drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / neterion / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
926bd900 3 * Copyright(c) 2002-2010 Exar Corp.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
926930b2
SS
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
3a3d5756
SH
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
53 ************************************************************************/
54
6cef2b8e
JP
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
40239396 66#include <linux/mdio.h>
1da177e4
LT
67#include <linux/skbuff.h>
68#include <linux/init.h>
69#include <linux/delay.h>
70#include <linux/stddef.h>
71#include <linux/ioctl.h>
72#include <linux/timex.h>
1da177e4 73#include <linux/ethtool.h>
1da177e4 74#include <linux/workqueue.h>
be3a6b02 75#include <linux/if_vlan.h>
7d3d0439
RA
76#include <linux/ip.h>
77#include <linux/tcp.h>
d44570e4
JP
78#include <linux/uaccess.h>
79#include <linux/io.h>
5a0e3ad6 80#include <linux/slab.h>
70c71606 81#include <linux/prefetch.h>
7d3d0439 82#include <net/tcp.h>
1da177e4 83
1da177e4 84#include <asm/system.h>
fe931395 85#include <asm/div64.h>
330ce0de 86#include <asm/irq.h>
1da177e4
LT
87
88/* local include */
89#include "s2io.h"
90#include "s2io-regs.h"
91
11410b62 92#define DRV_VERSION "2.0.26.28"
6c1792f4 93
1da177e4 94/* S2io Driver name & version. */
c0dbf37e
JM
95static const char s2io_driver_name[] = "Neterion";
96static const char s2io_driver_version[] = DRV_VERSION;
1da177e4 97
c0dbf37e
JM
98static const int rxd_size[2] = {32, 48};
99static const int rxd_count[2] = {127, 85};
da6971d8 100
1ee6dd77 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 102{
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd 107
108 return ret;
109}
110
20346722 111/*
1da177e4
LT
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
d44570e4
JP
116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
120
121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 123
d44570e4 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
125{
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127}
128
1da177e4 129/* Ethtool related variables and Macros. */
6fce365d 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136};
137
6fce365d 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
1da177e4 148 {"tmac_any_err_frms"},
bd1034f0 149 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
bd1034f0 164 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
1da177e4 171 {"rmac_discarded_frms"},
bd1034f0
AR
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
1da177e4
LT
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
bd1034f0
AR
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
bd1034f0
AR
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
1da177e4 210 {"rmac_pause_cnt"},
bd1034f0
AR
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
bd1034f0
AR
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
fa1f0cb3
SS
232 {"rxf_wr_cnt"}
233};
234
6fce365d 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
251 {"link_fault_cnt"}
252};
253
6fce365d 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
bd1034f0
AR
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
8116f3cf
SS
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
43b7c451
SH
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
1da177e4
LT
327};
328
4c3616cd
AMR
329#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 332
d44570e4
JP
333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 335
d44570e4
JP
336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 338
4c3616cd 339#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 340#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 341
d44570e4
JP
342#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
25fff88e 347
2fd37688
SS
348/* copy mac addr to def_mac_addr array */
349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350{
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357}
04025095 358
20346722 359/*
1da177e4
LT
360 * Constants to be programmed into the Xena's registers, to configure
361 * the XAUI.
362 */
363
1da177e4 364#define END_SIGN 0x0
f71e1309 365static const u64 herc_act_dtx_cfg[] = {
541ae68f 366 /* Set address */
e960fc5c 367 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 368 /* Write data */
e960fc5c 369 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 370 /* Set address */
371 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 /* Write data */
373 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 /* Set address */
e960fc5c 375 0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 /* Write data */
377 0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 /* Set address */
541ae68f 379 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 /* Write data */
381 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 /* Done */
383 END_SIGN
384};
385
f71e1309 386static const u64 xena_dtx_cfg[] = {
c92ca04b 387 /* Set address */
1da177e4 388 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
389 /* Write data */
390 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 /* Set address */
392 0x8001051500000000ULL, 0x80010515000000E0ULL,
393 /* Write data */
394 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 /* Set address */
1da177e4 396 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
397 /* Write data */
398 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
399 END_SIGN
400};
401
20346722 402/*
1da177e4
LT
403 * Constants for Fixing the MacAddress problem seen mostly on
404 * Alpha machines.
405 */
f71e1309 406static const u64 fix_mac[] = {
1da177e4
LT
407 0x0060000000000000ULL, 0x0060600000000000ULL,
408 0x0040600000000000ULL, 0x0000600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0060600000000000ULL,
419 0x0020600000000000ULL, 0x0000600000000000ULL,
420 0x0040600000000000ULL, 0x0060600000000000ULL,
421 END_SIGN
422};
423
b41477f3
AR
424MODULE_LICENSE("GPL");
425MODULE_VERSION(DRV_VERSION);
426
427
1da177e4 428/* Module Loadable parameters. */
6cfc482b 429S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 430S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 431S2IO_PARM_INT(multiq, 0);
b41477f3
AR
432S2IO_PARM_INT(rx_ring_mode, 1);
433S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434S2IO_PARM_INT(rmac_pause_time, 0x100);
435S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437S2IO_PARM_INT(shared_splits, 0);
438S2IO_PARM_INT(tmac_util_period, 5);
439S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 440S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
441/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 443/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 444S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 445/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 446S2IO_PARM_INT(intr_type, 2);
7d3d0439 447/* Large receive offload feature */
43b7c451 448
7d3d0439
RA
449/* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
451 */
b41477f3 452S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 453S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
454
455S2IO_PARM_INT(napi, 1);
456S2IO_PARM_INT(ufo, 0);
926930b2 457S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
458
459static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 460{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 461static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 462{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 463static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 464{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
465
466module_param_array(tx_fifo_len, uint, NULL, 0);
467module_param_array(rx_ring_sz, uint, NULL, 0);
468module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 469
20346722 470/*
1da177e4 471 * S2IO device table.
20346722 472 * This table lists all the devices that this driver supports.
1da177e4 473 */
a3aa1884 474static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 PCI_ANY_ID, PCI_ANY_ID},
477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 PCI_ANY_ID, PCI_ANY_ID},
479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
480 PCI_ANY_ID, PCI_ANY_ID},
481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
483 {0,}
484};
485
486MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
d796fdb7
LV
488static struct pci_error_handlers s2io_err_handler = {
489 .error_detected = s2io_io_error_detected,
490 .slot_reset = s2io_io_slot_reset,
491 .resume = s2io_io_resume,
492};
493
1da177e4 494static struct pci_driver s2io_driver = {
d44570e4
JP
495 .name = "S2IO",
496 .id_table = s2io_tbl,
497 .probe = s2io_init_nic,
498 .remove = __devexit_p(s2io_rem_nic),
499 .err_handler = &s2io_err_handler,
1da177e4
LT
500};
501
502/* A simplifier macro used both by init and free shared_mem Fns(). */
503#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
3a3d5756
SH
505/* netqueue manipulation helper functions */
506static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507{
fd2ea0a7
DM
508 if (!sp->config.multiq) {
509 int i;
510
3a3d5756
SH
511 for (i = 0; i < sp->config.tx_fifo_num; i++)
512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 513 }
fd2ea0a7 514 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
515}
516
517static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518{
fd2ea0a7 519 if (!sp->config.multiq)
3a3d5756
SH
520 sp->mac_control.fifos[fifo_no].queue_state =
521 FIFO_QUEUE_STOP;
fd2ea0a7
DM
522
523 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
524}
525
526static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527{
fd2ea0a7
DM
528 if (!sp->config.multiq) {
529 int i;
530
3a3d5756
SH
531 for (i = 0; i < sp->config.tx_fifo_num; i++)
532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 533 }
fd2ea0a7 534 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
535}
536
537static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538{
fd2ea0a7 539 if (!sp->config.multiq)
3a3d5756
SH
540 sp->mac_control.fifos[fifo_no].queue_state =
541 FIFO_QUEUE_START;
fd2ea0a7
DM
542
543 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
544}
545
546static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547{
fd2ea0a7
DM
548 if (!sp->config.multiq) {
549 int i;
550
3a3d5756
SH
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 553 }
fd2ea0a7 554 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
555}
556
557static inline void s2io_wake_tx_queue(
558 struct fifo_info *fifo, int cnt, u8 multiq)
559{
560
3a3d5756
SH
561 if (multiq) {
562 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 564 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
565 if (netif_queue_stopped(fifo->dev)) {
566 fifo->queue_state = FIFO_QUEUE_START;
567 netif_wake_queue(fifo->dev);
568 }
569 }
570}
571
1da177e4
LT
572/**
573 * init_shared_mem - Allocation and Initialization of Memory
574 * @nic: Device private variable.
20346722 575 * Description: The function allocates all the memory areas shared
576 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
577 * Rx descriptors and the statistics block.
578 */
579
580static int init_shared_mem(struct s2io_nic *nic)
581{
582 u32 size;
583 void *tmp_v_addr, *tmp_v_addr_next;
584 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 585 struct RxD_block *pre_rxd_blk = NULL;
372cc597 586 int i, j, blk_cnt;
1da177e4
LT
587 int lst_size, lst_per_page;
588 struct net_device *dev = nic->dev;
8ae418cf 589 unsigned long tmp;
1ee6dd77 590 struct buffAdd *ba;
ffb5df6c
JP
591 struct config_param *config = &nic->config;
592 struct mac_info *mac_control = &nic->mac_control;
491976b2 593 unsigned long long mem_allocated = 0;
1da177e4 594
13d866a9 595 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
596 size = 0;
597 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
598 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599
600 size += tx_cfg->fifo_len;
1da177e4
LT
601 }
602 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
603 DBG_PRINT(ERR_DBG,
604 "Too many TxDs requested: %d, max supported: %d\n",
605 size, MAX_AVAILABLE_TXDS);
b41477f3 606 return -EINVAL;
1da177e4
LT
607 }
608
2fda096d
SR
609 size = 0;
610 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
611 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612
613 size = tx_cfg->fifo_len;
2fda096d
SR
614 /*
615 * Legal values are from 2 to 8192
616 */
617 if (size < 2) {
9e39f7c5
JP
618 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 "Valid lengths are 2 through 8192\n",
620 i, size);
2fda096d
SR
621 return -EINVAL;
622 }
623 }
624
1ee6dd77 625 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
626 lst_per_page = PAGE_SIZE / lst_size;
627
628 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
629 struct fifo_info *fifo = &mac_control->fifos[i];
630 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 632 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
633
634 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 if (!fifo->list_info) {
d44570e4 636 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
637 return -ENOMEM;
638 }
491976b2 639 mem_allocated += list_holder_size;
1da177e4
LT
640 }
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 lst_per_page);
13d866a9
JP
644 struct fifo_info *fifo = &mac_control->fifos[i];
645 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646
647 fifo->tx_curr_put_info.offset = 0;
648 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 fifo->tx_curr_get_info.offset = 0;
650 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 fifo->fifo_no = i;
652 fifo->nic = nic;
653 fifo->max_txds = MAX_SKB_FRAGS + 2;
654 fifo->dev = dev;
20346722 655
1da177e4
LT
656 for (j = 0; j < page_num; j++) {
657 int k = 0;
658 dma_addr_t tmp_p;
659 void *tmp_v;
660 tmp_v = pci_alloc_consistent(nic->pdev,
661 PAGE_SIZE, &tmp_p);
662 if (!tmp_v) {
9e39f7c5
JP
663 DBG_PRINT(INFO_DBG,
664 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
665 return -ENOMEM;
666 }
776bd20f 667 /* If we got a zero DMA address(can happen on
668 * certain platforms like PPC), reallocate.
669 * Store virtual address of page we don't want,
670 * to be freed later.
671 */
672 if (!tmp_p) {
673 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 674 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
675 "%s: Zero DMA address for TxDL. "
676 "Virtual address %p\n",
677 dev->name, tmp_v);
776bd20f 678 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 679 PAGE_SIZE, &tmp_p);
776bd20f 680 if (!tmp_v) {
0c61ed5f 681 DBG_PRINT(INFO_DBG,
9e39f7c5 682 "pci_alloc_consistent failed for TxDL\n");
776bd20f 683 return -ENOMEM;
684 }
491976b2 685 mem_allocated += PAGE_SIZE;
776bd20f 686 }
1da177e4
LT
687 while (k < lst_per_page) {
688 int l = (j * lst_per_page) + k;
13d866a9 689 if (l == tx_cfg->fifo_len)
20346722 690 break;
13d866a9 691 fifo->list_info[l].list_virt_addr =
d44570e4 692 tmp_v + (k * lst_size);
13d866a9 693 fifo->list_info[l].list_phy_addr =
d44570e4 694 tmp_p + (k * lst_size);
1da177e4
LT
695 k++;
696 }
697 }
698 }
1da177e4 699
2fda096d 700 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
701 struct fifo_info *fifo = &mac_control->fifos[i];
702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703
704 size = tx_cfg->fifo_len;
705 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 if (!fifo->ufo_in_band_v)
2fda096d
SR
707 return -ENOMEM;
708 mem_allocated += (size * sizeof(u64));
709 }
fed5eccd 710
1da177e4
LT
711 /* Allocation and initialization of RXDs in Rings */
712 size = 0;
713 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
714 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 struct ring_info *ring = &mac_control->rings[i];
716
717 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
718 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 "multiple of RxDs per Block\n",
720 dev->name, i);
1da177e4
LT
721 return FAILURE;
722 }
13d866a9
JP
723 size += rx_cfg->num_rxd;
724 ring->block_count = rx_cfg->num_rxd /
d44570e4 725 (rxd_count[nic->rxd_mode] + 1);
13d866a9 726 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 727 }
da6971d8 728 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 729 size = (size * (sizeof(struct RxD1)));
da6971d8 730 else
1ee6dd77 731 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
732
733 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
734 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 struct ring_info *ring = &mac_control->rings[i];
736
737 ring->rx_curr_get_info.block_index = 0;
738 ring->rx_curr_get_info.offset = 0;
739 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 ring->rx_curr_put_info.block_index = 0;
741 ring->rx_curr_put_info.offset = 0;
742 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 ring->nic = nic;
744 ring->ring_no = i;
13d866a9
JP
745
746 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
747 /* Allocating all the Rx blocks */
748 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 749 struct rx_block_info *rx_blocks;
da6971d8
AR
750 int l;
751
13d866a9 752 rx_blocks = &ring->rx_blocks[j];
d44570e4 753 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
754 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 &tmp_p_addr);
756 if (tmp_v_addr == NULL) {
757 /*
20346722 758 * In case of failure, free_shared_mem()
759 * is called, which should free any
760 * memory that was alloced till the
1da177e4
LT
761 * failure happened.
762 */
da6971d8 763 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
764 return -ENOMEM;
765 }
491976b2 766 mem_allocated += size;
1da177e4 767 memset(tmp_v_addr, 0, size);
4f870320
JP
768
769 size = sizeof(struct rxd_info) *
770 rxd_count[nic->rxd_mode];
da6971d8
AR
771 rx_blocks->block_virt_addr = tmp_v_addr;
772 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 773 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
774 if (!rx_blocks->rxds)
775 return -ENOMEM;
4f870320 776 mem_allocated += size;
d44570e4 777 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
778 rx_blocks->rxds[l].virt_addr =
779 rx_blocks->block_virt_addr +
780 (rxd_size[nic->rxd_mode] * l);
781 rx_blocks->rxds[l].dma_addr =
782 rx_blocks->block_dma_addr +
783 (rxd_size[nic->rxd_mode] * l);
784 }
1da177e4
LT
785 }
786 /* Interlinking all Rx Blocks */
787 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
788 int next = (j + 1) % blk_cnt;
789 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 793
43d620c8 794 pre_rxd_blk = tmp_v_addr;
1da177e4 795 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 796 (unsigned long)tmp_v_addr_next;
1da177e4 797 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 798 (u64)tmp_p_addr_next;
1da177e4
LT
799 }
800 }
6d517a27 801 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
802 /*
803 * Allocation of Storages for buffer addresses in 2BUFF mode
804 * and the buffers as well.
805 */
806 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
807 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 struct ring_info *ring = &mac_control->rings[i];
809
810 blk_cnt = rx_cfg->num_rxd /
d44570e4 811 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
812 size = sizeof(struct buffAdd *) * blk_cnt;
813 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 814 if (!ring->ba)
1da177e4 815 return -ENOMEM;
4f870320 816 mem_allocated += size;
da6971d8
AR
817 for (j = 0; j < blk_cnt; j++) {
818 int k = 0;
4f870320
JP
819
820 size = sizeof(struct buffAdd) *
821 (rxd_count[nic->rxd_mode] + 1);
822 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 823 if (!ring->ba[j])
1da177e4 824 return -ENOMEM;
4f870320 825 mem_allocated += size;
da6971d8 826 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 827 ba = &ring->ba[j][k];
4f870320
JP
828 size = BUF0_LEN + ALIGN_SIZE;
829 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
830 if (!ba->ba_0_org)
831 return -ENOMEM;
4f870320 832 mem_allocated += size;
da6971d8
AR
833 tmp = (unsigned long)ba->ba_0_org;
834 tmp += ALIGN_SIZE;
d44570e4
JP
835 tmp &= ~((unsigned long)ALIGN_SIZE);
836 ba->ba_0 = (void *)tmp;
da6971d8 837
4f870320
JP
838 size = BUF1_LEN + ALIGN_SIZE;
839 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
840 if (!ba->ba_1_org)
841 return -ENOMEM;
4f870320 842 mem_allocated += size;
d44570e4 843 tmp = (unsigned long)ba->ba_1_org;
da6971d8 844 tmp += ALIGN_SIZE;
d44570e4
JP
845 tmp &= ~((unsigned long)ALIGN_SIZE);
846 ba->ba_1 = (void *)tmp;
da6971d8
AR
847 k++;
848 }
1da177e4
LT
849 }
850 }
851 }
1da177e4
LT
852
853 /* Allocation and initialization of Statistics block */
1ee6dd77 854 size = sizeof(struct stat_block);
d44570e4
JP
855 mac_control->stats_mem =
856 pci_alloc_consistent(nic->pdev, size,
857 &mac_control->stats_mem_phy);
1da177e4
LT
858
859 if (!mac_control->stats_mem) {
20346722 860 /*
861 * In case of failure, free_shared_mem() is called, which
862 * should free any memory that was alloced till the
1da177e4
LT
863 * failure happened.
864 */
865 return -ENOMEM;
866 }
491976b2 867 mem_allocated += size;
1da177e4
LT
868 mac_control->stats_mem_sz = size;
869
870 tmp_v_addr = mac_control->stats_mem;
43d620c8 871 mac_control->stats_info = tmp_v_addr;
1da177e4 872 memset(tmp_v_addr, 0, size);
3a22813a
BL
873 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 875 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
876 return SUCCESS;
877}
878
20346722 879/**
880 * free_shared_mem - Free the allocated Memory
1da177e4
LT
881 * @nic: Device private variable.
882 * Description: This function is to free all memory locations allocated by
883 * the init_shared_mem() function and return it to the kernel.
884 */
885
886static void free_shared_mem(struct s2io_nic *nic)
887{
888 int i, j, blk_cnt, size;
889 void *tmp_v_addr;
890 dma_addr_t tmp_p_addr;
1da177e4 891 int lst_size, lst_per_page;
8910b49f 892 struct net_device *dev;
491976b2 893 int page_num = 0;
ffb5df6c
JP
894 struct config_param *config;
895 struct mac_info *mac_control;
896 struct stat_block *stats;
897 struct swStat *swstats;
1da177e4
LT
898
899 if (!nic)
900 return;
901
8910b49f
MG
902 dev = nic->dev;
903
1da177e4 904 config = &nic->config;
ffb5df6c
JP
905 mac_control = &nic->mac_control;
906 stats = mac_control->stats_info;
907 swstats = &stats->sw_stat;
1da177e4 908
d44570e4 909 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
910 lst_per_page = PAGE_SIZE / lst_size;
911
912 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
913 struct fifo_info *fifo = &mac_control->fifos[i];
914 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915
916 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
917 for (j = 0; j < page_num; j++) {
918 int mem_blks = (j * lst_per_page);
13d866a9
JP
919 struct list_info_hold *fli;
920
921 if (!fifo->list_info)
6aa20a22 922 return;
13d866a9
JP
923
924 fli = &fifo->list_info[mem_blks];
925 if (!fli->list_virt_addr)
1da177e4
LT
926 break;
927 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
928 fli->list_virt_addr,
929 fli->list_phy_addr);
ffb5df6c 930 swstats->mem_freed += PAGE_SIZE;
1da177e4 931 }
776bd20f 932 /* If we got a zero DMA address during allocation,
933 * free the page now
934 */
935 if (mac_control->zerodma_virt_addr) {
936 pci_free_consistent(nic->pdev, PAGE_SIZE,
937 mac_control->zerodma_virt_addr,
938 (dma_addr_t)0);
6aa20a22 939 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
940 "%s: Freeing TxDL with zero DMA address. "
941 "Virtual address %p\n",
942 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 943 swstats->mem_freed += PAGE_SIZE;
776bd20f 944 }
13d866a9 945 kfree(fifo->list_info);
82c2d023 946 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 947 sizeof(struct list_info_hold);
1da177e4
LT
948 }
949
1da177e4 950 size = SIZE_OF_BLOCK;
1da177e4 951 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
952 struct ring_info *ring = &mac_control->rings[i];
953
954 blk_cnt = ring->block_count;
1da177e4 955 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
956 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
958 if (tmp_v_addr == NULL)
959 break;
960 pci_free_consistent(nic->pdev, size,
961 tmp_v_addr, tmp_p_addr);
ffb5df6c 962 swstats->mem_freed += size;
13d866a9 963 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
964 swstats->mem_freed += sizeof(struct rxd_info) *
965 rxd_count[nic->rxd_mode];
1da177e4
LT
966 }
967 }
968
6d517a27 969 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
970 /* Freeing buffer storage addresses in 2BUFF mode. */
971 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
972 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 struct ring_info *ring = &mac_control->rings[i];
974
975 blk_cnt = rx_cfg->num_rxd /
976 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
977 for (j = 0; j < blk_cnt; j++) {
978 int k = 0;
13d866a9 979 if (!ring->ba[j])
da6971d8
AR
980 continue;
981 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 982 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 983 kfree(ba->ba_0_org);
ffb5df6c
JP
984 swstats->mem_freed +=
985 BUF0_LEN + ALIGN_SIZE;
da6971d8 986 kfree(ba->ba_1_org);
ffb5df6c
JP
987 swstats->mem_freed +=
988 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
989 k++;
990 }
13d866a9 991 kfree(ring->ba[j]);
ffb5df6c
JP
992 swstats->mem_freed += sizeof(struct buffAdd) *
993 (rxd_count[nic->rxd_mode] + 1);
1da177e4 994 }
13d866a9 995 kfree(ring->ba);
ffb5df6c
JP
996 swstats->mem_freed += sizeof(struct buffAdd *) *
997 blk_cnt;
1da177e4 998 }
1da177e4 999 }
1da177e4 1000
2fda096d 1001 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1002 struct fifo_info *fifo = &mac_control->fifos[i];
1003 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004
1005 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1006 swstats->mem_freed += tx_cfg->fifo_len *
1007 sizeof(u64);
13d866a9 1008 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1009 }
1010 }
1011
1da177e4 1012 if (mac_control->stats_mem) {
ffb5df6c 1013 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1014 pci_free_consistent(nic->pdev,
1015 mac_control->stats_mem_sz,
1016 mac_control->stats_mem,
1017 mac_control->stats_mem_phy);
491976b2 1018 }
1da177e4
LT
1019}
1020
541ae68f 1021/**
1022 * s2io_verify_pci_mode -
1023 */
1024
1ee6dd77 1025static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1026{
1ee6dd77 1027 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1028 register u64 val64 = 0;
1029 int mode;
1030
1031 val64 = readq(&bar0->pci_mode);
1032 mode = (u8)GET_PCI_MODE(val64);
1033
d44570e4 1034 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1035 return -1; /* Unknown PCI mode */
1036 return mode;
1037}
1038
c92ca04b
AR
1039#define NEC_VENID 0x1033
1040#define NEC_DEVID 0x0125
1041static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042{
1043 struct pci_dev *tdev = NULL;
26d36b64
AC
1044 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1045 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1046 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1047 pci_dev_put(tdev);
c92ca04b 1048 return 1;
7ad62dbc 1049 }
c92ca04b
AR
1050 }
1051 }
1052 return 0;
1053}
541ae68f 1054
7b32a312 1055static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1056/**
1057 * s2io_print_pci_mode -
1058 */
1ee6dd77 1059static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1060{
1ee6dd77 1061 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1062 register u64 val64 = 0;
1063 int mode;
1064 struct config_param *config = &nic->config;
9e39f7c5 1065 const char *pcimode;
541ae68f 1066
1067 val64 = readq(&bar0->pci_mode);
1068 mode = (u8)GET_PCI_MODE(val64);
1069
d44570e4 1070 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1071 return -1; /* Unknown PCI mode */
1072
c92ca04b
AR
1073 config->bus_speed = bus_speed[mode];
1074
1075 if (s2io_on_nec_bridge(nic->pdev)) {
1076 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1077 nic->dev->name);
c92ca04b
AR
1078 return mode;
1079 }
1080
d44570e4
JP
1081 switch (mode) {
1082 case PCI_MODE_PCI_33:
9e39f7c5 1083 pcimode = "33MHz PCI bus";
d44570e4
JP
1084 break;
1085 case PCI_MODE_PCI_66:
9e39f7c5 1086 pcimode = "66MHz PCI bus";
d44570e4
JP
1087 break;
1088 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1089 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1090 break;
1091 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1092 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1093 break;
1094 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1095 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1096 break;
1097 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1098 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1099 break;
1100 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1101 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1102 break;
1103 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1104 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1105 break;
1106 default:
9e39f7c5
JP
1107 pcimode = "unsupported bus!";
1108 mode = -1;
541ae68f 1109 }
1110
9e39f7c5
JP
1111 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113
541ae68f 1114 return mode;
1115}
1116
b7c5678f
RV
1117/**
1118 * init_tti - Initialization transmit traffic interrupt scheme
1119 * @nic: device private variable
1120 * @link: link status (UP/DOWN) used to enable/disable continuous
1121 * transmit interrupts
1122 * Description: The function configures transmit traffic interrupts
1123 * Return Value: SUCCESS on success and
1124 * '-1' on failure
1125 */
1126
0d66afe7 1127static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1128{
1129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 register u64 val64 = 0;
1131 int i;
ffb5df6c 1132 struct config_param *config = &nic->config;
b7c5678f
RV
1133
1134 for (i = 0; i < config->tx_fifo_num; i++) {
1135 /*
1136 * TTI Initialization. Default Tx timer gets us about
1137 * 250 interrupts per sec. Continuous interrupts are enabled
1138 * by default.
1139 */
1140 if (nic->device_type == XFRAME_II_DEVICE) {
1141 int count = (nic->config.bus_speed * 125)/2;
1142 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 } else
1144 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145
1146 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1147 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1150 if (i == 0)
1151 if (use_continuous_tx_intrs && (link == LINK_UP))
1152 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1153 writeq(val64, &bar0->tti_data1_mem);
1154
ac731ab6
SH
1155 if (nic->config.intr_type == MSI_X) {
1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 } else {
1161 if ((nic->config.tx_steering_type ==
d44570e4
JP
1162 TX_DEFAULT_STEERING) &&
1163 (config->tx_fifo_num > 1) &&
1164 (i >= nic->udp_fifo_idx) &&
1165 (i < (nic->udp_fifo_idx +
1166 nic->total_udp_fifos)))
ac731ab6
SH
1167 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 else
1172 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 TTI_DATA2_MEM_TX_UFC_D(0x80);
1176 }
b7c5678f
RV
1177
1178 writeq(val64, &bar0->tti_data2_mem);
1179
d44570e4
JP
1180 val64 = TTI_CMD_MEM_WE |
1181 TTI_CMD_MEM_STROBE_NEW_CMD |
1182 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1183 writeq(val64, &bar0->tti_command_mem);
1184
1185 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1186 TTI_CMD_MEM_STROBE_NEW_CMD,
1187 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1188 return FAILURE;
1189 }
1190
1191 return SUCCESS;
1192}
1193
20346722 1194/**
1195 * init_nic - Initialization of hardware
b7c5678f 1196 * @nic: device private variable
20346722 1197 * Description: The function sequentially configures every block
1198 * of the H/W from their reset values.
1199 * Return Value: SUCCESS on success and
1da177e4
LT
1200 * '-1' on failure (endian settings incorrect).
1201 */
1202
1203static int init_nic(struct s2io_nic *nic)
1204{
1ee6dd77 1205 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1206 struct net_device *dev = nic->dev;
1207 register u64 val64 = 0;
1208 void __iomem *add;
1209 u32 time;
1210 int i, j;
c92ca04b 1211 int dtx_cnt = 0;
1da177e4 1212 unsigned long long mem_share;
20346722 1213 int mem_size;
ffb5df6c
JP
1214 struct config_param *config = &nic->config;
1215 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1216
5e25b9dd 1217 /* to set the swapper controle on the card */
d44570e4
JP
1218 if (s2io_set_swapper(nic)) {
1219 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1220 return -EIO;
1da177e4
LT
1221 }
1222
541ae68f 1223 /*
1224 * Herc requires EOI to be removed from reset before XGXS, so..
1225 */
1226 if (nic->device_type & XFRAME_II_DEVICE) {
1227 val64 = 0xA500000000ULL;
1228 writeq(val64, &bar0->sw_reset);
1229 msleep(500);
1230 val64 = readq(&bar0->sw_reset);
1231 }
1232
1da177e4
LT
1233 /* Remove XGXS from reset state */
1234 val64 = 0;
1235 writeq(val64, &bar0->sw_reset);
1da177e4 1236 msleep(500);
20346722 1237 val64 = readq(&bar0->sw_reset);
1da177e4 1238
7962024e
SH
1239 /* Ensure that it's safe to access registers by checking
1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 */
1242 if (nic->device_type == XFRAME_II_DEVICE) {
1243 for (i = 0; i < 50; i++) {
1244 val64 = readq(&bar0->adapter_status);
1245 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 break;
1247 msleep(10);
1248 }
1249 if (i == 50)
1250 return -ENODEV;
1251 }
1252
1da177e4
LT
1253 /* Enable Receiving broadcasts */
1254 add = &bar0->mac_cfg;
1255 val64 = readq(&bar0->mac_cfg);
1256 val64 |= MAC_RMAC_BCAST_ENABLE;
1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1258 writel((u32)val64, add);
1da177e4
LT
1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 writel((u32) (val64 >> 32), (add + 4));
1261
1262 /* Read registers in all blocks */
1263 val64 = readq(&bar0->mac_int_mask);
1264 val64 = readq(&bar0->mc_int_mask);
1265 val64 = readq(&bar0->xgxs_int_mask);
1266
1267 /* Set MTU */
1268 val64 = dev->mtu;
1269 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270
541ae68f 1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1274 &bar0->dtx_control, UF);
541ae68f 1275 if (dtx_cnt & 0x1)
1276 msleep(1); /* Necessary!! */
1da177e4
LT
1277 dtx_cnt++;
1278 }
541ae68f 1279 } else {
c92ca04b
AR
1280 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 &bar0->dtx_control, UF);
1283 val64 = readq(&bar0->dtx_control);
1284 dtx_cnt++;
1da177e4
LT
1285 }
1286 }
1287
1288 /* Tx DMA Initialization */
1289 val64 = 0;
1290 writeq(val64, &bar0->tx_fifo_partition_0);
1291 writeq(val64, &bar0->tx_fifo_partition_1);
1292 writeq(val64, &bar0->tx_fifo_partition_2);
1293 writeq(val64, &bar0->tx_fifo_partition_3);
1294
1da177e4 1295 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1296 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297
1298 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1300
1301 if (i == (config->tx_fifo_num - 1)) {
1302 if (i % 2 == 0)
1303 i++;
1304 }
1305
1306 switch (i) {
1307 case 1:
1308 writeq(val64, &bar0->tx_fifo_partition_0);
1309 val64 = 0;
b7c5678f 1310 j = 0;
1da177e4
LT
1311 break;
1312 case 3:
1313 writeq(val64, &bar0->tx_fifo_partition_1);
1314 val64 = 0;
b7c5678f 1315 j = 0;
1da177e4
LT
1316 break;
1317 case 5:
1318 writeq(val64, &bar0->tx_fifo_partition_2);
1319 val64 = 0;
b7c5678f 1320 j = 0;
1da177e4
LT
1321 break;
1322 case 7:
1323 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1324 val64 = 0;
1325 j = 0;
1326 break;
1327 default:
1328 j++;
1da177e4
LT
1329 break;
1330 }
1331 }
1332
5e25b9dd 1333 /*
1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 */
d44570e4 1337 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd 1338 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339
1da177e4
LT
1340 val64 = readq(&bar0->tx_fifo_partition_0);
1341 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1342 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1343
20346722 1344 /*
1345 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1346 * integrity checking.
1347 */
1348 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1349 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 TX_PA_CFG_IGNORE_SNAP_OUI |
1351 TX_PA_CFG_IGNORE_LLC_CTRL |
1352 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1353 writeq(val64, &bar0->tx_pa_cfg);
1354
1355 /* Rx DMA intialization. */
1356 val64 = 0;
1357 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1358 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359
1360 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1361 }
1362 writeq(val64, &bar0->rx_queue_priority);
1363
20346722 1364 /*
1365 * Allocating equal share of memory to all the
1da177e4
LT
1366 * configured Rings.
1367 */
1368 val64 = 0;
541ae68f 1369 if (nic->device_type & XFRAME_II_DEVICE)
1370 mem_size = 32;
1371 else
1372 mem_size = 64;
1373
1da177e4
LT
1374 for (i = 0; i < config->rx_ring_num; i++) {
1375 switch (i) {
1376 case 0:
20346722 1377 mem_share = (mem_size / config->rx_ring_num +
1378 mem_size % config->rx_ring_num);
1da177e4
LT
1379 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 continue;
1381 case 1:
20346722 1382 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1383 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 continue;
1385 case 2:
20346722 1386 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1387 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 continue;
1389 case 3:
20346722 1390 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1391 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 continue;
1393 case 4:
20346722 1394 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1395 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 continue;
1397 case 5:
20346722 1398 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1399 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 continue;
1401 case 6:
20346722 1402 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1403 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 continue;
1405 case 7:
20346722 1406 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1407 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 continue;
1409 }
1410 }
1411 writeq(val64, &bar0->rx_queue_cfg);
1412
20346722 1413 /*
5e25b9dd 1414 * Filling Tx round robin registers
b7c5678f 1415 * as per the number of FIFOs for equal scheduling priority
1da177e4 1416 */
5e25b9dd 1417 switch (config->tx_fifo_num) {
1418 case 1:
b7c5678f 1419 val64 = 0x0;
5e25b9dd 1420 writeq(val64, &bar0->tx_w_round_robin_0);
1421 writeq(val64, &bar0->tx_w_round_robin_1);
1422 writeq(val64, &bar0->tx_w_round_robin_2);
1423 writeq(val64, &bar0->tx_w_round_robin_3);
1424 writeq(val64, &bar0->tx_w_round_robin_4);
1425 break;
1426 case 2:
b7c5678f 1427 val64 = 0x0001000100010001ULL;
5e25b9dd 1428 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1429 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1430 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1431 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1432 val64 = 0x0001000100000000ULL;
5e25b9dd 1433 writeq(val64, &bar0->tx_w_round_robin_4);
1434 break;
1435 case 3:
b7c5678f 1436 val64 = 0x0001020001020001ULL;
5e25b9dd 1437 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1438 val64 = 0x0200010200010200ULL;
5e25b9dd 1439 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1440 val64 = 0x0102000102000102ULL;
5e25b9dd 1441 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1442 val64 = 0x0001020001020001ULL;
5e25b9dd 1443 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1444 val64 = 0x0200010200000000ULL;
5e25b9dd 1445 writeq(val64, &bar0->tx_w_round_robin_4);
1446 break;
1447 case 4:
b7c5678f 1448 val64 = 0x0001020300010203ULL;
5e25b9dd 1449 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1450 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1451 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1452 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1453 val64 = 0x0001020300000000ULL;
5e25b9dd 1454 writeq(val64, &bar0->tx_w_round_robin_4);
1455 break;
1456 case 5:
b7c5678f 1457 val64 = 0x0001020304000102ULL;
5e25b9dd 1458 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1459 val64 = 0x0304000102030400ULL;
5e25b9dd 1460 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1461 val64 = 0x0102030400010203ULL;
5e25b9dd 1462 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1463 val64 = 0x0400010203040001ULL;
5e25b9dd 1464 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1465 val64 = 0x0203040000000000ULL;
5e25b9dd 1466 writeq(val64, &bar0->tx_w_round_robin_4);
1467 break;
1468 case 6:
b7c5678f 1469 val64 = 0x0001020304050001ULL;
5e25b9dd 1470 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1471 val64 = 0x0203040500010203ULL;
5e25b9dd 1472 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1473 val64 = 0x0405000102030405ULL;
5e25b9dd 1474 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1475 val64 = 0x0001020304050001ULL;
5e25b9dd 1476 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1477 val64 = 0x0203040500000000ULL;
5e25b9dd 1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 7:
b7c5678f 1481 val64 = 0x0001020304050600ULL;
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1483 val64 = 0x0102030405060001ULL;
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1485 val64 = 0x0203040506000102ULL;
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1487 val64 = 0x0304050600010203ULL;
5e25b9dd 1488 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1489 val64 = 0x0405060000000000ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 8:
b7c5678f 1493 val64 = 0x0001020304050607ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1498 val64 = 0x0001020300000000ULL;
5e25b9dd 1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 }
1502
b41477f3 1503 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1504 val64 = readq(&bar0->tx_fifo_partition_0);
1505 val64 |= (TX_FIFO_PARTITION_EN);
1506 writeq(val64, &bar0->tx_fifo_partition_0);
1507
5e25b9dd 1508 /* Filling the Rx round robin registers as per the
0425b46a
SH
1509 * number of Rings and steering based on QoS with
1510 * equal priority.
1511 */
5e25b9dd 1512 switch (config->rx_ring_num) {
1513 case 1:
0425b46a
SH
1514 val64 = 0x0;
1515 writeq(val64, &bar0->rx_w_round_robin_0);
1516 writeq(val64, &bar0->rx_w_round_robin_1);
1517 writeq(val64, &bar0->rx_w_round_robin_2);
1518 writeq(val64, &bar0->rx_w_round_robin_3);
1519 writeq(val64, &bar0->rx_w_round_robin_4);
1520
5e25b9dd 1521 val64 = 0x8080808080808080ULL;
1522 writeq(val64, &bar0->rts_qos_steering);
1523 break;
1524 case 2:
0425b46a 1525 val64 = 0x0001000100010001ULL;
5e25b9dd 1526 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1527 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1528 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1529 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1530 val64 = 0x0001000100000000ULL;
5e25b9dd 1531 writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533 val64 = 0x8080808040404040ULL;
1534 writeq(val64, &bar0->rts_qos_steering);
1535 break;
1536 case 3:
0425b46a 1537 val64 = 0x0001020001020001ULL;
5e25b9dd 1538 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1539 val64 = 0x0200010200010200ULL;
5e25b9dd 1540 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1541 val64 = 0x0102000102000102ULL;
5e25b9dd 1542 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1543 val64 = 0x0001020001020001ULL;
5e25b9dd 1544 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1545 val64 = 0x0200010200000000ULL;
5e25b9dd 1546 writeq(val64, &bar0->rx_w_round_robin_4);
1547
1548 val64 = 0x8080804040402020ULL;
1549 writeq(val64, &bar0->rts_qos_steering);
1550 break;
1551 case 4:
0425b46a 1552 val64 = 0x0001020300010203ULL;
5e25b9dd 1553 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1554 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1555 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1556 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1557 val64 = 0x0001020300000000ULL;
5e25b9dd 1558 writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560 val64 = 0x8080404020201010ULL;
1561 writeq(val64, &bar0->rts_qos_steering);
1562 break;
1563 case 5:
0425b46a 1564 val64 = 0x0001020304000102ULL;
5e25b9dd 1565 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1566 val64 = 0x0304000102030400ULL;
5e25b9dd 1567 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1568 val64 = 0x0102030400010203ULL;
5e25b9dd 1569 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1570 val64 = 0x0400010203040001ULL;
5e25b9dd 1571 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1572 val64 = 0x0203040000000000ULL;
5e25b9dd 1573 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575 val64 = 0x8080404020201008ULL;
1576 writeq(val64, &bar0->rts_qos_steering);
1577 break;
1578 case 6:
0425b46a 1579 val64 = 0x0001020304050001ULL;
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1581 val64 = 0x0203040500010203ULL;
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1583 val64 = 0x0405000102030405ULL;
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1585 val64 = 0x0001020304050001ULL;
5e25b9dd 1586 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1587 val64 = 0x0203040500000000ULL;
5e25b9dd 1588 writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590 val64 = 0x8080404020100804ULL;
1591 writeq(val64, &bar0->rts_qos_steering);
1592 break;
1593 case 7:
0425b46a 1594 val64 = 0x0001020304050600ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1596 val64 = 0x0102030405060001ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1598 val64 = 0x0203040506000102ULL;
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1600 val64 = 0x0304050600010203ULL;
5e25b9dd 1601 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1602 val64 = 0x0405060000000000ULL;
5e25b9dd 1603 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605 val64 = 0x8080402010080402ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1607 break;
1608 case 8:
0425b46a 1609 val64 = 0x0001020304050607ULL;
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1613 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1614 val64 = 0x0001020300000000ULL;
5e25b9dd 1615 writeq(val64, &bar0->rx_w_round_robin_4);
1616
1617 val64 = 0x8040201008040201ULL;
1618 writeq(val64, &bar0->rts_qos_steering);
1619 break;
1620 }
1da177e4
LT
1621
1622 /* UDP Fix */
1623 val64 = 0;
20346722 1624 for (i = 0; i < 8; i++)
1da177e4
LT
1625 writeq(val64, &bar0->rts_frm_len_n[i]);
1626
5e25b9dd 1627 /* Set the default rts frame length for the rings configured */
1628 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 for (i = 0 ; i < config->rx_ring_num ; i++)
1630 writeq(val64, &bar0->rts_frm_len_n[i]);
1631
1632 /* Set the frame length for the configured rings
1633 * desired by the user
1634 */
1635 for (i = 0; i < config->rx_ring_num; i++) {
1636 /* If rts_frm_len[i] == 0 then it is assumed that user not
1637 * specified frame length steering.
1638 * If the user provides the frame length then program
1639 * the rts_frm_len register for those values or else
1640 * leave it as it is.
1641 */
1642 if (rts_frm_len[i] != 0) {
1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1644 &bar0->rts_frm_len_n[i]);
5e25b9dd 1645 }
1646 }
8a4bdbaa 1647
9fc93a41
SS
1648 /* Disable differentiated services steering logic */
1649 for (i = 0; i < 64; i++) {
1650 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1651 DBG_PRINT(ERR_DBG,
1652 "%s: rts_ds_steer failed on codepoint %d\n",
1653 dev->name, i);
9f74ffde 1654 return -ENODEV;
9fc93a41
SS
1655 }
1656 }
1657
20346722 1658 /* Program statistics memory */
1da177e4 1659 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1660
541ae68f 1661 if (nic->device_type == XFRAME_II_DEVICE) {
1662 val64 = STAT_BC(0x320);
1663 writeq(val64, &bar0->stat_byte_cnt);
1664 }
1665
20346722 1666 /*
1da177e4
LT
1667 * Initializing the sampling rate for the device to calculate the
1668 * bandwidth utilization.
1669 */
1670 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1672 writeq(val64, &bar0->mac_link_util);
1673
20346722 1674 /*
1675 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1676 * Scheme.
1677 */
1da177e4 1678
b7c5678f
RV
1679 /* Initialize TTI */
1680 if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 return -ENODEV;
1da177e4 1682
8a4bdbaa
SS
1683 /* RTI Initialization */
1684 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1685 /*
8a4bdbaa
SS
1686 * Programmed to generate Apprx 500 Intrs per
1687 * second
1688 */
1689 int count = (nic->config.bus_speed * 125)/4;
1690 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 } else
1692 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1694 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1697
1698 writeq(val64, &bar0->rti_data1_mem);
1699
1700 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1703 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1705 else
d44570e4
JP
1706 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1708 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1709
8a4bdbaa 1710 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1711 val64 = RTI_CMD_MEM_WE |
1712 RTI_CMD_MEM_STROBE_NEW_CMD |
1713 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1714 writeq(val64, &bar0->rti_command_mem);
1da177e4 1715
8a4bdbaa
SS
1716 /*
1717 * Once the operation completes, the Strobe bit of the
1718 * command register will be reset. We poll for this
1719 * particular condition. We wait for a maximum of 500ms
1720 * for the operation to complete, if it's not complete
1721 * by then we return error.
1722 */
1723 time = 0;
f957bcf0 1724 while (true) {
8a4bdbaa
SS
1725 val64 = readq(&bar0->rti_command_mem);
1726 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 break;
b6e3f982 1728
8a4bdbaa 1729 if (time > 10) {
9e39f7c5 1730 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1731 dev->name);
9f74ffde 1732 return -ENODEV;
b6e3f982 1733 }
8a4bdbaa
SS
1734 time++;
1735 msleep(50);
1da177e4 1736 }
1da177e4
LT
1737 }
1738
20346722 1739 /*
1740 * Initializing proper values as Pause threshold into all
1da177e4
LT
1741 * the 8 Queues on Rx side.
1742 */
1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745
1746 /* Disable RMAC PAD STRIPPING */
509a2671 1747 add = &bar0->mac_cfg;
1da177e4
LT
1748 val64 = readq(&bar0->mac_cfg);
1749 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 writel((u32) (val64), add);
1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 writel((u32) (val64 >> 32), (add + 4));
1754 val64 = readq(&bar0->mac_cfg);
1755
7d3d0439
RA
1756 /* Enable FCS stripping by adapter */
1757 add = &bar0->mac_cfg;
1758 val64 = readq(&bar0->mac_cfg);
1759 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 if (nic->device_type == XFRAME_II_DEVICE)
1761 writeq(val64, &bar0->mac_cfg);
1762 else {
1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 writel((u32) (val64), add);
1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 writel((u32) (val64 >> 32), (add + 4));
1767 }
1768
20346722 1769 /*
1770 * Set the time value to be inserted in the pause frame
1da177e4
LT
1771 * generated by xena.
1772 */
1773 val64 = readq(&bar0->rmac_pause_cfg);
1774 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 writeq(val64, &bar0->rmac_pause_cfg);
1777
20346722 1778 /*
1da177e4
LT
1779 * Set the Threshold Limit for Generating the pause frame
1780 * If the amount of data in any Queue exceeds ratio of
1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 * pause frame is generated
1783 */
1784 val64 = 0;
1785 for (i = 0; i < 4; i++) {
d44570e4
JP
1786 val64 |= (((u64)0xFF00 |
1787 nic->mac_control.mc_pause_threshold_q0q3)
1788 << (i * 2 * 8));
1da177e4
LT
1789 }
1790 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791
1792 val64 = 0;
1793 for (i = 0; i < 4; i++) {
d44570e4
JP
1794 val64 |= (((u64)0xFF00 |
1795 nic->mac_control.mc_pause_threshold_q4q7)
1796 << (i * 2 * 8));
1da177e4
LT
1797 }
1798 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799
20346722 1800 /*
1801 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1802 * exceeded the limit pointed by shared_splits
1803 */
1804 val64 = readq(&bar0->pic_control);
1805 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 writeq(val64, &bar0->pic_control);
1807
863c11a9
AR
1808 if (nic->config.bus_speed == 266) {
1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 writeq(0x0, &bar0->read_retry_delay);
1811 writeq(0x0, &bar0->write_retry_delay);
1812 }
1813
541ae68f 1814 /*
1815 * Programming the Herc to split every write transaction
1816 * that does not start on an ADB to reduce disconnects.
1817 */
1818 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1819 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1821 writeq(val64, &bar0->misc_control);
1822 val64 = readq(&bar0->pic_control2);
b7b5a128 1823 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1824 writeq(val64, &bar0->pic_control2);
541ae68f 1825 }
c92ca04b
AR
1826 if (strstr(nic->product_name, "CX4")) {
1827 val64 = TMAC_AVG_IPG(0x17);
1828 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1829 }
1830
1da177e4
LT
1831 return SUCCESS;
1832}
a371a07d 1833#define LINK_UP_DOWN_INTERRUPT 1
1834#define MAC_RMAC_ERR_TIMER 2
1835
1ee6dd77 1836static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1837{
1838 if (nic->device_type == XFRAME_II_DEVICE)
1839 return LINK_UP_DOWN_INTERRUPT;
1840 else
1841 return MAC_RMAC_ERR_TIMER;
1842}
8116f3cf 1843
9caab458
SS
1844/**
1845 * do_s2io_write_bits - update alarm bits in alarm register
1846 * @value: alarm bits
1847 * @flag: interrupt status
1848 * @addr: address value
1849 * Description: update alarm bits in alarm register
1850 * Return Value:
1851 * NONE.
1852 */
1853static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854{
1855 u64 temp64;
1856
1857 temp64 = readq(addr);
1858
d44570e4
JP
1859 if (flag == ENABLE_INTRS)
1860 temp64 &= ~((u64)value);
9caab458 1861 else
d44570e4 1862 temp64 |= ((u64)value);
9caab458
SS
1863 writeq(temp64, addr);
1864}
1da177e4 1865
43b7c451 1866static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1867{
1868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 register u64 gen_int_mask = 0;
01e16faa 1870 u64 interruptible;
9caab458 1871
01e16faa 1872 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1873 if (mask & TX_DMA_INTR) {
9caab458
SS
1874 gen_int_mask |= TXDMA_INT_M;
1875
1876 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1877 TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1880
1881 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1882 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 &bar0->pfc_err_mask);
9caab458
SS
1885
1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1887 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1889
1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1891 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 PCC_TXB_ECC_SG_ERR,
1896 flag, &bar0->pcc_err_mask);
9caab458
SS
1897
1898 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1899 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1900
1901 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1902 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 flag, &bar0->lso_err_mask);
9caab458
SS
1905
1906 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1907 flag, &bar0->tpa_err_mask);
9caab458
SS
1908
1909 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1910 }
1911
1912 if (mask & TX_MAC_INTR) {
1913 gen_int_mask |= TXMAC_INT_M;
1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1915 &bar0->mac_int_mask);
9caab458 1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1917 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1920 }
1921
1922 if (mask & TX_XGXS_INTR) {
1923 gen_int_mask |= TXXGXS_INT_M;
1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1925 &bar0->xgxs_int_mask);
9caab458 1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1927 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1929 }
1930
1931 if (mask & RX_DMA_INTR) {
1932 gen_int_mask |= RXDMA_INT_M;
1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1934 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 flag, &bar0->rxdma_int_mask);
9caab458 1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1937 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1941 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 &bar0->prc_pcix_err_mask);
9caab458 1944 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1945 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 &bar0->rpa_err_mask);
9caab458 1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
1948 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 RDA_FRM_ECC_SG_ERR |
1951 RDA_MISC_ERR|RDA_PCIX_ERR,
1952 flag, &bar0->rda_err_mask);
9caab458 1953 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
1954 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 flag, &bar0->rti_err_mask);
9caab458
SS
1956 }
1957
1958 if (mask & RX_MAC_INTR) {
1959 gen_int_mask |= RXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
1961 &bar0->mac_int_mask);
1962 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
1965 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 do_s2io_write_bits(interruptible,
d44570e4 1968 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
1969 }
1970
d44570e4 1971 if (mask & RX_XGXS_INTR) {
9caab458
SS
1972 gen_int_mask |= RXXGXS_INT_M;
1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 1974 &bar0->xgxs_int_mask);
9caab458 1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 1976 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
1977 }
1978
1979 if (mask & MC_INTR) {
1980 gen_int_mask |= MC_INT_M;
d44570e4
JP
1981 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 flag, &bar0->mc_int_mask);
9caab458 1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
1984 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 &bar0->mc_err_mask);
9caab458
SS
1986 }
1987 nic->general_int_mask = gen_int_mask;
1988
1989 /* Remove this line when alarm interrupts are enabled */
1990 nic->general_int_mask = 0;
1991}
d44570e4 1992
20346722 1993/**
1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1995 * @nic: device private variable,
1996 * @mask: A mask indicating which Intr block must be modified and,
1997 * @flag: A flag indicating whether to enable or disable the Intrs.
1998 * Description: This function will either disable or enable the interrupts
20346722 1999 * depending on the flag argument. The mask argument can be used to
2000 * enable/disable any Intr block.
1da177e4
LT
2001 * Return Value: NONE.
2002 */
2003
2004static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005{
1ee6dd77 2006 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2007 register u64 temp64 = 0, intr_mask = 0;
2008
2009 intr_mask = nic->general_int_mask;
1da177e4
LT
2010
2011 /* Top level interrupt classification */
2012 /* PIC Interrupts */
9caab458 2013 if (mask & TX_PIC_INTR) {
1da177e4 2014 /* Enable PIC Intrs in the general intr mask register */
9caab458 2015 intr_mask |= TXPIC_INT_M;
1da177e4 2016 if (flag == ENABLE_INTRS) {
20346722 2017 /*
a371a07d 2018 * If Hercules adapter enable GPIO otherwise
b41477f3 2019 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2020 * interrupts for now.
2021 * TODO
1da177e4 2022 */
a371a07d 2023 if (s2io_link_fault_indication(nic) ==
d44570e4 2024 LINK_UP_DOWN_INTERRUPT) {
9caab458 2025 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2026 &bar0->pic_int_mask);
9caab458 2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2028 &bar0->gpio_int_mask);
9caab458 2029 } else
a371a07d 2030 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2031 } else if (flag == DISABLE_INTRS) {
20346722 2032 /*
2033 * Disable PIC Intrs in the general
2034 * intr mask register
1da177e4
LT
2035 */
2036 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2037 }
2038 }
2039
1da177e4
LT
2040 /* Tx traffic interrupts */
2041 if (mask & TX_TRAFFIC_INTR) {
9caab458 2042 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2043 if (flag == ENABLE_INTRS) {
20346722 2044 /*
1da177e4 2045 * Enable all the Tx side interrupts
20346722 2046 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2047 */
2048 writeq(0x0, &bar0->tx_traffic_mask);
2049 } else if (flag == DISABLE_INTRS) {
20346722 2050 /*
2051 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2052 * register.
2053 */
2054 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2055 }
2056 }
2057
2058 /* Rx traffic interrupts */
2059 if (mask & RX_TRAFFIC_INTR) {
9caab458 2060 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2061 if (flag == ENABLE_INTRS) {
1da177e4
LT
2062 /* writing 0 Enables all 8 RX interrupt levels */
2063 writeq(0x0, &bar0->rx_traffic_mask);
2064 } else if (flag == DISABLE_INTRS) {
20346722 2065 /*
2066 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2067 * register.
2068 */
2069 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2070 }
2071 }
9caab458
SS
2072
2073 temp64 = readq(&bar0->general_int_mask);
2074 if (flag == ENABLE_INTRS)
d44570e4 2075 temp64 &= ~((u64)intr_mask);
9caab458
SS
2076 else
2077 temp64 = DISABLE_ALL_INTRS;
2078 writeq(temp64, &bar0->general_int_mask);
2079
2080 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2081}
2082
19a60522
SS
2083/**
2084 * verify_pcc_quiescent- Checks for PCC quiescent state
2085 * Return: 1 If PCC is quiescence
2086 * 0 If PCC is not quiescence
2087 */
1ee6dd77 2088static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2089{
19a60522 2090 int ret = 0, herc;
1ee6dd77 2091 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2092 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2093
19a60522 2094 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2095
f957bcf0 2096 if (flag == false) {
44c10138 2097 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2098 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2099 ret = 1;
19a60522
SS
2100 } else {
2101 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2102 ret = 1;
20346722 2103 }
2104 } else {
44c10138 2105 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2106 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2107 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2108 ret = 1;
5e25b9dd 2109 } else {
2110 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2112 ret = 1;
20346722 2113 }
2114 }
2115
2116 return ret;
2117}
2118/**
2119 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2120 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2121 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2122 * differs and the calling function passes the input argument flag to
2123 * indicate this.
20346722 2124 * Return: 1 If xena is quiescence
1da177e4
LT
2125 * 0 If Xena is not quiescence
2126 */
2127
1ee6dd77 2128static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2129{
19a60522 2130 int mode;
1ee6dd77 2131 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2132 u64 val64 = readq(&bar0->adapter_status);
2133 mode = s2io_verify_pci_mode(sp);
1da177e4 2134
19a60522 2135 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2136 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2137 return 0;
2138 }
2139 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2140 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2141 return 0;
2142 }
2143 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2144 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2145 return 0;
2146 }
2147 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2148 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2149 return 0;
2150 }
2151 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2152 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2153 return 0;
2154 }
2155 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2156 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2157 return 0;
2158 }
2159 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2160 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2161 return 0;
2162 }
2163 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2164 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2165 return 0;
1da177e4
LT
2166 }
2167
19a60522
SS
2168 /*
2169 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 * the the P_PLL_LOCK bit in the adapter_status register will
2171 * not be asserted.
2172 */
2173 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2174 sp->device_type == XFRAME_II_DEVICE &&
2175 mode != PCI_MODE_PCI_33) {
9e39f7c5 2176 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2177 return 0;
2178 }
2179 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2180 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2181 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2182 return 0;
2183 }
2184 return 1;
1da177e4
LT
2185}
2186
2187/**
2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
20346722 2190 * Description :
1da177e4
LT
2191 * New procedure to clear mac address reading problems on Alpha platforms
2192 *
2193 */
2194
d44570e4 2195static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2196{
1ee6dd77 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2198 int i = 0;
2199
2200 while (fix_mac[i] != END_SIGN) {
2201 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2202 udelay(10);
d83d282b 2203 (void) readq(&bar0->gpio_control);
1da177e4
LT
2204 }
2205}
2206
2207/**
20346722 2208 * start_nic - Turns the device on
1da177e4 2209 * @nic : device private variable.
20346722 2210 * Description:
2211 * This function actually turns the device on. Before this function is
2212 * called,all Registers are configured from their reset states
2213 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2214 * calling this function, the device interrupts are cleared and the NIC is
2215 * literally switched on by writing into the adapter control register.
20346722 2216 * Return Value:
1da177e4
LT
2217 * SUCCESS on success and -1 on failure.
2218 */
2219
2220static int start_nic(struct s2io_nic *nic)
2221{
1ee6dd77 2222 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2223 struct net_device *dev = nic->dev;
2224 register u64 val64 = 0;
20346722 2225 u16 subid, i;
ffb5df6c
JP
2226 struct config_param *config = &nic->config;
2227 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2228
2229 /* PRC Initialization and configuration */
2230 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2231 struct ring_info *ring = &mac_control->rings[i];
2232
d44570e4 2233 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2234 &bar0->prc_rxd0_n[i]);
2235
2236 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2237 if (nic->rxd_mode == RXD_MODE_1)
2238 val64 |= PRC_CTRL_RC_ENABLED;
2239 else
2240 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2241 if (nic->device_type == XFRAME_II_DEVICE)
2242 val64 |= PRC_CTRL_GROUP_READS;
2243 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2245 writeq(val64, &bar0->prc_ctrl_n[i]);
2246 }
2247
da6971d8
AR
2248 if (nic->rxd_mode == RXD_MODE_3B) {
2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 val64 = readq(&bar0->rx_pa_cfg);
2251 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 writeq(val64, &bar0->rx_pa_cfg);
2253 }
1da177e4 2254
926930b2
SS
2255 if (vlan_tag_strip == 0) {
2256 val64 = readq(&bar0->rx_pa_cfg);
2257 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2259 nic->vlan_strip_flag = 0;
926930b2
SS
2260 }
2261
20346722 2262 /*
1da177e4
LT
2263 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 * for around 100ms, which is approximately the time required
2265 * for the device to be ready for operation.
2266 */
2267 val64 = readq(&bar0->mc_rldram_mrs);
2268 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 val64 = readq(&bar0->mc_rldram_mrs);
2271
20346722 2272 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2273
2274 /* Enabling ECC Protection. */
2275 val64 = readq(&bar0->adapter_control);
2276 val64 &= ~ADAPTER_ECC_EN;
2277 writeq(val64, &bar0->adapter_control);
2278
20346722 2279 /*
2280 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2281 * it.
2282 */
2283 val64 = readq(&bar0->adapter_status);
19a60522 2284 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2285 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 "Adapter status reads: 0x%llx\n",
2287 dev->name, (unsigned long long)val64);
1da177e4
LT
2288 return FAILURE;
2289 }
2290
20346722 2291 /*
1da177e4 2292 * With some switches, link might be already up at this point.
20346722 2293 * Because of this weird behavior, when we enable laser,
2294 * we may not get link. We need to handle this. We cannot
2295 * figure out which switch is misbehaving. So we are forced to
2296 * make a global change.
1da177e4
LT
2297 */
2298
2299 /* Enabling Laser. */
2300 val64 = readq(&bar0->adapter_control);
2301 val64 |= ADAPTER_EOI_TX_ON;
2302 writeq(val64, &bar0->adapter_control);
2303
c92ca04b
AR
2304 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305 /*
25985edc 2306 * Dont see link state interrupts initially on some switches,
c92ca04b
AR
2307 * so directly scheduling the link state task here.
2308 */
2309 schedule_work(&nic->set_link_task);
2310 }
1da177e4
LT
2311 /* SXE-002: Initialize link and activity LED */
2312 subid = nic->pdev->subsystem_device;
541ae68f 2313 if (((subid & 0xFF) >= 0x07) &&
2314 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2315 val64 = readq(&bar0->gpio_control);
2316 val64 |= 0x0000800000000000ULL;
2317 writeq(val64, &bar0->gpio_control);
2318 val64 = 0x0411040400000000ULL;
509a2671 2319 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2320 }
2321
1da177e4
LT
2322 return SUCCESS;
2323}
fed5eccd
AR
2324/**
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326 */
d44570e4
JP
2327static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 struct TxD *txdlp, int get_off)
fed5eccd 2329{
1ee6dd77 2330 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2331 struct sk_buff *skb;
1ee6dd77 2332 struct TxD *txds;
fed5eccd
AR
2333 u16 j, frg_cnt;
2334
2335 txds = txdlp;
2fda096d 2336 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2337 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2339 txds++;
2340 }
2341
d44570e4 2342 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2343 if (!skb) {
1ee6dd77 2344 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2345 return NULL;
2346 }
d44570e4 2347 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
e743d313 2348 skb_headlen(skb), PCI_DMA_TODEVICE);
fed5eccd
AR
2349 frg_cnt = skb_shinfo(skb)->nr_frags;
2350 if (frg_cnt) {
2351 txds++;
2352 for (j = 0; j < frg_cnt; j++, txds++) {
9e903e08 2353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
fed5eccd
AR
2354 if (!txds->Buffer_Pointer)
2355 break;
d44570e4
JP
2356 pci_unmap_page(nic->pdev,
2357 (dma_addr_t)txds->Buffer_Pointer,
9e903e08 2358 skb_frag_size(frag), PCI_DMA_TODEVICE);
fed5eccd
AR
2359 }
2360 }
d44570e4
JP
2361 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 return skb;
fed5eccd 2363}
1da177e4 2364
20346722 2365/**
2366 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2367 * @nic : device private variable.
20346722 2368 * Description:
1da177e4 2369 * Free all queued Tx buffers.
20346722 2370 * Return Value: void
d44570e4 2371 */
1da177e4
LT
2372
2373static void free_tx_buffers(struct s2io_nic *nic)
2374{
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
1ee6dd77 2377 struct TxD *txdp;
1da177e4 2378 int i, j;
fed5eccd 2379 int cnt = 0;
ffb5df6c
JP
2380 struct config_param *config = &nic->config;
2381 struct mac_info *mac_control = &nic->mac_control;
2382 struct stat_block *stats = mac_control->stats_info;
2383 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2384
2385 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2386 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2388 unsigned long flags;
13d866a9
JP
2389
2390 spin_lock_irqsave(&fifo->tx_lock, flags);
2391 for (j = 0; j < tx_cfg->fifo_len; j++) {
43d620c8 2392 txdp = fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2393 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 if (skb) {
ffb5df6c 2395 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2396 dev_kfree_skb(skb);
2397 cnt++;
1da177e4 2398 }
1da177e4
LT
2399 }
2400 DBG_PRINT(INTR_DBG,
9e39f7c5 2401 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2402 dev->name, cnt, i);
13d866a9
JP
2403 fifo->tx_curr_get_info.offset = 0;
2404 fifo->tx_curr_put_info.offset = 0;
2405 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2406 }
2407}
2408
20346722 2409/**
2410 * stop_nic - To stop the nic
1da177e4 2411 * @nic ; device private variable.
20346722 2412 * Description:
2413 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2414 * function does. This function is called to stop the device.
2415 * Return Value:
2416 * void.
2417 */
2418
2419static void stop_nic(struct s2io_nic *nic)
2420{
1ee6dd77 2421 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2422 register u64 val64 = 0;
5d3213cc 2423 u16 interruptible;
1da177e4
LT
2424
2425 /* Disable all interrupts */
9caab458 2426 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2427 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2428 interruptible |= TX_PIC_INTR;
1da177e4
LT
2429 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430
5d3213cc
AR
2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 val64 = readq(&bar0->adapter_control);
2433 val64 &= ~(ADAPTER_CNTL_EN);
2434 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2435}
2436
20346722 2437/**
2438 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2439 * @ring_info: per ring structure
3f78d885
SH
2440 * @from_card_up: If this is true, we will map the buffer to get
2441 * the dma address for buf0 and buf1 to give it to the card.
2442 * Else we will sync the already mapped buffer to give it to the card.
20346722 2443 * Description:
1da177e4
LT
2444 * The function allocates Rx side skbs and puts the physical
2445 * address of these buffers into the RxD buffer pointers, so that the NIC
2446 * can DMA the received frame into these locations.
2447 * The NIC supports 3 receive modes, viz
2448 * 1. single buffer,
2449 * 2. three buffer and
2450 * 3. Five buffer modes.
20346722 2451 * Each mode defines how many fragments the received frame will be split
2452 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 * is split into 3 fragments. As of now only single buffer mode is
2455 * supported.
2456 * Return Value:
2457 * SUCCESS on success or an appropriate -ve value on failure.
2458 */
8d8bb39b 2459static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2460 int from_card_up)
1da177e4 2461{
1da177e4 2462 struct sk_buff *skb;
1ee6dd77 2463 struct RxD_t *rxdp;
0425b46a 2464 int off, size, block_no, block_no1;
1da177e4 2465 u32 alloc_tab = 0;
20346722 2466 u32 alloc_cnt;
20346722 2467 u64 tmp;
1ee6dd77 2468 struct buffAdd *ba;
1ee6dd77 2469 struct RxD_t *first_rxdp = NULL;
363dc367 2470 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2471 int rxd_index = 0;
6d517a27
VP
2472 struct RxD1 *rxdp1;
2473 struct RxD3 *rxdp3;
ffb5df6c 2474 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2475
0425b46a 2476 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2477
0425b46a 2478 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2479 while (alloc_tab < alloc_cnt) {
0425b46a 2480 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2481
0425b46a
SH
2482 off = ring->rx_curr_put_info.offset;
2483
2484 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485
2486 rxd_index = off + 1;
2487 if (block_no)
2488 rxd_index += (block_no * ring->rxd_count);
da6971d8 2489
7d2e3cb7 2490 if ((block_no == block_no1) &&
d44570e4
JP
2491 (off == ring->rx_curr_get_info.offset) &&
2492 (rxdp->Host_Control)) {
9e39f7c5
JP
2493 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 ring->dev->name);
1da177e4
LT
2495 goto end;
2496 }
0425b46a
SH
2497 if (off && (off == ring->rxd_count)) {
2498 ring->rx_curr_put_info.block_index++;
2499 if (ring->rx_curr_put_info.block_index ==
d44570e4 2500 ring->block_count)
0425b46a
SH
2501 ring->rx_curr_put_info.block_index = 0;
2502 block_no = ring->rx_curr_put_info.block_index;
2503 off = 0;
2504 ring->rx_curr_put_info.offset = off;
2505 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2506 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2507 ring->dev->name, rxdp);
2508
1da177e4 2509 }
c9fcbf47 2510
da6971d8 2511 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2512 ((ring->rxd_mode == RXD_MODE_3B) &&
2513 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2514 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2515 goto end;
2516 }
da6971d8 2517 /* calculate size of skb based on ring mode */
d44570e4
JP
2518 size = ring->mtu +
2519 HEADER_ETHERNET_II_802_3_SIZE +
2520 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2521 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2522 size += NET_IP_ALIGN;
da6971d8 2523 else
0425b46a 2524 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2525
da6971d8
AR
2526 /* allocate skb */
2527 skb = dev_alloc_skb(size);
d44570e4 2528 if (!skb) {
9e39f7c5
JP
2529 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 ring->dev->name);
303bcb4b 2531 if (first_rxdp) {
2532 wmb();
2533 first_rxdp->Control_1 |= RXD_OWN_XENA;
2534 }
ffb5df6c 2535 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2536
da6971d8
AR
2537 return -ENOMEM ;
2538 }
ffb5df6c 2539 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2540
2541 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2542 /* 1 buffer mode - normal operation mode */
d44570e4 2543 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2544 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2545 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2546 rxdp1->Buffer0_ptr =
2547 pci_map_single(ring->pdev, skb->data,
2548 size - NET_IP_ALIGN,
2549 PCI_DMA_FROMDEVICE);
8d8bb39b 2550 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2551 rxdp1->Buffer0_ptr))
491abf25
VP
2552 goto pci_map_failed;
2553
8a4bdbaa 2554 rxdp->Control_2 =
491976b2 2555 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2556 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2557 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2558 /*
6d517a27
VP
2559 * 2 buffer mode -
2560 * 2 buffer mode provides 128
da6971d8 2561 * byte aligned receive buffers.
da6971d8
AR
2562 */
2563
d44570e4 2564 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2565 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2566 Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2568 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2569 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2570 rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2572
0425b46a 2573 ba = &ring->ba[block_no][off];
da6971d8 2574 skb_reserve(skb, BUF0_LEN);
d44570e4 2575 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2576 tmp += ALIGN_SIZE;
2577 tmp &= ~ALIGN_SIZE;
2578 skb->data = (void *) (unsigned long)tmp;
27a884dc 2579 skb_reset_tail_pointer(skb);
da6971d8 2580
3f78d885 2581 if (from_card_up) {
6d517a27 2582 rxdp3->Buffer0_ptr =
d44570e4
JP
2583 pci_map_single(ring->pdev, ba->ba_0,
2584 BUF0_LEN,
2585 PCI_DMA_FROMDEVICE);
2586 if (pci_dma_mapping_error(nic->pdev,
2587 rxdp3->Buffer0_ptr))
3f78d885
SH
2588 goto pci_map_failed;
2589 } else
0425b46a 2590 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2591 (dma_addr_t)rxdp3->Buffer0_ptr,
2592 BUF0_LEN,
2593 PCI_DMA_FROMDEVICE);
491abf25 2594
da6971d8 2595 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2596 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2597 /* Two buffer mode */
2598
2599 /*
6aa20a22 2600 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2601 * L4 payload
2602 */
d44570e4
JP
2603 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 skb->data,
2605 ring->mtu + 4,
2606 PCI_DMA_FROMDEVICE);
da6971d8 2607
8d8bb39b 2608 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2609 rxdp3->Buffer2_ptr))
491abf25
VP
2610 goto pci_map_failed;
2611
3f78d885 2612 if (from_card_up) {
0425b46a
SH
2613 rxdp3->Buffer1_ptr =
2614 pci_map_single(ring->pdev,
d44570e4
JP
2615 ba->ba_1,
2616 BUF1_LEN,
2617 PCI_DMA_FROMDEVICE);
0425b46a 2618
8d8bb39b 2619 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2620 rxdp3->Buffer1_ptr)) {
2621 pci_unmap_single(ring->pdev,
2622 (dma_addr_t)(unsigned long)
2623 skb->data,
2624 ring->mtu + 4,
2625 PCI_DMA_FROMDEVICE);
3f78d885
SH
2626 goto pci_map_failed;
2627 }
75c30b13 2628 }
da6971d8
AR
2629 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2631 (ring->mtu + 4);
da6971d8 2632 }
b7b5a128 2633 rxdp->Control_2 |= s2BIT(0);
0425b46a 2634 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2635 }
303bcb4b 2636 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2638 off++;
0425b46a 2639 if (off == (ring->rxd_count + 1))
da6971d8 2640 off = 0;
0425b46a 2641 ring->rx_curr_put_info.offset = off;
20346722 2642
da6971d8 2643 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2644 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 if (first_rxdp) {
2646 wmb();
2647 first_rxdp->Control_1 |= RXD_OWN_XENA;
2648 }
2649 first_rxdp = rxdp;
2650 }
0425b46a 2651 ring->rx_bufs_left += 1;
1da177e4
LT
2652 alloc_tab++;
2653 }
2654
d44570e4 2655end:
303bcb4b 2656 /* Transfer ownership of first descriptor to adapter just before
2657 * exiting. Before that, use memory barrier so that ownership
2658 * and other fields are seen by adapter correctly.
2659 */
2660 if (first_rxdp) {
2661 wmb();
2662 first_rxdp->Control_1 |= RXD_OWN_XENA;
2663 }
2664
1da177e4 2665 return SUCCESS;
d44570e4 2666
491abf25 2667pci_map_failed:
ffb5df6c
JP
2668 swstats->pci_map_fail_cnt++;
2669 swstats->mem_freed += skb->truesize;
491abf25
VP
2670 dev_kfree_skb_irq(skb);
2671 return -ENOMEM;
1da177e4
LT
2672}
2673
da6971d8
AR
2674static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675{
2676 struct net_device *dev = sp->dev;
2677 int j;
2678 struct sk_buff *skb;
1ee6dd77 2679 struct RxD_t *rxdp;
6d517a27
VP
2680 struct RxD1 *rxdp1;
2681 struct RxD3 *rxdp3;
ffb5df6c
JP
2682 struct mac_info *mac_control = &sp->mac_control;
2683 struct stat_block *stats = mac_control->stats_info;
2684 struct swStat *swstats = &stats->sw_stat;
da6971d8 2685
da6971d8
AR
2686 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2688 rx_blocks[blk].rxds[j].virt_addr;
2689 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 if (!skb)
da6971d8 2691 continue;
da6971d8 2692 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2693 rxdp1 = (struct RxD1 *)rxdp;
2694 pci_unmap_single(sp->pdev,
2695 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 dev->mtu +
2697 HEADER_ETHERNET_II_802_3_SIZE +
2698 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 PCI_DMA_FROMDEVICE);
1ee6dd77 2700 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2701 } else if (sp->rxd_mode == RXD_MODE_3B) {
2702 rxdp3 = (struct RxD3 *)rxdp;
d44570e4
JP
2703 pci_unmap_single(sp->pdev,
2704 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 BUF0_LEN,
2706 PCI_DMA_FROMDEVICE);
2707 pci_unmap_single(sp->pdev,
2708 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 BUF1_LEN,
2710 PCI_DMA_FROMDEVICE);
2711 pci_unmap_single(sp->pdev,
2712 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 dev->mtu + 4,
2714 PCI_DMA_FROMDEVICE);
1ee6dd77 2715 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2716 }
ffb5df6c 2717 swstats->mem_freed += skb->truesize;
da6971d8 2718 dev_kfree_skb(skb);
0425b46a 2719 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2720 }
2721}
2722
1da177e4 2723/**
20346722 2724 * free_rx_buffers - Frees all Rx buffers
1da177e4 2725 * @sp: device private variable.
20346722 2726 * Description:
1da177e4
LT
2727 * This function will free all Rx buffers allocated by host.
2728 * Return Value:
2729 * NONE.
2730 */
2731
2732static void free_rx_buffers(struct s2io_nic *sp)
2733{
2734 struct net_device *dev = sp->dev;
da6971d8 2735 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2736 struct config_param *config = &sp->config;
2737 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2738
2739 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2740 struct ring_info *ring = &mac_control->rings[i];
2741
da6971d8 2742 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2743 free_rxd_blk(sp, i, blk);
1da177e4 2744
13d866a9
JP
2745 ring->rx_curr_put_info.block_index = 0;
2746 ring->rx_curr_get_info.block_index = 0;
2747 ring->rx_curr_put_info.offset = 0;
2748 ring->rx_curr_get_info.offset = 0;
2749 ring->rx_bufs_left = 0;
9e39f7c5 2750 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2751 dev->name, buf_cnt, i);
2752 }
2753}
2754
8d8bb39b 2755static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2756{
8d8bb39b 2757 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2758 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 ring->dev->name);
f61e0a35
SH
2760 }
2761 return 0;
2762}
2763
1da177e4
LT
2764/**
2765 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2766 * @napi : pointer to the napi structure.
20346722 2767 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2768 * during one pass through the 'Poll" function.
2769 * Description:
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2773 * Return value:
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2775 */
2776
f61e0a35 2777static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2778{
f61e0a35
SH
2779 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 struct net_device *dev = ring->dev;
f61e0a35 2781 int pkts_processed = 0;
1a79d1c3
AV
2782 u8 __iomem *addr = NULL;
2783 u8 val8 = 0;
4cf1653a 2784 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2785 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2786 int budget_org = budget;
1da177e4 2787
f61e0a35
SH
2788 if (unlikely(!is_s2io_card_up(nic)))
2789 return 0;
1da177e4 2790
f61e0a35 2791 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2792 s2io_chk_rx_buffers(nic, ring);
1da177e4 2793
f61e0a35 2794 if (pkts_processed < budget_org) {
288379f0 2795 napi_complete(napi);
f61e0a35 2796 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2797 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2798 addr += 7 - ring->ring_no;
2799 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 writeb(val8, addr);
2801 val8 = readb(addr);
1da177e4 2802 }
f61e0a35
SH
2803 return pkts_processed;
2804}
d44570e4 2805
f61e0a35
SH
2806static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807{
2808 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2809 int pkts_processed = 0;
2810 int ring_pkts_processed, i;
2811 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 int budget_org = budget;
ffb5df6c
JP
2813 struct config_param *config = &nic->config;
2814 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2815
f61e0a35
SH
2816 if (unlikely(!is_s2io_card_up(nic)))
2817 return 0;
1da177e4 2818
1da177e4 2819 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2820 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2821 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2822 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2823 pkts_processed += ring_pkts_processed;
2824 budget -= ring_pkts_processed;
2825 if (budget <= 0)
1da177e4 2826 break;
1da177e4 2827 }
f61e0a35 2828 if (pkts_processed < budget_org) {
288379f0 2829 napi_complete(napi);
f61e0a35
SH
2830 /* Re enable the Rx interrupts for the ring */
2831 writeq(0, &bar0->rx_traffic_mask);
2832 readl(&bar0->rx_traffic_mask);
2833 }
2834 return pkts_processed;
1da177e4 2835}
20346722 2836
b41477f3 2837#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2838/**
b41477f3 2839 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2840 * @dev : pointer to the device structure.
2841 * Description:
b41477f3
AR
2842 * This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
612eff0e 2846 */
612eff0e
BH
2847static void s2io_netpoll(struct net_device *dev)
2848{
4cf1653a 2849 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2850 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2851 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2852 int i;
ffb5df6c
JP
2853 struct config_param *config = &nic->config;
2854 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2855
d796fdb7
LV
2856 if (pci_channel_offline(nic->pdev))
2857 return;
2858
612eff0e
BH
2859 disable_irq(dev->irq);
2860
612eff0e 2861 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2862 writeq(val64, &bar0->tx_traffic_int);
2863
6aa20a22 2864 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2865 * run out of skbs and will fail and eventually netpoll application such
2866 * as netdump will fail.
2867 */
2868 for (i = 0; i < config->tx_fifo_num; i++)
2869 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2870
b41477f3 2871 /* check for received packet and indicate up to network */
13d866a9
JP
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 struct ring_info *ring = &mac_control->rings[i];
2874
2875 rx_intr_handler(ring, 0);
2876 }
612eff0e
BH
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2879 struct ring_info *ring = &mac_control->rings[i];
2880
2881 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2882 DBG_PRINT(INFO_DBG,
2883 "%s: Out of memory in Rx Netpoll!!\n",
2884 dev->name);
612eff0e
BH
2885 break;
2886 }
2887 }
612eff0e 2888 enable_irq(dev->irq);
612eff0e
BH
2889}
2890#endif
2891
20346722 2892/**
1da177e4 2893 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2894 * @ring_info: per ring structure.
2895 * @budget: budget for napi processing.
20346722 2896 * Description:
2897 * If the interrupt is because of a received frame or if the
1da177e4 2898 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2899 * called. It picks out the RxD at which place the last Rx processing had
2900 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2901 * the offset.
2902 * Return Value:
f61e0a35 2903 * No. of napi packets processed.
1da177e4 2904 */
f61e0a35 2905static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2906{
c9fcbf47 2907 int get_block, put_block;
1ee6dd77
RB
2908 struct rx_curr_get_info get_info, put_info;
2909 struct RxD_t *rxdp;
1da177e4 2910 struct sk_buff *skb;
f61e0a35 2911 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2912 int i;
d44570e4
JP
2913 struct RxD1 *rxdp1;
2914 struct RxD3 *rxdp3;
7d3d0439 2915
20346722 2916 get_info = ring_data->rx_curr_get_info;
2917 get_block = get_info.block_index;
1ee6dd77 2918 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2919 put_block = put_info.block_index;
da6971d8 2920 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2921
da6971d8 2922 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2923 /*
2924 * If your are next to put index then it's
2925 * FIFO full condition
2926 */
da6971d8
AR
2927 if ((get_block == put_block) &&
2928 (get_info.offset + 1) == put_info.offset) {
0425b46a 2929 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2930 ring_data->dev->name);
da6971d8
AR
2931 break;
2932 }
d44570e4 2933 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2934 if (skb == NULL) {
9e39f7c5 2935 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2936 ring_data->dev->name);
f61e0a35 2937 return 0;
1da177e4 2938 }
0425b46a 2939 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2940 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2941 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2942 rxdp1->Buffer0_ptr,
2943 ring_data->mtu +
2944 HEADER_ETHERNET_II_802_3_SIZE +
2945 HEADER_802_2_SIZE +
2946 HEADER_SNAP_SIZE,
2947 PCI_DMA_FROMDEVICE);
0425b46a 2948 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
2949 rxdp3 = (struct RxD3 *)rxdp;
2950 pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 (dma_addr_t)rxdp3->Buffer0_ptr,
2952 BUF0_LEN,
2953 PCI_DMA_FROMDEVICE);
2954 pci_unmap_single(ring_data->pdev,
2955 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 ring_data->mtu + 4,
2957 PCI_DMA_FROMDEVICE);
da6971d8 2958 }
863c11a9 2959 prefetch(skb->data);
20346722 2960 rx_osm_handler(ring_data, rxdp);
2961 get_info.offset++;
da6971d8
AR
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 rxdp = ring_data->rx_blocks[get_block].
d44570e4 2964 rxds[get_info.offset].virt_addr;
0425b46a 2965 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 2966 get_info.offset = 0;
da6971d8 2967 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2968 get_block++;
da6971d8
AR
2969 if (get_block == ring_data->block_count)
2970 get_block = 0;
2971 ring_data->rx_curr_get_info.block_index = get_block;
20346722 2972 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973 }
1da177e4 2974
f61e0a35
SH
2975 if (ring_data->nic->config.napi) {
2976 budget--;
2977 napi_pkts++;
2978 if (!budget)
0425b46a
SH
2979 break;
2980 }
20346722 2981 pkt_cnt++;
1da177e4
LT
2982 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 break;
2984 }
0425b46a 2985 if (ring_data->lro) {
7d3d0439 2986 /* Clear all LRO sessions before exiting */
d44570e4 2987 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 2988 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 2989 if (lro->in_use) {
0425b46a 2990 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 2991 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
2992 clear_lro_session(lro);
2993 }
2994 }
2995 }
d44570e4 2996 return napi_pkts;
1da177e4 2997}
20346722 2998
2999/**
1da177e4
LT
3000 * tx_intr_handler - Transmit interrupt handler
3001 * @nic : device private variable
20346722 3002 * Description:
3003 * If an interrupt was raised to indicate DMA complete of the
3004 * Tx packet, this function is called. It identifies the last TxD
3005 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3006 * DMA'ed into the NICs internal memory.
3007 * Return Value:
3008 * NONE
3009 */
3010
1ee6dd77 3011static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3012{
1ee6dd77 3013 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3014 struct tx_curr_get_info get_info, put_info;
3a3d5756 3015 struct sk_buff *skb = NULL;
1ee6dd77 3016 struct TxD *txdlp;
3a3d5756 3017 int pkt_cnt = 0;
2fda096d 3018 unsigned long flags = 0;
f9046eb3 3019 u8 err_mask;
ffb5df6c
JP
3020 struct stat_block *stats = nic->mac_control.stats_info;
3021 struct swStat *swstats = &stats->sw_stat;
1da177e4 3022
2fda096d 3023 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3024 return;
2fda096d 3025
20346722 3026 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3027 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
43d620c8 3028 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
20346722 3029 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 (get_info.offset != put_info.offset) &&
3031 (txdlp->Host_Control)) {
3032 /* Check for TxD errors */
3033 if (txdlp->Control_1 & TXD_T_CODE) {
3034 unsigned long long err;
3035 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3036 if (err & 0x1) {
ffb5df6c 3037 swstats->parity_err_cnt++;
bd1034f0 3038 }
491976b2
SH
3039
3040 /* update t_code statistics */
f9046eb3 3041 err_mask = err >> 48;
d44570e4
JP
3042 switch (err_mask) {
3043 case 2:
ffb5df6c 3044 swstats->tx_buf_abort_cnt++;
491976b2
SH
3045 break;
3046
d44570e4 3047 case 3:
ffb5df6c 3048 swstats->tx_desc_abort_cnt++;
491976b2
SH
3049 break;
3050
d44570e4 3051 case 7:
ffb5df6c 3052 swstats->tx_parity_err_cnt++;
491976b2
SH
3053 break;
3054
d44570e4 3055 case 10:
ffb5df6c 3056 swstats->tx_link_loss_cnt++;
491976b2
SH
3057 break;
3058
d44570e4 3059 case 15:
ffb5df6c 3060 swstats->tx_list_proc_err_cnt++;
491976b2 3061 break;
d44570e4 3062 }
20346722 3063 }
1da177e4 3064
fed5eccd 3065 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3066 if (skb == NULL) {
2fda096d 3067 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3068 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 __func__);
20346722 3070 return;
3071 }
3a3d5756 3072 pkt_cnt++;
20346722 3073
20346722 3074 /* Updating the statistics block */
ffb5df6c 3075 swstats->mem_freed += skb->truesize;
20346722 3076 dev_kfree_skb_irq(skb);
3077
3078 get_info.offset++;
863c11a9
AR
3079 if (get_info.offset == get_info.fifo_len + 1)
3080 get_info.offset = 0;
43d620c8 3081 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
d44570e4 3082 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3083 }
3084
3a3d5756 3085 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3086
3087 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3088}
3089
bd1034f0
AR
3090/**
3091 * s2io_mdio_write - Function to write in to MDIO registers
3092 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 * @addr : address value
3094 * @value : data value
3095 * @dev : pointer to net_device structure
3096 * Description:
3097 * This function is used to write values to the MDIO registers
3098 * NONE
3099 */
d44570e4
JP
3100static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 struct net_device *dev)
bd1034f0 3102{
d44570e4 3103 u64 val64;
4cf1653a 3104 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3106
d44570e4
JP
3107 /* address transaction */
3108 val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 MDIO_MMD_DEV_ADDR(mmd_type) |
3110 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3111 writeq(val64, &bar0->mdio_control);
3112 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 writeq(val64, &bar0->mdio_control);
3114 udelay(100);
3115
d44570e4
JP
3116 /* Data transaction */
3117 val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 MDIO_MMD_DEV_ADDR(mmd_type) |
3119 MDIO_MMS_PRT_ADDR(0x0) |
3120 MDIO_MDIO_DATA(value) |
3121 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3122 writeq(val64, &bar0->mdio_control);
3123 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 writeq(val64, &bar0->mdio_control);
3125 udelay(100);
3126
d44570e4
JP
3127 val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 MDIO_MMD_DEV_ADDR(mmd_type) |
3129 MDIO_MMS_PRT_ADDR(0x0) |
3130 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3131 writeq(val64, &bar0->mdio_control);
3132 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 writeq(val64, &bar0->mdio_control);
3134 udelay(100);
bd1034f0
AR
3135}
3136
3137/**
3138 * s2io_mdio_read - Function to write in to MDIO registers
3139 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 * @addr : address value
3141 * @dev : pointer to net_device structure
3142 * Description:
3143 * This function is used to read values to the MDIO registers
3144 * NONE
3145 */
3146static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147{
3148 u64 val64 = 0x0;
3149 u64 rval64 = 0x0;
4cf1653a 3150 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3151 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3152
3153 /* address transaction */
d44570e4
JP
3154 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3157 writeq(val64, &bar0->mdio_control);
3158 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 writeq(val64, &bar0->mdio_control);
3160 udelay(100);
3161
3162 /* Data transaction */
d44570e4
JP
3163 val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 MDIO_MMD_DEV_ADDR(mmd_type) |
3165 MDIO_MMS_PRT_ADDR(0x0) |
3166 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3167 writeq(val64, &bar0->mdio_control);
3168 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 writeq(val64, &bar0->mdio_control);
3170 udelay(100);
3171
3172 /* Read the value from regs */
3173 rval64 = readq(&bar0->mdio_control);
3174 rval64 = rval64 & 0xFFFF0000;
3175 rval64 = rval64 >> 16;
3176 return rval64;
3177}
d44570e4 3178
bd1034f0
AR
3179/**
3180 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3181 * @counter : counter value to be updated
bd1034f0
AR
3182 * @flag : flag to indicate the status
3183 * @type : counter type
3184 * Description:
3185 * This function is to check the status of the xpak counters value
3186 * NONE
3187 */
3188
d44570e4
JP
3189static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 u16 flag, u16 type)
bd1034f0
AR
3191{
3192 u64 mask = 0x3;
3193 u64 val64;
3194 int i;
d44570e4 3195 for (i = 0; i < index; i++)
bd1034f0
AR
3196 mask = mask << 0x2;
3197
d44570e4 3198 if (flag > 0) {
bd1034f0
AR
3199 *counter = *counter + 1;
3200 val64 = *regs_stat & mask;
3201 val64 = val64 >> (index * 0x2);
3202 val64 = val64 + 1;
d44570e4
JP
3203 if (val64 == 3) {
3204 switch (type) {
bd1034f0 3205 case 1:
9e39f7c5
JP
3206 DBG_PRINT(ERR_DBG,
3207 "Take Xframe NIC out of service.\n");
3208 DBG_PRINT(ERR_DBG,
3209"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3210 break;
bd1034f0 3211 case 2:
9e39f7c5
JP
3212 DBG_PRINT(ERR_DBG,
3213 "Take Xframe NIC out of service.\n");
3214 DBG_PRINT(ERR_DBG,
3215"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3216 break;
bd1034f0 3217 case 3:
9e39f7c5
JP
3218 DBG_PRINT(ERR_DBG,
3219 "Take Xframe NIC out of service.\n");
3220 DBG_PRINT(ERR_DBG,
3221"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3222 break;
bd1034f0 3223 default:
d44570e4
JP
3224 DBG_PRINT(ERR_DBG,
3225 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3226 }
3227 val64 = 0x0;
3228 }
3229 val64 = val64 << (index * 0x2);
3230 *regs_stat = (*regs_stat & (~mask)) | (val64);
3231
3232 } else {
3233 *regs_stat = *regs_stat & (~mask);
3234 }
3235}
3236
3237/**
3238 * s2io_updt_xpak_counter - Function to update the xpak counters
3239 * @dev : pointer to net_device struct
3240 * Description:
3241 * This function is to upate the status of the xpak counters value
3242 * NONE
3243 */
3244static void s2io_updt_xpak_counter(struct net_device *dev)
3245{
3246 u16 flag = 0x0;
3247 u16 type = 0x0;
3248 u16 val16 = 0x0;
3249 u64 val64 = 0x0;
3250 u64 addr = 0x0;
3251
4cf1653a 3252 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3253 struct stat_block *stats = sp->mac_control.stats_info;
3254 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3255
3256 /* Check the communication with the MDIO slave */
40239396 3257 addr = MDIO_CTRL1;
bd1034f0 3258 val64 = 0x0;
40239396 3259 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3260 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3261 DBG_PRINT(ERR_DBG,
3262 "ERR: MDIO slave access failed - Returned %llx\n",
3263 (unsigned long long)val64);
bd1034f0
AR
3264 return;
3265 }
3266
40239396 3267 /* Check for the expected value of control reg 1 */
d44570e4 3268 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3269 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 "Returned: %llx- Expected: 0x%x\n",
40239396 3271 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3272 return;
3273 }
3274
3275 /* Loading the DOM register to MDIO register */
3276 addr = 0xA100;
40239396
BH
3277 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3279
3280 /* Reading the Alarm flags */
3281 addr = 0xA070;
3282 val64 = 0x0;
40239396 3283 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3284
3285 flag = CHECKBIT(val64, 0x7);
3286 type = 1;
ffb5df6c
JP
3287 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 &xstats->xpak_regs_stat,
d44570e4 3289 0x0, flag, type);
bd1034f0 3290
d44570e4 3291 if (CHECKBIT(val64, 0x6))
ffb5df6c 3292 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3293
3294 flag = CHECKBIT(val64, 0x3);
3295 type = 2;
ffb5df6c
JP
3296 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 &xstats->xpak_regs_stat,
d44570e4 3298 0x2, flag, type);
bd1034f0 3299
d44570e4 3300 if (CHECKBIT(val64, 0x2))
ffb5df6c 3301 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3302
3303 flag = CHECKBIT(val64, 0x1);
3304 type = 3;
ffb5df6c
JP
3305 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 &xstats->xpak_regs_stat,
d44570e4 3307 0x4, flag, type);
bd1034f0 3308
d44570e4 3309 if (CHECKBIT(val64, 0x0))
ffb5df6c 3310 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3311
3312 /* Reading the Warning flags */
3313 addr = 0xA074;
3314 val64 = 0x0;
40239396 3315 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3316
d44570e4 3317 if (CHECKBIT(val64, 0x7))
ffb5df6c 3318 xstats->warn_transceiver_temp_high++;
bd1034f0 3319
d44570e4 3320 if (CHECKBIT(val64, 0x6))
ffb5df6c 3321 xstats->warn_transceiver_temp_low++;
bd1034f0 3322
d44570e4 3323 if (CHECKBIT(val64, 0x3))
ffb5df6c 3324 xstats->warn_laser_bias_current_high++;
bd1034f0 3325
d44570e4 3326 if (CHECKBIT(val64, 0x2))
ffb5df6c 3327 xstats->warn_laser_bias_current_low++;
bd1034f0 3328
d44570e4 3329 if (CHECKBIT(val64, 0x1))
ffb5df6c 3330 xstats->warn_laser_output_power_high++;
bd1034f0 3331
d44570e4 3332 if (CHECKBIT(val64, 0x0))
ffb5df6c 3333 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3334}
3335
20346722 3336/**
1da177e4 3337 * wait_for_cmd_complete - waits for a command to complete.
20346722 3338 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3339 * s2io_nic structure.
20346722 3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
1da177e4
LT
3343 * Return value:
3344 * SUCCESS on success and FAILURE on failure.
3345 */
3346
9fc93a41 3347static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3348 int bit_state)
1da177e4 3349{
9fc93a41 3350 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3351 u64 val64;
3352
9fc93a41
SS
3353 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 return FAILURE;
3355
3356 do {
c92ca04b 3357 val64 = readq(addr);
9fc93a41
SS
3358 if (bit_state == S2IO_BIT_RESET) {
3359 if (!(val64 & busy_bit)) {
3360 ret = SUCCESS;
3361 break;
3362 }
3363 } else {
2d146eb1 3364 if (val64 & busy_bit) {
9fc93a41
SS
3365 ret = SUCCESS;
3366 break;
3367 }
1da177e4 3368 }
c92ca04b 3369
d44570e4 3370 if (in_interrupt())
9fc93a41 3371 mdelay(delay);
c92ca04b 3372 else
9fc93a41 3373 msleep(delay);
c92ca04b 3374
9fc93a41
SS
3375 if (++cnt >= 10)
3376 delay = 50;
3377 } while (cnt < 20);
1da177e4
LT
3378 return ret;
3379}
19a60522
SS
3380/*
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3385 */
3386static u16 check_pci_device_id(u16 id)
3387{
3388 switch (id) {
3389 case PCI_DEVICE_ID_HERC_WIN:
3390 case PCI_DEVICE_ID_HERC_UNI:
3391 return XFRAME_II_DEVICE;
3392 case PCI_DEVICE_ID_S2IO_UNI:
3393 case PCI_DEVICE_ID_S2IO_WIN:
3394 return XFRAME_I_DEVICE;
3395 default:
3396 return PCI_ANY_ID;
3397 }
3398}
1da177e4 3399
20346722 3400/**
3401 * s2io_reset - Resets the card.
1da177e4
LT
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
20346722 3404 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3405 * the card reset also resets the configuration space.
3406 * Return value:
3407 * void.
3408 */
3409
d44570e4 3410static void s2io_reset(struct s2io_nic *sp)
1da177e4 3411{
1ee6dd77 3412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3413 u64 val64;
5e25b9dd 3414 u16 subid, pci_cmd;
19a60522
SS
3415 int i;
3416 u16 val16;
491976b2
SH
3417 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3419 struct stat_block *stats;
3420 struct swStat *swstats;
491976b2 3421
9e39f7c5 3422 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3423 __func__, pci_name(sp->pdev));
1da177e4 3424
0b1f7ebe 3425 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3426 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3427
1da177e4
LT
3428 val64 = SW_RESET_ALL;
3429 writeq(val64, &bar0->sw_reset);
d44570e4 3430 if (strstr(sp->product_name, "CX4"))
c92ca04b 3431 msleep(750);
19a60522
SS
3432 msleep(250);
3433 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3434
19a60522
SS
3435 /* Restore the PCI state saved during initialization. */
3436 pci_restore_state(sp->pdev);
b8a623bf 3437 pci_save_state(sp->pdev);
19a60522
SS
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 break;
3441 msleep(200);
3442 }
1da177e4 3443
d44570e4
JP
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3446
3447 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448
3449 s2io_init_pci(sp);
1da177e4 3450
20346722 3451 /* Set swapper to enable I/O register access */
3452 s2io_set_swapper(sp);
3453
faa4f796
SH
3454 /* restore mac_addr entries */
3455 do_s2io_restore_unicast_mc(sp);
3456
cc6e7c44
RA
3457 /* Restore the MSIX table entries from local variables */
3458 restore_xmsi_data(sp);
3459
5e25b9dd 3460 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3461 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3462 /* Clear "detected parity error" bit */
303bcb4b 3463 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3464
303bcb4b 3465 /* Clearing PCIX Ecc status register */
3466 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3467
303bcb4b 3468 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3469 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3470 }
5e25b9dd 3471
20346722 3472 /* Reset device statistics maintained by OS */
d44570e4 3473 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3474
ffb5df6c
JP
3475 stats = sp->mac_control.stats_info;
3476 swstats = &stats->sw_stat;
3477
491976b2 3478 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3479 up_cnt = swstats->link_up_cnt;
3480 down_cnt = swstats->link_down_cnt;
3481 up_time = swstats->link_up_time;
3482 down_time = swstats->link_down_time;
3483 reset_cnt = swstats->soft_reset_cnt;
3484 mem_alloc_cnt = swstats->mem_allocated;
3485 mem_free_cnt = swstats->mem_freed;
3486 watchdog_cnt = swstats->watchdog_timer_cnt;
3487
3488 memset(stats, 0, sizeof(struct stat_block));
3489
491976b2 3490 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3491 swstats->link_up_cnt = up_cnt;
3492 swstats->link_down_cnt = down_cnt;
3493 swstats->link_up_time = up_time;
3494 swstats->link_down_time = down_time;
3495 swstats->soft_reset_cnt = reset_cnt;
3496 swstats->mem_allocated = mem_alloc_cnt;
3497 swstats->mem_freed = mem_free_cnt;
3498 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3499
1da177e4
LT
3500 /* SXE-002: Configure link and activity LED to turn it off */
3501 subid = sp->pdev->subsystem_device;
541ae68f 3502 if (((subid & 0xFF) >= 0x07) &&
3503 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3504 val64 = readq(&bar0->gpio_control);
3505 val64 |= 0x0000800000000000ULL;
3506 writeq(val64, &bar0->gpio_control);
3507 val64 = 0x0411040400000000ULL;
509a2671 3508 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3509 }
3510
541ae68f 3511 /*
25985edc 3512 * Clear spurious ECC interrupts that would have occurred on
541ae68f 3513 * XFRAME II cards after reset.
3514 */
3515 if (sp->device_type == XFRAME_II_DEVICE) {
3516 val64 = readq(&bar0->pcc_err_reg);
3517 writeq(val64, &bar0->pcc_err_reg);
3518 }
3519
f957bcf0 3520 sp->device_enabled_once = false;
1da177e4
LT
3521}
3522
3523/**
20346722 3524 * s2io_set_swapper - to set the swapper controle on the card
3525 * @sp : private member of the device structure,
1da177e4 3526 * pointer to the s2io_nic structure.
20346722 3527 * Description: Function to set the swapper control on the card
1da177e4
LT
3528 * correctly depending on the 'endianness' of the system.
3529 * Return value:
3530 * SUCCESS on success and FAILURE on failure.
3531 */
3532
d44570e4 3533static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3534{
3535 struct net_device *dev = sp->dev;
1ee6dd77 3536 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3537 u64 val64, valt, valr;
3538
20346722 3539 /*
1da177e4
LT
3540 * Set proper endian settings and verify the same by reading
3541 * the PIF Feed-back register.
3542 */
3543
3544 val64 = readq(&bar0->pif_rd_swapper_fb);
3545 if (val64 != 0x0123456789ABCDEFULL) {
3546 int i = 0;
85a56498
JM
3547 static const u64 value[] = {
3548 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3549 0x8100008181000081ULL, /* FE=1, SE=0 */
3550 0x4200004242000042ULL, /* FE=0, SE=1 */
3551 0 /* FE=0, SE=0 */
3552 };
1da177e4 3553
d44570e4 3554 while (i < 4) {
1da177e4
LT
3555 writeq(value[i], &bar0->swapper_ctrl);
3556 val64 = readq(&bar0->pif_rd_swapper_fb);
3557 if (val64 == 0x0123456789ABCDEFULL)
3558 break;
3559 i++;
3560 }
3561 if (i == 4) {
9e39f7c5
JP
3562 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 "feedback read %llx\n",
3564 dev->name, (unsigned long long)val64);
1da177e4
LT
3565 return FAILURE;
3566 }
3567 valr = value[i];
3568 } else {
3569 valr = readq(&bar0->swapper_ctrl);
3570 }
3571
3572 valt = 0x0123456789ABCDEFULL;
3573 writeq(valt, &bar0->xmsi_address);
3574 val64 = readq(&bar0->xmsi_address);
3575
d44570e4 3576 if (val64 != valt) {
1da177e4 3577 int i = 0;
85a56498
JM
3578 static const u64 value[] = {
3579 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3580 0x0081810000818100ULL, /* FE=1, SE=0 */
3581 0x0042420000424200ULL, /* FE=0, SE=1 */
3582 0 /* FE=0, SE=0 */
3583 };
1da177e4 3584
d44570e4 3585 while (i < 4) {
1da177e4
LT
3586 writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 writeq(valt, &bar0->xmsi_address);
3588 val64 = readq(&bar0->xmsi_address);
d44570e4 3589 if (val64 == valt)
1da177e4
LT
3590 break;
3591 i++;
3592 }
d44570e4 3593 if (i == 4) {
20346722 3594 unsigned long long x = val64;
9e39f7c5
JP
3595 DBG_PRINT(ERR_DBG,
3596 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3597 return FAILURE;
3598 }
3599 }
3600 val64 = readq(&bar0->swapper_ctrl);
3601 val64 &= 0xFFFF000000000000ULL;
3602
d44570e4 3603#ifdef __BIG_ENDIAN
20346722 3604 /*
3605 * The device by default set to a big endian format, so a
1da177e4
LT
3606 * big endian driver need not set anything.
3607 */
3608 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3609 SWAPPER_CTRL_TXP_SE |
3610 SWAPPER_CTRL_TXD_R_FE |
3611 SWAPPER_CTRL_TXD_W_FE |
3612 SWAPPER_CTRL_TXF_R_FE |
3613 SWAPPER_CTRL_RXD_R_FE |
3614 SWAPPER_CTRL_RXD_W_FE |
3615 SWAPPER_CTRL_RXF_W_FE |
3616 SWAPPER_CTRL_XMSI_FE |
3617 SWAPPER_CTRL_STATS_FE |
3618 SWAPPER_CTRL_STATS_SE);
eaae7f72 3619 if (sp->config.intr_type == INTA)
cc6e7c44 3620 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3621 writeq(val64, &bar0->swapper_ctrl);
3622#else
20346722 3623 /*
1da177e4 3624 * Initially we enable all bits to make it accessible by the
20346722 3625 * driver, then we selectively enable only those bits that
1da177e4
LT
3626 * we want to set.
3627 */
3628 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3629 SWAPPER_CTRL_TXP_SE |
3630 SWAPPER_CTRL_TXD_R_FE |
3631 SWAPPER_CTRL_TXD_R_SE |
3632 SWAPPER_CTRL_TXD_W_FE |
3633 SWAPPER_CTRL_TXD_W_SE |
3634 SWAPPER_CTRL_TXF_R_FE |
3635 SWAPPER_CTRL_RXD_R_FE |
3636 SWAPPER_CTRL_RXD_R_SE |
3637 SWAPPER_CTRL_RXD_W_FE |
3638 SWAPPER_CTRL_RXD_W_SE |
3639 SWAPPER_CTRL_RXF_W_FE |
3640 SWAPPER_CTRL_XMSI_FE |
3641 SWAPPER_CTRL_STATS_FE |
3642 SWAPPER_CTRL_STATS_SE);
eaae7f72 3643 if (sp->config.intr_type == INTA)
cc6e7c44 3644 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3645 writeq(val64, &bar0->swapper_ctrl);
3646#endif
3647 val64 = readq(&bar0->swapper_ctrl);
3648
20346722 3649 /*
3650 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3651 * feedback register.
3652 */
3653 val64 = readq(&bar0->pif_rd_swapper_fb);
3654 if (val64 != 0x0123456789ABCDEFULL) {
3655 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3656 DBG_PRINT(ERR_DBG,
3657 "%s: Endian settings are wrong, feedback read %llx\n",
3658 dev->name, (unsigned long long)val64);
1da177e4
LT
3659 return FAILURE;
3660 }
3661
3662 return SUCCESS;
3663}
3664
1ee6dd77 3665static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3666{
1ee6dd77 3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3668 u64 val64;
3669 int ret = 0, cnt = 0;
3670
3671 do {
3672 val64 = readq(&bar0->xmsi_access);
b7b5a128 3673 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3674 break;
3675 mdelay(1);
3676 cnt++;
d44570e4 3677 } while (cnt < 5);
cc6e7c44
RA
3678 if (cnt == 5) {
3679 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 ret = 1;
3681 }
3682
3683 return ret;
3684}
3685
1ee6dd77 3686static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3687{
1ee6dd77 3688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3689 u64 val64;
f61e0a35
SH
3690 int i, msix_index;
3691
f61e0a35
SH
3692 if (nic->device_type == XFRAME_I_DEVICE)
3693 return;
cc6e7c44 3694
d44570e4
JP
3695 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3697 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3699 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3700 writeq(val64, &bar0->xmsi_access);
f61e0a35 3701 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3702 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 __func__, msix_index);
cc6e7c44
RA
3704 continue;
3705 }
3706 }
3707}
3708
1ee6dd77 3709static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3710{
1ee6dd77 3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3712 u64 val64, addr, data;
f61e0a35
SH
3713 int i, msix_index;
3714
3715 if (nic->device_type == XFRAME_I_DEVICE)
3716 return;
cc6e7c44
RA
3717
3718 /* Store and display */
d44570e4
JP
3719 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3721 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3722 writeq(val64, &bar0->xmsi_access);
f61e0a35 3723 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3724 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 __func__, msix_index);
cc6e7c44
RA
3726 continue;
3727 }
3728 addr = readq(&bar0->xmsi_address);
3729 data = readq(&bar0->xmsi_data);
3730 if (addr && data) {
3731 nic->msix_info[i].addr = addr;
3732 nic->msix_info[i].data = data;
3733 }
3734 }
3735}
3736
1ee6dd77 3737static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3738{
1ee6dd77 3739 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3740 u64 rx_mat;
cc6e7c44
RA
3741 u16 msi_control; /* Temp variable */
3742 int ret, i, j, msix_indx = 1;
4f870320 3743 int size;
ffb5df6c
JP
3744 struct stat_block *stats = nic->mac_control.stats_info;
3745 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3746
4f870320 3747 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3748 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3749 if (!nic->entries) {
d44570e4
JP
3750 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 __func__);
ffb5df6c 3752 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3753 return -ENOMEM;
3754 }
ffb5df6c 3755 swstats->mem_allocated += size;
f61e0a35 3756
4f870320 3757 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3758 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3759 if (!nic->s2io_entries) {
8a4bdbaa 3760 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3761 __func__);
ffb5df6c 3762 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3763 kfree(nic->entries);
ffb5df6c 3764 swstats->mem_freed
f61e0a35 3765 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3766 return -ENOMEM;
3767 }
ffb5df6c 3768 swstats->mem_allocated += size;
cc6e7c44 3769
ac731ab6
SH
3770 nic->entries[0].entry = 0;
3771 nic->s2io_entries[0].entry = 0;
3772 nic->s2io_entries[0].in_use = MSIX_FLG;
3773 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775
f61e0a35
SH
3776 for (i = 1; i < nic->num_entries; i++) {
3777 nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3779 nic->s2io_entries[i].arg = NULL;
3780 nic->s2io_entries[i].in_use = 0;
3781 }
3782
8a4bdbaa 3783 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3784 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3785 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3786 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 msix_indx += 8;
cc6e7c44 3790 }
8a4bdbaa 3791 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3792 readq(&bar0->rx_mat);
cc6e7c44 3793
f61e0a35 3794 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3795 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3796 if (ret) {
9e39f7c5 3797 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3798 kfree(nic->entries);
ffb5df6c
JP
3799 swstats->mem_freed += nic->num_entries *
3800 sizeof(struct msix_entry);
cc6e7c44 3801 kfree(nic->s2io_entries);
ffb5df6c
JP
3802 swstats->mem_freed += nic->num_entries *
3803 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3804 nic->entries = NULL;
3805 nic->s2io_entries = NULL;
3806 return -ENOMEM;
3807 }
3808
3809 /*
3810 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 * in the herc NIC. (Temp change, needs to be removed later)
3812 */
3813 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 msi_control |= 0x1; /* Enable MSI */
3815 pci_write_config_word(nic->pdev, 0x42, msi_control);
3816
3817 return 0;
3818}
3819
8abc4d5b 3820/* Handle software interrupt used during MSI(X) test */
33390a70 3821static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3822{
3823 struct s2io_nic *sp = dev_id;
3824
3825 sp->msi_detected = 1;
3826 wake_up(&sp->msi_wait);
3827
3828 return IRQ_HANDLED;
3829}
3830
3831/* Test interrupt path by forcing a a software IRQ */
33390a70 3832static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3833{
3834 struct pci_dev *pdev = sp->pdev;
3835 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 int err;
3837 u64 val64, saved64;
3838
3839 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3840 sp->name, sp);
8abc4d5b
SS
3841 if (err) {
3842 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3843 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3844 return err;
3845 }
3846
d44570e4 3847 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3848 sp->msi_detected = 0;
3849
3850 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 writeq(val64, &bar0->scheduled_int_ctrl);
3855
3856 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857
3858 if (!sp->msi_detected) {
3859 /* MSI(X) test failed, go back to INTx mode */
2450022a 3860 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3861 "using MSI(X) during test\n",
3862 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3863
3864 err = -EOPNOTSUPP;
3865 }
3866
3867 free_irq(sp->entries[1].vector, sp);
3868
3869 writeq(saved64, &bar0->scheduled_int_ctrl);
3870
3871 return err;
3872}
18b2b7bd
SH
3873
3874static void remove_msix_isr(struct s2io_nic *sp)
3875{
3876 int i;
3877 u16 msi_control;
3878
f61e0a35 3879 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3880 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3881 int vector = sp->entries[i].vector;
3882 void *arg = sp->s2io_entries[i].arg;
3883 free_irq(vector, arg);
3884 }
3885 }
3886
3887 kfree(sp->entries);
3888 kfree(sp->s2io_entries);
3889 sp->entries = NULL;
3890 sp->s2io_entries = NULL;
3891
3892 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 msi_control &= 0xFFFE; /* Disable MSI */
3894 pci_write_config_word(sp->pdev, 0x42, msi_control);
3895
3896 pci_disable_msix(sp->pdev);
3897}
3898
3899static void remove_inta_isr(struct s2io_nic *sp)
3900{
3901 struct net_device *dev = sp->dev;
3902
3903 free_irq(sp->pdev->irq, dev);
3904}
3905
1da177e4
LT
3906/* ********************************************************* *
3907 * Functions defined below concern the OS part of the driver *
3908 * ********************************************************* */
3909
20346722 3910/**
1da177e4
LT
3911 * s2io_open - open entry point of the driver
3912 * @dev : pointer to the device structure.
3913 * Description:
3914 * This function is the open entry point of the driver. It mainly calls a
3915 * function to allocate Rx buffers and inserts them into the buffer
20346722 3916 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3917 * Return value:
3918 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3919 * file on failure.
3920 */
3921
ac1f60db 3922static int s2io_open(struct net_device *dev)
1da177e4 3923{
4cf1653a 3924 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3925 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3926 int err = 0;
3927
20346722 3928 /*
3929 * Make sure you have link off by default every time
1da177e4
LT
3930 * Nic is initialized
3931 */
3932 netif_carrier_off(dev);
0b1f7ebe 3933 sp->last_link_state = 0;
1da177e4
LT
3934
3935 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3936 err = s2io_card_up(sp);
3937 if (err) {
1da177e4
LT
3938 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3939 dev->name);
e6a8fee2 3940 goto hw_init_failed;
1da177e4
LT
3941 }
3942
2fd37688 3943 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3944 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3945 s2io_card_down(sp);
20346722 3946 err = -ENODEV;
e6a8fee2 3947 goto hw_init_failed;
1da177e4 3948 }
3a3d5756 3949 s2io_start_all_tx_queue(sp);
1da177e4 3950 return 0;
20346722 3951
20346722 3952hw_init_failed:
eaae7f72 3953 if (sp->config.intr_type == MSI_X) {
491976b2 3954 if (sp->entries) {
cc6e7c44 3955 kfree(sp->entries);
ffb5df6c
JP
3956 swstats->mem_freed += sp->num_entries *
3957 sizeof(struct msix_entry);
491976b2
SH
3958 }
3959 if (sp->s2io_entries) {
cc6e7c44 3960 kfree(sp->s2io_entries);
ffb5df6c
JP
3961 swstats->mem_freed += sp->num_entries *
3962 sizeof(struct s2io_msix_entry);
491976b2 3963 }
cc6e7c44 3964 }
20346722 3965 return err;
1da177e4
LT
3966}
3967
3968/**
3969 * s2io_close -close entry point of the driver
3970 * @dev : device pointer.
3971 * Description:
3972 * This is the stop entry point of the driver. It needs to undo exactly
3973 * whatever was done by the open entry point,thus it's usually referred to
3974 * as the close function.Among other things this function mainly stops the
3975 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3976 * Return value:
3977 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3978 * file on failure.
3979 */
3980
ac1f60db 3981static int s2io_close(struct net_device *dev)
1da177e4 3982{
4cf1653a 3983 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
3984 struct config_param *config = &sp->config;
3985 u64 tmp64;
3986 int offset;
cc6e7c44 3987
9f74ffde 3988 /* Return if the device is already closed *
d44570e4
JP
3989 * Can happen when s2io_card_up failed in change_mtu *
3990 */
9f74ffde
SH
3991 if (!is_s2io_card_up(sp))
3992 return 0;
3993
3a3d5756 3994 s2io_stop_all_tx_queue(sp);
faa4f796
SH
3995 /* delete all populated mac entries */
3996 for (offset = 1; offset < config->max_mc_addr; offset++) {
3997 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3998 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3999 do_s2io_delete_unicast_mc(sp, tmp64);
4000 }
4001
e6a8fee2 4002 s2io_card_down(sp);
cc6e7c44 4003
1da177e4
LT
4004 return 0;
4005}
4006
4007/**
4008 * s2io_xmit - Tx entry point of te driver
4009 * @skb : the socket buffer containing the Tx data.
4010 * @dev : device pointer.
4011 * Description :
4012 * This function is the Tx entry point of the driver. S2IO NIC supports
4013 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
25985edc 4014 * NOTE: when device can't queue the pkt,just the trans_start variable will
1da177e4
LT
4015 * not be upadted.
4016 * Return value:
4017 * 0 on success & 1 on failure.
4018 */
4019
61357325 4020static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4021{
4cf1653a 4022 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4023 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4024 register u64 val64;
1ee6dd77
RB
4025 struct TxD *txdp;
4026 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4027 unsigned long flags = 0;
be3a6b02 4028 u16 vlan_tag = 0;
2fda096d 4029 struct fifo_info *fifo = NULL;
6cfc482b 4030 int do_spin_lock = 1;
75c30b13 4031 int offload_type;
6cfc482b 4032 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4033 struct config_param *config = &sp->config;
4034 struct mac_info *mac_control = &sp->mac_control;
4035 struct stat_block *stats = mac_control->stats_info;
4036 struct swStat *swstats = &stats->sw_stat;
1da177e4 4037
20346722 4038 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4039
4040 if (unlikely(skb->len <= 0)) {
9e39f7c5 4041 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4042 dev_kfree_skb_any(skb);
6ed10654 4043 return NETDEV_TX_OK;
2fda096d 4044 }
491976b2 4045
92b84437 4046 if (!is_s2io_card_up(sp)) {
20346722 4047 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4048 dev->name);
20346722 4049 dev_kfree_skb(skb);
6ed10654 4050 return NETDEV_TX_OK;
1da177e4
LT
4051 }
4052
4053 queue = 0;
eab6d18d 4054 if (vlan_tx_tag_present(skb))
be3a6b02 4055 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4056 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4057 if (skb->protocol == htons(ETH_P_IP)) {
4058 struct iphdr *ip;
4059 struct tcphdr *th;
4060 ip = ip_hdr(skb);
4061
56f8a75c 4062 if (!ip_is_fragment(ip)) {
6cfc482b 4063 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4064 ip->ihl*4);
6cfc482b
SH
4065
4066 if (ip->protocol == IPPROTO_TCP) {
4067 queue_len = sp->total_tcp_fifos;
4068 queue = (ntohs(th->source) +
d44570e4
JP
4069 ntohs(th->dest)) &
4070 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4071 if (queue >= queue_len)
4072 queue = queue_len - 1;
4073 } else if (ip->protocol == IPPROTO_UDP) {
4074 queue_len = sp->total_udp_fifos;
4075 queue = (ntohs(th->source) +
d44570e4
JP
4076 ntohs(th->dest)) &
4077 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4078 if (queue >= queue_len)
4079 queue = queue_len - 1;
4080 queue += sp->udp_fifo_idx;
4081 if (skb->len > 1024)
4082 enable_per_list_interrupt = 1;
4083 do_spin_lock = 0;
4084 }
4085 }
4086 }
4087 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4088 /* get fifo number based on skb->priority value */
4089 queue = config->fifo_mapping
d44570e4 4090 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4091 fifo = &mac_control->fifos[queue];
3a3d5756 4092
6cfc482b
SH
4093 if (do_spin_lock)
4094 spin_lock_irqsave(&fifo->tx_lock, flags);
4095 else {
4096 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4097 return NETDEV_TX_LOCKED;
4098 }
be3a6b02 4099
3a3d5756
SH
4100 if (sp->config.multiq) {
4101 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4102 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4103 return NETDEV_TX_BUSY;
4104 }
b19fa1fa 4105 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4106 if (netif_queue_stopped(dev)) {
4107 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4108 return NETDEV_TX_BUSY;
4109 }
4110 }
4111
d44570e4
JP
4112 put_off = (u16)fifo->tx_curr_put_info.offset;
4113 get_off = (u16)fifo->tx_curr_get_info.offset;
43d620c8 4114 txdp = fifo->list_info[put_off].list_virt_addr;
20346722 4115
2fda096d 4116 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4117 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4118 if (txdp->Host_Control ||
d44570e4 4119 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4120 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4121 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4122 dev_kfree_skb(skb);
2fda096d 4123 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4124 return NETDEV_TX_OK;
1da177e4 4125 }
0b1f7ebe 4126
75c30b13 4127 offload_type = s2io_offload_type(skb);
75c30b13 4128 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4129 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4130 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4131 }
84fa7933 4132 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4133 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4134 TXD_TX_CKO_TCP_EN |
4135 TXD_TX_CKO_UDP_EN);
1da177e4 4136 }
fed5eccd
AR
4137 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4138 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4139 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4140 if (enable_per_list_interrupt)
4141 if (put_off & (queue_len >> 5))
4142 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4143 if (vlan_tag) {
be3a6b02 4144 txdp->Control_2 |= TXD_VLAN_ENABLE;
4145 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4146 }
4147
e743d313 4148 frg_len = skb_headlen(skb);
75c30b13 4149 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4150 int ufo_size;
4151
75c30b13 4152 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4153 ufo_size &= ~7;
4154 txdp->Control_1 |= TXD_UFO_EN;
4155 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4156 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4157#ifdef __BIG_ENDIAN
3459feb8 4158 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4159 fifo->ufo_in_band_v[put_off] =
d44570e4 4160 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4161#else
2fda096d 4162 fifo->ufo_in_band_v[put_off] =
d44570e4 4163 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4164#endif
2fda096d 4165 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4166 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4167 fifo->ufo_in_band_v,
4168 sizeof(u64),
4169 PCI_DMA_TODEVICE);
8d8bb39b 4170 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4171 goto pci_map_failed;
fed5eccd 4172 txdp++;
fed5eccd 4173 }
1da177e4 4174
d44570e4
JP
4175 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4176 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4177 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4178 goto pci_map_failed;
4179
d44570e4 4180 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4181 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4182 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4183 txdp->Control_1 |= TXD_UFO_EN;
4184
4185 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4186 /* For fragmented SKB. */
4187 for (i = 0; i < frg_cnt; i++) {
9e903e08 4188 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4189 /* A '0' length fragment will be ignored */
9e903e08 4190 if (!skb_frag_size(frag))
0b1f7ebe 4191 continue;
1da177e4 4192 txdp++;
f0d06d82
IC
4193 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4194 frag, 0,
9e903e08 4195 skb_frag_size(frag),
5d6bcdfe 4196 DMA_TO_DEVICE);
9e903e08 4197 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
75c30b13 4198 if (offload_type == SKB_GSO_UDP)
fed5eccd 4199 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4200 }
4201 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4202
75c30b13 4203 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4204 frg_cnt++; /* as Txd0 was used for inband header */
4205
1da177e4 4206 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4207 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4208 writeq(val64, &tx_fifo->TxDL_Pointer);
4209
4210 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4211 TX_FIFO_LAST_LIST);
75c30b13 4212 if (offload_type)
fed5eccd 4213 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4214
1da177e4
LT
4215 writeq(val64, &tx_fifo->List_Control);
4216
303bcb4b 4217 mmiowb();
4218
1da177e4 4219 put_off++;
2fda096d 4220 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4221 put_off = 0;
2fda096d 4222 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4223
4224 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4225 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4226 swstats->fifo_full_cnt++;
1da177e4
LT
4227 DBG_PRINT(TX_DBG,
4228 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4229 put_off, get_off);
3a3d5756 4230 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4231 }
ffb5df6c 4232 swstats->mem_allocated += skb->truesize;
2fda096d 4233 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4234
f6f4bfa3
SH
4235 if (sp->config.intr_type == MSI_X)
4236 tx_intr_handler(fifo);
4237
6ed10654 4238 return NETDEV_TX_OK;
ffb5df6c 4239
491abf25 4240pci_map_failed:
ffb5df6c 4241 swstats->pci_map_fail_cnt++;
3a3d5756 4242 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4243 swstats->mem_freed += skb->truesize;
491abf25 4244 dev_kfree_skb(skb);
2fda096d 4245 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4246 return NETDEV_TX_OK;
1da177e4
LT
4247}
4248
25fff88e 4249static void
4250s2io_alarm_handle(unsigned long data)
4251{
1ee6dd77 4252 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4253 struct net_device *dev = sp->dev;
25fff88e 4254
8116f3cf 4255 s2io_handle_errors(dev);
25fff88e 4256 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4257}
4258
7d12e780 4259static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4260{
1ee6dd77
RB
4261 struct ring_info *ring = (struct ring_info *)dev_id;
4262 struct s2io_nic *sp = ring->nic;
f61e0a35 4263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4264
f61e0a35 4265 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4266 return IRQ_HANDLED;
92b84437 4267
f61e0a35 4268 if (sp->config.napi) {
1a79d1c3
AV
4269 u8 __iomem *addr = NULL;
4270 u8 val8 = 0;
f61e0a35 4271
1a79d1c3 4272 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4273 addr += (7 - ring->ring_no);
4274 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4275 writeb(val8, addr);
4276 val8 = readb(addr);
288379f0 4277 napi_schedule(&ring->napi);
f61e0a35
SH
4278 } else {
4279 rx_intr_handler(ring, 0);
8d8bb39b 4280 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4281 }
7d3d0439 4282
cc6e7c44
RA
4283 return IRQ_HANDLED;
4284}
4285
7d12e780 4286static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4287{
ac731ab6
SH
4288 int i;
4289 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4290 struct s2io_nic *sp = fifos->nic;
4291 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4292 struct config_param *config = &sp->config;
4293 u64 reason;
cc6e7c44 4294
ac731ab6
SH
4295 if (unlikely(!is_s2io_card_up(sp)))
4296 return IRQ_NONE;
4297
4298 reason = readq(&bar0->general_int_status);
4299 if (unlikely(reason == S2IO_MINUS_ONE))
4300 /* Nothing much can be done. Get out */
92b84437 4301 return IRQ_HANDLED;
92b84437 4302
01e16faa
SH
4303 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4304 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4305
01e16faa
SH
4306 if (reason & GEN_INTR_TXPIC)
4307 s2io_txpic_intr_handle(sp);
ac731ab6 4308
01e16faa
SH
4309 if (reason & GEN_INTR_TXTRAFFIC)
4310 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4311
01e16faa
SH
4312 for (i = 0; i < config->tx_fifo_num; i++)
4313 tx_intr_handler(&fifos[i]);
ac731ab6 4314
01e16faa
SH
4315 writeq(sp->general_int_mask, &bar0->general_int_mask);
4316 readl(&bar0->general_int_status);
4317 return IRQ_HANDLED;
4318 }
4319 /* The interrupt was not raised by us */
4320 return IRQ_NONE;
cc6e7c44 4321}
ac731ab6 4322
1ee6dd77 4323static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4324{
1ee6dd77 4325 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4326 u64 val64;
4327
4328 val64 = readq(&bar0->pic_int_status);
4329 if (val64 & PIC_INT_GPIO) {
4330 val64 = readq(&bar0->gpio_int_reg);
4331 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4332 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4333 /*
4334 * This is unstable state so clear both up/down
4335 * interrupt and adapter to re-evaluate the link state.
4336 */
d44570e4 4337 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d 4338 val64 |= GPIO_INT_REG_LINK_UP;
4339 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4340 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4341 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4342 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4343 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4344 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4345 val64 = readq(&bar0->adapter_status);
d44570e4 4346 /* Enable Adapter */
19a60522
SS
4347 val64 = readq(&bar0->adapter_control);
4348 val64 |= ADAPTER_CNTL_EN;
4349 writeq(val64, &bar0->adapter_control);
4350 val64 |= ADAPTER_LED_ON;
4351 writeq(val64, &bar0->adapter_control);
4352 if (!sp->device_enabled_once)
4353 sp->device_enabled_once = 1;
c92ca04b 4354
19a60522
SS
4355 s2io_link(sp, LINK_UP);
4356 /*
4357 * unmask link down interrupt and mask link-up
4358 * intr
4359 */
4360 val64 = readq(&bar0->gpio_int_mask);
4361 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4362 val64 |= GPIO_INT_MASK_LINK_UP;
4363 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4364
d44570e4 4365 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4366 val64 = readq(&bar0->adapter_status);
19a60522
SS
4367 s2io_link(sp, LINK_DOWN);
4368 /* Link is down so unmaks link up interrupt */
4369 val64 = readq(&bar0->gpio_int_mask);
4370 val64 &= ~GPIO_INT_MASK_LINK_UP;
4371 val64 |= GPIO_INT_MASK_LINK_DOWN;
4372 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4373
4374 /* turn off LED */
4375 val64 = readq(&bar0->adapter_control);
d44570e4 4376 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4377 writeq(val64, &bar0->adapter_control);
a371a07d 4378 }
4379 }
c92ca04b 4380 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4381}
4382
8116f3cf
SS
4383/**
4384 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4385 * @value: alarm bits
4386 * @addr: address value
4387 * @cnt: counter variable
4388 * Description: Check for alarm and increment the counter
4389 * Return Value:
4390 * 1 - if alarm bit set
4391 * 0 - if alarm bit is not set
4392 */
d44570e4
JP
4393static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4394 unsigned long long *cnt)
8116f3cf
SS
4395{
4396 u64 val64;
4397 val64 = readq(addr);
d44570e4 4398 if (val64 & value) {
8116f3cf
SS
4399 writeq(val64, addr);
4400 (*cnt)++;
4401 return 1;
4402 }
4403 return 0;
4404
4405}
4406
4407/**
4408 * s2io_handle_errors - Xframe error indication handler
4409 * @nic: device private variable
4410 * Description: Handle alarms such as loss of link, single or
4411 * double ECC errors, critical and serious errors.
4412 * Return Value:
4413 * NONE
4414 */
d44570e4 4415static void s2io_handle_errors(void *dev_id)
8116f3cf 4416{
d44570e4 4417 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4418 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4419 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4420 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4421 int i = 0;
4422
4423 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4424 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4425
92b84437 4426 if (!is_s2io_card_up(sp))
8116f3cf
SS
4427 return;
4428
4429 if (pci_channel_offline(sp->pdev))
4430 return;
4431
4432 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4433 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4434
4435 /* Handling the XPAK counters update */
d44570e4 4436 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4437 /* waiting for an hour */
4438 stats->xpak_timer_count++;
4439 } else {
4440 s2io_updt_xpak_counter(dev);
4441 /* reset the count to zero */
4442 stats->xpak_timer_count = 0;
4443 }
4444
4445 /* Handling link status change error Intr */
4446 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4447 val64 = readq(&bar0->mac_rmac_err_reg);
4448 writeq(val64, &bar0->mac_rmac_err_reg);
4449 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4450 schedule_work(&sp->set_link_task);
4451 }
4452
4453 /* In case of a serious error, the device will be Reset. */
4454 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4455 &sw_stat->serious_err_cnt))
8116f3cf
SS
4456 goto reset;
4457
4458 /* Check for data parity error */
4459 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4460 &sw_stat->parity_err_cnt))
8116f3cf
SS
4461 goto reset;
4462
4463 /* Check for ring full counter */
4464 if (sp->device_type == XFRAME_II_DEVICE) {
4465 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4466 for (i = 0; i < 4; i++) {
4467 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4468 temp64 >>= 64 - ((i+1)*16);
4469 sw_stat->ring_full_cnt[i] += temp64;
4470 }
4471
4472 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4473 for (i = 0; i < 4; i++) {
4474 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4475 temp64 >>= 64 - ((i+1)*16);
d44570e4 4476 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4477 }
4478 }
4479
4480 val64 = readq(&bar0->txdma_int_status);
4481 /*check for pfc_err*/
4482 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4483 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4484 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4485 PFC_PCIX_ERR,
4486 &bar0->pfc_err_reg,
4487 &sw_stat->pfc_err_cnt))
8116f3cf 4488 goto reset;
d44570e4
JP
4489 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4490 &bar0->pfc_err_reg,
4491 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4492 }
4493
4494 /*check for tda_err*/
4495 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4496 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4497 TDA_SM0_ERR_ALARM |
4498 TDA_SM1_ERR_ALARM,
4499 &bar0->tda_err_reg,
4500 &sw_stat->tda_err_cnt))
8116f3cf
SS
4501 goto reset;
4502 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4503 &bar0->tda_err_reg,
4504 &sw_stat->tda_err_cnt);
8116f3cf
SS
4505 }
4506 /*check for pcc_err*/
4507 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4508 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4509 PCC_N_SERR | PCC_6_COF_OV_ERR |
4510 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4511 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4512 PCC_TXB_ECC_DB_ERR,
4513 &bar0->pcc_err_reg,
4514 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4515 goto reset;
4516 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4517 &bar0->pcc_err_reg,
4518 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4519 }
4520
4521 /*check for tti_err*/
4522 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4523 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4524 &bar0->tti_err_reg,
4525 &sw_stat->tti_err_cnt))
8116f3cf
SS
4526 goto reset;
4527 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4528 &bar0->tti_err_reg,
4529 &sw_stat->tti_err_cnt);
8116f3cf
SS
4530 }
4531
4532 /*check for lso_err*/
4533 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4534 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4535 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4536 &bar0->lso_err_reg,
4537 &sw_stat->lso_err_cnt))
8116f3cf
SS
4538 goto reset;
4539 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4540 &bar0->lso_err_reg,
4541 &sw_stat->lso_err_cnt);
8116f3cf
SS
4542 }
4543
4544 /*check for tpa_err*/
4545 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4546 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4547 &bar0->tpa_err_reg,
4548 &sw_stat->tpa_err_cnt))
8116f3cf 4549 goto reset;
d44570e4
JP
4550 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4551 &bar0->tpa_err_reg,
4552 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4553 }
4554
4555 /*check for sm_err*/
4556 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4557 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4558 &bar0->sm_err_reg,
4559 &sw_stat->sm_err_cnt))
8116f3cf
SS
4560 goto reset;
4561 }
4562
4563 val64 = readq(&bar0->mac_int_status);
4564 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4565 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4566 &bar0->mac_tmac_err_reg,
4567 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4568 goto reset;
d44570e4
JP
4569 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4570 TMAC_DESC_ECC_SG_ERR |
4571 TMAC_DESC_ECC_DB_ERR,
4572 &bar0->mac_tmac_err_reg,
4573 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4574 }
4575
4576 val64 = readq(&bar0->xgxs_int_status);
4577 if (val64 & XGXS_INT_STATUS_TXGXS) {
4578 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4579 &bar0->xgxs_txgxs_err_reg,
4580 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4581 goto reset;
4582 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4583 &bar0->xgxs_txgxs_err_reg,
4584 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4585 }
4586
4587 val64 = readq(&bar0->rxdma_int_status);
4588 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4589 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4590 RC_FTC_ECC_DB_ERR |
4591 RC_PRCn_SM_ERR_ALARM |
4592 RC_FTC_SM_ERR_ALARM,
4593 &bar0->rc_err_reg,
4594 &sw_stat->rc_err_cnt))
8116f3cf 4595 goto reset;
d44570e4
JP
4596 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4597 RC_FTC_ECC_SG_ERR |
4598 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4599 &sw_stat->rc_err_cnt);
4600 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4601 PRC_PCI_AB_WR_Rn |
4602 PRC_PCI_AB_F_WR_Rn,
4603 &bar0->prc_pcix_err_reg,
4604 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4605 goto reset;
d44570e4
JP
4606 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4607 PRC_PCI_DP_WR_Rn |
4608 PRC_PCI_DP_F_WR_Rn,
4609 &bar0->prc_pcix_err_reg,
4610 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4611 }
4612
4613 if (val64 & RXDMA_INT_RPA_INT_M) {
4614 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4615 &bar0->rpa_err_reg,
4616 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4617 goto reset;
4618 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4619 &bar0->rpa_err_reg,
4620 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4621 }
4622
4623 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4624 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4625 RDA_FRM_ECC_DB_N_AERR |
4626 RDA_SM1_ERR_ALARM |
4627 RDA_SM0_ERR_ALARM |
4628 RDA_RXD_ECC_DB_SERR,
4629 &bar0->rda_err_reg,
4630 &sw_stat->rda_err_cnt))
8116f3cf 4631 goto reset;
d44570e4
JP
4632 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4633 RDA_FRM_ECC_SG_ERR |
4634 RDA_MISC_ERR |
4635 RDA_PCIX_ERR,
4636 &bar0->rda_err_reg,
4637 &sw_stat->rda_err_cnt);
8116f3cf
SS
4638 }
4639
4640 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4641 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4642 &bar0->rti_err_reg,
4643 &sw_stat->rti_err_cnt))
8116f3cf
SS
4644 goto reset;
4645 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4646 &bar0->rti_err_reg,
4647 &sw_stat->rti_err_cnt);
8116f3cf
SS
4648 }
4649
4650 val64 = readq(&bar0->mac_int_status);
4651 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4652 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4653 &bar0->mac_rmac_err_reg,
4654 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4655 goto reset;
d44570e4
JP
4656 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4657 RMAC_SINGLE_ECC_ERR |
4658 RMAC_DOUBLE_ECC_ERR,
4659 &bar0->mac_rmac_err_reg,
4660 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4661 }
4662
4663 val64 = readq(&bar0->xgxs_int_status);
4664 if (val64 & XGXS_INT_STATUS_RXGXS) {
4665 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4666 &bar0->xgxs_rxgxs_err_reg,
4667 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4668 goto reset;
4669 }
4670
4671 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4672 if (val64 & MC_INT_STATUS_MC_INT) {
4673 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4674 &bar0->mc_err_reg,
4675 &sw_stat->mc_err_cnt))
8116f3cf
SS
4676 goto reset;
4677
4678 /* Handling Ecc errors */
4679 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4680 writeq(val64, &bar0->mc_err_reg);
4681 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4682 sw_stat->double_ecc_errs++;
4683 if (sp->device_type != XFRAME_II_DEVICE) {
4684 /*
4685 * Reset XframeI only if critical error
4686 */
4687 if (val64 &
d44570e4
JP
4688 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4689 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4690 goto reset;
4691 }
8116f3cf
SS
4692 } else
4693 sw_stat->single_ecc_errs++;
4694 }
4695 }
4696 return;
4697
4698reset:
3a3d5756 4699 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4700 schedule_work(&sp->rst_timer_task);
4701 sw_stat->soft_reset_cnt++;
8116f3cf
SS
4702}
4703
1da177e4
LT
4704/**
4705 * s2io_isr - ISR handler of the device .
4706 * @irq: the irq of the device.
4707 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4708 * Description: This function is the ISR handler of the device. It
4709 * identifies the reason for the interrupt and calls the relevant
4710 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4711 * recv buffers, if their numbers are below the panic value which is
4712 * presently set to 25% of the original number of rcv buffers allocated.
4713 * Return value:
20346722 4714 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4715 * IRQ_NONE: will be returned if interrupt is not from our device
4716 */
7d12e780 4717static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4718{
d44570e4 4719 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4720 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4721 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4722 int i;
19a60522 4723 u64 reason = 0;
1ee6dd77 4724 struct mac_info *mac_control;
1da177e4
LT
4725 struct config_param *config;
4726
d796fdb7
LV
4727 /* Pretend we handled any irq's from a disconnected card */
4728 if (pci_channel_offline(sp->pdev))
4729 return IRQ_NONE;
4730
596c5c97 4731 if (!is_s2io_card_up(sp))
92b84437 4732 return IRQ_NONE;
92b84437 4733
1da177e4 4734 config = &sp->config;
ffb5df6c 4735 mac_control = &sp->mac_control;
1da177e4 4736
20346722 4737 /*
1da177e4
LT
4738 * Identify the cause for interrupt and call the appropriate
4739 * interrupt handler. Causes for the interrupt could be;
4740 * 1. Rx of packet.
4741 * 2. Tx complete.
4742 * 3. Link down.
1da177e4
LT
4743 */
4744 reason = readq(&bar0->general_int_status);
4745
d44570e4
JP
4746 if (unlikely(reason == S2IO_MINUS_ONE))
4747 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4748
d44570e4
JP
4749 if (reason &
4750 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4751 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4752
4753 if (config->napi) {
4754 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4755 napi_schedule(&sp->napi);
f61e0a35
SH
4756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4757 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4758 readl(&bar0->rx_traffic_int);
db874e65 4759 }
596c5c97
SS
4760 } else {
4761 /*
4762 * rx_traffic_int reg is an R1 register, writing all 1's
4763 * will ensure that the actual interrupt causing bit
4764 * get's cleared and hence a read can be avoided.
4765 */
4766 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4767 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4768
13d866a9
JP
4769 for (i = 0; i < config->rx_ring_num; i++) {
4770 struct ring_info *ring = &mac_control->rings[i];
4771
4772 rx_intr_handler(ring, 0);
4773 }
db874e65 4774 }
596c5c97 4775
db874e65 4776 /*
596c5c97 4777 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4778 * will ensure that the actual interrupt causing bit get's
4779 * cleared and hence a read can be avoided.
4780 */
596c5c97
SS
4781 if (reason & GEN_INTR_TXTRAFFIC)
4782 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4783
596c5c97
SS
4784 for (i = 0; i < config->tx_fifo_num; i++)
4785 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4786
596c5c97
SS
4787 if (reason & GEN_INTR_TXPIC)
4788 s2io_txpic_intr_handle(sp);
fe113638 4789
596c5c97
SS
4790 /*
4791 * Reallocate the buffers from the interrupt handler itself.
4792 */
4793 if (!config->napi) {
13d866a9
JP
4794 for (i = 0; i < config->rx_ring_num; i++) {
4795 struct ring_info *ring = &mac_control->rings[i];
4796
4797 s2io_chk_rx_buffers(sp, ring);
4798 }
596c5c97
SS
4799 }
4800 writeq(sp->general_int_mask, &bar0->general_int_mask);
4801 readl(&bar0->general_int_status);
20346722 4802
596c5c97 4803 return IRQ_HANDLED;
db874e65 4804
d44570e4 4805 } else if (!reason) {
596c5c97
SS
4806 /* The interrupt was not raised by us */
4807 return IRQ_NONE;
4808 }
db874e65 4809
1da177e4
LT
4810 return IRQ_HANDLED;
4811}
4812
7ba013ac 4813/**
4814 * s2io_updt_stats -
4815 */
1ee6dd77 4816static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4817{
1ee6dd77 4818 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4819 u64 val64;
4820 int cnt = 0;
4821
92b84437 4822 if (is_s2io_card_up(sp)) {
7ba013ac 4823 /* Apprx 30us on a 133 MHz bus */
4824 val64 = SET_UPDT_CLICKS(10) |
4825 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4826 writeq(val64, &bar0->stat_cfg);
4827 do {
4828 udelay(100);
4829 val64 = readq(&bar0->stat_cfg);
b7b5a128 4830 if (!(val64 & s2BIT(0)))
7ba013ac 4831 break;
4832 cnt++;
4833 if (cnt == 5)
4834 break; /* Updt failed */
d44570e4 4835 } while (1);
8a4bdbaa 4836 }
7ba013ac 4837}
4838
1da177e4 4839/**
20346722 4840 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4841 * @dev : pointer to the device structure.
4842 * Description:
20346722 4843 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4844 * structure and returns a pointer to the same.
4845 * Return value:
4846 * pointer to the updated net_device_stats structure.
4847 */
ac1f60db 4848static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4849{
4cf1653a 4850 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4851 struct mac_info *mac_control = &sp->mac_control;
4852 struct stat_block *stats = mac_control->stats_info;
4a490432 4853 u64 delta;
1da177e4 4854
7ba013ac 4855 /* Configure Stats for immediate updt */
4856 s2io_updt_stats(sp);
4857
4a490432
JM
4858 /* A device reset will cause the on-adapter statistics to be zero'ed.
4859 * This can be done while running by changing the MTU. To prevent the
4860 * system from having the stats zero'ed, the driver keeps a copy of the
4861 * last update to the system (which is also zero'ed on reset). This
4862 * enables the driver to accurately know the delta between the last
4863 * update and the current update.
4864 */
4865 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4866 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4867 sp->stats.rx_packets += delta;
4868 dev->stats.rx_packets += delta;
4869
4870 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4871 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4872 sp->stats.tx_packets += delta;
4873 dev->stats.tx_packets += delta;
4874
4875 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4876 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4877 sp->stats.rx_bytes += delta;
4878 dev->stats.rx_bytes += delta;
4879
4880 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4881 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4882 sp->stats.tx_bytes += delta;
4883 dev->stats.tx_bytes += delta;
4884
4885 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4886 sp->stats.rx_errors += delta;
4887 dev->stats.rx_errors += delta;
4888
4889 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4890 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4891 sp->stats.tx_errors += delta;
4892 dev->stats.tx_errors += delta;
4893
4894 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4895 sp->stats.rx_dropped += delta;
4896 dev->stats.rx_dropped += delta;
4897
4898 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4899 sp->stats.tx_dropped += delta;
4900 dev->stats.tx_dropped += delta;
4901
4902 /* The adapter MAC interprets pause frames as multicast packets, but
4903 * does not pass them up. This erroneously increases the multicast
4904 * packet count and needs to be deducted when the multicast frame count
4905 * is queried.
4906 */
4907 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4908 le32_to_cpu(stats->rmac_vld_mcst_frms);
4909 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4910 delta -= sp->stats.multicast;
4911 sp->stats.multicast += delta;
4912 dev->stats.multicast += delta;
1da177e4 4913
4a490432
JM
4914 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4915 le32_to_cpu(stats->rmac_usized_frms)) +
4916 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4917 sp->stats.rx_length_errors += delta;
4918 dev->stats.rx_length_errors += delta;
13d866a9 4919
4a490432
JM
4920 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4921 sp->stats.rx_crc_errors += delta;
4922 dev->stats.rx_crc_errors += delta;
0425b46a 4923
d44570e4 4924 return &dev->stats;
1da177e4
LT
4925}
4926
4927/**
4928 * s2io_set_multicast - entry point for multicast address enable/disable.
4929 * @dev : pointer to the device structure
4930 * Description:
20346722 4931 * This function is a driver entry point which gets called by the kernel
4932 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4933 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4934 * determine, if multicast address must be enabled or if promiscuous mode
4935 * is to be disabled etc.
4936 * Return value:
4937 * void.
4938 */
4939
4940static void s2io_set_multicast(struct net_device *dev)
4941{
4942 int i, j, prev_cnt;
22bedad3 4943 struct netdev_hw_addr *ha;
4cf1653a 4944 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4945 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4946 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4947 0xfeffffffffffULL;
faa4f796 4948 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4949 void __iomem *add;
faa4f796 4950 struct config_param *config = &sp->config;
1da177e4
LT
4951
4952 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4953 /* Enable all Multicast addresses */
4954 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4955 &bar0->rmac_addr_data0_mem);
4956 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4957 &bar0->rmac_addr_data1_mem);
4958 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4959 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4960 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4961 writeq(val64, &bar0->rmac_addr_cmd_mem);
4962 /* Wait till command completes */
c92ca04b 4963 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4964 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4965 S2IO_BIT_RESET);
1da177e4
LT
4966
4967 sp->m_cast_flg = 1;
faa4f796 4968 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4969 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4970 /* Disable all Multicast addresses */
4971 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4972 &bar0->rmac_addr_data0_mem);
5e25b9dd 4973 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4974 &bar0->rmac_addr_data1_mem);
1da177e4 4975 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4976 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4977 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
4978 writeq(val64, &bar0->rmac_addr_cmd_mem);
4979 /* Wait till command completes */
c92ca04b 4980 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4981 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4982 S2IO_BIT_RESET);
1da177e4
LT
4983
4984 sp->m_cast_flg = 0;
4985 sp->all_multi_pos = 0;
4986 }
4987
4988 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4989 /* Put the NIC into promiscuous mode */
4990 add = &bar0->mac_cfg;
4991 val64 = readq(&bar0->mac_cfg);
4992 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4993
4994 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 4995 writel((u32)val64, add);
1da177e4
LT
4996 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4997 writel((u32) (val64 >> 32), (add + 4));
4998
926930b2
SS
4999 if (vlan_tag_strip != 1) {
5000 val64 = readq(&bar0->rx_pa_cfg);
5001 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5002 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5003 sp->vlan_strip_flag = 0;
926930b2
SS
5004 }
5005
1da177e4
LT
5006 val64 = readq(&bar0->mac_cfg);
5007 sp->promisc_flg = 1;
776bd20f 5008 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5009 dev->name);
5010 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5011 /* Remove the NIC from promiscuous mode */
5012 add = &bar0->mac_cfg;
5013 val64 = readq(&bar0->mac_cfg);
5014 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5015
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5017 writel((u32)val64, add);
1da177e4
LT
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 writel((u32) (val64 >> 32), (add + 4));
5020
926930b2
SS
5021 if (vlan_tag_strip != 0) {
5022 val64 = readq(&bar0->rx_pa_cfg);
5023 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5024 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5025 sp->vlan_strip_flag = 1;
926930b2
SS
5026 }
5027
1da177e4
LT
5028 val64 = readq(&bar0->mac_cfg);
5029 sp->promisc_flg = 0;
9e39f7c5 5030 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5031 }
5032
5033 /* Update individual M_CAST address list */
4cd24eaf
JP
5034 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5035 if (netdev_mc_count(dev) >
faa4f796 5036 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5037 DBG_PRINT(ERR_DBG,
5038 "%s: No more Rx filters can be added - "
5039 "please enable ALL_MULTI instead\n",
1da177e4 5040 dev->name);
1da177e4
LT
5041 return;
5042 }
5043
5044 prev_cnt = sp->mc_addr_count;
4cd24eaf 5045 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5046
5047 /* Clear out the previous list of Mc in the H/W. */
5048 for (i = 0; i < prev_cnt; i++) {
5049 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5050 &bar0->rmac_addr_data0_mem);
5051 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5052 &bar0->rmac_addr_data1_mem);
1da177e4 5053 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5054 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5055 RMAC_ADDR_CMD_MEM_OFFSET
5056 (config->mc_start_offset + i);
1da177e4
LT
5057 writeq(val64, &bar0->rmac_addr_cmd_mem);
5058
5059 /* Wait for command completes */
c92ca04b 5060 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5061 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062 S2IO_BIT_RESET)) {
9e39f7c5
JP
5063 DBG_PRINT(ERR_DBG,
5064 "%s: Adding Multicasts failed\n",
5065 dev->name);
1da177e4
LT
5066 return;
5067 }
5068 }
5069
5070 /* Create the new Rx filter list and update the same in H/W. */
5508590c 5071 i = 0;
22bedad3 5072 netdev_for_each_mc_addr(ha, dev) {
a7a80d5a 5073 mac_addr = 0;
1da177e4 5074 for (j = 0; j < ETH_ALEN; j++) {
22bedad3 5075 mac_addr |= ha->addr[j];
1da177e4
LT
5076 mac_addr <<= 8;
5077 }
5078 mac_addr >>= 8;
5079 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5080 &bar0->rmac_addr_data0_mem);
5081 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5082 &bar0->rmac_addr_data1_mem);
1da177e4 5083 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5084 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5085 RMAC_ADDR_CMD_MEM_OFFSET
5086 (i + config->mc_start_offset);
1da177e4
LT
5087 writeq(val64, &bar0->rmac_addr_cmd_mem);
5088
5089 /* Wait for command completes */
c92ca04b 5090 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5091 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5092 S2IO_BIT_RESET)) {
9e39f7c5
JP
5093 DBG_PRINT(ERR_DBG,
5094 "%s: Adding Multicasts failed\n",
5095 dev->name);
1da177e4
LT
5096 return;
5097 }
5508590c 5098 i++;
1da177e4
LT
5099 }
5100 }
5101}
5102
faa4f796
SH
5103/* read from CAM unicast & multicast addresses and store it in
5104 * def_mac_addr structure
5105 */
dac499f9 5106static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5107{
5108 int offset;
5109 u64 mac_addr = 0x0;
5110 struct config_param *config = &sp->config;
5111
5112 /* store unicast & multicast mac addresses */
5113 for (offset = 0; offset < config->max_mc_addr; offset++) {
5114 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5115 /* if read fails disable the entry */
5116 if (mac_addr == FAILURE)
5117 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5118 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5119 }
5120}
5121
5122/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5123static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5124{
5125 int offset;
5126 struct config_param *config = &sp->config;
5127 /* restore unicast mac address */
5128 for (offset = 0; offset < config->max_mac_addr; offset++)
5129 do_s2io_prog_unicast(sp->dev,
d44570e4 5130 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5131
5132 /* restore multicast mac address */
5133 for (offset = config->mc_start_offset;
d44570e4 5134 offset < config->max_mc_addr; offset++)
faa4f796
SH
5135 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5136}
5137
5138/* add a multicast MAC address to CAM */
5139static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5140{
5141 int i;
5142 u64 mac_addr = 0;
5143 struct config_param *config = &sp->config;
5144
5145 for (i = 0; i < ETH_ALEN; i++) {
5146 mac_addr <<= 8;
5147 mac_addr |= addr[i];
5148 }
5149 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5150 return SUCCESS;
5151
5152 /* check if the multicast mac already preset in CAM */
5153 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5154 u64 tmp64;
5155 tmp64 = do_s2io_read_unicast_mc(sp, i);
5156 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5157 break;
5158
5159 if (tmp64 == mac_addr)
5160 return SUCCESS;
5161 }
5162 if (i == config->max_mc_addr) {
5163 DBG_PRINT(ERR_DBG,
d44570e4 5164 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5165 return FAILURE;
5166 }
5167 /* Update the internal structure with this new mac address */
5168 do_s2io_copy_mac_addr(sp, i, mac_addr);
5169
d44570e4 5170 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5171}
5172
5173/* add MAC address to CAM */
5174static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5175{
5176 u64 val64;
5177 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5178
5179 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5180 &bar0->rmac_addr_data0_mem);
2fd37688 5181
d44570e4 5182 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5183 RMAC_ADDR_CMD_MEM_OFFSET(off);
5184 writeq(val64, &bar0->rmac_addr_cmd_mem);
5185
5186 /* Wait till command completes */
5187 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5188 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5189 S2IO_BIT_RESET)) {
faa4f796 5190 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5191 return FAILURE;
5192 }
5193 return SUCCESS;
5194}
faa4f796
SH
5195/* deletes a specified unicast/multicast mac entry from CAM */
5196static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5197{
5198 int offset;
5199 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5200 struct config_param *config = &sp->config;
5201
5202 for (offset = 1;
d44570e4 5203 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5204 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5205 if (tmp64 == addr) {
5206 /* disable the entry by writing 0xffffffffffffULL */
5207 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5208 return FAILURE;
5209 /* store the new mac list from CAM */
5210 do_s2io_store_unicast_mc(sp);
5211 return SUCCESS;
5212 }
5213 }
5214 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5215 (unsigned long long)addr);
faa4f796
SH
5216 return FAILURE;
5217}
5218
5219/* read mac entries from CAM */
5220static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5221{
5222 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5223 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5224
5225 /* read mac addr */
d44570e4 5226 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5227 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5228 writeq(val64, &bar0->rmac_addr_cmd_mem);
5229
5230 /* Wait till command completes */
5231 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5232 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5233 S2IO_BIT_RESET)) {
faa4f796
SH
5234 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5235 return FAILURE;
5236 }
5237 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5238
5239 return tmp64 >> 16;
faa4f796 5240}
2fd37688
SS
5241
5242/**
5243 * s2io_set_mac_addr driver entry point
5244 */
faa4f796 5245
2fd37688
SS
5246static int s2io_set_mac_addr(struct net_device *dev, void *p)
5247{
5248 struct sockaddr *addr = p;
5249
5250 if (!is_valid_ether_addr(addr->sa_data))
5251 return -EINVAL;
5252
5253 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5254
5255 /* store the MAC address in CAM */
d44570e4 5256 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5257}
1da177e4 5258/**
2fd37688 5259 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5260 * @dev : pointer to the device structure.
5261 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5262 * Description : This procedure will program the Xframe to receive
1da177e4 5263 * frames with new Mac Address
20346722 5264 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5265 * as defined in errno.h file on failure.
5266 */
faa4f796 5267
2fd37688 5268static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5269{
4cf1653a 5270 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5271 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5272 int i;
faa4f796
SH
5273 u64 tmp64;
5274 struct config_param *config = &sp->config;
1da177e4 5275
20346722 5276 /*
d44570e4
JP
5277 * Set the new MAC address as the new unicast filter and reflect this
5278 * change on the device address registered with the OS. It will be
5279 * at offset 0.
5280 */
1da177e4
LT
5281 for (i = 0; i < ETH_ALEN; i++) {
5282 mac_addr <<= 8;
5283 mac_addr |= addr[i];
2fd37688
SS
5284 perm_addr <<= 8;
5285 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5286 }
5287
2fd37688
SS
5288 /* check if the dev_addr is different than perm_addr */
5289 if (mac_addr == perm_addr)
d8d70caf
SS
5290 return SUCCESS;
5291
faa4f796
SH
5292 /* check if the mac already preset in CAM */
5293 for (i = 1; i < config->max_mac_addr; i++) {
5294 tmp64 = do_s2io_read_unicast_mc(sp, i);
5295 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5296 break;
5297
5298 if (tmp64 == mac_addr) {
5299 DBG_PRINT(INFO_DBG,
d44570e4
JP
5300 "MAC addr:0x%llx already present in CAM\n",
5301 (unsigned long long)mac_addr);
faa4f796
SH
5302 return SUCCESS;
5303 }
5304 }
5305 if (i == config->max_mac_addr) {
5306 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5307 return FAILURE;
5308 }
d8d70caf 5309 /* Update the internal structure with this new mac address */
faa4f796 5310 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5311
5312 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5313}
5314
5315/**
20346722 5316 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5317 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5318 * @info: pointer to the structure with parameters given by ethtool to set
5319 * link information.
5320 * Description:
20346722 5321 * The function sets different link parameters provided by the user onto
1da177e4
LT
5322 * the NIC.
5323 * Return value:
5324 * 0 on success.
d44570e4 5325 */
1da177e4
LT
5326
5327static int s2io_ethtool_sset(struct net_device *dev,
5328 struct ethtool_cmd *info)
5329{
4cf1653a 5330 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5331 if ((info->autoneg == AUTONEG_ENABLE) ||
25db0338 5332 (ethtool_cmd_speed(info) != SPEED_10000) ||
d44570e4 5333 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5334 return -EINVAL;
5335 else {
5336 s2io_close(sp->dev);
5337 s2io_open(sp->dev);
5338 }
5339
5340 return 0;
5341}
5342
5343/**
20346722 5344 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5345 * @sp : private member of the device structure, pointer to the
5346 * s2io_nic structure.
5347 * @info : pointer to the structure with parameters given by ethtool
5348 * to return link information.
5349 * Description:
5350 * Returns link specific information like speed, duplex etc.. to ethtool.
5351 * Return value :
5352 * return 0 on success.
5353 */
5354
5355static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5356{
4cf1653a 5357 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5358 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5360 info->port = PORT_FIBRE;
1a7eb72b
SS
5361
5362 /* info->transceiver */
5363 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5364
5365 if (netif_carrier_ok(sp->dev)) {
70739497 5366 ethtool_cmd_speed_set(info, SPEED_10000);
1da177e4
LT
5367 info->duplex = DUPLEX_FULL;
5368 } else {
70739497 5369 ethtool_cmd_speed_set(info, -1);
1da177e4
LT
5370 info->duplex = -1;
5371 }
5372
5373 info->autoneg = AUTONEG_DISABLE;
5374 return 0;
5375}
5376
5377/**
20346722 5378 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5379 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5380 * s2io_nic structure.
5381 * @info : pointer to the structure with parameters given by ethtool to
5382 * return driver information.
5383 * Description:
5384 * Returns driver specefic information like name, version etc.. to ethtool.
5385 * Return value:
5386 * void
5387 */
5388
5389static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5390 struct ethtool_drvinfo *info)
5391{
4cf1653a 5392 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5393
68aad78c
RJ
5394 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5395 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
68aad78c 5396 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5397 info->regdump_len = XENA_REG_SPACE;
5398 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5399}
5400
5401/**
5402 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5403 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5404 * s2io_nic structure.
20346722 5405 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5406 * dumping the registers.
5407 * @reg_space: The input argumnet into which all the registers are dumped.
5408 * Description:
5409 * Dumps the entire register space of xFrame NIC into the user given
5410 * buffer area.
5411 * Return value :
5412 * void .
d44570e4 5413 */
1da177e4
LT
5414
5415static void s2io_ethtool_gregs(struct net_device *dev,
5416 struct ethtool_regs *regs, void *space)
5417{
5418 int i;
5419 u64 reg;
d44570e4 5420 u8 *reg_space = (u8 *)space;
4cf1653a 5421 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5422
5423 regs->len = XENA_REG_SPACE;
5424 regs->version = sp->pdev->subsystem_device;
5425
5426 for (i = 0; i < regs->len; i += 8) {
5427 reg = readq(sp->bar0 + i);
5428 memcpy((reg_space + i), &reg, 8);
5429 }
5430}
5431
034e3450 5432/*
5433 * s2io_set_led - control NIC led
d44570e4 5434 */
034e3450 5435static void s2io_set_led(struct s2io_nic *sp, bool on)
1da177e4 5436{
1ee6dd77 5437 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5438 u16 subid = sp->pdev->subsystem_device;
5439 u64 val64;
1da177e4 5440
541ae68f 5441 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5442 ((subid & 0xFF) >= 0x07)) {
1da177e4 5443 val64 = readq(&bar0->gpio_control);
034e3450 5444 if (on)
5445 val64 |= GPIO_CTRL_GPIO_0;
5446 else
5447 val64 &= ~GPIO_CTRL_GPIO_0;
5448
1da177e4
LT
5449 writeq(val64, &bar0->gpio_control);
5450 } else {
5451 val64 = readq(&bar0->adapter_control);
034e3450 5452 if (on)
5453 val64 |= ADAPTER_LED_ON;
5454 else
5455 val64 &= ~ADAPTER_LED_ON;
5456
1da177e4
LT
5457 writeq(val64, &bar0->adapter_control);
5458 }
5459
1da177e4
LT
5460}
5461
5462/**
034e3450 5463 * s2io_ethtool_set_led - To physically identify the nic on the system.
5464 * @dev : network device
5465 * @state: led setting
5466 *
1da177e4 5467 * Description: Used to physically identify the NIC on the system.
20346722 5468 * The Link LED will blink for a time specified by the user for
1da177e4 5469 * identification.
20346722 5470 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4 5471 * identification is possible only if it's link is up.
1da177e4
LT
5472 */
5473
034e3450 5474static int s2io_ethtool_set_led(struct net_device *dev,
5475 enum ethtool_phys_id_state state)
1da177e4 5476{
4cf1653a 5477 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5478 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5479 u16 subid = sp->pdev->subsystem_device;
1da177e4 5480
d44570e4 5481 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
034e3450 5482 u64 val64 = readq(&bar0->adapter_control);
1da177e4 5483 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5484 pr_err("Adapter Link down, cannot blink LED\n");
034e3450 5485 return -EAGAIN;
1da177e4
LT
5486 }
5487 }
1da177e4 5488
034e3450 5489 switch (state) {
5490 case ETHTOOL_ID_ACTIVE:
5491 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
fce55922 5492 return 1; /* cycle on/off once per second */
034e3450 5493
5494 case ETHTOOL_ID_ON:
5495 s2io_set_led(sp, true);
5496 break;
5497
5498 case ETHTOOL_ID_OFF:
5499 s2io_set_led(sp, false);
5500 break;
5501
5502 case ETHTOOL_ID_INACTIVE:
5503 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5504 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
1da177e4
LT
5505 }
5506
5507 return 0;
5508}
5509
0cec35eb 5510static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5511 struct ethtool_ringparam *ering)
0cec35eb 5512{
4cf1653a 5513 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5514 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb 5515
1853e2e1 5516 if (sp->rxd_mode == RXD_MODE_1) {
0cec35eb 5517 ering->rx_max_pending = MAX_RX_DESC_1;
1853e2e1
JM
5518 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5519 } else {
0cec35eb 5520 ering->rx_max_pending = MAX_RX_DESC_2;
1853e2e1
JM
5521 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5522 }
0cec35eb
SH
5523
5524 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5525
1853e2e1 5526 for (i = 0; i < sp->config.rx_ring_num; i++)
0cec35eb 5527 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
0cec35eb 5528 ering->rx_pending = rx_desc_count;
0cec35eb 5529 ering->rx_jumbo_pending = rx_desc_count;
1853e2e1
JM
5530
5531 for (i = 0; i < sp->config.tx_fifo_num; i++)
5532 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5533 ering->tx_pending = tx_desc_count;
5534 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5535}
5536
1da177e4
LT
5537/**
5538 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5539 * @sp : private member of the device structure, which is a pointer to the
5540 * s2io_nic structure.
1da177e4
LT
5541 * @ep : pointer to the structure with pause parameters given by ethtool.
5542 * Description:
5543 * Returns the Pause frame generation and reception capability of the NIC.
5544 * Return value:
5545 * void
5546 */
5547static void s2io_ethtool_getpause_data(struct net_device *dev,
5548 struct ethtool_pauseparam *ep)
5549{
5550 u64 val64;
4cf1653a 5551 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5552 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5553
5554 val64 = readq(&bar0->rmac_pause_cfg);
5555 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5556 ep->tx_pause = true;
1da177e4 5557 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5558 ep->rx_pause = true;
5559 ep->autoneg = false;
1da177e4
LT
5560}
5561
5562/**
5563 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5564 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5565 * s2io_nic structure.
5566 * @ep : pointer to the structure with pause parameters given by ethtool.
5567 * Description:
5568 * It can be used to set or reset Pause frame generation or reception
5569 * support of the NIC.
5570 * Return value:
5571 * int, returns 0 on Success
5572 */
5573
5574static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5575 struct ethtool_pauseparam *ep)
1da177e4
LT
5576{
5577 u64 val64;
4cf1653a 5578 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5579 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5580
5581 val64 = readq(&bar0->rmac_pause_cfg);
5582 if (ep->tx_pause)
5583 val64 |= RMAC_PAUSE_GEN_ENABLE;
5584 else
5585 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5586 if (ep->rx_pause)
5587 val64 |= RMAC_PAUSE_RX_ENABLE;
5588 else
5589 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5590 writeq(val64, &bar0->rmac_pause_cfg);
5591 return 0;
5592}
5593
5594/**
5595 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5596 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5597 * s2io_nic structure.
5598 * @off : offset at which the data must be written
5599 * @data : Its an output parameter where the data read at the given
20346722 5600 * offset is stored.
1da177e4 5601 * Description:
20346722 5602 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5603 * read data.
5604 * NOTE: Will allow to read only part of the EEPROM visible through the
5605 * I2C bus.
5606 * Return value:
5607 * -1 on failure and 0 on success.
5608 */
5609
5610#define S2IO_DEV_ID 5
d44570e4 5611static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5612{
5613 int ret = -1;
5614 u32 exit_cnt = 0;
5615 u64 val64;
1ee6dd77 5616 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5617
ad4ebed0 5618 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5619 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5620 I2C_CONTROL_ADDR(off) |
5621 I2C_CONTROL_BYTE_CNT(0x3) |
5622 I2C_CONTROL_READ |
5623 I2C_CONTROL_CNTL_START;
ad4ebed0 5624 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5625
ad4ebed0 5626 while (exit_cnt < 5) {
5627 val64 = readq(&bar0->i2c_control);
5628 if (I2C_CONTROL_CNTL_END(val64)) {
5629 *data = I2C_CONTROL_GET_DATA(val64);
5630 ret = 0;
5631 break;
5632 }
5633 msleep(50);
5634 exit_cnt++;
1da177e4 5635 }
1da177e4
LT
5636 }
5637
ad4ebed0 5638 if (sp->device_type == XFRAME_II_DEVICE) {
5639 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5640 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5641 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5642 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5643 val64 |= SPI_CONTROL_REQ;
5644 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5645 while (exit_cnt < 5) {
5646 val64 = readq(&bar0->spi_control);
5647 if (val64 & SPI_CONTROL_NACK) {
5648 ret = 1;
5649 break;
5650 } else if (val64 & SPI_CONTROL_DONE) {
5651 *data = readq(&bar0->spi_data);
5652 *data &= 0xffffff;
5653 ret = 0;
5654 break;
5655 }
5656 msleep(50);
5657 exit_cnt++;
5658 }
5659 }
1da177e4
LT
5660 return ret;
5661}
5662
5663/**
5664 * write_eeprom - actually writes the relevant part of the data value.
5665 * @sp : private member of the device structure, which is a pointer to the
5666 * s2io_nic structure.
5667 * @off : offset at which the data must be written
5668 * @data : The data that is to be written
20346722 5669 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5670 * the Eeprom. (max of 3)
5671 * Description:
5672 * Actually writes the relevant part of the data value into the Eeprom
5673 * through the I2C bus.
5674 * Return value:
5675 * 0 on success, -1 on failure.
5676 */
5677
d44570e4 5678static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5679{
5680 int exit_cnt = 0, ret = -1;
5681 u64 val64;
1ee6dd77 5682 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5683
ad4ebed0 5684 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5685 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5686 I2C_CONTROL_ADDR(off) |
5687 I2C_CONTROL_BYTE_CNT(cnt) |
5688 I2C_CONTROL_SET_DATA((u32)data) |
5689 I2C_CONTROL_CNTL_START;
ad4ebed0 5690 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5691
5692 while (exit_cnt < 5) {
5693 val64 = readq(&bar0->i2c_control);
5694 if (I2C_CONTROL_CNTL_END(val64)) {
5695 if (!(val64 & I2C_CONTROL_NACK))
5696 ret = 0;
5697 break;
5698 }
5699 msleep(50);
5700 exit_cnt++;
5701 }
5702 }
1da177e4 5703
ad4ebed0 5704 if (sp->device_type == XFRAME_II_DEVICE) {
5705 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5706 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5707
5708 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5709 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5710 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5711 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 val64 |= SPI_CONTROL_REQ;
5713 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5714 while (exit_cnt < 5) {
5715 val64 = readq(&bar0->spi_control);
5716 if (val64 & SPI_CONTROL_NACK) {
5717 ret = 1;
5718 break;
5719 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5720 ret = 0;
ad4ebed0 5721 break;
5722 }
5723 msleep(50);
5724 exit_cnt++;
1da177e4 5725 }
1da177e4 5726 }
1da177e4
LT
5727 return ret;
5728}
1ee6dd77 5729static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5730{
b41477f3
AR
5731 u8 *vpd_data;
5732 u8 data;
9c179780 5733 int i = 0, cnt, len, fail = 0;
9dc737a7 5734 int vpd_addr = 0x80;
ffb5df6c 5735 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5736
5737 if (nic->device_type == XFRAME_II_DEVICE) {
5738 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5739 vpd_addr = 0x80;
d44570e4 5740 } else {
9dc737a7
AR
5741 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5742 vpd_addr = 0x50;
5743 }
19a60522 5744 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5745
b41477f3 5746 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5747 if (!vpd_data) {
ffb5df6c 5748 swstats->mem_alloc_fail_cnt++;
b41477f3 5749 return;
c53d4945 5750 }
ffb5df6c 5751 swstats->mem_allocated += 256;
b41477f3 5752
d44570e4 5753 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5754 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5755 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5756 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5757 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5758 msleep(2);
5759 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5760 if (data == 0x80)
5761 break;
5762 }
5763 if (cnt >= 5) {
5764 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5765 fail = 1;
5766 break;
5767 }
5768 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5769 (u32 *)&vpd_data[i]);
5770 }
19a60522 5771
d44570e4 5772 if (!fail) {
19a60522 5773 /* read serial number of adapter */
9c179780 5774 for (cnt = 0; cnt < 252; cnt++) {
d44570e4 5775 if ((vpd_data[cnt] == 'S') &&
9c179780
KV
5776 (vpd_data[cnt+1] == 'N')) {
5777 len = vpd_data[cnt+2];
5778 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5779 memcpy(nic->serial_num,
5780 &vpd_data[cnt + 3],
5781 len);
5782 memset(nic->serial_num+len,
5783 0,
5784 VPD_STRING_LEN-len);
5785 break;
5786 }
19a60522
SS
5787 }
5788 }
5789 }
5790
9c179780
KV
5791 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5792 len = vpd_data[1];
5793 memcpy(nic->product_name, &vpd_data[3], len);
5794 nic->product_name[len] = 0;
5795 }
b41477f3 5796 kfree(vpd_data);
ffb5df6c 5797 swstats->mem_freed += 256;
9dc737a7
AR
5798}
5799
1da177e4
LT
5800/**
5801 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5802 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5803 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5804 * containing all relevant information.
5805 * @data_buf : user defined value to be written into Eeprom.
5806 * Description: Reads the values stored in the Eeprom at given offset
5807 * for a given length. Stores these values int the input argument data
5808 * buffer 'data_buf' and returns these to the caller (ethtool.)
5809 * Return value:
5810 * int 0 on success
5811 */
5812
5813static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5814 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5815{
ad4ebed0 5816 u32 i, valid;
5817 u64 data;
4cf1653a 5818 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5819
5820 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5821
5822 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5823 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5824
5825 for (i = 0; i < eeprom->len; i += 4) {
5826 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5827 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5828 return -EFAULT;
5829 }
5830 valid = INV(data);
5831 memcpy((data_buf + i), &valid, 4);
5832 }
5833 return 0;
5834}
5835
5836/**
5837 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5838 * @sp : private member of the device structure, which is a pointer to the
5839 * s2io_nic structure.
20346722 5840 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5841 * containing all relevant information.
5842 * @data_buf ; user defined value to be written into Eeprom.
5843 * Description:
5844 * Tries to write the user provided value in the Eeprom, at the offset
5845 * given by the user.
5846 * Return value:
5847 * 0 on success, -EFAULT on failure.
5848 */
5849
5850static int s2io_ethtool_seeprom(struct net_device *dev,
5851 struct ethtool_eeprom *eeprom,
d44570e4 5852 u8 *data_buf)
1da177e4
LT
5853{
5854 int len = eeprom->len, cnt = 0;
ad4ebed0 5855 u64 valid = 0, data;
4cf1653a 5856 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5857
5858 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5859 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5860 "ETHTOOL_WRITE_EEPROM Err: "
5861 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5862 (sp->pdev->vendor | (sp->pdev->device << 16)),
5863 eeprom->magic);
1da177e4
LT
5864 return -EFAULT;
5865 }
5866
5867 while (len) {
d44570e4
JP
5868 data = (u32)data_buf[cnt] & 0x000000FF;
5869 if (data)
5870 valid = (u32)(data << 24);
5871 else
1da177e4
LT
5872 valid = data;
5873
5874 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5875 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5876 "ETHTOOL_WRITE_EEPROM Err: "
5877 "Cannot write into the specified offset\n");
1da177e4
LT
5878 return -EFAULT;
5879 }
5880 cnt++;
5881 len--;
5882 }
5883
5884 return 0;
5885}
5886
5887/**
20346722 5888 * s2io_register_test - reads and writes into all clock domains.
5889 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5890 * s2io_nic structure.
5891 * @data : variable that returns the result of each of the test conducted b
5892 * by the driver.
5893 * Description:
5894 * Read and write into all clock domains. The NIC has 3 clock domains,
5895 * see that registers in all the three regions are accessible.
5896 * Return value:
5897 * 0 on success.
5898 */
5899
d44570e4 5900static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5901{
1ee6dd77 5902 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5903 u64 val64 = 0, exp_val;
1da177e4
LT
5904 int fail = 0;
5905
20346722 5906 val64 = readq(&bar0->pif_rd_swapper_fb);
5907 if (val64 != 0x123456789abcdefULL) {
1da177e4 5908 fail = 1;
9e39f7c5 5909 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5910 }
5911
5912 val64 = readq(&bar0->rmac_pause_cfg);
5913 if (val64 != 0xc000ffff00000000ULL) {
5914 fail = 1;
9e39f7c5 5915 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5916 }
5917
5918 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5919 if (sp->device_type == XFRAME_II_DEVICE)
5920 exp_val = 0x0404040404040404ULL;
5921 else
5922 exp_val = 0x0808080808080808ULL;
5923 if (val64 != exp_val) {
1da177e4 5924 fail = 1;
9e39f7c5 5925 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5926 }
5927
5928 val64 = readq(&bar0->xgxs_efifo_cfg);
5929 if (val64 != 0x000000001923141EULL) {
5930 fail = 1;
9e39f7c5 5931 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5932 }
5933
5934 val64 = 0x5A5A5A5A5A5A5A5AULL;
5935 writeq(val64, &bar0->xmsi_data);
5936 val64 = readq(&bar0->xmsi_data);
5937 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5938 fail = 1;
9e39f7c5 5939 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5940 }
5941
5942 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5943 writeq(val64, &bar0->xmsi_data);
5944 val64 = readq(&bar0->xmsi_data);
5945 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5946 fail = 1;
9e39f7c5 5947 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5948 }
5949
5950 *data = fail;
ad4ebed0 5951 return fail;
1da177e4
LT
5952}
5953
5954/**
20346722 5955 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5956 * @sp : private member of the device structure, which is a pointer to the
5957 * s2io_nic structure.
5958 * @data:variable that returns the result of each of the test conducted by
5959 * the driver.
5960 * Description:
20346722 5961 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5962 * register.
5963 * Return value:
5964 * 0 on success.
5965 */
5966
d44570e4 5967static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5968{
5969 int fail = 0;
ad4ebed0 5970 u64 ret_data, org_4F0, org_7F0;
5971 u8 saved_4F0 = 0, saved_7F0 = 0;
5972 struct net_device *dev = sp->dev;
1da177e4
LT
5973
5974 /* Test Write Error at offset 0 */
ad4ebed0 5975 /* Note that SPI interface allows write access to all areas
5976 * of EEPROM. Hence doing all negative testing only for Xframe I.
5977 */
5978 if (sp->device_type == XFRAME_I_DEVICE)
5979 if (!write_eeprom(sp, 0, 0, 3))
5980 fail = 1;
5981
5982 /* Save current values at offsets 0x4F0 and 0x7F0 */
5983 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5984 saved_4F0 = 1;
5985 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5986 saved_7F0 = 1;
1da177e4
LT
5987
5988 /* Test Write at offset 4f0 */
ad4ebed0 5989 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5990 fail = 1;
5991 if (read_eeprom(sp, 0x4F0, &ret_data))
5992 fail = 1;
5993
ad4ebed0 5994 if (ret_data != 0x012345) {
26b7625c 5995 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
5996 "Data written %llx Data read %llx\n",
5997 dev->name, (unsigned long long)0x12345,
5998 (unsigned long long)ret_data);
1da177e4 5999 fail = 1;
ad4ebed0 6000 }
1da177e4
LT
6001
6002 /* Reset the EEPROM data go FFFF */
ad4ebed0 6003 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6004
6005 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6006 if (sp->device_type == XFRAME_I_DEVICE)
6007 if (!write_eeprom(sp, 0x07C, 0, 3))
6008 fail = 1;
1da177e4 6009
ad4ebed0 6010 /* Test Write Request at offset 0x7f0 */
6011 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6012 fail = 1;
ad4ebed0 6013 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6014 fail = 1;
6015
ad4ebed0 6016 if (ret_data != 0x012345) {
26b7625c 6017 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6018 "Data written %llx Data read %llx\n",
6019 dev->name, (unsigned long long)0x12345,
6020 (unsigned long long)ret_data);
1da177e4 6021 fail = 1;
ad4ebed0 6022 }
1da177e4
LT
6023
6024 /* Reset the EEPROM data go FFFF */
ad4ebed0 6025 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6026
ad4ebed0 6027 if (sp->device_type == XFRAME_I_DEVICE) {
6028 /* Test Write Error at offset 0x80 */
6029 if (!write_eeprom(sp, 0x080, 0, 3))
6030 fail = 1;
1da177e4 6031
ad4ebed0 6032 /* Test Write Error at offset 0xfc */
6033 if (!write_eeprom(sp, 0x0FC, 0, 3))
6034 fail = 1;
1da177e4 6035
ad4ebed0 6036 /* Test Write Error at offset 0x100 */
6037 if (!write_eeprom(sp, 0x100, 0, 3))
6038 fail = 1;
1da177e4 6039
ad4ebed0 6040 /* Test Write Error at offset 4ec */
6041 if (!write_eeprom(sp, 0x4EC, 0, 3))
6042 fail = 1;
6043 }
6044
6045 /* Restore values at offsets 0x4F0 and 0x7F0 */
6046 if (saved_4F0)
6047 write_eeprom(sp, 0x4F0, org_4F0, 3);
6048 if (saved_7F0)
6049 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6050
6051 *data = fail;
ad4ebed0 6052 return fail;
1da177e4
LT
6053}
6054
6055/**
6056 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6057 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6058 * s2io_nic structure.
20346722 6059 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6060 * the driver.
6061 * Description:
6062 * This invokes the MemBist test of the card. We give around
6063 * 2 secs time for the Test to complete. If it's still not complete
20346722 6064 * within this peiod, we consider that the test failed.
1da177e4
LT
6065 * Return value:
6066 * 0 on success and -1 on failure.
6067 */
6068
d44570e4 6069static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6070{
6071 u8 bist = 0;
6072 int cnt = 0, ret = -1;
6073
6074 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6075 bist |= PCI_BIST_START;
6076 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6077
6078 while (cnt < 20) {
6079 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6080 if (!(bist & PCI_BIST_START)) {
6081 *data = (bist & PCI_BIST_CODE_MASK);
6082 ret = 0;
6083 break;
6084 }
6085 msleep(100);
6086 cnt++;
6087 }
6088
6089 return ret;
6090}
6091
6092/**
20346722 6093 * s2io-link_test - verifies the link state of the nic
6094 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6095 * s2io_nic structure.
6096 * @data: variable that returns the result of each of the test conducted by
6097 * the driver.
6098 * Description:
20346722 6099 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6100 * argument 'data' appropriately.
6101 * Return value:
6102 * 0 on success.
6103 */
6104
d44570e4 6105static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6106{
1ee6dd77 6107 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6108 u64 val64;
6109
6110 val64 = readq(&bar0->adapter_status);
d44570e4 6111 if (!(LINK_IS_UP(val64)))
1da177e4 6112 *data = 1;
c92ca04b
AR
6113 else
6114 *data = 0;
1da177e4 6115
b41477f3 6116 return *data;
1da177e4
LT
6117}
6118
6119/**
20346722 6120 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6121 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6122 * s2io_nic structure.
20346722 6123 * @data - variable that returns the result of each of the test
1da177e4
LT
6124 * conducted by the driver.
6125 * Description:
20346722 6126 * This is one of the offline test that tests the read and write
1da177e4
LT
6127 * access to the RldRam chip on the NIC.
6128 * Return value:
6129 * 0 on success.
6130 */
6131
d44570e4 6132static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6133{
1ee6dd77 6134 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6135 u64 val64;
ad4ebed0 6136 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6137
6138 val64 = readq(&bar0->adapter_control);
6139 val64 &= ~ADAPTER_ECC_EN;
6140 writeq(val64, &bar0->adapter_control);
6141
6142 val64 = readq(&bar0->mc_rldram_test_ctrl);
6143 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6144 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6145
6146 val64 = readq(&bar0->mc_rldram_mrs);
6147 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6148 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6149
6150 val64 |= MC_RLDRAM_MRS_ENABLE;
6151 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6152
6153 while (iteration < 2) {
6154 val64 = 0x55555555aaaa0000ULL;
d44570e4 6155 if (iteration == 1)
1da177e4 6156 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6157 writeq(val64, &bar0->mc_rldram_test_d0);
6158
6159 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6160 if (iteration == 1)
1da177e4 6161 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6162 writeq(val64, &bar0->mc_rldram_test_d1);
6163
6164 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6165 if (iteration == 1)
1da177e4 6166 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6167 writeq(val64, &bar0->mc_rldram_test_d2);
6168
ad4ebed0 6169 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6170 writeq(val64, &bar0->mc_rldram_test_add);
6171
d44570e4
JP
6172 val64 = MC_RLDRAM_TEST_MODE |
6173 MC_RLDRAM_TEST_WRITE |
6174 MC_RLDRAM_TEST_GO;
ad4ebed0 6175 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6176
6177 for (cnt = 0; cnt < 5; cnt++) {
6178 val64 = readq(&bar0->mc_rldram_test_ctrl);
6179 if (val64 & MC_RLDRAM_TEST_DONE)
6180 break;
6181 msleep(200);
6182 }
6183
6184 if (cnt == 5)
6185 break;
6186
ad4ebed0 6187 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6188 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6189
6190 for (cnt = 0; cnt < 5; cnt++) {
6191 val64 = readq(&bar0->mc_rldram_test_ctrl);
6192 if (val64 & MC_RLDRAM_TEST_DONE)
6193 break;
6194 msleep(500);
6195 }
6196
6197 if (cnt == 5)
6198 break;
6199
6200 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6201 if (!(val64 & MC_RLDRAM_TEST_PASS))
6202 test_fail = 1;
1da177e4
LT
6203
6204 iteration++;
6205 }
6206
ad4ebed0 6207 *data = test_fail;
1da177e4 6208
ad4ebed0 6209 /* Bring the adapter out of test mode */
6210 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6211
6212 return test_fail;
1da177e4
LT
6213}
6214
6215/**
6216 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6217 * @sp : private member of the device structure, which is a pointer to the
6218 * s2io_nic structure.
6219 * @ethtest : pointer to a ethtool command specific structure that will be
6220 * returned to the user.
20346722 6221 * @data : variable that returns the result of each of the test
1da177e4
LT
6222 * conducted by the driver.
6223 * Description:
6224 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6225 * the health of the card.
6226 * Return value:
6227 * void
6228 */
6229
6230static void s2io_ethtool_test(struct net_device *dev,
6231 struct ethtool_test *ethtest,
d44570e4 6232 uint64_t *data)
1da177e4 6233{
4cf1653a 6234 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6235 int orig_state = netif_running(sp->dev);
6236
6237 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6238 /* Offline Tests. */
20346722 6239 if (orig_state)
1da177e4 6240 s2io_close(sp->dev);
1da177e4
LT
6241
6242 if (s2io_register_test(sp, &data[0]))
6243 ethtest->flags |= ETH_TEST_FL_FAILED;
6244
6245 s2io_reset(sp);
1da177e4
LT
6246
6247 if (s2io_rldram_test(sp, &data[3]))
6248 ethtest->flags |= ETH_TEST_FL_FAILED;
6249
6250 s2io_reset(sp);
1da177e4
LT
6251
6252 if (s2io_eeprom_test(sp, &data[1]))
6253 ethtest->flags |= ETH_TEST_FL_FAILED;
6254
6255 if (s2io_bist_test(sp, &data[4]))
6256 ethtest->flags |= ETH_TEST_FL_FAILED;
6257
6258 if (orig_state)
6259 s2io_open(sp->dev);
6260
6261 data[2] = 0;
6262 } else {
6263 /* Online Tests. */
6264 if (!orig_state) {
d44570e4 6265 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6266 dev->name);
6267 data[0] = -1;
6268 data[1] = -1;
6269 data[2] = -1;
6270 data[3] = -1;
6271 data[4] = -1;
6272 }
6273
6274 if (s2io_link_test(sp, &data[2]))
6275 ethtest->flags |= ETH_TEST_FL_FAILED;
6276
6277 data[0] = 0;
6278 data[1] = 0;
6279 data[3] = 0;
6280 data[4] = 0;
6281 }
6282}
6283
6284static void s2io_get_ethtool_stats(struct net_device *dev,
6285 struct ethtool_stats *estats,
d44570e4 6286 u64 *tmp_stats)
1da177e4 6287{
8116f3cf 6288 int i = 0, k;
4cf1653a 6289 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6290 struct stat_block *stats = sp->mac_control.stats_info;
6291 struct swStat *swstats = &stats->sw_stat;
6292 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6293
7ba013ac 6294 s2io_updt_stats(sp);
541ae68f 6295 tmp_stats[i++] =
ffb5df6c
JP
6296 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6297 le32_to_cpu(stats->tmac_frms);
541ae68f 6298 tmp_stats[i++] =
ffb5df6c
JP
6299 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6300 le32_to_cpu(stats->tmac_data_octets);
6301 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6302 tmp_stats[i++] =
ffb5df6c
JP
6303 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6304 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6305 tmp_stats[i++] =
ffb5df6c
JP
6306 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6307 le32_to_cpu(stats->tmac_bcst_frms);
6308 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6309 tmp_stats[i++] =
ffb5df6c
JP
6310 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6311 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6312 tmp_stats[i++] =
ffb5df6c
JP
6313 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6314 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6315 tmp_stats[i++] =
ffb5df6c
JP
6316 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6317 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6318 tmp_stats[i++] =
ffb5df6c
JP
6319 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6320 le32_to_cpu(stats->tmac_any_err_frms);
6321 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6322 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6323 tmp_stats[i++] =
ffb5df6c
JP
6324 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6325 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6326 tmp_stats[i++] =
ffb5df6c
JP
6327 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6328 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6329 tmp_stats[i++] =
ffb5df6c
JP
6330 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6331 le32_to_cpu(stats->tmac_icmp);
541ae68f 6332 tmp_stats[i++] =
ffb5df6c
JP
6333 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6334 le32_to_cpu(stats->tmac_rst_tcp);
6335 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6336 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6337 le32_to_cpu(stats->tmac_udp);
541ae68f 6338 tmp_stats[i++] =
ffb5df6c
JP
6339 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6340 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6341 tmp_stats[i++] =
ffb5df6c
JP
6342 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6343 le32_to_cpu(stats->rmac_data_octets);
6344 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6345 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6346 tmp_stats[i++] =
ffb5df6c
JP
6347 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6348 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6349 tmp_stats[i++] =
ffb5df6c
JP
6350 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6351 le32_to_cpu(stats->rmac_vld_bcst_frms);
6352 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6353 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6356 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6357 tmp_stats[i++] =
ffb5df6c
JP
6358 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6359 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6360 tmp_stats[i++] =
ffb5df6c
JP
6361 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6362 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6363 tmp_stats[i++] =
ffb5df6c
JP
6364 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6365 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6366 tmp_stats[i++] =
ffb5df6c
JP
6367 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6368 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6369 tmp_stats[i++] =
ffb5df6c
JP
6370 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6371 << 32 | le32_to_cpu(stats->rmac_drop_events);
6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6374 tmp_stats[i++] =
ffb5df6c
JP
6375 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6376 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6377 tmp_stats[i++] =
ffb5df6c
JP
6378 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6379 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6380 tmp_stats[i++] =
ffb5df6c
JP
6381 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6382 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6383 tmp_stats[i++] =
ffb5df6c
JP
6384 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6385 le32_to_cpu(stats->rmac_jabber_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6391 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6392 tmp_stats[i++] =
ffb5df6c
JP
6393 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6394 le32_to_cpu(stats->rmac_ip);
6395 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6396 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6397 tmp_stats[i++] =
ffb5df6c
JP
6398 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6399 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6400 tmp_stats[i++] =
ffb5df6c
JP
6401 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6402 le32_to_cpu(stats->rmac_icmp);
6403 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6404 tmp_stats[i++] =
ffb5df6c
JP
6405 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6406 le32_to_cpu(stats->rmac_udp);
541ae68f 6407 tmp_stats[i++] =
ffb5df6c
JP
6408 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6409 le32_to_cpu(stats->rmac_err_drp_udp);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6426 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6427 tmp_stats[i++] =
ffb5df6c
JP
6428 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6429 le32_to_cpu(stats->rmac_pause_cnt);
6430 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6431 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6432 tmp_stats[i++] =
ffb5df6c
JP
6433 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6434 le32_to_cpu(stats->rmac_accepted_ip);
6435 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6436 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6454
6455 /* Enhanced statistics exist only for Hercules */
d44570e4 6456 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6457 tmp_stats[i++] =
ffb5df6c 6458 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6459 tmp_stats[i++] =
ffb5df6c 6460 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6461 tmp_stats[i++] =
ffb5df6c
JP
6462 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6474 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6475 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6476 }
6477
7ba013ac 6478 tmp_stats[i++] = 0;
ffb5df6c
JP
6479 tmp_stats[i++] = swstats->single_ecc_errs;
6480 tmp_stats[i++] = swstats->double_ecc_errs;
6481 tmp_stats[i++] = swstats->parity_err_cnt;
6482 tmp_stats[i++] = swstats->serious_err_cnt;
6483 tmp_stats[i++] = swstats->soft_reset_cnt;
6484 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6485 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6486 tmp_stats[i++] = swstats->ring_full_cnt[k];
6487 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6488 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6489 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6490 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6491 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6492 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6493 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6494 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6495 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6496 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6497 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6498 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6499 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6500 tmp_stats[i++] = swstats->sending_both;
6501 tmp_stats[i++] = swstats->outof_sequence_pkts;
6502 tmp_stats[i++] = swstats->flush_max_pkts;
6503 if (swstats->num_aggregations) {
6504 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6505 int count = 0;
6aa20a22 6506 /*
bd1034f0
AR
6507 * Since 64-bit divide does not work on all platforms,
6508 * do repeated subtraction.
6509 */
ffb5df6c
JP
6510 while (tmp >= swstats->num_aggregations) {
6511 tmp -= swstats->num_aggregations;
bd1034f0
AR
6512 count++;
6513 }
6514 tmp_stats[i++] = count;
d44570e4 6515 } else
bd1034f0 6516 tmp_stats[i++] = 0;
ffb5df6c
JP
6517 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6518 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6519 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6520 tmp_stats[i++] = swstats->mem_allocated;
6521 tmp_stats[i++] = swstats->mem_freed;
6522 tmp_stats[i++] = swstats->link_up_cnt;
6523 tmp_stats[i++] = swstats->link_down_cnt;
6524 tmp_stats[i++] = swstats->link_up_time;
6525 tmp_stats[i++] = swstats->link_down_time;
6526
6527 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6528 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6529 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6530 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6531 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6532
6533 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6534 tmp_stats[i++] = swstats->rx_abort_cnt;
6535 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6536 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6537 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6538 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6539 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6540 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6541 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6542 tmp_stats[i++] = swstats->tda_err_cnt;
6543 tmp_stats[i++] = swstats->pfc_err_cnt;
6544 tmp_stats[i++] = swstats->pcc_err_cnt;
6545 tmp_stats[i++] = swstats->tti_err_cnt;
6546 tmp_stats[i++] = swstats->tpa_err_cnt;
6547 tmp_stats[i++] = swstats->sm_err_cnt;
6548 tmp_stats[i++] = swstats->lso_err_cnt;
6549 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6550 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6551 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6552 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6553 tmp_stats[i++] = swstats->rc_err_cnt;
6554 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6555 tmp_stats[i++] = swstats->rpa_err_cnt;
6556 tmp_stats[i++] = swstats->rda_err_cnt;
6557 tmp_stats[i++] = swstats->rti_err_cnt;
6558 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6559}
6560
ac1f60db 6561static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6562{
d44570e4 6563 return XENA_REG_SPACE;
1da177e4
LT
6564}
6565
6566
ac1f60db 6567static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6568{
d44570e4 6569 return XENA_EEPROM_SPACE;
1da177e4
LT
6570}
6571
b9f2c044 6572static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6573{
4cf1653a 6574 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6575
6576 switch (sset) {
6577 case ETH_SS_TEST:
6578 return S2IO_TEST_LEN;
6579 case ETH_SS_STATS:
d44570e4 6580 switch (sp->device_type) {
b9f2c044
JG
6581 case XFRAME_I_DEVICE:
6582 return XFRAME_I_STAT_LEN;
6583 case XFRAME_II_DEVICE:
6584 return XFRAME_II_STAT_LEN;
6585 default:
6586 return 0;
6587 }
6588 default:
6589 return -EOPNOTSUPP;
6590 }
1da177e4 6591}
ac1f60db
AB
6592
6593static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6594 u32 stringset, u8 *data)
1da177e4 6595{
fa1f0cb3 6596 int stat_size = 0;
4cf1653a 6597 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6598
1da177e4
LT
6599 switch (stringset) {
6600 case ETH_SS_TEST:
6601 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6602 break;
6603 case ETH_SS_STATS:
fa1f0cb3 6604 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6605 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6606 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6607 memcpy(data + stat_size,
d44570e4
JP
6608 &ethtool_enhanced_stats_keys,
6609 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6610 stat_size += sizeof(ethtool_enhanced_stats_keys);
6611 }
6612
6613 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6614 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6615 }
6616}
1da177e4 6617
c8f44aff 6618static int s2io_set_features(struct net_device *dev, netdev_features_t features)
958de193
JM
6619{
6620 struct s2io_nic *sp = netdev_priv(dev);
c8f44aff 6621 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
958de193
JM
6622
6623 if (changed && netif_running(dev)) {
b437a8cc
MM
6624 int rc;
6625
958de193
JM
6626 s2io_stop_all_tx_queue(sp);
6627 s2io_card_down(sp);
b437a8cc 6628 dev->features = features;
958de193
JM
6629 rc = s2io_card_up(sp);
6630 if (rc)
6631 s2io_reset(sp);
6632 else
6633 s2io_start_all_tx_queue(sp);
b437a8cc
MM
6634
6635 return rc ? rc : 1;
958de193
JM
6636 }
6637
b437a8cc 6638 return 0;
958de193
JM
6639}
6640
7282d491 6641static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6642 .get_settings = s2io_ethtool_gset,
6643 .set_settings = s2io_ethtool_sset,
6644 .get_drvinfo = s2io_ethtool_gdrvinfo,
6645 .get_regs_len = s2io_ethtool_get_regs_len,
6646 .get_regs = s2io_ethtool_gregs,
6647 .get_link = ethtool_op_get_link,
6648 .get_eeprom_len = s2io_get_eeprom_len,
6649 .get_eeprom = s2io_ethtool_geeprom,
6650 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6651 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6652 .get_pauseparam = s2io_ethtool_getpause_data,
6653 .set_pauseparam = s2io_ethtool_setpause_data,
1da177e4
LT
6654 .self_test = s2io_ethtool_test,
6655 .get_strings = s2io_ethtool_get_strings,
034e3450 6656 .set_phys_id = s2io_ethtool_set_led,
b9f2c044
JG
6657 .get_ethtool_stats = s2io_get_ethtool_stats,
6658 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6659};
6660
6661/**
20346722 6662 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6663 * @dev : Device pointer.
6664 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6665 * a proprietary structure used to pass information to the driver.
6666 * @cmd : This is used to distinguish between the different commands that
6667 * can be passed to the IOCTL functions.
6668 * Description:
20346722 6669 * Currently there are no special functionality supported in IOCTL, hence
6670 * function always return EOPNOTSUPPORTED
1da177e4
LT
6671 */
6672
ac1f60db 6673static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6674{
6675 return -EOPNOTSUPP;
6676}
6677
6678/**
6679 * s2io_change_mtu - entry point to change MTU size for the device.
6680 * @dev : device pointer.
6681 * @new_mtu : the new MTU size for the device.
6682 * Description: A driver entry point to change MTU size for the device.
6683 * Before changing the MTU the device must be stopped.
6684 * Return value:
6685 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6686 * file on failure.
6687 */
6688
ac1f60db 6689static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6690{
4cf1653a 6691 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6692 int ret = 0;
1da177e4
LT
6693
6694 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6695 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6696 return -EPERM;
6697 }
6698
1da177e4 6699 dev->mtu = new_mtu;
d8892c6e 6700 if (netif_running(dev)) {
3a3d5756 6701 s2io_stop_all_tx_queue(sp);
e6a8fee2 6702 s2io_card_down(sp);
9f74ffde
SH
6703 ret = s2io_card_up(sp);
6704 if (ret) {
d8892c6e 6705 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6706 __func__);
9f74ffde 6707 return ret;
d8892c6e 6708 }
3a3d5756 6709 s2io_wake_all_tx_queue(sp);
d8892c6e 6710 } else { /* Device is down */
1ee6dd77 6711 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6712 u64 val64 = new_mtu;
6713
6714 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6715 }
1da177e4 6716
9f74ffde 6717 return ret;
1da177e4
LT
6718}
6719
1da177e4
LT
6720/**
6721 * s2io_set_link - Set the LInk status
6722 * @data: long pointer to device private structue
6723 * Description: Sets the link status for the adapter
6724 */
6725
c4028958 6726static void s2io_set_link(struct work_struct *work)
1da177e4 6727{
d44570e4
JP
6728 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6729 set_link_task);
1da177e4 6730 struct net_device *dev = nic->dev;
1ee6dd77 6731 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6732 register u64 val64;
6733 u16 subid;
6734
22747d6b
FR
6735 rtnl_lock();
6736
6737 if (!netif_running(dev))
6738 goto out_unlock;
6739
92b84437 6740 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6741 /* The card is being reset, no point doing anything */
22747d6b 6742 goto out_unlock;
1da177e4
LT
6743 }
6744
6745 subid = nic->pdev->subsystem_device;
a371a07d 6746 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6747 /*
6748 * Allow a small delay for the NICs self initiated
6749 * cleanup to complete.
6750 */
6751 msleep(100);
6752 }
1da177e4
LT
6753
6754 val64 = readq(&bar0->adapter_status);
19a60522
SS
6755 if (LINK_IS_UP(val64)) {
6756 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6757 if (verify_xena_quiescence(nic)) {
6758 val64 = readq(&bar0->adapter_control);
6759 val64 |= ADAPTER_CNTL_EN;
1da177e4 6760 writeq(val64, &bar0->adapter_control);
19a60522 6761 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6762 nic->device_type, subid)) {
19a60522
SS
6763 val64 = readq(&bar0->gpio_control);
6764 val64 |= GPIO_CTRL_GPIO_0;
6765 writeq(val64, &bar0->gpio_control);
6766 val64 = readq(&bar0->gpio_control);
6767 } else {
6768 val64 |= ADAPTER_LED_ON;
6769 writeq(val64, &bar0->adapter_control);
a371a07d 6770 }
f957bcf0 6771 nic->device_enabled_once = true;
19a60522 6772 } else {
9e39f7c5
JP
6773 DBG_PRINT(ERR_DBG,
6774 "%s: Error: device is not Quiescent\n",
6775 dev->name);
3a3d5756 6776 s2io_stop_all_tx_queue(nic);
1da177e4 6777 }
19a60522 6778 }
92c48799
SS
6779 val64 = readq(&bar0->adapter_control);
6780 val64 |= ADAPTER_LED_ON;
6781 writeq(val64, &bar0->adapter_control);
6782 s2io_link(nic, LINK_UP);
19a60522
SS
6783 } else {
6784 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6785 subid)) {
6786 val64 = readq(&bar0->gpio_control);
6787 val64 &= ~GPIO_CTRL_GPIO_0;
6788 writeq(val64, &bar0->gpio_control);
6789 val64 = readq(&bar0->gpio_control);
1da177e4 6790 }
92c48799
SS
6791 /* turn off LED */
6792 val64 = readq(&bar0->adapter_control);
d44570e4 6793 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6794 writeq(val64, &bar0->adapter_control);
19a60522 6795 s2io_link(nic, LINK_DOWN);
1da177e4 6796 }
92b84437 6797 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6798
6799out_unlock:
d8d70caf 6800 rtnl_unlock();
1da177e4
LT
6801}
6802
1ee6dd77 6803static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6804 struct buffAdd *ba,
6805 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6806 u64 *temp2, int size)
5d3213cc
AR
6807{
6808 struct net_device *dev = sp->dev;
491abf25 6809 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6810
6811 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6812 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6813 /* allocate skb */
6814 if (*skb) {
6815 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6816 /*
6817 * As Rx frame are not going to be processed,
6818 * using same mapped address for the Rxd
6819 * buffer pointer
6820 */
6d517a27 6821 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6822 } else {
6823 *skb = dev_alloc_skb(size);
6824 if (!(*skb)) {
9e39f7c5
JP
6825 DBG_PRINT(INFO_DBG,
6826 "%s: Out of memory to allocate %s\n",
6827 dev->name, "1 buf mode SKBs");
ffb5df6c 6828 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6829 return -ENOMEM ;
6830 }
ffb5df6c 6831 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6832 /* storing the mapped addr in a temp variable
6833 * such it will be used for next rxd whose
6834 * Host Control is NULL
6835 */
6d517a27 6836 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6837 pci_map_single(sp->pdev, (*skb)->data,
6838 size - NET_IP_ALIGN,
6839 PCI_DMA_FROMDEVICE);
8d8bb39b 6840 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6841 goto memalloc_failed;
5d3213cc
AR
6842 rxdp->Host_Control = (unsigned long) (*skb);
6843 }
6844 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6845 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6846 /* Two buffer Mode */
6847 if (*skb) {
6d517a27
VP
6848 rxdp3->Buffer2_ptr = *temp2;
6849 rxdp3->Buffer0_ptr = *temp0;
6850 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6851 } else {
6852 *skb = dev_alloc_skb(size);
2ceaac75 6853 if (!(*skb)) {
9e39f7c5
JP
6854 DBG_PRINT(INFO_DBG,
6855 "%s: Out of memory to allocate %s\n",
6856 dev->name,
6857 "2 buf mode SKBs");
ffb5df6c 6858 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6859 return -ENOMEM;
6860 }
ffb5df6c 6861 stats->mem_allocated += (*skb)->truesize;
6d517a27 6862 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6863 pci_map_single(sp->pdev, (*skb)->data,
6864 dev->mtu + 4,
6865 PCI_DMA_FROMDEVICE);
8d8bb39b 6866 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6867 goto memalloc_failed;
6d517a27 6868 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6869 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6870 PCI_DMA_FROMDEVICE);
8d8bb39b 6871 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6872 rxdp3->Buffer0_ptr)) {
6873 pci_unmap_single(sp->pdev,
6874 (dma_addr_t)rxdp3->Buffer2_ptr,
6875 dev->mtu + 4,
6876 PCI_DMA_FROMDEVICE);
491abf25
VP
6877 goto memalloc_failed;
6878 }
5d3213cc
AR
6879 rxdp->Host_Control = (unsigned long) (*skb);
6880
6881 /* Buffer-1 will be dummy buffer not used */
6d517a27 6882 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6883 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6884 PCI_DMA_FROMDEVICE);
8d8bb39b 6885 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6886 rxdp3->Buffer1_ptr)) {
6887 pci_unmap_single(sp->pdev,
6888 (dma_addr_t)rxdp3->Buffer0_ptr,
6889 BUF0_LEN, PCI_DMA_FROMDEVICE);
6890 pci_unmap_single(sp->pdev,
6891 (dma_addr_t)rxdp3->Buffer2_ptr,
6892 dev->mtu + 4,
6893 PCI_DMA_FROMDEVICE);
491abf25
VP
6894 goto memalloc_failed;
6895 }
5d3213cc
AR
6896 }
6897 }
6898 return 0;
d44570e4
JP
6899
6900memalloc_failed:
6901 stats->pci_map_fail_cnt++;
6902 stats->mem_freed += (*skb)->truesize;
6903 dev_kfree_skb(*skb);
6904 return -ENOMEM;
5d3213cc 6905}
491abf25 6906
1ee6dd77
RB
6907static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6908 int size)
5d3213cc
AR
6909{
6910 struct net_device *dev = sp->dev;
6911 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6912 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6913 } else if (sp->rxd_mode == RXD_MODE_3B) {
6914 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6915 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6916 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6917 }
6918}
6919
1ee6dd77 6920static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6921{
6922 int i, j, k, blk_cnt = 0, size;
5d3213cc 6923 struct config_param *config = &sp->config;
ffb5df6c 6924 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6925 struct net_device *dev = sp->dev;
1ee6dd77 6926 struct RxD_t *rxdp = NULL;
5d3213cc 6927 struct sk_buff *skb = NULL;
1ee6dd77 6928 struct buffAdd *ba = NULL;
5d3213cc
AR
6929 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6930
6931 /* Calculate the size based on ring mode */
6932 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6933 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6934 if (sp->rxd_mode == RXD_MODE_1)
6935 size += NET_IP_ALIGN;
6936 else if (sp->rxd_mode == RXD_MODE_3B)
6937 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6938
6939 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6940 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6941 struct ring_info *ring = &mac_control->rings[i];
6942
d44570e4 6943 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
6944
6945 for (j = 0; j < blk_cnt; j++) {
6946 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
6947 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6948 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 6949 ba = &ring->ba[j][k];
d44570e4
JP
6950 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6951 (u64 *)&temp0_64,
6952 (u64 *)&temp1_64,
6953 (u64 *)&temp2_64,
6954 size) == -ENOMEM) {
ac1f90d6
SS
6955 return 0;
6956 }
5d3213cc
AR
6957
6958 set_rxd_buffer_size(sp, rxdp, size);
6959 wmb();
6960 /* flip the Ownership bit to Hardware */
6961 rxdp->Control_1 |= RXD_OWN_XENA;
6962 }
6963 }
6964 }
6965 return 0;
6966
6967}
6968
d44570e4 6969static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 6970{
e6a8fee2 6971 int ret = 0;
c92ca04b 6972 struct net_device *dev = sp->dev;
e6a8fee2 6973 int err = 0;
1da177e4 6974
eaae7f72 6975 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6976 ret = s2io_enable_msi_x(sp);
6977 if (ret) {
6978 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6979 sp->config.intr_type = INTA;
20346722 6980 }
1da177e4 6981
d44570e4
JP
6982 /*
6983 * Store the values of the MSIX table in
6984 * the struct s2io_nic structure
6985 */
e6a8fee2 6986 store_xmsi_data(sp);
c92ca04b 6987
e6a8fee2 6988 /* After proper initialization of H/W, register ISR */
eaae7f72 6989 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
6990 int i, msix_rx_cnt = 0;
6991
f61e0a35
SH
6992 for (i = 0; i < sp->num_entries; i++) {
6993 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6994 if (sp->s2io_entries[i].type ==
d44570e4 6995 MSIX_RING_TYPE) {
ac731ab6
SH
6996 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6997 dev->name, i);
6998 err = request_irq(sp->entries[i].vector,
d44570e4
JP
6999 s2io_msix_ring_handle,
7000 0,
7001 sp->desc[i],
7002 sp->s2io_entries[i].arg);
ac731ab6 7003 } else if (sp->s2io_entries[i].type ==
d44570e4 7004 MSIX_ALARM_TYPE) {
ac731ab6 7005 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7006 dev->name, i);
ac731ab6 7007 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7008 s2io_msix_fifo_handle,
7009 0,
7010 sp->desc[i],
7011 sp->s2io_entries[i].arg);
ac731ab6 7012
fb6a825b 7013 }
ac731ab6
SH
7014 /* if either data or addr is zero print it. */
7015 if (!(sp->msix_info[i].addr &&
d44570e4 7016 sp->msix_info[i].data)) {
ac731ab6 7017 DBG_PRINT(ERR_DBG,
d44570e4
JP
7018 "%s @Addr:0x%llx Data:0x%llx\n",
7019 sp->desc[i],
7020 (unsigned long long)
7021 sp->msix_info[i].addr,
7022 (unsigned long long)
7023 ntohl(sp->msix_info[i].data));
ac731ab6 7024 } else
fb6a825b 7025 msix_rx_cnt++;
ac731ab6
SH
7026 if (err) {
7027 remove_msix_isr(sp);
7028
7029 DBG_PRINT(ERR_DBG,
d44570e4
JP
7030 "%s:MSI-X-%d registration "
7031 "failed\n", dev->name, i);
ac731ab6
SH
7032
7033 DBG_PRINT(ERR_DBG,
d44570e4
JP
7034 "%s: Defaulting to INTA\n",
7035 dev->name);
ac731ab6
SH
7036 sp->config.intr_type = INTA;
7037 break;
fb6a825b 7038 }
ac731ab6
SH
7039 sp->s2io_entries[i].in_use =
7040 MSIX_REGISTERED_SUCCESS;
c92ca04b 7041 }
e6a8fee2 7042 }
18b2b7bd 7043 if (!err) {
6cef2b8e 7044 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7045 DBG_PRINT(INFO_DBG,
7046 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7047 }
e6a8fee2 7048 }
eaae7f72 7049 if (sp->config.intr_type == INTA) {
d44570e4
JP
7050 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7051 sp->name, dev);
e6a8fee2
AR
7052 if (err) {
7053 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7054 dev->name);
7055 return -1;
7056 }
7057 }
7058 return 0;
7059}
d44570e4
JP
7060
7061static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7062{
18b2b7bd
SH
7063 if (sp->config.intr_type == MSI_X)
7064 remove_msix_isr(sp);
7065 else
7066 remove_inta_isr(sp);
e6a8fee2
AR
7067}
7068
d44570e4 7069static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7070{
7071 int cnt = 0;
1ee6dd77 7072 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7073 register u64 val64 = 0;
5f490c96
SH
7074 struct config_param *config;
7075 config = &sp->config;
e6a8fee2 7076
9f74ffde
SH
7077 if (!is_s2io_card_up(sp))
7078 return;
7079
e6a8fee2
AR
7080 del_timer_sync(&sp->alarm_timer);
7081 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7082 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7083 msleep(50);
92b84437 7084 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7085
5f490c96 7086 /* Disable napi */
f61e0a35
SH
7087 if (sp->config.napi) {
7088 int off = 0;
7089 if (config->intr_type == MSI_X) {
7090 for (; off < sp->config.rx_ring_num; off++)
7091 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7092 }
f61e0a35
SH
7093 else
7094 napi_disable(&sp->napi);
7095 }
5f490c96 7096
e6a8fee2 7097 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7098 if (do_io)
7099 stop_nic(sp);
e6a8fee2
AR
7100
7101 s2io_rem_isr(sp);
1da177e4 7102
01e16faa
SH
7103 /* stop the tx queue, indicate link down */
7104 s2io_link(sp, LINK_DOWN);
7105
1da177e4 7106 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7107 while (do_io) {
5d3213cc
AR
7108 /* As per the HW requirement we need to replenish the
7109 * receive buffer to avoid the ring bump. Since there is
7110 * no intention of processing the Rx frame at this pointwe are
70f23fd6 7111 * just setting the ownership bit of rxd in Each Rx
5d3213cc
AR
7112 * ring to HW and set the appropriate buffer size
7113 * based on the ring mode
7114 */
7115 rxd_owner_bit_reset(sp);
7116
1da177e4 7117 val64 = readq(&bar0->adapter_status);
19a60522 7118 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7119 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7120 break;
1da177e4
LT
7121 }
7122
7123 msleep(50);
7124 cnt++;
7125 if (cnt == 10) {
9e39f7c5
JP
7126 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7127 "adapter status reads 0x%llx\n",
d44570e4 7128 (unsigned long long)val64);
1da177e4
LT
7129 break;
7130 }
d796fdb7
LV
7131 }
7132 if (do_io)
7133 s2io_reset(sp);
1da177e4 7134
7ba013ac 7135 /* Free all Tx buffers */
1da177e4 7136 free_tx_buffers(sp);
7ba013ac 7137
7138 /* Free all Rx buffers */
1da177e4
LT
7139 free_rx_buffers(sp);
7140
92b84437 7141 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7142}
7143
d44570e4 7144static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7145{
7146 do_s2io_card_down(sp, 1);
7147}
7148
d44570e4 7149static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7150{
cc6e7c44 7151 int i, ret = 0;
1da177e4 7152 struct config_param *config;
ffb5df6c 7153 struct mac_info *mac_control;
d44570e4 7154 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7155 u16 interruptible;
1da177e4
LT
7156
7157 /* Initialize the H/W I/O registers */
9f74ffde
SH
7158 ret = init_nic(sp);
7159 if (ret != 0) {
1da177e4
LT
7160 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7161 dev->name);
9f74ffde
SH
7162 if (ret != -EIO)
7163 s2io_reset(sp);
7164 return ret;
1da177e4
LT
7165 }
7166
20346722 7167 /*
7168 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7169 * Rx ring and initializing buffers into 30 Rx blocks
7170 */
1da177e4 7171 config = &sp->config;
ffb5df6c 7172 mac_control = &sp->mac_control;
1da177e4
LT
7173
7174 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7175 struct ring_info *ring = &mac_control->rings[i];
7176
7177 ring->mtu = dev->mtu;
f0c54ace 7178 ring->lro = !!(dev->features & NETIF_F_LRO);
13d866a9 7179 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7180 if (ret) {
1da177e4
LT
7181 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7182 dev->name);
7183 s2io_reset(sp);
7184 free_rx_buffers(sp);
7185 return -ENOMEM;
7186 }
7187 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7188 ring->rx_bufs_left);
1da177e4 7189 }
5f490c96
SH
7190
7191 /* Initialise napi */
f61e0a35 7192 if (config->napi) {
f61e0a35
SH
7193 if (config->intr_type == MSI_X) {
7194 for (i = 0; i < sp->config.rx_ring_num; i++)
7195 napi_enable(&sp->mac_control.rings[i].napi);
7196 } else {
7197 napi_enable(&sp->napi);
7198 }
7199 }
5f490c96 7200
19a60522
SS
7201 /* Maintain the state prior to the open */
7202 if (sp->promisc_flg)
7203 sp->promisc_flg = 0;
7204 if (sp->m_cast_flg) {
7205 sp->m_cast_flg = 0;
d44570e4 7206 sp->all_multi_pos = 0;
19a60522 7207 }
1da177e4
LT
7208
7209 /* Setting its receive mode */
7210 s2io_set_multicast(dev);
7211
f0c54ace 7212 if (dev->features & NETIF_F_LRO) {
b41477f3 7213 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7214 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7215 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7216 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7217 sp->lro_max_aggr_per_sess = lro_max_pkts;
7218 }
7219
1da177e4
LT
7220 /* Enable Rx Traffic and interrupts on the NIC */
7221 if (start_nic(sp)) {
7222 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7223 s2io_reset(sp);
e6a8fee2
AR
7224 free_rx_buffers(sp);
7225 return -ENODEV;
7226 }
7227
7228 /* Add interrupt service routine */
7229 if (s2io_add_isr(sp) != 0) {
eaae7f72 7230 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7231 s2io_rem_isr(sp);
7232 s2io_reset(sp);
1da177e4
LT
7233 free_rx_buffers(sp);
7234 return -ENODEV;
7235 }
7236
25fff88e 7237 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7238
01e16faa
SH
7239 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7240
e6a8fee2 7241 /* Enable select interrupts */
9caab458 7242 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7243 if (sp->config.intr_type != INTA) {
7244 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7245 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7246 } else {
e6a8fee2 7247 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7248 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7249 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7250 }
7251
1da177e4
LT
7252 return 0;
7253}
7254
20346722 7255/**
1da177e4
LT
7256 * s2io_restart_nic - Resets the NIC.
7257 * @data : long pointer to the device private structure
7258 * Description:
7259 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7260 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7261 * the run time of the watch dog routine which is run holding a
7262 * spin lock.
7263 */
7264
c4028958 7265static void s2io_restart_nic(struct work_struct *work)
1da177e4 7266{
1ee6dd77 7267 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7268 struct net_device *dev = sp->dev;
1da177e4 7269
22747d6b
FR
7270 rtnl_lock();
7271
7272 if (!netif_running(dev))
7273 goto out_unlock;
7274
e6a8fee2 7275 s2io_card_down(sp);
1da177e4 7276 if (s2io_card_up(sp)) {
d44570e4 7277 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7278 }
3a3d5756 7279 s2io_wake_all_tx_queue(sp);
d44570e4 7280 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7281out_unlock:
7282 rtnl_unlock();
1da177e4
LT
7283}
7284
20346722 7285/**
7286 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7287 * @dev : Pointer to net device structure
7288 * Description:
7289 * This function is triggered if the Tx Queue is stopped
7290 * for a pre-defined amount of time when the Interface is still up.
7291 * If the Interface is jammed in such a situation, the hardware is
7292 * reset (by s2io_close) and restarted again (by s2io_open) to
7293 * overcome any problem that might have been caused in the hardware.
7294 * Return value:
7295 * void
7296 */
7297
7298static void s2io_tx_watchdog(struct net_device *dev)
7299{
4cf1653a 7300 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7301 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7302
7303 if (netif_carrier_ok(dev)) {
ffb5df6c 7304 swstats->watchdog_timer_cnt++;
1da177e4 7305 schedule_work(&sp->rst_timer_task);
ffb5df6c 7306 swstats->soft_reset_cnt++;
1da177e4
LT
7307 }
7308}
7309
7310/**
7311 * rx_osm_handler - To perform some OS related operations on SKB.
7312 * @sp: private member of the device structure,pointer to s2io_nic structure.
7313 * @skb : the socket buffer pointer.
7314 * @len : length of the packet
7315 * @cksum : FCS checksum of the frame.
7316 * @ring_no : the ring from which this RxD was extracted.
20346722 7317 * Description:
b41477f3 7318 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7319 * some OS related operations on the SKB before passing it to the upper
7320 * layers. It mainly checks if the checksum is OK, if so adds it to the
7321 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7322 * to the upper layer. If the checksum is wrong, it increments the Rx
7323 * packet error count, frees the SKB and returns error.
7324 * Return value:
7325 * SUCCESS on success and -1 on failure.
7326 */
1ee6dd77 7327static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7328{
1ee6dd77 7329 struct s2io_nic *sp = ring_data->nic;
d44570e4 7330 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7331 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7332 ((unsigned long)rxdp->Host_Control);
20346722 7333 int ring_no = ring_data->ring_no;
1da177e4 7334 u16 l3_csum, l4_csum;
863c11a9 7335 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7336 struct lro *uninitialized_var(lro);
f9046eb3 7337 u8 err_mask;
ffb5df6c 7338 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7339
20346722 7340 skb->dev = dev;
c92ca04b 7341
863c11a9 7342 if (err) {
bd1034f0 7343 /* Check for parity error */
d44570e4 7344 if (err & 0x1)
ffb5df6c 7345 swstats->parity_err_cnt++;
d44570e4 7346
f9046eb3 7347 err_mask = err >> 48;
d44570e4
JP
7348 switch (err_mask) {
7349 case 1:
ffb5df6c 7350 swstats->rx_parity_err_cnt++;
491976b2
SH
7351 break;
7352
d44570e4 7353 case 2:
ffb5df6c 7354 swstats->rx_abort_cnt++;
491976b2
SH
7355 break;
7356
d44570e4 7357 case 3:
ffb5df6c 7358 swstats->rx_parity_abort_cnt++;
491976b2
SH
7359 break;
7360
d44570e4 7361 case 4:
ffb5df6c 7362 swstats->rx_rda_fail_cnt++;
491976b2
SH
7363 break;
7364
d44570e4 7365 case 5:
ffb5df6c 7366 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7367 break;
7368
d44570e4 7369 case 6:
ffb5df6c 7370 swstats->rx_fcs_err_cnt++;
491976b2 7371 break;
bd1034f0 7372
d44570e4 7373 case 7:
ffb5df6c 7374 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7375 break;
7376
d44570e4 7377 case 8:
ffb5df6c 7378 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7379 break;
7380
d44570e4 7381 case 15:
ffb5df6c 7382 swstats->rx_unkn_err_cnt++;
491976b2
SH
7383 break;
7384 }
863c11a9 7385 /*
d44570e4
JP
7386 * Drop the packet if bad transfer code. Exception being
7387 * 0x5, which could be due to unsupported IPv6 extension header.
7388 * In this case, we let stack handle the packet.
7389 * Note that in this case, since checksum will be incorrect,
7390 * stack will validate the same.
7391 */
f9046eb3
OH
7392 if (err_mask != 0x5) {
7393 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7394 dev->name, err_mask);
dc56e634 7395 dev->stats.rx_crc_errors++;
ffb5df6c 7396 swstats->mem_freed
491976b2 7397 += skb->truesize;
863c11a9 7398 dev_kfree_skb(skb);
0425b46a 7399 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7400 rxdp->Host_Control = 0;
7401 return 0;
7402 }
20346722 7403 }
1da177e4 7404
20346722 7405 rxdp->Host_Control = 0;
da6971d8
AR
7406 if (sp->rxd_mode == RXD_MODE_1) {
7407 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7408
da6971d8 7409 skb_put(skb, len);
6d517a27 7410 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7411 int get_block = ring_data->rx_curr_get_info.block_index;
7412 int get_off = ring_data->rx_curr_get_info.offset;
7413 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7414 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7415 unsigned char *buff = skb_push(skb, buf0_len);
7416
1ee6dd77 7417 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8 7418 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7419 skb_put(skb, buf2_len);
da6971d8 7420 }
20346722 7421
d44570e4
JP
7422 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7423 ((!ring_data->lro) ||
7424 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
b437a8cc 7425 (dev->features & NETIF_F_RXCSUM)) {
20346722 7426 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7427 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7428 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7429 /*
1da177e4
LT
7430 * NIC verifies if the Checksum of the received
7431 * frame is Ok or not and accordingly returns
7432 * a flag in the RxD.
7433 */
7434 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7435 if (ring_data->lro) {
06f0c139 7436 u32 tcp_len = 0;
7d3d0439
RA
7437 u8 *tcp;
7438 int ret = 0;
7439
0425b46a 7440 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7441 skb->data, &tcp,
7442 &tcp_len, &lro,
7443 rxdp, sp);
7d3d0439 7444 switch (ret) {
d44570e4
JP
7445 case 3: /* Begin anew */
7446 lro->parent = skb;
7447 goto aggregate;
7448 case 1: /* Aggregate */
7449 lro_append_pkt(sp, lro, skb, tcp_len);
7450 goto aggregate;
7451 case 4: /* Flush session */
7452 lro_append_pkt(sp, lro, skb, tcp_len);
7453 queue_rx_frame(lro->parent,
7454 lro->vlan_tag);
7455 clear_lro_session(lro);
ffb5df6c 7456 swstats->flush_max_pkts++;
d44570e4
JP
7457 goto aggregate;
7458 case 2: /* Flush both */
7459 lro->parent->data_len = lro->frags_len;
ffb5df6c 7460 swstats->sending_both++;
d44570e4
JP
7461 queue_rx_frame(lro->parent,
7462 lro->vlan_tag);
7463 clear_lro_session(lro);
7464 goto send_up;
7465 case 0: /* sessions exceeded */
7466 case -1: /* non-TCP or not L2 aggregatable */
7467 case 5: /*
7468 * First pkt in session not
7469 * L3/L4 aggregatable
7470 */
7471 break;
7472 default:
7473 DBG_PRINT(ERR_DBG,
7474 "%s: Samadhana!!\n",
7475 __func__);
7476 BUG();
7d3d0439
RA
7477 }
7478 }
1da177e4 7479 } else {
20346722 7480 /*
7481 * Packet with erroneous checksum, let the
1da177e4
LT
7482 * upper layers deal with it.
7483 */
bc8acf2c 7484 skb_checksum_none_assert(skb);
1da177e4 7485 }
cdb5bf02 7486 } else
bc8acf2c 7487 skb_checksum_none_assert(skb);
cdb5bf02 7488
ffb5df6c 7489 swstats->mem_freed += skb->truesize;
7d3d0439 7490send_up:
0c8dfc83 7491 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7492 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7493aggregate:
0425b46a 7494 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7495 return SUCCESS;
7496}
7497
7498/**
7499 * s2io_link - stops/starts the Tx queue.
7500 * @sp : private member of the device structure, which is a pointer to the
7501 * s2io_nic structure.
7502 * @link : inidicates whether link is UP/DOWN.
7503 * Description:
7504 * This function stops/starts the Tx queue depending on whether the link
20346722 7505 * status of the NIC is is down or up. This is called by the Alarm
7506 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7507 * Return value:
7508 * void.
7509 */
7510
d44570e4 7511static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7512{
d44570e4 7513 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7514 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7515
7516 if (link != sp->last_link_state) {
b7c5678f 7517 init_tti(sp, link);
1da177e4
LT
7518 if (link == LINK_DOWN) {
7519 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7520 s2io_stop_all_tx_queue(sp);
1da177e4 7521 netif_carrier_off(dev);
ffb5df6c
JP
7522 if (swstats->link_up_cnt)
7523 swstats->link_up_time =
7524 jiffies - sp->start_time;
7525 swstats->link_down_cnt++;
1da177e4
LT
7526 } else {
7527 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7528 if (swstats->link_down_cnt)
7529 swstats->link_down_time =
d44570e4 7530 jiffies - sp->start_time;
ffb5df6c 7531 swstats->link_up_cnt++;
1da177e4 7532 netif_carrier_on(dev);
3a3d5756 7533 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7534 }
7535 }
7536 sp->last_link_state = link;
491976b2 7537 sp->start_time = jiffies;
1da177e4
LT
7538}
7539
20346722 7540/**
7541 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7542 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7543 * s2io_nic structure.
7544 * Description:
7545 * This function initializes a few of the PCI and PCI-X configuration registers
7546 * with recommended values.
7547 * Return value:
7548 * void
7549 */
7550
d44570e4 7551static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7552{
20346722 7553 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7554
7555 /* Enable Data Parity Error Recovery in PCI-X command register. */
7556 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7557 &(pcix_cmd));
1da177e4 7558 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7559 (pcix_cmd | 1));
1da177e4 7560 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7561 &(pcix_cmd));
1da177e4
LT
7562
7563 /* Set the PErr Response bit in PCI command register. */
7564 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7565 pci_write_config_word(sp->pdev, PCI_COMMAND,
7566 (pci_cmd | PCI_COMMAND_PARITY));
7567 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7568}
7569
3a3d5756 7570static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7571 u8 *dev_multiq)
9dc737a7 7572{
1853e2e1
JM
7573 int i;
7574
d44570e4 7575 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7576 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7577 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7578
7579 if (tx_fifo_num < 1)
7580 tx_fifo_num = 1;
7581 else
7582 tx_fifo_num = MAX_TX_FIFOS;
7583
9e39f7c5 7584 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7585 }
2fda096d 7586
6cfc482b 7587 if (multiq)
3a3d5756 7588 *dev_multiq = multiq;
6cfc482b
SH
7589
7590 if (tx_steering_type && (1 == tx_fifo_num)) {
7591 if (tx_steering_type != TX_DEFAULT_STEERING)
7592 DBG_PRINT(ERR_DBG,
9e39f7c5 7593 "Tx steering is not supported with "
d44570e4 7594 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7595 tx_steering_type = NO_STEERING;
7596 }
7597
7598 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7599 (tx_steering_type > TX_DEFAULT_STEERING)) {
7600 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7601 "Requested transmit steering not supported\n");
7602 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7603 tx_steering_type = NO_STEERING;
3a3d5756
SH
7604 }
7605
0425b46a 7606 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7607 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7608 "Requested number of rx rings not supported\n");
7609 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7610 MAX_RX_RINGS);
0425b46a 7611 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7612 }
0425b46a 7613
eccb8628 7614 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7615 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7616 "Defaulting to INTA\n");
7617 *dev_intr_type = INTA;
7618 }
596c5c97 7619
9dc737a7 7620 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7621 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7622 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7623 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7624 "Defaulting to INTA\n");
9dc737a7
AR
7625 *dev_intr_type = INTA;
7626 }
fb6a825b 7627
6d517a27 7628 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7629 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7630 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7631 rx_ring_mode = 1;
9dc737a7 7632 }
1853e2e1
JM
7633
7634 for (i = 0; i < MAX_RX_RINGS; i++)
7635 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7636 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7637 "supported\nDefaulting to %d\n",
7638 MAX_RX_BLOCKS_PER_RING);
7639 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7640 }
7641
9dc737a7
AR
7642 return SUCCESS;
7643}
7644
9fc93a41
SS
7645/**
7646 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7647 * or Traffic class respectively.
b7c5678f 7648 * @nic: device private variable
9fc93a41
SS
7649 * Description: The function configures the receive steering to
7650 * desired receive ring.
7651 * Return Value: SUCCESS on success and
7652 * '-1' on failure (endian settings incorrect).
7653 */
7654static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7655{
7656 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7657 register u64 val64 = 0;
7658
7659 if (ds_codepoint > 63)
7660 return FAILURE;
7661
7662 val64 = RTS_DS_MEM_DATA(ring);
7663 writeq(val64, &bar0->rts_ds_mem_data);
7664
7665 val64 = RTS_DS_MEM_CTRL_WE |
7666 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7667 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7668
7669 writeq(val64, &bar0->rts_ds_mem_ctrl);
7670
7671 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7672 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7673 S2IO_BIT_RESET);
9fc93a41
SS
7674}
7675
04025095
SH
7676static const struct net_device_ops s2io_netdev_ops = {
7677 .ndo_open = s2io_open,
7678 .ndo_stop = s2io_close,
7679 .ndo_get_stats = s2io_get_stats,
7680 .ndo_start_xmit = s2io_xmit,
7681 .ndo_validate_addr = eth_validate_addr,
afc4b13d 7682 .ndo_set_rx_mode = s2io_set_multicast,
04025095
SH
7683 .ndo_do_ioctl = s2io_ioctl,
7684 .ndo_set_mac_address = s2io_set_mac_addr,
7685 .ndo_change_mtu = s2io_change_mtu,
b437a8cc 7686 .ndo_set_features = s2io_set_features,
04025095
SH
7687 .ndo_tx_timeout = s2io_tx_watchdog,
7688#ifdef CONFIG_NET_POLL_CONTROLLER
7689 .ndo_poll_controller = s2io_netpoll,
7690#endif
7691};
7692
1da177e4 7693/**
20346722 7694 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7695 * @pdev : structure containing the PCI related information of the device.
7696 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7697 * Description:
7698 * The function initializes an adapter identified by the pci_dec structure.
20346722 7699 * All OS related initialization including memory and device structure and
7700 * initlaization of the device private variable is done. Also the swapper
7701 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7702 * registers of the device.
7703 * Return value:
7704 * returns 0 on success and negative on failure.
7705 */
7706
7707static int __devinit
7708s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7709{
1ee6dd77 7710 struct s2io_nic *sp;
1da177e4 7711 struct net_device *dev;
1da177e4 7712 int i, j, ret;
f957bcf0 7713 int dma_flag = false;
1da177e4
LT
7714 u32 mac_up, mac_down;
7715 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7716 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7717 u16 subid;
1da177e4 7718 struct config_param *config;
ffb5df6c 7719 struct mac_info *mac_control;
541ae68f 7720 int mode;
cc6e7c44 7721 u8 dev_intr_type = intr_type;
3a3d5756 7722 u8 dev_multiq = 0;
1da177e4 7723
3a3d5756
SH
7724 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7725 if (ret)
9dc737a7 7726 return ret;
1da177e4 7727
d44570e4
JP
7728 ret = pci_enable_device(pdev);
7729 if (ret) {
1da177e4 7730 DBG_PRINT(ERR_DBG,
9e39f7c5 7731 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7732 return ret;
7733 }
7734
6a35528a 7735 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7736 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7737 dma_flag = true;
d44570e4 7738 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7739 DBG_PRINT(ERR_DBG,
d44570e4
JP
7740 "Unable to obtain 64bit DMA "
7741 "for consistent allocations\n");
1da177e4
LT
7742 pci_disable_device(pdev);
7743 return -ENOMEM;
7744 }
284901a9 7745 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7746 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7747 } else {
7748 pci_disable_device(pdev);
7749 return -ENOMEM;
7750 }
d44570e4
JP
7751 ret = pci_request_regions(pdev, s2io_driver_name);
7752 if (ret) {
9e39f7c5 7753 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7754 __func__, ret);
eccb8628
VP
7755 pci_disable_device(pdev);
7756 return -ENODEV;
1da177e4 7757 }
3a3d5756 7758 if (dev_multiq)
6cfc482b 7759 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7760 else
b19fa1fa 7761 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4 7762 if (dev == NULL) {
1da177e4
LT
7763 pci_disable_device(pdev);
7764 pci_release_regions(pdev);
7765 return -ENODEV;
7766 }
7767
7768 pci_set_master(pdev);
7769 pci_set_drvdata(pdev, dev);
1da177e4
LT
7770 SET_NETDEV_DEV(dev, &pdev->dev);
7771
7772 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7773 sp = netdev_priv(dev);
1da177e4
LT
7774 sp->dev = dev;
7775 sp->pdev = pdev;
1da177e4 7776 sp->high_dma_flag = dma_flag;
f957bcf0 7777 sp->device_enabled_once = false;
da6971d8
AR
7778 if (rx_ring_mode == 1)
7779 sp->rxd_mode = RXD_MODE_1;
7780 if (rx_ring_mode == 2)
7781 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7782
eaae7f72 7783 sp->config.intr_type = dev_intr_type;
1da177e4 7784
541ae68f 7785 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7786 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f 7787 sp->device_type = XFRAME_II_DEVICE;
7788 else
7789 sp->device_type = XFRAME_I_DEVICE;
7790
6aa20a22 7791
1da177e4
LT
7792 /* Initialize some PCI/PCI-X fields of the NIC. */
7793 s2io_init_pci(sp);
7794
20346722 7795 /*
1da177e4 7796 * Setting the device configuration parameters.
20346722 7797 * Most of these parameters can be specified by the user during
7798 * module insertion as they are module loadable parameters. If
7799 * these parameters are not not specified during load time, they
1da177e4
LT
7800 * are initialized with default values.
7801 */
1da177e4 7802 config = &sp->config;
ffb5df6c 7803 mac_control = &sp->mac_control;
1da177e4 7804
596c5c97 7805 config->napi = napi;
6cfc482b 7806 config->tx_steering_type = tx_steering_type;
596c5c97 7807
1da177e4 7808 /* Tx side parameters. */
6cfc482b
SH
7809 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7810 config->tx_fifo_num = MAX_TX_FIFOS;
7811 else
7812 config->tx_fifo_num = tx_fifo_num;
7813
7814 /* Initialize the fifos used for tx steering */
7815 if (config->tx_fifo_num < 5) {
d44570e4
JP
7816 if (config->tx_fifo_num == 1)
7817 sp->total_tcp_fifos = 1;
7818 else
7819 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7820 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7821 sp->total_udp_fifos = 1;
7822 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7823 } else {
7824 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7825 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7826 sp->udp_fifo_idx = sp->total_tcp_fifos;
7827 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7828 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7829 }
7830
3a3d5756 7831 config->multiq = dev_multiq;
6cfc482b 7832 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7833 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7834
7835 tx_cfg->fifo_len = tx_fifo_len[i];
7836 tx_cfg->fifo_priority = i;
1da177e4
LT
7837 }
7838
20346722 7839 /* mapping the QoS priority to the configured fifos */
7840 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7841 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7842
6cfc482b
SH
7843 /* map the hashing selector table to the configured fifos */
7844 for (i = 0; i < config->tx_fifo_num; i++)
7845 sp->fifo_selector[i] = fifo_selector[i];
7846
7847
1da177e4
LT
7848 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7849 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7850 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7851
7852 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7853 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7854 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7855 break;
7856 }
7857 }
fed5eccd
AR
7858 /* + 2 because one Txd for skb->data and one Txd for UFO */
7859 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7860
7861 /* Rx side parameters. */
1da177e4 7862 config->rx_ring_num = rx_ring_num;
0425b46a 7863 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7864 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7865 struct ring_info *ring = &mac_control->rings[i];
7866
7867 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7868 rx_cfg->ring_priority = i;
7869 ring->rx_bufs_left = 0;
7870 ring->rxd_mode = sp->rxd_mode;
7871 ring->rxd_count = rxd_count[sp->rxd_mode];
7872 ring->pdev = sp->pdev;
7873 ring->dev = sp->dev;
1da177e4
LT
7874 }
7875
7876 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7877 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7878
7879 rx_cfg->ring_org = RING_ORG_BUFF1;
7880 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7881 }
7882
7883 /* Setting Mac Control parameters */
7884 mac_control->rmac_pause_time = rmac_pause_time;
7885 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7886 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7887
7888
1da177e4
LT
7889 /* initialize the shared memory used by the NIC and the host */
7890 if (init_shared_mem(sp)) {
d44570e4 7891 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7892 ret = -ENOMEM;
7893 goto mem_alloc_failed;
7894 }
7895
275f165f 7896 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7897 if (!sp->bar0) {
19a60522 7898 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7899 dev->name);
7900 ret = -ENOMEM;
7901 goto bar0_remap_failed;
7902 }
7903
275f165f 7904 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7905 if (!sp->bar1) {
19a60522 7906 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7907 dev->name);
7908 ret = -ENOMEM;
7909 goto bar1_remap_failed;
7910 }
7911
7912 dev->irq = pdev->irq;
d44570e4 7913 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
7914
7915 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7916 for (j = 0; j < MAX_TX_FIFOS; j++) {
43d620c8 7917 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
1da177e4
LT
7918 }
7919
7920 /* Driver entry points */
04025095 7921 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7922 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
b437a8cc
MM
7923 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7924 NETIF_F_TSO | NETIF_F_TSO6 |
7925 NETIF_F_RXCSUM | NETIF_F_LRO;
7926 dev->features |= dev->hw_features |
7927 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7928 if (sp->device_type & XFRAME_II_DEVICE) {
7929 dev->hw_features |= NETIF_F_UFO;
7930 if (ufo)
7931 dev->features |= NETIF_F_UFO;
7932 }
f957bcf0 7933 if (sp->high_dma_flag == true)
1da177e4 7934 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7935 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7936 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7937 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7938
e960fc5c 7939 pci_save_state(sp->pdev);
1da177e4
LT
7940
7941 /* Setting swapper control on the NIC, for proper reset operation */
7942 if (s2io_set_swapper(sp)) {
9e39f7c5 7943 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7944 dev->name);
7945 ret = -EAGAIN;
7946 goto set_swap_failed;
7947 }
7948
541ae68f 7949 /* Verify if the Herc works on the slot its placed into */
7950 if (sp->device_type & XFRAME_II_DEVICE) {
7951 mode = s2io_verify_pci_mode(sp);
7952 if (mode < 0) {
9e39f7c5
JP
7953 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7954 __func__);
541ae68f 7955 ret = -EBADSLT;
7956 goto set_swap_failed;
7957 }
7958 }
7959
f61e0a35
SH
7960 if (sp->config.intr_type == MSI_X) {
7961 sp->num_entries = config->rx_ring_num + 1;
7962 ret = s2io_enable_msi_x(sp);
7963
7964 if (!ret) {
7965 ret = s2io_test_msi(sp);
7966 /* rollback MSI-X, will re-enable during add_isr() */
7967 remove_msix_isr(sp);
7968 }
7969 if (ret) {
7970
7971 DBG_PRINT(ERR_DBG,
9e39f7c5 7972 "MSI-X requested but failed to enable\n");
f61e0a35
SH
7973 sp->config.intr_type = INTA;
7974 }
7975 }
7976
7977 if (config->intr_type == MSI_X) {
13d866a9
JP
7978 for (i = 0; i < config->rx_ring_num ; i++) {
7979 struct ring_info *ring = &mac_control->rings[i];
7980
7981 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7982 }
f61e0a35
SH
7983 } else {
7984 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7985 }
7986
541ae68f 7987 /* Not needed for Herc */
7988 if (sp->device_type & XFRAME_I_DEVICE) {
7989 /*
7990 * Fix for all "FFs" MAC address problems observed on
7991 * Alpha platforms
7992 */
7993 fix_mac_address(sp);
7994 s2io_reset(sp);
7995 }
1da177e4
LT
7996
7997 /*
1da177e4
LT
7998 * MAC address initialization.
7999 * For now only one mac address will be read and used.
8000 */
8001 bar0 = sp->bar0;
8002 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8003 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8004 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8005 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8006 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8007 S2IO_BIT_RESET);
1da177e4 8008 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8009 mac_down = (u32)tmp64;
1da177e4
LT
8010 mac_up = (u32) (tmp64 >> 32);
8011
1da177e4
LT
8012 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8013 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8014 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8015 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8016 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8017 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8018
1da177e4
LT
8019 /* Set the factory defined MAC address initially */
8020 dev->addr_len = ETH_ALEN;
8021 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8022 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8023
faa4f796
SH
8024 /* initialize number of multicast & unicast MAC entries variables */
8025 if (sp->device_type == XFRAME_I_DEVICE) {
8026 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8027 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8028 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8029 } else if (sp->device_type == XFRAME_II_DEVICE) {
8030 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8031 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8032 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8033 }
8034
8035 /* store mac addresses from CAM to s2io_nic structure */
8036 do_s2io_store_unicast_mc(sp);
8037
f61e0a35
SH
8038 /* Configure MSIX vector for number of rings configured plus one */
8039 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8040 (config->intr_type == MSI_X))
f61e0a35
SH
8041 sp->num_entries = config->rx_ring_num + 1;
8042
d44570e4 8043 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8044 store_xmsi_data(sp);
b41477f3
AR
8045 /* reset Nic and bring it to known state */
8046 s2io_reset(sp);
8047
1da177e4 8048 /*
99993af6 8049 * Initialize link state flags
541ae68f 8050 * and the card state parameter
1da177e4 8051 */
92b84437 8052 sp->state = 0;
1da177e4 8053
1da177e4 8054 /* Initialize spinlocks */
13d866a9
JP
8055 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8056 struct fifo_info *fifo = &mac_control->fifos[i];
8057
8058 spin_lock_init(&fifo->tx_lock);
8059 }
db874e65 8060
20346722 8061 /*
8062 * SXE-002: Configure link and activity LED to init state
8063 * on driver load.
1da177e4
LT
8064 */
8065 subid = sp->pdev->subsystem_device;
8066 if ((subid & 0xFF) >= 0x07) {
8067 val64 = readq(&bar0->gpio_control);
8068 val64 |= 0x0000800000000000ULL;
8069 writeq(val64, &bar0->gpio_control);
8070 val64 = 0x0411040400000000ULL;
d44570e4 8071 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8072 val64 = readq(&bar0->gpio_control);
8073 }
8074
8075 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8076
8077 if (register_netdev(dev)) {
8078 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8079 ret = -ENODEV;
8080 goto register_failed;
8081 }
9dc737a7 8082 s2io_vpd_read(sp);
926bd900 8083 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
d44570e4 8084 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8085 sp->product_name, pdev->revision);
b41477f3
AR
8086 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8087 s2io_driver_version);
9e39f7c5
JP
8088 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8089 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8090 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8091 mode = s2io_print_pci_mode(sp);
541ae68f 8092 if (mode < 0) {
541ae68f 8093 ret = -EBADSLT;
9dc737a7 8094 unregister_netdev(dev);
541ae68f 8095 goto set_swap_failed;
8096 }
541ae68f 8097 }
d44570e4
JP
8098 switch (sp->rxd_mode) {
8099 case RXD_MODE_1:
8100 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8101 dev->name);
8102 break;
8103 case RXD_MODE_3B:
8104 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8105 dev->name);
8106 break;
9dc737a7 8107 }
db874e65 8108
f61e0a35
SH
8109 switch (sp->config.napi) {
8110 case 0:
8111 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8112 break;
8113 case 1:
db874e65 8114 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8115 break;
8116 }
3a3d5756
SH
8117
8118 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8119 sp->config.tx_fifo_num);
3a3d5756 8120
0425b46a
SH
8121 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8122 sp->config.rx_ring_num);
8123
d44570e4
JP
8124 switch (sp->config.intr_type) {
8125 case INTA:
8126 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8127 break;
8128 case MSI_X:
8129 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8130 break;
9dc737a7 8131 }
3a3d5756 8132 if (sp->config.multiq) {
13d866a9
JP
8133 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8134 struct fifo_info *fifo = &mac_control->fifos[i];
8135
8136 fifo->multiq = config->multiq;
8137 }
3a3d5756 8138 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8139 dev->name);
3a3d5756
SH
8140 } else
8141 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8142 dev->name);
3a3d5756 8143
6cfc482b
SH
8144 switch (sp->config.tx_steering_type) {
8145 case NO_STEERING:
d44570e4
JP
8146 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8147 dev->name);
8148 break;
6cfc482b 8149 case TX_PRIORITY_STEERING:
d44570e4
JP
8150 DBG_PRINT(ERR_DBG,
8151 "%s: Priority steering enabled for transmit\n",
8152 dev->name);
6cfc482b
SH
8153 break;
8154 case TX_DEFAULT_STEERING:
d44570e4
JP
8155 DBG_PRINT(ERR_DBG,
8156 "%s: Default steering enabled for transmit\n",
8157 dev->name);
6cfc482b
SH
8158 }
8159
f0c54ace
AW
8160 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8161 dev->name);
db874e65 8162 if (ufo)
d44570e4
JP
8163 DBG_PRINT(ERR_DBG,
8164 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8165 dev->name);
7ba013ac 8166 /* Initialize device name */
9dc737a7 8167 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8168
cd0fce03
BL
8169 if (vlan_tag_strip)
8170 sp->vlan_strip_flag = 1;
8171 else
8172 sp->vlan_strip_flag = 0;
8173
20346722 8174 /*
8175 * Make Link state as off at this point, when the Link change
8176 * interrupt comes the state will be automatically changed to
1da177e4
LT
8177 * the right state.
8178 */
8179 netif_carrier_off(dev);
1da177e4
LT
8180
8181 return 0;
8182
d44570e4
JP
8183register_failed:
8184set_swap_failed:
1da177e4 8185 iounmap(sp->bar1);
d44570e4 8186bar1_remap_failed:
1da177e4 8187 iounmap(sp->bar0);
d44570e4
JP
8188bar0_remap_failed:
8189mem_alloc_failed:
1da177e4
LT
8190 free_shared_mem(sp);
8191 pci_disable_device(pdev);
eccb8628 8192 pci_release_regions(pdev);
1da177e4
LT
8193 pci_set_drvdata(pdev, NULL);
8194 free_netdev(dev);
8195
8196 return ret;
8197}
8198
8199/**
20346722 8200 * s2io_rem_nic - Free the PCI device
1da177e4 8201 * @pdev: structure containing the PCI related information of the device.
20346722 8202 * Description: This function is called by the Pci subsystem to release a
1da177e4 8203 * PCI device and free up all resource held up by the device. This could
20346722 8204 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8205 * from memory.
8206 */
8207
8208static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8209{
a31ff388 8210 struct net_device *dev = pci_get_drvdata(pdev);
1ee6dd77 8211 struct s2io_nic *sp;
1da177e4
LT
8212
8213 if (dev == NULL) {
8214 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8215 return;
8216 }
8217
4cf1653a 8218 sp = netdev_priv(dev);
23f333a2
TH
8219
8220 cancel_work_sync(&sp->rst_timer_task);
8221 cancel_work_sync(&sp->set_link_task);
8222
1da177e4
LT
8223 unregister_netdev(dev);
8224
8225 free_shared_mem(sp);
8226 iounmap(sp->bar0);
8227 iounmap(sp->bar1);
eccb8628 8228 pci_release_regions(pdev);
1da177e4 8229 pci_set_drvdata(pdev, NULL);
1da177e4 8230 free_netdev(dev);
19a60522 8231 pci_disable_device(pdev);
1da177e4
LT
8232}
8233
8234/**
8235 * s2io_starter - Entry point for the driver
8236 * Description: This function is the entry point for the driver. It verifies
8237 * the module loadable parameters and initializes PCI configuration space.
8238 */
8239
43b7c451 8240static int __init s2io_starter(void)
1da177e4 8241{
29917620 8242 return pci_register_driver(&s2io_driver);
1da177e4
LT
8243}
8244
8245/**
20346722 8246 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8247 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8248 */
8249
372cc597 8250static __exit void s2io_closer(void)
1da177e4
LT
8251{
8252 pci_unregister_driver(&s2io_driver);
8253 DBG_PRINT(INIT_DBG, "cleanup done\n");
8254}
8255
8256module_init(s2io_starter);
8257module_exit(s2io_closer);
7d3d0439 8258
6aa20a22 8259static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8260 struct tcphdr **tcp, struct RxD_t *rxdp,
8261 struct s2io_nic *sp)
7d3d0439
RA
8262{
8263 int ip_off;
8264 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8265
8266 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8267 DBG_PRINT(INIT_DBG,
8268 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8269 __func__);
7d3d0439
RA
8270 return -1;
8271 }
8272
cdb5bf02 8273 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8274 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8275 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8276 /*
8277 * If vlan stripping is disabled and the frame is VLAN tagged,
8278 * shift the offset by the VLAN header size bytes.
8279 */
cd0fce03 8280 if ((!sp->vlan_strip_flag) &&
d44570e4 8281 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8282 ip_off += HEADER_VLAN_SIZE;
8283 } else {
7d3d0439 8284 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8285 return -1;
7d3d0439
RA
8286 }
8287
8288 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8289 ip_len = (u8)((*ip)->ihl);
8290 ip_len <<= 2;
8291 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8292
8293 return 0;
8294}
8295
1ee6dd77 8296static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8297 struct tcphdr *tcp)
8298{
d44570e4
JP
8299 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8300 if ((lro->iph->saddr != ip->saddr) ||
8301 (lro->iph->daddr != ip->daddr) ||
8302 (lro->tcph->source != tcp->source) ||
8303 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8304 return -1;
8305 return 0;
8306}
8307
8308static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8309{
d44570e4 8310 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8311}
8312
1ee6dd77 8313static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8314 struct iphdr *ip, struct tcphdr *tcp,
8315 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8316{
d44570e4 8317 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8318 lro->l2h = l2h;
8319 lro->iph = ip;
8320 lro->tcph = tcp;
8321 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8322 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8323 lro->sg_num = 1;
8324 lro->total_len = ntohs(ip->tot_len);
8325 lro->frags_len = 0;
cdb5bf02 8326 lro->vlan_tag = vlan_tag;
6aa20a22 8327 /*
d44570e4
JP
8328 * Check if we saw TCP timestamp.
8329 * Other consistency checks have already been done.
8330 */
7d3d0439 8331 if (tcp->doff == 8) {
c8855953
SR
8332 __be32 *ptr;
8333 ptr = (__be32 *)(tcp+1);
7d3d0439 8334 lro->saw_ts = 1;
c8855953 8335 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8336 lro->cur_tsecr = *(ptr+2);
8337 }
8338 lro->in_use = 1;
8339}
8340
1ee6dd77 8341static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8342{
8343 struct iphdr *ip = lro->iph;
8344 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8345 __sum16 nchk;
ffb5df6c
JP
8346 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8347
d44570e4 8348 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8349
8350 /* Update L3 header */
8351 ip->tot_len = htons(lro->total_len);
8352 ip->check = 0;
8353 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8354 ip->check = nchk;
8355
8356 /* Update L4 header */
8357 tcp->ack_seq = lro->tcp_ack;
8358 tcp->window = lro->window;
8359
8360 /* Update tsecr field if this session has timestamps enabled */
8361 if (lro->saw_ts) {
c8855953 8362 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8363 *(ptr+2) = lro->cur_tsecr;
8364 }
8365
8366 /* Update counters required for calculation of
8367 * average no. of packets aggregated.
8368 */
ffb5df6c
JP
8369 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8370 swstats->num_aggregations++;
7d3d0439
RA
8371}
8372
1ee6dd77 8373static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8374 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8375{
d44570e4 8376 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8377 lro->total_len += l4_pyld;
8378 lro->frags_len += l4_pyld;
8379 lro->tcp_next_seq += l4_pyld;
8380 lro->sg_num++;
8381
8382 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8383 lro->tcp_ack = tcp->ack_seq;
8384 lro->window = tcp->window;
6aa20a22 8385
7d3d0439 8386 if (lro->saw_ts) {
c8855953 8387 __be32 *ptr;
7d3d0439 8388 /* Update tsecr and tsval from this packet */
c8855953
SR
8389 ptr = (__be32 *)(tcp+1);
8390 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8391 lro->cur_tsecr = *(ptr + 2);
8392 }
8393}
8394
1ee6dd77 8395static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8396 struct tcphdr *tcp, u32 tcp_pyld_len)
8397{
7d3d0439
RA
8398 u8 *ptr;
8399
d44570e4 8400 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8401
7d3d0439
RA
8402 if (!tcp_pyld_len) {
8403 /* Runt frame or a pure ack */
8404 return -1;
8405 }
8406
8407 if (ip->ihl != 5) /* IP has options */
8408 return -1;
8409
75c30b13
AR
8410 /* If we see CE codepoint in IP header, packet is not mergeable */
8411 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8412 return -1;
8413
8414 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8415 if (tcp->urg || tcp->psh || tcp->rst ||
8416 tcp->syn || tcp->fin ||
8417 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8418 /*
8419 * Currently recognize only the ack control word and
8420 * any other control field being set would result in
8421 * flushing the LRO session
8422 */
8423 return -1;
8424 }
8425
6aa20a22 8426 /*
7d3d0439
RA
8427 * Allow only one TCP timestamp option. Don't aggregate if
8428 * any other options are detected.
8429 */
8430 if (tcp->doff != 5 && tcp->doff != 8)
8431 return -1;
8432
8433 if (tcp->doff == 8) {
6aa20a22 8434 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8435 while (*ptr == TCPOPT_NOP)
8436 ptr++;
8437 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8438 return -1;
8439
8440 /* Ensure timestamp value increases monotonically */
8441 if (l_lro)
c8855953 8442 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8443 return -1;
8444
8445 /* timestamp echo reply should be non-zero */
c8855953 8446 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8447 return -1;
8448 }
8449
8450 return 0;
8451}
8452
d44570e4
JP
8453static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8454 u8 **tcp, u32 *tcp_len, struct lro **lro,
8455 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8456{
8457 struct iphdr *ip;
8458 struct tcphdr *tcph;
8459 int ret = 0, i;
cdb5bf02 8460 u16 vlan_tag = 0;
ffb5df6c 8461 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8462
d44570e4
JP
8463 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8464 rxdp, sp);
8465 if (ret)
7d3d0439 8466 return ret;
7d3d0439 8467
d44570e4
JP
8468 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8469
cdb5bf02 8470 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8471 tcph = (struct tcphdr *)*tcp;
8472 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8473 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8474 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8475 if (l_lro->in_use) {
8476 if (check_for_socket_match(l_lro, ip, tcph))
8477 continue;
8478 /* Sock pair matched */
8479 *lro = l_lro;
8480
8481 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8482 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8483 "expected 0x%x, actual 0x%x\n",
8484 __func__,
7d3d0439
RA
8485 (*lro)->tcp_next_seq,
8486 ntohl(tcph->seq));
8487
ffb5df6c 8488 swstats->outof_sequence_pkts++;
7d3d0439
RA
8489 ret = 2;
8490 break;
8491 }
8492
d44570e4
JP
8493 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8494 *tcp_len))
7d3d0439
RA
8495 ret = 1; /* Aggregate */
8496 else
8497 ret = 2; /* Flush both */
8498 break;
8499 }
8500 }
8501
8502 if (ret == 0) {
8503 /* Before searching for available LRO objects,
8504 * check if the pkt is L3/L4 aggregatable. If not
8505 * don't create new LRO session. Just send this
8506 * packet up.
8507 */
d44570e4 8508 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8509 return 5;
7d3d0439 8510
d44570e4 8511 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8512 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8513 if (!(l_lro->in_use)) {
8514 *lro = l_lro;
8515 ret = 3; /* Begin anew */
8516 break;
8517 }
8518 }
8519 }
8520
8521 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8522 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8523 __func__);
7d3d0439
RA
8524 *lro = NULL;
8525 return ret;
8526 }
8527
8528 switch (ret) {
d44570e4
JP
8529 case 3:
8530 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8531 vlan_tag);
8532 break;
8533 case 2:
8534 update_L3L4_header(sp, *lro);
8535 break;
8536 case 1:
8537 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8538 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8539 update_L3L4_header(sp, *lro);
d44570e4
JP
8540 ret = 4; /* Flush the LRO */
8541 }
8542 break;
8543 default:
9e39f7c5 8544 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8545 break;
7d3d0439
RA
8546 }
8547
8548 return ret;
8549}
8550
1ee6dd77 8551static void clear_lro_session(struct lro *lro)
7d3d0439 8552{
1ee6dd77 8553 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8554
8555 memset(lro, 0, lro_struct_size);
8556}
8557
cdb5bf02 8558static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8559{
8560 struct net_device *dev = skb->dev;
4cf1653a 8561 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8562
8563 skb->protocol = eth_type_trans(skb, dev);
b85da2c0
JP
8564 if (vlan_tag && sp->vlan_strip_flag)
8565 __vlan_hwaccel_put_tag(skb, vlan_tag);
8566 if (sp->config.napi)
8567 netif_receive_skb(skb);
8568 else
8569 netif_rx(skb);
7d3d0439
RA
8570}
8571
1ee6dd77 8572static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8573 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8574{
75c30b13 8575 struct sk_buff *first = lro->parent;
ffb5df6c 8576 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8577
8578 first->len += tcp_len;
8579 first->data_len = lro->frags_len;
8580 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8581 if (skb_shinfo(first)->frag_list)
8582 lro->last_frag->next = skb;
7d3d0439
RA
8583 else
8584 skb_shinfo(first)->frag_list = skb;
372cc597 8585 first->truesize += skb->truesize;
75c30b13 8586 lro->last_frag = skb;
ffb5df6c 8587 swstats->clubbed_frms_cnt++;
7d3d0439 8588}
d796fdb7
LV
8589
8590/**
8591 * s2io_io_error_detected - called when PCI error is detected
8592 * @pdev: Pointer to PCI device
8453d43f 8593 * @state: The current pci connection state
d796fdb7
LV
8594 *
8595 * This function is called after a PCI bus error affecting
8596 * this device has been detected.
8597 */
8598static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8599 pci_channel_state_t state)
d796fdb7
LV
8600{
8601 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8602 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8603
8604 netif_device_detach(netdev);
8605
1e3c8bd6
DN
8606 if (state == pci_channel_io_perm_failure)
8607 return PCI_ERS_RESULT_DISCONNECT;
8608
d796fdb7
LV
8609 if (netif_running(netdev)) {
8610 /* Bring down the card, while avoiding PCI I/O */
8611 do_s2io_card_down(sp, 0);
d796fdb7
LV
8612 }
8613 pci_disable_device(pdev);
8614
8615 return PCI_ERS_RESULT_NEED_RESET;
8616}
8617
8618/**
8619 * s2io_io_slot_reset - called after the pci bus has been reset.
8620 * @pdev: Pointer to PCI device
8621 *
8622 * Restart the card from scratch, as if from a cold-boot.
8623 * At this point, the card has exprienced a hard reset,
8624 * followed by fixups by BIOS, and has its config space
8625 * set up identically to what it was at cold boot.
8626 */
8627static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8628{
8629 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8630 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8631
8632 if (pci_enable_device(pdev)) {
6cef2b8e 8633 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8634 return PCI_ERS_RESULT_DISCONNECT;
8635 }
8636
8637 pci_set_master(pdev);
8638 s2io_reset(sp);
8639
8640 return PCI_ERS_RESULT_RECOVERED;
8641}
8642
8643/**
8644 * s2io_io_resume - called when traffic can start flowing again.
8645 * @pdev: Pointer to PCI device
8646 *
8647 * This callback is called when the error recovery driver tells
8648 * us that its OK to resume normal operation.
8649 */
8650static void s2io_io_resume(struct pci_dev *pdev)
8651{
8652 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8653 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8654
8655 if (netif_running(netdev)) {
8656 if (s2io_card_up(sp)) {
6cef2b8e 8657 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8658 return;
8659 }
8660
8661 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8662 s2io_card_down(sp);
6cef2b8e 8663 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8664 return;
8665 }
8666 }
8667
8668 netif_device_attach(netdev);
fd2ea0a7 8669 netif_tx_wake_all_queues(netdev);
d796fdb7 8670}
This page took 1.873637 seconds and 5 git commands to generate.