 bcnrc_val = 0;
6943 }
6944
6945 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6946 wr32(E1000_RTTBCNRC, bcnrc_val);
6947}
6948
6949static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6950{
6951 int actual_link_speed, i;
6952 bool reset_rate = false;
6953
6954 /* VF TX rate limit was not set or not supported */
6955 if ((adapter->vf_rate_link_speed == 0) ||
6956 (adapter->hw.mac.type != e1000_82576))
6957 return;
6958
6959 actual_link_speed = igb_link_mbps(adapter->link_speed);
6960 if (actual_link_speed != adapter->vf_rate_link_speed) {
6961 reset_rate = true;
6962 adapter->vf_rate_link_speed = 0;
6963 dev_info(&adapter->pdev->dev,
6964 "Link speed has been changed. VF Transmit "
6965 "rate is disabled\n");
6966 }
6967
6968 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6969 if (reset_rate)
6970 adapter->vf_data[i].tx_rate = 0;
6971
6972 igb_set_vf_rate_limit(&adapter->hw, i,
6973 adapter->vf_data[i].tx_rate,
6974 actual_link_speed);
6975 }
6976}
6977
8151d294
WM
6978static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6979{
17dc566c
LL
6980 struct igb_adapter *adapter = netdev_priv(netdev);
6981 struct e1000_hw *hw = &adapter->hw;
6982 int actual_link_speed;
6983
6984 if (hw->mac.type != e1000_82576)
6985 return -EOPNOTSUPP;
6986
6987 actual_link_speed = igb_link_mbps(adapter->link_speed);
6988 if ((vf >= adapter->vfs_allocated_count) ||
6989 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6990 (tx_rate < 0) || (tx_rate > actual_link_speed))
6991 return -EINVAL;
6992
6993 adapter->vf_rate_link_speed = actual_link_speed;
6994 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6995 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6996
6997 return 0;
8151d294
WM
6998}
6999
7000static int igb_ndo_get_vf_config(struct net_device *netdev,
7001 int vf, struct ifla_vf_info *ivi)
7002{
7003 struct igb_adapter *adapter = netdev_priv(netdev);
7004 if (vf >= adapter->vfs_allocated_count)
7005 return -EINVAL;
7006 ivi->vf = vf;
7007 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7008 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7009 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7010 ivi->qos = adapter->vf_data[vf].pf_qos;
7011 return 0;
7012}
7013
4ae196df
AD
7014static void igb_vmm_control(struct igb_adapter *adapter)
7015{
7016 struct e1000_hw *hw = &adapter->hw;
10d8e907 7017 u32 reg;
4ae196df 7018
52a1dd4d
AD
7019 switch (hw->mac.type) {
7020 case e1000_82575:
7021 default:
7022 /* replication is not supported for 82575 */
4ae196df 7023 return;
52a1dd4d
AD
7024 case e1000_82576:
7025 /* notify HW that the MAC is adding vlan tags */
7026 reg = rd32(E1000_DTXCTL);
7027 reg |= E1000_DTXCTL_VLAN_ADDED;
7028 wr32(E1000_DTXCTL, reg);
7029 case e1000_82580:
7030 /* enable replication vlan tag stripping */
7031 reg = rd32(E1000_RPLOLR);
7032 reg |= E1000_RPLOLR_STRVLAN;
7033 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7034 case e1000_i350:
7035 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7036 break;
7037 }
10d8e907 7038
d4960307
AD
7039 if (adapter->vfs_allocated_count) {
7040 igb_vmdq_set_loopback_pf(hw, true);
7041 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7042 igb_vmdq_set_anti_spoofing_pf(hw, true,
7043 adapter->vfs_allocated_count);
d4960307
AD
7044 } else {
7045 igb_vmdq_set_loopback_pf(hw, false);
7046 igb_vmdq_set_replication_pf(hw, false);
7047 }
4ae196df
AD
7048}
7049
b6e0c419
CW
7050static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7051{
7052 struct e1000_hw *hw = &adapter->hw;
7053 u32 dmac_thr;
7054 u16 hwm;
7055
7056 if (hw->mac.type > e1000_82580) {
7057 if (adapter->flags & IGB_FLAG_DMAC) {
7058 u32 reg;
7059
7060 /* force threshold to 0. */
7061 wr32(E1000_DMCTXTH, 0);
7062
7063 /*
e8c626e9
MV
7064 * DMA Coalescing high water mark needs to be greater
7065 * than the Rx threshold. Set hwm to PBA - max frame
7066 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7067 */
e8c626e9
MV
7068 hwm = 64 * pba - adapter->max_frame_size / 16;
7069 if (hwm < 64 * (pba - 6))
7070 hwm = 64 * (pba - 6);
7071 reg = rd32(E1000_FCRTC);
7072 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7073 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7074 & E1000_FCRTC_RTH_COAL_MASK);
7075 wr32(E1000_FCRTC, reg);
7076
7077 /*
7078 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7079 * frame size, capping it at PBA - 10KB.
7080 */
7081 dmac_thr = pba - adapter->max_frame_size / 512;
7082 if (dmac_thr < pba - 10)
7083 dmac_thr = pba - 10;
b6e0c419
CW
7084 reg = rd32(E1000_DMACR);
7085 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7086 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7087 & E1000_DMACR_DMACTHR_MASK);
7088
7089 /* transition to L0x or L1 if available..*/
7090 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7091
7092 /* watchdog timer= +-1000 usec in 32usec intervals */
7093 reg |= (1000 >> 5);
7094 wr32(E1000_DMACR, reg);
7095
7096 /*
7097 * no lower threshold to disable
7098 * coalescing(smart fifb)-UTRESH=0
7099 */
7100 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7101
7102 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7103
7104 wr32(E1000_DMCTLX, reg);
7105
7106 /*
7107 * free space in tx packet buffer to wake from
7108 * DMA coal
7109 */
7110 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7111 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7112
7113 /*
7114 * make low power state decision controlled
7115 * by DMA coal
7116 */
7117 reg = rd32(E1000_PCIEMISC);
7118 reg &= ~E1000_PCIEMISC_LX_DECISION;
7119 wr32(E1000_PCIEMISC, reg);
7120 } /* endif adapter->dmac is not disabled */
7121 } else if (hw->mac.type == e1000_82580) {
7122 u32 reg = rd32(E1000_PCIEMISC);
7123 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7124 wr32(E1000_DMACR, 0);
7125 }
7126}
7127
9d5c8243 7128/* igb_main.c */
This page took 1.047391 seconds and 5 git commands to generate.