Merge remote-tracking branch 'sound-asoc/for-next'
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
CommitLineData
c5aff182
TP
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
0e03f563
JZ
14#include <linux/clk.h>
15#include <linux/cpu.h>
c5aff182 16#include <linux/etherdevice.h>
0e03f563 17#include <linux/if_vlan.h>
c5aff182 18#include <linux/inetdevice.h>
c5aff182 19#include <linux/interrupt.h>
c3f0dd38 20#include <linux/io.h>
0e03f563
JZ
21#include <linux/kernel.h>
22#include <linux/mbus.h>
23#include <linux/module.h>
24#include <linux/netdevice.h>
c5aff182 25#include <linux/of.h>
0e03f563 26#include <linux/of_address.h>
c5aff182
TP
27#include <linux/of_irq.h>
28#include <linux/of_mdio.h>
29#include <linux/of_net.h>
c5aff182 30#include <linux/phy.h>
0e03f563
JZ
31#include <linux/platform_device.h>
32#include <linux/skbuff.h>
baa11ebc 33#include <net/hwbm.h>
dc35a10f 34#include "mvneta_bm.h"
0e03f563
JZ
35#include <net/ip.h>
36#include <net/ipv6.h>
37#include <net/tso.h>
c5aff182
TP
38
39/* Registers */
40#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
e5bdf689 41#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
dc35a10f
MW
42#define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43#define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44#define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45#define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
c5aff182
TP
46#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
dc35a10f
MW
59#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60#define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61#define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
c5aff182
TP
62#define MVNETA_PORT_RX_RESET 0x1cc0
63#define MVNETA_PORT_RX_DMA_RESET BIT(0)
64#define MVNETA_PHY_ADDR 0x2000
65#define MVNETA_PHY_ADDR_MASK 0x1f
66#define MVNETA_MBUS_RETRY 0x2010
67#define MVNETA_UNIT_INTR_CAUSE 0x2080
68#define MVNETA_UNIT_CONTROL 0x20B0
69#define MVNETA_PHY_POLLING_ENABLE BIT(1)
70#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73#define MVNETA_BASE_ADDR_ENABLE 0x2290
db6ba9a5 74#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
c5aff182
TP
75#define MVNETA_PORT_CONFIG 0x2400
76#define MVNETA_UNI_PROMISC_MODE BIT(0)
77#define MVNETA_DEF_RXQ(q) ((q) << 1)
78#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91#define MVNETA_PORT_CONFIG_EXTEND 0x2404
92#define MVNETA_MAC_ADDR_LOW 0x2414
93#define MVNETA_MAC_ADDR_HIGH 0x2418
94#define MVNETA_SDMA_CONFIG 0x241c
95#define MVNETA_SDMA_BRST_SIZE_16 4
c5aff182
TP
96#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97#define MVNETA_RX_NO_DATA_SWAP BIT(4)
98#define MVNETA_TX_NO_DATA_SWAP BIT(5)
9ad8fef6 99#define MVNETA_DESC_SWAP BIT(6)
c5aff182
TP
100#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101#define MVNETA_PORT_STATUS 0x2444
102#define MVNETA_TX_IN_PRGRS BIT(1)
103#define MVNETA_TX_FIFO_EMPTY BIT(8)
104#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
3f1dd4bc 105#define MVNETA_SERDES_CFG 0x24A0
5445eaf3 106#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
3f1dd4bc 107#define MVNETA_QSGMII_SERDES_PROTO 0x0667
c5aff182
TP
108#define MVNETA_TYPE_PRIO 0x24bc
109#define MVNETA_FORCE_UNI BIT(21)
110#define MVNETA_TXQ_CMD_1 0x24e4
111#define MVNETA_TXQ_CMD 0x2448
112#define MVNETA_TXQ_DISABLE_SHIFT 8
113#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
e483911f
AL
114#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115#define MVNETA_OVERRUN_FRAME_COUNT 0x2488
898b2970
SS
116#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
c5aff182 118#define MVNETA_ACC_MODE 0x2500
dc35a10f 119#define MVNETA_BM_ADDRESS 0x2504
c5aff182
TP
120#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
2dcf75e2 123#define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
50bf8cb6 124#define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
c5aff182 125#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
40ba35e7 126
2dcf75e2
GC
127/* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
40ba35e7 134
c5aff182 135#define MVNETA_INTR_NEW_CAUSE 0x25a0
c5aff182 136#define MVNETA_INTR_NEW_MASK 0x25a4
40ba35e7 137
138/* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
898b2970 149#define MVNETA_MISCINTR_INTR_MASK BIT(31)
40ba35e7 150
c5aff182
TP
151#define MVNETA_INTR_OLD_CAUSE 0x25a8
152#define MVNETA_INTR_OLD_MASK 0x25ac
40ba35e7 153
154/* Data Path Port/Queue Cause Register */
c5aff182
TP
155#define MVNETA_INTR_MISC_CAUSE 0x25b0
156#define MVNETA_INTR_MISC_MASK 0x25b4
40ba35e7 157
158#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160#define MVNETA_CAUSE_PTP BIT(4)
161
162#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167#define MVNETA_CAUSE_PRBS_ERR BIT(12)
168#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
c5aff182
TP
179#define MVNETA_INTR_ENABLE 0x25b8
180#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
dc1aadf6 181#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
40ba35e7 182
c5aff182
TP
183#define MVNETA_RXQ_CMD 0x2680
184#define MVNETA_RXQ_DISABLE_SHIFT 8
185#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188#define MVNETA_GMAC_CTRL_0 0x2c00
189#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192#define MVNETA_GMAC_CTRL_2 0x2c08
898b2970 193#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
a79121d3 194#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
c5aff182
TP
195#define MVNETA_GMAC2_PORT_RGMII BIT(4)
196#define MVNETA_GMAC2_PORT_RESET BIT(6)
197#define MVNETA_GMAC_STATUS 0x2c10
198#define MVNETA_GMAC_LINK_UP BIT(0)
199#define MVNETA_GMAC_SPEED_1000 BIT(1)
200#define MVNETA_GMAC_SPEED_100 BIT(2)
201#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
898b2970 209#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
c5aff182
TP
210#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
71408602 212#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
898b2970 213#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
c5aff182 214#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
71408602 215#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
e483911f 216#define MVNETA_MIB_COUNTERS_BASE 0x3000
c5aff182
TP
217#define MVNETA_MIB_LATE_COLLISION 0x7c
218#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219#define MVNETA_DA_FILT_OTH_MCAST 0x3500
220#define MVNETA_DA_FILT_UCAST_BASE 0x3600
221#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226#define MVNETA_TXQ_DEC_SENT_SHIFT 16
227#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228#define MVNETA_TXQ_SENT_DESC_SHIFT 16
229#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230#define MVNETA_PORT_TX_RESET 0x3cf0
231#define MVNETA_PORT_TX_DMA_RESET BIT(0)
232#define MVNETA_TX_MTU 0x3e0c
233#define MVNETA_TX_TOKEN_SIZE 0x3e14
234#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240/* Descriptor ring Macros */
241#define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244/* Various constants */
245
246/* Coalescing */
06708f81 247#define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
c5aff182
TP
248#define MVNETA_RX_COAL_PKTS 32
249#define MVNETA_RX_COAL_USEC 100
250
6a20c175 251/* The two bytes Marvell header. Either contains a special value used
c5aff182
TP
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259#define MVNETA_MH_SIZE 2
260
261#define MVNETA_VLAN_TAG_LEN 4
262
9110ee07 263#define MVNETA_TX_CSUM_DEF_SIZE 1600
c5aff182 264#define MVNETA_TX_CSUM_MAX_SIZE 9800
dc35a10f
MW
265#define MVNETA_ACC_MODE_EXT1 1
266#define MVNETA_ACC_MODE_EXT2 2
267
268#define MVNETA_MAX_DECODE_WIN 6
c5aff182
TP
269
270/* Timeout constants */
271#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
274
275#define MVNETA_TX_MTU_MAX 0x3ffff
276
9a401dea
GC
277/* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
279 */
280#define MVNETA_RSS_LU_TABLE_SIZE 1
281
2adb719d
EG
282/* TSO header size */
283#define TSO_HEADER_SIZE 128
284
c5aff182
TP
285/* Max number of Rx descriptors */
286#define MVNETA_MAX_RXD 128
287
288/* Max number of Tx descriptors */
289#define MVNETA_MAX_TXD 532
290
8eef5f97
EG
291/* Max number of allowed TCP segments for software TSO */
292#define MVNETA_MAX_TSO_SEGS 100
293
294#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295
c5aff182
TP
296/* descriptor aligned size */
297#define MVNETA_DESC_ALIGNED_SIZE 32
298
299#define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
c66e98c9 302 cache_line_size())
c5aff182 303
2e3173a3
EG
304#define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307
dc35a10f
MW
308#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
c5aff182 310
9b0cdefa
RK
311struct mvneta_statistic {
312 unsigned short offset;
313 unsigned short type;
314 const char name[ETH_GSTRING_LEN];
315};
316
317#define T_REG_32 32
318#define T_REG_64 64
319
320static const struct mvneta_statistic mvneta_statistics[] = {
321 { 0x3000, T_REG_64, "good_octets_received", },
322 { 0x3010, T_REG_32, "good_frames_received", },
323 { 0x3008, T_REG_32, "bad_octets_received", },
324 { 0x3014, T_REG_32, "bad_frames_received", },
325 { 0x3018, T_REG_32, "broadcast_frames_received", },
326 { 0x301c, T_REG_32, "multicast_frames_received", },
327 { 0x3050, T_REG_32, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32, "good_fc_received", },
329 { 0x305c, T_REG_32, "bad_fc_received", },
330 { 0x3060, T_REG_32, "undersize_received", },
331 { 0x3064, T_REG_32, "fragments_received", },
332 { 0x3068, T_REG_32, "oversize_received", },
333 { 0x306c, T_REG_32, "jabber_received", },
334 { 0x3070, T_REG_32, "mac_receive_error", },
335 { 0x3074, T_REG_32, "bad_crc_event", },
336 { 0x3078, T_REG_32, "collision", },
337 { 0x307c, T_REG_32, "late_collision", },
338 { 0x2484, T_REG_32, "rx_discard", },
339 { 0x2488, T_REG_32, "rx_overrun", },
340 { 0x3020, T_REG_32, "frames_64_octets", },
341 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64, "good_octets_sent", },
347 { 0x3040, T_REG_32, "good_frames_sent", },
348 { 0x3044, T_REG_32, "excessive_collision", },
349 { 0x3048, T_REG_32, "multicast_frames_sent", },
350 { 0x304c, T_REG_32, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32, "fc_sent", },
352 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
353};
354
74c41b04 355struct mvneta_pcpu_stats {
c5aff182 356 struct u64_stats_sync syncp;
74c41b04 357 u64 rx_packets;
358 u64 rx_bytes;
359 u64 tx_packets;
360 u64 tx_bytes;
c5aff182
TP
361};
362
12bb03b4
MR
363struct mvneta_pcpu_port {
364 /* Pointer to the shared port */
365 struct mvneta_port *pp;
366
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi;
369
370 /* Cause of the previous interrupt */
371 u32 cause_rx_tx;
372};
373
c5aff182 374struct mvneta_port {
dc35a10f 375 u8 id;
12bb03b4
MR
376 struct mvneta_pcpu_port __percpu *ports;
377 struct mvneta_pcpu_stats __percpu *stats;
378
c5aff182 379 int pkt_size;
8ec2cd48 380 unsigned int frag_size;
c5aff182
TP
381 void __iomem *base;
382 struct mvneta_rx_queue *rxqs;
383 struct mvneta_tx_queue *txqs;
c5aff182 384 struct net_device *dev;
f8642885 385 struct notifier_block cpu_notifier;
90b74c01 386 int rxq_def;
5888511e
GC
387 /* Protect the access to the percpu interrupt registers,
388 * ensuring that the configuration remains coherent.
389 */
390 spinlock_t lock;
120cfa50 391 bool is_stopped;
c5aff182 392
c5aff182 393 /* Core clock */
189dd626 394 struct clk *clk;
15cc4a4a
JZ
395 /* AXI clock */
396 struct clk *clk_bus;
c5aff182
TP
397 u8 mcast_count[256];
398 u16 tx_ring_size;
399 u16 rx_ring_size;
c5aff182
TP
400
401 struct mii_bus *mii_bus;
c5aff182
TP
402 phy_interface_t phy_interface;
403 struct device_node *phy_node;
404 unsigned int link;
405 unsigned int duplex;
406 unsigned int speed;
b65657fc 407 unsigned int tx_csum_limit;
0c0744fc 408 unsigned int use_inband_status:1;
9b0cdefa 409
dc35a10f
MW
410 struct mvneta_bm *bm_priv;
411 struct mvneta_bm_pool *pool_long;
412 struct mvneta_bm_pool *pool_short;
413 int bm_win_id;
414
9b0cdefa 415 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
9a401dea
GC
416
417 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
c5aff182
TP
418};
419
6a20c175 420/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
c5aff182
TP
421 * layout of the transmit and reception DMA descriptors, and their
422 * layout is therefore defined by the hardware design
423 */
6083ed44 424
c5aff182
TP
425#define MVNETA_TX_L3_OFF_SHIFT 0
426#define MVNETA_TX_IP_HLEN_SHIFT 8
427#define MVNETA_TX_L4_UDP BIT(16)
428#define MVNETA_TX_L3_IP6 BIT(17)
429#define MVNETA_TXD_IP_CSUM BIT(18)
430#define MVNETA_TXD_Z_PAD BIT(19)
431#define MVNETA_TXD_L_DESC BIT(20)
432#define MVNETA_TXD_F_DESC BIT(21)
433#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
434 MVNETA_TXD_L_DESC | \
435 MVNETA_TXD_F_DESC)
436#define MVNETA_TX_L4_CSUM_FULL BIT(30)
437#define MVNETA_TX_L4_CSUM_NOT BIT(31)
438
c5aff182 439#define MVNETA_RXD_ERR_CRC 0x0
dc35a10f
MW
440#define MVNETA_RXD_BM_POOL_SHIFT 13
441#define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
c5aff182
TP
442#define MVNETA_RXD_ERR_SUMMARY BIT(16)
443#define MVNETA_RXD_ERR_OVERRUN BIT(17)
444#define MVNETA_RXD_ERR_LEN BIT(18)
445#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
446#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
447#define MVNETA_RXD_L3_IP4 BIT(25)
448#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
449#define MVNETA_RXD_L4_CSUM_OK BIT(30)
450
9ad8fef6 451#if defined(__LITTLE_ENDIAN)
6083ed44
TP
452struct mvneta_tx_desc {
453 u32 command; /* Options used by HW for packet transmitting.*/
454 u16 reserverd1; /* csum_l4 (for future use) */
455 u16 data_size; /* Data size of transmitted packet in bytes */
456 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
457 u32 reserved2; /* hw_cmd - (for future use, PMT) */
458 u32 reserved3[4]; /* Reserved - (for future use) */
459};
460
461struct mvneta_rx_desc {
462 u32 status; /* Info about received packet */
c5aff182
TP
463 u16 reserved1; /* pnc_info - (for future use, PnC) */
464 u16 data_size; /* Size of received packet in bytes */
6083ed44 465
c5aff182
TP
466 u32 buf_phys_addr; /* Physical address of the buffer */
467 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
6083ed44 468
c5aff182
TP
469 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
470 u16 reserved3; /* prefetch_cmd, for future use */
471 u16 reserved4; /* csum_l4 - (for future use, PnC) */
6083ed44 472
c5aff182
TP
473 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
474 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
475};
9ad8fef6
TP
476#else
477struct mvneta_tx_desc {
478 u16 data_size; /* Data size of transmitted packet in bytes */
479 u16 reserverd1; /* csum_l4 (for future use) */
480 u32 command; /* Options used by HW for packet transmitting.*/
481 u32 reserved2; /* hw_cmd - (for future use, PMT) */
482 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
483 u32 reserved3[4]; /* Reserved - (for future use) */
484};
485
486struct mvneta_rx_desc {
487 u16 data_size; /* Size of received packet in bytes */
488 u16 reserved1; /* pnc_info - (for future use, PnC) */
489 u32 status; /* Info about received packet */
490
491 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
492 u32 buf_phys_addr; /* Physical address of the buffer */
493
494 u16 reserved4; /* csum_l4 - (for future use, PnC) */
495 u16 reserved3; /* prefetch_cmd, for future use */
496 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
497
498 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
499 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
500};
501#endif
c5aff182
TP
502
503struct mvneta_tx_queue {
504 /* Number of this TX queue, in the range 0-7 */
505 u8 id;
506
507 /* Number of TX DMA descriptors in the descriptor ring */
508 int size;
509
510 /* Number of currently used TX DMA descriptor in the
6a20c175
TP
511 * descriptor ring
512 */
c5aff182 513 int count;
8eef5f97
EG
514 int tx_stop_threshold;
515 int tx_wake_threshold;
c5aff182
TP
516
517 /* Array of transmitted skb */
518 struct sk_buff **tx_skb;
519
520 /* Index of last TX DMA descriptor that was inserted */
521 int txq_put_index;
522
523 /* Index of the TX DMA descriptor to be cleaned up */
524 int txq_get_index;
525
526 u32 done_pkts_coal;
527
528 /* Virtual address of the TX DMA descriptors array */
529 struct mvneta_tx_desc *descs;
530
531 /* DMA address of the TX DMA descriptors array */
532 dma_addr_t descs_phys;
533
534 /* Index of the last TX DMA descriptor */
535 int last_desc;
536
537 /* Index of the next TX DMA descriptor to process */
538 int next_desc_to_proc;
2adb719d
EG
539
540 /* DMA buffers for TSO headers */
541 char *tso_hdrs;
542
543 /* DMA address of TSO headers */
544 dma_addr_t tso_hdrs_phys;
50bf8cb6
GC
545
546 /* Affinity mask for CPUs*/
547 cpumask_t affinity_mask;
c5aff182
TP
548};
549
550struct mvneta_rx_queue {
551 /* rx queue number, in the range 0-7 */
552 u8 id;
553
554 /* num of rx descriptors in the rx descriptor ring */
555 int size;
556
557 /* counter of times when mvneta_refill() failed */
558 int missed;
559
560 u32 pkts_coal;
561 u32 time_coal;
562
563 /* Virtual address of the RX DMA descriptors array */
564 struct mvneta_rx_desc *descs;
565
566 /* DMA address of the RX DMA descriptors array */
567 dma_addr_t descs_phys;
568
569 /* Index of the last RX DMA descriptor */
570 int last_desc;
571
572 /* Index of the next RX DMA descriptor to process */
573 int next_desc_to_proc;
574};
575
edadb7fa
EG
576/* The hardware supports eight (8) rx queues, but we are only allowing
577 * the first one to be used. Therefore, let's just allocate one queue.
578 */
d8936657 579static int rxq_number = 8;
c5aff182
TP
580static int txq_number = 8;
581
582static int rxq_def;
c5aff182 583
f19fadfc 584static int rx_copybreak __read_mostly = 256;
585
dc35a10f
MW
586/* HW BM need that each port be identify by a unique ID */
587static int global_port_id;
588
c5aff182
TP
589#define MVNETA_DRIVER_NAME "mvneta"
590#define MVNETA_DRIVER_VERSION "1.0"
591
592/* Utility/helper methods */
593
594/* Write helper method */
595static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
596{
597 writel(data, pp->base + offset);
598}
599
600/* Read helper method */
601static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
602{
603 return readl(pp->base + offset);
604}
605
606/* Increment txq get counter */
607static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
608{
609 txq->txq_get_index++;
610 if (txq->txq_get_index == txq->size)
611 txq->txq_get_index = 0;
612}
613
614/* Increment txq put counter */
615static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
616{
617 txq->txq_put_index++;
618 if (txq->txq_put_index == txq->size)
619 txq->txq_put_index = 0;
620}
621
622
623/* Clear all MIB counters */
624static void mvneta_mib_counters_clear(struct mvneta_port *pp)
625{
626 int i;
627 u32 dummy;
628
629 /* Perform dummy reads from MIB counters */
630 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
631 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
e483911f
AL
632 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
633 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
c5aff182
TP
634}
635
636/* Get System Network Statistics */
637struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
638 struct rtnl_link_stats64 *stats)
639{
640 struct mvneta_port *pp = netdev_priv(dev);
641 unsigned int start;
74c41b04 642 int cpu;
c5aff182 643
74c41b04 644 for_each_possible_cpu(cpu) {
645 struct mvneta_pcpu_stats *cpu_stats;
646 u64 rx_packets;
647 u64 rx_bytes;
648 u64 tx_packets;
649 u64 tx_bytes;
c5aff182 650
74c41b04 651 cpu_stats = per_cpu_ptr(pp->stats, cpu);
652 do {
57a7744e 653 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
74c41b04 654 rx_packets = cpu_stats->rx_packets;
655 rx_bytes = cpu_stats->rx_bytes;
656 tx_packets = cpu_stats->tx_packets;
657 tx_bytes = cpu_stats->tx_bytes;
57a7744e 658 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
c5aff182 659
74c41b04 660 stats->rx_packets += rx_packets;
661 stats->rx_bytes += rx_bytes;
662 stats->tx_packets += tx_packets;
663 stats->tx_bytes += tx_bytes;
664 }
c5aff182
TP
665
666 stats->rx_errors = dev->stats.rx_errors;
667 stats->rx_dropped = dev->stats.rx_dropped;
668
669 stats->tx_dropped = dev->stats.tx_dropped;
670
671 return stats;
672}
673
674/* Rx descriptors helper methods */
675
5428213c 676/* Checks whether the RX descriptor having this status is both the first
677 * and the last descriptor for the RX packet. Each RX packet is currently
c5aff182
TP
678 * received through a single RX descriptor, so not having each RX
679 * descriptor with its first and last bits set is an error
680 */
5428213c 681static int mvneta_rxq_desc_is_first_last(u32 status)
c5aff182 682{
5428213c 683 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
c5aff182
TP
684 MVNETA_RXD_FIRST_LAST_DESC;
685}
686
687/* Add number of descriptors ready to receive new packets */
688static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
689 struct mvneta_rx_queue *rxq,
690 int ndescs)
691{
692 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
6a20c175
TP
693 * be added at once
694 */
c5aff182
TP
695 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
696 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
697 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
698 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
699 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
700 }
701
702 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
703 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
704}
705
706/* Get number of RX descriptors occupied by received packets */
707static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
708 struct mvneta_rx_queue *rxq)
709{
710 u32 val;
711
712 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
713 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
714}
715
6a20c175 716/* Update num of rx desc called upon return from rx path or
c5aff182
TP
717 * from mvneta_rxq_drop_pkts().
718 */
719static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
720 struct mvneta_rx_queue *rxq,
721 int rx_done, int rx_filled)
722{
723 u32 val;
724
725 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
726 val = rx_done |
727 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
728 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
729 return;
730 }
731
732 /* Only 255 descriptors can be added at once */
733 while ((rx_done > 0) || (rx_filled > 0)) {
734 if (rx_done <= 0xff) {
735 val = rx_done;
736 rx_done = 0;
737 } else {
738 val = 0xff;
739 rx_done -= 0xff;
740 }
741 if (rx_filled <= 0xff) {
742 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
743 rx_filled = 0;
744 } else {
745 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
746 rx_filled -= 0xff;
747 }
748 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
749 }
750}
751
752/* Get pointer to next RX descriptor to be processed by SW */
753static struct mvneta_rx_desc *
754mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
755{
756 int rx_desc = rxq->next_desc_to_proc;
757
758 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
34e4179d 759 prefetch(rxq->descs + rxq->next_desc_to_proc);
c5aff182
TP
760 return rxq->descs + rx_desc;
761}
762
763/* Change maximum receive size of the port. */
764static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
765{
766 u32 val;
767
768 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
769 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
770 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
771 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
772 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
773}
774
775
776/* Set rx queue offset */
777static void mvneta_rxq_offset_set(struct mvneta_port *pp,
778 struct mvneta_rx_queue *rxq,
779 int offset)
780{
781 u32 val;
782
783 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
784 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
785
786 /* Offset is in */
787 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
788 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
789}
790
791
792/* Tx descriptors helper methods */
793
794/* Update HW with number of TX descriptors to be sent */
795static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
796 struct mvneta_tx_queue *txq,
797 int pend_desc)
798{
799 u32 val;
800
801 /* Only 255 descriptors can be added at once ; Assume caller
6a20c175
TP
802 * process TX desriptors in quanta less than 256
803 */
c5aff182
TP
804 val = pend_desc;
805 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
806}
807
808/* Get pointer to next TX descriptor to be processed (send) by HW */
809static struct mvneta_tx_desc *
810mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
811{
812 int tx_desc = txq->next_desc_to_proc;
813
814 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
815 return txq->descs + tx_desc;
816}
817
818/* Release the last allocated TX descriptor. Useful to handle DMA
6a20c175
TP
819 * mapping failures in the TX path.
820 */
c5aff182
TP
821static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
822{
823 if (txq->next_desc_to_proc == 0)
824 txq->next_desc_to_proc = txq->last_desc - 1;
825 else
826 txq->next_desc_to_proc--;
827}
828
829/* Set rxq buf size */
830static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
831 struct mvneta_rx_queue *rxq,
832 int buf_size)
833{
834 u32 val;
835
836 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
837
838 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
839 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
840
841 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
842}
843
844/* Disable buffer management (BM) */
845static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
846 struct mvneta_rx_queue *rxq)
847{
848 u32 val;
849
850 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
851 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
852 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
853}
854
dc35a10f
MW
855/* Enable buffer management (BM) */
856static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
857 struct mvneta_rx_queue *rxq)
858{
859 u32 val;
860
861 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
862 val |= MVNETA_RXQ_HW_BUF_ALLOC;
863 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
864}
865
866/* Notify HW about port's assignment of pool for bigger packets */
867static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
868 struct mvneta_rx_queue *rxq)
869{
870 u32 val;
871
872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
873 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
874 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
875
876 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
877}
878
879/* Notify HW about port's assignment of pool for smaller packets */
880static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
881 struct mvneta_rx_queue *rxq)
882{
883 u32 val;
884
885 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
886 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
887 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
888
889 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
890}
891
892/* Set port's receive buffer size for assigned BM pool */
893static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
894 int buf_size,
895 u8 pool_id)
896{
897 u32 val;
898
899 if (!IS_ALIGNED(buf_size, 8)) {
900 dev_warn(pp->dev->dev.parent,
901 "illegal buf_size value %d, round to %d\n",
902 buf_size, ALIGN(buf_size, 8));
903 buf_size = ALIGN(buf_size, 8);
904 }
905
906 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
907 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
908 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
909}
910
911/* Configure MBUS window in order to enable access BM internal SRAM */
912static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
913 u8 target, u8 attr)
914{
915 u32 win_enable, win_protect;
916 int i;
917
918 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
919
920 if (pp->bm_win_id < 0) {
921 /* Find first not occupied window */
922 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
923 if (win_enable & (1 << i)) {
924 pp->bm_win_id = i;
925 break;
926 }
927 }
928 if (i == MVNETA_MAX_DECODE_WIN)
929 return -ENOMEM;
930 } else {
931 i = pp->bm_win_id;
932 }
933
934 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
935 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
936
937 if (i < 4)
938 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
939
940 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
941 (attr << 8) | target);
942
943 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
944
945 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
946 win_protect |= 3 << (2 * i);
947 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
948
949 win_enable &= ~(1 << i);
950 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
951
952 return 0;
953}
954
955/* Assign and initialize pools for port. In case of fail
956 * buffer manager will remain disabled for current port.
957 */
958static int mvneta_bm_port_init(struct platform_device *pdev,
959 struct mvneta_port *pp)
960{
961 struct device_node *dn = pdev->dev.of_node;
962 u32 long_pool_id, short_pool_id, wsize;
963 u8 target, attr;
964 int err;
965
966 /* Get BM window information */
967 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
968 &target, &attr);
969 if (err < 0)
970 return err;
971
972 pp->bm_win_id = -1;
973
974 /* Open NETA -> BM window */
975 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
976 target, attr);
977 if (err < 0) {
978 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
979 return err;
980 }
981
982 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
983 netdev_info(pp->dev, "missing long pool id\n");
984 return -EINVAL;
985 }
986
987 /* Create port's long pool depending on mtu */
988 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
989 MVNETA_BM_LONG, pp->id,
990 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
991 if (!pp->pool_long) {
992 netdev_info(pp->dev, "fail to obtain long pool for port\n");
993 return -ENOMEM;
994 }
995
996 pp->pool_long->port_map |= 1 << pp->id;
997
998 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
999 pp->pool_long->id);
1000
1001 /* If short pool id is not defined, assume using single pool */
1002 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1003 short_pool_id = long_pool_id;
1004
1005 /* Create port's short pool */
1006 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1007 MVNETA_BM_SHORT, pp->id,
1008 MVNETA_BM_SHORT_PKT_SIZE);
1009 if (!pp->pool_short) {
1010 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1011 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1012 return -ENOMEM;
1013 }
1014
1015 if (short_pool_id != long_pool_id) {
1016 pp->pool_short->port_map |= 1 << pp->id;
1017 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1018 pp->pool_short->id);
1019 }
1020
1021 return 0;
1022}
1023
1024/* Update settings of a pool for bigger packets */
1025static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1026{
1027 struct mvneta_bm_pool *bm_pool = pp->pool_long;
baa11ebc 1028 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
dc35a10f
MW
1029 int num;
1030
1031 /* Release all buffers from long pool */
1032 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
baa11ebc 1033 if (hwbm_pool->buf_num) {
dc35a10f
MW
1034 WARN(1, "cannot free all buffers in pool %d\n",
1035 bm_pool->id);
1036 goto bm_mtu_err;
1037 }
1038
1039 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1040 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
baa11ebc
GC
1041 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1042 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
dc35a10f
MW
1043
1044 /* Fill entire long pool */
baa11ebc
GC
1045 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1046 if (num != hwbm_pool->size) {
dc35a10f 1047 WARN(1, "pool %d: %d of %d allocated\n",
baa11ebc 1048 bm_pool->id, num, hwbm_pool->size);
dc35a10f
MW
1049 goto bm_mtu_err;
1050 }
1051 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1052
1053 return;
1054
1055bm_mtu_err:
1056 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1057 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1058
1059 pp->bm_priv = NULL;
1060 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1061 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1062}
1063
c5aff182
TP
1064/* Start the Ethernet port RX and TX activity */
1065static void mvneta_port_up(struct mvneta_port *pp)
1066{
1067 int queue;
1068 u32 q_map;
1069
1070 /* Enable all initialized TXs. */
c5aff182
TP
1071 q_map = 0;
1072 for (queue = 0; queue < txq_number; queue++) {
1073 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1074 if (txq->descs != NULL)
1075 q_map |= (1 << queue);
1076 }
1077 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1078
1079 /* Enable all initialized RXQs. */
2dcf75e2
GC
1080 for (queue = 0; queue < rxq_number; queue++) {
1081 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1082
1083 if (rxq->descs != NULL)
1084 q_map |= (1 << queue);
1085 }
1086 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
c5aff182
TP
1087}
1088
1089/* Stop the Ethernet port activity */
1090static void mvneta_port_down(struct mvneta_port *pp)
1091{
1092 u32 val;
1093 int count;
1094
1095 /* Stop Rx port activity. Check port Rx activity. */
1096 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1097
1098 /* Issue stop command for active channels only */
1099 if (val != 0)
1100 mvreg_write(pp, MVNETA_RXQ_CMD,
1101 val << MVNETA_RXQ_DISABLE_SHIFT);
1102
1103 /* Wait for all Rx activity to terminate. */
1104 count = 0;
1105 do {
1106 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1107 netdev_warn(pp->dev,
0838abb3 1108 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
c5aff182
TP
1109 val);
1110 break;
1111 }
1112 mdelay(1);
1113
1114 val = mvreg_read(pp, MVNETA_RXQ_CMD);
a3703fb3 1115 } while (val & MVNETA_RXQ_ENABLE_MASK);
c5aff182
TP
1116
1117 /* Stop Tx port activity. Check port Tx activity. Issue stop
6a20c175
TP
1118 * command for active channels only
1119 */
c5aff182
TP
1120 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1121
1122 if (val != 0)
1123 mvreg_write(pp, MVNETA_TXQ_CMD,
1124 (val << MVNETA_TXQ_DISABLE_SHIFT));
1125
1126 /* Wait for all Tx activity to terminate. */
1127 count = 0;
1128 do {
1129 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1130 netdev_warn(pp->dev,
1131 "TIMEOUT for TX stopped status=0x%08x\n",
1132 val);
1133 break;
1134 }
1135 mdelay(1);
1136
1137 /* Check TX Command reg that all Txqs are stopped */
1138 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1139
a3703fb3 1140 } while (val & MVNETA_TXQ_ENABLE_MASK);
c5aff182
TP
1141
1142 /* Double check to verify that TX FIFO is empty */
1143 count = 0;
1144 do {
1145 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1146 netdev_warn(pp->dev,
0838abb3 1147 "TX FIFO empty timeout status=0x%08x\n",
c5aff182
TP
1148 val);
1149 break;
1150 }
1151 mdelay(1);
1152
1153 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1154 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1155 (val & MVNETA_TX_IN_PRGRS));
1156
1157 udelay(200);
1158}
1159
1160/* Enable the port by setting the port enable bit of the MAC control register */
1161static void mvneta_port_enable(struct mvneta_port *pp)
1162{
1163 u32 val;
1164
1165 /* Enable port */
1166 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1167 val |= MVNETA_GMAC0_PORT_ENABLE;
1168 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1169}
1170
1171/* Disable the port and wait for about 200 usec before retuning */
1172static void mvneta_port_disable(struct mvneta_port *pp)
1173{
1174 u32 val;
1175
1176 /* Reset the Enable bit in the Serial Control Register */
1177 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1178 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1179 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1180
1181 udelay(200);
1182}
1183
1184/* Multicast tables methods */
1185
1186/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1187static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1188{
1189 int offset;
1190 u32 val;
1191
1192 if (queue == -1) {
1193 val = 0;
1194 } else {
1195 val = 0x1 | (queue << 1);
1196 val |= (val << 24) | (val << 16) | (val << 8);
1197 }
1198
1199 for (offset = 0; offset <= 0xc; offset += 4)
1200 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1201}
1202
1203/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1204static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1205{
1206 int offset;
1207 u32 val;
1208
1209 if (queue == -1) {
1210 val = 0;
1211 } else {
1212 val = 0x1 | (queue << 1);
1213 val |= (val << 24) | (val << 16) | (val << 8);
1214 }
1215
1216 for (offset = 0; offset <= 0xfc; offset += 4)
1217 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1218
1219}
1220
1221/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1222static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1223{
1224 int offset;
1225 u32 val;
1226
1227 if (queue == -1) {
1228 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1229 val = 0;
1230 } else {
1231 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1232 val = 0x1 | (queue << 1);
1233 val |= (val << 24) | (val << 16) | (val << 8);
1234 }
1235
1236 for (offset = 0; offset <= 0xfc; offset += 4)
1237 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1238}
1239
0c0744fc
SS
1240static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1241{
1242 u32 val;
1243
1244 if (enable) {
1245 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1246 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1247 MVNETA_GMAC_FORCE_LINK_DOWN |
1248 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1249 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1250 MVNETA_GMAC_AN_SPEED_EN |
1251 MVNETA_GMAC_AN_DUPLEX_EN;
1252 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1253
1254 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1255 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1256 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1257
1258 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1259 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1260 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1261 } else {
1262 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1263 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1264 MVNETA_GMAC_AN_SPEED_EN |
1265 MVNETA_GMAC_AN_DUPLEX_EN);
1266 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1267
1268 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1269 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1270 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1271
1272 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1273 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1274 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1275 }
1276}
1277
db488c10
GC
1278static void mvneta_percpu_unmask_interrupt(void *arg)
1279{
1280 struct mvneta_port *pp = arg;
1281
1282 /* All the queue are unmasked, but actually only the ones
1283 * mapped to this CPU will be unmasked
1284 */
1285 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1286 MVNETA_RX_INTR_MASK_ALL |
1287 MVNETA_TX_INTR_MASK_ALL |
1288 MVNETA_MISCINTR_INTR_MASK);
1289}
1290
1291static void mvneta_percpu_mask_interrupt(void *arg)
1292{
1293 struct mvneta_port *pp = arg;
1294
1295 /* All the queue are masked, but actually only the ones
1296 * mapped to this CPU will be masked
1297 */
1298 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1299 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1300 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1301}
1302
1303static void mvneta_percpu_clear_intr_cause(void *arg)
1304{
1305 struct mvneta_port *pp = arg;
1306
1307 /* All the queue are cleared, but actually only the ones
1308 * mapped to this CPU will be cleared
1309 */
1310 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1311 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1312 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1313}
1314
c5aff182
TP
1315/* This method sets defaults to the NETA port:
1316 * Clears interrupt Cause and Mask registers.
1317 * Clears all MAC tables.
1318 * Sets defaults to all registers.
1319 * Resets RX and TX descriptor rings.
1320 * Resets PHY.
1321 * This method can be called after mvneta_port_down() to return the port
1322 * settings to defaults.
1323 */
1324static void mvneta_defaults_set(struct mvneta_port *pp)
1325{
1326 int cpu;
1327 int queue;
1328 u32 val;
2dcf75e2 1329 int max_cpu = num_present_cpus();
c5aff182
TP
1330
1331 /* Clear all Cause registers */
db488c10 1332 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
c5aff182
TP
1333
1334 /* Mask all interrupts */
db488c10 1335 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
c5aff182
TP
1336 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1337
1338 /* Enable MBUS Retry bit16 */
1339 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1340
50bf8cb6
GC
1341 /* Set CPU queue access map. CPUs are assigned to the RX and
1342 * TX queues modulo their number. If there is only one TX
1343 * queue then it is assigned to the CPU associated to the
1344 * default RX queue.
6a20c175 1345 */
2dcf75e2
GC
1346 for_each_present_cpu(cpu) {
1347 int rxq_map = 0, txq_map = 0;
50bf8cb6 1348 int rxq, txq;
2dcf75e2
GC
1349
1350 for (rxq = 0; rxq < rxq_number; rxq++)
1351 if ((rxq % max_cpu) == cpu)
1352 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1353
50bf8cb6
GC
1354 for (txq = 0; txq < txq_number; txq++)
1355 if ((txq % max_cpu) == cpu)
1356 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1357
1358 /* With only one TX queue we configure a special case
1359 * which will allow to get all the irq on a single
1360 * CPU
1361 */
1362 if (txq_number == 1)
1363 txq_map = (cpu == pp->rxq_def) ?
1364 MVNETA_CPU_TXQ_ACCESS(1) : 0;
2dcf75e2
GC
1365
1366 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1367 }
c5aff182
TP
1368
1369 /* Reset RX and TX DMAs */
1370 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1371 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1372
1373 /* Disable Legacy WRR, Disable EJP, Release from reset */
1374 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1375 for (queue = 0; queue < txq_number; queue++) {
1376 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1377 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1378 }
1379
1380 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1381 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1382
1383 /* Set Port Acceleration Mode */
dc35a10f
MW
1384 if (pp->bm_priv)
1385 /* HW buffer management + legacy parser */
1386 val = MVNETA_ACC_MODE_EXT2;
1387 else
1388 /* SW buffer management + legacy parser */
1389 val = MVNETA_ACC_MODE_EXT1;
c5aff182
TP
1390 mvreg_write(pp, MVNETA_ACC_MODE, val);
1391
dc35a10f
MW
1392 if (pp->bm_priv)
1393 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1394
c5aff182 1395 /* Update val of portCfg register accordingly with all RxQueue types */
90b74c01 1396 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
c5aff182
TP
1397 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1398
1399 val = 0;
1400 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1401 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1402
1403 /* Build PORT_SDMA_CONFIG_REG */
1404 val = 0;
1405
1406 /* Default burst size */
1407 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1408 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
9ad8fef6 1409 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
c5aff182 1410
9ad8fef6
TP
1411#if defined(__BIG_ENDIAN)
1412 val |= MVNETA_DESC_SWAP;
1413#endif
c5aff182
TP
1414
1415 /* Assign port SDMA configuration */
1416 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1417
71408602
TP
1418 /* Disable PHY polling in hardware, since we're using the
1419 * kernel phylib to do this.
1420 */
1421 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1422 val &= ~MVNETA_PHY_POLLING_ENABLE;
1423 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1424
0c0744fc 1425 mvneta_set_autoneg(pp, pp->use_inband_status);
c5aff182
TP
1426 mvneta_set_ucast_table(pp, -1);
1427 mvneta_set_special_mcast_table(pp, -1);
1428 mvneta_set_other_mcast_table(pp, -1);
1429
1430 /* Set port interrupt enable register - default enable all */
1431 mvreg_write(pp, MVNETA_INTR_ENABLE,
1432 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1433 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
e483911f
AL
1434
1435 mvneta_mib_counters_clear(pp);
c5aff182
TP
1436}
1437
1438/* Set max sizes for tx queues */
1439static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1440
1441{
1442 u32 val, size, mtu;
1443 int queue;
1444
1445 mtu = max_tx_size * 8;
1446 if (mtu > MVNETA_TX_MTU_MAX)
1447 mtu = MVNETA_TX_MTU_MAX;
1448
1449 /* Set MTU */
1450 val = mvreg_read(pp, MVNETA_TX_MTU);
1451 val &= ~MVNETA_TX_MTU_MAX;
1452 val |= mtu;
1453 mvreg_write(pp, MVNETA_TX_MTU, val);
1454
1455 /* TX token size and all TXQs token size must be larger that MTU */
1456 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1457
1458 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1459 if (size < mtu) {
1460 size = mtu;
1461 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1462 val |= size;
1463 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1464 }
1465 for (queue = 0; queue < txq_number; queue++) {
1466 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1467
1468 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1469 if (size < mtu) {
1470 size = mtu;
1471 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1472 val |= size;
1473 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1474 }
1475 }
1476}
1477
1478/* Set unicast address */
1479static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1480 int queue)
1481{
1482 unsigned int unicast_reg;
1483 unsigned int tbl_offset;
1484 unsigned int reg_offset;
1485
1486 /* Locate the Unicast table entry */
1487 last_nibble = (0xf & last_nibble);
1488
1489 /* offset from unicast tbl base */
1490 tbl_offset = (last_nibble / 4) * 4;
1491
1492 /* offset within the above reg */
1493 reg_offset = last_nibble % 4;
1494
1495 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1496
1497 if (queue == -1) {
1498 /* Clear accepts frame bit at specified unicast DA tbl entry */
1499 unicast_reg &= ~(0xff << (8 * reg_offset));
1500 } else {
1501 unicast_reg &= ~(0xff << (8 * reg_offset));
1502 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1503 }
1504
1505 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1506}
1507
1508/* Set mac address */
1509static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1510 int queue)
1511{
1512 unsigned int mac_h;
1513 unsigned int mac_l;
1514
1515 if (queue != -1) {
1516 mac_l = (addr[4] << 8) | (addr[5]);
1517 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1518 (addr[2] << 8) | (addr[3] << 0);
1519
1520 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1521 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1522 }
1523
1524 /* Accept frames of this address */
1525 mvneta_set_ucast_addr(pp, addr[5], queue);
1526}
1527
6a20c175
TP
1528/* Set the number of packets that will be received before RX interrupt
1529 * will be generated by HW.
c5aff182
TP
1530 */
1531static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1532 struct mvneta_rx_queue *rxq, u32 value)
1533{
1534 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1535 value | MVNETA_RXQ_NON_OCCUPIED(0));
1536 rxq->pkts_coal = value;
1537}
1538
6a20c175
TP
1539/* Set the time delay in usec before RX interrupt will be generated by
1540 * HW.
c5aff182
TP
1541 */
1542static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1543 struct mvneta_rx_queue *rxq, u32 value)
1544{
189dd626
TP
1545 u32 val;
1546 unsigned long clk_rate;
1547
1548 clk_rate = clk_get_rate(pp->clk);
1549 val = (clk_rate / 1000000) * value;
c5aff182
TP
1550
1551 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1552 rxq->time_coal = value;
1553}
1554
1555/* Set threshold for TX_DONE pkts coalescing */
1556static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1557 struct mvneta_tx_queue *txq, u32 value)
1558{
1559 u32 val;
1560
1561 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1562
1563 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1564 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1565
1566 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1567
1568 txq->done_pkts_coal = value;
1569}
1570
c5aff182
TP
1571/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1572static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1573 u32 phys_addr, u32 cookie)
1574{
1575 rx_desc->buf_cookie = cookie;
1576 rx_desc->buf_phys_addr = phys_addr;
1577}
1578
1579/* Decrement sent descriptors counter */
1580static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1581 struct mvneta_tx_queue *txq,
1582 int sent_desc)
1583{
1584 u32 val;
1585
1586 /* Only 255 TX descriptors can be updated at once */
1587 while (sent_desc > 0xff) {
1588 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1589 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1590 sent_desc = sent_desc - 0xff;
1591 }
1592
1593 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1594 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1595}
1596
1597/* Get number of TX descriptors already sent by HW */
1598static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1599 struct mvneta_tx_queue *txq)
1600{
1601 u32 val;
1602 int sent_desc;
1603
1604 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1605 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1606 MVNETA_TXQ_SENT_DESC_SHIFT;
1607
1608 return sent_desc;
1609}
1610
6a20c175 1611/* Get number of sent descriptors and decrement counter.
c5aff182
TP
1612 * The number of sent descriptors is returned.
1613 */
1614static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1615 struct mvneta_tx_queue *txq)
1616{
1617 int sent_desc;
1618
1619 /* Get number of sent descriptors */
1620 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1621
1622 /* Decrement sent descriptors counter */
1623 if (sent_desc)
1624 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1625
1626 return sent_desc;
1627}
1628
1629/* Set TXQ descriptors fields relevant for CSUM calculation */
1630static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1631 int ip_hdr_len, int l4_proto)
1632{
1633 u32 command;
1634
1635 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
6a20c175
TP
1636 * G_L4_chk, L4_type; required only for checksum
1637 * calculation
1638 */
c5aff182
TP
1639 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1640 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1641
0a198587 1642 if (l3_proto == htons(ETH_P_IP))
c5aff182
TP
1643 command |= MVNETA_TXD_IP_CSUM;
1644 else
1645 command |= MVNETA_TX_L3_IP6;
1646
1647 if (l4_proto == IPPROTO_TCP)
1648 command |= MVNETA_TX_L4_CSUM_FULL;
1649 else if (l4_proto == IPPROTO_UDP)
1650 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1651 else
1652 command |= MVNETA_TX_L4_CSUM_NOT;
1653
1654 return command;
1655}
1656
1657
1658/* Display more error info */
1659static void mvneta_rx_error(struct mvneta_port *pp,
1660 struct mvneta_rx_desc *rx_desc)
1661{
1662 u32 status = rx_desc->status;
1663
5428213c 1664 if (!mvneta_rxq_desc_is_first_last(status)) {
c5aff182
TP
1665 netdev_err(pp->dev,
1666 "bad rx status %08x (buffer oversize), size=%d\n",
5428213c 1667 status, rx_desc->data_size);
c5aff182
TP
1668 return;
1669 }
1670
1671 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1672 case MVNETA_RXD_ERR_CRC:
1673 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1674 status, rx_desc->data_size);
1675 break;
1676 case MVNETA_RXD_ERR_OVERRUN:
1677 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1678 status, rx_desc->data_size);
1679 break;
1680 case MVNETA_RXD_ERR_LEN:
1681 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1682 status, rx_desc->data_size);
1683 break;
1684 case MVNETA_RXD_ERR_RESOURCE:
1685 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1686 status, rx_desc->data_size);
1687 break;
1688 }
1689}
1690
5428213c 1691/* Handle RX checksum offload based on the descriptor's status */
1692static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
c5aff182
TP
1693 struct sk_buff *skb)
1694{
5428213c 1695 if ((status & MVNETA_RXD_L3_IP4) &&
1696 (status & MVNETA_RXD_L4_CSUM_OK)) {
c5aff182
TP
1697 skb->csum = 0;
1698 skb->ip_summed = CHECKSUM_UNNECESSARY;
1699 return;
1700 }
1701
1702 skb->ip_summed = CHECKSUM_NONE;
1703}
1704
6c498974 1705/* Return tx queue pointer (find last set bit) according to <cause> returned
1706 * form tx_done reg. <cause> must not be null. The return value is always a
1707 * valid queue for matching the first one found in <cause>.
1708 */
c5aff182
TP
1709static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1710 u32 cause)
1711{
1712 int queue = fls(cause) - 1;
1713
6c498974 1714 return &pp->txqs[queue];
c5aff182
TP
1715}
1716
1717/* Free tx queue skbuffs */
1718static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1719 struct mvneta_tx_queue *txq, int num)
1720{
1721 int i;
1722
1723 for (i = 0; i < num; i++) {
1724 struct mvneta_tx_desc *tx_desc = txq->descs +
1725 txq->txq_get_index;
1726 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1727
1728 mvneta_txq_inc_get(txq);
1729
2e3173a3
EG
1730 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1731 dma_unmap_single(pp->dev->dev.parent,
1732 tx_desc->buf_phys_addr,
1733 tx_desc->data_size, DMA_TO_DEVICE);
ba7e46ef
EG
1734 if (!skb)
1735 continue;
c5aff182
TP
1736 dev_kfree_skb_any(skb);
1737 }
1738}
1739
1740/* Handle end of transmission */
cd713199 1741static void mvneta_txq_done(struct mvneta_port *pp,
c5aff182
TP
1742 struct mvneta_tx_queue *txq)
1743{
1744 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1745 int tx_done;
1746
1747 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
cd713199
AE
1748 if (!tx_done)
1749 return;
1750
c5aff182
TP
1751 mvneta_txq_bufs_free(pp, txq, tx_done);
1752
1753 txq->count -= tx_done;
1754
1755 if (netif_tx_queue_stopped(nq)) {
8eef5f97 1756 if (txq->count <= txq->tx_wake_threshold)
c5aff182
TP
1757 netif_tx_wake_queue(nq);
1758 }
c5aff182
TP
1759}
1760
dc35a10f 1761void *mvneta_frag_alloc(unsigned int frag_size)
8ec2cd48 1762{
dc35a10f
MW
1763 if (likely(frag_size <= PAGE_SIZE))
1764 return netdev_alloc_frag(frag_size);
8ec2cd48 1765 else
dc35a10f 1766 return kmalloc(frag_size, GFP_ATOMIC);
8ec2cd48 1767}
dc35a10f 1768EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
8ec2cd48 1769
dc35a10f 1770void mvneta_frag_free(unsigned int frag_size, void *data)
8ec2cd48 1771{
dc35a10f 1772 if (likely(frag_size <= PAGE_SIZE))
13dc0d2b 1773 skb_free_frag(data);
8ec2cd48 1774 else
1775 kfree(data);
1776}
dc35a10f 1777EXPORT_SYMBOL_GPL(mvneta_frag_free);
8ec2cd48 1778
dc35a10f 1779/* Refill processing for SW buffer management */
c5aff182
TP
1780static int mvneta_rx_refill(struct mvneta_port *pp,
1781 struct mvneta_rx_desc *rx_desc)
1782
1783{
1784 dma_addr_t phys_addr;
8ec2cd48 1785 void *data;
c5aff182 1786
dc35a10f 1787 data = mvneta_frag_alloc(pp->frag_size);
8ec2cd48 1788 if (!data)
c5aff182
TP
1789 return -ENOMEM;
1790
8ec2cd48 1791 phys_addr = dma_map_single(pp->dev->dev.parent, data,
c5aff182
TP
1792 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1793 DMA_FROM_DEVICE);
1794 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
dc35a10f 1795 mvneta_frag_free(pp->frag_size, data);
c5aff182
TP
1796 return -ENOMEM;
1797 }
1798
8ec2cd48 1799 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
c5aff182
TP
1800 return 0;
1801}
1802
1803/* Handle tx checksum */
1804static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1805{
1806 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1807 int ip_hdr_len = 0;
817dbfa5 1808 __be16 l3_proto = vlan_get_protocol(skb);
c5aff182
TP
1809 u8 l4_proto;
1810
817dbfa5 1811 if (l3_proto == htons(ETH_P_IP)) {
c5aff182
TP
1812 struct iphdr *ip4h = ip_hdr(skb);
1813
1814 /* Calculate IPv4 checksum and L4 checksum */
1815 ip_hdr_len = ip4h->ihl;
1816 l4_proto = ip4h->protocol;
817dbfa5 1817 } else if (l3_proto == htons(ETH_P_IPV6)) {
c5aff182
TP
1818 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1819
1820 /* Read l4_protocol from one of IPv6 extra headers */
1821 if (skb_network_header_len(skb) > 0)
1822 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1823 l4_proto = ip6h->nexthdr;
1824 } else
1825 return MVNETA_TX_L4_CSUM_NOT;
1826
1827 return mvneta_txq_desc_csum(skb_network_offset(skb),
817dbfa5 1828 l3_proto, ip_hdr_len, l4_proto);
c5aff182
TP
1829 }
1830
1831 return MVNETA_TX_L4_CSUM_NOT;
1832}
1833
c5aff182
TP
1834/* Drop packets received by the RXQ and free buffers */
1835static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1836 struct mvneta_rx_queue *rxq)
1837{
1838 int rx_done, i;
1839
1840 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
dc35a10f
MW
1841 if (rx_done)
1842 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1843
1844 if (pp->bm_priv) {
1845 for (i = 0; i < rx_done; i++) {
1846 struct mvneta_rx_desc *rx_desc =
1847 mvneta_rxq_next_desc_get(rxq);
1848 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1849 struct mvneta_bm_pool *bm_pool;
1850
1851 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1852 /* Return dropped buffer to the pool */
1853 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1854 rx_desc->buf_phys_addr);
1855 }
1856 return;
1857 }
1858
c5aff182
TP
1859 for (i = 0; i < rxq->size; i++) {
1860 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
8ec2cd48 1861 void *data = (void *)rx_desc->buf_cookie;
c5aff182 1862
c5aff182 1863 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
a328f3a0 1864 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
dc35a10f 1865 mvneta_frag_free(pp->frag_size, data);
c5aff182 1866 }
dc35a10f 1867}
c5aff182 1868
dc35a10f
MW
1869/* Main rx processing when using software buffer management */
1870static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1871 struct mvneta_rx_queue *rxq)
1872{
1873 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1874 struct net_device *dev = pp->dev;
1875 int rx_done;
1876 u32 rcvd_pkts = 0;
1877 u32 rcvd_bytes = 0;
1878
1879 /* Get number of received packets */
1880 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1881
1882 if (rx_todo > rx_done)
1883 rx_todo = rx_done;
1884
1885 rx_done = 0;
1886
1887 /* Fairness NAPI loop */
1888 while (rx_done < rx_todo) {
1889 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1890 struct sk_buff *skb;
1891 unsigned char *data;
1892 dma_addr_t phys_addr;
1893 u32 rx_status, frag_size;
1894 int rx_bytes, err;
1895
1896 rx_done++;
1897 rx_status = rx_desc->status;
1898 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1899 data = (unsigned char *)rx_desc->buf_cookie;
1900 phys_addr = rx_desc->buf_phys_addr;
1901
1902 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1903 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1904err_drop_frame:
1905 dev->stats.rx_errors++;
1906 mvneta_rx_error(pp, rx_desc);
1907 /* leave the descriptor untouched */
1908 continue;
1909 }
1910
1911 if (rx_bytes <= rx_copybreak) {
1912 /* better copy a small frame and not unmap the DMA region */
1913 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1914 if (unlikely(!skb))
1915 goto err_drop_frame;
1916
1917 dma_sync_single_range_for_cpu(dev->dev.parent,
1918 rx_desc->buf_phys_addr,
1919 MVNETA_MH_SIZE + NET_SKB_PAD,
1920 rx_bytes,
1921 DMA_FROM_DEVICE);
1922 memcpy(skb_put(skb, rx_bytes),
1923 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1924 rx_bytes);
1925
1926 skb->protocol = eth_type_trans(skb, dev);
1927 mvneta_rx_csum(pp, rx_status, skb);
1928 napi_gro_receive(&port->napi, skb);
1929
1930 rcvd_pkts++;
1931 rcvd_bytes += rx_bytes;
1932
1933 /* leave the descriptor and buffer untouched */
1934 continue;
1935 }
1936
1937 /* Refill processing */
1938 err = mvneta_rx_refill(pp, rx_desc);
1939 if (err) {
1940 netdev_err(dev, "Linux processing - Can't refill\n");
1941 rxq->missed++;
1942 goto err_drop_frame;
1943 }
1944
1945 frag_size = pp->frag_size;
1946
1947 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1948
1949 /* After refill old buffer has to be unmapped regardless
1950 * the skb is successfully built or not.
1951 */
1952 dma_unmap_single(dev->dev.parent, phys_addr,
1953 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1954 DMA_FROM_DEVICE);
1955
1956 if (!skb)
1957 goto err_drop_frame;
1958
1959 rcvd_pkts++;
1960 rcvd_bytes += rx_bytes;
1961
1962 /* Linux processing */
1963 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1964 skb_put(skb, rx_bytes);
1965
1966 skb->protocol = eth_type_trans(skb, dev);
1967
1968 mvneta_rx_csum(pp, rx_status, skb);
1969
1970 napi_gro_receive(&port->napi, skb);
1971 }
1972
1973 if (rcvd_pkts) {
1974 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1975
1976 u64_stats_update_begin(&stats->syncp);
1977 stats->rx_packets += rcvd_pkts;
1978 stats->rx_bytes += rcvd_bytes;
1979 u64_stats_update_end(&stats->syncp);
1980 }
1981
1982 /* Update rxq management counters */
1983 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1984
1985 return rx_done;
c5aff182
TP
1986}
1987
dc35a10f
MW
1988/* Main rx processing when using hardware buffer management */
1989static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1990 struct mvneta_rx_queue *rxq)
c5aff182 1991{
12bb03b4 1992 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
c5aff182 1993 struct net_device *dev = pp->dev;
a84e3289 1994 int rx_done;
dc4277dd 1995 u32 rcvd_pkts = 0;
1996 u32 rcvd_bytes = 0;
c5aff182
TP
1997
1998 /* Get number of received packets */
1999 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2000
2001 if (rx_todo > rx_done)
2002 rx_todo = rx_done;
2003
2004 rx_done = 0;
c5aff182
TP
2005
2006 /* Fairness NAPI loop */
2007 while (rx_done < rx_todo) {
2008 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
dc35a10f 2009 struct mvneta_bm_pool *bm_pool = NULL;
c5aff182 2010 struct sk_buff *skb;
8ec2cd48 2011 unsigned char *data;
daf158d0 2012 dma_addr_t phys_addr;
dc35a10f 2013 u32 rx_status, frag_size;
c5aff182 2014 int rx_bytes, err;
dc35a10f 2015 u8 pool_id;
c5aff182 2016
c5aff182 2017 rx_done++;
c5aff182 2018 rx_status = rx_desc->status;
f19fadfc 2019 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
8ec2cd48 2020 data = (unsigned char *)rx_desc->buf_cookie;
daf158d0 2021 phys_addr = rx_desc->buf_phys_addr;
dc35a10f
MW
2022 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2023 bm_pool = &pp->bm_priv->bm_pools[pool_id];
c5aff182 2024
5428213c 2025 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
f19fadfc 2026 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
dc35a10f
MW
2027err_drop_frame_ret_pool:
2028 /* Return the buffer to the pool */
2029 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2030 rx_desc->buf_phys_addr);
2031err_drop_frame:
c5aff182
TP
2032 dev->stats.rx_errors++;
2033 mvneta_rx_error(pp, rx_desc);
8ec2cd48 2034 /* leave the descriptor untouched */
c5aff182
TP
2035 continue;
2036 }
2037
f19fadfc 2038 if (rx_bytes <= rx_copybreak) {
2039 /* better copy a small frame and not unmap the DMA region */
2040 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2041 if (unlikely(!skb))
dc35a10f 2042 goto err_drop_frame_ret_pool;
f19fadfc 2043
2044 dma_sync_single_range_for_cpu(dev->dev.parent,
2045 rx_desc->buf_phys_addr,
2046 MVNETA_MH_SIZE + NET_SKB_PAD,
2047 rx_bytes,
2048 DMA_FROM_DEVICE);
2049 memcpy(skb_put(skb, rx_bytes),
2050 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2051 rx_bytes);
2052
2053 skb->protocol = eth_type_trans(skb, dev);
2054 mvneta_rx_csum(pp, rx_status, skb);
12bb03b4 2055 napi_gro_receive(&port->napi, skb);
f19fadfc 2056
2057 rcvd_pkts++;
2058 rcvd_bytes += rx_bytes;
2059
dc35a10f
MW
2060 /* Return the buffer to the pool */
2061 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2062 rx_desc->buf_phys_addr);
2063
f19fadfc 2064 /* leave the descriptor and buffer untouched */
2065 continue;
2066 }
2067
a84e3289 2068 /* Refill processing */
baa11ebc 2069 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
a84e3289
SG
2070 if (err) {
2071 netdev_err(dev, "Linux processing - Can't refill\n");
2072 rxq->missed++;
dc35a10f 2073 goto err_drop_frame_ret_pool;
a84e3289
SG
2074 }
2075
baa11ebc 2076 frag_size = bm_pool->hwbm_pool.frag_size;
dc35a10f
MW
2077
2078 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
f19fadfc 2079
26c17a17
MW
2080 /* After refill old buffer has to be unmapped regardless
2081 * the skb is successfully built or not.
2082 */
dc35a10f
MW
2083 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2084 bm_pool->buf_size, DMA_FROM_DEVICE);
26c17a17
MW
2085 if (!skb)
2086 goto err_drop_frame;
2087
dc4277dd 2088 rcvd_pkts++;
2089 rcvd_bytes += rx_bytes;
c5aff182
TP
2090
2091 /* Linux processing */
8ec2cd48 2092 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
c5aff182
TP
2093 skb_put(skb, rx_bytes);
2094
2095 skb->protocol = eth_type_trans(skb, dev);
2096
5428213c 2097 mvneta_rx_csum(pp, rx_status, skb);
c5aff182 2098
12bb03b4 2099 napi_gro_receive(&port->napi, skb);
c5aff182
TP
2100 }
2101
dc4277dd 2102 if (rcvd_pkts) {
74c41b04 2103 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2104
2105 u64_stats_update_begin(&stats->syncp);
2106 stats->rx_packets += rcvd_pkts;
2107 stats->rx_bytes += rcvd_bytes;
2108 u64_stats_update_end(&stats->syncp);
dc4277dd 2109 }
2110
c5aff182 2111 /* Update rxq management counters */
a84e3289 2112 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
c5aff182
TP
2113
2114 return rx_done;
2115}
2116
2adb719d
EG
2117static inline void
2118mvneta_tso_put_hdr(struct sk_buff *skb,
2119 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2120{
2121 struct mvneta_tx_desc *tx_desc;
2122 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2123
2124 txq->tx_skb[txq->txq_put_index] = NULL;
2125 tx_desc = mvneta_txq_next_desc_get(txq);
2126 tx_desc->data_size = hdr_len;
2127 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2128 tx_desc->command |= MVNETA_TXD_F_DESC;
2129 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2130 txq->txq_put_index * TSO_HEADER_SIZE;
2131 mvneta_txq_inc_put(txq);
2132}
2133
2134static inline int
2135mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2136 struct sk_buff *skb, char *data, int size,
2137 bool last_tcp, bool is_last)
2138{
2139 struct mvneta_tx_desc *tx_desc;
2140
2141 tx_desc = mvneta_txq_next_desc_get(txq);
2142 tx_desc->data_size = size;
2143 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2144 size, DMA_TO_DEVICE);
2145 if (unlikely(dma_mapping_error(dev->dev.parent,
2146 tx_desc->buf_phys_addr))) {
2147 mvneta_txq_desc_put(txq);
2148 return -ENOMEM;
2149 }
2150
2151 tx_desc->command = 0;
2152 txq->tx_skb[txq->txq_put_index] = NULL;
2153
2154 if (last_tcp) {
2155 /* last descriptor in the TCP packet */
2156 tx_desc->command = MVNETA_TXD_L_DESC;
2157
2158 /* last descriptor in SKB */
2159 if (is_last)
2160 txq->tx_skb[txq->txq_put_index] = skb;
2161 }
2162 mvneta_txq_inc_put(txq);
2163 return 0;
2164}
2165
2166static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2167 struct mvneta_tx_queue *txq)
2168{
2169 int total_len, data_left;
2170 int desc_count = 0;
2171 struct mvneta_port *pp = netdev_priv(dev);
2172 struct tso_t tso;
2173 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2174 int i;
2175
2176 /* Count needed descriptors */
2177 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2178 return 0;
2179
2180 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2181 pr_info("*** Is this even possible???!?!?\n");
2182 return 0;
2183 }
2184
2185 /* Initialize the TSO handler, and prepare the first payload */
2186 tso_start(skb, &tso);
2187
2188 total_len = skb->len - hdr_len;
2189 while (total_len > 0) {
2190 char *hdr;
2191
2192 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2193 total_len -= data_left;
2194 desc_count++;
2195
2196 /* prepare packet headers: MAC + IP + TCP */
2197 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2198 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2199
2200 mvneta_tso_put_hdr(skb, pp, txq);
2201
2202 while (data_left > 0) {
2203 int size;
2204 desc_count++;
2205
2206 size = min_t(int, tso.size, data_left);
2207
2208 if (mvneta_tso_put_data(dev, txq, skb,
2209 tso.data, size,
2210 size == data_left,
2211 total_len == 0))
2212 goto err_release;
2213 data_left -= size;
2214
2215 tso_build_data(skb, &tso, size);
2216 }
2217 }
2218
2219 return desc_count;
2220
2221err_release:
2222 /* Release all used data descriptors; header descriptors must not
2223 * be DMA-unmapped.
2224 */
2225 for (i = desc_count - 1; i >= 0; i--) {
2226 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2e3173a3 2227 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2adb719d
EG
2228 dma_unmap_single(pp->dev->dev.parent,
2229 tx_desc->buf_phys_addr,
2230 tx_desc->data_size,
2231 DMA_TO_DEVICE);
2232 mvneta_txq_desc_put(txq);
2233 }
2234 return 0;
2235}
2236
c5aff182
TP
2237/* Handle tx fragmentation processing */
2238static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2239 struct mvneta_tx_queue *txq)
2240{
2241 struct mvneta_tx_desc *tx_desc;
3d4ea02f 2242 int i, nr_frags = skb_shinfo(skb)->nr_frags;
c5aff182 2243
3d4ea02f 2244 for (i = 0; i < nr_frags; i++) {
c5aff182
TP
2245 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2246 void *addr = page_address(frag->page.p) + frag->page_offset;
2247
2248 tx_desc = mvneta_txq_next_desc_get(txq);
2249 tx_desc->data_size = frag->size;
2250
2251 tx_desc->buf_phys_addr =
2252 dma_map_single(pp->dev->dev.parent, addr,
2253 tx_desc->data_size, DMA_TO_DEVICE);
2254
2255 if (dma_mapping_error(pp->dev->dev.parent,
2256 tx_desc->buf_phys_addr)) {
2257 mvneta_txq_desc_put(txq);
2258 goto error;
2259 }
2260
3d4ea02f 2261 if (i == nr_frags - 1) {
c5aff182
TP
2262 /* Last descriptor */
2263 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
c5aff182 2264 txq->tx_skb[txq->txq_put_index] = skb;
c5aff182
TP
2265 } else {
2266 /* Descriptor in the middle: Not First, Not Last */
2267 tx_desc->command = 0;
c5aff182 2268 txq->tx_skb[txq->txq_put_index] = NULL;
c5aff182 2269 }
3d4ea02f 2270 mvneta_txq_inc_put(txq);
c5aff182
TP
2271 }
2272
2273 return 0;
2274
2275error:
2276 /* Release all descriptors that were used to map fragments of
6a20c175
TP
2277 * this packet, as well as the corresponding DMA mappings
2278 */
c5aff182
TP
2279 for (i = i - 1; i >= 0; i--) {
2280 tx_desc = txq->descs + i;
2281 dma_unmap_single(pp->dev->dev.parent,
2282 tx_desc->buf_phys_addr,
2283 tx_desc->data_size,
2284 DMA_TO_DEVICE);
2285 mvneta_txq_desc_put(txq);
2286 }
2287
2288 return -ENOMEM;
2289}
2290
2291/* Main tx processing */
2292static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2293{
2294 struct mvneta_port *pp = netdev_priv(dev);
ee40a116
WT
2295 u16 txq_id = skb_get_queue_mapping(skb);
2296 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
c5aff182 2297 struct mvneta_tx_desc *tx_desc;
5f478b41 2298 int len = skb->len;
c5aff182
TP
2299 int frags = 0;
2300 u32 tx_cmd;
2301
2302 if (!netif_running(dev))
2303 goto out;
2304
2adb719d
EG
2305 if (skb_is_gso(skb)) {
2306 frags = mvneta_tx_tso(skb, dev, txq);
2307 goto out;
2308 }
2309
c5aff182 2310 frags = skb_shinfo(skb)->nr_frags + 1;
c5aff182
TP
2311
2312 /* Get a descriptor for the first part of the packet */
2313 tx_desc = mvneta_txq_next_desc_get(txq);
2314
2315 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2316
2317 tx_desc->data_size = skb_headlen(skb);
2318
2319 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2320 tx_desc->data_size,
2321 DMA_TO_DEVICE);
2322 if (unlikely(dma_mapping_error(dev->dev.parent,
2323 tx_desc->buf_phys_addr))) {
2324 mvneta_txq_desc_put(txq);
2325 frags = 0;
2326 goto out;
2327 }
2328
2329 if (frags == 1) {
2330 /* First and Last descriptor */
2331 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2332 tx_desc->command = tx_cmd;
2333 txq->tx_skb[txq->txq_put_index] = skb;
2334 mvneta_txq_inc_put(txq);
2335 } else {
2336 /* First but not Last */
2337 tx_cmd |= MVNETA_TXD_F_DESC;
2338 txq->tx_skb[txq->txq_put_index] = NULL;
2339 mvneta_txq_inc_put(txq);
2340 tx_desc->command = tx_cmd;
2341 /* Continue with other skb fragments */
2342 if (mvneta_tx_frag_process(pp, skb, txq)) {
2343 dma_unmap_single(dev->dev.parent,
2344 tx_desc->buf_phys_addr,
2345 tx_desc->data_size,
2346 DMA_TO_DEVICE);
2347 mvneta_txq_desc_put(txq);
2348 frags = 0;
2349 goto out;
2350 }
2351 }
2352
c5aff182
TP
2353out:
2354 if (frags > 0) {
74c41b04 2355 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
e19d2dda
EG
2356 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2357
2358 txq->count += frags;
2359 mvneta_txq_pend_desc_add(pp, txq, frags);
2360
8eef5f97 2361 if (txq->count >= txq->tx_stop_threshold)
e19d2dda 2362 netif_tx_stop_queue(nq);
c5aff182 2363
74c41b04 2364 u64_stats_update_begin(&stats->syncp);
2365 stats->tx_packets++;
5f478b41 2366 stats->tx_bytes += len;
74c41b04 2367 u64_stats_update_end(&stats->syncp);
c5aff182
TP
2368 } else {
2369 dev->stats.tx_dropped++;
2370 dev_kfree_skb_any(skb);
2371 }
2372
c5aff182
TP
2373 return NETDEV_TX_OK;
2374}
2375
2376
2377/* Free tx resources, when resetting a port */
2378static void mvneta_txq_done_force(struct mvneta_port *pp,
2379 struct mvneta_tx_queue *txq)
2380
2381{
2382 int tx_done = txq->count;
2383
2384 mvneta_txq_bufs_free(pp, txq, tx_done);
2385
2386 /* reset txq */
2387 txq->count = 0;
2388 txq->txq_put_index = 0;
2389 txq->txq_get_index = 0;
2390}
2391
6c498974 2392/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2393 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2394 */
0713a86a 2395static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
c5aff182
TP
2396{
2397 struct mvneta_tx_queue *txq;
c5aff182
TP
2398 struct netdev_queue *nq;
2399
6c498974 2400 while (cause_tx_done) {
c5aff182 2401 txq = mvneta_tx_done_policy(pp, cause_tx_done);
c5aff182
TP
2402
2403 nq = netdev_get_tx_queue(pp->dev, txq->id);
2404 __netif_tx_lock(nq, smp_processor_id());
2405
0713a86a
AE
2406 if (txq->count)
2407 mvneta_txq_done(pp, txq);
c5aff182
TP
2408
2409 __netif_tx_unlock(nq);
2410 cause_tx_done &= ~((1 << txq->id));
2411 }
c5aff182
TP
2412}
2413
6a20c175 2414/* Compute crc8 of the specified address, using a unique algorithm ,
c5aff182
TP
2415 * according to hw spec, different than generic crc8 algorithm
2416 */
2417static int mvneta_addr_crc(unsigned char *addr)
2418{
2419 int crc = 0;
2420 int i;
2421
2422 for (i = 0; i < ETH_ALEN; i++) {
2423 int j;
2424
2425 crc = (crc ^ addr[i]) << 8;
2426 for (j = 7; j >= 0; j--) {
2427 if (crc & (0x100 << j))
2428 crc ^= 0x107 << j;
2429 }
2430 }
2431
2432 return crc;
2433}
2434
2435/* This method controls the net device special MAC multicast support.
2436 * The Special Multicast Table for MAC addresses supports MAC of the form
2437 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2438 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2439 * Table entries in the DA-Filter table. This method set the Special
2440 * Multicast Table appropriate entry.
2441 */
2442static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2443 unsigned char last_byte,
2444 int queue)
2445{
2446 unsigned int smc_table_reg;
2447 unsigned int tbl_offset;
2448 unsigned int reg_offset;
2449
2450 /* Register offset from SMC table base */
2451 tbl_offset = (last_byte / 4);
2452 /* Entry offset within the above reg */
2453 reg_offset = last_byte % 4;
2454
2455 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2456 + tbl_offset * 4));
2457
2458 if (queue == -1)
2459 smc_table_reg &= ~(0xff << (8 * reg_offset));
2460 else {
2461 smc_table_reg &= ~(0xff << (8 * reg_offset));
2462 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2463 }
2464
2465 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2466 smc_table_reg);
2467}
2468
2469/* This method controls the network device Other MAC multicast support.
2470 * The Other Multicast Table is used for multicast of another type.
2471 * A CRC-8 is used as an index to the Other Multicast Table entries
2472 * in the DA-Filter table.
2473 * The method gets the CRC-8 value from the calling routine and
2474 * sets the Other Multicast Table appropriate entry according to the
2475 * specified CRC-8 .
2476 */
2477static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2478 unsigned char crc8,
2479 int queue)
2480{
2481 unsigned int omc_table_reg;
2482 unsigned int tbl_offset;
2483 unsigned int reg_offset;
2484
2485 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2486 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2487
2488 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2489
2490 if (queue == -1) {
2491 /* Clear accepts frame bit at specified Other DA table entry */
2492 omc_table_reg &= ~(0xff << (8 * reg_offset));
2493 } else {
2494 omc_table_reg &= ~(0xff << (8 * reg_offset));
2495 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2496 }
2497
2498 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2499}
2500
2501/* The network device supports multicast using two tables:
2502 * 1) Special Multicast Table for MAC addresses of the form
2503 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2504 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2505 * Table entries in the DA-Filter table.
2506 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2507 * is used as an index to the Other Multicast Table entries in the
2508 * DA-Filter table.
2509 */
2510static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2511 int queue)
2512{
2513 unsigned char crc_result = 0;
2514
2515 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2516 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2517 return 0;
2518 }
2519
2520 crc_result = mvneta_addr_crc(p_addr);
2521 if (queue == -1) {
2522 if (pp->mcast_count[crc_result] == 0) {
2523 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2524 crc_result);
2525 return -EINVAL;
2526 }
2527
2528 pp->mcast_count[crc_result]--;
2529 if (pp->mcast_count[crc_result] != 0) {
2530 netdev_info(pp->dev,
2531 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2532 pp->mcast_count[crc_result], crc_result);
2533 return -EINVAL;
2534 }
2535 } else
2536 pp->mcast_count[crc_result]++;
2537
2538 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2539
2540 return 0;
2541}
2542
2543/* Configure Fitering mode of Ethernet port */
2544static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2545 int is_promisc)
2546{
2547 u32 port_cfg_reg, val;
2548
2549 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2550
2551 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2552
2553 /* Set / Clear UPM bit in port configuration register */
2554 if (is_promisc) {
2555 /* Accept all Unicast addresses */
2556 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2557 val |= MVNETA_FORCE_UNI;
2558 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2559 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2560 } else {
2561 /* Reject all Unicast addresses */
2562 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2563 val &= ~MVNETA_FORCE_UNI;
2564 }
2565
2566 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2567 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2568}
2569
2570/* register unicast and multicast addresses */
2571static void mvneta_set_rx_mode(struct net_device *dev)
2572{
2573 struct mvneta_port *pp = netdev_priv(dev);
2574 struct netdev_hw_addr *ha;
2575
2576 if (dev->flags & IFF_PROMISC) {
2577 /* Accept all: Multicast + Unicast */
2578 mvneta_rx_unicast_promisc_set(pp, 1);
90b74c01
GC
2579 mvneta_set_ucast_table(pp, pp->rxq_def);
2580 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2581 mvneta_set_other_mcast_table(pp, pp->rxq_def);
c5aff182
TP
2582 } else {
2583 /* Accept single Unicast */
2584 mvneta_rx_unicast_promisc_set(pp, 0);
2585 mvneta_set_ucast_table(pp, -1);
90b74c01 2586 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
c5aff182
TP
2587
2588 if (dev->flags & IFF_ALLMULTI) {
2589 /* Accept all multicast */
90b74c01
GC
2590 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2591 mvneta_set_other_mcast_table(pp, pp->rxq_def);
c5aff182
TP
2592 } else {
2593 /* Accept only initialized multicast */
2594 mvneta_set_special_mcast_table(pp, -1);
2595 mvneta_set_other_mcast_table(pp, -1);
2596
2597 if (!netdev_mc_empty(dev)) {
2598 netdev_for_each_mc_addr(ha, dev) {
2599 mvneta_mcast_addr_set(pp, ha->addr,
90b74c01 2600 pp->rxq_def);
c5aff182
TP
2601 }
2602 }
2603 }
2604 }
2605}
2606
2607/* Interrupt handling - the callback for request_irq() */
2608static irqreturn_t mvneta_isr(int irq, void *dev_id)
2609{
12bb03b4 2610 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
c5aff182 2611
12bb03b4 2612 disable_percpu_irq(port->pp->dev->irq);
12bb03b4 2613 napi_schedule(&port->napi);
c5aff182
TP
2614
2615 return IRQ_HANDLED;
2616}
2617
898b2970
SS
2618static int mvneta_fixed_link_update(struct mvneta_port *pp,
2619 struct phy_device *phy)
2620{
2621 struct fixed_phy_status status;
2622 struct fixed_phy_status changed = {};
2623 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2624
2625 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2626 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2627 status.speed = SPEED_1000;
2628 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2629 status.speed = SPEED_100;
2630 else
2631 status.speed = SPEED_10;
2632 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2633 changed.link = 1;
2634 changed.speed = 1;
2635 changed.duplex = 1;
2636 fixed_phy_update_state(phy, &status, &changed);
2637 return 0;
2638}
2639
c5aff182
TP
2640/* NAPI handler
2641 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2642 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2643 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2644 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2645 * Each CPU has its own causeRxTx register
2646 */
2647static int mvneta_poll(struct napi_struct *napi, int budget)
2648{
2649 int rx_done = 0;
2650 u32 cause_rx_tx;
2dcf75e2 2651 int rx_queue;
c5aff182 2652 struct mvneta_port *pp = netdev_priv(napi->dev);
c6c022e3 2653 struct net_device *ndev = pp->dev;
12bb03b4 2654 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
c5aff182
TP
2655
2656 if (!netif_running(pp->dev)) {
12bb03b4 2657 napi_complete(&port->napi);
c5aff182
TP
2658 return rx_done;
2659 }
2660
2661 /* Read cause register */
898b2970
SS
2662 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665
2666 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667 if (pp->use_inband_status && (cause_misc &
2668 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669 MVNETA_CAUSE_LINK_CHANGE |
2670 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
c6c022e3 2671 mvneta_fixed_link_update(pp, ndev->phydev);
898b2970
SS
2672 }
2673 }
71f6d1b3 2674
2675 /* Release Tx descriptors */
2676 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
0713a86a 2677 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
71f6d1b3 2678 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679 }
c5aff182 2680
6a20c175 2681 /* For the case where the last mvneta_poll did not process all
c5aff182
TP
2682 * RX packets
2683 */
2dcf75e2
GC
2684 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685
12bb03b4 2686 cause_rx_tx |= port->cause_rx_tx;
2dcf75e2
GC
2687
2688 if (rx_queue) {
2689 rx_queue = rx_queue - 1;
dc35a10f
MW
2690 if (pp->bm_priv)
2691 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692 else
2693 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2dcf75e2
GC
2694 }
2695
d8936657 2696 budget -= rx_done;
c5aff182
TP
2697
2698 if (budget > 0) {
2699 cause_rx_tx = 0;
12bb03b4
MR
2700 napi_complete(&port->napi);
2701 enable_percpu_irq(pp->dev->irq, 0);
c5aff182
TP
2702 }
2703
12bb03b4 2704 port->cause_rx_tx = cause_rx_tx;
c5aff182
TP
2705 return rx_done;
2706}
2707
c5aff182
TP
2708/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710 int num)
2711{
c5aff182
TP
2712 int i;
2713
2714 for (i = 0; i < num; i++) {
a1a65ab1 2715 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
c5aff182
TP
2718 __func__, rxq->id, i, num);
2719 break;
2720 }
c5aff182
TP
2721 }
2722
2723 /* Add this number of RX descriptors as non occupied (ready to
6a20c175
TP
2724 * get packets)
2725 */
c5aff182
TP
2726 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727
2728 return i;
2729}
2730
2731/* Free all packets pending transmit from all TXQs and reset TX port */
2732static void mvneta_tx_reset(struct mvneta_port *pp)
2733{
2734 int queue;
2735
9672850b 2736 /* free the skb's in the tx ring */
c5aff182
TP
2737 for (queue = 0; queue < txq_number; queue++)
2738 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739
2740 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742}
2743
2744static void mvneta_rx_reset(struct mvneta_port *pp)
2745{
2746 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748}
2749
2750/* Rx/Tx queue initialization/cleanup methods */
2751
2752/* Create a specified RX queue */
2753static int mvneta_rxq_init(struct mvneta_port *pp,
2754 struct mvneta_rx_queue *rxq)
2755
2756{
2757 rxq->size = pp->rx_ring_size;
2758
2759 /* Allocate memory for RX descriptors */
2760 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762 &rxq->descs_phys, GFP_KERNEL);
d0320f75 2763 if (rxq->descs == NULL)
c5aff182 2764 return -ENOMEM;
c5aff182 2765
c5aff182
TP
2766 rxq->last_desc = rxq->size - 1;
2767
2768 /* Set Rx descriptors queue starting address */
2769 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771
2772 /* Set Offset */
2773 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774
2775 /* Set coalescing pkts and time */
2776 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778
dc35a10f
MW
2779 if (!pp->bm_priv) {
2780 /* Fill RXQ with buffers from RX pool */
2781 mvneta_rxq_buf_size_set(pp, rxq,
2782 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783 mvneta_rxq_bm_disable(pp, rxq);
2784 } else {
2785 mvneta_rxq_bm_enable(pp, rxq);
2786 mvneta_rxq_long_pool_set(pp, rxq);
2787 mvneta_rxq_short_pool_set(pp, rxq);
2788 }
2789
c5aff182
TP
2790 mvneta_rxq_fill(pp, rxq, rxq->size);
2791
2792 return 0;
2793}
2794
2795/* Cleanup Rx queue */
2796static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797 struct mvneta_rx_queue *rxq)
2798{
2799 mvneta_rxq_drop_pkts(pp, rxq);
2800
2801 if (rxq->descs)
2802 dma_free_coherent(pp->dev->dev.parent,
2803 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804 rxq->descs,
2805 rxq->descs_phys);
2806
2807 rxq->descs = NULL;
2808 rxq->last_desc = 0;
2809 rxq->next_desc_to_proc = 0;
2810 rxq->descs_phys = 0;
2811}
2812
2813/* Create and initialize a tx queue */
2814static int mvneta_txq_init(struct mvneta_port *pp,
2815 struct mvneta_tx_queue *txq)
2816{
50bf8cb6
GC
2817 int cpu;
2818
c5aff182
TP
2819 txq->size = pp->tx_ring_size;
2820
8eef5f97
EG
2821 /* A queue must always have room for at least one skb.
2822 * Therefore, stop the queue when the free entries reaches
2823 * the maximum number of descriptors per skb.
2824 */
2825 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827
2828
c5aff182
TP
2829 /* Allocate memory for TX descriptors */
2830 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832 &txq->descs_phys, GFP_KERNEL);
d0320f75 2833 if (txq->descs == NULL)
c5aff182 2834 return -ENOMEM;
c5aff182 2835
c5aff182
TP
2836 txq->last_desc = txq->size - 1;
2837
2838 /* Set maximum bandwidth for enabled TXQs */
2839 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841
2842 /* Set Tx descriptors queue starting address */
2843 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845
2846 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847 if (txq->tx_skb == NULL) {
2848 dma_free_coherent(pp->dev->dev.parent,
2849 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 txq->descs, txq->descs_phys);
2851 return -ENOMEM;
2852 }
2adb719d
EG
2853
2854 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856 txq->size * TSO_HEADER_SIZE,
2857 &txq->tso_hdrs_phys, GFP_KERNEL);
2858 if (txq->tso_hdrs == NULL) {
2859 kfree(txq->tx_skb);
2860 dma_free_coherent(pp->dev->dev.parent,
2861 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862 txq->descs, txq->descs_phys);
2863 return -ENOMEM;
2864 }
c5aff182
TP
2865 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866
50bf8cb6
GC
2867 /* Setup XPS mapping */
2868 if (txq_number > 1)
2869 cpu = txq->id % num_present_cpus();
2870 else
2871 cpu = pp->rxq_def % num_present_cpus();
2872 cpumask_set_cpu(cpu, &txq->affinity_mask);
2873 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874
c5aff182
TP
2875 return 0;
2876}
2877
2878/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879static void mvneta_txq_deinit(struct mvneta_port *pp,
2880 struct mvneta_tx_queue *txq)
2881{
2882 kfree(txq->tx_skb);
2883
2adb719d
EG
2884 if (txq->tso_hdrs)
2885 dma_free_coherent(pp->dev->dev.parent,
2886 txq->size * TSO_HEADER_SIZE,
2887 txq->tso_hdrs, txq->tso_hdrs_phys);
c5aff182
TP
2888 if (txq->descs)
2889 dma_free_coherent(pp->dev->dev.parent,
2890 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891 txq->descs, txq->descs_phys);
2892
2893 txq->descs = NULL;
2894 txq->last_desc = 0;
2895 txq->next_desc_to_proc = 0;
2896 txq->descs_phys = 0;
2897
2898 /* Set minimum bandwidth for disabled TXQs */
2899 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901
2902 /* Set Tx descriptors queue starting address and size */
2903 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905}
2906
2907/* Cleanup all Tx queues */
2908static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909{
2910 int queue;
2911
2912 for (queue = 0; queue < txq_number; queue++)
2913 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914}
2915
2916/* Cleanup all Rx queues */
2917static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918{
2dcf75e2
GC
2919 int queue;
2920
2921 for (queue = 0; queue < txq_number; queue++)
2922 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
c5aff182
TP
2923}
2924
2925
2926/* Init all Rx queues */
2927static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928{
2dcf75e2
GC
2929 int queue;
2930
2931 for (queue = 0; queue < rxq_number; queue++) {
2932 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933
2934 if (err) {
2935 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936 __func__, queue);
2937 mvneta_cleanup_rxqs(pp);
2938 return err;
2939 }
c5aff182
TP
2940 }
2941
2942 return 0;
2943}
2944
2945/* Init all tx queues */
2946static int mvneta_setup_txqs(struct mvneta_port *pp)
2947{
2948 int queue;
2949
2950 for (queue = 0; queue < txq_number; queue++) {
2951 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952 if (err) {
2953 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954 __func__, queue);
2955 mvneta_cleanup_txqs(pp);
2956 return err;
2957 }
2958 }
2959
2960 return 0;
2961}
2962
2963static void mvneta_start_dev(struct mvneta_port *pp)
2964{
6b125d63 2965 int cpu;
c6c022e3 2966 struct net_device *ndev = pp->dev;
12bb03b4 2967
c5aff182
TP
2968 mvneta_max_rx_size_set(pp, pp->pkt_size);
2969 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2970
2971 /* start the Rx/Tx activity */
2972 mvneta_port_enable(pp);
2973
2974 /* Enable polling on the port */
129219e4 2975 for_each_online_cpu(cpu) {
12bb03b4
MR
2976 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2977
2978 napi_enable(&port->napi);
2979 }
c5aff182 2980
2dcf75e2 2981 /* Unmask interrupts. It has to be done from each CPU */
6b125d63
GC
2982 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2983
898b2970
SS
2984 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2985 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2986 MVNETA_CAUSE_LINK_CHANGE |
2987 MVNETA_CAUSE_PSC_SYNC_CHANGE);
c5aff182 2988
c6c022e3 2989 phy_start(ndev->phydev);
c5aff182
TP
2990 netif_tx_start_all_queues(pp->dev);
2991}
2992
2993static void mvneta_stop_dev(struct mvneta_port *pp)
2994{
12bb03b4 2995 unsigned int cpu;
c6c022e3 2996 struct net_device *ndev = pp->dev;
12bb03b4 2997
c6c022e3 2998 phy_stop(ndev->phydev);
c5aff182 2999
129219e4 3000 for_each_online_cpu(cpu) {
12bb03b4
MR
3001 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3002
3003 napi_disable(&port->napi);
3004 }
c5aff182
TP
3005
3006 netif_carrier_off(pp->dev);
3007
3008 mvneta_port_down(pp);
3009 netif_tx_stop_all_queues(pp->dev);
3010
3011 /* Stop the port activity */
3012 mvneta_port_disable(pp);
3013
3014 /* Clear all ethernet port interrupts */
db488c10 3015 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
c5aff182
TP
3016
3017 /* Mask all ethernet port interrupts */
db488c10 3018 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
c5aff182
TP
3019
3020 mvneta_tx_reset(pp);
3021 mvneta_rx_reset(pp);
3022}
3023
c5aff182
TP
3024/* Return positive if MTU is valid */
3025static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3026{
3027 if (mtu < 68) {
3028 netdev_err(dev, "cannot change mtu to less than 68\n");
3029 return -EINVAL;
3030 }
3031
6a20c175 3032 /* 9676 == 9700 - 20 and rounding to 8 */
c5aff182
TP
3033 if (mtu > 9676) {
3034 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3035 mtu = 9676;
3036 }
3037
3038 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3039 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3040 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3041 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3042 }
3043
3044 return mtu;
3045}
3046
db5dd0db
MW
3047static void mvneta_percpu_enable(void *arg)
3048{
3049 struct mvneta_port *pp = arg;
3050
3051 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3052}
3053
3054static void mvneta_percpu_disable(void *arg)
3055{
3056 struct mvneta_port *pp = arg;
3057
3058 disable_percpu_irq(pp->dev->irq);
3059}
3060
c5aff182
TP
3061/* Change the device mtu */
3062static int mvneta_change_mtu(struct net_device *dev, int mtu)
3063{
3064 struct mvneta_port *pp = netdev_priv(dev);
3065 int ret;
3066
3067 mtu = mvneta_check_mtu_valid(dev, mtu);
3068 if (mtu < 0)
3069 return -EINVAL;
3070
3071 dev->mtu = mtu;
3072
b65657fc 3073 if (!netif_running(dev)) {
dc35a10f
MW
3074 if (pp->bm_priv)
3075 mvneta_bm_update_mtu(pp, mtu);
3076
b65657fc 3077 netdev_update_features(dev);
c5aff182 3078 return 0;
b65657fc 3079 }
c5aff182 3080
6a20c175 3081 /* The interface is running, so we have to force a
a92dbd96 3082 * reallocation of the queues
c5aff182
TP
3083 */
3084 mvneta_stop_dev(pp);
db5dd0db 3085 on_each_cpu(mvneta_percpu_disable, pp, true);
c5aff182
TP
3086
3087 mvneta_cleanup_txqs(pp);
3088 mvneta_cleanup_rxqs(pp);
3089
dc35a10f
MW
3090 if (pp->bm_priv)
3091 mvneta_bm_update_mtu(pp, mtu);
3092
a92dbd96 3093 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
8ec2cd48 3094 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3095 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c5aff182
TP
3096
3097 ret = mvneta_setup_rxqs(pp);
3098 if (ret) {
a92dbd96 3099 netdev_err(dev, "unable to setup rxqs after MTU change\n");
c5aff182
TP
3100 return ret;
3101 }
3102
a92dbd96
EG
3103 ret = mvneta_setup_txqs(pp);
3104 if (ret) {
3105 netdev_err(dev, "unable to setup txqs after MTU change\n");
3106 return ret;
3107 }
c5aff182 3108
db5dd0db 3109 on_each_cpu(mvneta_percpu_enable, pp, true);
c5aff182
TP
3110 mvneta_start_dev(pp);
3111 mvneta_port_up(pp);
3112
b65657fc
SG
3113 netdev_update_features(dev);
3114
c5aff182
TP
3115 return 0;
3116}
3117
b65657fc
SG
3118static netdev_features_t mvneta_fix_features(struct net_device *dev,
3119 netdev_features_t features)
3120{
3121 struct mvneta_port *pp = netdev_priv(dev);
3122
3123 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3124 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3125 netdev_info(dev,
3126 "Disable IP checksum for MTU greater than %dB\n",
3127 pp->tx_csum_limit);
3128 }
3129
3130 return features;
3131}
3132
8cc3e439
TP
3133/* Get mac address */
3134static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3135{
3136 u32 mac_addr_l, mac_addr_h;
3137
3138 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3139 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3140 addr[0] = (mac_addr_h >> 24) & 0xFF;
3141 addr[1] = (mac_addr_h >> 16) & 0xFF;
3142 addr[2] = (mac_addr_h >> 8) & 0xFF;
3143 addr[3] = mac_addr_h & 0xFF;
3144 addr[4] = (mac_addr_l >> 8) & 0xFF;
3145 addr[5] = mac_addr_l & 0xFF;
3146}
3147
c5aff182
TP
3148/* Handle setting mac address */
3149static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3150{
3151 struct mvneta_port *pp = netdev_priv(dev);
e68de360
EG
3152 struct sockaddr *sockaddr = addr;
3153 int ret;
c5aff182 3154
e68de360
EG
3155 ret = eth_prepare_mac_addr_change(dev, addr);
3156 if (ret < 0)
3157 return ret;
c5aff182
TP
3158 /* Remove previous address table entry */
3159 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3160
3161 /* Set new addr in hw */
90b74c01 3162 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
c5aff182 3163
e68de360 3164 eth_commit_mac_addr_change(dev, addr);
c5aff182
TP
3165 return 0;
3166}
3167
3168static void mvneta_adjust_link(struct net_device *ndev)
3169{
3170 struct mvneta_port *pp = netdev_priv(ndev);
c6c022e3 3171 struct phy_device *phydev = ndev->phydev;
c5aff182
TP
3172 int status_change = 0;
3173
3174 if (phydev->link) {
3175 if ((pp->speed != phydev->speed) ||
3176 (pp->duplex != phydev->duplex)) {
3177 u32 val;
3178
3179 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3180 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3181 MVNETA_GMAC_CONFIG_GMII_SPEED |
898b2970 3182 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
c5aff182
TP
3183
3184 if (phydev->duplex)
3185 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3186
3187 if (phydev->speed == SPEED_1000)
3188 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4d12bc63 3189 else if (phydev->speed == SPEED_100)
c5aff182
TP
3190 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3191
3192 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3193
3194 pp->duplex = phydev->duplex;
3195 pp->speed = phydev->speed;
3196 }
3197 }
3198
3199 if (phydev->link != pp->link) {
3200 if (!phydev->link) {
3201 pp->duplex = -1;
3202 pp->speed = 0;
3203 }
3204
3205 pp->link = phydev->link;
3206 status_change = 1;
3207 }
3208
3209 if (status_change) {
3210 if (phydev->link) {
898b2970
SS
3211 if (!pp->use_inband_status) {
3212 u32 val = mvreg_read(pp,
3213 MVNETA_GMAC_AUTONEG_CONFIG);
3214 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3215 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3216 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3217 val);
3218 }
c5aff182 3219 mvneta_port_up(pp);
c5aff182 3220 } else {
898b2970
SS
3221 if (!pp->use_inband_status) {
3222 u32 val = mvreg_read(pp,
3223 MVNETA_GMAC_AUTONEG_CONFIG);
3224 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3225 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3226 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3227 val);
3228 }
c5aff182 3229 mvneta_port_down(pp);
c5aff182 3230 }
0089b745 3231 phy_print_status(phydev);
c5aff182
TP
3232 }
3233}
3234
3235static int mvneta_mdio_probe(struct mvneta_port *pp)
3236{
3237 struct phy_device *phy_dev;
3238
3239 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3240 pp->phy_interface);
3241 if (!phy_dev) {
3242 netdev_err(pp->dev, "could not find the PHY\n");
3243 return -ENODEV;
3244 }
3245
3246 phy_dev->supported &= PHY_GBIT_FEATURES;
3247 phy_dev->advertising = phy_dev->supported;
3248
c5aff182
TP
3249 pp->link = 0;
3250 pp->duplex = 0;
3251 pp->speed = 0;
3252
3253 return 0;
3254}
3255
3256static void mvneta_mdio_remove(struct mvneta_port *pp)
3257{
c6c022e3
PR
3258 struct net_device *ndev = pp->dev;
3259
3260 phy_disconnect(ndev->phydev);
c5aff182
TP
3261}
3262
120cfa50
GC
3263/* Electing a CPU must be done in an atomic way: it should be done
3264 * after or before the removal/insertion of a CPU and this function is
3265 * not reentrant.
3266 */
f8642885
MR
3267static void mvneta_percpu_elect(struct mvneta_port *pp)
3268{
cad5d847
GC
3269 int elected_cpu = 0, max_cpu, cpu, i = 0;
3270
3271 /* Use the cpu associated to the rxq when it is online, in all
3272 * the other cases, use the cpu 0 which can't be offline.
3273 */
3274 if (cpu_online(pp->rxq_def))
3275 elected_cpu = pp->rxq_def;
f8642885 3276
2dcf75e2 3277 max_cpu = num_present_cpus();
f8642885
MR
3278
3279 for_each_online_cpu(cpu) {
2dcf75e2
GC
3280 int rxq_map = 0, txq_map = 0;
3281 int rxq;
3282
3283 for (rxq = 0; rxq < rxq_number; rxq++)
3284 if ((rxq % max_cpu) == cpu)
3285 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3286
cad5d847 3287 if (cpu == elected_cpu)
50bf8cb6
GC
3288 /* Map the default receive queue queue to the
3289 * elected CPU
f8642885 3290 */
2dcf75e2 3291 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
50bf8cb6
GC
3292
3293 /* We update the TX queue map only if we have one
3294 * queue. In this case we associate the TX queue to
3295 * the CPU bound to the default RX queue
3296 */
3297 if (txq_number == 1)
cad5d847 3298 txq_map = (cpu == elected_cpu) ?
50bf8cb6
GC
3299 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3300 else
3301 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3302 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3303
2dcf75e2
GC
3304 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3305
3306 /* Update the interrupt mask on each CPU according the
3307 * new mapping
3308 */
3309 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3310 pp, true);
f8642885 3311 i++;
2dcf75e2 3312
f8642885
MR
3313 }
3314};
3315
3316static int mvneta_percpu_notifier(struct notifier_block *nfb,
3317 unsigned long action, void *hcpu)
3318{
3319 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3320 cpu_notifier);
3321 int cpu = (unsigned long)hcpu, other_cpu;
3322 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3323
3324 switch (action) {
3325 case CPU_ONLINE:
3326 case CPU_ONLINE_FROZEN:
0df83e7a
AMG
3327 case CPU_DOWN_FAILED:
3328 case CPU_DOWN_FAILED_FROZEN:
120cfa50
GC
3329 spin_lock(&pp->lock);
3330 /* Configuring the driver for a new CPU while the
3331 * driver is stopping is racy, so just avoid it.
3332 */
3333 if (pp->is_stopped) {
3334 spin_unlock(&pp->lock);
3335 break;
3336 }
f8642885
MR
3337 netif_tx_stop_all_queues(pp->dev);
3338
3339 /* We have to synchronise on tha napi of each CPU
3340 * except the one just being waked up
3341 */
3342 for_each_online_cpu(other_cpu) {
3343 if (other_cpu != cpu) {
3344 struct mvneta_pcpu_port *other_port =
3345 per_cpu_ptr(pp->ports, other_cpu);
3346
3347 napi_synchronize(&other_port->napi);
3348 }
3349 }
3350
3351 /* Mask all ethernet port interrupts */
db488c10 3352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
f8642885
MR
3353 napi_enable(&port->napi);
3354
2dcf75e2
GC
3355
3356 /* Enable per-CPU interrupts on the CPU that is
3357 * brought up.
3358 */
0e28bf93 3359 mvneta_percpu_enable(pp);
2dcf75e2 3360
f8642885
MR
3361 /* Enable per-CPU interrupt on the one CPU we care
3362 * about.
3363 */
3364 mvneta_percpu_elect(pp);
3365
db488c10
GC
3366 /* Unmask all ethernet port interrupts */
3367 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
f8642885
MR
3368 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3369 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3370 MVNETA_CAUSE_LINK_CHANGE |
3371 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3372 netif_tx_start_all_queues(pp->dev);
120cfa50 3373 spin_unlock(&pp->lock);
f8642885
MR
3374 break;
3375 case CPU_DOWN_PREPARE:
3376 case CPU_DOWN_PREPARE_FROZEN:
3377 netif_tx_stop_all_queues(pp->dev);
5888511e
GC
3378 /* Thanks to this lock we are sure that any pending
3379 * cpu election is done
3380 */
3381 spin_lock(&pp->lock);
f8642885 3382 /* Mask all ethernet port interrupts */
db488c10 3383 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
5888511e 3384 spin_unlock(&pp->lock);
f8642885
MR
3385
3386 napi_synchronize(&port->napi);
3387 napi_disable(&port->napi);
3388 /* Disable per-CPU interrupts on the CPU that is
3389 * brought down.
3390 */
0e28bf93 3391 mvneta_percpu_disable(pp);
f8642885
MR
3392
3393 break;
3394 case CPU_DEAD:
3395 case CPU_DEAD_FROZEN:
3396 /* Check if a new CPU must be elected now this on is down */
120cfa50 3397 spin_lock(&pp->lock);
f8642885 3398 mvneta_percpu_elect(pp);
120cfa50 3399 spin_unlock(&pp->lock);
f8642885 3400 /* Unmask all ethernet port interrupts */
db488c10 3401 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
f8642885
MR
3402 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3403 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3404 MVNETA_CAUSE_LINK_CHANGE |
3405 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3406 netif_tx_start_all_queues(pp->dev);
3407 break;
3408 }
3409
3410 return NOTIFY_OK;
3411}
3412
c5aff182
TP
3413static int mvneta_open(struct net_device *dev)
3414{
3415 struct mvneta_port *pp = netdev_priv(dev);
6b125d63 3416 int ret;
c5aff182 3417
c5aff182 3418 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
8ec2cd48 3419 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3420 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c5aff182
TP
3421
3422 ret = mvneta_setup_rxqs(pp);
3423 if (ret)
3424 return ret;
3425
3426 ret = mvneta_setup_txqs(pp);
3427 if (ret)
3428 goto err_cleanup_rxqs;
3429
3430 /* Connect to port interrupt line */
12bb03b4
MR
3431 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3432 MVNETA_DRIVER_NAME, pp->ports);
c5aff182
TP
3433 if (ret) {
3434 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3435 goto err_cleanup_txqs;
3436 }
3437
2dcf75e2
GC
3438 /* Enable per-CPU interrupt on all the CPU to handle our RX
3439 * queue interrupts
3440 */
6b125d63 3441 on_each_cpu(mvneta_percpu_enable, pp, true);
2dcf75e2 3442
120cfa50 3443 pp->is_stopped = false;
f8642885
MR
3444 /* Register a CPU notifier to handle the case where our CPU
3445 * might be taken offline.
3446 */
3447 register_cpu_notifier(&pp->cpu_notifier);
3448
c5aff182
TP
3449 /* In default link is down */
3450 netif_carrier_off(pp->dev);
3451
3452 ret = mvneta_mdio_probe(pp);
3453 if (ret < 0) {
3454 netdev_err(dev, "cannot probe MDIO bus\n");
3455 goto err_free_irq;
3456 }
3457
3458 mvneta_start_dev(pp);
3459
3460 return 0;
3461
3462err_free_irq:
3d8c4530
RKAL
3463 unregister_cpu_notifier(&pp->cpu_notifier);
3464 on_each_cpu(mvneta_percpu_disable, pp, true);
12bb03b4 3465 free_percpu_irq(pp->dev->irq, pp->ports);
c5aff182
TP
3466err_cleanup_txqs:
3467 mvneta_cleanup_txqs(pp);
3468err_cleanup_rxqs:
3469 mvneta_cleanup_rxqs(pp);
3470 return ret;
3471}
3472
3473/* Stop the port, free port interrupt line */
3474static int mvneta_stop(struct net_device *dev)
3475{
3476 struct mvneta_port *pp = netdev_priv(dev);
3477
120cfa50 3478 /* Inform that we are stopping so we don't want to setup the
1c2722a9
GC
3479 * driver for new CPUs in the notifiers. The code of the
3480 * notifier for CPU online is protected by the same spinlock,
3481 * so when we get the lock, the notifer work is done.
120cfa50
GC
3482 */
3483 spin_lock(&pp->lock);
3484 pp->is_stopped = true;
1c2722a9
GC
3485 spin_unlock(&pp->lock);
3486
c5aff182
TP
3487 mvneta_stop_dev(pp);
3488 mvneta_mdio_remove(pp);
f8642885 3489 unregister_cpu_notifier(&pp->cpu_notifier);
129219e4 3490 on_each_cpu(mvneta_percpu_disable, pp, true);
12bb03b4 3491 free_percpu_irq(dev->irq, pp->ports);
c5aff182
TP
3492 mvneta_cleanup_rxqs(pp);
3493 mvneta_cleanup_txqs(pp);
c5aff182
TP
3494
3495 return 0;
3496}
3497
15f59456
TP
3498static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3499{
c6c022e3 3500 if (!dev->phydev)
15f59456
TP
3501 return -ENOTSUPP;
3502
c6c022e3 3503 return phy_mii_ioctl(dev->phydev, ifr, cmd);
15f59456
TP
3504}
3505
c5aff182
TP
3506/* Ethtool methods */
3507
013ad40d
PR
3508/* Set link ksettings (phy address, speed) for ethtools */
3509int mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3510 const struct ethtool_link_ksettings *cmd)
c5aff182 3511{
013ad40d
PR
3512 struct mvneta_port *pp = netdev_priv(ndev);
3513 struct phy_device *phydev = ndev->phydev;
c5aff182 3514
0c0744fc 3515 if (!phydev)
c5aff182
TP
3516 return -ENODEV;
3517
013ad40d 3518 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
0c0744fc
SS
3519 u32 val;
3520
013ad40d 3521 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
0c0744fc 3522
013ad40d 3523 if (cmd->base.autoneg == AUTONEG_DISABLE) {
0c0744fc
SS
3524 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3525 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3526 MVNETA_GMAC_CONFIG_GMII_SPEED |
3527 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3528
3529 if (phydev->duplex)
3530 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3531
3532 if (phydev->speed == SPEED_1000)
3533 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3534 else if (phydev->speed == SPEED_100)
3535 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3536
3537 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3538 }
3539
013ad40d 3540 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
0c0744fc
SS
3541 netdev_info(pp->dev, "autoneg status set to %i\n",
3542 pp->use_inband_status);
3543
013ad40d 3544 if (netif_running(ndev)) {
0c0744fc
SS
3545 mvneta_port_down(pp);
3546 mvneta_port_up(pp);
3547 }
3548 }
3549
013ad40d 3550 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
c5aff182
TP
3551}
3552
3553/* Set interrupt coalescing for ethtools */
3554static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3555 struct ethtool_coalesce *c)
3556{
3557 struct mvneta_port *pp = netdev_priv(dev);
3558 int queue;
3559
3560 for (queue = 0; queue < rxq_number; queue++) {
3561 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3562 rxq->time_coal = c->rx_coalesce_usecs;
3563 rxq->pkts_coal = c->rx_max_coalesced_frames;
3564 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3565 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3566 }
3567
3568 for (queue = 0; queue < txq_number; queue++) {
3569 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3570 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3571 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3572 }
3573
3574 return 0;
3575}
3576
3577/* get coalescing for ethtools */
3578static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3579 struct ethtool_coalesce *c)
3580{
3581 struct mvneta_port *pp = netdev_priv(dev);
3582
3583 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3584 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3585
3586 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3587 return 0;
3588}
3589
3590
3591static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3592 struct ethtool_drvinfo *drvinfo)
3593{
3594 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3595 sizeof(drvinfo->driver));
3596 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3597 sizeof(drvinfo->version));
3598 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3599 sizeof(drvinfo->bus_info));
3600}
3601
3602
3603static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3604 struct ethtool_ringparam *ring)
3605{
3606 struct mvneta_port *pp = netdev_priv(netdev);
3607
3608 ring->rx_max_pending = MVNETA_MAX_RXD;
3609 ring->tx_max_pending = MVNETA_MAX_TXD;
3610 ring->rx_pending = pp->rx_ring_size;
3611 ring->tx_pending = pp->tx_ring_size;
3612}
3613
3614static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3615 struct ethtool_ringparam *ring)
3616{
3617 struct mvneta_port *pp = netdev_priv(dev);
3618
3619 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3620 return -EINVAL;
3621 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3622 ring->rx_pending : MVNETA_MAX_RXD;
8eef5f97
EG
3623
3624 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3625 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3626 if (pp->tx_ring_size != ring->tx_pending)
3627 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3628 pp->tx_ring_size, ring->tx_pending);
c5aff182
TP
3629
3630 if (netif_running(dev)) {
3631 mvneta_stop(dev);
3632 if (mvneta_open(dev)) {
3633 netdev_err(dev,
3634 "error on opening device after ring param change\n");
3635 return -ENOMEM;
3636 }
3637 }
3638
3639 return 0;
3640}
3641
9b0cdefa
RK
3642static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3643 u8 *data)
3644{
3645 if (sset == ETH_SS_STATS) {
3646 int i;
3647
3648 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3649 memcpy(data + i * ETH_GSTRING_LEN,
3650 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3651 }
3652}
3653
3654static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3655{
3656 const struct mvneta_statistic *s;
3657 void __iomem *base = pp->base;
3658 u32 high, low, val;
2c832293 3659 u64 val64;
9b0cdefa
RK
3660 int i;
3661
3662 for (i = 0, s = mvneta_statistics;
3663 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3664 s++, i++) {
9b0cdefa
RK
3665 switch (s->type) {
3666 case T_REG_32:
3667 val = readl_relaxed(base + s->offset);
2c832293 3668 pp->ethtool_stats[i] += val;
9b0cdefa
RK
3669 break;
3670 case T_REG_64:
3671 /* Docs say to read low 32-bit then high */
3672 low = readl_relaxed(base + s->offset);
3673 high = readl_relaxed(base + s->offset + 4);
2c832293
JZ
3674 val64 = (u64)high << 32 | low;
3675 pp->ethtool_stats[i] += val64;
9b0cdefa
RK
3676 break;
3677 }
9b0cdefa
RK
3678 }
3679}
3680
3681static void mvneta_ethtool_get_stats(struct net_device *dev,
3682 struct ethtool_stats *stats, u64 *data)
3683{
3684 struct mvneta_port *pp = netdev_priv(dev);
3685 int i;
3686
3687 mvneta_ethtool_update_stats(pp);
3688
3689 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3690 *data++ = pp->ethtool_stats[i];
3691}
3692
3693static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3694{
3695 if (sset == ETH_SS_STATS)
3696 return ARRAY_SIZE(mvneta_statistics);
3697 return -EOPNOTSUPP;
3698}
3699
9a401dea
GC
3700static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3701{
3702 return MVNETA_RSS_LU_TABLE_SIZE;
3703}
3704
3705static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3706 struct ethtool_rxnfc *info,
3707 u32 *rules __always_unused)
3708{
3709 switch (info->cmd) {
3710 case ETHTOOL_GRXRINGS:
3711 info->data = rxq_number;
3712 return 0;
3713 case ETHTOOL_GRXFH:
3714 return -EOPNOTSUPP;
3715 default:
3716 return -EOPNOTSUPP;
3717 }
3718}
3719
3720static int mvneta_config_rss(struct mvneta_port *pp)
3721{
3722 int cpu;
3723 u32 val;
3724
3725 netif_tx_stop_all_queues(pp->dev);
3726
6b125d63 3727 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
9a401dea
GC
3728
3729 /* We have to synchronise on the napi of each CPU */
3730 for_each_online_cpu(cpu) {
3731 struct mvneta_pcpu_port *pcpu_port =
3732 per_cpu_ptr(pp->ports, cpu);
3733
3734 napi_synchronize(&pcpu_port->napi);
3735 napi_disable(&pcpu_port->napi);
3736 }
3737
3738 pp->rxq_def = pp->indir[0];
3739
3740 /* Update unicast mapping */
3741 mvneta_set_rx_mode(pp->dev);
3742
3743 /* Update val of portCfg register accordingly with all RxQueue types */
3744 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3745 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3746
3747 /* Update the elected CPU matching the new rxq_def */
120cfa50 3748 spin_lock(&pp->lock);
9a401dea 3749 mvneta_percpu_elect(pp);
120cfa50 3750 spin_unlock(&pp->lock);
9a401dea
GC
3751
3752 /* We have to synchronise on the napi of each CPU */
3753 for_each_online_cpu(cpu) {
3754 struct mvneta_pcpu_port *pcpu_port =
3755 per_cpu_ptr(pp->ports, cpu);
3756
3757 napi_enable(&pcpu_port->napi);
3758 }
3759
3760 netif_tx_start_all_queues(pp->dev);
3761
3762 return 0;
3763}
3764
3765static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3766 const u8 *key, const u8 hfunc)
3767{
3768 struct mvneta_port *pp = netdev_priv(dev);
3769 /* We require at least one supported parameter to be changed
3770 * and no change in any of the unsupported parameters
3771 */
3772 if (key ||
3773 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3774 return -EOPNOTSUPP;
3775
3776 if (!indir)
3777 return 0;
3778
3779 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3780
3781 return mvneta_config_rss(pp);
3782}
3783
3784static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3785 u8 *hfunc)
3786{
3787 struct mvneta_port *pp = netdev_priv(dev);
3788
3789 if (hfunc)
3790 *hfunc = ETH_RSS_HASH_TOP;
3791
3792 if (!indir)
3793 return 0;
3794
3795 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3796
3797 return 0;
3798}
3799
c5aff182
TP
3800static const struct net_device_ops mvneta_netdev_ops = {
3801 .ndo_open = mvneta_open,
3802 .ndo_stop = mvneta_stop,
3803 .ndo_start_xmit = mvneta_tx,
3804 .ndo_set_rx_mode = mvneta_set_rx_mode,
3805 .ndo_set_mac_address = mvneta_set_mac_addr,
3806 .ndo_change_mtu = mvneta_change_mtu,
b65657fc 3807 .ndo_fix_features = mvneta_fix_features,
c5aff182 3808 .ndo_get_stats64 = mvneta_get_stats64,
15f59456 3809 .ndo_do_ioctl = mvneta_ioctl,
c5aff182
TP
3810};
3811
3812const struct ethtool_ops mvneta_eth_tool_ops = {
3813 .get_link = ethtool_op_get_link,
c5aff182
TP
3814 .set_coalesce = mvneta_ethtool_set_coalesce,
3815 .get_coalesce = mvneta_ethtool_get_coalesce,
3816 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3817 .get_ringparam = mvneta_ethtool_get_ringparam,
3818 .set_ringparam = mvneta_ethtool_set_ringparam,
9b0cdefa
RK
3819 .get_strings = mvneta_ethtool_get_strings,
3820 .get_ethtool_stats = mvneta_ethtool_get_stats,
3821 .get_sset_count = mvneta_ethtool_get_sset_count,
9a401dea
GC
3822 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3823 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3824 .get_rxfh = mvneta_ethtool_get_rxfh,
3825 .set_rxfh = mvneta_ethtool_set_rxfh,
013ad40d
PR
3826 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3827 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
c5aff182
TP
3828};
3829
3830/* Initialize hw */
9672850b 3831static int mvneta_init(struct device *dev, struct mvneta_port *pp)
c5aff182
TP
3832{
3833 int queue;
3834
3835 /* Disable port */
3836 mvneta_port_disable(pp);
3837
3838 /* Set port default values */
3839 mvneta_defaults_set(pp);
3840
9672850b
EG
3841 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3842 GFP_KERNEL);
c5aff182
TP
3843 if (!pp->txqs)
3844 return -ENOMEM;
3845
3846 /* Initialize TX descriptor rings */
3847 for (queue = 0; queue < txq_number; queue++) {
3848 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3849 txq->id = queue;
3850 txq->size = pp->tx_ring_size;
3851 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3852 }
3853
9672850b
EG
3854 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3855 GFP_KERNEL);
3856 if (!pp->rxqs)
c5aff182 3857 return -ENOMEM;
c5aff182
TP
3858
3859 /* Create Rx descriptor rings */
3860 for (queue = 0; queue < rxq_number; queue++) {
3861 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3862 rxq->id = queue;
3863 rxq->size = pp->rx_ring_size;
3864 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3865 rxq->time_coal = MVNETA_RX_COAL_USEC;
3866 }
3867
3868 return 0;
3869}
3870
c5aff182 3871/* platform glue : initialize decoding windows */
03ce758e
GK
3872static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3873 const struct mbus_dram_target_info *dram)
c5aff182
TP
3874{
3875 u32 win_enable;
3876 u32 win_protect;
3877 int i;
3878
3879 for (i = 0; i < 6; i++) {
3880 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3881 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3882
3883 if (i < 4)
3884 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3885 }
3886
3887 win_enable = 0x3f;
3888 win_protect = 0;
3889
3890 for (i = 0; i < dram->num_cs; i++) {
3891 const struct mbus_dram_window *cs = dram->cs + i;
3892 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3893 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3894
3895 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3896 (cs->size - 1) & 0xffff0000);
3897
3898 win_enable &= ~(1 << i);
3899 win_protect |= 3 << (2 * i);
3900 }
3901
3902 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
db6ba9a5 3903 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
c5aff182
TP
3904}
3905
3906/* Power up the port */
3f1dd4bc 3907static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
c5aff182 3908{
3f1dd4bc 3909 u32 ctrl;
c5aff182
TP
3910
3911 /* MAC Cause register should be cleared */
3912 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3913
3f1dd4bc 3914 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
c5aff182 3915
3f1dd4bc
TP
3916 /* Even though it might look weird, when we're configured in
3917 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3918 */
3919 switch(phy_mode) {
3920 case PHY_INTERFACE_MODE_QSGMII:
3921 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3922 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3923 break;
3924 case PHY_INTERFACE_MODE_SGMII:
3925 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3926 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3927 break;
3928 case PHY_INTERFACE_MODE_RGMII:
3929 case PHY_INTERFACE_MODE_RGMII_ID:
3930 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3931 break;
3932 default:
3933 return -EINVAL;
3934 }
c5aff182
TP
3935
3936 /* Cancel Port Reset */
3f1dd4bc
TP
3937 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3938 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
c5aff182
TP
3939
3940 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3941 MVNETA_GMAC2_PORT_RESET) != 0)
3942 continue;
3f1dd4bc
TP
3943
3944 return 0;
c5aff182
TP
3945}
3946
3947/* Device initialization routine */
03ce758e 3948static int mvneta_probe(struct platform_device *pdev)
c5aff182
TP
3949{
3950 const struct mbus_dram_target_info *dram_target_info;
c3f0dd38 3951 struct resource *res;
c5aff182
TP
3952 struct device_node *dn = pdev->dev.of_node;
3953 struct device_node *phy_node;
dc35a10f 3954 struct device_node *bm_node;
c5aff182
TP
3955 struct mvneta_port *pp;
3956 struct net_device *dev;
8cc3e439
TP
3957 const char *dt_mac_addr;
3958 char hw_mac_addr[ETH_ALEN];
3959 const char *mac_from;
f8af8e6e 3960 const char *managed;
9110ee07 3961 int tx_csum_limit;
c5aff182
TP
3962 int phy_mode;
3963 int err;
12bb03b4 3964 int cpu;
c5aff182 3965
ee40a116 3966 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
c5aff182
TP
3967 if (!dev)
3968 return -ENOMEM;
3969
3970 dev->irq = irq_of_parse_and_map(dn, 0);
3971 if (dev->irq == 0) {
3972 err = -EINVAL;
3973 goto err_free_netdev;
3974 }
3975
3976 phy_node = of_parse_phandle(dn, "phy", 0);
3977 if (!phy_node) {
83895bed
TP
3978 if (!of_phy_is_fixed_link(dn)) {
3979 dev_err(&pdev->dev, "no PHY specified\n");
3980 err = -ENODEV;
3981 goto err_free_irq;
3982 }
3983
3984 err = of_phy_register_fixed_link(dn);
3985 if (err < 0) {
3986 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3987 goto err_free_irq;
3988 }
3989
3990 /* In the case of a fixed PHY, the DT node associated
3991 * to the PHY is the Ethernet MAC DT node.
3992 */
c891c24c 3993 phy_node = of_node_get(dn);
c5aff182
TP
3994 }
3995
3996 phy_mode = of_get_phy_mode(dn);
3997 if (phy_mode < 0) {
3998 dev_err(&pdev->dev, "incorrect phy-mode\n");
3999 err = -EINVAL;
c891c24c 4000 goto err_put_phy_node;
c5aff182
TP
4001 }
4002
c5aff182
TP
4003 dev->tx_queue_len = MVNETA_MAX_TXD;
4004 dev->watchdog_timeo = 5 * HZ;
4005 dev->netdev_ops = &mvneta_netdev_ops;
4006
7ad24ea4 4007 dev->ethtool_ops = &mvneta_eth_tool_ops;
c5aff182
TP
4008
4009 pp = netdev_priv(dev);
1c2722a9 4010 spin_lock_init(&pp->lock);
c5aff182
TP
4011 pp->phy_node = phy_node;
4012 pp->phy_interface = phy_mode;
f8af8e6e
SS
4013
4014 err = of_property_read_string(dn, "managed", &managed);
4015 pp->use_inband_status = (err == 0 &&
4016 strcmp(managed, "in-band-status") == 0);
f8642885 4017 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
c5aff182 4018
90b74c01
GC
4019 pp->rxq_def = rxq_def;
4020
9a401dea
GC
4021 pp->indir[0] = rxq_def;
4022
2804ba4e
JZ
4023 pp->clk = devm_clk_get(&pdev->dev, "core");
4024 if (IS_ERR(pp->clk))
4025 pp->clk = devm_clk_get(&pdev->dev, NULL);
189dd626
TP
4026 if (IS_ERR(pp->clk)) {
4027 err = PTR_ERR(pp->clk);
c891c24c 4028 goto err_put_phy_node;
189dd626
TP
4029 }
4030
4031 clk_prepare_enable(pp->clk);
4032
15cc4a4a
JZ
4033 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4034 if (!IS_ERR(pp->clk_bus))
4035 clk_prepare_enable(pp->clk_bus);
4036
c3f0dd38
TP
4037 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4038 pp->base = devm_ioremap_resource(&pdev->dev, res);
4039 if (IS_ERR(pp->base)) {
4040 err = PTR_ERR(pp->base);
5445eaf3
APR
4041 goto err_clk;
4042 }
4043
12bb03b4
MR
4044 /* Alloc per-cpu port structure */
4045 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4046 if (!pp->ports) {
4047 err = -ENOMEM;
4048 goto err_clk;
4049 }
4050
74c41b04 4051 /* Alloc per-cpu stats */
1c213bd2 4052 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
74c41b04 4053 if (!pp->stats) {
4054 err = -ENOMEM;
12bb03b4 4055 goto err_free_ports;
74c41b04 4056 }
4057
8cc3e439 4058 dt_mac_addr = of_get_mac_address(dn);
6c7a9a3c 4059 if (dt_mac_addr) {
8cc3e439
TP
4060 mac_from = "device tree";
4061 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4062 } else {
4063 mvneta_get_mac_addr(pp, hw_mac_addr);
4064 if (is_valid_ether_addr(hw_mac_addr)) {
4065 mac_from = "hardware";
4066 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4067 } else {
4068 mac_from = "random";
4069 eth_hw_addr_random(dev);
4070 }
4071 }
4072
9110ee07
MW
4073 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4074 if (tx_csum_limit < 0 ||
4075 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4076 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4077 dev_info(&pdev->dev,
4078 "Wrong TX csum limit in DT, set to %dB\n",
4079 MVNETA_TX_CSUM_DEF_SIZE);
4080 }
4081 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4082 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4083 } else {
4084 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4085 }
4086
4087 pp->tx_csum_limit = tx_csum_limit;
b65657fc 4088
dc35a10f
MW
4089 dram_target_info = mv_mbus_dram_info();
4090 if (dram_target_info)
4091 mvneta_conf_mbus_windows(pp, dram_target_info);
4092
c5aff182
TP
4093 pp->tx_ring_size = MVNETA_MAX_TXD;
4094 pp->rx_ring_size = MVNETA_MAX_RXD;
4095
4096 pp->dev = dev;
4097 SET_NETDEV_DEV(dev, &pdev->dev);
4098
dc35a10f
MW
4099 pp->id = global_port_id++;
4100
4101 /* Obtain access to BM resources if enabled and already initialized */
4102 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4103 if (bm_node && bm_node->data) {
4104 pp->bm_priv = bm_node->data;
4105 err = mvneta_bm_port_init(pdev, pp);
4106 if (err < 0) {
4107 dev_info(&pdev->dev, "use SW buffer management\n");
4108 pp->bm_priv = NULL;
4109 }
4110 }
d4e4da00 4111 of_node_put(bm_node);
dc35a10f 4112
9672850b
EG
4113 err = mvneta_init(&pdev->dev, pp);
4114 if (err < 0)
dc35a10f 4115 goto err_netdev;
3f1dd4bc
TP
4116
4117 err = mvneta_port_power_up(pp, phy_mode);
4118 if (err < 0) {
4119 dev_err(&pdev->dev, "can't power up port\n");
dc35a10f 4120 goto err_netdev;
3f1dd4bc 4121 }
c5aff182 4122
12bb03b4
MR
4123 for_each_present_cpu(cpu) {
4124 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4125
4126 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4127 port->pp = pp;
4128 }
c5aff182 4129
2adb719d 4130 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
01ef26ca
EG
4131 dev->hw_features |= dev->features;
4132 dev->vlan_features |= dev->features;
928b6519 4133 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
8eef5f97 4134 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
b50b72de 4135
c5aff182
TP
4136 err = register_netdev(dev);
4137 if (err < 0) {
4138 dev_err(&pdev->dev, "failed to register\n");
9672850b 4139 goto err_free_stats;
c5aff182
TP
4140 }
4141
8cc3e439
TP
4142 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4143 dev->dev_addr);
c5aff182
TP
4144
4145 platform_set_drvdata(pdev, pp->dev);
4146
898b2970
SS
4147 if (pp->use_inband_status) {
4148 struct phy_device *phy = of_phy_find_device(dn);
4149
4150 mvneta_fixed_link_update(pp, phy);
04d53b20 4151
e5a03bfd 4152 put_device(&phy->mdio.dev);
898b2970
SS
4153 }
4154
c5aff182
TP
4155 return 0;
4156
dc35a10f
MW
4157err_netdev:
4158 unregister_netdev(dev);
4159 if (pp->bm_priv) {
4160 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4161 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4162 1 << pp->id);
4163 }
74c41b04 4164err_free_stats:
4165 free_percpu(pp->stats);
12bb03b4
MR
4166err_free_ports:
4167 free_percpu(pp->ports);
5445eaf3 4168err_clk:
15cc4a4a 4169 clk_disable_unprepare(pp->clk_bus);
5445eaf3 4170 clk_disable_unprepare(pp->clk);
c891c24c
UKK
4171err_put_phy_node:
4172 of_node_put(phy_node);
c5aff182
TP
4173err_free_irq:
4174 irq_dispose_mapping(dev->irq);
4175err_free_netdev:
4176 free_netdev(dev);
4177 return err;
4178}
4179
4180/* Device removal routine */
03ce758e 4181static int mvneta_remove(struct platform_device *pdev)
c5aff182
TP
4182{
4183 struct net_device *dev = platform_get_drvdata(pdev);
4184 struct mvneta_port *pp = netdev_priv(dev);
4185
4186 unregister_netdev(dev);
15cc4a4a 4187 clk_disable_unprepare(pp->clk_bus);
189dd626 4188 clk_disable_unprepare(pp->clk);
12bb03b4 4189 free_percpu(pp->ports);
74c41b04 4190 free_percpu(pp->stats);
c5aff182 4191 irq_dispose_mapping(dev->irq);
c891c24c 4192 of_node_put(pp->phy_node);
c5aff182
TP
4193 free_netdev(dev);
4194
dc35a10f
MW
4195 if (pp->bm_priv) {
4196 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4197 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4198 1 << pp->id);
4199 }
4200
c5aff182
TP
4201 return 0;
4202}
4203
4204static const struct of_device_id mvneta_match[] = {
4205 { .compatible = "marvell,armada-370-neta" },
f522a975 4206 { .compatible = "marvell,armada-xp-neta" },
c5aff182
TP
4207 { }
4208};
4209MODULE_DEVICE_TABLE(of, mvneta_match);
4210
4211static struct platform_driver mvneta_driver = {
4212 .probe = mvneta_probe,
03ce758e 4213 .remove = mvneta_remove,
c5aff182
TP
4214 .driver = {
4215 .name = MVNETA_DRIVER_NAME,
4216 .of_match_table = mvneta_match,
4217 },
4218};
4219
4220module_platform_driver(mvneta_driver);
4221
4222MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4223MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4224MODULE_LICENSE("GPL");
4225
4226module_param(rxq_number, int, S_IRUGO);
4227module_param(txq_number, int, S_IRUGO);
4228
4229module_param(rxq_def, int, S_IRUGO);
f19fadfc 4230module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
This page took 0.504213 seconds and 5 git commands to generate.