can: Remove unnecessary alloc/OOM messages
[deliverable/linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
2a06ed92 4 Copyright(c) 2009 - 2012 Intel Corporation.
d4e0fe01
AD
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
a4ba8cbe
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
d4e0fe01
AD
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
5a0e3ad6 40#include <linux/slab.h>
d4e0fe01
AD
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
70c71606 46#include <linux/prefetch.h>
d4e0fe01
AD
47
48#include "igbvf.h"
49
76f640f1 50#define DRV_VERSION "2.0.2-k"
d4e0fe01
AD
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
10090751 54 "Intel(R) Gigabit Virtual Function Network Driver";
2c20ebba 55static const char igbvf_copyright[] =
2a06ed92 56 "Copyright (c) 2009 - 2012 Intel Corporation.";
d4e0fe01 57
b3f4d599 58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
d4e0fe01 63static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
67
68static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
0364d6fd 70 .flags = 0,
d4e0fe01
AD
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
031d7952
WM
75static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80};
81
d4e0fe01
AD
82static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
031d7952 84 [board_i350_vf] = &igbvf_i350_vf_info,
d4e0fe01
AD
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109{
2c1a1019
MW
110 u16 vid;
111
a0f1d603 112 if (status & E1000_RXD_STAT_VP) {
2c1a1019
MW
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4d2d55ac
GR
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, vid);
a0f1d603 120 }
2c1a1019
MW
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
d4e0fe01
AD
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127{
bc8acf2c 128 skb_checksum_none_assert(skb);
d4e0fe01
AD
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 133 return;
0364d6fd 134
d4e0fe01
AD
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
0364d6fd 142
d4e0fe01
AD
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157{
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
123e9f1a 190 dma_map_page(&pdev->dev, buffer_info->page,
d4e0fe01
AD
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
123e9f1a 193 DMA_FROM_DEVICE);
91ffb8e0
GR
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
d4e0fe01
AD
201 }
202
203 if (!buffer_info->skb) {
89d71a66 204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
d4e0fe01 210 buffer_info->skb = skb;
123e9f1a 211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
d4e0fe01 212 bufsz,
123e9f1a 213 DMA_FROM_DEVICE);
91ffb8e0
GR
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
d4e0fe01
AD
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254}
255
256/**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265{
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
2d0bb1c1 286 rmb(); /* read descriptor and rx_buffer_info after status DD */
d4e0fe01
AD
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
123e9f1a 308 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 309 adapter->rx_buffer_len,
123e9f1a 310 DMA_FROM_DEVICE);
d4e0fe01
AD
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
123e9f1a 317 dma_unmap_single(&pdev->dev, buffer_info->dma,
92d947b7 318 adapter->rx_ps_hdr_size,
123e9f1a 319 DMA_FROM_DEVICE);
d4e0fe01
AD
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
123e9f1a 324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
d4e0fe01 325 PAGE_SIZE / 2,
123e9f1a 326 DMA_FROM_DEVICE);
d4e0fe01
AD
327 buffer_info->page_dma = 0;
328
ec857fd4 329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
d4e0fe01
AD
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
7b8b5961 342 skb->truesize += PAGE_SIZE / 2;
d4e0fe01
AD
343 }
344send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
d4e0fe01
AD
375next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402}
403
404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406{
a7d5ca40
AD
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
123e9f1a 409 dma_unmap_page(&adapter->pdev->dev,
a7d5ca40
AD
410 buffer_info->dma,
411 buffer_info->length,
123e9f1a 412 DMA_TO_DEVICE);
a7d5ca40 413 else
123e9f1a 414 dma_unmap_single(&adapter->pdev->dev,
a7d5ca40
AD
415 buffer_info->dma,
416 buffer_info->length,
123e9f1a 417 DMA_TO_DEVICE);
a7d5ca40
AD
418 buffer_info->dma = 0;
419 }
d4e0fe01 420 if (buffer_info->skb) {
d4e0fe01
AD
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425}
426
d4e0fe01
AD
427/**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435{
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
89bf67f1 440 tx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
441 if (!tx_ring->buffer_info)
442 goto err;
d4e0fe01
AD
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
123e9f1a
NN
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
450
451 if (!tx_ring->desc)
452 goto err;
453
454 tx_ring->adapter = adapter;
455 tx_ring->next_to_use = 0;
456 tx_ring->next_to_clean = 0;
457
458 return 0;
459err:
460 vfree(tx_ring->buffer_info);
461 dev_err(&adapter->pdev->dev,
462 "Unable to allocate memory for the transmit descriptor ring\n");
463 return -ENOMEM;
464}
465
466/**
467 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
468 * @adapter: board private structure
469 *
470 * Returns 0 on success, negative on failure
471 **/
472int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
473 struct igbvf_ring *rx_ring)
474{
475 struct pci_dev *pdev = adapter->pdev;
476 int size, desc_len;
477
478 size = sizeof(struct igbvf_buffer) * rx_ring->count;
89bf67f1 479 rx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
480 if (!rx_ring->buffer_info)
481 goto err;
d4e0fe01
AD
482
483 desc_len = sizeof(union e1000_adv_rx_desc);
484
485 /* Round up to nearest 4K */
486 rx_ring->size = rx_ring->count * desc_len;
487 rx_ring->size = ALIGN(rx_ring->size, 4096);
488
123e9f1a
NN
489 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
490 &rx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
491
492 if (!rx_ring->desc)
493 goto err;
494
495 rx_ring->next_to_clean = 0;
496 rx_ring->next_to_use = 0;
497
498 rx_ring->adapter = adapter;
499
500 return 0;
501
502err:
503 vfree(rx_ring->buffer_info);
504 rx_ring->buffer_info = NULL;
505 dev_err(&adapter->pdev->dev,
506 "Unable to allocate memory for the receive descriptor ring\n");
507 return -ENOMEM;
508}
509
510/**
511 * igbvf_clean_tx_ring - Free Tx Buffers
512 * @tx_ring: ring to be cleaned
513 **/
514static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515{
516 struct igbvf_adapter *adapter = tx_ring->adapter;
517 struct igbvf_buffer *buffer_info;
518 unsigned long size;
519 unsigned int i;
520
521 if (!tx_ring->buffer_info)
522 return;
523
524 /* Free all the Tx ring sk_buffs */
525 for (i = 0; i < tx_ring->count; i++) {
526 buffer_info = &tx_ring->buffer_info[i];
527 igbvf_put_txbuf(adapter, buffer_info);
528 }
529
530 size = sizeof(struct igbvf_buffer) * tx_ring->count;
531 memset(tx_ring->buffer_info, 0, size);
532
533 /* Zero out the descriptor ring */
534 memset(tx_ring->desc, 0, tx_ring->size);
535
536 tx_ring->next_to_use = 0;
537 tx_ring->next_to_clean = 0;
538
539 writel(0, adapter->hw.hw_addr + tx_ring->head);
540 writel(0, adapter->hw.hw_addr + tx_ring->tail);
541}
542
543/**
544 * igbvf_free_tx_resources - Free Tx Resources per Queue
545 * @tx_ring: ring to free resources from
546 *
547 * Free all transmit software resources
548 **/
549void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550{
551 struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553 igbvf_clean_tx_ring(tx_ring);
554
555 vfree(tx_ring->buffer_info);
556 tx_ring->buffer_info = NULL;
557
123e9f1a
NN
558 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559 tx_ring->dma);
d4e0fe01
AD
560
561 tx_ring->desc = NULL;
562}
563
564/**
565 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566 * @adapter: board private structure
567 **/
568static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569{
570 struct igbvf_adapter *adapter = rx_ring->adapter;
571 struct igbvf_buffer *buffer_info;
572 struct pci_dev *pdev = adapter->pdev;
573 unsigned long size;
574 unsigned int i;
575
576 if (!rx_ring->buffer_info)
577 return;
578
579 /* Free all the Rx ring sk_buffs */
580 for (i = 0; i < rx_ring->count; i++) {
581 buffer_info = &rx_ring->buffer_info[i];
582 if (buffer_info->dma) {
583 if (adapter->rx_ps_hdr_size){
123e9f1a 584 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 585 adapter->rx_ps_hdr_size,
123e9f1a 586 DMA_FROM_DEVICE);
d4e0fe01 587 } else {
123e9f1a 588 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 589 adapter->rx_buffer_len,
123e9f1a 590 DMA_FROM_DEVICE);
d4e0fe01
AD
591 }
592 buffer_info->dma = 0;
593 }
594
595 if (buffer_info->skb) {
596 dev_kfree_skb(buffer_info->skb);
597 buffer_info->skb = NULL;
598 }
599
600 if (buffer_info->page) {
601 if (buffer_info->page_dma)
123e9f1a
NN
602 dma_unmap_page(&pdev->dev,
603 buffer_info->page_dma,
d4e0fe01 604 PAGE_SIZE / 2,
123e9f1a 605 DMA_FROM_DEVICE);
d4e0fe01
AD
606 put_page(buffer_info->page);
607 buffer_info->page = NULL;
608 buffer_info->page_dma = 0;
609 buffer_info->page_offset = 0;
610 }
611 }
612
613 size = sizeof(struct igbvf_buffer) * rx_ring->count;
614 memset(rx_ring->buffer_info, 0, size);
615
616 /* Zero out the descriptor ring */
617 memset(rx_ring->desc, 0, rx_ring->size);
618
619 rx_ring->next_to_clean = 0;
620 rx_ring->next_to_use = 0;
621
622 writel(0, adapter->hw.hw_addr + rx_ring->head);
623 writel(0, adapter->hw.hw_addr + rx_ring->tail);
624}
625
626/**
627 * igbvf_free_rx_resources - Free Rx Resources
628 * @rx_ring: ring to clean the resources from
629 *
630 * Free all receive software resources
631 **/
632
633void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634{
635 struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637 igbvf_clean_rx_ring(rx_ring);
638
639 vfree(rx_ring->buffer_info);
640 rx_ring->buffer_info = NULL;
641
642 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643 rx_ring->dma);
644 rx_ring->desc = NULL;
645}
646
647/**
648 * igbvf_update_itr - update the dynamic ITR value based on statistics
649 * @adapter: pointer to adapter
650 * @itr_setting: current adapter->itr
651 * @packets: the number of packets during this measurement interval
652 * @bytes: the number of bytes during this measurement interval
653 *
654 * Stores a new ITR value based on packets and byte
655 * counts during the last interrupt. The advantage of per interrupt
656 * computation is faster updates and more accurate ITR for the current
657 * traffic pattern. Constants in this function were computed
658 * based on theoretical maximum wire speed and thresholds were set based
659 * on testing data as well as attempting to minimize response time
ab50a2a4 660 * while increasing bulk throughput.
d4e0fe01 661 **/
ab50a2a4
MW
662static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663 enum latency_range itr_setting,
664 int packets, int bytes)
d4e0fe01 665{
ab50a2a4 666 enum latency_range retval = itr_setting;
d4e0fe01
AD
667
668 if (packets == 0)
669 goto update_itr_done;
670
671 switch (itr_setting) {
672 case lowest_latency:
673 /* handle TSO and jumbo frames */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 5) && (bytes > 512))
677 retval = low_latency;
678 break;
679 case low_latency: /* 50 usec aka 20000 ints/s */
680 if (bytes > 10000) {
681 /* this if handles the TSO accounting */
682 if (bytes/packets > 8000)
683 retval = bulk_latency;
684 else if ((packets < 10) || ((bytes/packets) > 1200))
685 retval = bulk_latency;
686 else if ((packets > 35))
687 retval = lowest_latency;
688 } else if (bytes/packets > 2000) {
689 retval = bulk_latency;
690 } else if (packets <= 2 && bytes < 512) {
691 retval = lowest_latency;
692 }
693 break;
694 case bulk_latency: /* 250 usec aka 4000 ints/s */
695 if (bytes > 25000) {
696 if (packets > 35)
697 retval = low_latency;
698 } else if (bytes < 6000) {
699 retval = low_latency;
700 }
701 break;
ab50a2a4
MW
702 default:
703 break;
d4e0fe01
AD
704 }
705
706update_itr_done:
707 return retval;
708}
709
ab50a2a4 710static int igbvf_range_to_itr(enum latency_range current_range)
d4e0fe01 711{
ab50a2a4 712 int new_itr;
d4e0fe01 713
ab50a2a4 714 switch (current_range) {
d4e0fe01
AD
715 /* counts and packets in update_itr are dependent on these numbers */
716 case lowest_latency:
ab50a2a4 717 new_itr = IGBVF_70K_ITR;
d4e0fe01
AD
718 break;
719 case low_latency:
ab50a2a4 720 new_itr = IGBVF_20K_ITR;
d4e0fe01
AD
721 break;
722 case bulk_latency:
ab50a2a4 723 new_itr = IGBVF_4K_ITR;
d4e0fe01
AD
724 break;
725 default:
ab50a2a4 726 new_itr = IGBVF_START_ITR;
d4e0fe01
AD
727 break;
728 }
ab50a2a4
MW
729 return new_itr;
730}
731
732static void igbvf_set_itr(struct igbvf_adapter *adapter)
733{
734 u32 new_itr;
735
736 adapter->tx_ring->itr_range =
737 igbvf_update_itr(adapter,
738 adapter->tx_ring->itr_val,
739 adapter->total_tx_packets,
740 adapter->total_tx_bytes);
741
742 /* conservative mode (itr 3) eliminates the lowest_latency setting */
743 if (adapter->requested_itr == 3 &&
744 adapter->tx_ring->itr_range == lowest_latency)
745 adapter->tx_ring->itr_range = low_latency;
d4e0fe01 746
ab50a2a4
MW
747 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748
749
750 if (new_itr != adapter->tx_ring->itr_val) {
751 u32 current_itr = adapter->tx_ring->itr_val;
d4e0fe01
AD
752 /*
753 * this attempts to bias the interrupt rate towards Bulk
754 * by adding intermediate steps when interrupt rate is
755 * increasing
756 */
ab50a2a4
MW
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->tx_ring->itr_val = new_itr;
761
762 adapter->tx_ring->set_itr = 1;
763 }
764
765 adapter->rx_ring->itr_range =
766 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767 adapter->total_rx_packets,
768 adapter->total_rx_bytes);
769 if (adapter->requested_itr == 3 &&
770 adapter->rx_ring->itr_range == lowest_latency)
771 adapter->rx_ring->itr_range = low_latency;
772
773 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774
775 if (new_itr != adapter->rx_ring->itr_val) {
776 u32 current_itr = adapter->rx_ring->itr_val;
777 new_itr = new_itr > current_itr ?
778 min(current_itr + (new_itr >> 2), new_itr) :
779 new_itr;
780 adapter->rx_ring->itr_val = new_itr;
781
782 adapter->rx_ring->set_itr = 1;
d4e0fe01
AD
783 }
784}
785
786/**
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
49ce9c2c 789 *
d4e0fe01
AD
790 * returns true if ring is completely cleaned
791 **/
792static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793{
794 struct igbvf_adapter *adapter = tx_ring->adapter;
d4e0fe01
AD
795 struct net_device *netdev = adapter->netdev;
796 struct igbvf_buffer *buffer_info;
797 struct sk_buff *skb;
798 union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 unsigned int total_bytes = 0, total_packets = 0;
800 unsigned int i, eop, count = 0;
801 bool cleaned = false;
802
803 i = tx_ring->next_to_clean;
804 eop = tx_ring->buffer_info[i].next_to_watch;
805 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806
807 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
808 (count < tx_ring->count)) {
2d0bb1c1 809 rmb(); /* read buffer_info after eop_desc status */
d4e0fe01
AD
810 for (cleaned = false; !cleaned; count++) {
811 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
812 buffer_info = &tx_ring->buffer_info[i];
813 cleaned = (i == eop);
814 skb = buffer_info->skb;
815
816 if (skb) {
817 unsigned int segs, bytecount;
818
819 /* gso_segs is currently only valid for tcp */
820 segs = skb_shinfo(skb)->gso_segs ?: 1;
821 /* multiply data chunks by size of headers */
822 bytecount = ((segs - 1) * skb_headlen(skb)) +
823 skb->len;
824 total_packets += segs;
825 total_bytes += bytecount;
826 }
827
828 igbvf_put_txbuf(adapter, buffer_info);
829 tx_desc->wb.status = 0;
830
831 i++;
832 if (i == tx_ring->count)
833 i = 0;
834 }
835 eop = tx_ring->buffer_info[i].next_to_watch;
836 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
837 }
838
839 tx_ring->next_to_clean = i;
840
841 if (unlikely(count &&
842 netif_carrier_ok(netdev) &&
843 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
844 /* Make sure that anybody stopping the queue after this
845 * sees the new next_to_clean.
846 */
847 smp_mb();
848 if (netif_queue_stopped(netdev) &&
849 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
850 netif_wake_queue(netdev);
851 ++adapter->restart_queue;
852 }
853 }
854
d4e0fe01
AD
855 adapter->net_stats.tx_bytes += total_bytes;
856 adapter->net_stats.tx_packets += total_packets;
807540ba 857 return count < tx_ring->count;
d4e0fe01
AD
858}
859
860static irqreturn_t igbvf_msix_other(int irq, void *data)
861{
862 struct net_device *netdev = data;
863 struct igbvf_adapter *adapter = netdev_priv(netdev);
864 struct e1000_hw *hw = &adapter->hw;
865
866 adapter->int_counter1++;
867
868 netif_carrier_off(netdev);
869 hw->mac.get_link_status = 1;
870 if (!test_bit(__IGBVF_DOWN, &adapter->state))
871 mod_timer(&adapter->watchdog_timer, jiffies + 1);
872
873 ew32(EIMS, adapter->eims_other);
874
875 return IRQ_HANDLED;
876}
877
878static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
879{
880 struct net_device *netdev = data;
881 struct igbvf_adapter *adapter = netdev_priv(netdev);
882 struct e1000_hw *hw = &adapter->hw;
883 struct igbvf_ring *tx_ring = adapter->tx_ring;
884
ab50a2a4
MW
885 if (tx_ring->set_itr) {
886 writel(tx_ring->itr_val,
887 adapter->hw.hw_addr + tx_ring->itr_register);
888 adapter->tx_ring->set_itr = 0;
889 }
d4e0fe01
AD
890
891 adapter->total_tx_bytes = 0;
892 adapter->total_tx_packets = 0;
893
894 /* auto mask will automatically reenable the interrupt when we write
895 * EICS */
896 if (!igbvf_clean_tx_irq(tx_ring))
897 /* Ring was not completely cleaned, so fire another interrupt */
898 ew32(EICS, tx_ring->eims_value);
899 else
900 ew32(EIMS, tx_ring->eims_value);
901
902 return IRQ_HANDLED;
903}
904
905static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
906{
907 struct net_device *netdev = data;
908 struct igbvf_adapter *adapter = netdev_priv(netdev);
909
910 adapter->int_counter0++;
911
912 /* Write the ITR value calculated at the end of the
913 * previous interrupt.
914 */
915 if (adapter->rx_ring->set_itr) {
916 writel(adapter->rx_ring->itr_val,
917 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
918 adapter->rx_ring->set_itr = 0;
919 }
920
921 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
922 adapter->total_rx_bytes = 0;
923 adapter->total_rx_packets = 0;
924 __napi_schedule(&adapter->rx_ring->napi);
925 }
926
927 return IRQ_HANDLED;
928}
929
930#define IGBVF_NO_QUEUE -1
931
932static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
933 int tx_queue, int msix_vector)
934{
935 struct e1000_hw *hw = &adapter->hw;
936 u32 ivar, index;
937
938 /* 82576 uses a table-based method for assigning vectors.
939 Each queue has a single entry in the table to which we write
940 a vector number along with a "valid" bit. Sadly, the layout
941 of the table is somewhat counterintuitive. */
942 if (rx_queue > IGBVF_NO_QUEUE) {
943 index = (rx_queue >> 1);
944 ivar = array_er32(IVAR0, index);
945 if (rx_queue & 0x1) {
946 /* vector goes into third byte of register */
947 ivar = ivar & 0xFF00FFFF;
948 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
949 } else {
950 /* vector goes into low byte of register */
951 ivar = ivar & 0xFFFFFF00;
952 ivar |= msix_vector | E1000_IVAR_VALID;
953 }
954 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
955 array_ew32(IVAR0, index, ivar);
956 }
957 if (tx_queue > IGBVF_NO_QUEUE) {
958 index = (tx_queue >> 1);
959 ivar = array_er32(IVAR0, index);
960 if (tx_queue & 0x1) {
961 /* vector goes into high byte of register */
962 ivar = ivar & 0x00FFFFFF;
963 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
964 } else {
965 /* vector goes into second byte of register */
966 ivar = ivar & 0xFFFF00FF;
967 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
968 }
969 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
970 array_ew32(IVAR0, index, ivar);
971 }
972}
973
974/**
975 * igbvf_configure_msix - Configure MSI-X hardware
976 *
977 * igbvf_configure_msix sets up the hardware to properly
978 * generate MSI-X interrupts.
979 **/
980static void igbvf_configure_msix(struct igbvf_adapter *adapter)
981{
982 u32 tmp;
983 struct e1000_hw *hw = &adapter->hw;
984 struct igbvf_ring *tx_ring = adapter->tx_ring;
985 struct igbvf_ring *rx_ring = adapter->rx_ring;
986 int vector = 0;
987
988 adapter->eims_enable_mask = 0;
989
990 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
991 adapter->eims_enable_mask |= tx_ring->eims_value;
ab50a2a4 992 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
d4e0fe01
AD
993 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
994 adapter->eims_enable_mask |= rx_ring->eims_value;
ab50a2a4 995 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
d4e0fe01
AD
996
997 /* set vector for other causes, i.e. link changes */
998
999 tmp = (vector++ | E1000_IVAR_VALID);
1000
1001 ew32(IVAR_MISC, tmp);
1002
1003 adapter->eims_enable_mask = (1 << (vector)) - 1;
1004 adapter->eims_other = 1 << (vector - 1);
1005 e1e_flush();
1006}
1007
2d165771 1008static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1009{
1010 if (adapter->msix_entries) {
1011 pci_disable_msix(adapter->pdev);
1012 kfree(adapter->msix_entries);
1013 adapter->msix_entries = NULL;
1014 }
1015}
1016
1017/**
1018 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019 *
1020 * Attempt to configure interrupts using the best available
1021 * capabilities of the hardware and kernel.
1022 **/
2d165771 1023static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1024{
1025 int err = -ENOMEM;
1026 int i;
1027
1028 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030 GFP_KERNEL);
1031 if (adapter->msix_entries) {
1032 for (i = 0; i < 3; i++)
1033 adapter->msix_entries[i].entry = i;
1034
1035 err = pci_enable_msix(adapter->pdev,
1036 adapter->msix_entries, 3);
1037 }
1038
1039 if (err) {
1040 /* MSI-X failed */
1041 dev_err(&adapter->pdev->dev,
1042 "Failed to initialize MSI-X interrupts.\n");
1043 igbvf_reset_interrupt_capability(adapter);
1044 }
1045}
1046
1047/**
1048 * igbvf_request_msix - Initialize MSI-X interrupts
1049 *
1050 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051 * kernel.
1052 **/
1053static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054{
1055 struct net_device *netdev = adapter->netdev;
1056 int err = 0, vector = 0;
1057
1058 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061 } else {
1062 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064 }
1065
1066 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1067 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
d4e0fe01
AD
1068 netdev);
1069 if (err)
1070 goto out;
1071
1072 adapter->tx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1073 adapter->tx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1074 vector++;
1075
1076 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1077 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
d4e0fe01
AD
1078 netdev);
1079 if (err)
1080 goto out;
1081
1082 adapter->rx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1083 adapter->rx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1084 vector++;
1085
1086 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1087 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1088 if (err)
1089 goto out;
1090
1091 igbvf_configure_msix(adapter);
1092 return 0;
1093out:
1094 return err;
1095}
1096
1097/**
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1100 **/
9f9a12f8 1101static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
d4e0fe01
AD
1102{
1103 struct net_device *netdev = adapter->netdev;
1104
1105 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->tx_ring)
1107 return -ENOMEM;
1108
1109 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 if (!adapter->rx_ring) {
1111 kfree(adapter->tx_ring);
1112 return -ENOMEM;
1113 }
1114
1115 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116
1117 return 0;
1118}
1119
1120/**
1121 * igbvf_request_irq - initialize interrupts
1122 *
1123 * Attempts to configure interrupts using the best available
1124 * capabilities of the hardware and kernel.
1125 **/
1126static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127{
1128 int err = -1;
1129
1130 /* igbvf supports msi-x only */
1131 if (adapter->msix_entries)
1132 err = igbvf_request_msix(adapter);
1133
1134 if (!err)
1135 return err;
1136
1137 dev_err(&adapter->pdev->dev,
1138 "Unable to allocate interrupt, Error: %d\n", err);
1139
1140 return err;
1141}
1142
1143static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144{
1145 struct net_device *netdev = adapter->netdev;
1146 int vector;
1147
1148 if (adapter->msix_entries) {
1149 for (vector = 0; vector < 3; vector++)
1150 free_irq(adapter->msix_entries[vector].vector, netdev);
1151 }
1152}
1153
1154/**
1155 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156 **/
1157static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158{
1159 struct e1000_hw *hw = &adapter->hw;
1160
1161 ew32(EIMC, ~0);
1162
1163 if (adapter->msix_entries)
1164 ew32(EIAC, 0);
1165}
1166
1167/**
1168 * igbvf_irq_enable - Enable default interrupt generation settings
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 /* If not enough Rx work done, exit the polling mode */
1194 if (work_done < budget) {
1195 napi_complete(napi);
1196
ab50a2a4 1197 if (adapter->requested_itr & 3)
d4e0fe01
AD
1198 igbvf_set_itr(adapter);
1199
1200 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201 ew32(EIMS, adapter->rx_ring->eims_value);
1202 }
1203
1204 return work_done;
1205}
1206
1207/**
1208 * igbvf_set_rlpml - set receive large packet maximum length
1209 * @adapter: board private structure
1210 *
1211 * Configure the maximum size of packets that will be received
1212 */
1213static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214{
a0f1d603 1215 int max_frame_size;
d4e0fe01
AD
1216 struct e1000_hw *hw = &adapter->hw;
1217
a0f1d603 1218 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
d4e0fe01
AD
1219 e1000_rlpml_set_vf(hw, max_frame_size);
1220}
1221
8e586137 1222static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
d4e0fe01
AD
1223{
1224 struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 struct e1000_hw *hw = &adapter->hw;
1226
8e586137 1227 if (hw->mac.ops.set_vfta(hw, vid, true)) {
d4e0fe01 1228 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
8e586137
JP
1229 return -EINVAL;
1230 }
1231 set_bit(vid, adapter->active_vlans);
1232 return 0;
d4e0fe01
AD
1233}
1234
8e586137 1235static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
d4e0fe01
AD
1236{
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 struct e1000_hw *hw = &adapter->hw;
1239
8e586137 1240 if (hw->mac.ops.set_vfta(hw, vid, false)) {
d4e0fe01
AD
1241 dev_err(&adapter->pdev->dev,
1242 "Failed to remove vlan id %d\n", vid);
8e586137
JP
1243 return -EINVAL;
1244 }
1245 clear_bit(vid, adapter->active_vlans);
1246 return 0;
d4e0fe01
AD
1247}
1248
1249static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1250{
1251 u16 vid;
1252
a0f1d603 1253 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
d4e0fe01 1254 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
d4e0fe01
AD
1255}
1256
1257/**
1258 * igbvf_configure_tx - Configure Transmit Unit after Reset
1259 * @adapter: board private structure
1260 *
1261 * Configure the Tx unit of the MAC after a reset.
1262 **/
1263static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1264{
1265 struct e1000_hw *hw = &adapter->hw;
1266 struct igbvf_ring *tx_ring = adapter->tx_ring;
1267 u64 tdba;
1268 u32 txdctl, dca_txctrl;
1269
1270 /* disable transmits */
1271 txdctl = er32(TXDCTL(0));
1272 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
945a5151 1273 e1e_flush();
d4e0fe01
AD
1274 msleep(10);
1275
1276 /* Setup the HW Tx Head and Tail descriptor pointers */
1277 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278 tdba = tx_ring->dma;
8e20ce94 1279 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1280 ew32(TDBAH(0), (tdba >> 32));
1281 ew32(TDH(0), 0);
1282 ew32(TDT(0), 0);
1283 tx_ring->head = E1000_TDH(0);
1284 tx_ring->tail = E1000_TDT(0);
1285
1286 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1287 * MUST be delivered in order or it will completely screw up
1288 * our bookeeping.
1289 */
1290 dca_txctrl = er32(DCA_TXCTRL(0));
1291 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292 ew32(DCA_TXCTRL(0), dca_txctrl);
1293
1294 /* enable transmits */
1295 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296 ew32(TXDCTL(0), txdctl);
1297
1298 /* Setup Transmit Descriptor Settings for eop descriptor */
1299 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300
1301 /* enable Report Status bit */
1302 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
d4e0fe01
AD
1303}
1304
1305/**
1306 * igbvf_setup_srrctl - configure the receive control registers
1307 * @adapter: Board private structure
1308 **/
1309static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1310{
1311 struct e1000_hw *hw = &adapter->hw;
1312 u32 srrctl = 0;
1313
1314 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1315 E1000_SRRCTL_BSIZEHDR_MASK |
1316 E1000_SRRCTL_BSIZEPKT_MASK);
1317
1318 /* Enable queue drop to avoid head of line blocking */
1319 srrctl |= E1000_SRRCTL_DROP_EN;
1320
1321 /* Setup buffer sizes */
1322 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1323 E1000_SRRCTL_BSIZEPKT_SHIFT;
1324
1325 if (adapter->rx_buffer_len < 2048) {
1326 adapter->rx_ps_hdr_size = 0;
1327 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1328 } else {
1329 adapter->rx_ps_hdr_size = 128;
1330 srrctl |= adapter->rx_ps_hdr_size <<
1331 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1332 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333 }
1334
1335 ew32(SRRCTL(0), srrctl);
1336}
1337
1338/**
1339 * igbvf_configure_rx - Configure Receive Unit after Reset
1340 * @adapter: board private structure
1341 *
1342 * Configure the Rx unit of the MAC after a reset.
1343 **/
1344static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1345{
1346 struct e1000_hw *hw = &adapter->hw;
1347 struct igbvf_ring *rx_ring = adapter->rx_ring;
1348 u64 rdba;
1349 u32 rdlen, rxdctl;
1350
1351 /* disable receives */
1352 rxdctl = er32(RXDCTL(0));
1353 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
945a5151 1354 e1e_flush();
d4e0fe01
AD
1355 msleep(10);
1356
1357 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1358
1359 /*
1360 * Setup the HW Rx Head and Tail Descriptor Pointers and
1361 * the Base and Length of the Rx Descriptor Ring
1362 */
1363 rdba = rx_ring->dma;
8e20ce94 1364 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1365 ew32(RDBAH(0), (rdba >> 32));
1366 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1367 rx_ring->head = E1000_RDH(0);
1368 rx_ring->tail = E1000_RDT(0);
1369 ew32(RDH(0), 0);
1370 ew32(RDT(0), 0);
1371
1372 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1373 rxdctl &= 0xFFF00000;
1374 rxdctl |= IGBVF_RX_PTHRESH;
1375 rxdctl |= IGBVF_RX_HTHRESH << 8;
1376 rxdctl |= IGBVF_RX_WTHRESH << 16;
1377
1378 igbvf_set_rlpml(adapter);
1379
1380 /* enable receives */
1381 ew32(RXDCTL(0), rxdctl);
1382}
1383
1384/**
1385 * igbvf_set_multi - Multicast and Promiscuous mode set
1386 * @netdev: network interface device structure
1387 *
1388 * The set_multi entry point is called whenever the multicast address
1389 * list or the network interface flags are updated. This routine is
1390 * responsible for configuring the hardware for proper multicast,
1391 * promiscuous mode, and all-multi behavior.
1392 **/
1393static void igbvf_set_multi(struct net_device *netdev)
1394{
1395 struct igbvf_adapter *adapter = netdev_priv(netdev);
1396 struct e1000_hw *hw = &adapter->hw;
22bedad3 1397 struct netdev_hw_addr *ha;
d4e0fe01
AD
1398 u8 *mta_list = NULL;
1399 int i;
1400
4cd24eaf
JP
1401 if (!netdev_mc_empty(netdev)) {
1402 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
d4e0fe01
AD
1403 if (!mta_list) {
1404 dev_err(&adapter->pdev->dev,
1405 "failed to allocate multicast filter list\n");
1406 return;
1407 }
1408 }
1409
1410 /* prepare a packed array of only addresses. */
48e2f183 1411 i = 0;
22bedad3
JP
1412 netdev_for_each_mc_addr(ha, netdev)
1413 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
d4e0fe01
AD
1414
1415 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1416 kfree(mta_list);
1417}
1418
1419/**
1420 * igbvf_configure - configure the hardware for Rx and Tx
1421 * @adapter: private board structure
1422 **/
1423static void igbvf_configure(struct igbvf_adapter *adapter)
1424{
1425 igbvf_set_multi(adapter->netdev);
1426
1427 igbvf_restore_vlan(adapter);
1428
1429 igbvf_configure_tx(adapter);
1430 igbvf_setup_srrctl(adapter);
1431 igbvf_configure_rx(adapter);
1432 igbvf_alloc_rx_buffers(adapter->rx_ring,
1433 igbvf_desc_unused(adapter->rx_ring));
1434}
1435
1436/* igbvf_reset - bring the hardware into a known good state
1437 *
1438 * This function boots the hardware and enables some settings that
1439 * require a configuration cycle of the hardware - those cannot be
1440 * set/changed during runtime. After reset the device needs to be
1441 * properly configured for Rx, Tx etc.
1442 */
2d165771 1443static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1444{
1445 struct e1000_mac_info *mac = &adapter->hw.mac;
1446 struct net_device *netdev = adapter->netdev;
1447 struct e1000_hw *hw = &adapter->hw;
1448
1449 /* Allow time for pending master requests to run */
1450 if (mac->ops.reset_hw(hw))
1451 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1452
1453 mac->ops.init_hw(hw);
1454
1455 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1456 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1457 netdev->addr_len);
1458 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1459 netdev->addr_len);
1460 }
72279093
AD
1461
1462 adapter->last_reset = jiffies;
d4e0fe01
AD
1463}
1464
1465int igbvf_up(struct igbvf_adapter *adapter)
1466{
1467 struct e1000_hw *hw = &adapter->hw;
1468
1469 /* hardware has been reset, we need to reload some things */
1470 igbvf_configure(adapter);
1471
1472 clear_bit(__IGBVF_DOWN, &adapter->state);
1473
1474 napi_enable(&adapter->rx_ring->napi);
1475 if (adapter->msix_entries)
1476 igbvf_configure_msix(adapter);
1477
1478 /* Clear any pending interrupts. */
1479 er32(EICR);
1480 igbvf_irq_enable(adapter);
1481
1482 /* start the watchdog */
1483 hw->mac.get_link_status = 1;
1484 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1485
1486
1487 return 0;
1488}
1489
1490void igbvf_down(struct igbvf_adapter *adapter)
1491{
1492 struct net_device *netdev = adapter->netdev;
1493 struct e1000_hw *hw = &adapter->hw;
1494 u32 rxdctl, txdctl;
1495
1496 /*
1497 * signal that we're down so the interrupt handler does not
1498 * reschedule our watchdog timer
1499 */
1500 set_bit(__IGBVF_DOWN, &adapter->state);
1501
1502 /* disable receives in the hardware */
1503 rxdctl = er32(RXDCTL(0));
1504 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1505
1506 netif_stop_queue(netdev);
1507
1508 /* disable transmits in the hardware */
1509 txdctl = er32(TXDCTL(0));
1510 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1511
1512 /* flush both disables and wait for them to finish */
1513 e1e_flush();
1514 msleep(10);
1515
1516 napi_disable(&adapter->rx_ring->napi);
1517
1518 igbvf_irq_disable(adapter);
1519
1520 del_timer_sync(&adapter->watchdog_timer);
1521
d4e0fe01
AD
1522 netif_carrier_off(netdev);
1523
1524 /* record the stats before reset*/
1525 igbvf_update_stats(adapter);
1526
1527 adapter->link_speed = 0;
1528 adapter->link_duplex = 0;
1529
1530 igbvf_reset(adapter);
1531 igbvf_clean_tx_ring(adapter->tx_ring);
1532 igbvf_clean_rx_ring(adapter->rx_ring);
1533}
1534
1535void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1536{
1537 might_sleep();
1538 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1539 msleep(1);
1540 igbvf_down(adapter);
1541 igbvf_up(adapter);
1542 clear_bit(__IGBVF_RESETTING, &adapter->state);
1543}
1544
1545/**
1546 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1547 * @adapter: board private structure to initialize
1548 *
1549 * igbvf_sw_init initializes the Adapter private data structure.
1550 * Fields are initialized based on PCI device information and
1551 * OS network device settings (MTU size).
1552 **/
9f9a12f8 1553static int igbvf_sw_init(struct igbvf_adapter *adapter)
d4e0fe01
AD
1554{
1555 struct net_device *netdev = adapter->netdev;
1556 s32 rc;
1557
1558 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1559 adapter->rx_ps_hdr_size = 0;
1560 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1561 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1562
1563 adapter->tx_int_delay = 8;
1564 adapter->tx_abs_int_delay = 32;
1565 adapter->rx_int_delay = 0;
1566 adapter->rx_abs_int_delay = 8;
ab50a2a4
MW
1567 adapter->requested_itr = 3;
1568 adapter->current_itr = IGBVF_START_ITR;
d4e0fe01
AD
1569
1570 /* Set various function pointers */
1571 adapter->ei->init_ops(&adapter->hw);
1572
1573 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1574 if (rc)
1575 return rc;
1576
1577 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1578 if (rc)
1579 return rc;
1580
1581 igbvf_set_interrupt_capability(adapter);
1582
1583 if (igbvf_alloc_queues(adapter))
1584 return -ENOMEM;
1585
1586 spin_lock_init(&adapter->tx_queue_lock);
1587
1588 /* Explicitly disable IRQ since the NIC can be in any state. */
1589 igbvf_irq_disable(adapter);
1590
1591 spin_lock_init(&adapter->stats_lock);
1592
1593 set_bit(__IGBVF_DOWN, &adapter->state);
1594 return 0;
1595}
1596
1597static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1598{
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 adapter->stats.last_gprc = er32(VFGPRC);
1602 adapter->stats.last_gorc = er32(VFGORC);
1603 adapter->stats.last_gptc = er32(VFGPTC);
1604 adapter->stats.last_gotc = er32(VFGOTC);
1605 adapter->stats.last_mprc = er32(VFMPRC);
1606 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1607 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1608 adapter->stats.last_gorlbc = er32(VFGORLBC);
1609 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1610
1611 adapter->stats.base_gprc = er32(VFGPRC);
1612 adapter->stats.base_gorc = er32(VFGORC);
1613 adapter->stats.base_gptc = er32(VFGPTC);
1614 adapter->stats.base_gotc = er32(VFGOTC);
1615 adapter->stats.base_mprc = er32(VFMPRC);
1616 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1617 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1618 adapter->stats.base_gorlbc = er32(VFGORLBC);
1619 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1620}
1621
1622/**
1623 * igbvf_open - Called when a network interface is made active
1624 * @netdev: network interface device structure
1625 *
1626 * Returns 0 on success, negative value on failure
1627 *
1628 * The open entry point is called when a network interface is made
1629 * active by the system (IFF_UP). At this point all resources needed
1630 * for transmit and receive operations are allocated, the interrupt
1631 * handler is registered with the OS, the watchdog timer is started,
1632 * and the stack is notified that the interface is ready.
1633 **/
1634static int igbvf_open(struct net_device *netdev)
1635{
1636 struct igbvf_adapter *adapter = netdev_priv(netdev);
1637 struct e1000_hw *hw = &adapter->hw;
1638 int err;
1639
1640 /* disallow open during test */
1641 if (test_bit(__IGBVF_TESTING, &adapter->state))
1642 return -EBUSY;
1643
1644 /* allocate transmit descriptors */
1645 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1646 if (err)
1647 goto err_setup_tx;
1648
1649 /* allocate receive descriptors */
1650 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1651 if (err)
1652 goto err_setup_rx;
1653
1654 /*
1655 * before we allocate an interrupt, we must be ready to handle it.
1656 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1657 * as soon as we call pci_request_irq, so we have to setup our
1658 * clean_rx handler before we do so.
1659 */
1660 igbvf_configure(adapter);
1661
1662 err = igbvf_request_irq(adapter);
1663 if (err)
1664 goto err_req_irq;
1665
1666 /* From here on the code is the same as igbvf_up() */
1667 clear_bit(__IGBVF_DOWN, &adapter->state);
1668
1669 napi_enable(&adapter->rx_ring->napi);
1670
1671 /* clear any pending interrupts */
1672 er32(EICR);
1673
1674 igbvf_irq_enable(adapter);
1675
1676 /* start the watchdog */
1677 hw->mac.get_link_status = 1;
1678 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1679
1680 return 0;
1681
1682err_req_irq:
1683 igbvf_free_rx_resources(adapter->rx_ring);
1684err_setup_rx:
1685 igbvf_free_tx_resources(adapter->tx_ring);
1686err_setup_tx:
1687 igbvf_reset(adapter);
1688
1689 return err;
1690}
1691
1692/**
1693 * igbvf_close - Disables a network interface
1694 * @netdev: network interface device structure
1695 *
1696 * Returns 0, this is not allowed to fail
1697 *
1698 * The close entry point is called when an interface is de-activated
1699 * by the OS. The hardware is still under the drivers control, but
1700 * needs to be disabled. A global MAC reset is issued to stop the
1701 * hardware, and all transmit and receive resources are freed.
1702 **/
1703static int igbvf_close(struct net_device *netdev)
1704{
1705 struct igbvf_adapter *adapter = netdev_priv(netdev);
1706
1707 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1708 igbvf_down(adapter);
1709
1710 igbvf_free_irq(adapter);
1711
1712 igbvf_free_tx_resources(adapter->tx_ring);
1713 igbvf_free_rx_resources(adapter->rx_ring);
1714
1715 return 0;
1716}
1717/**
1718 * igbvf_set_mac - Change the Ethernet Address of the NIC
1719 * @netdev: network interface device structure
1720 * @p: pointer to an address structure
1721 *
1722 * Returns 0 on success, negative on failure
1723 **/
1724static int igbvf_set_mac(struct net_device *netdev, void *p)
1725{
1726 struct igbvf_adapter *adapter = netdev_priv(netdev);
1727 struct e1000_hw *hw = &adapter->hw;
1728 struct sockaddr *addr = p;
1729
1730 if (!is_valid_ether_addr(addr->sa_data))
1731 return -EADDRNOTAVAIL;
1732
1733 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1734
1735 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1736
1737 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1738 return -EADDRNOTAVAIL;
1739
1740 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1741
1742 return 0;
1743}
1744
1745#define UPDATE_VF_COUNTER(reg, name) \
1746 { \
1747 u32 current_counter = er32(reg); \
1748 if (current_counter < adapter->stats.last_##name) \
1749 adapter->stats.name += 0x100000000LL; \
1750 adapter->stats.last_##name = current_counter; \
1751 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1752 adapter->stats.name |= current_counter; \
1753 }
1754
1755/**
1756 * igbvf_update_stats - Update the board statistics counters
1757 * @adapter: board private structure
1758**/
1759void igbvf_update_stats(struct igbvf_adapter *adapter)
1760{
1761 struct e1000_hw *hw = &adapter->hw;
1762 struct pci_dev *pdev = adapter->pdev;
1763
1764 /*
1765 * Prevent stats update while adapter is being reset, link is down
1766 * or if the pci connection is down.
1767 */
1768 if (adapter->link_speed == 0)
1769 return;
1770
1771 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1772 return;
1773
1774 if (pci_channel_offline(pdev))
1775 return;
1776
1777 UPDATE_VF_COUNTER(VFGPRC, gprc);
1778 UPDATE_VF_COUNTER(VFGORC, gorc);
1779 UPDATE_VF_COUNTER(VFGPTC, gptc);
1780 UPDATE_VF_COUNTER(VFGOTC, gotc);
1781 UPDATE_VF_COUNTER(VFMPRC, mprc);
1782 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1783 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1784 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1785 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1786
1787 /* Fill out the OS statistics structure */
1788 adapter->net_stats.multicast = adapter->stats.mprc;
1789}
1790
1791static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1792{
a4ba8cbe
JK
1793 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1794 adapter->link_speed,
1795 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
d4e0fe01
AD
1796}
1797
1798static bool igbvf_has_link(struct igbvf_adapter *adapter)
1799{
1800 struct e1000_hw *hw = &adapter->hw;
1801 s32 ret_val = E1000_SUCCESS;
1802 bool link_active;
1803
72279093
AD
1804 /* If interface is down, stay link down */
1805 if (test_bit(__IGBVF_DOWN, &adapter->state))
1806 return false;
1807
d4e0fe01
AD
1808 ret_val = hw->mac.ops.check_for_link(hw);
1809 link_active = !hw->mac.get_link_status;
1810
1811 /* if check for link returns error we will need to reset */
72279093 1812 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1813 schedule_work(&adapter->reset_task);
1814
1815 return link_active;
1816}
1817
1818/**
1819 * igbvf_watchdog - Timer Call-back
1820 * @data: pointer to adapter cast into an unsigned long
1821 **/
1822static void igbvf_watchdog(unsigned long data)
1823{
1824 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1825
1826 /* Do the rest outside of interrupt context */
1827 schedule_work(&adapter->watchdog_task);
1828}
1829
1830static void igbvf_watchdog_task(struct work_struct *work)
1831{
1832 struct igbvf_adapter *adapter = container_of(work,
1833 struct igbvf_adapter,
1834 watchdog_task);
1835 struct net_device *netdev = adapter->netdev;
1836 struct e1000_mac_info *mac = &adapter->hw.mac;
1837 struct igbvf_ring *tx_ring = adapter->tx_ring;
1838 struct e1000_hw *hw = &adapter->hw;
1839 u32 link;
1840 int tx_pending = 0;
1841
1842 link = igbvf_has_link(adapter);
1843
1844 if (link) {
1845 if (!netif_carrier_ok(netdev)) {
d4e0fe01
AD
1846 mac->ops.get_link_up_info(&adapter->hw,
1847 &adapter->link_speed,
1848 &adapter->link_duplex);
1849 igbvf_print_link_info(adapter);
1850
d4e0fe01
AD
1851 netif_carrier_on(netdev);
1852 netif_wake_queue(netdev);
1853 }
1854 } else {
1855 if (netif_carrier_ok(netdev)) {
1856 adapter->link_speed = 0;
1857 adapter->link_duplex = 0;
1858 dev_info(&adapter->pdev->dev, "Link is Down\n");
1859 netif_carrier_off(netdev);
1860 netif_stop_queue(netdev);
1861 }
1862 }
1863
1864 if (netif_carrier_ok(netdev)) {
1865 igbvf_update_stats(adapter);
1866 } else {
1867 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1868 tx_ring->count);
1869 if (tx_pending) {
1870 /*
1871 * We've lost link, so the controller stops DMA,
1872 * but we've got queued Tx work that's never going
1873 * to get done, so reset controller to flush Tx.
1874 * (Do the reset outside of interrupt context).
1875 */
1876 adapter->tx_timeout_count++;
1877 schedule_work(&adapter->reset_task);
1878 }
1879 }
1880
1881 /* Cause software interrupt to ensure Rx ring is cleaned */
1882 ew32(EICS, adapter->rx_ring->eims_value);
1883
d4e0fe01
AD
1884 /* Reset the timer */
1885 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1886 mod_timer(&adapter->watchdog_timer,
1887 round_jiffies(jiffies + (2 * HZ)));
1888}
1889
1890#define IGBVF_TX_FLAGS_CSUM 0x00000001
1891#define IGBVF_TX_FLAGS_VLAN 0x00000002
1892#define IGBVF_TX_FLAGS_TSO 0x00000004
1893#define IGBVF_TX_FLAGS_IPV4 0x00000008
1894#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1895#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1896
1897static int igbvf_tso(struct igbvf_adapter *adapter,
1898 struct igbvf_ring *tx_ring,
1899 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1900{
1901 struct e1000_adv_tx_context_desc *context_desc;
1902 unsigned int i;
1903 int err;
1904 struct igbvf_buffer *buffer_info;
1905 u32 info = 0, tu_cmd = 0;
1906 u32 mss_l4len_idx, l4len;
1907 *hdr_len = 0;
1908
1909 if (skb_header_cloned(skb)) {
1910 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1911 if (err) {
1912 dev_err(&adapter->pdev->dev,
1913 "igbvf_tso returning an error\n");
1914 return err;
1915 }
1916 }
1917
1918 l4len = tcp_hdrlen(skb);
1919 *hdr_len += l4len;
1920
1921 if (skb->protocol == htons(ETH_P_IP)) {
1922 struct iphdr *iph = ip_hdr(skb);
1923 iph->tot_len = 0;
1924 iph->check = 0;
1925 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1926 iph->daddr, 0,
1927 IPPROTO_TCP,
1928 0);
8e1e8a47 1929 } else if (skb_is_gso_v6(skb)) {
d4e0fe01
AD
1930 ipv6_hdr(skb)->payload_len = 0;
1931 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1932 &ipv6_hdr(skb)->daddr,
1933 0, IPPROTO_TCP, 0);
1934 }
1935
1936 i = tx_ring->next_to_use;
1937
1938 buffer_info = &tx_ring->buffer_info[i];
1939 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1940 /* VLAN MACLEN IPLEN */
1941 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1942 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1943 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1944 *hdr_len += skb_network_offset(skb);
1945 info |= (skb_transport_header(skb) - skb_network_header(skb));
1946 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1947 context_desc->vlan_macip_lens = cpu_to_le32(info);
1948
1949 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1950 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1951
1952 if (skb->protocol == htons(ETH_P_IP))
1953 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1954 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1955
1956 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1957
1958 /* MSS L4LEN IDX */
1959 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1960 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1961
1962 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1963 context_desc->seqnum_seed = 0;
1964
1965 buffer_info->time_stamp = jiffies;
1966 buffer_info->next_to_watch = i;
1967 buffer_info->dma = 0;
1968 i++;
1969 if (i == tx_ring->count)
1970 i = 0;
1971
1972 tx_ring->next_to_use = i;
1973
1974 return true;
1975}
1976
1977static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1978 struct igbvf_ring *tx_ring,
1979 struct sk_buff *skb, u32 tx_flags)
1980{
1981 struct e1000_adv_tx_context_desc *context_desc;
1982 unsigned int i;
1983 struct igbvf_buffer *buffer_info;
1984 u32 info = 0, tu_cmd = 0;
1985
1986 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1987 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1988 i = tx_ring->next_to_use;
1989 buffer_info = &tx_ring->buffer_info[i];
1990 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1991
1992 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1993 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1994
1995 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1996 if (skb->ip_summed == CHECKSUM_PARTIAL)
1997 info |= (skb_transport_header(skb) -
1998 skb_network_header(skb));
1999
2000
2001 context_desc->vlan_macip_lens = cpu_to_le32(info);
2002
2003 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2004
2005 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2006 switch (skb->protocol) {
2007 case __constant_htons(ETH_P_IP):
2008 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2009 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2010 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2011 break;
2012 case __constant_htons(ETH_P_IPV6):
2013 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2014 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2015 break;
2016 default:
2017 break;
2018 }
2019 }
2020
2021 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2022 context_desc->seqnum_seed = 0;
2023 context_desc->mss_l4len_idx = 0;
2024
2025 buffer_info->time_stamp = jiffies;
2026 buffer_info->next_to_watch = i;
2027 buffer_info->dma = 0;
2028 i++;
2029 if (i == tx_ring->count)
2030 i = 0;
2031 tx_ring->next_to_use = i;
2032
2033 return true;
2034 }
2035
2036 return false;
2037}
2038
2039static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2040{
2041 struct igbvf_adapter *adapter = netdev_priv(netdev);
2042
2043 /* there is enough descriptors then we don't need to worry */
2044 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2045 return 0;
2046
2047 netif_stop_queue(netdev);
2048
2049 smp_mb();
2050
2051 /* We need to check again just in case room has been made available */
2052 if (igbvf_desc_unused(adapter->tx_ring) < size)
2053 return -EBUSY;
2054
2055 netif_wake_queue(netdev);
2056
2057 ++adapter->restart_queue;
2058 return 0;
2059}
2060
2061#define IGBVF_MAX_TXD_PWR 16
2062#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2063
2064static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2065 struct igbvf_ring *tx_ring,
2066 struct sk_buff *skb,
2067 unsigned int first)
2068{
2069 struct igbvf_buffer *buffer_info;
a7d5ca40 2070 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2071 unsigned int len = skb_headlen(skb);
2072 unsigned int count = 0, i;
2073 unsigned int f;
d4e0fe01
AD
2074
2075 i = tx_ring->next_to_use;
2076
d4e0fe01
AD
2077 buffer_info = &tx_ring->buffer_info[i];
2078 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2079 buffer_info->length = len;
2080 /* set time_stamp *before* dma to help avoid a possible race */
2081 buffer_info->time_stamp = jiffies;
2082 buffer_info->next_to_watch = i;
ac26d7d6 2083 buffer_info->mapped_as_page = false;
123e9f1a
NN
2084 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2085 DMA_TO_DEVICE);
2086 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40
AD
2087 goto dma_error;
2088
d4e0fe01
AD
2089
2090 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
9e903e08 2091 const struct skb_frag_struct *frag;
d4e0fe01 2092
8581145f 2093 count++;
d4e0fe01
AD
2094 i++;
2095 if (i == tx_ring->count)
2096 i = 0;
2097
2098 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2099 len = skb_frag_size(frag);
d4e0fe01
AD
2100
2101 buffer_info = &tx_ring->buffer_info[i];
2102 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2103 buffer_info->length = len;
2104 buffer_info->time_stamp = jiffies;
2105 buffer_info->next_to_watch = i;
a7d5ca40 2106 buffer_info->mapped_as_page = true;
877749bf 2107 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
123e9f1a
NN
2108 DMA_TO_DEVICE);
2109 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40 2110 goto dma_error;
d4e0fe01
AD
2111 }
2112
2113 tx_ring->buffer_info[i].skb = skb;
2114 tx_ring->buffer_info[first].next_to_watch = i;
2115
a7d5ca40
AD
2116 return ++count;
2117
2118dma_error:
2119 dev_err(&pdev->dev, "TX DMA map failed\n");
2120
2121 /* clear timestamp and dma mappings for failed buffer_info mapping */
2122 buffer_info->dma = 0;
2123 buffer_info->time_stamp = 0;
2124 buffer_info->length = 0;
2125 buffer_info->next_to_watch = 0;
2126 buffer_info->mapped_as_page = false;
c1fa347f
RK
2127 if (count)
2128 count--;
a7d5ca40
AD
2129
2130 /* clear timestamp and dma mappings for remaining portion of packet */
c1fa347f
RK
2131 while (count--) {
2132 if (i==0)
a7d5ca40 2133 i += tx_ring->count;
c1fa347f 2134 i--;
a7d5ca40
AD
2135 buffer_info = &tx_ring->buffer_info[i];
2136 igbvf_put_txbuf(adapter, buffer_info);
2137 }
2138
2139 return 0;
d4e0fe01
AD
2140}
2141
2142static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2143 struct igbvf_ring *tx_ring,
2144 int tx_flags, int count, u32 paylen,
2145 u8 hdr_len)
2146{
2147 union e1000_adv_tx_desc *tx_desc = NULL;
2148 struct igbvf_buffer *buffer_info;
2149 u32 olinfo_status = 0, cmd_type_len;
2150 unsigned int i;
2151
2152 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2153 E1000_ADVTXD_DCMD_DEXT);
2154
2155 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2156 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2159 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2160
2161 /* insert tcp checksum */
2162 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2163
2164 /* insert ip checksum */
2165 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2166 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2167
2168 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2169 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2170 }
2171
2172 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2173
2174 i = tx_ring->next_to_use;
2175 while (count--) {
2176 buffer_info = &tx_ring->buffer_info[i];
2177 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2178 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2179 tx_desc->read.cmd_type_len =
2180 cpu_to_le32(cmd_type_len | buffer_info->length);
2181 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2182 i++;
2183 if (i == tx_ring->count)
2184 i = 0;
2185 }
2186
2187 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2188 /* Force memory writes to complete before letting h/w
2189 * know there are new descriptors to fetch. (Only
2190 * applicable for weak-ordered memory model archs,
2191 * such as IA-64). */
2192 wmb();
2193
2194 tx_ring->next_to_use = i;
2195 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2196 /* we need this if more than one processor can write to our tail
2197 * at a time, it syncronizes IO on IA64/Altix systems */
2198 mmiowb();
2199}
2200
3b29a56d
SH
2201static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2202 struct net_device *netdev,
2203 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2204{
2205 struct igbvf_adapter *adapter = netdev_priv(netdev);
2206 unsigned int first, tx_flags = 0;
2207 u8 hdr_len = 0;
2208 int count = 0;
2209 int tso = 0;
2210
2211 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2212 dev_kfree_skb_any(skb);
2213 return NETDEV_TX_OK;
2214 }
2215
2216 if (skb->len <= 0) {
2217 dev_kfree_skb_any(skb);
2218 return NETDEV_TX_OK;
2219 }
2220
2221 /*
2222 * need: count + 4 desc gap to keep tail from touching
2223 * + 2 desc gap to keep tail from touching head,
2224 * + 1 desc for skb->data,
2225 * + 1 desc for context descriptor,
2226 * head, otherwise try next time
2227 */
2228 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2229 /* this is a hard error */
2230 return NETDEV_TX_BUSY;
2231 }
2232
a0f1d603 2233 if (vlan_tx_tag_present(skb)) {
d4e0fe01
AD
2234 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2235 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2236 }
2237
2238 if (skb->protocol == htons(ETH_P_IP))
2239 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2240
2241 first = tx_ring->next_to_use;
2242
2243 tso = skb_is_gso(skb) ?
2244 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2245 if (unlikely(tso < 0)) {
2246 dev_kfree_skb_any(skb);
2247 return NETDEV_TX_OK;
2248 }
2249
2250 if (tso)
2251 tx_flags |= IGBVF_TX_FLAGS_TSO;
2252 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2253 (skb->ip_summed == CHECKSUM_PARTIAL))
2254 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2255
2256 /*
2257 * count reflects descriptors mapped, if 0 then mapping error
25985edc 2258 * has occurred and we need to rewind the descriptor queue
d4e0fe01
AD
2259 */
2260 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2261
2262 if (count) {
2263 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2264 skb->len, hdr_len);
d4e0fe01
AD
2265 /* Make sure there is space in the ring for the next send. */
2266 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2267 } else {
2268 dev_kfree_skb_any(skb);
2269 tx_ring->buffer_info[first].time_stamp = 0;
2270 tx_ring->next_to_use = first;
2271 }
2272
2273 return NETDEV_TX_OK;
2274}
2275
3b29a56d
SH
2276static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2277 struct net_device *netdev)
d4e0fe01
AD
2278{
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2281
2282 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2283 dev_kfree_skb_any(skb);
2284 return NETDEV_TX_OK;
2285 }
2286
2287 tx_ring = &adapter->tx_ring[0];
2288
3b29a56d 2289 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2290}
2291
2292/**
2293 * igbvf_tx_timeout - Respond to a Tx Hang
2294 * @netdev: network interface device structure
2295 **/
2296static void igbvf_tx_timeout(struct net_device *netdev)
2297{
2298 struct igbvf_adapter *adapter = netdev_priv(netdev);
2299
2300 /* Do the reset outside of interrupt context */
2301 adapter->tx_timeout_count++;
2302 schedule_work(&adapter->reset_task);
2303}
2304
2305static void igbvf_reset_task(struct work_struct *work)
2306{
2307 struct igbvf_adapter *adapter;
2308 adapter = container_of(work, struct igbvf_adapter, reset_task);
2309
2310 igbvf_reinit_locked(adapter);
2311}
2312
2313/**
2314 * igbvf_get_stats - Get System Network Statistics
2315 * @netdev: network interface device structure
2316 *
2317 * Returns the address of the device statistics structure.
2318 * The statistics are actually updated from the timer callback.
2319 **/
2320static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2321{
2322 struct igbvf_adapter *adapter = netdev_priv(netdev);
2323
2324 /* only return the current stats */
2325 return &adapter->net_stats;
2326}
2327
2328/**
2329 * igbvf_change_mtu - Change the Maximum Transfer Unit
2330 * @netdev: network interface device structure
2331 * @new_mtu: new value for maximum frame size
2332 *
2333 * Returns 0 on success, negative on failure
2334 **/
2335static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2336{
2337 struct igbvf_adapter *adapter = netdev_priv(netdev);
2338 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2339
2340 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2341 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2342 return -EINVAL;
2343 }
2344
d4e0fe01
AD
2345#define MAX_STD_JUMBO_FRAME_SIZE 9234
2346 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2347 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2348 return -EINVAL;
2349 }
2350
2351 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2352 msleep(1);
2353 /* igbvf_down has a dependency on max_frame_size */
2354 adapter->max_frame_size = max_frame;
2355 if (netif_running(netdev))
2356 igbvf_down(adapter);
2357
2358 /*
2359 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2360 * means we reserve 2 more, this pushes us to allocate from the next
2361 * larger slab size.
2362 * i.e. RXBUFFER_2048 --> size-4096 slab
2363 * However with the new *_jumbo_rx* routines, jumbo receives will use
2364 * fragmented skbs
2365 */
2366
2367 if (max_frame <= 1024)
2368 adapter->rx_buffer_len = 1024;
2369 else if (max_frame <= 2048)
2370 adapter->rx_buffer_len = 2048;
2371 else
2372#if (PAGE_SIZE / 2) > 16384
2373 adapter->rx_buffer_len = 16384;
2374#else
2375 adapter->rx_buffer_len = PAGE_SIZE / 2;
2376#endif
2377
2378
2379 /* adjust allocation if LPE protects us, and we aren't using SBP */
2380 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2381 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2382 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2383 ETH_FCS_LEN;
2384
2385 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2386 netdev->mtu, new_mtu);
2387 netdev->mtu = new_mtu;
2388
2389 if (netif_running(netdev))
2390 igbvf_up(adapter);
2391 else
2392 igbvf_reset(adapter);
2393
2394 clear_bit(__IGBVF_RESETTING, &adapter->state);
2395
2396 return 0;
2397}
2398
2399static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2400{
2401 switch (cmd) {
2402 default:
2403 return -EOPNOTSUPP;
2404 }
2405}
2406
2407static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2408{
2409 struct net_device *netdev = pci_get_drvdata(pdev);
2410 struct igbvf_adapter *adapter = netdev_priv(netdev);
2411#ifdef CONFIG_PM
2412 int retval = 0;
2413#endif
2414
2415 netif_device_detach(netdev);
2416
2417 if (netif_running(netdev)) {
2418 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2419 igbvf_down(adapter);
2420 igbvf_free_irq(adapter);
2421 }
2422
2423#ifdef CONFIG_PM
2424 retval = pci_save_state(pdev);
2425 if (retval)
2426 return retval;
2427#endif
2428
2429 pci_disable_device(pdev);
2430
2431 return 0;
2432}
2433
2434#ifdef CONFIG_PM
2435static int igbvf_resume(struct pci_dev *pdev)
2436{
2437 struct net_device *netdev = pci_get_drvdata(pdev);
2438 struct igbvf_adapter *adapter = netdev_priv(netdev);
2439 u32 err;
2440
2441 pci_restore_state(pdev);
2442 err = pci_enable_device_mem(pdev);
2443 if (err) {
2444 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2445 return err;
2446 }
2447
2448 pci_set_master(pdev);
2449
2450 if (netif_running(netdev)) {
2451 err = igbvf_request_irq(adapter);
2452 if (err)
2453 return err;
2454 }
2455
2456 igbvf_reset(adapter);
2457
2458 if (netif_running(netdev))
2459 igbvf_up(adapter);
2460
2461 netif_device_attach(netdev);
2462
2463 return 0;
2464}
2465#endif
2466
2467static void igbvf_shutdown(struct pci_dev *pdev)
2468{
2469 igbvf_suspend(pdev, PMSG_SUSPEND);
2470}
2471
2472#ifdef CONFIG_NET_POLL_CONTROLLER
2473/*
2474 * Polling 'interrupt' - used by things like netconsole to send skbs
2475 * without having to re-enable interrupts. It's not called while
2476 * the interrupt routine is executing.
2477 */
2478static void igbvf_netpoll(struct net_device *netdev)
2479{
2480 struct igbvf_adapter *adapter = netdev_priv(netdev);
2481
2482 disable_irq(adapter->pdev->irq);
2483
2484 igbvf_clean_tx_irq(adapter->tx_ring);
2485
2486 enable_irq(adapter->pdev->irq);
2487}
2488#endif
2489
2490/**
2491 * igbvf_io_error_detected - called when PCI error is detected
2492 * @pdev: Pointer to PCI device
2493 * @state: The current pci connection state
2494 *
2495 * This function is called after a PCI bus error affecting
2496 * this device has been detected.
2497 */
2498static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2499 pci_channel_state_t state)
2500{
2501 struct net_device *netdev = pci_get_drvdata(pdev);
2502 struct igbvf_adapter *adapter = netdev_priv(netdev);
2503
2504 netif_device_detach(netdev);
2505
c06c430d
DN
2506 if (state == pci_channel_io_perm_failure)
2507 return PCI_ERS_RESULT_DISCONNECT;
2508
d4e0fe01
AD
2509 if (netif_running(netdev))
2510 igbvf_down(adapter);
2511 pci_disable_device(pdev);
2512
2513 /* Request a slot slot reset. */
2514 return PCI_ERS_RESULT_NEED_RESET;
2515}
2516
2517/**
2518 * igbvf_io_slot_reset - called after the pci bus has been reset.
2519 * @pdev: Pointer to PCI device
2520 *
2521 * Restart the card from scratch, as if from a cold-boot. Implementation
2522 * resembles the first-half of the igbvf_resume routine.
2523 */
2524static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2525{
2526 struct net_device *netdev = pci_get_drvdata(pdev);
2527 struct igbvf_adapter *adapter = netdev_priv(netdev);
2528
2529 if (pci_enable_device_mem(pdev)) {
2530 dev_err(&pdev->dev,
2531 "Cannot re-enable PCI device after reset.\n");
2532 return PCI_ERS_RESULT_DISCONNECT;
2533 }
2534 pci_set_master(pdev);
2535
2536 igbvf_reset(adapter);
2537
2538 return PCI_ERS_RESULT_RECOVERED;
2539}
2540
2541/**
2542 * igbvf_io_resume - called when traffic can start flowing again.
2543 * @pdev: Pointer to PCI device
2544 *
2545 * This callback is called when the error recovery driver tells us that
2546 * its OK to resume normal operation. Implementation resembles the
2547 * second-half of the igbvf_resume routine.
2548 */
2549static void igbvf_io_resume(struct pci_dev *pdev)
2550{
2551 struct net_device *netdev = pci_get_drvdata(pdev);
2552 struct igbvf_adapter *adapter = netdev_priv(netdev);
2553
2554 if (netif_running(netdev)) {
2555 if (igbvf_up(adapter)) {
2556 dev_err(&pdev->dev,
2557 "can't bring device back up after reset\n");
2558 return;
2559 }
2560 }
2561
2562 netif_device_attach(netdev);
2563}
2564
2565static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2566{
2567 struct e1000_hw *hw = &adapter->hw;
2568 struct net_device *netdev = adapter->netdev;
2569 struct pci_dev *pdev = adapter->pdev;
2570
10090751
WM
2571 if (hw->mac.type == e1000_vfadapt_i350)
2572 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2573 else
2574 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
753cdc33 2575 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
d4e0fe01
AD
2576}
2577
c8f44aff
MM
2578static int igbvf_set_features(struct net_device *netdev,
2579 netdev_features_t features)
fd38f734
MM
2580{
2581 struct igbvf_adapter *adapter = netdev_priv(netdev);
2582
2583 if (features & NETIF_F_RXCSUM)
2584 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2585 else
2586 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2587
2588 return 0;
2589}
2590
d4e0fe01
AD
2591static const struct net_device_ops igbvf_netdev_ops = {
2592 .ndo_open = igbvf_open,
2593 .ndo_stop = igbvf_close,
2594 .ndo_start_xmit = igbvf_xmit_frame,
2595 .ndo_get_stats = igbvf_get_stats,
afc4b13d 2596 .ndo_set_rx_mode = igbvf_set_multi,
d4e0fe01
AD
2597 .ndo_set_mac_address = igbvf_set_mac,
2598 .ndo_change_mtu = igbvf_change_mtu,
2599 .ndo_do_ioctl = igbvf_ioctl,
2600 .ndo_tx_timeout = igbvf_tx_timeout,
d4e0fe01
AD
2601 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2602 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2603#ifdef CONFIG_NET_POLL_CONTROLLER
2604 .ndo_poll_controller = igbvf_netpoll,
2605#endif
fd38f734 2606 .ndo_set_features = igbvf_set_features,
d4e0fe01
AD
2607};
2608
2609/**
2610 * igbvf_probe - Device Initialization Routine
2611 * @pdev: PCI device information struct
2612 * @ent: entry in igbvf_pci_tbl
2613 *
2614 * Returns 0 on success, negative on failure
2615 *
2616 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2617 * The OS initialization, configuring of the adapter private structure,
2618 * and a hardware reset occur.
2619 **/
1dd06ae8 2620static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
d4e0fe01
AD
2621{
2622 struct net_device *netdev;
2623 struct igbvf_adapter *adapter;
2624 struct e1000_hw *hw;
2625 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2626
2627 static int cards_found;
2628 int err, pci_using_dac;
2629
2630 err = pci_enable_device_mem(pdev);
2631 if (err)
2632 return err;
2633
2634 pci_using_dac = 0;
123e9f1a 2635 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01 2636 if (!err) {
123e9f1a 2637 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01
AD
2638 if (!err)
2639 pci_using_dac = 1;
2640 } else {
123e9f1a 2641 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
d4e0fe01 2642 if (err) {
123e9f1a
NN
2643 err = dma_set_coherent_mask(&pdev->dev,
2644 DMA_BIT_MASK(32));
d4e0fe01
AD
2645 if (err) {
2646 dev_err(&pdev->dev, "No usable DMA "
2647 "configuration, aborting\n");
2648 goto err_dma;
2649 }
2650 }
2651 }
2652
2653 err = pci_request_regions(pdev, igbvf_driver_name);
2654 if (err)
2655 goto err_pci_reg;
2656
2657 pci_set_master(pdev);
2658
2659 err = -ENOMEM;
2660 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2661 if (!netdev)
2662 goto err_alloc_etherdev;
2663
2664 SET_NETDEV_DEV(netdev, &pdev->dev);
2665
2666 pci_set_drvdata(pdev, netdev);
2667 adapter = netdev_priv(netdev);
2668 hw = &adapter->hw;
2669 adapter->netdev = netdev;
2670 adapter->pdev = pdev;
2671 adapter->ei = ei;
2672 adapter->pba = ei->pba;
2673 adapter->flags = ei->flags;
2674 adapter->hw.back = adapter;
2675 adapter->hw.mac.type = ei->mac;
b3f4d599 2676 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
d4e0fe01
AD
2677
2678 /* PCI config space info */
2679
2680 hw->vendor_id = pdev->vendor;
2681 hw->device_id = pdev->device;
2682 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2683 hw->subsystem_device_id = pdev->subsystem_device;
ff938e43 2684 hw->revision_id = pdev->revision;
d4e0fe01
AD
2685
2686 err = -EIO;
2687 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2688 pci_resource_len(pdev, 0));
2689
2690 if (!adapter->hw.hw_addr)
2691 goto err_ioremap;
2692
2693 if (ei->get_variants) {
2694 err = ei->get_variants(adapter);
2695 if (err)
2696 goto err_ioremap;
2697 }
2698
2699 /* setup adapter struct */
2700 err = igbvf_sw_init(adapter);
2701 if (err)
2702 goto err_sw_init;
2703
2704 /* construct the net_device struct */
2705 netdev->netdev_ops = &igbvf_netdev_ops;
2706
2707 igbvf_set_ethtool_ops(netdev);
2708 netdev->watchdog_timeo = 5 * HZ;
2709 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2710
2711 adapter->bd_number = cards_found++;
2712
fd38f734 2713 netdev->hw_features = NETIF_F_SG |
d4e0fe01 2714 NETIF_F_IP_CSUM |
fd38f734
MM
2715 NETIF_F_IPV6_CSUM |
2716 NETIF_F_TSO |
2717 NETIF_F_TSO6 |
2718 NETIF_F_RXCSUM;
2719
2720 netdev->features = netdev->hw_features |
d4e0fe01
AD
2721 NETIF_F_HW_VLAN_TX |
2722 NETIF_F_HW_VLAN_RX |
2723 NETIF_F_HW_VLAN_FILTER;
2724
d4e0fe01
AD
2725 if (pci_using_dac)
2726 netdev->features |= NETIF_F_HIGHDMA;
2727
2728 netdev->vlan_features |= NETIF_F_TSO;
2729 netdev->vlan_features |= NETIF_F_TSO6;
2730 netdev->vlan_features |= NETIF_F_IP_CSUM;
2731 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2732 netdev->vlan_features |= NETIF_F_SG;
2733
2734 /*reset the controller to put the device in a known good state */
2735 err = hw->mac.ops.reset_hw(hw);
2736 if (err) {
2737 dev_info(&pdev->dev,
8d56b6d5 2738 "PF still in reset state. Is the PF interface up?\n");
d4e0fe01
AD
2739 } else {
2740 err = hw->mac.ops.read_mac_addr(hw);
8d56b6d5
MW
2741 if (err)
2742 dev_info(&pdev->dev, "Error reading MAC address.\n");
2743 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2744 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
1a0d6ae5 2745 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
8d56b6d5 2746 netdev->addr_len);
d4e0fe01
AD
2747 }
2748
9bd1be45 2749 if (!is_valid_ether_addr(netdev->dev_addr)) {
8d56b6d5
MW
2750 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2751 eth_hw_addr_random(netdev);
2752 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2753 netdev->addr_len);
d4e0fe01
AD
2754 }
2755
2756 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2757 (unsigned long) adapter);
2758
2759 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2760 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2761
2762 /* ring size defaults */
2763 adapter->rx_ring->count = 1024;
2764 adapter->tx_ring->count = 1024;
2765
2766 /* reset the hardware with the new settings */
2767 igbvf_reset(adapter);
2768
2c1a1019
MW
2769 /* set hardware-specific flags */
2770 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2771 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2772
d4e0fe01
AD
2773 strcpy(netdev->name, "eth%d");
2774 err = register_netdev(netdev);
2775 if (err)
2776 goto err_hw_init;
2777
de7fe787
ET
2778 /* tell the stack to leave us alone until igbvf_open() is called */
2779 netif_carrier_off(netdev);
2780 netif_stop_queue(netdev);
2781
d4e0fe01
AD
2782 igbvf_print_device_info(adapter);
2783
2784 igbvf_initialize_last_counter_stats(adapter);
2785
2786 return 0;
2787
2788err_hw_init:
2789 kfree(adapter->tx_ring);
2790 kfree(adapter->rx_ring);
2791err_sw_init:
2792 igbvf_reset_interrupt_capability(adapter);
2793 iounmap(adapter->hw.hw_addr);
2794err_ioremap:
2795 free_netdev(netdev);
2796err_alloc_etherdev:
2797 pci_release_regions(pdev);
2798err_pci_reg:
2799err_dma:
2800 pci_disable_device(pdev);
2801 return err;
2802}
2803
2804/**
2805 * igbvf_remove - Device Removal Routine
2806 * @pdev: PCI device information struct
2807 *
2808 * igbvf_remove is called by the PCI subsystem to alert the driver
2809 * that it should release a PCI device. The could be caused by a
2810 * Hot-Plug event, or because the driver is going to be removed from
2811 * memory.
2812 **/
9f9a12f8 2813static void igbvf_remove(struct pci_dev *pdev)
d4e0fe01
AD
2814{
2815 struct net_device *netdev = pci_get_drvdata(pdev);
2816 struct igbvf_adapter *adapter = netdev_priv(netdev);
2817 struct e1000_hw *hw = &adapter->hw;
2818
2819 /*
760141a5
TH
2820 * The watchdog timer may be rescheduled, so explicitly
2821 * disable it from being rescheduled.
d4e0fe01
AD
2822 */
2823 set_bit(__IGBVF_DOWN, &adapter->state);
2824 del_timer_sync(&adapter->watchdog_timer);
2825
760141a5
TH
2826 cancel_work_sync(&adapter->reset_task);
2827 cancel_work_sync(&adapter->watchdog_task);
d4e0fe01
AD
2828
2829 unregister_netdev(netdev);
2830
2831 igbvf_reset_interrupt_capability(adapter);
2832
2833 /*
2834 * it is important to delete the napi struct prior to freeing the
2835 * rx ring so that you do not end up with null pointer refs
2836 */
2837 netif_napi_del(&adapter->rx_ring->napi);
2838 kfree(adapter->tx_ring);
2839 kfree(adapter->rx_ring);
2840
2841 iounmap(hw->hw_addr);
2842 if (hw->flash_address)
2843 iounmap(hw->flash_address);
2844 pci_release_regions(pdev);
2845
2846 free_netdev(netdev);
2847
2848 pci_disable_device(pdev);
2849}
2850
2851/* PCI Error Recovery (ERS) */
3646f0e5 2852static const struct pci_error_handlers igbvf_err_handler = {
d4e0fe01
AD
2853 .error_detected = igbvf_io_error_detected,
2854 .slot_reset = igbvf_io_slot_reset,
2855 .resume = igbvf_io_resume,
2856};
2857
a3aa1884 2858static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
d4e0fe01 2859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
031d7952 2860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
d4e0fe01
AD
2861 { } /* terminate list */
2862};
2863MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2864
2865/* PCI Device API Driver */
2866static struct pci_driver igbvf_driver = {
2867 .name = igbvf_driver_name,
2868 .id_table = igbvf_pci_tbl,
2869 .probe = igbvf_probe,
9f9a12f8 2870 .remove = igbvf_remove,
d4e0fe01
AD
2871#ifdef CONFIG_PM
2872 /* Power Management Hooks */
2873 .suspend = igbvf_suspend,
2874 .resume = igbvf_resume,
2875#endif
2876 .shutdown = igbvf_shutdown,
2877 .err_handler = &igbvf_err_handler
2878};
2879
2880/**
2881 * igbvf_init_module - Driver Registration Routine
2882 *
2883 * igbvf_init_module is the first routine called when the driver is
2884 * loaded. All it does is register with the PCI subsystem.
2885 **/
2886static int __init igbvf_init_module(void)
2887{
2888 int ret;
a4ba8cbe
JK
2889 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2890 pr_info("%s\n", igbvf_copyright);
d4e0fe01
AD
2891
2892 ret = pci_register_driver(&igbvf_driver);
d4e0fe01
AD
2893
2894 return ret;
2895}
2896module_init(igbvf_init_module);
2897
2898/**
2899 * igbvf_exit_module - Driver Exit Cleanup Routine
2900 *
2901 * igbvf_exit_module is called just before the driver is removed
2902 * from memory.
2903 **/
2904static void __exit igbvf_exit_module(void)
2905{
2906 pci_unregister_driver(&igbvf_driver);
d4e0fe01
AD
2907}
2908module_exit(igbvf_exit_module);
2909
2910
2911MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
10090751 2912MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
d4e0fe01
AD
2913MODULE_LICENSE("GPL");
2914MODULE_VERSION(DRV_VERSION);
2915
2916/* netdev.c */
This page took 0.729898 seconds and 5 git commands to generate.