e1000: fix vlan processing regression
[deliverable/linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
2a06ed92 4 Copyright(c) 2009 - 2012 Intel Corporation.
d4e0fe01
AD
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
a4ba8cbe
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
d4e0fe01
AD
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
5a0e3ad6 40#include <linux/slab.h>
d4e0fe01
AD
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
70c71606 46#include <linux/prefetch.h>
d4e0fe01
AD
47
48#include "igbvf.h"
49
7d94eb84 50#define DRV_VERSION "2.0.1-k"
d4e0fe01
AD
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
10090751 54 "Intel(R) Gigabit Virtual Function Network Driver";
2c20ebba 55static const char igbvf_copyright[] =
2a06ed92 56 "Copyright (c) 2009 - 2012 Intel Corporation.";
d4e0fe01
AD
57
58static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
59static void igbvf_reset(struct igbvf_adapter *);
60static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
61static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
62
63static struct igbvf_info igbvf_vf_info = {
64 .mac = e1000_vfadapt,
0364d6fd 65 .flags = 0,
d4e0fe01
AD
66 .pba = 10,
67 .init_ops = e1000_init_function_pointers_vf,
68};
69
031d7952
WM
70static struct igbvf_info igbvf_i350_vf_info = {
71 .mac = e1000_vfadapt_i350,
72 .flags = 0,
73 .pba = 10,
74 .init_ops = e1000_init_function_pointers_vf,
75};
76
d4e0fe01
AD
77static const struct igbvf_info *igbvf_info_tbl[] = {
78 [board_vf] = &igbvf_vf_info,
031d7952 79 [board_i350_vf] = &igbvf_i350_vf_info,
d4e0fe01
AD
80};
81
82/**
83 * igbvf_desc_unused - calculate if we have unused descriptors
84 **/
85static int igbvf_desc_unused(struct igbvf_ring *ring)
86{
87 if (ring->next_to_clean > ring->next_to_use)
88 return ring->next_to_clean - ring->next_to_use - 1;
89
90 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
91}
92
93/**
94 * igbvf_receive_skb - helper function to handle Rx indications
95 * @adapter: board private structure
96 * @status: descriptor status field as written by hardware
97 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98 * @skb: pointer to sk_buff to be indicated to stack
99 **/
100static void igbvf_receive_skb(struct igbvf_adapter *adapter,
101 struct net_device *netdev,
102 struct sk_buff *skb,
103 u32 status, u16 vlan)
104{
a0f1d603
JP
105 if (status & E1000_RXD_STAT_VP) {
106 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4d2d55ac
GR
107 if (test_bit(vid, adapter->active_vlans))
108 __vlan_hwaccel_put_tag(skb, vid);
a0f1d603
JP
109 }
110 netif_receive_skb(skb);
d4e0fe01
AD
111}
112
113static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
114 u32 status_err, struct sk_buff *skb)
115{
bc8acf2c 116 skb_checksum_none_assert(skb);
d4e0fe01
AD
117
118 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
119 if ((status_err & E1000_RXD_STAT_IXSM) ||
120 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 121 return;
0364d6fd 122
d4e0fe01
AD
123 /* TCP/UDP checksum error bit is set */
124 if (status_err &
125 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
126 /* let the stack verify checksum errors */
127 adapter->hw_csum_err++;
128 return;
129 }
0364d6fd 130
d4e0fe01
AD
131 /* It must be a TCP or UDP packet with a valid checksum */
132 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
133 skb->ip_summed = CHECKSUM_UNNECESSARY;
134
135 adapter->hw_csum_good++;
136}
137
138/**
139 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140 * @rx_ring: address of ring structure to repopulate
141 * @cleaned_count: number of buffers to repopulate
142 **/
143static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
144 int cleaned_count)
145{
146 struct igbvf_adapter *adapter = rx_ring->adapter;
147 struct net_device *netdev = adapter->netdev;
148 struct pci_dev *pdev = adapter->pdev;
149 union e1000_adv_rx_desc *rx_desc;
150 struct igbvf_buffer *buffer_info;
151 struct sk_buff *skb;
152 unsigned int i;
153 int bufsz;
154
155 i = rx_ring->next_to_use;
156 buffer_info = &rx_ring->buffer_info[i];
157
158 if (adapter->rx_ps_hdr_size)
159 bufsz = adapter->rx_ps_hdr_size;
160 else
161 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
162
163 while (cleaned_count--) {
164 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
165
166 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
167 if (!buffer_info->page) {
168 buffer_info->page = alloc_page(GFP_ATOMIC);
169 if (!buffer_info->page) {
170 adapter->alloc_rx_buff_failed++;
171 goto no_buffers;
172 }
173 buffer_info->page_offset = 0;
174 } else {
175 buffer_info->page_offset ^= PAGE_SIZE / 2;
176 }
177 buffer_info->page_dma =
123e9f1a 178 dma_map_page(&pdev->dev, buffer_info->page,
d4e0fe01
AD
179 buffer_info->page_offset,
180 PAGE_SIZE / 2,
123e9f1a 181 DMA_FROM_DEVICE);
d4e0fe01
AD
182 }
183
184 if (!buffer_info->skb) {
89d71a66 185 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
186 if (!skb) {
187 adapter->alloc_rx_buff_failed++;
188 goto no_buffers;
189 }
190
d4e0fe01 191 buffer_info->skb = skb;
123e9f1a 192 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
d4e0fe01 193 bufsz,
123e9f1a 194 DMA_FROM_DEVICE);
d4e0fe01
AD
195 }
196 /* Refresh the desc even if buffer_addrs didn't change because
197 * each write-back erases this info. */
198 if (adapter->rx_ps_hdr_size) {
199 rx_desc->read.pkt_addr =
200 cpu_to_le64(buffer_info->page_dma);
201 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
202 } else {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->dma);
205 rx_desc->read.hdr_addr = 0;
206 }
207
208 i++;
209 if (i == rx_ring->count)
210 i = 0;
211 buffer_info = &rx_ring->buffer_info[i];
212 }
213
214no_buffers:
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i == 0)
218 i = (rx_ring->count - 1);
219 else
220 i--;
221
222 /* Force memory writes to complete before letting h/w
223 * know there are new descriptors to fetch. (Only
224 * applicable for weak-ordered memory model archs,
225 * such as IA-64). */
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 }
229}
230
231/**
232 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233 * @adapter: board private structure
234 *
235 * the return value indicates whether actual cleaning was done, there
236 * is no guarantee that everything was cleaned
237 **/
238static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
239 int *work_done, int work_to_do)
240{
241 struct igbvf_ring *rx_ring = adapter->rx_ring;
242 struct net_device *netdev = adapter->netdev;
243 struct pci_dev *pdev = adapter->pdev;
244 union e1000_adv_rx_desc *rx_desc, *next_rxd;
245 struct igbvf_buffer *buffer_info, *next_buffer;
246 struct sk_buff *skb;
247 bool cleaned = false;
248 int cleaned_count = 0;
249 unsigned int total_bytes = 0, total_packets = 0;
250 unsigned int i;
251 u32 length, hlen, staterr;
252
253 i = rx_ring->next_to_clean;
254 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
255 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
256
257 while (staterr & E1000_RXD_STAT_DD) {
258 if (*work_done >= work_to_do)
259 break;
260 (*work_done)++;
2d0bb1c1 261 rmb(); /* read descriptor and rx_buffer_info after status DD */
d4e0fe01
AD
262
263 buffer_info = &rx_ring->buffer_info[i];
264
265 /* HW will not DMA in data larger than the given buffer, even
266 * if it parses the (NFS, of course) header to be larger. In
267 * that case, it fills the header buffer and spills the rest
268 * into the page.
269 */
270 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
271 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
272 if (hlen > adapter->rx_ps_hdr_size)
273 hlen = adapter->rx_ps_hdr_size;
274
275 length = le16_to_cpu(rx_desc->wb.upper.length);
276 cleaned = true;
277 cleaned_count++;
278
279 skb = buffer_info->skb;
280 prefetch(skb->data - NET_IP_ALIGN);
281 buffer_info->skb = NULL;
282 if (!adapter->rx_ps_hdr_size) {
123e9f1a 283 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 284 adapter->rx_buffer_len,
123e9f1a 285 DMA_FROM_DEVICE);
d4e0fe01
AD
286 buffer_info->dma = 0;
287 skb_put(skb, length);
288 goto send_up;
289 }
290
291 if (!skb_shinfo(skb)->nr_frags) {
123e9f1a 292 dma_unmap_single(&pdev->dev, buffer_info->dma,
92d947b7 293 adapter->rx_ps_hdr_size,
123e9f1a 294 DMA_FROM_DEVICE);
d4e0fe01
AD
295 skb_put(skb, hlen);
296 }
297
298 if (length) {
123e9f1a 299 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
d4e0fe01 300 PAGE_SIZE / 2,
123e9f1a 301 DMA_FROM_DEVICE);
d4e0fe01
AD
302 buffer_info->page_dma = 0;
303
ec857fd4 304 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
d4e0fe01
AD
305 buffer_info->page,
306 buffer_info->page_offset,
307 length);
308
309 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
310 (page_count(buffer_info->page) != 1))
311 buffer_info->page = NULL;
312 else
313 get_page(buffer_info->page);
314
315 skb->len += length;
316 skb->data_len += length;
7b8b5961 317 skb->truesize += PAGE_SIZE / 2;
d4e0fe01
AD
318 }
319send_up:
320 i++;
321 if (i == rx_ring->count)
322 i = 0;
323 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
324 prefetch(next_rxd);
325 next_buffer = &rx_ring->buffer_info[i];
326
327 if (!(staterr & E1000_RXD_STAT_EOP)) {
328 buffer_info->skb = next_buffer->skb;
329 buffer_info->dma = next_buffer->dma;
330 next_buffer->skb = skb;
331 next_buffer->dma = 0;
332 goto next_desc;
333 }
334
335 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
336 dev_kfree_skb_irq(skb);
337 goto next_desc;
338 }
339
340 total_bytes += skb->len;
341 total_packets++;
342
343 igbvf_rx_checksum_adv(adapter, staterr, skb);
344
345 skb->protocol = eth_type_trans(skb, netdev);
346
347 igbvf_receive_skb(adapter, netdev, skb, staterr,
348 rx_desc->wb.upper.vlan);
349
d4e0fe01
AD
350next_desc:
351 rx_desc->wb.upper.status_error = 0;
352
353 /* return some buffers to hardware, one at a time is too slow */
354 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
355 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
356 cleaned_count = 0;
357 }
358
359 /* use prefetched values */
360 rx_desc = next_rxd;
361 buffer_info = next_buffer;
362
363 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
364 }
365
366 rx_ring->next_to_clean = i;
367 cleaned_count = igbvf_desc_unused(rx_ring);
368
369 if (cleaned_count)
370 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
371
372 adapter->total_rx_packets += total_packets;
373 adapter->total_rx_bytes += total_bytes;
374 adapter->net_stats.rx_bytes += total_bytes;
375 adapter->net_stats.rx_packets += total_packets;
376 return cleaned;
377}
378
379static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
380 struct igbvf_buffer *buffer_info)
381{
a7d5ca40
AD
382 if (buffer_info->dma) {
383 if (buffer_info->mapped_as_page)
123e9f1a 384 dma_unmap_page(&adapter->pdev->dev,
a7d5ca40
AD
385 buffer_info->dma,
386 buffer_info->length,
123e9f1a 387 DMA_TO_DEVICE);
a7d5ca40 388 else
123e9f1a 389 dma_unmap_single(&adapter->pdev->dev,
a7d5ca40
AD
390 buffer_info->dma,
391 buffer_info->length,
123e9f1a 392 DMA_TO_DEVICE);
a7d5ca40
AD
393 buffer_info->dma = 0;
394 }
d4e0fe01 395 if (buffer_info->skb) {
d4e0fe01
AD
396 dev_kfree_skb_any(buffer_info->skb);
397 buffer_info->skb = NULL;
398 }
399 buffer_info->time_stamp = 0;
400}
401
d4e0fe01
AD
402/**
403 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404 * @adapter: board private structure
405 *
406 * Return 0 on success, negative on failure
407 **/
408int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
409 struct igbvf_ring *tx_ring)
410{
411 struct pci_dev *pdev = adapter->pdev;
412 int size;
413
414 size = sizeof(struct igbvf_buffer) * tx_ring->count;
89bf67f1 415 tx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
416 if (!tx_ring->buffer_info)
417 goto err;
d4e0fe01
AD
418
419 /* round up to nearest 4K */
420 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
421 tx_ring->size = ALIGN(tx_ring->size, 4096);
422
123e9f1a
NN
423 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
424 &tx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
425
426 if (!tx_ring->desc)
427 goto err;
428
429 tx_ring->adapter = adapter;
430 tx_ring->next_to_use = 0;
431 tx_ring->next_to_clean = 0;
432
433 return 0;
434err:
435 vfree(tx_ring->buffer_info);
436 dev_err(&adapter->pdev->dev,
437 "Unable to allocate memory for the transmit descriptor ring\n");
438 return -ENOMEM;
439}
440
441/**
442 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443 * @adapter: board private structure
444 *
445 * Returns 0 on success, negative on failure
446 **/
447int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
448 struct igbvf_ring *rx_ring)
449{
450 struct pci_dev *pdev = adapter->pdev;
451 int size, desc_len;
452
453 size = sizeof(struct igbvf_buffer) * rx_ring->count;
89bf67f1 454 rx_ring->buffer_info = vzalloc(size);
d4e0fe01
AD
455 if (!rx_ring->buffer_info)
456 goto err;
d4e0fe01
AD
457
458 desc_len = sizeof(union e1000_adv_rx_desc);
459
460 /* Round up to nearest 4K */
461 rx_ring->size = rx_ring->count * desc_len;
462 rx_ring->size = ALIGN(rx_ring->size, 4096);
463
123e9f1a
NN
464 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
465 &rx_ring->dma, GFP_KERNEL);
d4e0fe01
AD
466
467 if (!rx_ring->desc)
468 goto err;
469
470 rx_ring->next_to_clean = 0;
471 rx_ring->next_to_use = 0;
472
473 rx_ring->adapter = adapter;
474
475 return 0;
476
477err:
478 vfree(rx_ring->buffer_info);
479 rx_ring->buffer_info = NULL;
480 dev_err(&adapter->pdev->dev,
481 "Unable to allocate memory for the receive descriptor ring\n");
482 return -ENOMEM;
483}
484
485/**
486 * igbvf_clean_tx_ring - Free Tx Buffers
487 * @tx_ring: ring to be cleaned
488 **/
489static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
490{
491 struct igbvf_adapter *adapter = tx_ring->adapter;
492 struct igbvf_buffer *buffer_info;
493 unsigned long size;
494 unsigned int i;
495
496 if (!tx_ring->buffer_info)
497 return;
498
499 /* Free all the Tx ring sk_buffs */
500 for (i = 0; i < tx_ring->count; i++) {
501 buffer_info = &tx_ring->buffer_info[i];
502 igbvf_put_txbuf(adapter, buffer_info);
503 }
504
505 size = sizeof(struct igbvf_buffer) * tx_ring->count;
506 memset(tx_ring->buffer_info, 0, size);
507
508 /* Zero out the descriptor ring */
509 memset(tx_ring->desc, 0, tx_ring->size);
510
511 tx_ring->next_to_use = 0;
512 tx_ring->next_to_clean = 0;
513
514 writel(0, adapter->hw.hw_addr + tx_ring->head);
515 writel(0, adapter->hw.hw_addr + tx_ring->tail);
516}
517
518/**
519 * igbvf_free_tx_resources - Free Tx Resources per Queue
520 * @tx_ring: ring to free resources from
521 *
522 * Free all transmit software resources
523 **/
524void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
525{
526 struct pci_dev *pdev = tx_ring->adapter->pdev;
527
528 igbvf_clean_tx_ring(tx_ring);
529
530 vfree(tx_ring->buffer_info);
531 tx_ring->buffer_info = NULL;
532
123e9f1a
NN
533 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
534 tx_ring->dma);
d4e0fe01
AD
535
536 tx_ring->desc = NULL;
537}
538
539/**
540 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541 * @adapter: board private structure
542 **/
543static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
544{
545 struct igbvf_adapter *adapter = rx_ring->adapter;
546 struct igbvf_buffer *buffer_info;
547 struct pci_dev *pdev = adapter->pdev;
548 unsigned long size;
549 unsigned int i;
550
551 if (!rx_ring->buffer_info)
552 return;
553
554 /* Free all the Rx ring sk_buffs */
555 for (i = 0; i < rx_ring->count; i++) {
556 buffer_info = &rx_ring->buffer_info[i];
557 if (buffer_info->dma) {
558 if (adapter->rx_ps_hdr_size){
123e9f1a 559 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 560 adapter->rx_ps_hdr_size,
123e9f1a 561 DMA_FROM_DEVICE);
d4e0fe01 562 } else {
123e9f1a 563 dma_unmap_single(&pdev->dev, buffer_info->dma,
d4e0fe01 564 adapter->rx_buffer_len,
123e9f1a 565 DMA_FROM_DEVICE);
d4e0fe01
AD
566 }
567 buffer_info->dma = 0;
568 }
569
570 if (buffer_info->skb) {
571 dev_kfree_skb(buffer_info->skb);
572 buffer_info->skb = NULL;
573 }
574
575 if (buffer_info->page) {
576 if (buffer_info->page_dma)
123e9f1a
NN
577 dma_unmap_page(&pdev->dev,
578 buffer_info->page_dma,
d4e0fe01 579 PAGE_SIZE / 2,
123e9f1a 580 DMA_FROM_DEVICE);
d4e0fe01
AD
581 put_page(buffer_info->page);
582 buffer_info->page = NULL;
583 buffer_info->page_dma = 0;
584 buffer_info->page_offset = 0;
585 }
586 }
587
588 size = sizeof(struct igbvf_buffer) * rx_ring->count;
589 memset(rx_ring->buffer_info, 0, size);
590
591 /* Zero out the descriptor ring */
592 memset(rx_ring->desc, 0, rx_ring->size);
593
594 rx_ring->next_to_clean = 0;
595 rx_ring->next_to_use = 0;
596
597 writel(0, adapter->hw.hw_addr + rx_ring->head);
598 writel(0, adapter->hw.hw_addr + rx_ring->tail);
599}
600
601/**
602 * igbvf_free_rx_resources - Free Rx Resources
603 * @rx_ring: ring to clean the resources from
604 *
605 * Free all receive software resources
606 **/
607
608void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
609{
610 struct pci_dev *pdev = rx_ring->adapter->pdev;
611
612 igbvf_clean_rx_ring(rx_ring);
613
614 vfree(rx_ring->buffer_info);
615 rx_ring->buffer_info = NULL;
616
617 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
618 rx_ring->dma);
619 rx_ring->desc = NULL;
620}
621
622/**
623 * igbvf_update_itr - update the dynamic ITR value based on statistics
624 * @adapter: pointer to adapter
625 * @itr_setting: current adapter->itr
626 * @packets: the number of packets during this measurement interval
627 * @bytes: the number of bytes during this measurement interval
628 *
629 * Stores a new ITR value based on packets and byte
630 * counts during the last interrupt. The advantage of per interrupt
631 * computation is faster updates and more accurate ITR for the current
632 * traffic pattern. Constants in this function were computed
633 * based on theoretical maximum wire speed and thresholds were set based
634 * on testing data as well as attempting to minimize response time
ab50a2a4 635 * while increasing bulk throughput.
d4e0fe01 636 **/
ab50a2a4
MW
637static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
638 enum latency_range itr_setting,
639 int packets, int bytes)
d4e0fe01 640{
ab50a2a4 641 enum latency_range retval = itr_setting;
d4e0fe01
AD
642
643 if (packets == 0)
644 goto update_itr_done;
645
646 switch (itr_setting) {
647 case lowest_latency:
648 /* handle TSO and jumbo frames */
649 if (bytes/packets > 8000)
650 retval = bulk_latency;
651 else if ((packets < 5) && (bytes > 512))
652 retval = low_latency;
653 break;
654 case low_latency: /* 50 usec aka 20000 ints/s */
655 if (bytes > 10000) {
656 /* this if handles the TSO accounting */
657 if (bytes/packets > 8000)
658 retval = bulk_latency;
659 else if ((packets < 10) || ((bytes/packets) > 1200))
660 retval = bulk_latency;
661 else if ((packets > 35))
662 retval = lowest_latency;
663 } else if (bytes/packets > 2000) {
664 retval = bulk_latency;
665 } else if (packets <= 2 && bytes < 512) {
666 retval = lowest_latency;
667 }
668 break;
669 case bulk_latency: /* 250 usec aka 4000 ints/s */
670 if (bytes > 25000) {
671 if (packets > 35)
672 retval = low_latency;
673 } else if (bytes < 6000) {
674 retval = low_latency;
675 }
676 break;
ab50a2a4
MW
677 default:
678 break;
d4e0fe01
AD
679 }
680
681update_itr_done:
682 return retval;
683}
684
ab50a2a4 685static int igbvf_range_to_itr(enum latency_range current_range)
d4e0fe01 686{
ab50a2a4 687 int new_itr;
d4e0fe01 688
ab50a2a4 689 switch (current_range) {
d4e0fe01
AD
690 /* counts and packets in update_itr are dependent on these numbers */
691 case lowest_latency:
ab50a2a4 692 new_itr = IGBVF_70K_ITR;
d4e0fe01
AD
693 break;
694 case low_latency:
ab50a2a4 695 new_itr = IGBVF_20K_ITR;
d4e0fe01
AD
696 break;
697 case bulk_latency:
ab50a2a4 698 new_itr = IGBVF_4K_ITR;
d4e0fe01
AD
699 break;
700 default:
ab50a2a4 701 new_itr = IGBVF_START_ITR;
d4e0fe01
AD
702 break;
703 }
ab50a2a4
MW
704 return new_itr;
705}
706
707static void igbvf_set_itr(struct igbvf_adapter *adapter)
708{
709 u32 new_itr;
710
711 adapter->tx_ring->itr_range =
712 igbvf_update_itr(adapter,
713 adapter->tx_ring->itr_val,
714 adapter->total_tx_packets,
715 adapter->total_tx_bytes);
716
717 /* conservative mode (itr 3) eliminates the lowest_latency setting */
718 if (adapter->requested_itr == 3 &&
719 adapter->tx_ring->itr_range == lowest_latency)
720 adapter->tx_ring->itr_range = low_latency;
d4e0fe01 721
ab50a2a4
MW
722 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
723
724
725 if (new_itr != adapter->tx_ring->itr_val) {
726 u32 current_itr = adapter->tx_ring->itr_val;
d4e0fe01
AD
727 /*
728 * this attempts to bias the interrupt rate towards Bulk
729 * by adding intermediate steps when interrupt rate is
730 * increasing
731 */
ab50a2a4
MW
732 new_itr = new_itr > current_itr ?
733 min(current_itr + (new_itr >> 2), new_itr) :
734 new_itr;
735 adapter->tx_ring->itr_val = new_itr;
736
737 adapter->tx_ring->set_itr = 1;
738 }
739
740 adapter->rx_ring->itr_range =
741 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
742 adapter->total_rx_packets,
743 adapter->total_rx_bytes);
744 if (adapter->requested_itr == 3 &&
745 adapter->rx_ring->itr_range == lowest_latency)
746 adapter->rx_ring->itr_range = low_latency;
747
748 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
749
750 if (new_itr != adapter->rx_ring->itr_val) {
751 u32 current_itr = adapter->rx_ring->itr_val;
752 new_itr = new_itr > current_itr ?
753 min(current_itr + (new_itr >> 2), new_itr) :
754 new_itr;
755 adapter->rx_ring->itr_val = new_itr;
756
757 adapter->rx_ring->set_itr = 1;
d4e0fe01
AD
758 }
759}
760
761/**
762 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
763 * @adapter: board private structure
764 * returns true if ring is completely cleaned
765 **/
766static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
767{
768 struct igbvf_adapter *adapter = tx_ring->adapter;
d4e0fe01
AD
769 struct net_device *netdev = adapter->netdev;
770 struct igbvf_buffer *buffer_info;
771 struct sk_buff *skb;
772 union e1000_adv_tx_desc *tx_desc, *eop_desc;
773 unsigned int total_bytes = 0, total_packets = 0;
774 unsigned int i, eop, count = 0;
775 bool cleaned = false;
776
777 i = tx_ring->next_to_clean;
778 eop = tx_ring->buffer_info[i].next_to_watch;
779 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
780
781 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
782 (count < tx_ring->count)) {
2d0bb1c1 783 rmb(); /* read buffer_info after eop_desc status */
d4e0fe01
AD
784 for (cleaned = false; !cleaned; count++) {
785 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
786 buffer_info = &tx_ring->buffer_info[i];
787 cleaned = (i == eop);
788 skb = buffer_info->skb;
789
790 if (skb) {
791 unsigned int segs, bytecount;
792
793 /* gso_segs is currently only valid for tcp */
794 segs = skb_shinfo(skb)->gso_segs ?: 1;
795 /* multiply data chunks by size of headers */
796 bytecount = ((segs - 1) * skb_headlen(skb)) +
797 skb->len;
798 total_packets += segs;
799 total_bytes += bytecount;
800 }
801
802 igbvf_put_txbuf(adapter, buffer_info);
803 tx_desc->wb.status = 0;
804
805 i++;
806 if (i == tx_ring->count)
807 i = 0;
808 }
809 eop = tx_ring->buffer_info[i].next_to_watch;
810 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
811 }
812
813 tx_ring->next_to_clean = i;
814
815 if (unlikely(count &&
816 netif_carrier_ok(netdev) &&
817 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
818 /* Make sure that anybody stopping the queue after this
819 * sees the new next_to_clean.
820 */
821 smp_mb();
822 if (netif_queue_stopped(netdev) &&
823 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
824 netif_wake_queue(netdev);
825 ++adapter->restart_queue;
826 }
827 }
828
d4e0fe01
AD
829 adapter->net_stats.tx_bytes += total_bytes;
830 adapter->net_stats.tx_packets += total_packets;
807540ba 831 return count < tx_ring->count;
d4e0fe01
AD
832}
833
834static irqreturn_t igbvf_msix_other(int irq, void *data)
835{
836 struct net_device *netdev = data;
837 struct igbvf_adapter *adapter = netdev_priv(netdev);
838 struct e1000_hw *hw = &adapter->hw;
839
840 adapter->int_counter1++;
841
842 netif_carrier_off(netdev);
843 hw->mac.get_link_status = 1;
844 if (!test_bit(__IGBVF_DOWN, &adapter->state))
845 mod_timer(&adapter->watchdog_timer, jiffies + 1);
846
847 ew32(EIMS, adapter->eims_other);
848
849 return IRQ_HANDLED;
850}
851
852static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
853{
854 struct net_device *netdev = data;
855 struct igbvf_adapter *adapter = netdev_priv(netdev);
856 struct e1000_hw *hw = &adapter->hw;
857 struct igbvf_ring *tx_ring = adapter->tx_ring;
858
ab50a2a4
MW
859 if (tx_ring->set_itr) {
860 writel(tx_ring->itr_val,
861 adapter->hw.hw_addr + tx_ring->itr_register);
862 adapter->tx_ring->set_itr = 0;
863 }
d4e0fe01
AD
864
865 adapter->total_tx_bytes = 0;
866 adapter->total_tx_packets = 0;
867
868 /* auto mask will automatically reenable the interrupt when we write
869 * EICS */
870 if (!igbvf_clean_tx_irq(tx_ring))
871 /* Ring was not completely cleaned, so fire another interrupt */
872 ew32(EICS, tx_ring->eims_value);
873 else
874 ew32(EIMS, tx_ring->eims_value);
875
876 return IRQ_HANDLED;
877}
878
879static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
880{
881 struct net_device *netdev = data;
882 struct igbvf_adapter *adapter = netdev_priv(netdev);
883
884 adapter->int_counter0++;
885
886 /* Write the ITR value calculated at the end of the
887 * previous interrupt.
888 */
889 if (adapter->rx_ring->set_itr) {
890 writel(adapter->rx_ring->itr_val,
891 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
892 adapter->rx_ring->set_itr = 0;
893 }
894
895 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
896 adapter->total_rx_bytes = 0;
897 adapter->total_rx_packets = 0;
898 __napi_schedule(&adapter->rx_ring->napi);
899 }
900
901 return IRQ_HANDLED;
902}
903
904#define IGBVF_NO_QUEUE -1
905
906static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
907 int tx_queue, int msix_vector)
908{
909 struct e1000_hw *hw = &adapter->hw;
910 u32 ivar, index;
911
912 /* 82576 uses a table-based method for assigning vectors.
913 Each queue has a single entry in the table to which we write
914 a vector number along with a "valid" bit. Sadly, the layout
915 of the table is somewhat counterintuitive. */
916 if (rx_queue > IGBVF_NO_QUEUE) {
917 index = (rx_queue >> 1);
918 ivar = array_er32(IVAR0, index);
919 if (rx_queue & 0x1) {
920 /* vector goes into third byte of register */
921 ivar = ivar & 0xFF00FFFF;
922 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
923 } else {
924 /* vector goes into low byte of register */
925 ivar = ivar & 0xFFFFFF00;
926 ivar |= msix_vector | E1000_IVAR_VALID;
927 }
928 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
929 array_ew32(IVAR0, index, ivar);
930 }
931 if (tx_queue > IGBVF_NO_QUEUE) {
932 index = (tx_queue >> 1);
933 ivar = array_er32(IVAR0, index);
934 if (tx_queue & 0x1) {
935 /* vector goes into high byte of register */
936 ivar = ivar & 0x00FFFFFF;
937 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
938 } else {
939 /* vector goes into second byte of register */
940 ivar = ivar & 0xFFFF00FF;
941 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
942 }
943 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
944 array_ew32(IVAR0, index, ivar);
945 }
946}
947
948/**
949 * igbvf_configure_msix - Configure MSI-X hardware
950 *
951 * igbvf_configure_msix sets up the hardware to properly
952 * generate MSI-X interrupts.
953 **/
954static void igbvf_configure_msix(struct igbvf_adapter *adapter)
955{
956 u32 tmp;
957 struct e1000_hw *hw = &adapter->hw;
958 struct igbvf_ring *tx_ring = adapter->tx_ring;
959 struct igbvf_ring *rx_ring = adapter->rx_ring;
960 int vector = 0;
961
962 adapter->eims_enable_mask = 0;
963
964 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
965 adapter->eims_enable_mask |= tx_ring->eims_value;
ab50a2a4 966 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
d4e0fe01
AD
967 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
968 adapter->eims_enable_mask |= rx_ring->eims_value;
ab50a2a4 969 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
d4e0fe01
AD
970
971 /* set vector for other causes, i.e. link changes */
972
973 tmp = (vector++ | E1000_IVAR_VALID);
974
975 ew32(IVAR_MISC, tmp);
976
977 adapter->eims_enable_mask = (1 << (vector)) - 1;
978 adapter->eims_other = 1 << (vector - 1);
979 e1e_flush();
980}
981
2d165771 982static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
983{
984 if (adapter->msix_entries) {
985 pci_disable_msix(adapter->pdev);
986 kfree(adapter->msix_entries);
987 adapter->msix_entries = NULL;
988 }
989}
990
991/**
992 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
993 *
994 * Attempt to configure interrupts using the best available
995 * capabilities of the hardware and kernel.
996 **/
2d165771 997static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
998{
999 int err = -ENOMEM;
1000 int i;
1001
1002 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1003 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1004 GFP_KERNEL);
1005 if (adapter->msix_entries) {
1006 for (i = 0; i < 3; i++)
1007 adapter->msix_entries[i].entry = i;
1008
1009 err = pci_enable_msix(adapter->pdev,
1010 adapter->msix_entries, 3);
1011 }
1012
1013 if (err) {
1014 /* MSI-X failed */
1015 dev_err(&adapter->pdev->dev,
1016 "Failed to initialize MSI-X interrupts.\n");
1017 igbvf_reset_interrupt_capability(adapter);
1018 }
1019}
1020
1021/**
1022 * igbvf_request_msix - Initialize MSI-X interrupts
1023 *
1024 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1025 * kernel.
1026 **/
1027static int igbvf_request_msix(struct igbvf_adapter *adapter)
1028{
1029 struct net_device *netdev = adapter->netdev;
1030 int err = 0, vector = 0;
1031
1032 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1033 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1034 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1035 } else {
1036 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1037 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1038 }
1039
1040 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1041 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
d4e0fe01
AD
1042 netdev);
1043 if (err)
1044 goto out;
1045
1046 adapter->tx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1047 adapter->tx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1048 vector++;
1049
1050 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1051 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
d4e0fe01
AD
1052 netdev);
1053 if (err)
1054 goto out;
1055
1056 adapter->rx_ring->itr_register = E1000_EITR(vector);
ab50a2a4 1057 adapter->rx_ring->itr_val = adapter->current_itr;
d4e0fe01
AD
1058 vector++;
1059
1060 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1061 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1062 if (err)
1063 goto out;
1064
1065 igbvf_configure_msix(adapter);
1066 return 0;
1067out:
1068 return err;
1069}
1070
1071/**
1072 * igbvf_alloc_queues - Allocate memory for all rings
1073 * @adapter: board private structure to initialize
1074 **/
1075static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1076{
1077 struct net_device *netdev = adapter->netdev;
1078
1079 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1080 if (!adapter->tx_ring)
1081 return -ENOMEM;
1082
1083 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1084 if (!adapter->rx_ring) {
1085 kfree(adapter->tx_ring);
1086 return -ENOMEM;
1087 }
1088
1089 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1090
1091 return 0;
1092}
1093
1094/**
1095 * igbvf_request_irq - initialize interrupts
1096 *
1097 * Attempts to configure interrupts using the best available
1098 * capabilities of the hardware and kernel.
1099 **/
1100static int igbvf_request_irq(struct igbvf_adapter *adapter)
1101{
1102 int err = -1;
1103
1104 /* igbvf supports msi-x only */
1105 if (adapter->msix_entries)
1106 err = igbvf_request_msix(adapter);
1107
1108 if (!err)
1109 return err;
1110
1111 dev_err(&adapter->pdev->dev,
1112 "Unable to allocate interrupt, Error: %d\n", err);
1113
1114 return err;
1115}
1116
1117static void igbvf_free_irq(struct igbvf_adapter *adapter)
1118{
1119 struct net_device *netdev = adapter->netdev;
1120 int vector;
1121
1122 if (adapter->msix_entries) {
1123 for (vector = 0; vector < 3; vector++)
1124 free_irq(adapter->msix_entries[vector].vector, netdev);
1125 }
1126}
1127
1128/**
1129 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1130 **/
1131static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1132{
1133 struct e1000_hw *hw = &adapter->hw;
1134
1135 ew32(EIMC, ~0);
1136
1137 if (adapter->msix_entries)
1138 ew32(EIAC, 0);
1139}
1140
1141/**
1142 * igbvf_irq_enable - Enable default interrupt generation settings
1143 **/
1144static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1145{
1146 struct e1000_hw *hw = &adapter->hw;
1147
1148 ew32(EIAC, adapter->eims_enable_mask);
1149 ew32(EIAM, adapter->eims_enable_mask);
1150 ew32(EIMS, adapter->eims_enable_mask);
1151}
1152
1153/**
1154 * igbvf_poll - NAPI Rx polling callback
1155 * @napi: struct associated with this polling callback
1156 * @budget: amount of packets driver is allowed to process this poll
1157 **/
1158static int igbvf_poll(struct napi_struct *napi, int budget)
1159{
1160 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1161 struct igbvf_adapter *adapter = rx_ring->adapter;
1162 struct e1000_hw *hw = &adapter->hw;
1163 int work_done = 0;
1164
1165 igbvf_clean_rx_irq(adapter, &work_done, budget);
1166
1167 /* If not enough Rx work done, exit the polling mode */
1168 if (work_done < budget) {
1169 napi_complete(napi);
1170
ab50a2a4 1171 if (adapter->requested_itr & 3)
d4e0fe01
AD
1172 igbvf_set_itr(adapter);
1173
1174 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1175 ew32(EIMS, adapter->rx_ring->eims_value);
1176 }
1177
1178 return work_done;
1179}
1180
1181/**
1182 * igbvf_set_rlpml - set receive large packet maximum length
1183 * @adapter: board private structure
1184 *
1185 * Configure the maximum size of packets that will be received
1186 */
1187static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1188{
a0f1d603 1189 int max_frame_size;
d4e0fe01
AD
1190 struct e1000_hw *hw = &adapter->hw;
1191
a0f1d603 1192 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
d4e0fe01
AD
1193 e1000_rlpml_set_vf(hw, max_frame_size);
1194}
1195
8e586137 1196static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
d4e0fe01
AD
1197{
1198 struct igbvf_adapter *adapter = netdev_priv(netdev);
1199 struct e1000_hw *hw = &adapter->hw;
1200
8e586137 1201 if (hw->mac.ops.set_vfta(hw, vid, true)) {
d4e0fe01 1202 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
8e586137
JP
1203 return -EINVAL;
1204 }
1205 set_bit(vid, adapter->active_vlans);
1206 return 0;
d4e0fe01
AD
1207}
1208
8e586137 1209static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
d4e0fe01
AD
1210{
1211 struct igbvf_adapter *adapter = netdev_priv(netdev);
1212 struct e1000_hw *hw = &adapter->hw;
1213
8e586137 1214 if (hw->mac.ops.set_vfta(hw, vid, false)) {
d4e0fe01
AD
1215 dev_err(&adapter->pdev->dev,
1216 "Failed to remove vlan id %d\n", vid);
8e586137
JP
1217 return -EINVAL;
1218 }
1219 clear_bit(vid, adapter->active_vlans);
1220 return 0;
d4e0fe01
AD
1221}
1222
1223static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1224{
1225 u16 vid;
1226
a0f1d603 1227 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
d4e0fe01 1228 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
d4e0fe01
AD
1229}
1230
1231/**
1232 * igbvf_configure_tx - Configure Transmit Unit after Reset
1233 * @adapter: board private structure
1234 *
1235 * Configure the Tx unit of the MAC after a reset.
1236 **/
1237static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1238{
1239 struct e1000_hw *hw = &adapter->hw;
1240 struct igbvf_ring *tx_ring = adapter->tx_ring;
1241 u64 tdba;
1242 u32 txdctl, dca_txctrl;
1243
1244 /* disable transmits */
1245 txdctl = er32(TXDCTL(0));
1246 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
945a5151 1247 e1e_flush();
d4e0fe01
AD
1248 msleep(10);
1249
1250 /* Setup the HW Tx Head and Tail descriptor pointers */
1251 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1252 tdba = tx_ring->dma;
8e20ce94 1253 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1254 ew32(TDBAH(0), (tdba >> 32));
1255 ew32(TDH(0), 0);
1256 ew32(TDT(0), 0);
1257 tx_ring->head = E1000_TDH(0);
1258 tx_ring->tail = E1000_TDT(0);
1259
1260 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1261 * MUST be delivered in order or it will completely screw up
1262 * our bookeeping.
1263 */
1264 dca_txctrl = er32(DCA_TXCTRL(0));
1265 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1266 ew32(DCA_TXCTRL(0), dca_txctrl);
1267
1268 /* enable transmits */
1269 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1270 ew32(TXDCTL(0), txdctl);
1271
1272 /* Setup Transmit Descriptor Settings for eop descriptor */
1273 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1274
1275 /* enable Report Status bit */
1276 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
d4e0fe01
AD
1277}
1278
1279/**
1280 * igbvf_setup_srrctl - configure the receive control registers
1281 * @adapter: Board private structure
1282 **/
1283static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1284{
1285 struct e1000_hw *hw = &adapter->hw;
1286 u32 srrctl = 0;
1287
1288 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1289 E1000_SRRCTL_BSIZEHDR_MASK |
1290 E1000_SRRCTL_BSIZEPKT_MASK);
1291
1292 /* Enable queue drop to avoid head of line blocking */
1293 srrctl |= E1000_SRRCTL_DROP_EN;
1294
1295 /* Setup buffer sizes */
1296 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1297 E1000_SRRCTL_BSIZEPKT_SHIFT;
1298
1299 if (adapter->rx_buffer_len < 2048) {
1300 adapter->rx_ps_hdr_size = 0;
1301 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1302 } else {
1303 adapter->rx_ps_hdr_size = 128;
1304 srrctl |= adapter->rx_ps_hdr_size <<
1305 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1306 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1307 }
1308
1309 ew32(SRRCTL(0), srrctl);
1310}
1311
1312/**
1313 * igbvf_configure_rx - Configure Receive Unit after Reset
1314 * @adapter: board private structure
1315 *
1316 * Configure the Rx unit of the MAC after a reset.
1317 **/
1318static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1319{
1320 struct e1000_hw *hw = &adapter->hw;
1321 struct igbvf_ring *rx_ring = adapter->rx_ring;
1322 u64 rdba;
1323 u32 rdlen, rxdctl;
1324
1325 /* disable receives */
1326 rxdctl = er32(RXDCTL(0));
1327 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
945a5151 1328 e1e_flush();
d4e0fe01
AD
1329 msleep(10);
1330
1331 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1332
1333 /*
1334 * Setup the HW Rx Head and Tail Descriptor Pointers and
1335 * the Base and Length of the Rx Descriptor Ring
1336 */
1337 rdba = rx_ring->dma;
8e20ce94 1338 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1339 ew32(RDBAH(0), (rdba >> 32));
1340 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1341 rx_ring->head = E1000_RDH(0);
1342 rx_ring->tail = E1000_RDT(0);
1343 ew32(RDH(0), 0);
1344 ew32(RDT(0), 0);
1345
1346 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1347 rxdctl &= 0xFFF00000;
1348 rxdctl |= IGBVF_RX_PTHRESH;
1349 rxdctl |= IGBVF_RX_HTHRESH << 8;
1350 rxdctl |= IGBVF_RX_WTHRESH << 16;
1351
1352 igbvf_set_rlpml(adapter);
1353
1354 /* enable receives */
1355 ew32(RXDCTL(0), rxdctl);
1356}
1357
1358/**
1359 * igbvf_set_multi - Multicast and Promiscuous mode set
1360 * @netdev: network interface device structure
1361 *
1362 * The set_multi entry point is called whenever the multicast address
1363 * list or the network interface flags are updated. This routine is
1364 * responsible for configuring the hardware for proper multicast,
1365 * promiscuous mode, and all-multi behavior.
1366 **/
1367static void igbvf_set_multi(struct net_device *netdev)
1368{
1369 struct igbvf_adapter *adapter = netdev_priv(netdev);
1370 struct e1000_hw *hw = &adapter->hw;
22bedad3 1371 struct netdev_hw_addr *ha;
d4e0fe01
AD
1372 u8 *mta_list = NULL;
1373 int i;
1374
4cd24eaf
JP
1375 if (!netdev_mc_empty(netdev)) {
1376 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
d4e0fe01
AD
1377 if (!mta_list) {
1378 dev_err(&adapter->pdev->dev,
1379 "failed to allocate multicast filter list\n");
1380 return;
1381 }
1382 }
1383
1384 /* prepare a packed array of only addresses. */
48e2f183 1385 i = 0;
22bedad3
JP
1386 netdev_for_each_mc_addr(ha, netdev)
1387 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
d4e0fe01
AD
1388
1389 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1390 kfree(mta_list);
1391}
1392
1393/**
1394 * igbvf_configure - configure the hardware for Rx and Tx
1395 * @adapter: private board structure
1396 **/
1397static void igbvf_configure(struct igbvf_adapter *adapter)
1398{
1399 igbvf_set_multi(adapter->netdev);
1400
1401 igbvf_restore_vlan(adapter);
1402
1403 igbvf_configure_tx(adapter);
1404 igbvf_setup_srrctl(adapter);
1405 igbvf_configure_rx(adapter);
1406 igbvf_alloc_rx_buffers(adapter->rx_ring,
1407 igbvf_desc_unused(adapter->rx_ring));
1408}
1409
1410/* igbvf_reset - bring the hardware into a known good state
1411 *
1412 * This function boots the hardware and enables some settings that
1413 * require a configuration cycle of the hardware - those cannot be
1414 * set/changed during runtime. After reset the device needs to be
1415 * properly configured for Rx, Tx etc.
1416 */
2d165771 1417static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1418{
1419 struct e1000_mac_info *mac = &adapter->hw.mac;
1420 struct net_device *netdev = adapter->netdev;
1421 struct e1000_hw *hw = &adapter->hw;
1422
1423 /* Allow time for pending master requests to run */
1424 if (mac->ops.reset_hw(hw))
1425 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1426
1427 mac->ops.init_hw(hw);
1428
1429 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1430 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1431 netdev->addr_len);
1432 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1433 netdev->addr_len);
1434 }
72279093
AD
1435
1436 adapter->last_reset = jiffies;
d4e0fe01
AD
1437}
1438
1439int igbvf_up(struct igbvf_adapter *adapter)
1440{
1441 struct e1000_hw *hw = &adapter->hw;
1442
1443 /* hardware has been reset, we need to reload some things */
1444 igbvf_configure(adapter);
1445
1446 clear_bit(__IGBVF_DOWN, &adapter->state);
1447
1448 napi_enable(&adapter->rx_ring->napi);
1449 if (adapter->msix_entries)
1450 igbvf_configure_msix(adapter);
1451
1452 /* Clear any pending interrupts. */
1453 er32(EICR);
1454 igbvf_irq_enable(adapter);
1455
1456 /* start the watchdog */
1457 hw->mac.get_link_status = 1;
1458 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1459
1460
1461 return 0;
1462}
1463
1464void igbvf_down(struct igbvf_adapter *adapter)
1465{
1466 struct net_device *netdev = adapter->netdev;
1467 struct e1000_hw *hw = &adapter->hw;
1468 u32 rxdctl, txdctl;
1469
1470 /*
1471 * signal that we're down so the interrupt handler does not
1472 * reschedule our watchdog timer
1473 */
1474 set_bit(__IGBVF_DOWN, &adapter->state);
1475
1476 /* disable receives in the hardware */
1477 rxdctl = er32(RXDCTL(0));
1478 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1479
1480 netif_stop_queue(netdev);
1481
1482 /* disable transmits in the hardware */
1483 txdctl = er32(TXDCTL(0));
1484 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1485
1486 /* flush both disables and wait for them to finish */
1487 e1e_flush();
1488 msleep(10);
1489
1490 napi_disable(&adapter->rx_ring->napi);
1491
1492 igbvf_irq_disable(adapter);
1493
1494 del_timer_sync(&adapter->watchdog_timer);
1495
d4e0fe01
AD
1496 netif_carrier_off(netdev);
1497
1498 /* record the stats before reset*/
1499 igbvf_update_stats(adapter);
1500
1501 adapter->link_speed = 0;
1502 adapter->link_duplex = 0;
1503
1504 igbvf_reset(adapter);
1505 igbvf_clean_tx_ring(adapter->tx_ring);
1506 igbvf_clean_rx_ring(adapter->rx_ring);
1507}
1508
1509void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1510{
1511 might_sleep();
1512 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1513 msleep(1);
1514 igbvf_down(adapter);
1515 igbvf_up(adapter);
1516 clear_bit(__IGBVF_RESETTING, &adapter->state);
1517}
1518
1519/**
1520 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1521 * @adapter: board private structure to initialize
1522 *
1523 * igbvf_sw_init initializes the Adapter private data structure.
1524 * Fields are initialized based on PCI device information and
1525 * OS network device settings (MTU size).
1526 **/
1527static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1528{
1529 struct net_device *netdev = adapter->netdev;
1530 s32 rc;
1531
1532 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1533 adapter->rx_ps_hdr_size = 0;
1534 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1535 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1536
1537 adapter->tx_int_delay = 8;
1538 adapter->tx_abs_int_delay = 32;
1539 adapter->rx_int_delay = 0;
1540 adapter->rx_abs_int_delay = 8;
ab50a2a4
MW
1541 adapter->requested_itr = 3;
1542 adapter->current_itr = IGBVF_START_ITR;
d4e0fe01
AD
1543
1544 /* Set various function pointers */
1545 adapter->ei->init_ops(&adapter->hw);
1546
1547 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1548 if (rc)
1549 return rc;
1550
1551 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1552 if (rc)
1553 return rc;
1554
1555 igbvf_set_interrupt_capability(adapter);
1556
1557 if (igbvf_alloc_queues(adapter))
1558 return -ENOMEM;
1559
1560 spin_lock_init(&adapter->tx_queue_lock);
1561
1562 /* Explicitly disable IRQ since the NIC can be in any state. */
1563 igbvf_irq_disable(adapter);
1564
1565 spin_lock_init(&adapter->stats_lock);
1566
1567 set_bit(__IGBVF_DOWN, &adapter->state);
1568 return 0;
1569}
1570
1571static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1572{
1573 struct e1000_hw *hw = &adapter->hw;
1574
1575 adapter->stats.last_gprc = er32(VFGPRC);
1576 adapter->stats.last_gorc = er32(VFGORC);
1577 adapter->stats.last_gptc = er32(VFGPTC);
1578 adapter->stats.last_gotc = er32(VFGOTC);
1579 adapter->stats.last_mprc = er32(VFMPRC);
1580 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1581 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1582 adapter->stats.last_gorlbc = er32(VFGORLBC);
1583 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1584
1585 adapter->stats.base_gprc = er32(VFGPRC);
1586 adapter->stats.base_gorc = er32(VFGORC);
1587 adapter->stats.base_gptc = er32(VFGPTC);
1588 adapter->stats.base_gotc = er32(VFGOTC);
1589 adapter->stats.base_mprc = er32(VFMPRC);
1590 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1591 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1592 adapter->stats.base_gorlbc = er32(VFGORLBC);
1593 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1594}
1595
1596/**
1597 * igbvf_open - Called when a network interface is made active
1598 * @netdev: network interface device structure
1599 *
1600 * Returns 0 on success, negative value on failure
1601 *
1602 * The open entry point is called when a network interface is made
1603 * active by the system (IFF_UP). At this point all resources needed
1604 * for transmit and receive operations are allocated, the interrupt
1605 * handler is registered with the OS, the watchdog timer is started,
1606 * and the stack is notified that the interface is ready.
1607 **/
1608static int igbvf_open(struct net_device *netdev)
1609{
1610 struct igbvf_adapter *adapter = netdev_priv(netdev);
1611 struct e1000_hw *hw = &adapter->hw;
1612 int err;
1613
1614 /* disallow open during test */
1615 if (test_bit(__IGBVF_TESTING, &adapter->state))
1616 return -EBUSY;
1617
1618 /* allocate transmit descriptors */
1619 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1620 if (err)
1621 goto err_setup_tx;
1622
1623 /* allocate receive descriptors */
1624 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1625 if (err)
1626 goto err_setup_rx;
1627
1628 /*
1629 * before we allocate an interrupt, we must be ready to handle it.
1630 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1631 * as soon as we call pci_request_irq, so we have to setup our
1632 * clean_rx handler before we do so.
1633 */
1634 igbvf_configure(adapter);
1635
1636 err = igbvf_request_irq(adapter);
1637 if (err)
1638 goto err_req_irq;
1639
1640 /* From here on the code is the same as igbvf_up() */
1641 clear_bit(__IGBVF_DOWN, &adapter->state);
1642
1643 napi_enable(&adapter->rx_ring->napi);
1644
1645 /* clear any pending interrupts */
1646 er32(EICR);
1647
1648 igbvf_irq_enable(adapter);
1649
1650 /* start the watchdog */
1651 hw->mac.get_link_status = 1;
1652 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1653
1654 return 0;
1655
1656err_req_irq:
1657 igbvf_free_rx_resources(adapter->rx_ring);
1658err_setup_rx:
1659 igbvf_free_tx_resources(adapter->tx_ring);
1660err_setup_tx:
1661 igbvf_reset(adapter);
1662
1663 return err;
1664}
1665
1666/**
1667 * igbvf_close - Disables a network interface
1668 * @netdev: network interface device structure
1669 *
1670 * Returns 0, this is not allowed to fail
1671 *
1672 * The close entry point is called when an interface is de-activated
1673 * by the OS. The hardware is still under the drivers control, but
1674 * needs to be disabled. A global MAC reset is issued to stop the
1675 * hardware, and all transmit and receive resources are freed.
1676 **/
1677static int igbvf_close(struct net_device *netdev)
1678{
1679 struct igbvf_adapter *adapter = netdev_priv(netdev);
1680
1681 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1682 igbvf_down(adapter);
1683
1684 igbvf_free_irq(adapter);
1685
1686 igbvf_free_tx_resources(adapter->tx_ring);
1687 igbvf_free_rx_resources(adapter->rx_ring);
1688
1689 return 0;
1690}
1691/**
1692 * igbvf_set_mac - Change the Ethernet Address of the NIC
1693 * @netdev: network interface device structure
1694 * @p: pointer to an address structure
1695 *
1696 * Returns 0 on success, negative on failure
1697 **/
1698static int igbvf_set_mac(struct net_device *netdev, void *p)
1699{
1700 struct igbvf_adapter *adapter = netdev_priv(netdev);
1701 struct e1000_hw *hw = &adapter->hw;
1702 struct sockaddr *addr = p;
1703
1704 if (!is_valid_ether_addr(addr->sa_data))
1705 return -EADDRNOTAVAIL;
1706
1707 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1708
1709 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1710
1711 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1712 return -EADDRNOTAVAIL;
1713
1714 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
067fb4c8 1715 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
d4e0fe01
AD
1716
1717 return 0;
1718}
1719
1720#define UPDATE_VF_COUNTER(reg, name) \
1721 { \
1722 u32 current_counter = er32(reg); \
1723 if (current_counter < adapter->stats.last_##name) \
1724 adapter->stats.name += 0x100000000LL; \
1725 adapter->stats.last_##name = current_counter; \
1726 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1727 adapter->stats.name |= current_counter; \
1728 }
1729
1730/**
1731 * igbvf_update_stats - Update the board statistics counters
1732 * @adapter: board private structure
1733**/
1734void igbvf_update_stats(struct igbvf_adapter *adapter)
1735{
1736 struct e1000_hw *hw = &adapter->hw;
1737 struct pci_dev *pdev = adapter->pdev;
1738
1739 /*
1740 * Prevent stats update while adapter is being reset, link is down
1741 * or if the pci connection is down.
1742 */
1743 if (adapter->link_speed == 0)
1744 return;
1745
1746 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1747 return;
1748
1749 if (pci_channel_offline(pdev))
1750 return;
1751
1752 UPDATE_VF_COUNTER(VFGPRC, gprc);
1753 UPDATE_VF_COUNTER(VFGORC, gorc);
1754 UPDATE_VF_COUNTER(VFGPTC, gptc);
1755 UPDATE_VF_COUNTER(VFGOTC, gotc);
1756 UPDATE_VF_COUNTER(VFMPRC, mprc);
1757 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1758 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1759 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1760 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1761
1762 /* Fill out the OS statistics structure */
1763 adapter->net_stats.multicast = adapter->stats.mprc;
1764}
1765
1766static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1767{
a4ba8cbe
JK
1768 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1769 adapter->link_speed,
1770 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
d4e0fe01
AD
1771}
1772
1773static bool igbvf_has_link(struct igbvf_adapter *adapter)
1774{
1775 struct e1000_hw *hw = &adapter->hw;
1776 s32 ret_val = E1000_SUCCESS;
1777 bool link_active;
1778
72279093
AD
1779 /* If interface is down, stay link down */
1780 if (test_bit(__IGBVF_DOWN, &adapter->state))
1781 return false;
1782
d4e0fe01
AD
1783 ret_val = hw->mac.ops.check_for_link(hw);
1784 link_active = !hw->mac.get_link_status;
1785
1786 /* if check for link returns error we will need to reset */
72279093 1787 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1788 schedule_work(&adapter->reset_task);
1789
1790 return link_active;
1791}
1792
1793/**
1794 * igbvf_watchdog - Timer Call-back
1795 * @data: pointer to adapter cast into an unsigned long
1796 **/
1797static void igbvf_watchdog(unsigned long data)
1798{
1799 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1800
1801 /* Do the rest outside of interrupt context */
1802 schedule_work(&adapter->watchdog_task);
1803}
1804
1805static void igbvf_watchdog_task(struct work_struct *work)
1806{
1807 struct igbvf_adapter *adapter = container_of(work,
1808 struct igbvf_adapter,
1809 watchdog_task);
1810 struct net_device *netdev = adapter->netdev;
1811 struct e1000_mac_info *mac = &adapter->hw.mac;
1812 struct igbvf_ring *tx_ring = adapter->tx_ring;
1813 struct e1000_hw *hw = &adapter->hw;
1814 u32 link;
1815 int tx_pending = 0;
1816
1817 link = igbvf_has_link(adapter);
1818
1819 if (link) {
1820 if (!netif_carrier_ok(netdev)) {
d4e0fe01
AD
1821 mac->ops.get_link_up_info(&adapter->hw,
1822 &adapter->link_speed,
1823 &adapter->link_duplex);
1824 igbvf_print_link_info(adapter);
1825
d4e0fe01
AD
1826 netif_carrier_on(netdev);
1827 netif_wake_queue(netdev);
1828 }
1829 } else {
1830 if (netif_carrier_ok(netdev)) {
1831 adapter->link_speed = 0;
1832 adapter->link_duplex = 0;
1833 dev_info(&adapter->pdev->dev, "Link is Down\n");
1834 netif_carrier_off(netdev);
1835 netif_stop_queue(netdev);
1836 }
1837 }
1838
1839 if (netif_carrier_ok(netdev)) {
1840 igbvf_update_stats(adapter);
1841 } else {
1842 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1843 tx_ring->count);
1844 if (tx_pending) {
1845 /*
1846 * We've lost link, so the controller stops DMA,
1847 * but we've got queued Tx work that's never going
1848 * to get done, so reset controller to flush Tx.
1849 * (Do the reset outside of interrupt context).
1850 */
1851 adapter->tx_timeout_count++;
1852 schedule_work(&adapter->reset_task);
1853 }
1854 }
1855
1856 /* Cause software interrupt to ensure Rx ring is cleaned */
1857 ew32(EICS, adapter->rx_ring->eims_value);
1858
d4e0fe01
AD
1859 /* Reset the timer */
1860 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1861 mod_timer(&adapter->watchdog_timer,
1862 round_jiffies(jiffies + (2 * HZ)));
1863}
1864
1865#define IGBVF_TX_FLAGS_CSUM 0x00000001
1866#define IGBVF_TX_FLAGS_VLAN 0x00000002
1867#define IGBVF_TX_FLAGS_TSO 0x00000004
1868#define IGBVF_TX_FLAGS_IPV4 0x00000008
1869#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1870#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1871
1872static int igbvf_tso(struct igbvf_adapter *adapter,
1873 struct igbvf_ring *tx_ring,
1874 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1875{
1876 struct e1000_adv_tx_context_desc *context_desc;
1877 unsigned int i;
1878 int err;
1879 struct igbvf_buffer *buffer_info;
1880 u32 info = 0, tu_cmd = 0;
1881 u32 mss_l4len_idx, l4len;
1882 *hdr_len = 0;
1883
1884 if (skb_header_cloned(skb)) {
1885 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1886 if (err) {
1887 dev_err(&adapter->pdev->dev,
1888 "igbvf_tso returning an error\n");
1889 return err;
1890 }
1891 }
1892
1893 l4len = tcp_hdrlen(skb);
1894 *hdr_len += l4len;
1895
1896 if (skb->protocol == htons(ETH_P_IP)) {
1897 struct iphdr *iph = ip_hdr(skb);
1898 iph->tot_len = 0;
1899 iph->check = 0;
1900 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1901 iph->daddr, 0,
1902 IPPROTO_TCP,
1903 0);
8e1e8a47 1904 } else if (skb_is_gso_v6(skb)) {
d4e0fe01
AD
1905 ipv6_hdr(skb)->payload_len = 0;
1906 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1907 &ipv6_hdr(skb)->daddr,
1908 0, IPPROTO_TCP, 0);
1909 }
1910
1911 i = tx_ring->next_to_use;
1912
1913 buffer_info = &tx_ring->buffer_info[i];
1914 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1915 /* VLAN MACLEN IPLEN */
1916 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1917 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1918 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1919 *hdr_len += skb_network_offset(skb);
1920 info |= (skb_transport_header(skb) - skb_network_header(skb));
1921 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1922 context_desc->vlan_macip_lens = cpu_to_le32(info);
1923
1924 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1925 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1926
1927 if (skb->protocol == htons(ETH_P_IP))
1928 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1929 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1930
1931 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1932
1933 /* MSS L4LEN IDX */
1934 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1935 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1936
1937 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1938 context_desc->seqnum_seed = 0;
1939
1940 buffer_info->time_stamp = jiffies;
1941 buffer_info->next_to_watch = i;
1942 buffer_info->dma = 0;
1943 i++;
1944 if (i == tx_ring->count)
1945 i = 0;
1946
1947 tx_ring->next_to_use = i;
1948
1949 return true;
1950}
1951
1952static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1953 struct igbvf_ring *tx_ring,
1954 struct sk_buff *skb, u32 tx_flags)
1955{
1956 struct e1000_adv_tx_context_desc *context_desc;
1957 unsigned int i;
1958 struct igbvf_buffer *buffer_info;
1959 u32 info = 0, tu_cmd = 0;
1960
1961 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1962 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1963 i = tx_ring->next_to_use;
1964 buffer_info = &tx_ring->buffer_info[i];
1965 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1966
1967 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1968 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1969
1970 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1971 if (skb->ip_summed == CHECKSUM_PARTIAL)
1972 info |= (skb_transport_header(skb) -
1973 skb_network_header(skb));
1974
1975
1976 context_desc->vlan_macip_lens = cpu_to_le32(info);
1977
1978 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1979
1980 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1981 switch (skb->protocol) {
1982 case __constant_htons(ETH_P_IP):
1983 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1984 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1985 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1986 break;
1987 case __constant_htons(ETH_P_IPV6):
1988 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1989 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1990 break;
1991 default:
1992 break;
1993 }
1994 }
1995
1996 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1997 context_desc->seqnum_seed = 0;
1998 context_desc->mss_l4len_idx = 0;
1999
2000 buffer_info->time_stamp = jiffies;
2001 buffer_info->next_to_watch = i;
2002 buffer_info->dma = 0;
2003 i++;
2004 if (i == tx_ring->count)
2005 i = 0;
2006 tx_ring->next_to_use = i;
2007
2008 return true;
2009 }
2010
2011 return false;
2012}
2013
2014static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2015{
2016 struct igbvf_adapter *adapter = netdev_priv(netdev);
2017
2018 /* there is enough descriptors then we don't need to worry */
2019 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2020 return 0;
2021
2022 netif_stop_queue(netdev);
2023
2024 smp_mb();
2025
2026 /* We need to check again just in case room has been made available */
2027 if (igbvf_desc_unused(adapter->tx_ring) < size)
2028 return -EBUSY;
2029
2030 netif_wake_queue(netdev);
2031
2032 ++adapter->restart_queue;
2033 return 0;
2034}
2035
2036#define IGBVF_MAX_TXD_PWR 16
2037#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2038
2039static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2040 struct igbvf_ring *tx_ring,
2041 struct sk_buff *skb,
2042 unsigned int first)
2043{
2044 struct igbvf_buffer *buffer_info;
a7d5ca40 2045 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2046 unsigned int len = skb_headlen(skb);
2047 unsigned int count = 0, i;
2048 unsigned int f;
d4e0fe01
AD
2049
2050 i = tx_ring->next_to_use;
2051
d4e0fe01
AD
2052 buffer_info = &tx_ring->buffer_info[i];
2053 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2054 buffer_info->length = len;
2055 /* set time_stamp *before* dma to help avoid a possible race */
2056 buffer_info->time_stamp = jiffies;
2057 buffer_info->next_to_watch = i;
ac26d7d6 2058 buffer_info->mapped_as_page = false;
123e9f1a
NN
2059 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2060 DMA_TO_DEVICE);
2061 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40
AD
2062 goto dma_error;
2063
d4e0fe01
AD
2064
2065 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
9e903e08 2066 const struct skb_frag_struct *frag;
d4e0fe01 2067
8581145f 2068 count++;
d4e0fe01
AD
2069 i++;
2070 if (i == tx_ring->count)
2071 i = 0;
2072
2073 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2074 len = skb_frag_size(frag);
d4e0fe01
AD
2075
2076 buffer_info = &tx_ring->buffer_info[i];
2077 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2078 buffer_info->length = len;
2079 buffer_info->time_stamp = jiffies;
2080 buffer_info->next_to_watch = i;
a7d5ca40 2081 buffer_info->mapped_as_page = true;
877749bf 2082 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
123e9f1a
NN
2083 DMA_TO_DEVICE);
2084 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
a7d5ca40 2085 goto dma_error;
d4e0fe01
AD
2086 }
2087
2088 tx_ring->buffer_info[i].skb = skb;
2089 tx_ring->buffer_info[first].next_to_watch = i;
2090
a7d5ca40
AD
2091 return ++count;
2092
2093dma_error:
2094 dev_err(&pdev->dev, "TX DMA map failed\n");
2095
2096 /* clear timestamp and dma mappings for failed buffer_info mapping */
2097 buffer_info->dma = 0;
2098 buffer_info->time_stamp = 0;
2099 buffer_info->length = 0;
2100 buffer_info->next_to_watch = 0;
2101 buffer_info->mapped_as_page = false;
c1fa347f
RK
2102 if (count)
2103 count--;
a7d5ca40
AD
2104
2105 /* clear timestamp and dma mappings for remaining portion of packet */
c1fa347f
RK
2106 while (count--) {
2107 if (i==0)
a7d5ca40 2108 i += tx_ring->count;
c1fa347f 2109 i--;
a7d5ca40
AD
2110 buffer_info = &tx_ring->buffer_info[i];
2111 igbvf_put_txbuf(adapter, buffer_info);
2112 }
2113
2114 return 0;
d4e0fe01
AD
2115}
2116
2117static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2118 struct igbvf_ring *tx_ring,
2119 int tx_flags, int count, u32 paylen,
2120 u8 hdr_len)
2121{
2122 union e1000_adv_tx_desc *tx_desc = NULL;
2123 struct igbvf_buffer *buffer_info;
2124 u32 olinfo_status = 0, cmd_type_len;
2125 unsigned int i;
2126
2127 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2128 E1000_ADVTXD_DCMD_DEXT);
2129
2130 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2131 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2132
2133 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2134 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2135
2136 /* insert tcp checksum */
2137 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2138
2139 /* insert ip checksum */
2140 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2141 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2142
2143 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2144 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2145 }
2146
2147 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2148
2149 i = tx_ring->next_to_use;
2150 while (count--) {
2151 buffer_info = &tx_ring->buffer_info[i];
2152 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2153 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2154 tx_desc->read.cmd_type_len =
2155 cpu_to_le32(cmd_type_len | buffer_info->length);
2156 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2157 i++;
2158 if (i == tx_ring->count)
2159 i = 0;
2160 }
2161
2162 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2163 /* Force memory writes to complete before letting h/w
2164 * know there are new descriptors to fetch. (Only
2165 * applicable for weak-ordered memory model archs,
2166 * such as IA-64). */
2167 wmb();
2168
2169 tx_ring->next_to_use = i;
2170 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2171 /* we need this if more than one processor can write to our tail
2172 * at a time, it syncronizes IO on IA64/Altix systems */
2173 mmiowb();
2174}
2175
3b29a56d
SH
2176static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2177 struct net_device *netdev,
2178 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2179{
2180 struct igbvf_adapter *adapter = netdev_priv(netdev);
2181 unsigned int first, tx_flags = 0;
2182 u8 hdr_len = 0;
2183 int count = 0;
2184 int tso = 0;
2185
2186 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2187 dev_kfree_skb_any(skb);
2188 return NETDEV_TX_OK;
2189 }
2190
2191 if (skb->len <= 0) {
2192 dev_kfree_skb_any(skb);
2193 return NETDEV_TX_OK;
2194 }
2195
2196 /*
2197 * need: count + 4 desc gap to keep tail from touching
2198 * + 2 desc gap to keep tail from touching head,
2199 * + 1 desc for skb->data,
2200 * + 1 desc for context descriptor,
2201 * head, otherwise try next time
2202 */
2203 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2204 /* this is a hard error */
2205 return NETDEV_TX_BUSY;
2206 }
2207
a0f1d603 2208 if (vlan_tx_tag_present(skb)) {
d4e0fe01
AD
2209 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2210 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2211 }
2212
2213 if (skb->protocol == htons(ETH_P_IP))
2214 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2215
2216 first = tx_ring->next_to_use;
2217
2218 tso = skb_is_gso(skb) ?
2219 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2220 if (unlikely(tso < 0)) {
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223 }
2224
2225 if (tso)
2226 tx_flags |= IGBVF_TX_FLAGS_TSO;
2227 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2228 (skb->ip_summed == CHECKSUM_PARTIAL))
2229 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2230
2231 /*
2232 * count reflects descriptors mapped, if 0 then mapping error
25985edc 2233 * has occurred and we need to rewind the descriptor queue
d4e0fe01
AD
2234 */
2235 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2236
2237 if (count) {
2238 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2239 skb->len, hdr_len);
d4e0fe01
AD
2240 /* Make sure there is space in the ring for the next send. */
2241 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2242 } else {
2243 dev_kfree_skb_any(skb);
2244 tx_ring->buffer_info[first].time_stamp = 0;
2245 tx_ring->next_to_use = first;
2246 }
2247
2248 return NETDEV_TX_OK;
2249}
2250
3b29a56d
SH
2251static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2252 struct net_device *netdev)
d4e0fe01
AD
2253{
2254 struct igbvf_adapter *adapter = netdev_priv(netdev);
2255 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2256
2257 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2258 dev_kfree_skb_any(skb);
2259 return NETDEV_TX_OK;
2260 }
2261
2262 tx_ring = &adapter->tx_ring[0];
2263
3b29a56d 2264 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2265}
2266
2267/**
2268 * igbvf_tx_timeout - Respond to a Tx Hang
2269 * @netdev: network interface device structure
2270 **/
2271static void igbvf_tx_timeout(struct net_device *netdev)
2272{
2273 struct igbvf_adapter *adapter = netdev_priv(netdev);
2274
2275 /* Do the reset outside of interrupt context */
2276 adapter->tx_timeout_count++;
2277 schedule_work(&adapter->reset_task);
2278}
2279
2280static void igbvf_reset_task(struct work_struct *work)
2281{
2282 struct igbvf_adapter *adapter;
2283 adapter = container_of(work, struct igbvf_adapter, reset_task);
2284
2285 igbvf_reinit_locked(adapter);
2286}
2287
2288/**
2289 * igbvf_get_stats - Get System Network Statistics
2290 * @netdev: network interface device structure
2291 *
2292 * Returns the address of the device statistics structure.
2293 * The statistics are actually updated from the timer callback.
2294 **/
2295static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2296{
2297 struct igbvf_adapter *adapter = netdev_priv(netdev);
2298
2299 /* only return the current stats */
2300 return &adapter->net_stats;
2301}
2302
2303/**
2304 * igbvf_change_mtu - Change the Maximum Transfer Unit
2305 * @netdev: network interface device structure
2306 * @new_mtu: new value for maximum frame size
2307 *
2308 * Returns 0 on success, negative on failure
2309 **/
2310static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2311{
2312 struct igbvf_adapter *adapter = netdev_priv(netdev);
2313 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2314
2315 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2316 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2317 return -EINVAL;
2318 }
2319
d4e0fe01
AD
2320#define MAX_STD_JUMBO_FRAME_SIZE 9234
2321 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2322 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2323 return -EINVAL;
2324 }
2325
2326 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2327 msleep(1);
2328 /* igbvf_down has a dependency on max_frame_size */
2329 adapter->max_frame_size = max_frame;
2330 if (netif_running(netdev))
2331 igbvf_down(adapter);
2332
2333 /*
2334 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2335 * means we reserve 2 more, this pushes us to allocate from the next
2336 * larger slab size.
2337 * i.e. RXBUFFER_2048 --> size-4096 slab
2338 * However with the new *_jumbo_rx* routines, jumbo receives will use
2339 * fragmented skbs
2340 */
2341
2342 if (max_frame <= 1024)
2343 adapter->rx_buffer_len = 1024;
2344 else if (max_frame <= 2048)
2345 adapter->rx_buffer_len = 2048;
2346 else
2347#if (PAGE_SIZE / 2) > 16384
2348 adapter->rx_buffer_len = 16384;
2349#else
2350 adapter->rx_buffer_len = PAGE_SIZE / 2;
2351#endif
2352
2353
2354 /* adjust allocation if LPE protects us, and we aren't using SBP */
2355 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2356 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2357 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2358 ETH_FCS_LEN;
2359
2360 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2361 netdev->mtu, new_mtu);
2362 netdev->mtu = new_mtu;
2363
2364 if (netif_running(netdev))
2365 igbvf_up(adapter);
2366 else
2367 igbvf_reset(adapter);
2368
2369 clear_bit(__IGBVF_RESETTING, &adapter->state);
2370
2371 return 0;
2372}
2373
2374static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2375{
2376 switch (cmd) {
2377 default:
2378 return -EOPNOTSUPP;
2379 }
2380}
2381
2382static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2383{
2384 struct net_device *netdev = pci_get_drvdata(pdev);
2385 struct igbvf_adapter *adapter = netdev_priv(netdev);
2386#ifdef CONFIG_PM
2387 int retval = 0;
2388#endif
2389
2390 netif_device_detach(netdev);
2391
2392 if (netif_running(netdev)) {
2393 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2394 igbvf_down(adapter);
2395 igbvf_free_irq(adapter);
2396 }
2397
2398#ifdef CONFIG_PM
2399 retval = pci_save_state(pdev);
2400 if (retval)
2401 return retval;
2402#endif
2403
2404 pci_disable_device(pdev);
2405
2406 return 0;
2407}
2408
2409#ifdef CONFIG_PM
2410static int igbvf_resume(struct pci_dev *pdev)
2411{
2412 struct net_device *netdev = pci_get_drvdata(pdev);
2413 struct igbvf_adapter *adapter = netdev_priv(netdev);
2414 u32 err;
2415
2416 pci_restore_state(pdev);
2417 err = pci_enable_device_mem(pdev);
2418 if (err) {
2419 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2420 return err;
2421 }
2422
2423 pci_set_master(pdev);
2424
2425 if (netif_running(netdev)) {
2426 err = igbvf_request_irq(adapter);
2427 if (err)
2428 return err;
2429 }
2430
2431 igbvf_reset(adapter);
2432
2433 if (netif_running(netdev))
2434 igbvf_up(adapter);
2435
2436 netif_device_attach(netdev);
2437
2438 return 0;
2439}
2440#endif
2441
2442static void igbvf_shutdown(struct pci_dev *pdev)
2443{
2444 igbvf_suspend(pdev, PMSG_SUSPEND);
2445}
2446
2447#ifdef CONFIG_NET_POLL_CONTROLLER
2448/*
2449 * Polling 'interrupt' - used by things like netconsole to send skbs
2450 * without having to re-enable interrupts. It's not called while
2451 * the interrupt routine is executing.
2452 */
2453static void igbvf_netpoll(struct net_device *netdev)
2454{
2455 struct igbvf_adapter *adapter = netdev_priv(netdev);
2456
2457 disable_irq(adapter->pdev->irq);
2458
2459 igbvf_clean_tx_irq(adapter->tx_ring);
2460
2461 enable_irq(adapter->pdev->irq);
2462}
2463#endif
2464
2465/**
2466 * igbvf_io_error_detected - called when PCI error is detected
2467 * @pdev: Pointer to PCI device
2468 * @state: The current pci connection state
2469 *
2470 * This function is called after a PCI bus error affecting
2471 * this device has been detected.
2472 */
2473static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2474 pci_channel_state_t state)
2475{
2476 struct net_device *netdev = pci_get_drvdata(pdev);
2477 struct igbvf_adapter *adapter = netdev_priv(netdev);
2478
2479 netif_device_detach(netdev);
2480
c06c430d
DN
2481 if (state == pci_channel_io_perm_failure)
2482 return PCI_ERS_RESULT_DISCONNECT;
2483
d4e0fe01
AD
2484 if (netif_running(netdev))
2485 igbvf_down(adapter);
2486 pci_disable_device(pdev);
2487
2488 /* Request a slot slot reset. */
2489 return PCI_ERS_RESULT_NEED_RESET;
2490}
2491
2492/**
2493 * igbvf_io_slot_reset - called after the pci bus has been reset.
2494 * @pdev: Pointer to PCI device
2495 *
2496 * Restart the card from scratch, as if from a cold-boot. Implementation
2497 * resembles the first-half of the igbvf_resume routine.
2498 */
2499static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2500{
2501 struct net_device *netdev = pci_get_drvdata(pdev);
2502 struct igbvf_adapter *adapter = netdev_priv(netdev);
2503
2504 if (pci_enable_device_mem(pdev)) {
2505 dev_err(&pdev->dev,
2506 "Cannot re-enable PCI device after reset.\n");
2507 return PCI_ERS_RESULT_DISCONNECT;
2508 }
2509 pci_set_master(pdev);
2510
2511 igbvf_reset(adapter);
2512
2513 return PCI_ERS_RESULT_RECOVERED;
2514}
2515
2516/**
2517 * igbvf_io_resume - called when traffic can start flowing again.
2518 * @pdev: Pointer to PCI device
2519 *
2520 * This callback is called when the error recovery driver tells us that
2521 * its OK to resume normal operation. Implementation resembles the
2522 * second-half of the igbvf_resume routine.
2523 */
2524static void igbvf_io_resume(struct pci_dev *pdev)
2525{
2526 struct net_device *netdev = pci_get_drvdata(pdev);
2527 struct igbvf_adapter *adapter = netdev_priv(netdev);
2528
2529 if (netif_running(netdev)) {
2530 if (igbvf_up(adapter)) {
2531 dev_err(&pdev->dev,
2532 "can't bring device back up after reset\n");
2533 return;
2534 }
2535 }
2536
2537 netif_device_attach(netdev);
2538}
2539
2540static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2541{
2542 struct e1000_hw *hw = &adapter->hw;
2543 struct net_device *netdev = adapter->netdev;
2544 struct pci_dev *pdev = adapter->pdev;
2545
10090751
WM
2546 if (hw->mac.type == e1000_vfadapt_i350)
2547 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2548 else
2549 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
753cdc33 2550 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
d4e0fe01
AD
2551}
2552
c8f44aff
MM
2553static int igbvf_set_features(struct net_device *netdev,
2554 netdev_features_t features)
fd38f734
MM
2555{
2556 struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558 if (features & NETIF_F_RXCSUM)
2559 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2560 else
2561 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2562
2563 return 0;
2564}
2565
d4e0fe01
AD
2566static const struct net_device_ops igbvf_netdev_ops = {
2567 .ndo_open = igbvf_open,
2568 .ndo_stop = igbvf_close,
2569 .ndo_start_xmit = igbvf_xmit_frame,
2570 .ndo_get_stats = igbvf_get_stats,
afc4b13d 2571 .ndo_set_rx_mode = igbvf_set_multi,
d4e0fe01
AD
2572 .ndo_set_mac_address = igbvf_set_mac,
2573 .ndo_change_mtu = igbvf_change_mtu,
2574 .ndo_do_ioctl = igbvf_ioctl,
2575 .ndo_tx_timeout = igbvf_tx_timeout,
d4e0fe01
AD
2576 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2577 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2578#ifdef CONFIG_NET_POLL_CONTROLLER
2579 .ndo_poll_controller = igbvf_netpoll,
2580#endif
fd38f734 2581 .ndo_set_features = igbvf_set_features,
d4e0fe01
AD
2582};
2583
2584/**
2585 * igbvf_probe - Device Initialization Routine
2586 * @pdev: PCI device information struct
2587 * @ent: entry in igbvf_pci_tbl
2588 *
2589 * Returns 0 on success, negative on failure
2590 *
2591 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2592 * The OS initialization, configuring of the adapter private structure,
2593 * and a hardware reset occur.
2594 **/
2595static int __devinit igbvf_probe(struct pci_dev *pdev,
2596 const struct pci_device_id *ent)
2597{
2598 struct net_device *netdev;
2599 struct igbvf_adapter *adapter;
2600 struct e1000_hw *hw;
2601 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2602
2603 static int cards_found;
2604 int err, pci_using_dac;
2605
2606 err = pci_enable_device_mem(pdev);
2607 if (err)
2608 return err;
2609
2610 pci_using_dac = 0;
123e9f1a 2611 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01 2612 if (!err) {
123e9f1a 2613 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
d4e0fe01
AD
2614 if (!err)
2615 pci_using_dac = 1;
2616 } else {
123e9f1a 2617 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
d4e0fe01 2618 if (err) {
123e9f1a
NN
2619 err = dma_set_coherent_mask(&pdev->dev,
2620 DMA_BIT_MASK(32));
d4e0fe01
AD
2621 if (err) {
2622 dev_err(&pdev->dev, "No usable DMA "
2623 "configuration, aborting\n");
2624 goto err_dma;
2625 }
2626 }
2627 }
2628
2629 err = pci_request_regions(pdev, igbvf_driver_name);
2630 if (err)
2631 goto err_pci_reg;
2632
2633 pci_set_master(pdev);
2634
2635 err = -ENOMEM;
2636 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2637 if (!netdev)
2638 goto err_alloc_etherdev;
2639
2640 SET_NETDEV_DEV(netdev, &pdev->dev);
2641
2642 pci_set_drvdata(pdev, netdev);
2643 adapter = netdev_priv(netdev);
2644 hw = &adapter->hw;
2645 adapter->netdev = netdev;
2646 adapter->pdev = pdev;
2647 adapter->ei = ei;
2648 adapter->pba = ei->pba;
2649 adapter->flags = ei->flags;
2650 adapter->hw.back = adapter;
2651 adapter->hw.mac.type = ei->mac;
2652 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2653
2654 /* PCI config space info */
2655
2656 hw->vendor_id = pdev->vendor;
2657 hw->device_id = pdev->device;
2658 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2659 hw->subsystem_device_id = pdev->subsystem_device;
ff938e43 2660 hw->revision_id = pdev->revision;
d4e0fe01
AD
2661
2662 err = -EIO;
2663 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2664 pci_resource_len(pdev, 0));
2665
2666 if (!adapter->hw.hw_addr)
2667 goto err_ioremap;
2668
2669 if (ei->get_variants) {
2670 err = ei->get_variants(adapter);
2671 if (err)
2672 goto err_ioremap;
2673 }
2674
2675 /* setup adapter struct */
2676 err = igbvf_sw_init(adapter);
2677 if (err)
2678 goto err_sw_init;
2679
2680 /* construct the net_device struct */
2681 netdev->netdev_ops = &igbvf_netdev_ops;
2682
2683 igbvf_set_ethtool_ops(netdev);
2684 netdev->watchdog_timeo = 5 * HZ;
2685 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2686
2687 adapter->bd_number = cards_found++;
2688
fd38f734 2689 netdev->hw_features = NETIF_F_SG |
d4e0fe01 2690 NETIF_F_IP_CSUM |
fd38f734
MM
2691 NETIF_F_IPV6_CSUM |
2692 NETIF_F_TSO |
2693 NETIF_F_TSO6 |
2694 NETIF_F_RXCSUM;
2695
2696 netdev->features = netdev->hw_features |
d4e0fe01
AD
2697 NETIF_F_HW_VLAN_TX |
2698 NETIF_F_HW_VLAN_RX |
2699 NETIF_F_HW_VLAN_FILTER;
2700
d4e0fe01
AD
2701 if (pci_using_dac)
2702 netdev->features |= NETIF_F_HIGHDMA;
2703
2704 netdev->vlan_features |= NETIF_F_TSO;
2705 netdev->vlan_features |= NETIF_F_TSO6;
2706 netdev->vlan_features |= NETIF_F_IP_CSUM;
2707 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2708 netdev->vlan_features |= NETIF_F_SG;
2709
2710 /*reset the controller to put the device in a known good state */
2711 err = hw->mac.ops.reset_hw(hw);
2712 if (err) {
2713 dev_info(&pdev->dev,
1242b6f3
WM
2714 "PF still in reset state, assigning new address."
2715 " Is the PF interface up?\n");
1a0d6ae5
DK
2716 eth_hw_addr_random(netdev);
2717 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2718 netdev->addr_len);
d4e0fe01
AD
2719 } else {
2720 err = hw->mac.ops.read_mac_addr(hw);
2721 if (err) {
2722 dev_err(&pdev->dev, "Error reading MAC address\n");
2723 goto err_hw_init;
2724 }
1a0d6ae5
DK
2725 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2726 netdev->addr_len);
d4e0fe01
AD
2727 }
2728
d4e0fe01 2729 if (!is_valid_ether_addr(netdev->perm_addr)) {
753cdc33
HS
2730 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2731 netdev->dev_addr);
d4e0fe01
AD
2732 err = -EIO;
2733 goto err_hw_init;
2734 }
2735
1a0d6ae5
DK
2736 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2737
d4e0fe01
AD
2738 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2739 (unsigned long) adapter);
2740
2741 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2742 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2743
2744 /* ring size defaults */
2745 adapter->rx_ring->count = 1024;
2746 adapter->tx_ring->count = 1024;
2747
2748 /* reset the hardware with the new settings */
2749 igbvf_reset(adapter);
2750
d4e0fe01
AD
2751 strcpy(netdev->name, "eth%d");
2752 err = register_netdev(netdev);
2753 if (err)
2754 goto err_hw_init;
2755
de7fe787
ET
2756 /* tell the stack to leave us alone until igbvf_open() is called */
2757 netif_carrier_off(netdev);
2758 netif_stop_queue(netdev);
2759
d4e0fe01
AD
2760 igbvf_print_device_info(adapter);
2761
2762 igbvf_initialize_last_counter_stats(adapter);
2763
2764 return 0;
2765
2766err_hw_init:
2767 kfree(adapter->tx_ring);
2768 kfree(adapter->rx_ring);
2769err_sw_init:
2770 igbvf_reset_interrupt_capability(adapter);
2771 iounmap(adapter->hw.hw_addr);
2772err_ioremap:
2773 free_netdev(netdev);
2774err_alloc_etherdev:
2775 pci_release_regions(pdev);
2776err_pci_reg:
2777err_dma:
2778 pci_disable_device(pdev);
2779 return err;
2780}
2781
2782/**
2783 * igbvf_remove - Device Removal Routine
2784 * @pdev: PCI device information struct
2785 *
2786 * igbvf_remove is called by the PCI subsystem to alert the driver
2787 * that it should release a PCI device. The could be caused by a
2788 * Hot-Plug event, or because the driver is going to be removed from
2789 * memory.
2790 **/
2791static void __devexit igbvf_remove(struct pci_dev *pdev)
2792{
2793 struct net_device *netdev = pci_get_drvdata(pdev);
2794 struct igbvf_adapter *adapter = netdev_priv(netdev);
2795 struct e1000_hw *hw = &adapter->hw;
2796
2797 /*
760141a5
TH
2798 * The watchdog timer may be rescheduled, so explicitly
2799 * disable it from being rescheduled.
d4e0fe01
AD
2800 */
2801 set_bit(__IGBVF_DOWN, &adapter->state);
2802 del_timer_sync(&adapter->watchdog_timer);
2803
760141a5
TH
2804 cancel_work_sync(&adapter->reset_task);
2805 cancel_work_sync(&adapter->watchdog_task);
d4e0fe01
AD
2806
2807 unregister_netdev(netdev);
2808
2809 igbvf_reset_interrupt_capability(adapter);
2810
2811 /*
2812 * it is important to delete the napi struct prior to freeing the
2813 * rx ring so that you do not end up with null pointer refs
2814 */
2815 netif_napi_del(&adapter->rx_ring->napi);
2816 kfree(adapter->tx_ring);
2817 kfree(adapter->rx_ring);
2818
2819 iounmap(hw->hw_addr);
2820 if (hw->flash_address)
2821 iounmap(hw->flash_address);
2822 pci_release_regions(pdev);
2823
2824 free_netdev(netdev);
2825
2826 pci_disable_device(pdev);
2827}
2828
2829/* PCI Error Recovery (ERS) */
2830static struct pci_error_handlers igbvf_err_handler = {
2831 .error_detected = igbvf_io_error_detected,
2832 .slot_reset = igbvf_io_slot_reset,
2833 .resume = igbvf_io_resume,
2834};
2835
a3aa1884 2836static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
d4e0fe01 2837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
031d7952 2838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
d4e0fe01
AD
2839 { } /* terminate list */
2840};
2841MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2842
2843/* PCI Device API Driver */
2844static struct pci_driver igbvf_driver = {
2845 .name = igbvf_driver_name,
2846 .id_table = igbvf_pci_tbl,
2847 .probe = igbvf_probe,
2848 .remove = __devexit_p(igbvf_remove),
2849#ifdef CONFIG_PM
2850 /* Power Management Hooks */
2851 .suspend = igbvf_suspend,
2852 .resume = igbvf_resume,
2853#endif
2854 .shutdown = igbvf_shutdown,
2855 .err_handler = &igbvf_err_handler
2856};
2857
2858/**
2859 * igbvf_init_module - Driver Registration Routine
2860 *
2861 * igbvf_init_module is the first routine called when the driver is
2862 * loaded. All it does is register with the PCI subsystem.
2863 **/
2864static int __init igbvf_init_module(void)
2865{
2866 int ret;
a4ba8cbe
JK
2867 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2868 pr_info("%s\n", igbvf_copyright);
d4e0fe01
AD
2869
2870 ret = pci_register_driver(&igbvf_driver);
d4e0fe01
AD
2871
2872 return ret;
2873}
2874module_init(igbvf_init_module);
2875
2876/**
2877 * igbvf_exit_module - Driver Exit Cleanup Routine
2878 *
2879 * igbvf_exit_module is called just before the driver is removed
2880 * from memory.
2881 **/
2882static void __exit igbvf_exit_module(void)
2883{
2884 pci_unregister_driver(&igbvf_driver);
d4e0fe01
AD
2885}
2886module_exit(igbvf_exit_module);
2887
2888
2889MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
10090751 2890MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
d4e0fe01
AD
2891MODULE_LICENSE("GPL");
2892MODULE_VERSION(DRV_VERSION);
2893
2894/* netdev.c */
This page took 0.510223 seconds and 5 git commands to generate.