igb: Prevent dropped Tx timestamps via work items and interrupts.
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
CommitLineData
d339b133
RC
1/*
2 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 *
4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20#include <linux/module.h>
21#include <linux/device.h>
22#include <linux/pci.h>
23
24#include "igb.h"
25
26#define INCVALUE_MASK 0x7fffffff
27#define ISGN 0x80000000
28
29/*
7ebae817
RC
30 * The 82580 timesync updates the system timer every 8ns by 8ns,
31 * and this update value cannot be reprogrammed.
32 *
d339b133
RC
33 * Neither the 82576 nor the 82580 offer registers wide enough to hold
34 * nanoseconds time values for very long. For the 82580, SYSTIM always
35 * counts nanoseconds, but the upper 24 bits are not availible. The
36 * frequency is adjusted by changing the 32 bit fractional nanoseconds
37 * register, TIMINCA.
38 *
39 * For the 82576, the SYSTIM register time unit is affect by the
40 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41 * field are needed to provide the nominal 16 nanosecond period,
42 * leaving 19 bits for fractional nanoseconds.
43 *
7ebae817
RC
44 * We scale the NIC clock cycle by a large factor so that relatively
45 * small clock corrections can be added or subtracted at each clock
46 * tick. The drawbacks of a large factor are a) that the clock
47 * register overflows more quickly (not such a big deal) and b) that
48 * the increment per tick has to fit into 24 bits. As a result we
49 * need to use a shift of 19 so we can fit a value of 16 into the
50 * TIMINCA register.
51 *
d339b133
RC
52 *
53 * SYSTIMH SYSTIML
54 * +--------------+ +---+---+------+
55 * 82576 | 32 | | 8 | 5 | 19 |
56 * +--------------+ +---+---+------+
57 * \________ 45 bits _______/ fract
58 *
59 * +----------+---+ +--------------+
60 * 82580 | 24 | 8 | | 32 |
61 * +----------+---+ +--------------+
62 * reserved \______ 40 bits _____/
63 *
64 *
65 * The 45 bit 82576 SYSTIM overflows every
66 * 2^45 * 10^-9 / 3600 = 9.77 hours.
67 *
68 * The 40 bit 82580 SYSTIM overflows every
69 * 2^40 * 10^-9 / 60 = 18.3 minutes.
70 */
71
a79f4f88
MV
72#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
73#define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
74#define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75#define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
76#define IGB_NBITS_82580 40
d339b133
RC
77
78/*
79 * SYSTIM read access for the 82576
80 */
81
a79f4f88 82static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
d339b133 83{
d339b133
RC
84 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 struct e1000_hw *hw = &igb->hw;
a79f4f88
MV
86 u64 val;
87 u32 lo, hi;
d339b133
RC
88
89 lo = rd32(E1000_SYSTIML);
90 hi = rd32(E1000_SYSTIMH);
91
92 val = ((u64) hi) << 32;
93 val |= lo;
94
95 return val;
96}
97
98/*
99 * SYSTIM read access for the 82580
100 */
101
a79f4f88 102static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
d339b133 103{
d339b133
RC
104 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 struct e1000_hw *hw = &igb->hw;
a79f4f88
MV
106 u64 val;
107 u32 lo, hi, jk;
d339b133 108
7ebae817
RC
109 /*
110 * The timestamp latches on lowest register read. For the 82580
111 * the lowest register is SYSTIMR instead of SYSTIML. However we only
112 * need to provide nanosecond resolution, so we just ignore it.
113 */
d339b133
RC
114 jk = rd32(E1000_SYSTIMR);
115 lo = rd32(E1000_SYSTIML);
116 hi = rd32(E1000_SYSTIMH);
117
118 val = ((u64) hi) << 32;
119 val |= lo;
120
121 return val;
122}
123
a79f4f88
MV
124/**
125 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
126 * @adapter: board private structure
127 * @hwtstamps: timestamp structure to update
128 * @systim: unsigned 64bit system time value.
129 *
130 * We need to convert the system time value stored in the RX/TXSTMP registers
131 * into a hwtstamp which can be used by the upper level timestamping functions.
132 *
133 * The 'tmreg_lock' spinlock is used to protect the consistency of the
134 * system time value. This is needed because reading the 64 bit time
135 * value involves reading two (or three) 32 bit registers. The first
136 * read latches the value. Ditto for writing.
137 *
138 * In addition, here have extended the system time with an overflow
139 * counter in software.
140 **/
141static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
142 struct skb_shared_hwtstamps *hwtstamps,
143 u64 systim)
144{
145 unsigned long flags;
146 u64 ns;
147
148 switch (adapter->hw.mac.type) {
149 case e1000_i210:
150 case e1000_i211:
151 case e1000_i350:
152 case e1000_82580:
153 case e1000_82576:
154 break;
155 default:
156 return;
157 }
158
159 spin_lock_irqsave(&adapter->tmreg_lock, flags);
160
161 ns = timecounter_cyc2time(&adapter->tc, systim);
162
163 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
164
165 memset(hwtstamps, 0, sizeof(*hwtstamps));
166 hwtstamps->hwtstamp = ns_to_ktime(ns);
167}
168
d339b133
RC
169/*
170 * PTP clock operations
171 */
172
a79f4f88 173static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
d339b133 174{
a79f4f88
MV
175 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
176 ptp_caps);
177 struct e1000_hw *hw = &igb->hw;
178 int neg_adj = 0;
d339b133
RC
179 u64 rate;
180 u32 incvalue;
d339b133
RC
181
182 if (ppb < 0) {
183 neg_adj = 1;
184 ppb = -ppb;
185 }
186 rate = ppb;
187 rate <<= 14;
188 rate = div_u64(rate, 1953125);
189
190 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
191
192 if (neg_adj)
193 incvalue -= rate;
194 else
195 incvalue += rate;
196
197 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
198
199 return 0;
200}
201
a79f4f88 202static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
d339b133 203{
a79f4f88
MV
204 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
205 ptp_caps);
206 struct e1000_hw *hw = &igb->hw;
207 int neg_adj = 0;
d339b133
RC
208 u64 rate;
209 u32 inca;
d339b133
RC
210
211 if (ppb < 0) {
212 neg_adj = 1;
213 ppb = -ppb;
214 }
215 rate = ppb;
216 rate <<= 26;
217 rate = div_u64(rate, 1953125);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226}
227
a79f4f88 228static int igb_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
d339b133 229{
a79f4f88
MV
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
d339b133 232 unsigned long flags;
a79f4f88 233 s64 now;
d339b133
RC
234
235 spin_lock_irqsave(&igb->tmreg_lock, flags);
236
237 now = timecounter_read(&igb->tc);
238 now += delta;
239 timecounter_init(&igb->tc, &igb->cc, now);
240
241 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
242
243 return 0;
244}
245
a79f4f88 246static int igb_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
d339b133 247{
a79f4f88
MV
248 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
249 ptp_caps);
250 unsigned long flags;
d339b133
RC
251 u64 ns;
252 u32 remainder;
d339b133
RC
253
254 spin_lock_irqsave(&igb->tmreg_lock, flags);
255
256 ns = timecounter_read(&igb->tc);
257
258 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
259
260 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
261 ts->tv_nsec = remainder;
262
263 return 0;
264}
265
a79f4f88
MV
266static int igb_ptp_settime(struct ptp_clock_info *ptp,
267 const struct timespec *ts)
d339b133 268{
a79f4f88
MV
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
d339b133 271 unsigned long flags;
a79f4f88 272 u64 ns;
d339b133
RC
273
274 ns = ts->tv_sec * 1000000000ULL;
275 ns += ts->tv_nsec;
276
277 spin_lock_irqsave(&igb->tmreg_lock, flags);
278
279 timecounter_init(&igb->tc, &igb->cc, ns);
280
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283 return 0;
284}
285
a79f4f88
MV
286static int igb_ptp_enable(struct ptp_clock_info *ptp,
287 struct ptp_clock_request *rq, int on)
d339b133
RC
288{
289 return -EOPNOTSUPP;
290}
291
1f6e8178
MV
292/**
293 * igb_ptp_tx_work
294 * @work: pointer to work struct
295 *
296 * This work function polls the TSYNCTXCTL valid bit to determine when a
297 * timestamp has been taken for the current stored skb.
298 */
299void igb_ptp_tx_work(struct work_struct *work)
300{
301 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
302 ptp_tx_work);
303 struct e1000_hw *hw = &adapter->hw;
304 u32 tsynctxctl;
305
306 if (!adapter->ptp_tx_skb)
307 return;
308
309 tsynctxctl = rd32(E1000_TSYNCTXCTL);
310 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
311 igb_ptp_tx_hwtstamp(adapter);
312 else
313 /* reschedule to check later */
314 schedule_work(&adapter->ptp_tx_work);
315}
316
a79f4f88 317static void igb_ptp_overflow_check(struct work_struct *work)
d339b133 318{
a79f4f88
MV
319 struct igb_adapter *igb =
320 container_of(work, struct igb_adapter, ptp_overflow_work.work);
321 struct timespec ts;
322
323 igb_ptp_gettime(&igb->ptp_caps, &ts);
324
325 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
326
327 schedule_delayed_work(&igb->ptp_overflow_work,
328 IGB_SYSTIM_OVERFLOW_PERIOD);
d339b133
RC
329}
330
a79f4f88
MV
331/**
332 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
1f6e8178 333 * @adapter: Board private structure.
a79f4f88
MV
334 *
335 * If we were asked to do hardware stamping and such a time stamp is
336 * available, then it must have been for this skb here because we only
337 * allow only one such packet into the queue.
338 */
1f6e8178 339void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
d339b133 340{
a79f4f88
MV
341 struct e1000_hw *hw = &adapter->hw;
342 struct skb_shared_hwtstamps shhwtstamps;
343 u64 regval;
d339b133 344
a79f4f88
MV
345 regval = rd32(E1000_TXSTMPL);
346 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
d339b133 347
a79f4f88 348 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
1f6e8178
MV
349 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
350 dev_kfree_skb_any(adapter->ptp_tx_skb);
351 adapter->ptp_tx_skb = NULL;
a79f4f88
MV
352}
353
354void igb_ptp_rx_hwtstamp(struct igb_q_vector *q_vector,
355 union e1000_adv_rx_desc *rx_desc,
356 struct sk_buff *skb)
357{
358 struct igb_adapter *adapter = q_vector->adapter;
359 struct e1000_hw *hw = &adapter->hw;
360 u64 regval;
361
362 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
363 E1000_RXDADV_STAT_TS))
364 return;
365
366 /*
367 * If this bit is set, then the RX registers contain the time stamp. No
368 * other packet will be time stamped until we read these registers, so
369 * read the registers to make them available again. Because only one
370 * packet can be time stamped at a time, we know that the register
371 * values must belong to this one here and therefore we don't need to
372 * compare any of the additional attributes stored for it.
373 *
374 * If nothing went wrong, then it should have a shared tx_flags that we
375 * can turn into a skb_shared_hwtstamps.
376 */
377 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
378 u32 *stamp = (u32 *)skb->data;
379 regval = le32_to_cpu(*(stamp + 2));
380 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
381 skb_pull(skb, IGB_TS_HDR_LEN);
382 } else {
383 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
384 return;
385
386 regval = rd32(E1000_RXSTMPL);
387 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
388 }
389
390 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
391}
392
393/**
394 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
395 * @netdev:
396 * @ifreq:
397 * @cmd:
398 *
399 * Outgoing time stamping can be enabled and disabled. Play nice and
400 * disable it when requested, although it shouldn't case any overhead
401 * when no packet needs it. At most one packet in the queue may be
402 * marked for time stamping, otherwise it would be impossible to tell
403 * for sure to which packet the hardware time stamp belongs.
404 *
405 * Incoming time stamping has to be configured via the hardware
406 * filters. Not all combinations are supported, in particular event
407 * type has to be specified. Matching the kind of event packet is
408 * not supported, with the exception of "all V2 events regardless of
409 * level 2 or 4".
410 *
411 **/
412int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
413 struct ifreq *ifr, int cmd)
414{
415 struct igb_adapter *adapter = netdev_priv(netdev);
416 struct e1000_hw *hw = &adapter->hw;
417 struct hwtstamp_config config;
418 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
419 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
420 u32 tsync_rx_cfg = 0;
421 bool is_l4 = false;
422 bool is_l2 = false;
423 u32 regval;
424
425 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
426 return -EFAULT;
427
428 /* reserved for future extensions */
429 if (config.flags)
430 return -EINVAL;
431
432 switch (config.tx_type) {
433 case HWTSTAMP_TX_OFF:
434 tsync_tx_ctl = 0;
435 case HWTSTAMP_TX_ON:
436 break;
437 default:
438 return -ERANGE;
439 }
440
441 switch (config.rx_filter) {
442 case HWTSTAMP_FILTER_NONE:
443 tsync_rx_ctl = 0;
444 break;
445 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
446 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
447 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
448 case HWTSTAMP_FILTER_ALL:
449 /*
450 * register TSYNCRXCFG must be set, therefore it is not
451 * possible to time stamp both Sync and Delay_Req messages
452 * => fall back to time stamping all packets
453 */
454 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
455 config.rx_filter = HWTSTAMP_FILTER_ALL;
456 break;
457 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
458 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
459 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
460 is_l4 = true;
461 break;
462 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
463 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
464 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
465 is_l4 = true;
466 break;
467 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
468 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
469 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
470 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
471 is_l2 = true;
472 is_l4 = true;
473 config.rx_filter = HWTSTAMP_FILTER_SOME;
474 break;
475 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
476 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
477 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
478 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
479 is_l2 = true;
480 is_l4 = true;
481 config.rx_filter = HWTSTAMP_FILTER_SOME;
482 break;
483 case HWTSTAMP_FILTER_PTP_V2_EVENT:
484 case HWTSTAMP_FILTER_PTP_V2_SYNC:
485 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
486 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
488 is_l2 = true;
489 is_l4 = true;
490 break;
491 default:
492 return -ERANGE;
493 }
494
495 if (hw->mac.type == e1000_82575) {
496 if (tsync_rx_ctl | tsync_tx_ctl)
497 return -EINVAL;
498 return 0;
499 }
500
501 /*
502 * Per-packet timestamping only works if all packets are
503 * timestamped, so enable timestamping in all packets as
504 * long as one rx filter was configured.
505 */
506 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
507 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
508 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
509 }
510
511 /* enable/disable TX */
512 regval = rd32(E1000_TSYNCTXCTL);
513 regval &= ~E1000_TSYNCTXCTL_ENABLED;
514 regval |= tsync_tx_ctl;
515 wr32(E1000_TSYNCTXCTL, regval);
516
517 /* enable/disable RX */
518 regval = rd32(E1000_TSYNCRXCTL);
519 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
520 regval |= tsync_rx_ctl;
521 wr32(E1000_TSYNCRXCTL, regval);
522
523 /* define which PTP packets are time stamped */
524 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
525
526 /* define ethertype filter for timestamped packets */
527 if (is_l2)
528 wr32(E1000_ETQF(3),
529 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
530 E1000_ETQF_1588 | /* enable timestamping */
531 ETH_P_1588)); /* 1588 eth protocol type */
532 else
533 wr32(E1000_ETQF(3), 0);
534
535#define PTP_PORT 319
536 /* L4 Queue Filter[3]: filter by destination port and protocol */
537 if (is_l4) {
538 u32 ftqf = (IPPROTO_UDP /* UDP */
539 | E1000_FTQF_VF_BP /* VF not compared */
540 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
541 | E1000_FTQF_MASK); /* mask all inputs */
542 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
543
544 wr32(E1000_IMIR(3), htons(PTP_PORT));
545 wr32(E1000_IMIREXT(3),
546 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
547 if (hw->mac.type == e1000_82576) {
548 /* enable source port check */
549 wr32(E1000_SPQF(3), htons(PTP_PORT));
550 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
551 }
552 wr32(E1000_FTQF(3), ftqf);
553 } else {
554 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
555 }
556 wrfl();
557
558 /* clear TX/RX time stamp registers, just to be sure */
559 regval = rd32(E1000_TXSTMPH);
560 regval = rd32(E1000_RXSTMPH);
561
562 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
563 -EFAULT : 0;
d339b133
RC
564}
565
566void igb_ptp_init(struct igb_adapter *adapter)
567{
568 struct e1000_hw *hw = &adapter->hw;
201987e3 569 struct net_device *netdev = adapter->netdev;
d339b133
RC
570
571 switch (hw->mac.type) {
f96a8a0b
CW
572 case e1000_i210:
573 case e1000_i211:
d339b133
RC
574 case e1000_i350:
575 case e1000_82580:
201987e3 576 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
a79f4f88 577 adapter->ptp_caps.owner = THIS_MODULE;
a79f4f88
MV
578 adapter->ptp_caps.max_adj = 62499999;
579 adapter->ptp_caps.n_ext_ts = 0;
580 adapter->ptp_caps.pps = 0;
581 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
582 adapter->ptp_caps.adjtime = igb_ptp_adjtime;
583 adapter->ptp_caps.gettime = igb_ptp_gettime;
584 adapter->ptp_caps.settime = igb_ptp_settime;
585 adapter->ptp_caps.enable = igb_ptp_enable;
586 adapter->cc.read = igb_ptp_read_82580;
587 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
588 adapter->cc.mult = 1;
589 adapter->cc.shift = 0;
d339b133
RC
590 /* Enable the timer functions by clearing bit 31. */
591 wr32(E1000_TSAUXC, 0x0);
592 break;
d339b133 593 case e1000_82576:
201987e3 594 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
a79f4f88 595 adapter->ptp_caps.owner = THIS_MODULE;
a79f4f88
MV
596 adapter->ptp_caps.max_adj = 1000000000;
597 adapter->ptp_caps.n_ext_ts = 0;
598 adapter->ptp_caps.pps = 0;
599 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
600 adapter->ptp_caps.adjtime = igb_ptp_adjtime;
601 adapter->ptp_caps.gettime = igb_ptp_gettime;
602 adapter->ptp_caps.settime = igb_ptp_settime;
603 adapter->ptp_caps.enable = igb_ptp_enable;
604 adapter->cc.read = igb_ptp_read_82576;
605 adapter->cc.mask = CLOCKSOURCE_MASK(64);
606 adapter->cc.mult = 1;
607 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
d339b133
RC
608 /* Dial the nominal frequency. */
609 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
610 break;
d339b133
RC
611 default:
612 adapter->ptp_clock = NULL;
613 return;
614 }
615
616 wrfl();
617
618 timecounter_init(&adapter->tc, &adapter->cc,
619 ktime_to_ns(ktime_get_real()));
620
a79f4f88 621 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, igb_ptp_overflow_check);
d339b133
RC
622
623 spin_lock_init(&adapter->tmreg_lock);
624
1f6e8178
MV
625 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
626
a79f4f88
MV
627 schedule_delayed_work(&adapter->ptp_overflow_work,
628 IGB_SYSTIM_OVERFLOW_PERIOD);
d339b133 629
1f6e8178
MV
630 /* Initialize the time sync interrupts for devices that support it. */
631 if (hw->mac.type >= e1000_82580) {
632 wr32(E1000_TSIM, E1000_TSIM_TXTS);
633 wr32(E1000_IMS, E1000_IMS_TS);
634 }
635
a79f4f88 636 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
d339b133
RC
637 if (IS_ERR(adapter->ptp_clock)) {
638 adapter->ptp_clock = NULL;
639 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1f6e8178 640 } else {
d339b133
RC
641 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
642 adapter->netdev->name);
1f6e8178
MV
643 adapter->flags |= IGB_FLAG_PTP;
644 }
d339b133
RC
645}
646
a79f4f88
MV
647/**
648 * igb_ptp_stop - Disable PTP device and stop the overflow check.
649 * @adapter: Board private structure.
650 *
651 * This function stops the PTP support and cancels the delayed work.
652 **/
653void igb_ptp_stop(struct igb_adapter *adapter)
d339b133 654{
d3eef8c8 655 switch (adapter->hw.mac.type) {
d3eef8c8 656 case e1000_82576:
1f6e8178
MV
657 case e1000_82580:
658 case e1000_i350:
a79f4f88 659 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
d3eef8c8 660 break;
1f6e8178
MV
661 case e1000_i210:
662 case e1000_i211:
663 /* No delayed work to cancel. */
664 break;
d3eef8c8
CW
665 default:
666 return;
667 }
d339b133 668
1f6e8178
MV
669 cancel_work_sync(&adapter->ptp_tx_work);
670
d339b133
RC
671 if (adapter->ptp_clock) {
672 ptp_clock_unregister(adapter->ptp_clock);
673 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
674 adapter->netdev->name);
1f6e8178 675 adapter->flags &= ~IGB_FLAG_PTP;
d339b133
RC
676 }
677}
1f6e8178
MV
678
679/**
680 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
681 * @adapter: Board private structure.
682 *
683 * This function handles the reset work required to re-enable the PTP device.
684 **/
685void igb_ptp_reset(struct igb_adapter *adapter)
686{
687 struct e1000_hw *hw = &adapter->hw;
688
689 if (!(adapter->flags & IGB_FLAG_PTP))
690 return;
691
692 switch (adapter->hw.mac.type) {
693 case e1000_82576:
694 /* Dial the nominal frequency. */
695 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
696 break;
697 case e1000_82580:
698 case e1000_i350:
699 case e1000_i210:
700 case e1000_i211:
701 /* Enable the timer functions and interrupts. */
702 wr32(E1000_TSAUXC, 0x0);
703 wr32(E1000_TSIM, E1000_TSIM_TXTS);
704 wr32(E1000_IMS, E1000_IMS_TS);
705 break;
706 default:
707 /* No work to do. */
708 return;
709 }
710
711 timecounter_init(&adapter->tc, &adapter->cc,
712 ktime_to_ns(ktime_get_real()));
713}
This page took 0.09659 seconds and 5 git commands to generate.